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Number Restrictions on Complex Roles in

Description Logics

Franz Baader and Ulrike Sattler

Abstract

Number restrictions are concept constructors that are available

in almost all implemented description logic systems. However, even

though there has lately been considerable e�ort on integrating expres-

sive role constructors into description logics, the roles that may occur

in number restrictions are usually of a very restricted type. Until now,

only languages with number restrictions on atomic roles and inversion

of atomic roles, or with number restrictions on intersection of atomic

roles have been investigated in detail.

In the present paper, we increase the expressive power of descrip-

tion languages by allowing for more complex roles in number restric-

tions. As role constructors, we consider composition of roles (which

will be present in all our languages), and intersection, union and inver-

sion of roles in di�erent combinations. We will present one decidability

result (for the basic language that extends ALC by number restrictions

on roles with composition), and three undecidability results for three

di�erent extensions of the basic language.
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1 MOTIVATION AND INTRODUCTION 1

1 Motivation and introduction

Description logics is a �eld of knowledge representation in which there is

a rather close interaction between theory and practice. One the one hand,

there are various implemented systems based on description logics, which of-

fer a palette of description formalisms with di�ering expressive power [32, 9,

27, 28, 2, 10]. On the other hand, the computational properties (like decid-

ability, complexity) of various description formalisms have thoroughly been

investigated [29, 35, 31, 17, 18]. These investigation were often motivated by

the use of certain constructors in systems or the need for these constructors

in speci�c applications [4, 21], and the results have in
uenced the design of

new systems.

The terminological formalisms of knowledge representation systems based

on description logics provide constructors that can be used to build complex

concepts and roles out of atomic concepts (unary predicates) and roles (bi-

nary predicates). Until recently, the main emphasis, both in implemented

systems and in theoretical research, was on constructors for building complex

concepts. The need for rich role constructors in certain application domains

(such as representing rich schema languages for databases [13, 12], or domains

that require the appropriate modeling of part-whole relations [30, 1, 33]) has

triggered research on description languages that also provide for expressive

role constructors [3, 16]. These investigations were facilitated by the obser-

vation that the formalisms considered in description logics are very similar to

certain modal logics [34, 15]. In particular, well-known modal logics, such as

propositional dynamic logics (PDL) and its extensions [20, 5, 23], provide for

role constructors like composition, union, transitive closure, and inversion.

Number restrictions are concept constructors that are available in almost

all implemented description logic systems. They allow to restrict the num-

ber of role-successors of an individual w.r.t. a given role. For example, if

has-child is an atomic role and person is an atomic concept, then we can

describe all persons having at most 2 children by the concept person u (�

2 has-child). In contrast to the rather prominent rôle that number re-

strictions play in description logics, the corresponding constructors in modal

logic|so-called \graded modalities" [19, 37]|have been studied only re-

cently, and thus there are not many results available that could be transferred

to description logics. In [15], the problem of adding number restrictions to

PDL and various of its extensions has been investigated in detail. However,

even though the description languages considered in this work have very ex-
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pressive formalisms for constructing complex roles, the roles that may occur

in number restrictions are restricted to atomic roles and their inverse. To

the best of our knowledge, the only other well-investigated concept descrip-

tion language with number restrictions on non-atomic roles is ALCNR, which

allows for intersection of roles in number restrictions.

The present paper is a �rst attempt to overcome this research de�cit.

It considers description languages that extend ALC or ALC

+

(the description

logic equivalent to PDL) with number restrictions on complex roles. As role

constructors in number restriction, we will allow for composition (which will

be present in all our languages), and intersection, union, and inversion of roles

in di�erent combinations. Number restrictions on roles with composition are

particularly interesting from a practical point of view since they allow to

impose restrictions on role successors for a composed role without explicitly

stating restrictions on its atomic components. For example, the restriction

personu(= 17 has-child�has-child) describes persons that have 17 grand-

children without explicitly saying anything about the number of children, and

the number of children of each child. From a theoretical point of view, num-

ber restrictions on roles with composition introduce a new level of complexity:

The tree model property (which most of the modal logics and description log-

ics investigated in the literature have) is no longer satis�ed (see Section 3). By

adding inversion of roles, we can express that a person has at least 5 siblings:

person u (� 6 has-child

�1

�has-child); intersection of roles can prohibit

that a parent marries his/her own child: (� 0 has-childuis-married-to);

union and composition can be used to describe that all children have the

same name as their parent: (= 1 has-name t (has-child�has-name)).

The subsumption and satis�ability problem for the language ALCN (�),

which extends ALC with number restrictions on roles built with composition,

will be shown to be decidable. On the other hand, three extensions of this

language turn out to be undecidable: ALC

+

with number restrictions on roles

built with composition and union; ALC with number restrictions on roles

built with composition and intersection; and ALC with number restrictions

on roles built with composition, union, and inversion.

In the next section, we introduce syntax and semantics of the concept

and role constructors that will be considered. Section 3 describes the al-

gorithm that decides satis�ability of ALCN (�)-concepts. The subsequent

section sketches the undecidability proofs, which all use a reduction of the

domino problem. In Section 5, we mention related decidability and undecid-
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ability results from modal and description logics.

2 Concept and role constructors

We de�ne syntax and semantics of all the constructors considered in the

present paper, and introduce the description languages that will be investi-

gated in more detail.

De�nition 1 Starting with atomic roles from a set N

R

of role names, com-

plex roles are built using the role constructors composition (R �S), union

(R t S), intersection (R u S), inversion (R

�1

), and transitive closure (R

+

).

The set of ALC-concepts is built from a set N

C

of concept names using

the concept constructors disjunction (C tD), conjunction (C uD), negation

(:C), value restriction (8R:C), and existential restriction (9R:C), where the

roles occurring in value restrictions and existential restrictions are atomic

roles. In ALC

+

-concepts, the roles occurring in value restrictions and exis-

tential restrictions may be complex roles that are built using the constructors

composition, union, and transitive closure.

Number restrictions are concepts of the form (� n R) or (� n R),

where n 2 N is a nonnegative integer and R is a complex role. For a set

M � ft;u; �;

�1

;

+

g of role constructors, we call such a number restric-

tion an M -number restrictions i� R is built using only constructors from M .

The set of ALCN (M)-concepts (resp. ALC

+

N (M)-concepts) is obtained from

ALC-concepts (resp. ALC

+

-concepts) by additionally allowing for M-number

restrictions in concepts.

As usual in description logics, the extensions of concepts and roles involv-

ing the constructors introduced above are de�ned inductively on the structure

of complex concepts and roles.

De�nition 2 An interpretation I = (�

I

; �

I

) consists of a set �

I

, called

the domain of I, and an extension function �

I

that maps every concept to a

subset of �

I

, and every (complex) role to a subset of �

I

��

I

such that the

followings equalities are satis�ed:

(R

1

u R

2

)

I

= R

1

I

\ R

2

I

; (R

1

t R

2

)

I

= R

1

I

[R

2

I

;

(R

1

�R

2

)

I

= f(d; f) 2 �

I

��

I

j 9e 2 �

I

: (d; e) 2 R

I

1

^ (e; f) 2 R

I

2

g;

(R

�1

)

I

= f(e; d) 2 �

I

��

I

j (d; e) 2 R

I

g;
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(R

+

)

I

= [

i�1

(R

I

)

i

;

(C uD)

I

= C

I

\D

I

; (C tD)

I

= C

I

[D

I

; :C

I

= �

I

n C

I

;

(9R:C)

I

= fd 2 �

I

j 9e 2 �

I

: (d; e) 2 R

I

^ e 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

) e 2 C

I

g;

(� n R)

I

= fd 2 �

I

j #fe 2 �

I

j (d; e) 2 R

I

g � ng;

(� n R)

I

= fd 2 �

I

j #fe 2 �

I

j (d; e) 2 R

I

g � ng:

Here #X denotes the size of a set X. If d 2 C

I

, we say that d is an instance

of C in I. If (d; e) 2 R

I

, we say that d is an R-predecessor of e, and e is an

R-successor of d in I.

A concept C is called satis�able i� there is some interpretation I such

that C

I

6= ;. We call such an interpretation a model of C. A concept D

subsumes a concept C (written C v D) i� for all interpretations I we have

C

I

� D

I

. Since all the languages considered in the present paper allow for

negation and conjunction of concepts, subsumption and (un)satis�ability can

be reduced to each other:

� C v D i� C u :D is unsatis�able,

� C is unsatis�able i� C v A u :A (for a concept name A).

For this reason, we may restrict our attention to the satis�ability problem,

both in the decidability and in the undecidability proofs.

3 ALCN (�) is decidable

We present a tableau-like algorithm for deciding satis�ability of ALCN (�)-

concepts. The algorithm and the proof of its correctness are very similar

to existing algorithms and proofs for languages with number restrictions on

atomic roles [25, 24]. It should be noted, however, that the presence of

number restrictions on role chains of the form R

1

�R

2

�: : :�R

n

with n > 1 has

as consequence that the �nite models generated by the algorithm need no

longer be tree models. A tree model of a concept C is an interpretation such

that (1) every element of the model can be reached from an initial (root)

element, which is an instance of C, via role chains, (2) the root does not

have a role predecessor, and (3) every other element has exactly one role
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predecessor. The following ALCN (�)-concept is satis�able, but it obviously

does not have a tree model:

(9R:A) u (9R::A) u (8R:(9S:B)) u (� 1 R�S):

Nevertheless, the models that will be generated by our algorithm are very

similar to tree models in that properties (1) and (2) are still satis�ed, and

every role chain from the root to an element has the same length (even though

there may exist more than one such chain). This fact will become important

in the proof of termination.

As usual, we assume without loss of generality that all concepts are in

negation normal form (NNF), i.e., negation occurs only immediately in front

of concept names. The basic data structure our algorithm works on are

constraints:

De�nition 3 Let � = fx; y; z; : : :g be a countably in�nite set of individual

variables. A constraint is of the form

xRy; x :D; or x 6= y;

where R is a role name, x; y are individual variables, and D is an ALCN (�)-

concept in NNF. A constraint system is a set of constraints. For a constraint

system S, let �

S

� � denote the individual variables occuring in S.

An interpretation I is a model of a constraint system S i� there is a

mapping � : �

S

! �

I

such that I; � satis�es each constraint in S, i.e.,

(�(x); �(y)) 2 R

I

for all xRy 2 S;

�(x) 6= �(y) for all (x 6= y) 2 S;

�(x) 2 D

I

for all x :D 2 S:

For a constraint system S, individual variables x; y, and role names R

i

,

we say that y is a R

1

�: : :�R

m

-successor of x in S i� there are y

0

; : : : ; y

m

2 �

such that x = y

0

; y = y

m

, and fy

i

R

i+1

y

i+1

j 0 � i � m� 1g � S. S contains

a clash i� fx :A; x ::Ag � S for some concept name A and some variable

x 2 �

S

, or x :(� n R) 2 S and x has ` > n R-successors y

1

; : : : ; y

`

in S

such that for all i 6= j we have y

i

6= y

j

2 S. A constraint system S is called

complete i� none of the completion rules given in Figure 1 can be applied

to S. In these rules, the constraint system S[y

1

=y

2

] is obtained from S by

substituting each occurrence of y

2

in S by y

1

.

Figure 1 introduces the completion rules that are used to test ALCN (�)-

concepts for satis�ability. The completion algorithm works on a tree where
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each node is labelled with a constraint system. It starts with the tree consist-

ing of a root labelled with S = fx

0

:C

0

g, where C

0

is the ALCN (�)-concept

in NNF to be tested for satis�ability. A rule can only be applied to a leaf

labelled with a clash-free constraint system. Applying a rule S ! S

i

, for

1 � i � n, to such a leaf leads to the creation of n new successors of this

node, each labelled with one of the constraint systems S

i

. The algorithm

terminates if none of the rules can be applied to any of the leaves. In this

situation, it answers with \C

0

is satis�able" i� one of the leaves is labelled

with a clash-free constraint system.

1. Conjunction: If x :(C

1

u C

2

) 2 S and x :C

1

62 S or x :C

2

62 S, then

S ! S [ fx :C

1

; x :C

2

g

2. Disjunction: If x :(C

1

t C

2

) 2 S and x :C

1

62 S and x :C

2

62 S, then

S ! S

1

= S [ fx :C

1

g

S ! S

2

= S [ fx :C

2

g

3. Value restriction: If x :(8R:C) 2 S for a role name R,

y is an R-successor of x in S and y :C 62 S, then

S ! S [ fy :Cg

4. Existential restriction: If x :(9R:C) 2 S for a role name R

and there is no R-successor y of x in S with y : C 2 S, then

S ! S [ fxRz; z : Cg for a new variable z 2 � n �

S

.

5. Number restriction: If x :(� n R

1

�: : :�R

m

) 2 S for role names

R

1

; : : : ; R

m

and x has less than n R

1

�: : :�R

m

-successors in S, then

S ! S [ fxR

1

y

2

; y

m

R

m

zg [ fy

i

R

i

y

i+1

j 2 � i � m� 1g [

fz 6= w j w is an R

1

�: : :�R

m

-successor of x in Sg

where z; y

i

are new variables in � n �

S

.

6. Number restriction: If x :(� n R

1

�: : :�R

m

) 2 S, x has more than

n R

1

�: : :�R

m

-successors in S, and there are R

1

�: : :�R

m

successors y

1

; y

2

of x in S with (y

1

6= y

2

) 62 S, then

S ! S

y

1

;y

2

= S[y

1

=y

2

]

for all pairs y

1

; y

2

of R

1

�: : :�R

m

-successors of x with (y

1

6= y

2

) 62 S.

Figure 1: The completion rules for ALCN (�)

Correctness of this algorithm is an immediate consequence of the following

facts:
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Lemma 4 Let C

0

be an ALCN (�)-concept, and let S be a constraint system

obtained by applying the completion rules to fx

0

:C

0

g. Then

1. For each completion rule R that can be applied to S, and for each

interpretation I we have I is a model of S i� I is a model of one of

the systems S

i

obtained by applying R.

2. If S is a complete and clash-free constraint system, then S has a model.

3. If S contains a clash, then S does not have a model.

4. The completion algorithm terminates when applied to fx

0

:C

0

g.

Indeed, termination shows that after �nitely many steps we obtain a tree such

that all its leaf nodes are labelled with complete constraint systems. If C

0

is satis�able, then fx

0

:C

0

g is also satis�able, and thus one of the complete

constraint systems is satis�able by (1). By (3), this system must be clash-

free. Conversely, if one of the complete constraint systems is clash-free, then

it is satis�able by (2), and because of (1) this implies that fx

0

:C

0

g is satis-

�able. Consequently, the algorithm is a decision procedure for satis�ability

of ALCN (�)-concepts:

Theorem 5 Subsumption and satis�ability of ALCN (�)-concepts is decid-

able.

Proof of Part 1 of Lemma 4: We consider only the rules concerned with

number restrictions, since the proof for Rules 1{4 is just as for ALC.

5. Number restriction: Assume that the rule is applied to the constraint

x :(� n R

1

�: : :�R

m

), and that its application yields

S

0

= S [ fxR

1

y

2

; y

m

R

m

zg [ fy

i

R

i

y

i+1

j 2 � i � m� 1g

[ fz 6= w j w is an R

1

�: : :�R

m

-successor of x in Sg:

Since S is a subset of S

0

, any model of S

0

is also a model of S.

Conversely, assume that I is a model of S, and let � : �

S

! �

I

be

the corresponding mapping of individual variables to elements of �

I

.

On the one hand, since I satis�es x :(� n R

1

� : : :�R

m

), �(x) has at

least n R

1

� : : :�R

m

-successors in I. On the other hand, since Rule 5

is applicable to x :(� n R

1

� : : :�R

m

), x has less than n R

1

� : : :�R

m

-

successors in S. Thus, there exists b 2 �

I

such that b 6= �(w) for all
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R

1

�: : :�R

m

-successors w of x in S. Let b

2

; : : : ; b

m

2 �

I

be such that

(�(x); b

2

) 2 R

I

1

; (b

2

; b

3

) 2 R

I

2

; : : : ; (b

m

; b) 2 R

I

m

. We de�ne �

0

: �

S

0

!

�

I

by �

0

(y) := �(y) for all y 2 �

S

, �

0

(y

i

) := b

i

for all i; 2 � i � m, and

�

0

(z) := b. Obviously, I; �

0

satisfy S

0

.

6. Number restriction: Assume that the rule can be applied to x :(�

n R

1

�: : :�R

m

) 2 S, and let I together with the valuation � : �

S

! �

I

be a model of S. On the one hand, since the rule is applicable, x has

more than n R

1

�: : :�R

m

-successors in S. On the other hand, I; � satisfy

x :(� m R

1

�: : :�R

m

) 2 S, and thus there are two di�erent R

1

�: : :�R

m

-

successors y

1

; y

2

of x in S such that �(y

1

) = �(y

2

). Obviously, this im-

plies that (y

1

6= y

2

) 62 S, which shows that S

y

1

;y

2

= S[y

1

=y

2

] is one of the

constraint systems obtained by applying Rule 6 to x :(� n R

1

�: : :�R

m

).

In addition, since �(y

1

) = �(y

2

), I; � satisfy S.

Conversely, assume that S

y

1

;y

2

= S[y

1

=y

2

] is obtained from S by ap-

plying Rule 6, and let I together with the valuation � be a model of

S

y

1

;y

2

. If we take a valuation �

0

that coincides with � on the variables

in �

S

y

1

;y

2

and satis�es �

0

(y

2

) = �(y

1

), then I; �

0

obviously satisfy S.

Proof of Part 2 of Lemma 4: Let S be a complete and clash-free con-

straint system that is obtained by applying the completion rules to fx

0

:C

0

g.

We de�ne a canonical model I of S as follows:

�

I

:= �

S

and for all A 2 N

C

: x 2 A

I

i� x :A 2 S;

for all R 2 N

R

: (x; y) 2 R

I

i� xRy 2 S:

In addition, let � : �

S

! �

I

be the identity on �

S

. We show that I; � satisfy

every constraint in S.

By de�nition of I, a role constraint of the form xRy is satis�ed by I; �

i� xRy 2 S. More generally, y is an R

1

�: : :�R

m

-successor of x in S i� y is

an R

1

�: : :�R

m

-successor of x in I. We show by induction on the structure

of the concept C, that every concept constraint x :C 2 S is satis�ed by I; �.

Again, we restrict our attention to number restrictions since the induction

base and the treatment of the other constructors is just as for ALC.

� Consider x :(� n R

1

�: : :�R

m

) 2 S. Since S is complete, Rule 5 cannot

be applied to x :(� n R

1

�: : :�R

m

), and thus x has at least n R

1

�: : :�R

m

-

successors in S, which are also R

1

�: : :�R

m

-successors of x in I. This

shows that I; � satisfy x :(� n R

1

�: : :�R

m

).
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� Constraints of the form x :(� n R

1

�: : :�R

m

) 2 S are satis�ed because

S is clash-free and complete. In fact, assume that x has more than n

R

1

�: : :�R

m

-successors in I. Then x also has more than n R

1

�: : :�R

m

-

successors in S. If S contained inequality constraints y

i

6= y

j

for all

these successors, then we would have a clash. Otherwise, Rule 6 could

be applied.

Proof of Part 3 of Lemma 4: Assume that S contains a clash. If

fx :A; x ::Ag � S, then it is clear that no interpretation can satisfy both

constraints. Thus assume that x :(� n R) 2 S and x has ` > n R-successors

y

1

; : : : ; y

`

in S with (y

i

6= y

j

) 2 S for all i 6= j. Obviously, this implies that

in any model I; � of S, �(x) has ` > n distinct R-successors �(y

1

); : : : ; �(y

`

)

in I, which shows that I; � cannot satisfy x :(� n R).

Proof of Part 4 of Lemma 4: In the following, we consider only con-

straint systems S that are obtained by applying the completion rules to

fx

0

:C

0

g. For a concept C, we de�ne its and/or-size jCj

u;t

as the number of

occurrences of conjunction and disjunction constructors in C. The maximal

role depth depth(C) of C is de�ned as follows:

depth(A) := depth(:A) := 0;

depth(C

1

u C

2

) := depth(C

1

t C

2

) := maxfdepth(C

1

); depth(C

2

)g;

depth(8R

1

:C

1

) := depth(9R

1

:C

1

) := 1 + depth(C

1

);

depth(� n R

1

�: : :�R

m

) := depth(� n R

1

�: : :�R

m

) := m:

For the termination proof, the following observations, which are an easy

consequence of the de�nition of the completion rules, are important:

1. Every variable x 6= x

0

that occurs in S is an R

1

�: : :�R

m

-successor of

x

0

for some role chain of length m � 1. In addition, every other role

chain that connects x

0

with x has the same length.

2. If x can be reached in S by a role chain of length m from x

0

, then for

each constraint x :C in S, the maximal role depth of C is bounded by

the maximal role depth of C

0

minus m. Consequently, m is bounded

by the maximal role depth of C

0

.

Let m

0

be the maximal role depth of C

0

. Because of the �rst fact, every

individual x in a constraint system S (reached from fx

0

:C

0

g by applying
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completion rules) has a unique role level level(x), which is its distance from

the root node x

0

, i.e., the unique length of the role chains that connects x

0

with x. Because of the second fact, the level of each individual is an integer

between 0 and m

0

.

In the following, we de�ne a mapping � of constraint systems S to 5m

0

-

tuples of nonnegative integers such that S ! S

0

implies �(S) � �(S

0

), where

� denotes the lexicographic ordering on 5m

0

-tuples. Since the lexicographic

ordering is well-founded, this implies termination of our algorithm. In fact, if

the algorithm did not terminate, then there would exist an in�nite sequence

S

0

! S

1

! : : : , and this would yield an in�nite descending �-chain of tuples.

Thus, let S be a constraint system that can be reached from fx

0

:C

0

g by

applying completion rules. We de�ne

�(S) := (�

0

; �

1

; : : : ; �

m

0

�1

; �

m

0

);

where �

`

:= (k

`;1

; k

`;2

; k

`;3

; k

`;4

; k

`;5

) and the components k

`;i

are obtained as

follows:

� k

`;1

is the number of individual variables x in S with level(x) = `.

� k

`;2

is the sum of the and/or-sizes jCj

u;t

of all constraints x :C 2 S such

that level(x) = ` and the conjunction or disjunction rule is applicable

to x :C in S.

� For a constraint x :(� n R

1

�: : :�R

m

), let k be the maximal cardinality

of all sets M of R

1

� : : :�R

m

-successors of x for which y

i

6= y

j

2 S

for all pairs of distinct elements y

i

; y

j

of M . We associate with x :(�

n R

1

�: : :�R

m

) the number r := n � k, if n � k, and r := 0 otherwise.

k

`;3

sums up all the numbers r associated with constraints of the form

x :(� n R

1

�: : :�R

m

) for variables x with level(x) = `.

� k

`;4

is the number of all constraints x :(9R:C) 2 S such that level(x) = `

and the existential restriction rule is applicable to x :(9R:C) in S.

� k

`;5

is the number of all pairs of constraints x :(8R:C), xRy 2 S

such that level(x) = ` and the value restriction rule is applicable to

x :(8R:C), xRy in S.

In the following, we show for each of the rules of Figure 1 that S ! S

0

implies

�(S) � �(S

0

).
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1. Conjunction: Assume that the rule is applied to the constraint x :C

1

u

C

2

, and let S

0

be the system obtained from S by its application. Let

` := level(x).

First, we compare �

`

and �

0

`

, the tuples respectively associated with

level ` in S and S

0

. Obviously, the �rst components of �

`

and �

0

`

agree

since the number of individuals and their levels are not changed. The

second component of �

0

`

is smaller than the second component of �

`

:

jC

1

uC

2

j

u;t

is removed from the sum, and replaced a number that is not

larger than jC

1

j

u;t

+ jC

2

j

u;t

(depending on whether the top constructor

of C

1

and C

2

is disjunction or conjunction or some other constructor).

Since tuples are compared with the lexicographic ordering, a decrease

in this component makes sure that it is irrelevant what happens in later

components.

For the same reason, we need not consider tuples �

m

for m > `. Thus,

assume that m < `. In such a tuple, the �rst three components are

not changed by application of the rule, whereas the remaining two

components remain unchanged or decrease. Such a decrease can hap-

pen if level(y) = m and S contains constraints yRx, y :(8R:C

i

) (or

y :(9R:C

i

)).

2. Disjunction: This rule can be treated like the conjunction rule.

3. Value restriction: Assume that the rule is applied to the constraints

x :(8R:C); xRy, and let S

0

be the system obtained from S by its ap-

plication. Let ` := level(x). Obviously, this implies that level(y) =

level(x) + 1 > `.

On level `, the �rst three components of �

`

remain unchanged; the

fourth remains the same, or decreases (if S contains constraints zSy

and z :(9S:C) for an individual z with level(z) = `); and the �fth

decreases by at least one since the constraints x :(8R:C); xRy are no

longer counted. It may decrease by more than one if S contains con-

straints zSy and z :(8S:C) for an individual z with level(z) = `.

Because of this decrease at level `, the tuples at larger levels (in partic-

ular, the one for level level(x) + 1, where there might be an increase),

need not be considered.

The tuples of levels smaller than ` are not changed by application of

the rule. In particular, the third component of such a tuple does not

change since no role constraints or inequality constraints are added or
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removed.

4. Existential restriction: Assume that the rule is applied to the con-

straint x :(9R:C), and let S

0

= S[fxRy; y :Cg be the system obtained

from S by its application. Let ` := level(x). Obviously, this implies

that level(y) = level(x) + 1 > `.

The �rst two components of �

`

obviously remain unchanged, and so

does the third since the new individual y is not related via inequality

constraints with any of the old individuals. Since the fourth component

decreases, the possible increase of the �fth component is irrelevant.

For the same reason, the increase of the �rst component of �

`+1

is ir-

relevant.

Tuples of levels smaller than ` are not changed by application of the

rule. In particular, the third component of such a tuple does not change

since the new individual y is not related via inequality constraints with

any of the old individuals.

5. Number restriction: Assume that the rule is applied to the constraint

x :(� n R

1

�: : :�R

m

) 2 S, let S

0

be the system obtained by rule appli-

cation, and let ` = level(x).

As for Rule 4, the �rst two components of �

`

remain the same. In

addition, there is a decrease in the third component of �

`

, since the

new individual z can now be added to the maximal sets of explicitly

distinct R

1

�: : :�R

m

-successors of x. Note that these sets were previously

smaller than n (because even the set of all R

1

�: : :�R

m

-successors of x

was smaller than n).

For this reason, the possible increase in the �fth component of �

`

and

in the �rst components of tuples of levels larger than ` are irrele-

vant.Tuples of levels smaller than ` are either unchanged by application

of the rule, or their third component decreases.

6. Number restriction: Assume that the rule is applied to the constraint

x :(� n R

1

�: : :�R

m

) 2 S, let S

0

= S

y

1

;y

2

be the system obtained by rule

application, and let ` = level(x).

On level `+m, the �rst component of the tuple �

`+m

decreases. Thus,

possible increases in the other components of this tuple are irrelevant.

Tuples associated with smaller levels remain unchanged or decrease. In

fact, since y

1

in S

0

has all its old constraints and the constraints of y

2

in S, some value restrictions or existential restrictions for individuals
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of the level immediately above level ` + m may become satis�ed (in

the sense that the corresponding rule no longer applies). Since no con-

straints are removed, previously satis�ed value restrictions or existen-

tial restrictions remain satis�ed. The third component of such tuples

cannot increase since the individuals y

1

; y

2

that have been identi�ed

were not related by inequality constraints.

For languages where number restrictions may also contain union or inter-

section of roles, an important property used in the above termination proof

is no longer satis�ed: It is not possible to associate each individual generated

by a tableau-like procedure with a unique role level, which is its distance to

the \root" individual x

0

(i.e., the instance x

0

of C

0

to be generated by the

tableau algorithm). Indeed, in the concept

C

0

:= (9R:9R:A) u (� 1 R tR�R);

the number restriction enforces that an R-successor of an instance of C

0

is

also an R�R-successor of this instance. For this reason, an R-successor of

the root individual must be both on level 1 and on level 2, and thus the

relatively simple termination argument that was used above is not available

for these larger languages. We will show below that satis�ability is in fact

undecidable for ALCN (�;u). For ALCN (�;t), decidability of satis�ability is

still an open problem.

4 Undecidability results

We will use a reduction of the domino problem|a well-known undecidable

problem [26, 6] often used in undecidability proofs in logic|to show that

concept satis�ability is undecidable for three extensions of the decidable lan-

guage ALCN (�) considered in the previous section.

De�nition 6 A tiling system is given by a non-empty set D = fD

1

; : : : ; D

m

g

of domino types, and by horizontal and vertical matching pairs H � D�D,

V � D � D. The domino problem asks for a compatible tiling of the �rst

quadrant N � N of the plane, i.e., a mapping t : N � N ! D such that

8m;n 2 N : (t(m;n); t(m + 1; n)) 2 H and (t(m;n); t(m;n + 1)) 2 V:

In order to reduce the domino problem to satis�ability of concepts, we must

show how a given tiling system D = fD

1

; : : : ; D

m

g can be translated into a
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concept E

D

(of the language under consideration) such that E

D

is satis�able

i�D allows for a compatible tiling. This task can be split into three subtasks,

which we will �rst explain on an intuitive level, before showing how they can

be achieved for the three concept languages under consideration.

Task 1: It must be possible to represent a single \square" of N � N , which

consists of points (n;m); (n;m + 1); (n + 1; m), and (n + 1; m + 1).

The idea is to introduce roles X; Y , where X goes one step into the

horizontal (i.e. x-) direction, and Y goes one step into the vertical

(i.e. y-) direction. The concept language must be expressive enough to

describe that an individual (a point (n;m)) has exactly oneX-successor

(the point (n+ 1; m)), exactly one Y -successor (the point (n;m + 1)),

and that the X �Y -successor coincides with the Y �X-successor (the

point (n + 1; m+ 1)).

Task 2: It must be possible to express that a tiling is locally correct, i.e.,

that the X- and Y -successors of a point have an admissible domino

type. The idea is to associate each domino type D

i

with an atomic

concept D

i

, and to express the horizontal and vertical matching condi-

tions via value restrictions on the roles X; Y .

Task 3: It must be possible to impose the above local conditions on all points

in N � N . This can be achieved by constructing a \universal" role U

and a \start" individual such that every point is a U -successor of this

start individual. The local conditions can then be imposed on all points

via value restrictions on U for the start individual.

Task 2 is rather easy, and can be realized using the following ALC-concept:

C

D

:=t

1�i�m

(D

i

u (u
1�j�m

i 6=j

:D

j

)) u

u

1�i�m

(D

i

) ((8X:(t

(D

i

;D

j

)2H

D

j

)) u (8Y:(t

(D

i

;D

j

)2V

D

j

))));

where A ) B is an abbreviation for :A t B. The �rst line expresses that

every point has exactly one domino type, and the value restrictions in the

second line express the horizontal and vertical matching conditions.

Task 1 can be achieved in any extension of ALCN (�) with either union or

intersection of roles in number restrictions:

C

t

:= (= 1 X) u (= 1 Y ) u (= 1 X�Y ) u (= 1 Y �X) u (= 1 Y �X tX�Y );

C

u

:= (= 1 X) u (= 1 Y ) u (= 1 X�Y ) u (= 1 Y �X) u (= 1 Y �X uX�Y );

where (= n R) is an abbreviation for (� n R) u (� n R).
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Task 3 is easy for languages that extend ALC

+

, and more di�cult for lan-

guages without transitive closure. The general idea is that the start indi-

vidual s is an instance of the concept E

D

to be constructed. From this

individual, one can reach via U the origin (0; 0) of N �N , and all points that

are connected with the origin via arbitrary X- and Y -chains.

(1) In extensions of ALC

+

, we can use an atomic role R to reach the origin,

and the complex role R t (R�(X t Y )

+

) to reach every point. Thus, the

tiling system D can be translated into the ALC

+

N (�;t)-concept

E

(1)

D

:= (= 1 R) u (8(R t (R�(X t Y )

+

)):(C

t

u C

D

)):

We can even restrict the complex role in the value restriction to a simple

transitive closure of an atomic roles. To achieve this, we make sure that the

X- and the Y -successors of a point are also R-successors of this point. This

allows us to use R

+

in place of R t (R�(X t Y )

+

) as \universal" role:

E

(1

0

)

D

:= (= 1 R) u (8R

+

:(C

t

u C

D

u (� 2 R) u (� 2 R tX t Y )))

(2) In ALCN (�;t;

�1

), we explicitly introduce a role name U for the \uni-

versal" role, and use number restrictions involving composition, union, and

inversion of roles to make sure that the start individual is directly connected

via U with every point:

E

(2)

D

:= (� 1 U) u (8U:(C

t

u C

D

u (= 1 X�U

�1

) u (= 1 Y �U

�1

) u

(� 1 U

�1

t Y �U

�1

tX�U

�1

))):

The number restrictions inside the value restriction make sure that every

point p that is reached via U from the start individual satis�es the following:

Its X-successor and its Y -successor each have exactly one U -predecessor,

which coincides with the (unique) U -predecessor of p, i.e., the start individ-

ual. Thus, the X-successor and the Y -successor of p are also U -successors of

the start individual.

(3) For ALCN (�;u), a similar construction is possible if we introduce role

names R and T . The intuition is that T plays the rôle of the inverse of

R (except for one individual), and the \universal" role corresponds to the

composition R�T �R:

E

(3)

D

:= (= 1 R uR�T �R) u

(8R:8T:8R: (C

u

u C

D

u (� 1 T ) u (8Y:(� 1 T )) u (8X:(� 1 T )) u

(= 1 T uX�T u Y �T ) u

(= 1 X uX�T �R) u (= 1 Y u Y �T �R)))
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The start individual s (which is an instance of E

(3)

D

), has exactly one R-

successor p

(0;0)

, which coincides with its R�T �R-successor. The individual

p

(0;0)

corresponds to the origin of N � N . Let s

0

be the R�T -successor of s.

The number restrictions of E

(3)

D

make sure that p

(0;0)

satis�es the following: It

has exactly one T -successor, namely s

0

, which coincides with the (unique) T -

successors of its X- and Y -successors. In addition, the (unique) X-successor

of p

(0;0)

is also an X �T �R-successor of p

(0;0)

, which makes sure that the

X-successor of p

(0;0)

is an R-successor of s

0

, and thus an R�T�R-successor of

s. The same holds for the Y -successor. One can now continue the argument

with the X-successor (resp. Y -successor) of p

(0;0)

in place of p

(0;0)

.

With the intuition given above, it is not hard to show for all i; 1 � i � 3,

that a tiling system D has a compatible tiling i� E

(i)

D

is satis�able.

Theorem 7 Satis�ability (and thus also subsumption) of concepts is unde-

cidable in ALC

+

N (�;t), ALCN (�;t;

�1

), and ALCN (�;u).

The concept E

(1

0

)

D

shows that the undecidability result for ALC

+

N (�;t)-

concepts also hold if only transitive closure of atomic roles is allowed.

5 Related work and open problems

Propositional dynamic logic (PDL), which corresponds to our language ALC

+

,

has been shown to be decidable in [20], and decidability of its extension

by deterministic programs, DPDL, is shown in [5]. In principle, the use

of deterministic programs corresponds to introducing a restricted form of

number-restrictions, namely (� 1 R) for atomic roles R. Adding inversion (of

atomic roles) to DPDL has a drastic consequence: the �nite model property

is lost, i.e., there are satis�able formulae (concepts) that do not have a �nite

model. Nevertheless, satis�ability is still decidable [38] (Exp-time complete,

like all the other decision problems for PDL and extensions mentioned until

now). It should be noted, however, that in these languages inversion does not

occur in the number-restrictions, since only atomic programs are asserted to

be deterministic. In [14], general number restrictions and Boolean operators

for roles are added to PDL with inversion, and (Exp-time) decidability is

shown by a rather ingeneous reduction to the decision problem for PDL. In

this work, atomic roles and their inverse my occur in number restrictions,

but not more complex roles. If one adds number restrictions on atomic roles
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and their intersections to ALC, satis�ability in the obtained language is still

decidable with a PSPACE-algorithm [17].

As related undecidability results, one can mention undecidability of the

extension of DPDL by intersection of roles (which does not occur in the

number restrictions, however) [23]. In [22], an extension of ALC by so-called

existential and universal agreements on role chains is shown to be undecid-

able. It is easy to see that existential (universal) agreements can be simulated

by number restrictions involving composition and intersection (union).

In this paper, we have shown that the language ALCN (�), which adds

number restrictions on roles with composition to ALC, is still decidable. It is

not clear, however, whether there exists a PSPACE algorithm for the prob-

lem. The one presented above is Exp-time, and since di�erent role paths

need to be joined together, the trace method developed in [36] cannot di-

rectly be applied. Almost all extensions of ALCN (�) by union, intersection,

and inversion of roles were shown to be undecidable: only decidability for

ALCN (�;t) is still open. For ALC

+

, however, the extension by composition

and union could be shown to be undecidable. Another interesting question

would be what happens if composition is not allowed in number restrictions:

Is ALCN (t;u;:;

�1

), the extension of ALC by number restrictions with inver-

sion and Boolean operators on roles, still decidable? An interesting feature of

this language is that it is contained in C

2

, i.e., predicate logic with 2 variables

and counting quanti�ers [11, 7], for which decidability is still open.
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