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Abstract

The Nelson-Oppen combination method can be used to combine

decision procedures for the validity of quanti�er-free formulae in �rst-

order theories with disjoint signatures, provided that the theories to

be combined are stably in�nite. We show that, even though equational

theories need not satisfy this property, Nelson and Oppen's method can

be applied, after some minor modi�cations, to combine decision proce-

dures for the validity of quanti�er-free formulae in equational theories.

Unfortunately, and contrary to a common belief, the method cannot

be used to combine decision procedures for the word problem. We

present a method that solves this kind of combination problem. Our

method is based on transformation rules and also applies to equational

theories that share a �nite number of constant symbols.

1 Introduction

Equational theories, that is, theories de�ned by a set of (implicitly univer-

sally quanti�ed) equational axioms of the form s � t, and their appropriate

treatment in theorem provers play an important rôle in research on au-

tomated deduction. On the one hand, equational axioms occur in many

�
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axiom sets handled by theorem provers since they de�ne common mathe-

matical properties of operators (such as associativity, commutativity). On

the other hand, the straightforward approach for treating equality (namely,

axiomatizing the special properties of equality, and adding these axioms to

the input axioms of the prover) often leads to unsatisfactory results. This

explains the interest in developing special inference methods and decision

procedures for handling equational theories.

The word problem, that is, the problem of whether an equation s � t is

entailed by a given equational theory E, is the most basic decision problem

for equational theories. It is, of course, undecidable, as exempli�ed by the

undecidability of the word problem for �nitely presented semigroups [6].

Nevertheless, there are decidability results for certain classes of equational

theories (such as theories de�ned by a �nite set of ground equations [8]), and

there are general approaches for tackling the word problem (such as Knuth-

Bendix completion [4], which tries to generate a conuent and terminating

term rewriting system for the theory).

The present paper is concerned with the question of whether the decid-

ability of the word problem is a modular property of equational theories:

given two equational theories E

1

and E

2

with decidable word problems, is

the word problem for E

1

[E

2

also decidable? In this general formulation, the

answer is obviously no, with the word problem for semigroups again provid-

ing a counterexample. In fact, consider a �nitely presented semigroup with

undecidable word problem. The set of equational axioms corresponding to

the semigroup's presentation can be seen as the union of a set A axioma-

tizing the associativity of the semigroup operation, and a set G of ground

equations corresponding to the de�ning relations of the presentation. The

word problem for G is decidable, since G is a �nite set of ground equations,

and it is quite obvious that the word problem for A is decidable as well.

But the word problem for A[G is just the word problem for the presented

semigroup, which is undecidable by assumption.

The theories A and G of this example share a function symbol (the

binary semigroup operation). What happens if we assume that there are no

shared symbols, that is, the theories to be combined are built over disjoint

signatures? Modularity properties for term rewriting systems over disjoint

signatures have been studied in detail. It has turned out that conuence is

a modular property [18], but unfortunately termination is not. In [17] it is

shown that there exist two conuent and terminating rewrite systems over

disjoint signatures such that their union is not terminating. Thus, the union

of systems that provide a decision procedure for the word problem in the

single theories does not yield a decision procedure for the word problem in

the combined theory.

Nevertheless, decision procedures for the word problem can be combined

in the case of disjoint signatures (independently of where these decision

procedures come from), that is, if E

1

and E

2

are equational theories over

disjoint signatures, and both have a decidable word problem, then E

1

[ E

2
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has a decidable word problem as well. This was shown in [14, 13, 9, 3].

Surprisingly, this combination result does not appear to be widely known,

possibly because it was obtained and presented as a side result of the research

on combining matching and uni�cation algorithms. As a matter of fact,

although the result in principle follows from a technical lemma in [14], it

is not explicitly stated there; in [13, 3] it is stated as a corollary, but not

mentioned in the abstract or the introduction; only [9] explicitly refers to the

result in the abstract. The combination methods used in these articles are

essentially identical, the main di�erences lying in the proofs of correctness.

They all directly transform the terms for which the word problem is to be

decided, by applying collapse equations

1

and abstracting alien subterms.

This transformation process must be carried on with a rather strict strategy

(in principle, going from the leaves of the terms to their roots) and it is not

easy to describe and comprehend.

In this paper, we introduce a new method for combining decision pro-

cedures for the word problem that works on a set of equations rather than

terms. Its transformation rules can be applied in arbitrary order, that is,

no strategy is needed. Thus, the di�erence between this new approach and

the old ones is similar to the di�erence between Martelli and Montanari's

transformation-based uni�cation algorithm [5] and Robinson's original one

[12]. We claim that, as in the uni�cation case, this di�erence makes the

method more exible, easier to describe and comprehend, and thus also eas-

ier to generalize. This claim is supported by the fact that the approach is

not restricted to the disjoint signature case: the theories to be combined are

allowed to share a �nite set of constant symbols.

There is a persistent rumor that combining decision procedures for the

word problem (in the disjoint case) is a special case of Nelson and Oppen's

combination method [7]. At �rst sight, the idea is persuasive: the Nelson-

Oppen method combines decision procedures for the validity of quanti�er-

free formulae in �rst-order theories, and the word problem is concerned with

the validity of quanti�er-free formulae of the form s � t in equational theo-

ries. Considered more closely, the rumor turns out to be not quite true for

two reasons. First, Nelson and Oppen require the single theories to be sta-

bly in�nite, and equational theories need not satisfy this property.

2

Second,

although we are only interested in the word problem for the combined the-

ory, Nelson and Oppen's method generates more general validity problems

in the single theories. Thus, just knowing that the word problems in the

single theories are decidable is not su�cient. We shall show, however, that

our method for combining decision procedures for the word problem follows

an approach very similar to Nelson and Oppen's.

1

i.e., equations of the form x � t, where x is a variable that occurs in the non-variable

term t.

2

It turns out, however, that they satisfy a somewhat weaker property, which in principle

su�ces to apply Nelson and Oppen's combination approach.
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2 Nelson and Oppen's Combination Method

We shall �rst recall the general procedure, and then investigate whether it

can be applied to equational theories.

The General Method

This method is concerned with combining decision procedures for the va-

lidity of quanti�er-free formulae. Let � be a �rst-order theory over the

signature �, which consists of a set �

F

of function symbols and a set �

P

of relation symbols. We treat equality � as a logical symbol, i.e., it is al-

ways present and thus needs not be included in the signature. A quanti�er-

free formula is a Boolean combination of �-atoms, i.e., of formulae of the

form P (s

1

; : : : ; s

n

), where P 2 �

P

[ f�g is an n-ary predicate symbol and

s

1

; : : : ; s

n

2 T (�

F

; V ) are �

F

-terms with variables from a (countably in�-

nite) set of variables V . As usual, we say that a quanti�er-free formula '

is valid in � i� it holds in all models of �, i.e., i� for all �-structures A

that satisfy � and all valuations � of the variables in ' by elements of A we

have A; � j= '. Since a formula is valid in � i� its negation is unsatis�able

in �, we can turn the validity problem for � into an equivalent satis�ability

problem: we know that a formula ' is not valid in � i� there exist a �-model

A of � and a valuation � such that A; � j= :'.

When considering the satis�ability problem, we may (without loss of

generality) restrict our attention to conjunctive quanti�er-free formulae, i.e.,

conjunctions of �-atoms and negated �-atoms. In fact, a given quanti�er-

free formula can be transformed into an equivalent formula in disjunctive

normal form (i.e., a disjunction of conjunctive quanti�er-free formulae), and

this disjunction is satis�able in � i� one of its disjuncts is satis�able in �.

Now assume that �

1

and �

2

are two disjoint signatures and that � is

obtained as the union of a �

1

-theory �

1

and a �

2

-theory �

2

. How can de-

cision procedures for validity (equivalently: satis�ability) in �

i

(i = 1; 2)

be used to obtain a decision procedure for validity (equivalently: satis�a-

bility) in �? Nelson and Oppen's method for combining decision procedures

considers the satis�ability problem in �. Given a conjunctive quanti�er-free

(�

1

[�

2

)-formula ' to be tested for satis�ability, it proceeds in three steps:

1. Generate a conjunction '

1

^ '

2

that is equivalent to ', where '

i

is a

pure �

i

-formula (i = 1; 2).

Here equivalent means that ' and '

1

^ '

2

are satis�able in exactly

the same models of �. This is achieved by replacing alien subterms by

variables and adding appropriate equations (see the example below).

2. Test the pure formulae for satis�ability in the respective theories.

If '

i

is unsatis�able in �

i

for i = 1 or i = 2, then return \unsatis�able."

Otherwise proceed with the next step.
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3. Propagate equalities between di�erent shared variables (i.e., variables

u

j

6= v

j

occurring in both '

1

and '

2

), if a disjunction of such equali-

ties can be deduced from the pure parts.

A disjunction u

1

� v

1

_ : : : _ u

k

� v

k

of equations between di�erent

shared variables can be deduced from '

i

in �

i

i� '

i

^u

1

6� v

1

^: : :^u

k

6�

v

k

is unsatis�able in �

i

. Since the satis�ability problem in �

i

was as-

sumed to be decidable, and since there are only �nitely many shared

variables, it is decidable whether such a disjunction exists.

If no such disjunctions can be deduced, return \satis�able." Other-

wise, take any of them,

3

and propagate its equations as follows. For

every disjunct u

j

� v

j

, proceed with the second step for the formula

'

1

�

j

^'

2

�

j

, where �

j

:= fu

j

7! v

j

g (for j = 1; : : : ; k). Return \satis-

�able" i� one of these cases yields \satis�able."

Example 2.1 Consider the (equational) theories �

1

:= f8x:f(x; x) � xg

and �

2

:= f8x:g(g(x)) � g(x)g over the signatures �

1

:= ffg and �

2

:= fgg.

If we want to know whether the (mixed) quanti�er-free formula

g(f(g(z); g(g(z)))) � g(z)

is valid in �

1

[�

2

, we can apply the Nelson-Oppen procedure to its negation

g(f(g(z); g(g(z)))) 6� g(z).

In Step 1, f(g(z); g(g(z))) is an alien subterm in g(f(g(z); g(g(z)))) (since

g 2 �

2

and f 2 �

1

). In addition, g(z) and g(g(z)) are alien subterms in

f(g(z); g(g(z))). Replacing these subterms by variables yields the conjunc-

tion '

1

^ '

2

, where

'

1

:= u � f(v; w) and '

2

:= g(u) 6� g(z) ^ v � g(z) ^w � g(g(z)):

In Step 2, it is easy to see that both pure formulae are satis�able in

their respective theories. The equation u � f(v; w) is obviously satis�able

in the trivial model of �

1

(of cardinality 1). The formula '

2

is, for example,

satis�able in the �

2

-free algebra with two generators, where u is interpreted

by one generator, z by the other, and v; w as required by the equations.

In Step 3, we can deduce w � v from '

2

in �

2

since '

2

contains v � g(z)^

w � g(g(z)) and �

2

contains the universally quanti�ed equation g(g(x)) �

g(x). Propagating the equality w � v yields the pure formulae

'

0

1

:= u � f(v; v) and '

0

2

:= g(u) 6� g(z) ^ v � g(z) ^ v � g(g(z));

which again turn out to be separately satis�able in Step 2 (with the same

models as used above).

In Step 3, we can now deduce the equality u � v from '

0

1

in �

1

, and its

propagation yields

'

00

1

:= v � f(v; v) and '

00

2

:= g(v) 6� g(z) ^ v � g(z) ^ v � g(g(z)):

3

For e�ciency reasons, one should take a disjunction with minimal k.
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In Step 2, it turns out that '

00

2

is not satis�able in �

2

, and thus the

answer is \unsatis�able," which shows that g(f(g(z); g(g(z)))) � g(z) is

valid in �

1

[ �

2

. In fact, v � g(z) and the equation g(g(x)) � g(x) of �

2

imply that g(v) � g(z), which contradicts g(v) 6� g(z).

Obviously, the procedure terminates since there are only �nitely many

shared variables to be identi�ed. In addition, it is easy to see that satis�a-

bility is preserved at each step. This implies that the procedure is complete,

that is, if it answers \unsatis�able" (because variable propagation has made

one of the pure subformulae unsatis�able in the corresponding component

theory), then the original formula is in fact unsatis�able.

For arbitrary theories �

1

and �

2

, the combination procedure need not

be sound (see Example 2.3 below). One must assume that each �

i

is stably

in�nite, that is, such that a quanti�er-free formula '

i

is satis�able in �

i

i� it

is satis�able in an in�nite model of �

i

. This restriction was not mentioned in

Nelson and Oppen's original article [7]; it was introduced in [10]. Two new

and simple proofs of soundness and completeness of the procedure are given

in [11, 15]. In essence, both depend on the following proposition (see [15] for

a proof). For a �nite set of variables X, let �(X) denote the conjunction

of all disequations x 6� y for x; y 2 X;x 6= y.

Proposition 2.2 Let �

1

and �

2

be two stably in�nite theories over the dis-

joint signatures �

1

and �

2

, respectively; let '

i

be a quanti�er-free �

i

-formula

(i = 1; 2), and let X be the set of variables occurring in both '

1

and '

2

.

If '

i

^ �(X) is satis�able in �

i

for i = 1; 2, then '

1

^ '

2

is satis�able in

�

1

[ �

2

.

It is easy to see that this proposition yields soundness of the procedure, that

is, if the procedure answers \satis�able" then the original formula was satis�-

able. In fact, if in Step 3 no disjunction of equalities between shared variables

can be derived from the pure formulae, the prerequisite for the proposition is

satis�ed (take the disjunction of all x 6� y for x; y 2 X;x 6= y). We shall use

a similar proposition to prove the correctness of our combination procedure.

Its Application to Equational Theories

We now turn to the question of whether the Nelson-Oppen method applies

to equational theories (that is, sets of universally quanti�ed equations). For

this purpose, we will consider only functional signatures, which means that

the only predicate symbol in our formulae will be the equality symbol.

First, note that a trivial equational theory E (i.e., a theory that has only

the trivial 1-element model, or equivalently a theory that entails x � y for

distinct variables x; y) cannot be stably in�nite. However, this is not a real

problem since satis�ability and validity in the trivial model are obviously

decidable. In addition, if E

1

or E

2

are trivial, then their union is trivial, and

thus one does not need a combination procedure to decide satis�ability in

6



E

1

[E

2

. The next example shows that non-trivial equational theories need

not be stably in�nite either and that Nelson and Oppen's procedure is not

correct for such theories.

Example 2.3 Let E

1

:= f8x; y:f(g(x); g(y)) � x;8x; y:f(g(x); h(y)) � yg.

It is easy to see that E

1

is non-trivial. In fact, by orienting the equations

from left to right, one obtains a canonical term rewriting system, in which

any two distinct variables have a di�erent normal form. Now, consider the

quanti�er-free formula g(x) � h(x). Obviously, this formula is satis�able in

the trivial model of E

1

. In every model A of E

1

that satis�es g(x) � h(x),

there exists an element e such that g

A

(e) = h

A

(e). But then we have that

a = f

A

(g

A

(a); g

A

(e)) = f

A

(g

A

(a); h

A

(e)) = e

for every element a of A, which entails that A is the trivial model. Thus,

g(x) � h(x) is only satis�able in the trivial model of E

1

, which show that

the (non-trivial) equational theory E

1

is not stably in�nite.

To see that this really leads to an incorrect behavior of the Nelson-

Oppen method, let E

2

:= f8x:k(x) � k(x)g, and consider the conjunction

g(x) � h(x) ^ k(x) 6� x. Clearly, k(x) 6� x is satis�able in E

2

(for instance,

in the E

2

-free algebra with 1 generator) and, as we saw earlier, g(x) �

h(x) is satis�able in E

1

. In addition, no equations between distinct shared

variables can be deduced (since there is only one shared variable). It follows

that Nelson and Oppen's procedure would answer \satis�able" on input

g(x) � h(x)^k(x) 6� x. However, since g(x) � h(x) is only satis�able in the

trivial model of E

1

, and no disequation can be satis�ed in a trivial model,

g(x) � h(x) ^ k(x) 6� x is unsatis�able in E

1

[E

2

.

The problem pointed out by the example is solely due to the fact that one

of the pure subformulae is only satis�able in the trivial model, whereas the

other is not satis�able in the trivial model. Given a quanti�er-free formula

', it is obviously decidable whether ' is satis�able in the trivial model of

E

1

[ E

2

: just replace all equations by \true" and all negated equations by

\false." To test satis�ability in a non-trivial model of E

1

[E

2

, one can then

consider satis�ability in E

0

1

[E

0

2

, where E

0

i

:= E

i

[f9x; y:x 6� yg. Obviously,

' is satis�able in E

1

[E

2

i� it is satis�able in the trivial model or in a model

of E

0

1

[E

0

2

. We shall show in the following:

Lemma 2.4 Let E

i

be a non-trivial equational theory.

1. The theory E

0

i

:= E

i

[ f9x; y:x 6� yg is stably in�nite.

2. If satis�ability of quanti�er-free formulae is decidable for E

i

, then it

is also decidable for E

0

i

.

Consequently, Nelson and Oppen's procedure can be applied to the combined

theory E

0

1

[E

0

2

. This shows

7



Theorem 2.5 Let E

1

and E

2

be two equational theories over disjoint signa-

tures. If satis�ability of quanti�er-free formulae is decidable for E

i

(i = 1; 2),

then it is also decidable for E

1

[E

2

.

The second statement of the lemma is trivial. In fact, let '

i

be a

quanti�er-free �

i

-formula. Then '

i

is satis�able in E

0

i

i� '

i

^ x 6� y is

satis�able in E

i

, where x; y are two distinct variables not occurring in '

i

.

The �rst statement of the lemma is an easy consequence of the fact that

the class of models of an equational theory is closed under direct products.

In fact, assume that the quanti�er-free formula '

i

is satis�able in E

0

i

, i.e.,

'

i

is satis�able in a non-trivial model A of E

i

. Then the countably in�nite

direct product of A with itself is an in�nite model of E

i

(and of E

0

i

), and it

is easy to see that it satis�es '

i

.

The Word Problem

For an equational theory E, the word problem is concerned with the validity

in E of quanti�er-free formulae of the form s � t.

4

Equivalently, the word

problem asks for the (un)satis�ability of s 6� t in E. Now, let E

1

and E

2

be two equational theories over disjoint signatures. Obviously, Theorem 2.5

implies that the word problem is decidable for E

1

[ E

2

, provided that the

validity (equivalently: satis�ability) of (arbitrary) quanti�er-free formulae

is decidable for E

1

and E

2

.

However, if we just assume that the word problem (equivalently: satis�-

ability of formulae of the form s 6� t) is decidable for E

i

(i = 1; 2), then such

an assumption will be too weak to allow for a straightforward application of

the Nelson-Oppen procedure. In fact, it is easy to see that the satis�ability

tests in the second and third step of the procedure need not be of the speci�c

form that can be handled by a procedure for the word problem.

In our method for combining decision procedures for the word problem,

the main ideas to overcome these di�culties are in principle

5

the following:

� In Step 3, propagate only equalities that can be deduced with the help

of a decision procedure for the word problem in E

i

:

{ If we have x � s; y � t and s =

E

i

t, then propagate x � y.

{ If we have x � s, y occurs in s, and s =

E

i

y, then propagate

x � y.

� In Step 2, return \unsatis�able" only if equality propagation has gen-

erated a trivially unsatis�able disequation of the form x 6� x.

The main part of the proof of correctness will be to show that this restricted

form of equality propagation and satis�ability test is su�cient for our pur-

poses.

4

As usual, we often write \s =

E

t" to express that the formula s � t is valid in E.

5

The rules of our combination approach are somewhat more complex for technical

reasons, and the fact that we also take shared constants into account.

8



3 The Combination Procedure for the Word Prob-

lem

In the following, we consider the equational theory E := E

1

[E

2

where, for

i = 1; 2, E

i

is a non-trivial equational theory over the functional signature

�

i

. Furthermore, we assume that � := �

1

\ �

2

is a �nite (possibly empty)

set of constant symbols, and that the word problem for each E

i

is decidable.

To decide the word problem for E, we consider the satis�ability problem

for quanti�er-free formulae of the form s

0

6� t

0

, where s

0

and t

0

are (�

1

[�

2

)-

terms. As in the Nelson-Oppen procedure, the �rst step of our procedure

transforms this formula into a conjunction of pure formulae by means of

variable abstraction.

Abstraction Systems

In the following, we use �nite sets of atomic formulae in place of conjunctions

of such formulae. We will then say that such a set is satis�able in a theory

i� the conjunction of its elements is satis�able in that theory.

To de�ne the abstraction process in more detail, we need some notation.

We assume that all terms are built over the signature �

1

[�

2

with variables

from a countably in�nite set V . The elements of �

1

will be called 1-symbols

and the elements of �

2

2-symbols. A term t is called i-term i� it is a variable

or has the form t = f(t

1

; :::; t

n

) for some i-symbol f (i = 1; 2). Note that

variables and shared constants are both 1- and 2-terms. A subterm s of a

1-term t is called alien subterm of t i� it is not a 1-term, and every proper

superterm of s in t is a 1-term. Alien subterms of 2-terms are de�ned

analogously. An i-term s is pure i� it contains only i-symbols and variables.

For the disequation s

0

6� t

0

, the abstraction procedure starts with the

set S

0

:= fx 6� y; x � s

0

; y � t

0

g, where x; y are distinct variables not

occurring in s

0

; t

0

, if s

0

and t

0

are not variables. If s

0

(t

0

) is a variable, we

use s

0

in place of x (t

0

in place of y), and omit the corresponding (trivial)

equation. Assume that a �nite set S

i

consisting of x 6� y and equations

of the form u � s (where u 2 V and s 2 T (�

1

[ �

2

; V ) n V ) has already

been constructed. If S

i

contains an equation u � s such that s has an alien

subterm t at position p, then S

i+1

is obtained from S

i

by replacing u � s

by the equations u � s

0

and v � t, where v is a variable not occurring in

S

i

, and s

0

is obtained from s by replacing t at position p by v. Otherwise, if

all terms occurring in S

i

are pure, then S

i

is the output of the abstraction

procedure. Obviously, this process terminates and yields a set AS(s

0

6� t

0

)

which is satis�able in E i� s

0

6� t

0

is satis�able in E.

The set AS (s

0

6� t

0

) satis�es additional properties, whose importance

will become clear later on.

De�nition 3.1 Let S be a set of equations of the form (v � t) where v 2 V

and t 2 T (�

1

[ �

2

; V ) n V . We de�ne the relation � on S as follows. For

9



all (u � s); (v � t) 2 S,

(u � s) � (v � t) i� v 2 V(s);

where V(s) denotes the set of variables occurring in s. By �

+

we denote the

transitive and by �

�

the reexive-transitive closure of �. The relation � is

called acyclic i� �

+

is irreexive.

De�nition 3.2 (Abstraction System) We say that the set A := fx 6�

yg [ S is an abstraction system with initial formula x 6� y i� the following

holds:

1. S is a �nite subset of fv � t j v 2 V; t 2 (T (�

1

; V ) [ T (�

2

; V )) nV g;

2. the relation � on S is acyclic;

3. for all (u � s); (v � t) 2 S,

(a) if u = v then s = t;

(b) if (u � s) � (v � t) and s 2 T (�

i

; V ) with i 2 f1; 2g

then t 62 T (�

i

; V ).

Condition (1) states that S consists of equations between variables and

pure non-variable terms; condition (2) implies that for all (u � s); (v � t) 2

S, if (u � s)�

�

(v � t) then u 62 V(t); condition (3a) implies that a variable

appears only once in S as the left-hand side of an equation; condition (3b)

implies that the elements of every �-chain of S have alternating signatures.

The following proposition is an easy consequence of the de�nition of the

abstraction procedure.

Proposition 3.3 The set AS(s

0

6� t

0

) obtained by applying the abstrac-

tion procedure to the disequation s

0

6� t

0

is an abstraction system which is

satis�able in E i� s

0

6� t

0

is satis�able in E.

The Combination Procedure

The main idea of the procedure, which is described in Fig. 1, is to see

whether the disequation between the two input terms is satis�able in E

by turning the disequation into an abstraction system, and then propagat-

ing some equations between variables which are deduced using the decision

procedures for the single theories. The transformations the initial system

goes through will eventually produce an abstraction system whose initial

formula has the form (v 6� v) i� the two input terms are in =

E

(i.e., i� the

corresponding disequation is unsatis�able in E).

During the execution of the procedure on input fs

0

; t

0

g, S, the set on

which the procedure works, is repeatedly modi�ed by the application of

the transformations at step (2). In essence, transformations (2a) and (2b)

10



remove possible collapse equations of E

1

or E

2

from S. In these transfor-

mations we have used the notation \s

1

[v

2

]" to express that the variable v

2

occurs in the term s

1

. Transformation (2c) instantiates with a shared con-

stant any variable equated to a �

i

-term that is equivalent to that constant

and discards the corresponding equation. Transformation (2d) identi�es any

two variables equated to equivalent �

i

-terms and then discards one of the

corresponding equations. Transformation (2e) recognizes an inconsistency

in S and replaces it with (a symbol for) the unsatis�able set.

Input: fs

0

; t

0

g � T (�

1

[ �

2

; V ).

1. Let S := AS(s

0

6� t

0

).

2. Repeatedly apply the following transformations to S until none

of them is applicable.

(a) fu 6� vg [ fv

1

� s

1

[v

2

]g [ fv

2

� s

2

g [ T

�! fu 6� vgfv

1

7! v

2

g [ fv

2

� s

2

g [ Tfv

1

7! s

2

g

if v

2

=

E

i

s

1

for i = 1 or i = 2.

(b) fv

1

� s

1

[v

2

]g [ T �! Tfv

1

7! v

2

g

if for no s

2

, fv

2

� s

2

g � T

and

v

2

=

E

i

s

1

for i = 1 or i = 2.

(c) fu 6� vg [ fx � sg [ T �! fu 6� vg [ fx � cg [ Tfx 7! cg

if c 2 �,

s 62 �,

and

c =

E

i

s for i = 1 or i = 2.

(d) fx � sg [ fy � tg [ T �! fy � tg [ Tfx 7! yg

if (y � t) 6�

�

(x � s)

and

s =

E

i

t for i = 1 or i = 2.

(e) fv 6� vg [ T �! ?.

3. Succeed if ? has been generated. Fail otherwise.

Figure 1: The Combination Procedure.

We prove in Section 5 that this combination procedure decides the word

problem for E = E

1

[E

2

by showing that the procedure is partially correct

(i.e., sound and complete) and terminates on all inputs. For the proof of

correctness, we need to extend the result in Proposition 2.2 to the case of

11



signatures sharing constants. We will do this in the next section.

4 Satis�ability in the Union of Theories Sharing

Constants

The results of this section concern arbitrary �rst-order theories. They are

not restricted to equational theories.

Let �

0

� � be signatures, and A be a �-structure. The �

0

-reduct of

A, denoted by A

�

0

, is the �

0

-structure obtained from A by just forgetting

about the interpretation of the symbols in � n �

0

. In this situation, A is

called an expansion of A

�

0

to the larger signature.

Lemma 4.1 Let �

1

be a �

1

-theory, and �

2

be a �

2

-theory. Their union

�

1

[�

2

is consistent i� there is a model A

1

of �

1

and a model A

2

of �

2

such

that their reducts to �

1

\ �

2

are isomorphic.

A proof of this lemma can be obtained as an easy consequence of Craig's

interpolation theorem [15], or by a direct model-theoretic construction [11].

Let X;Y be �nite sets of variables or constants. We denote by �(X)

the conjunction of all the disequations x 6� y for x; y 2 X;x 6= y, and by

�(X;Y ) the conjunction of all the disequations x 6� y for x 2 X; y 2 Y .

Proposition 4.2 Let �

1

be a �

1

-theory and �

2

be a �

2

-theory, and assume

that � = �

1

\ �

2

is a �nite set of constant symbols. For i = 1; 2, let A

i

be a model of �

i

, '

i

a quanti�er-free �

i

-formula and X the set of variables

occurring in both '

1

and '

2

. If A

1

and A

2

have the same cardinality and,

for i = 1; 2,

'

i

^�(X) ^�(�) ^�(X;�)

is satis�able in A

i

, then '

1

^ '

2

is satis�able in �

1

[ �

2

.

Proof. For i = 1; 2, let X

i

be the set of variables occurring in '

i

, and let

X = X

1

\X

2

= fv

1

; : : : ; v

n

g. Let �

i

be a valuation of the variables in X

i

by elements of A

i

such that

A

i

; �

i

j= '

i

^�(X) ^�(�) ^�(X;�):

Then choose a set C := fc

1

; : : : ; c

n

g of pairwise distinct constant symbols

not appearing in �

1

[�

2

, let � := fv

1

7! c

1

; : : : ; v

n

7! c

n

g and, for i = 1; 2,

consider the (�

i

[C)-theory

b

�

i

:= �

i

[ f

~

9 ('

i

�)g [ f�(C);�(�);�(C;�)g;

where

~

9 ('

i

�) denotes the existential closure of the formula '

i

�.

Obviously, A

i

can be expanded to a model B

i

of

b

�

i

by interpreting each

c

j

in C as �

i

(v

j

). For i = 1; 2, let B

0

i

:= fc

B

i

j c 2 � [ Cg, where c

B

i

is

12



the interpretation of the constant c in the structure B

i

. Because B

i

satis�es

�(C)^�(�)^�(C;�), we have c

B

i

6= d

B

i

for all c; d 2 �[C; c 6= d. Thus,

we can de�ne a mapping h

0

: B

0

1

! B

0

2

by h(c

B

1

) := c

B

2

for all c 2 � [ C,

which is obviously a bijection. Since the domain of B

i

coincides with the

domain of A

i

, the structures B

1

and B

2

have the same cardinality, which

implies that h

0

can be extended to a bijection h between the domains of B

1

and B

2

. It is immediate by the construction of h

0

that h is an isomorphism

of B

1

�[C

onto B

2

�[C

.

It follows from Proposition 4.1 that

b

�

1

[

b

�

2

is consistent. Because the

formulae '

1

� and '

2

� have no variables in common,

b

�

1

[

b

�

2

is equivalent to

�

1

[ �

2

[ f

~

9 ('

1

^ '

2

)�g [ f�(C);�(�);�(C;�)g:

Consequently, ('

1

^ '

2

)�, and therefore '

1

^ '

2

, is satis�able in �

1

[ �

2

.

5 The Correctness Proof

In the following, we denote by S

(0)

the abstraction system AS(s

0

6� t

0

)

obtained by applying the abstraction procedure to the input disequation,

and by S

(j)

(j � 1) the set S after the j

th

transformation step.

Lemma 5.1 (Termination) The combination procedure halts on all in-

puts.

Proof. As mentioned above, the abstraction procedure applied in the

�rst part of the combination procedure terminates. In addition, every single

transformation step in the second part is executable in �nite time. All we

need to show then is that the procedure performs only �nitely many of these

transformations. For j � 0, let n

j

be the number of variables occurring on

the left-hand side of an equation in S

(j)

plus the number of non-shared

terms on the right-hand side of an equation in S

(j)

. It is easy to see that

n

0

> n

1

> n

2

: : : , and thus the number of transformation steps is bounded

by n

0

.

Next, we want to show that all sets S

(j)

6= ? obtained during the run

of the combination procedure are in fact abstraction systems. The proof of

acyclicity (Condition 2 in De�nition 3.2) will be facilitated by the following

lemma, whose simple proof is omitted.

Lemma 5.2 Let < be a binary relation on a �nite set A, and b; c 2 A be

such that c 6<

�

b. We denote the restriction of < to A n fbg by <

b

,

6

and

consider the relations

<

1

:= <

b

[ fha; di j a < b; c < dg

<

2

:= <

b

[ fha; ci j a < bg:

If < is acyclic, then <

1

and <

2

are acyclic as well.

6

That is <

b

:=< \ (A n fbg)

2

.
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Lemma 5.3 Given an execution of the combination procedure, let S

(n)

be

the last set if the procedure fails, or the last but one, if the procedure succeeds.

Then, for all j = 0; : : : ; n, S

(j)

is an abstraction system.

Proof. For all j = 0; : : : ; n, let �

j

denote the relation � (cf. Def. 3.1)

on S

(j)

. We prove the claim by induction on j. The induction base (j = 0)

is trivial by construction of S

(0)

and Proposition 3.3.

Thus, assume that 0 < j � n, and that we already know that S

(j�1)

is

an abstraction system. Observing that, by the assumption on n, S

(j)

cannot

be the result of transformation (2e), consider the following cases.

Transformation (2a). From the de�nition of transformation (2a), it is

easy to see that S

(j�1)

and S

(j)

must have the following form:

S

(j�1)

= fu 6� vg [ fv

1

� s

1

[v

2

]g [ fv

2

� s

2

g [ T

S

(j)

= fu 6� vgfv

1

7! v

2

g [ fv

2

� s

2

g [ Tfv

1

7! s

2

g

Let fu

0

6� v

0

g := fu 6� vgfv

1

7! v

2

g. We show that S

(j)

is an abstraction

system with initial formula u

0

6� v

0

.

If we take �

j�1

to be the relation < of Lemma 5.2, (v

1

� s

1

) to be b,

and (v

2

� s

2

) to be c, it is easy to see that �

j

coincides with <

1

(as de�ned

in the lemma). Recalling that �

j�1

is acyclic by induction, it follows that

�

j

is acyclic as well, and thus condition (2) of De�nition 3.2 holds.

Since fv

1

7! s

2

g does not change the left-hand sides of equations in T ,

it is immediate that condition (3a) of De�nition 3.2 holds as well.

Finally, observe that v

1

can appear in T only in an equation of the

form (v

0

� s

0

[v

1

]) and that (v

0

� s

0

) �

j�1

(v

1

� s

1

) �

j�1

(v

2

� s

2

):

By induction, we know that s

0

and s

2

are both non-variable �

i

-terms, for

i = 1 or i = 2; therefore, the application of fv

1

7! s

2

g does not change the

signature of the equations in T . It follows that S

(j)

satis�es both conditions

(1) and (3b) of De�nition 3.2.

Transformation (2b). The proof is essentially a special case of the one

above, with s

2

replaced by v

2

.

Transformation (2c). We know that S

(j�1)

and S

(j)

have the following

form:

S

(j�1)

= fu 6� vg [ fx � sg [ T

S

(j)

= fu 6� vg [ fx � cg [ Tfx 7! cg

It is obvious that fx � cg [ Tfx 7! cg satis�es conditions (2) and (3a) of

De�nition 3.2. To see that it also satis�es conditions (1) and (3b), observe

that the substitution fx 7! cg does not change the signature of the terms

in T , and that x does not appear in Tfx 7! cg. It follows that S

(j)

is an

abstraction system with initial formula u 6� v.

Transformation (2d). We know that S

(j�1)

and S

(j)

have the form

S

(j�1)

= (T [ fu 6� vg) [ fx � sg [ fy � tg

S

(j)

= (T [ fu 6� vg)fx 7! yg [ fy � tg;
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and it is not the case that (y � t)�

j�1

�

(x � s).

It is not di�cult to see that this time �

j

is derivable from �

j�1

in

the same way <

2

is derivable from < in Lemma 5.2, where (x � s) is b and

(y � t) is c. Again, it follows that �

j

satis�es condition (2) of De�nition 3.2.

By induction, we know that y appears as the left-hand side of no equations

in S

(j�1)

n fy � tg, and so it is immediate that S

(j)

satis�es condition (3a).

It is also immediate that S

(j)

satis�es conditions (1) and (3b). In conclusion,

S

(j)

is an abstraction system with initial formula (u 6� v)fx 7! yg.

The next lemma shows that the transformation rules preserve satis�a-

bility.

Lemma 5.4 For all j > 0 and all models A of E = E

1

[E

2

, S

(j)

is satis�-

able in A i� S

(j�1)

is satis�able in A.

Proof. Transformation (2a). We know that S

(j�1)

and S

(j)

have the form

S

(j�1)

= T [ fu 6� vg [ fv

1

� s

1

[v

2

]g [ fv

2

� s

2

g

S

(j)

= Tfv

1

7! s

2

g [ fu 6� vgfv

1

7! v

2

g [ fv

2

� s

2

g

and that v

2

=

E

i

s

1

for i = 1 or i = 2. Assume that a valuation � satis�es

S

(j�1)

in a model A of E. Since v

2

� s

1

[v

2

] is valid in E, for being valid

in E

i

, � must assign both v

1

and v

2

with the individual denoted by s

1

. It

follows immediately that � satis�es S

(j)

in A.

Now, assume that a valuation � satis�es S

(j)

in a model A of E. Observe

that, since S

(j�1)

is an abstraction system, v

1

does not occur in v

2

� s

2

and,

as a consequence, it does not occur in S

(j)

at all. Let �

0

be an extension

of � such that �(v

1

) = �(v

2

). It is immediate that �

0

satis�es the set

S

1

:= T [fv

1

� s

2

g[fu 6� vg[fv

1

� v

2

g[fv

2

� s

2

g in A. Since v

2

� s

1

[v

2

]

is valid in A, it is also immediate that �

0

satis�es the set S

2

:= fv

1

� s

1

[v

2

]g

in A. It follows that �

0

satis�es S

(j�1)

, which is a subset of S

1

[ S

2

.

Transformation (2b) is a special case of the one above with s

2

replaced

by v

2

, transformations (2c) and (2d) can be treated similarly, and transfor-

mation (2e) is trivial (since the equation v 6� v is obviously unsatis�able).

It is now easy to show that the combination procedure is sound.

Proposition 5.5 If the combination procedure succeeds on an input fs

0

; t

0

g,

then s

0

=

E

t

0

.

Proof. By the procedure's de�nition, we know that, if the procedure

succeeds, there is an n > 0 such that S

(n)

= ?. By Lemma 5.4, this implies

that S

(0)

= AS (s

0

6� t

0

) is unsatis�able in E. By Proposition 3.3, it follows

that s

0

6� t

0

is unsatis�able in E, which means that s

0

=

E

t

0

.

In order to show completeness of the combination procedure, we need

an additional assumption on the theories E

1

; E

2

, which is, however, not
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a severe restriction: the theories must be non-trivial and coincide on the

shared constants.

Condition 5.6 E

1

and E

2

are non-trivial and, for all c; d 2 � = �

1

\ �

2

,

we have c =

E

1

d i� c =

E

2

d.

If there are distinct shared constants c; d such that c =

E

i

d holds, then one

can dispense with one of the two constants by replacing it everywhere with

the other. For this reason, we may consider (without loss of generality) the

following condition in place of Condition 5.6.

Condition 5.7 E

1

and E

2

are non-trivial and, for all c; d 2 � = �

1

\ �

2

such that c 6= d, we have c 6=

E

1

d and c 6=

E

2

d.

Proposition 5.8 Assume that E

1

; E

2

satisfy Condition 5.7, and let E :=

E

1

[ E

2

. If s

0

=

E

t

0

, then the combination procedure succeeds on input

fs

0

; t

0

g.

Proof. By Lemma 5.1, the procedure either succeeds or fails; therefore,

we can prove the claim by proving that, if the procedure fails on input

fs

0

; t

0

g, then s

0

6=

E

t

0

. Thus, assume that the procedure fails, and let S

(n)

be the set obtained in the last transformation step. Given Lemma 5.4 and

the construction of S

(0)

, it is su�cient to show that S

(n)

is satis�able in E.

From Lemma 5.3 we know that S

(n)

is an abstraction system with an

initial formula of the form x 6� y for distinct variables x and y (otherwise

the procedure would have succeeded). It follows that S

(n)

n fx 6� yg can be

partitioned into the sets

S

1

:= fx

j

� s

j

(~u

j

)g

j2I

and S

2

:= fy

j

� t

j

(~v

j

)g

j2J

;

where I and J are �nite, s

j

2 T (�

1

; V ) nV , t

j

2 T (�

2

; V ) nV , and ~u

j

(resp.

~v

j

) is the sequence of variables occurring in s

j

(resp. t

j

).

7

It is an easy

consequence of De�nition 3.2 that each x

j

occurs only once in S

1

,

8

each y

j

occurs only once in S

2

, and fx

i

g

i2I

and fy

j

g

j2J

are disjoint.

In the following, let X denote the set V(S

1

) \ V(S

2

) of all variables

occurring in both S

1

and S

2

. Let G

1

and G

2

be sets (of generators) of the

same cardinality, and assume that this cardinality is in�nite and greater

than or equal to the cardinality of �

1

[ �

2

. For i = 1; 2, let A

i

be an

E

i

-free algebra over the set of generators G

i

. Since E

i

was assumed to be

non-trivial, one can deduce by simple cardinal arithmetic, that A

1

and A

2

have the same cardinality. We show below that

S

i

[ fx 6� yg [ f�(X);�(X;�);�(�)g

7

Each equation of the form x � c with c 2 �, that is, c 2 T (�

1

; V ) \ T (�

2

; V ), is put

in either S

1

or S

2

arbitrarily.

8

Note that condition (2) of De�nition 3.2 entails that x

j

cannot occur in ~u

j

, whereas

condition (3b) entails that x

j

cannot occur in ~u

j

0

for j 6= j

0

.
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is satis�able in A

i

, and thus, by Proposition 4.2, that S

(n)

is satis�able in

E = E

1

[E

2

.

We restrict our attention to the case in which i = 1 (i = 2 can be

treated analogously). First, note that Condition 5.7 obviously implies that

the E

1

-free algebra A

1

satis�es �(�).

Now, let U denote the set of all variables occurring on the right-hand

sides of equations in S

1

(that is, the variables in the sequences ~u

j

). We

consider a valuation � of V(S

1

) into A

1

assigning each u 2 U with a distinct

element of A

1

's set of generators, and each x

j

with s

A

1

j

[�(~u

j

)] (i.e., the

interpretation of the term s

j

in A

1

under this valuation of its variables).

Notice that � is well-de�ned because all the x

j

's are distinct and x

j

62 U , as

we saw earlier. By construction, � satis�es S

1

.

Next, we show that �(u) 6= �(v) for all distinct u; v 2 V(S

1

), which will

imply that � satis�es �(X).

If both u and v are in U , �(u) 6= �(v) is obvious by the construction

of �. Hence, let u = x

j

for some j 2 I and assume by contradiction that

�(x

j

) = �(v). If v = x

`

for some ` 2 I, by the construction of � we have that

A

1

; � j= s

j

� s

`

. Since � evaluates the variables in the equation s

i

� s

j

by distinct generators of A

1

, and since A

1

is free for E

1

, it follows that

s

j

=

E

1

s

`

; but then, since either (x

`

� s

`

) 6�

�

(x

j

� s

j

) or (x

j

� s

j

) 6�

�

(x

`

�

s

`

), transformation (2d) applies to S

(n)

, against the assumption that S

(n)

is the last set. If v 2 U , similarly to the previous case we obtain that

v =

E

1

s

j

. Now, if v does not occur in s

j

, it is easy to see that E

1

only

admits trivial models, against the assumption that E

1

is non-trivial. If v

occurs in s

j

, either transformation (2a) or (2b) applies to S

(n)

, again against

the assumption that S

(n)

is the last set.

Finally, we show, again by contradiction, that � satis�es �(X;�), that

is, �(v) 6= c

A

1

for all v 2 X and c 2 �. If v 2 U , �(v) is a generator of A

1

,

which certainly di�ers from c

A

1

(otherwise, E

1

would be trivial). Therefore,

suppose that v = x

j

for some j 2 I, and that A

1

; � j= x

j

� c. As before,

this entails that c =

E

1

s

j

. Recalling our earlier observations on S

1

and

S

2

, and that v is shared by the two sets, we can deduce that S

2

contains

an equation of the form y � t[x

j

]. Now, s

j

cannot be a shared constant,

otherwise S

(n)

, for including fy � t[x

j

]; x

j

� s

j

g, would not satisfy condition

(3b) of De�nition 3.2. But if s

j

62 � and c =

E

1

s

j

, then transformation (2c)

applies to S

(n)

.

In conclusion, we have shown that A

1

; � j= S

i

[f�(X);�(X;�);�(�)g.

To complete the proof, we must show that � also satis�es x 6� y. We know

that x; y are distinct. Thus, if both are elements of V(S

1

), the above proof

yields �(x) 6= �(y). Otherwise, we simply need to extend � to V(S

1

)[fx; yg

so that �(x) 6= �(y).

Combining the results of this section, which show total correctness of

our combination procedure, we obtain the following modularity result:
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Theorem 5.9 Let E := E

1

[ E

2

, where, for i = 1; 2, E

i

is a non-trivial

equational theory over �

i

. Furthermore, assume that � := �

1

\�

2

is a �nite

set of constant symbols, and that E

1

and E

2

agree on �, that is, c =

E

1

d i�

c =

E

2

d for all c; d 2 �.

If the word problem is decidable for E

1

and E

2

, then it is also decidable

for E.

6 Conclusion, related work and open questions

We have shown that decision procedures for the word problem can be com-

bined with the help of a transformation-based procedure, if the signatures

of the underlying theories share only �nitely many constant symbols. Our

main goal was not to prove a new combination result, but to develop a rule-

based combination procedure, which is more transparent and more exible

than the known ones, and which uses deterministic rules that may be ap-

plied in arbitrary order. In addition, we wanted to clarify the connection to

Nelson and Oppen's combination method.

An important open question is how far the combination result can be

extended to theories sharing function symbols of larger arity. In [1], the

problem of combining algorithm for the uni�cation, matching, and word

problem was investigated for theories \sharing constructors." For the word

problem, this combination method presupposes the existence of a matching

algorithm for certain restricted matching problems in the single theories. For

shared constants, it is easy to see that these restricted matching problems

reduce to word problems, and thus the result in [1] also yields the modularity

result of Theorem 5.9, even though this is not explicitly mentioned in the

paper. However, the algorithm described in [1] is not rule-based since it

is a straightforward extension of the algorithms for the disjoint case, as

described in [13, 9, 3], and thus shares the disadvantages of these algorithms,

as mentioned in the introduction. A recent result of Domenjoud's [2] shows

that for theories sharing constructors of arity > 0, the matching algorithms

required by the approach of [1] cannot be dispensed with: a union of simple

and regular theories sharing only constructors may have an undecidable

word problem, even if each theory has a decidable word problem.

The approach presented in this paper suggests that we can tackle the

problem of non-disjoint combination from another angle. The Nelson-Oppen

combination method has been recently extended to the combination of the-

ories with non-disjoint signatures [11] and more work in this direction is

currently under way [16]. Since our approach is very similar in spirit to

Nelson and Oppen's, it is conceivable that some of the results from [11, 16]

may be used to extend our combination procedure to the case of equational

theories sharing also non-constant functors. However, any such extension

appears to be non-trivial and will probably impose more serious limitations

on the type of equational theories that can be combined.
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