
Optimisation Tehniques for

Combining Constraint Solvers

Stephan Kepser

CIS, Universit�at M�unhen

Oettingenstr. 67

80538 M�unhen, Germany

kepser�is.uni-muenhen.de

J�orn Rihts

Theoretishe Informatik

RWTH Aahen

52056 Aahen, Germany

rihts�informatik.rwth-aahen.de

Abstrat

In reent years, tehniques that had been developed for the ombi-

nation of uni�ation algorithms for equational theories were extended

to ombining onstraint solvers. These tehniques inherited an old

de�it that was already present in the ombination of equational theo-

ries whih makes them rather unsuitable for pratial use: The under-

lying ombination algorithms are highly non-deterministi. This paper

is onerned with the pratial problem of how to optimise the om-

bination method of Baader and Shulz. We present two optimisation

methods, alled the iterative and the dedutive method. The iterative

method reorders and loalises the non-deterministi deisions. The de-

dutive method uses spei� algorithms for the omponents to reah

ertain deisions deterministially. Run time tests of our implementa-

tion indiate that the optimised ombination method yields ombined

deision proedures that are eÆient enough to be used in pratie.

1 Introdution

One idea behind onstraint solving is to use speialised formalisms and in-

ferene mehanisms to solve domain-spei� tasks. In many appliations,

however, one is faed with a omplex ombination of di�erent problems.

Therefore onstraint solvers tailored to solving a single problem an only

be applied, if it is possible to ombine them with others. Conrete exam-

ples of the ombination of onstraint solvers an be found, e.g., in [11, 10℄.

In a reent paper [2℄, Baader and Shulz present a general method for the

ombination of onstraint systems. Their method is appliable to a large

lass of strutures, the so-alled quasi-free strutures. Quasi-free strutures

�

This work was funded by the \Shwerpunkt Deduktion" of the Deutshe Forshungs-

gemeinshaft (DFG) and was supported by the Esprit working group 22457 { CCL II of

the European Union.

1

omprise many important in�nite non-numerial solution domains suh as

(quotient) term algebras [16℄, rational tree algebras [9℄, vetor spaes, hered-

itarily �nite wellfounded and non-wellfounded lists, sets [1℄ and multi sets

as well as ertain types of feature strutures [21℄. The ombined solution

domain the authors present in [2℄, the so alled free amalgamated produt,

has the haraterising property of being the most general ombination in

the sense that every other ombined domain ontains a homomorphi image

of it.

The question of how to ombine speialised methods was �rst disussed

in the �eld of uni�ation theory (see [4℄ for an overview). Equational uni-

�ation algorithms, whih an be seen as an instane of onstraint solvers,

were built into resolution-based theorem provers [18℄ and rewriting engines

[13℄ to improve their handling of equality. Sine the uni�ation problems o-

urring in these appliations usually ontain funtion symbols from various

equational theories, the question of how to ombine equational uni�ation

algorithms beame important. For algorithms that ompute omplete sets

of uni�ers for equational theories over disjoint signatures, this problem was

solved by Shmidt-Shau� [19℄ and Boudet [5℄. With the development of

onstraint-based approahes to theorem proving [7, 17℄ and rewriting [15℄,

the interest in ombining uni�ation algorithms extended towards ombi-

nations of deision proedures, for whih Baader and Shulz [3℄ �nally pre-

sented a general algorithm.

As a generalisation of the one given in [3℄, the algorithm for ombining

onstraint solvers in [2℄ inherits the old weakness of being so highly non-

deterministi that it is of very limited pratial use. The aim of this paper is

to provide optimisation tehniques for the ombination algorithm by Baader

and Shulz that make the ombination of onstraint solvers pratially usable

and are still general enough to be appliable to a large lass of onstraint

solvers. The methods we propose are the so alled iterative and dedutive

method. The iterative method reorders the non-deterministi deisions. In

order to detet unsolvability of a single omponent faster, we �rst make all

non-deterministi deisions relative to one omponent before we proeed to

the next one. The dedutive method is based on the insight that many

deisions of the ombination algorithm do not really need to be made non-

deterministially, but an rather be dedued on the base of the onstraint

domains involved, the input problem and other deisions made earlier. In

our dedutive ombination method the omponent solvers are onsulted to

gain information on what further steps an be made deterministially. This

obviously requires omponent solvers apable of doing so. The strength of

this ombination method lies in the interhange of information between the

omponent algorithms. The impat of this interhange is highlighted by the

fat that, although developed for the more general ase, our ombination

algorithm turns out to be an implementation of the PTIME ombination

algorithm given in [20℄ for a speial sublass of onstraint solvers. The

2

run time tests we present in this paper show the enormous e�et of our

optimisation methods making us on�dent that ombination of onstraint

solvers is feasible in pratie.

In this paper, we present our ombination method as an algorithm for

ombining onstraint solvers, but our optimisation tehniques are never-

theless useful for the speial ase of equational uni�ation. Moreover our

method an be diretly extended to ompute omplete sets of uni�ers.

2 Preliminaries

Quasi-free Strutures and the Free Amalgamated Produt

A signature � onsists of a set �

F

of funtion symbols and a disjoint set �

P

of prediate symbols (not ontaining \="), eah of �xed arity. �-strutures

over the arrier set A are denoted by A

�

. �-terms (t; t

1

; : : :) and atomi

�-formulae (of the form t

1

= t

2

, or of the form p(t

1

; : : : ; t

n

)) are built as

usual from � and a ountable set of variables V. A �-formula ' is written

in the form '(v

1

; : : : ; v

n

) in order to indiate that the set Var(') of free

variables of ' is a subset of fv

1

; : : : ; v

n

g. A mapping � : V ! A from the

set of variables to the arrier set of A

�

is alled an assignment. A onstraint

problem over signature � is a set of atomi �-formulae. An assignment � is

a solution for a onstraint problem � in A

�

i� '(�(v

1

); : : : ; �(v

n

)) beomes

true in A

�

for all formulae '(v

1

; : : : ; v

n

) 2 �.

�-homomorphisms and �-endomorphisms are de�ned as usual, see e.g.,

[16℄. With End

A

�

we denote the monoid of all endomorphisms of A

�

, with

omposition as operation.

We will now introdue the solution domains for onstraint solving we

onsider here, namely quasi-free strutures. Quasi-free strutures, a gener-

alisation of free strutures, were introdued by Baader and Shulz [2℄. We

onsider a �xed �-struture A

�

.

Let A

0

; A

1

be subsets of A

�

. Then A

0

stabilises A

1

i� all elements m

1

and m

2

of End

A

�

that oinide on A

0

also oinide on A

1

. For A

0

� A the

stable hull of A

0

is the set SH

A

(A

0

) := fa 2 A j A

0

stabilises fagg:

SH

A

(A

0

) is always a �-substruture of A

�

, and A

0

� SH

A

(A

0

). The

stable hull of A

0

an be larger than the �-subalgebra generated by A

0

.

The set X � A is an atom set for A

�

if every mapping X ! A an be

extended to an endomorphism of A

�

.

De�nition 2.1 A ountably in�nite �-struture A

�

is a quasi-free struture

i� A

�

has an in�nite atom set X where every a 2 A is stabilised by a �nite

subset of X. We denote this quasi-free struture by (A

�

;X).

The lass of quasi-free strutures ontains many important non-nu-

merial in�nite solution domains. For example, all free strutures (see, e.g.,

3

[16℄), rational tree algebras ([9℄), feature strutures with arity ([21℄), do-

mains with nested, �nite or rational lists (rational lists are used in Prolog

III, see [10℄), and domains with nested, �nite or rational sets ([1℄) are quasi-

free strutures. For details we refer to [2℄.

A fundamental property of quasi-free strutures is the following: for

eah a 2 A there exists a unique minimal �nite set Y � X suh that

a 2 SH

A

(Y). The stabiliser of a 2 A, Stab

A

(a), is the unique minimal �nite

subset Y of X suh that a 2 SH

A

(Y). The stabiliser of A

0

� A is the set

Stab

A

(A

0

) :=

S

a2A

0

Stab

A

(a).

We extend the notions regular and ollapse-free, known from equational

uni�ation, to quasi-free strutures.

De�nition 2.2 A quasi-free struture (A

�

;X) is alled ollapse-free, i� ev-

ery endomorphism maps non-atoms to non-atoms, i.e., m(a) 2 A nX for all

m 2 End

A

�

and all a 2 A nX. The quasi-free struture (A

�

;X) is regular,

i� for all m 2 End

A

�

and all a 2 A : Stab

A

(m(a)) = Stab

A

(m(Stab

A

(a))).

Note that m(Stab

A

(a)), the image of Stab

A

(a) under m, an ontain

non-atoms; therefore we have to apply Stab

A

again.

Baader and Shulz [2℄ present a ombined solution domain of two or

more quasi-free strutures, the so-alled free amalgamated produt, whih

is haraterised amongst all onsiderable ombined solution domains as be-

ing the most general in the sense that every domain ontains a homomor-

phi image of it. The authors also provide a onstrution method to ob-

tain the free amalgamated produt of arbitrary quasi-free strutures. If

(A

�

1

1

;X); : : : ; (A

�

n

n

;X) are n quasi-free strutures over paiwise disjoint sig-

natures, we write A

�

1

1

 : : :
A

�

n

n

for their free amalgamated produt. If the

quasi-free strutures one ombines are free algebras de�ned by equational

theories over disjoint signatures, then their free amalgamated produt is the

free algebra de�ned by the theory over the union of the axiom sets.

In this paper, we investigate \mixed" onstraint problems. For i =

1; : : : ; n (n � 2), let �

i

be pairwise disjoint signatures and let (A

�

i

i

;X) be

a quasi-free struture over signature �

i

. A \mixed" onstraint problem is a

onjuntion of atomi formulae over the joined signature �

1

[: : : [�

n

. A

onstraint problem � is in deomposed form, if � has the form

S

n

i=1

�

i

where

eah �

i

is a pure onstraint problem over the signature �

i

. Any onstraint

problem � an be transformed into a onstraint problem in deomposed form

that is solvable, i� the original problem is solvable, by a simple deterministi

preproessing step (variable abstration, see [3℄). In the following, we will

therefore always assume that a onstraint problem is in deomposed form

S

n

i=1

�

i

.

Only variables ourring in more than one omponent system �

i

have

to be onsidered by the ombination algorithm. Hene we de�ne the set of

shared variables U := fx j 9i; j : i 6= j; x 2 Var(�

i

) \ Var(�

j

)g. The om-

bination algorithm presented in the next setion imposes some restritions

4

on the shared variables in order to prevent onits between the solutions

of the omponent strutures (like a variable being assigned to di�erent ele-

ments by solutions of di�erent strutures). The solutions of the omponent

problems �

i

have to obey these so-alled linear onstant restritions.

De�nition 2.3 A linear onstant restrition L = (�;Lab; <

L

) for vari-

ables U onsists of a partition

1

� of U , a labelling funtion Lab : U=

�

!

f�

1

; : : : ;�

n

g and a linear order <

L

on U=

�

. We use Lab(x) and x <

L

y

instead of Lab([x℄

�

) and [x℄

�

<

L

[y℄

�

.

An assignment � of U into A

�

i

i

is a solution for the onstraint problem with

linear onstant restritions (�

i

; L) in (A

�

i

i

;X), i� it is a solution for �

i

and

for eah x; y 2 U :

� �(x) = �(y) if x �

�

y,

� �(x) 2 X if Lab(x) 6= �

i

, and

� �(x) =2 Stab

A

(�(y)) if Lab(x) 6= �

i

;Lab(y) = �

i

; y <

L

x.

Intuitively speaking, item two guarantees that all variables reeiving a label

di�erent from �

i

are treated as onstants by �. By item three, the use of

these onstants in � is further restrited in order to prevent yles. Two

linear onstant restritions L

1

and L

2

over U are alled equivalent, if they

have idential partitions and labelling funtions and their orders di�er at

most in the ordering of variables with idential label. This de�nition indues

an equivalene relation on all linear onstant restritions for a given set of

variables U . If L

1

and L

2

are equivalent and an assignment � solves (�; L

1

),

then � also solves (�; L

2

).

The Original Combination Algorithm

In the following we desribe the ombination algorithm given by Baader and

Shulz in [2℄, where one an �nd the details. Here we give a straightforward

generalisation of this algorithm to the ase where more than two strutures

are ombined. Additionally, we inlude basi optimisations similar to those

desribed in [3℄.

Let � be a onstraint problem in deomposed form. We assume the on-

straints in � are onneted by shared variables, i.e., there is no partition

� = �

0

[�

00

where �

0

and �

00

do not have variables in ommon. Other-

wise �

0

and �

00

an be solved separately. The algorithm onsists of three

non-deterministi steps whih result in a linear onstant restrition for the

onstraint problem.

Step 1: Variable identi�ation Non-deterministially hoose a partition-

ing � of U .

Step 2: Labelling Non-deterministially hoose a labelling funtion Lab :

1

The equivalene relation indued by � is denoted by �

�

, [x℄

�

is the equivalene lass

of a variable x, and U=

�

is the set of all equivalene lasses of variables in U .

5

U=

�

! f�

1

; : : : ;�

n

g.

Step 3: Ordering Non-deterministially hoose a linear order <

L

on U=

�

.

L = (�;Lab; <

L

) onstitutes a linear onstant restrition. Note that for

eah equivalene lass of linear onstant restritions, it suÆes to hoose

just one member. The output tuple determined by these three steps is

((�

1

; L); : : : ; (�

n

; L)).

Theorem 2.4 The input problem � has a solution in the free amalgamated

produt A

�

1

1

 : : :
A

�

n

n

, if and only if there exists an output tuple ((�

1

; L);

: : : ; (�

n

; L)) suh that for eah i = 1; : : : ; n, the onstraint problem with

linear onstant restrition (�

i

; L) has a solution in A

�

i

i

.

Deision Sets

The original algorithm makes all non-deterministi deisions �rst, and only

thereafter it alls the omponent algorithms to determine whether the input

problem with the thus hosen onstant restrition is solvable. Our optimisa-

tions interleave these two parts. Hene we have to deal with linear onstant

restritions whih are only partially spei�ed, i.e., restritions representing

the hoies already made but making no statements about the deisions still

open. In order to desribe these partial onstant restritions and to have a

framework for desribing our optimisations on a formal level we introdue

the notion of deision sets. A deision desribes a single non-deterministi

hoie. There exist �ve di�erent types of deisions.

De�nition 2.5 Let U be the set of variables. A deision is an expression

of the form x

:

= y, x 6 _= y, x

_

� y, x _7! �

i

, or x 6 _7! �

i

, where x; y 2 U and

1 � i � n. The deision x

_

< y is used as an abbreviation for x

_

� y; x 6 _= y.

We speak about sets of deisions (for a set of variables U) whih are|

as usual|read onjuntively. In order to represent the two options when

making a non-deterministi hoie, we de�ne the negation of a deision.

De�nition 2.6 Let d be a deision. Its negation :d is de�ned as follows:

:x

:

= y := x 6 _= y, :x 6 _= y := x

:

= y,

:x _7! �

j

:= x 6 _7! �

j

, :x 6 _7! �

j

:= x _7! �

j

,

:x

_

� y := y

_

< x.

These rules of negation reet the three non-deterministi steps of the

algorithm: Two variables have to be identi�ed or treated as di�erent vari-

ables; eah variable has to be treated as a variable or like a onstant in a

partiular omponent system; and two variables with distint labels have to

be ordered in one way or the other. In the following we formally de�ne this

orrespondene between sets of deisions and linear onstant restritions.

6

De�nition 2.7 Let U be a set of variables. A linear onstant restrition

L = (�;Lab; <

L

) over U satis�es a deision set D, if the following holds:

x �

�

y if x

:

= y 2 D; x 6�

�

y if x 6 _= y 2 D;

Lab(x) = �

i

if x _7! �

i

2 D; Lab(x) 6= �

i

if x 6 _7! �

i

2 D;

x <

L

y or x �

�

y if x

_

� y 2 D:

The set of linear onstant restritions satisfying D is denoted by L(D). A

set D is alled inonsistent if L(D) = ;.

So, the deisions are interpreted by a linear onstant restrition in a

straightforward way. We an now use deision sets to represent onstraint

problems with partially spei�ed linear onstant restritions.

De�nition 2.8 A onstraint problem with deision set (�;D) onsists of a

onstraint problem � together with a set of deisions D. An assignment �

is a solution of (�;D) if � is a solution of (�; L) for some L 2 L(D).

Sine deision sets represent linear onstant restritions, they inherit

some properties like

_

< representing an ordering. This is reeted by the

following de�nition.

De�nition 2.9 A deision set D is alled losed if D = fd j every L 2

L(D) satis�es fdgg.

This de�nition implies that for eah deision set D there is exatly one

losed set whih is equivalent to D; this set is alled the losure of D. This

losure an be omputed eÆiently; one has to onsider that

:

= denotes a

ongruene,

_

< stands for an ordering, and x _7! �

i

represents a funtional

relation. For example, a losure always ontains x

:

= x for all variables

x 2 U , the two deisions x

:

= y 2 D and y

_

< z 2 D imply that x

_

< z

is in the losure of D, and the losure of fx _7! �

i

g ontains x 6 _7! �

j

for

all i 6= j. In the following we will always assume that sets of deisions are

losed, i.e., when adding deisions to a set we assume that the losure is

formed immediately.

We need a riterion to tell when a set of deisions already represents one

linear onstant restrition, i.e., when no more deisions have to be made.

De�nition 2.10 A set of deisions D is omplete, if all linear onstant

restrition in L(D) are equivalent.

From this de�nition and the one above it follows that there is a one-

to-one orrespondene between the equivalene lasses of linear onstant

restritions over U and losed and omplete sets of deisions for U . In order

to test inonsisteny and ompleteness of deision sets by an algorithm, we

need a syntati formulation of these properties. This is provided by the

following lemma.

7

Lemma 2.11

1. A losed set of deisions D is inonsistent i� d 2 D and :d 2 D for

some deision d.

2. A losed and onsistent set of deisions D (for variables U) is omplete

i� for all x; y 2 U

either x

:

= y 2 D or x 6 _= y 2 D, and

either x

_

< y 2 D or y

_

< x 2 D if x _7! �

i

; y 6 _7! �

i

2 D, and

x _7! �

i

2 D for one �

i

.

3 Iterative Deomposition

The Priniple

A major disadvantage of the original method is late detetion of failure.

Suppose the input problem onsists of onstraint problems of �ve di�erent

omponents and that the seond sub onstraint problem { and thus the whole

problem { is unsolvable. The original method always makes all deisions for

all onstraint problems. In order to detet the insolvability of the seond

omponent, all deisions for all the following omponents must be onsidered

as well before testing solvability. Thus the whole searh tree of the remaining

onstraint problems must be onsidered before the algorithm establishes that

at any leaf of this tree the seond omponent is unsolvable, independently

of the deisions made for later omponents.

Avoiding this problem is the main goal of the iterative deomposition

method: omponents are solved iteratively, one omponent at a time. All

deisions in the non-deterministi steps are made loally, for the urrent

omponent only, and after that, this omponent is tested for solvability.

So we start by non-deterministially hoosing a variable identi�ation, a

labelling, and an ordering that solves the �rst omponent problem. And

we proeed from one omponent onstraint problem to another by making

the hoies neessary to solve the next omponent problem while respeting

previously made hoies. If it turns out that previously made hoies make

the urrent omponent problem unsolvable, we have to baktrak to the pre-

vious omponent problem and try another set of hoies. Making hoies

loally just for one omponent problem means the following. We identify

or disriminate variables of the urrent omponent problem, only. We label

variables of the urrent omponent problem, and furthermore we only de-

termine whether a variable reeives the signature of the urrent omponent

problem as label or whether it is treated as a onstant in this omponent.

And just the variables of the urrent omponent problem are ordered.

The advantages of the iterative deomposition are twofold. Firstly, itera-

tive deomposition remedies the disadvantage of late detetion of insolvabil-

ity as desribed above. If a omponent problem is unsolvable, this is deteted

8

when trying to solve this omponent problem. Therefore no deisions about

later omponent problems will be made.

Seondly, the searh spae is redued as ompared to the original algo-

rithm by avoiding ertain superuous hoies. Even under the assumption

that all omponent problems of the input onstraint problem are interre-

lated, there are variable identi�ations and orderings that are not needed.

For example, if two variables do not our ommonly in one omponent

problem after all identi�ations being made, then ordering them either way

does not a�et solvability. Sine iterative deomposition an make deisions

only on variables that our together in at least one omponent problem,

these superuous hoies will not be made.

The Algorithm

Before we present the algorithm, we have to de�ne a ondition when all

hoies for one omponent onstraint problem have been made. Reall that

U

i

denotes the set of ombination variables of problem �

i

.

De�nition 3.1 A deision set D is omplete for omponent i, i� for all

variables x; y 2 U

i

either x

:

= y 2 D or x 6 _= y 2 D, and

either x _7! �

i

2 D or x 6 _7! �

i

2 D, and

either x

_

< y 2 D or y

_

< x 2 D if x _7! �

i

; y 6 _7! �

i

2 D.

In the following desription, we ollet previously made deisions in the

form of sets of deisions D

i

. Eah set D

i

will be a onsistent losed set of

deisions olleting the hoies we have made so far. De�ne D

0

:= Clo(;),

i.e., the initial set of deisions is trivial.

For omponent problems i := 1 to n repeat the following steps

Step 1: Variable Identi�ation

Choose a partition � amongst the variables U

i

. De�ne D

0

i;=

:= fx

:

=

y j x �

�

y�g and D

0

i; 6=

:= fx 6 _= y j x 6�

�

y�g. The partition � must be

hosen in suh a way, that D

i�1

[D

0

i;=

[D

0

i; 6=

is onsistent. This means that

previously made identi�ations and disriminations must be observed.

Step 2: Labelling

Choose some set V � U

i

to form the labelling deision set D

0

i;Lab

:=

fx _7! �

i

j x 2 V g [fx 6 _7! �

i

j x 2 U

i

n V g in suh a way that D

i�1

[D

0

i;=

[

D

0

i; 6=

[D

0

i;Lab

is onsistent. Therefore labels are assigned to whole lasses of

the partition �, and a label an only be assigned to variables that have not

yet reeived one.

Step 3: Ordering

Choose a set of ordering deisions D

0

i;<

� fx

_

< y; y

_

< x j x; y 2

U

i

and x _7! �

i

; y 6 _7! �

i

2 D

0

i;Lab

g suh that eah pair x; y 2 U

i

with distint

labels is ordered and D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

[D

0

i;<

is onsistent. This

9

implies amongst other things that the order is non-yli and that previous

ordering deisions are respeted.

De�ne D

i

as the losure of D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

[D

0

i;<

. De�ne

D

i

j

U

i

� D

i

as the subset of D

i

that ontains only deisions over the variable

set U

i

.

Step 4: Testing the Component Problem �

i

with Deision Set

If there is a �

i

-substitution that solves (�

i

;D

i

j

U

i

), ontinue with the next

omponent problem. Otherwise hoose another set of deisions. If no other

hoie is left for the urrent omponent problem �

i

, baktrak over ompo-

nents i� 1; : : : ; 1, i.e., try another hoie in the preeding omponents.

Proposition 3.2 The input problem � is solvable, i� there is a set D

n

suh

that for eah i = 1; : : : ; n the omponent problem with deision set (�

i

;D

i

j

U

i

)

is solvable.

Note that testing (�

i

;D

i

j

U

i

) for solvability an be performed by the same

omponent algorithms as are used in the original algorithm.

We will now give syntati riteria for when an extension is onsistent.

Lemma 3.3 In Step 1, D

i�1

[D

0

i;=

[D

0

i; 6=

is onsistent, i� the following

two onditions are true: both x �

�

y� if x

:

= y 2 D

i�1

, and x 6�

�

y� if

x 6 _= y 2 D

i�1

for all x; y 2 U

i

.

Proof. If D

i�1

[D

0

i;=

[D

0

i; 6=

is onsistent, then learly the two onditions

hold. For the inverse diretion, D

i�1

and D

0

i;=

[D

0

i; 6=

are onsistent. So the

only way inonsistenies an arise by d 2 D

i�1

and :d 2 D

0

i;=

[D

0

i; 6=

for

some deision d. This an only happen by either x

:

= y 2 D

i�1

and x 6�

�

y�

or x 6 _= y 2 D

i�1

and x �

�

y� for some x; y 2 U

i

.

Lemma 3.4 In Step 2, D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

is onsistent, i� the

following two onditions are true: both [x℄

�

� V for all x 2 V , and V \fx j

9j < i : x _7! �

j

2 D

i�1

g = ;.

Proof. If D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

is onsistent, then learly the two

onditions hold. For the inverse diretion, D

i�1

[D

0

i;=

[D

0

i; 6=

and D

0

i;Lab

are onsistent. There are two ways inonsistenies an arise. There an be

some deision d suh that d 2 D

i�1

[D

0

i;=

[D

0

i; 6=

and :d 2 D

0

i;Lab

. Or the

inonsisteny ours when forming the losure of D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

.

The former ase an only happen if there is an x 2 V suh that x _7! �

j

2

D

i�1

for some j < i. The latter ase ours only, when x 6 _7! �

i

2 D

0

i;Lab

and

x _7! �

i

2 Clo(D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

) n (D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

).

This happens, when x

:

= y 2 D

i�1

[D

0

i;=

[D

0

i; 6=

and y _7! �

i

2 D

0

i;Lab

. Thus

there is a y suh that y 2 V but [y℄

�

6� V .

10

Corretness and Completeness

We presume the orretness and ompleteness of the original deomposition

with basi optimisations, as stated in Proposition 2.4.

Lemma 3.5 For eah i with 1 � i � n, the deision set D

i

j

U

i

is losed,

onsistent and omplete for omponent i.

Proof. D

i

j

U

i

is onsistent as a subset of the onsistent set D

i

. D

i

j

U

i

is losed, beause it is the redution of the losed set D

i

that ontains all

deisions over variables U

i

.

Let x; y 2 U

i

. Then either x

:

= y 2 D

i

j

U

i

or x 6 _= y 2 D

i

j

U

i

due to

Step 1 of the algorithm. And either x _7! �

i

2 D

i

j

U

i

or x 6 _7! �

i

2 D

i

j

U

i

due

to Step 2. If x _7! �

i

; y 6 _7! �

i

2 D

i

j

U

i

then immediately by Step 3 either

x

_

< y 2 D

i

j

U

i

or y

_

< x 2 D

i

j

U

i

. Therefore D

i

j

U

i

is omplete for omponent

i by De�nition 3.1.

Proposition 3.6 If for all i with 1 � i � n there exists a �

i

-substitution

�

i

that solves (�

i

;D

i

j

U

i

), then the input problem � is solvable.

Proof. D

n

is onsistent by de�nition. De�ne the following generalised

linear onstant restrition L = (�;Lab; <

L

) by

� x �

�

y�, i� x

:

= y 2 D

n

,

� Lab(x) =

(

�

i

; if x _7! �

i

2 D

n

;

�

n

; otherwise;

� <

L

is given by any onsistent extension of

x <

L

y, if x

_

< y 2 D

n

that orders eah two variables with di�erent labels.

L satis�es D

n

, and if �

i

solves (�

i

;D

i

j

U

i

) then �

i

solves (�

i

; L). Thus the

input problem � is solvable due to orretness of the original algorithm

(Proposition 2.4).

Now, we proeed to show ompleteness of the algorithm. The aim is to

show the following

Proposition 3.7 If the input problem � is solvable, then � is solvable by

iterative deomposition.

We will prove this proposition using the ompleteness of the original

algorithm with basi optimisations. Due to the ompleteness of the original

algorithm, if the input problem is solvable, there exists a generalised linear

onstant restrition L suh that the output tuples ((�

i

; L))

1�i�n

are solvable.

This generalised linear onstant restrition is used to guide the hoies that

will be made in eah iteration of the iterative method.

11

De�nition 3.8 Let L = (�; <

L

;Lab) be a generalised linear onstant re-

strition. De�ne

the set of equality deisions

D

#=

:= fx

:

= y j x �

�

y� and 9i � n : x; y 2 U

i

g,

the set of disequality deisions

D

#6=

:= fx 6 _= y j x 6�

�

y� and 9i � n : x; y 2 U

i

g,

the set of labelling deisions

D

#Lab

:= fx _7! �

i

j Lab(x) = �

i

and x 2 U

i

g,

the set of ordering deisions as the set

D

#<

:= fx

_

< y j x <

L

y;9j : x; y 2 U

j

; (Lab(x) = �

j

;

Lab(y) 6= �

j

) or (Lab(x) 6= �

j

;Lab(y) = �

j

)g:

Set D

#L

, the deision set indued by L, as the losure of the union D

#=

[

D

#6=

[D

#<

[D

#Lab

.

Lemma 3.9 D

#L

is a losed onsistent set.

Lemma 3.10 Let �

i

be a onstraint problem. Let L = (�;Lab; <

L

) be a

linear onstant restrition and D

#L

the deision set indued thereby. Then

(�

i

; L) is solvable , if and only if (�

i

;D

#L

j

U

i

) is solvable, where D

#L

j

U

i

is

D

#L

restrited to deisions over variables U

i

.

Proof. If (�

i

; L) is solvable, then (�

i

;D

#L

j

U

i

) is solvable, beause the

deision set D

#L

j

U

i

indued by L ontains only a subset of the deisions of

L.

For the inverse diretion, suppose � solves (�

i

;D

#L

j

U

i

). If for x; y 2 U

i

:

�(x) = �(y), then x

:

= y 2 D

#L

j

U

i

and therefore x �

�

y�.

Now let x �

�

y�. Then x

:

= y 2 D

#L

j

U

i

by de�nition of D

#L

and therefore

�(x) = �(y).

Let for y 2 U

i

: Lab(y) = �

j

with j 6= i. If y 2 U

j

, then y _7! �

j

2

D

#L

j

U

i

. If y =2 U

j

, then there is no k suh that y _7! �

k

2 D

#L

j

U

i

. In both

ases y _7! �

i

=2 D

#L

j

U

i

. Therefore �(x) 2 X as demanded.

Let for x; y 2 U

i

: Lab(x) = �

j

;Lab(y) = �

i

; j 6= i and �(x) 2

Stab(�(y)). Then y _7! �

i

2 D

#L

j

U

i

; and x 6 _7! �

i

2 D

#L

j

U

i

aording to

the same argument as in the previous paragraph. Therefore x

_

< y 2 D

#L

j

U

i

and x <

Lj

U

i

y by de�nition of D

#L

j

U

i

.

We now have to show that D

#L

is a potential deision set alulated by

the iterative deomposition.

Lemma 3.11 Let (�; L) be a solvable omponent problem with deision set

L. Then the indued deision set D

#L

an be onstruted by the iterative

deomposition, i.e., D

#L

= D

n

.

12

Proof. In eah omponent i, we make the following hoies. Two vari-

ables x; y 2 U

i

are identi�ed aording to D

#L

, that is, i� x

:

= y 2 D

#L

, then

x

:

= y 2 D

0

i;=

; i� x 6 _= y 2 D

#L

, then x 6 _= y 2 D

0

i; 6=

. I� x _7! �

i

2 D

#L

, then

x _7! �

i

2 D

0

i;Lab

. I� x

_

< y 2 D

<

, then x

_

< y 2 D

0

i;<

.

Claim 1: For 0 � i � n: D

i

is onsistent and D

i

� D

#L

.

Proof of Claim 1:

D

0

= ; is obviously onsistent and a subset of D

#L

.

Let i > 0. D

i�1

� D

#L

by hypothesis. D

0

i;=

;D

0

i; 6=

;D

0

i;Lab

and D

0

i;<

are

subsets of D

#L

by de�nition, thus D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

[D

0

i;<

is

onsistent, beause it is a subset of the onsistent set D

#L

. D

i

de�ned as

the losure of the above union is a subset of D

#L

by monotoniity of the

losure operator and onsistent, beause it is a subset of a onsistent set.

Claim 2: D

#L

= D

n

.

Proof of Claim 2:

D

n

� D

#L

by Claim 1.

Let x

:

= y 2 D

#L

, then x

:

= y 2 Clo(D

#=

). D

#=

=

S

n

i=1

D

0

i;=

by de�nition,

thus Clo(D

#=

) = Clo(

S

n

i=1

D

0

i;=

) � D

n

.

Let x 6 _= y 2 D

#L

. Then, by de�nition, x 6 _= y 2 Clo(D

#=

[D

#6=

). D

#=

� D

n

by the above. If w 6 _= z 2 D

#6=

, then there is a j suh that w; z 2 U

j

, and

thus w 6 _= z 2 D

0

j; 6=

. Therefore D

#6=

� D

n

. Thus x 6 _= y 2 D

n

, sine D

n

is

losed.

Let x _7! �

i

2 D

#L

for some i. Then x 2 U

i

by de�nition, and therefore

x _7! �

i

2 D

0

i;Lab

� D

n

.

Conerning the ordering, D

#<

=

S

n

i=1

D

0

i;<

by de�nition. Clo(D

#=

[D

#6=

) =

Clo(

S

n

i=1

D

0

i;=

[

S

n

i=1

D

0

i; 6=

) by the above. Now x

_

< y 2 D

#L

implies x

_

< y 2

Clo(D

#<

[D

#=

[D

#6=

) = Clo(

S

n

i=1

D

0

i;<

[

S

n

i=1

D

0

i;=

[

S

n

i=1

D

0

i; 6=

) � D

n

.

Claim 3: All of the above hoies of the sets D

0

i;=

;D

0

i; 6=

;D

0

i;Lab

;D

0

i;<

are

valid as steps in iterative deomposition.

Proof of Claim 3:

That all of these hoies an be made onsistently, is shown by Claim 1.

For variable identi�ation, the partitioning is diretly given by the equiva-

lene lasses that result when restriting the equality and disequality dei-

sions of D

#L

to the variables of a partiular omponent problem, as done in

D

0

i;=

and D

0

i; 6=

.

For labelling, the generalised linear onstant restritions ensure that eah

variable reeives only one label and that lasses of variables that are identi-

�ed reeive one and the same label.

For ordering, D

0

i;<

ontains only ordering deisions on variables of ompo-

nent i. It respets the variable identi�ation, beause the generalised linear

onstant restrition (�; <

L

;Lab) does so. And, by de�nition, eah pair

x; y 2 U

i

of variables where one has omponent i as label while the other

has not is ordered in D

0

i;<

.

13

Proof of Proposition 3.7.

Let � be solvable. By Proposition 2.4 there exists a generalised linear on-

stant restrition L = (�; <

L

;Lab) suh that the output tuples ((�

i

; L))

1�i�n

have a solution. By Lemma 3.10 the output tuples ((�

i

;D

#L

j

U

i

))

1�i�n

with

the indued deision set D

#L

are solvable. By Lemma 3.11, there exists a

set of hoies of the iterative algorithm suh that the deision set D

#L

is

onstruted thereby.

4 Dedutive Method

In this setion we will show how information dedued from the omponent

systems and their individual strutures an be used to prune the searh

spae. The power of the method lies in the interhange of this information

between the omponents.

Interhanging Deisions

A severe disadvantage of the original ombination algorithm is that all non-

deterministi deisions are made blindfoldedly without respeting the re-

quirements that the omponent strutures may impose. For example, if a

omponent struture A

i

is ollapse-free and the problem ontains an equa-

tion x = f(: : : y : : :) where f 2 �

i

, then x must reeive label �

i

. If A

i

is

also regular then the problem is unsolvable if y 6 _7! �

i

2 D and x

_

< y 2 D.

Hene the algorithm an hoose x _7! �

i

2 D deterministially and take into

aount that y 6 _7! �

i

2 D implies y

_

< x 2 D.

As the example shows, some deisions that have been dedued ear-

lier in one omponent an be used to dedue new deisions in another

one. This possible interplay between di�erent strutures suggests to use

a method where omponent algorithms omputing new deisions are alled

alternately in the beginning of the ombination algorithm and whenever a

non-deterministi hoie has been made: Starting with some initial deisions,

eah omponent algorithm omputes new deisions; these new deisions are

added to the urrent set of deisions, whih is used when alling the other

omponent algorithms. When this proess omes to an end beause no new

deisions an be dedued, the next non-deterministi hoie has to be made

by the ombination algorithm. After this hoie the proess of omputing

new onsequenes an be started again. At any step of omputing the onse-

quenes, a omponent algorithm may return that its subproblem has beome

unsolvable with the urrent set of deisions. Thereby, unsolvable branhes

of the searh tree an be deteted earlier.

Obviously, this method requires new omponent algorithms that are a-

pable of omputing onsequenes implied by the omponent strutures, the

problem, and the deisions omputed so far. A struture for whih suh

14

an algorithm does not exist an still be used in this method, but it annot

ontribute to the dedutive proess. It is learly the quality of the dedutive

omponent algorithms that determines the amount of optimisation ahieved.

The optimisations of our omponent algorithms go quite beyond using only

syntati properties of strutures as in the example above. The goal is to

dedue as muh information as is possible with a reasonable e�ort.

The Algorithm

First we de�ne the task of the new dedutive omponent algorithms. Their

input is a pure onstraint problem and a set of deisions whih need not be

omplete. The result is a set of deisions that follows from the onstraint

problem and the input deisions. If the input is unsolvable, the result may

also be an inonsistent set of deisions.

De�nition 4.1 Let (�;D) be a onstraint problem with deision set. The

deision set C is a onsequene of (�;D), i� C is ontained in every omplete

deision set D

0

� D suh that (�;D

0

) is solvable, that is, i�

C �

\

fD

0

j D � D

0

;D

0

is omplete; and (�;D

0

) is solvableg:

2

Note that C = ; is always a onsequene and that the onsequene

need not be inonsistent if (�;D

0

) is unsolvable for all omplete extensions

D

0

of D. Therefore, the standard algorithms for onstraint solving with

linear onstant restritions must be alled in the end when a omplete set

of deisions is reahed. See Setion 5 for a disussion on how dedutive

omponent algorithms o-operate with standard ones.

Figure 1 shows the ombination algorithm. Like before we present the

method as a non-deterministi algorithm, i.e., the algorithm ontains non-

deterministi steps for whih both alternatives have to be regarded. In

the algorithm, D denotes the urrent set of deisions. The termination

ondition in ase of suess is that the set of deisions is omplete, as given

in Lemma 2.11.

Proposition 4.2 The input problem � is solvable, i� the algorithm om-

putes a onsistent set D suh that for eah i = 1; : : : ; n the onstraint prob-

lem with deision set (�

i

;D) is solvable.

Again, testing (�

i

;D) for solvability an be performed by the omponent

algorithms used in the original ombination algorithm. Sine a onsequene

is a deision that is ontained in every solvable omplete deision set, it

is lear that we prune those branhes of the searh spae that are unsolv-

able. Hene orretness of the algorithm is an immediate onsequene of the

orretness of the original ombination algorithm in Theorem 2.4.

2

T

fg is the (inonsistent) set of all deisions over U .

15

D := ;

loop: Repeat

Dedue onsequenes:

Repeat

For eah system i

all the omponent algorithm of system i to alulate

new onsequenes C of (�

i

;D),

set the new urrent set of deisions D := D [C.

If D is inonsistent

break loop. /� exit from outer loop �/

Until no omponent algorithm omputes new deisions.

If D is not omplete

Selet next hoie:

Selet a deision d =2 D suh that D [fdg is onsistent.

Non-deterministially hoose either

D := D [fdg or

D := D [f:dg.

Until D is omplete.

Return D.

Figure 1: The dedutive ombination algorithm

The dedutive method additionally allows to redue ertain redundanies

in the searh spae. We an prune some solvable branhes that would only

lead to redundant solutions. For example, let �

1

= fx = a; y = ag and

�

2

= fz = x+yg where + is assoiative and ommutative. Clearly, Lab(x) =

Lab(y) = �

1

and Lab(z) = �

2

. And the order must be suh that x and y

are below z. But there are two di�erent partitions that lead to a solution:

We an identify x and y or leave them di�erent. The resulting solution

looks the same in both ases. Hene we ompute only one partition. Other,

more ompliated examples our in ordering deisions. It turns out, that

sometimes it is useful to order variables of the same label to avoid the

omputation of superuous orders that only lead to redundant solutions. A

longer disussion of this side issue would be beyond the limited sope of this

paper.

Deterministi Combination

It is interesting to observe that there exists a lass of onstraint systems for

whih the dedutive ombination algorithm has PTIME omplexity, whih

entails that all steps an be made deterministially. In [20℄, Shulz gives

a general desription of a PTIME ombination algorithm for ertain equa-

16

tional theories. This algorithm an be extended to the ombination of quasi-

free strutures. The lass of strutures that are deterministially ombinable

is quite restrited. Currently, only unitary regular ollapse-free strutures

are known to belong to it.

Although our dedutive omponent algorithm is designed for the general

ase, it turns out to be an implementation of the deterministi algorithm

when applied to omponent algorithms satisfying the onditions imposed

in [20℄. Our omponent algorithms for uni�ation in the empty theory,

for rational tree algebras, and for feature strutures meet these onditions.

Thus, when applied to these strutures, our ombination algorithm runs

deterministially. This deterministi behaviour shows the great impat of

interhanging deisions between omponent algorithms.

5 Component Algorithms

In order to prune the searh spae signi�antly, new omponent algorithms

are needed for the dedutive method. When designing these algorithms one

should take into aount the speial way in whih they are alled. Constraint

solvers are usually designed to work inrementally (e.g., [10℄). But standard

uni�ation algorithms are \one shot" algorithms: they are started only one

with all information they need given and ompute �nal results. Dedutive

omponent algorithms must be able to ope with partial information and

deliver a meaningful but not neessarily the �nal result. More importantly,

when reeiving new information the algorithms should not restart ompu-

tation from srath but rather ontinue on the base of their prior internal

states. Otherwise, the searh spae would be partially shifted from the om-

bination algorithm to the dedutive omponent algorithms. The same holds

for the standard omponent algorithms for problems with linear onstant

restritions that perform a omplete test at the end of the ombination al-

gorithm: they should take into aount the information already omputed

by the orresponding dedutive omponent algorithms.

Note that there is no need for ompleteness in the dedutive omponent

algorithm: the algorithm need not ompute all deisions implied by the

input and it need not return an inonsistent set if the problem is unsolvable.

Thus an algorithm returning always the empty set would be orret, though

it would not ontribute to the dedutive proess. This, however, enables

us to use every struture that is suitable for the original algorithm. In the

other extreme it might not be advisable to ompute new deisions at any

ost; there should be a areful onsideration between optimisations of the

ombination algorithm resulting from new deisions and a higher omplexity

of the dedutive omponent algorithm.

We have developed dedutive omponent algorithms for the free theory,

A, AC, and ACI and for rational trees and feature strutures. This is not

17

the plae to give detailed desriptions of these algorithms. In the following,

we outline the ideas underlying the algorithms for the free theory, a theory

in whih one an dedue many deisions, and for ACI as a more ompliated

example.

Syntati Uni�ation

The dedutive algorithm for the free theory is based on the quasi-linear al-

gorithm desribed in [4℄ where terms and uni�ers are represented as direted

ayli graphs. We assume that the reader is familiar with this representa-

tion. When the dedutive omponent algorithm is alled for the �rst time,

the dag is built, whih is then used again for all further alls of this ompo-

nent algorithm. Deisions of the form x 6 _= y, x _7! �

i

, x 6 _7! �

i

, or x

_

� y do

not initiate any omputation. Only identi�ation deisions x

:

= y ause a

all of the orresponding uni�ation proedure, whih updates the existing

dag. The deision set to be returned by the omponent algorithm an be

omputed from the dag: x

:

= y is returned if x and y are identi�ed in the

dag; x _7! �

Free

is returned if x is onneted to a non-variable term; x

_

< y is

returned if x an be reahed from y. Additionally x 6 _= y is returned if x and

y are ertainly not uni�able. The algorithm does not test real uni�ability

of x and y sine it would be too ostly to do this for all pairs of variables;

instead it tests if the variables are onneted to non-variable terms with

di�erent topsymbol. The dag is also used by the deision proedure for

problems with linear onstant restritions. This algorithm works exatly

like the dedutive omponent algorithm, exept that it does not ompute a

deision set but returns solvable or unsolvable.

The dedutive algorithm for rational trees works similarly to this algo-

rithm. It does not perform an our-hek and it returns x

_

< y only if x

an be reahed from y and y has been labelled by another struture.

The Theory ACI

In the theory of Abelian monoids, ACI, the binary funtion symbol + is

assoiative, ommutative and idempotent. In [14℄, an algorithm was given

that deides solvability of ACI -uni�ation with onstants. The main idea

is to set up Horn lauses whih desribe the solvability of the equations.

The Horn lauses are built from propositional variables P

x;a

whih are true

i� the onstant a does not our in a solution for the variable x. A lause

P

x;a

^P

y;a

) False means that the problem is unsolvable if a appears neither

in x nor in y, or equivalently: if we an dedue that a does not our in x,

then it must appear in y.

We extend the algorithm given in [14℄ for our situation where the set of

variables and onstants is not �xed in the beginning. By this, we prevent

that new Horn lauses have to be set up when a new labelling deision

18

is made. Let V

ACI

be the set of variables in �

ACI

; note that there are no

onstants in �

ACI

. We introdue a new onstant �x for eah variable x 2 V

ACI

and onstrut two types of Horn lauses:

�

^

y2V

ACI

P

x;�y

) False for eah variable x 2 V

ACI

;

� P

x

1

;�y

^ : : : ^ P

x

k

;�y

, P

u

1

;�y

^ : : : ^ P

u

l

;�y

for eah y 2 V

ACI

and eah equation

x

1

+ : : : + x

k

= u

1

+ : : :+ u

l

2 �

ACI

:

The �rst type of lauses guarantees that the solution for eah variable

ontains at least one onstant. The seond type represents the equations of

�

ACI

: if a onstant does not appear on the left hand side, it must not appear

on the right hand side, and vie versa. A deision x 6 _7! �

ACI

introdues the

Horn lauses P

x;�x

) False and) P

x;�y

for eah y 2 V

ACI

with y 6= x, i.e.,

the propositional variables are set to False and True, respetively. The e�et

of these lauses is that �x is the only onstant that appears in x, i.e., x is

identi�ed with �x and is treated like a onstant by the algorithm. A deision

x

_

< y auses the atom P

x;�y

to be set to True.

The onstraint problem with linear onstant restritions is solvable i�

the set of Horn lauses is solvable. This an be tested eÆiently by an

algorithm whih onstruts a graph from the Horn lauses and propagates

True and False through this graph (see [14℄). The set of Horn lauses (and the

orresponding onstraint problem) is unsolvable if True meets False during

this propagation. New deisions an be dedued from the atoms mapped to

True or False: x _7! �

ACI

is returned if P

x;�y

is set to False and x 6 _= y has

been already dedued or if P

x;�y

and P

x;�z

have been set to False for three

di�erent variables x, y, and z. The deision x

_

< y is returned if P

x;�y

has

been set to False with x 6= y.

Like the dag for syntati uni�ation, the Horn lauses and the state of

the propositional variables are stored and used again for eah further all

of the omponent algorithm; only when a new identi�ation deision x

:

= y

is dedued by another omponent algorithm, the lauses have to be set up

anew.

Other Component Algorithms

Here, we would like to present at least the basi ideas for the other om-

ponent algorithms. The theory A = fx + (y + z) = (x + y) + zg, i.e., the

theory of an assoiative funtion symbol + is basially the theory of free

word equations. The dedutive omponent algorithm translates the input

into word equations and simpli�es them. The simpli�ation steps allow the

omputation of new identi�ation, labelling and ordering information. This

is an example of a dedutive omponent algorithm whih does not om-

19

pute all onsequenes. Hene we need to all the standard algorithm for

A-uni�ation with linear onstant restritions in the end.

For the theory AC = fx + (y + z) = (x + y) + z;x + y = y + xg,

i.e., the theory of an assoiative and ommutative funtion symbol +, the

dedutive algorithm is based on [22℄. First, the set of minimal solutions

of the homogeneous Diophantine equations orresponding to the uni�ation

problem is omputed. Some of these solutions an be deleted with the help

of the existing deisions. From the remaining set of solutions, information

about labelling, ordering and identi�ation an be dedued.

The set of minimal solutions has to be reomputed when new identi�a-

tion deisions our. This might seem to be a drawbak at �rst glane, sine

omputing the solutions of Diophantine equations an be a time-onsuming

task; but it annot be worse than in the original ombination algorithm, i.e.,

Diophantine equations are not solved more often, sine this happens at most

one for every partition of variables. Unfortunately, the number of minimal

solutions of the Diophantine equations an be exponential in the size of the

uni�ation problem. But at least we do not need to ompute omplete sets

of uni�ers, whih an even be doubly-exponential in number.

The algorithms for the free theory and for the theories AC and ACI

have in ommon that they behave like deision proedures for uni�ation

with linear onstant restritions if alled with a omplete set of deisions,

i.e., they return a orret and omplete answer. Therefore the �nal test does

not need to ompute anything; it an simply return the result ahieved by

the orresponding dedutive omponent algorithm.

Rational Trees and Feature Strutures

As examples of a quasi-free strutures whih are not an equational the-

ories the author implemented rational tree algebras and feature strutures

of the Smolka and Treinen variety [21℄. The algorithm for rational tree al-

gebras is a simple extension of the algorithm for syntati uni�ation. The

ours-hek has to be left out and the omputation of new deisions is a

bit more ompliated sine ertain yli solution whih are impossible in

the free theory have to be taken into aount.

We introdued feature strutures as examples of quasi-free strutures in

the paragraph following de�nition 2.1. The implementation employs teh-

niques for integrating reord like data types (as feature strutures) into logi

programming frameworks developed by Van Roy, Mehl and Sheidhauer [24℄.

Upon �rst all, the internal graph-like representation of the feature theory is

onstruted and used to alulate new identi�ation, labelling and ordering

information. This representation needs to be onstruted only one. Later

on, new inoming identi�ation information does not trigger a omplete new

setup, rather starts a feature struture uni�ation of the the two strutures

pending below the newly identi�ed variables. Additional information an be

read out of the new strutures, if uni�ation sueeds. Inoming labelling or

20

ordering information triggers no uni�ation. Labelling information an help

to dedue more information on the ordering. The algorithm is designed in

suh a way that it behaves like a deision proedure for feature onstraint

problems with linear onstant restritions when alled with a omplete set

of deisions.

6 Integrating the Dedutive and Iterative Method

The two methods desribed above an easily be integrated. The iterative

method is a seletion strategy for non-deterministi steps, while the dedu-

tive method dedues deterministi onsequenes from the deisions already

made. Therefore integration is ahieved by plugging the iterative seletion

strategy into the dedutive algorithm. The ombined method looks as fol-

lows. Suppose omponent onstraint problems �

1

to �

i�1

are solved, the

urrent deision set is D, and D is not omplete for omponent i, the ur-

rent omponent. Selet a deision d =2 D over the variables of omponent i

suh that D[fdg is onsistent. Nondeterministially hoose d or its negation

and add it to D. Compute onsequenes and add them to D. If D is still

not omplete for omponent i, selet the next deision for this omponent.

If D is omplete and (�

i

;Dj

U

i

) is solvable, proeed to the next omponent

problem. Otherwise perform baktraking and make an alternative hoie

for one of the deisions made so far.

The method to ompute onsequenes of a non-deterministi deision

should be amended to the new seletion strategy as follows. Components

that are already solved annot ontribute any new deisions. Consequently

only omponents that still have non-deterministi hoies left open are on-

sulted.

7 Tests

The ombination method and omponent algorithms for the free theory, A,

AC, and ACI as well as for rational tree algebras and feature strutures

are implemented

3

in Common Lisp using the Keim toolkit [12℄. In the

following we show some results of our optimisations. As already stated, the

onstraint solvers for rational tree algebras and feature strutures are suh

that one an ombine them even deterministially. Hene we do not present

any test data for them. In order to test our algorithms with examples

that our in pratie we used the reveal theorem prover [8℄. For some

example theorems, we olleted all uni�ation problems that are generated

and solved by reveal while proving this theorem. These theorems (and

3

The implementation an be found at http://www-lti.informatik.rwth-aahen.de/

Forshung/unimok.html.

21

the orresponding set of uni�ation problems) ontain free funtion symbols

and onstants and one or two AC-symbols.

Table 1 gives an overview of the run time for some sets of uni�ation

problems. The �rst six lines ontain all uni�ation problems that have to be

solved by reveal during the proof searh or ompletion of the respetive

example. All examples exept the �rst one ontain two AC-symbols and

several free symbols. The last three examples, ontaining several AC- and

ACI -symbols, are added to demonstrate the potential of the iterative sele-

tion strategy. In order to see the e�et of the iterative seletion strategy on

its own, we integrated it into the original algorithm (olumn `it'). An empty

ell in the olumns indiates that the algorithm was aborted after one hour.

Time in seonds Bktrk

Example Size i+d ded i+d- ded- it orig i+d ded

Abelian group 29 3.7 3.7 5.0 5.0 11.6 17.2 4 4

Boolean ring 51 3.2 3.2 4.8 4.8 3.5 3.3 0 0

Boolean algebra 122 15.8 15.7 20.5 24.5 12 12

exboolston 87 12 12 948 997 17 14

exgrobner 1002 154 155 1442 1488 65 66

exuqsl2 404 109 108 74 74

AC*{ACI* 1 1 16 101 74 385 15 16 103

AC*{ACI* 2 1 31 407 393 841 13 205

AC*{ACI* 3 1 67 557 248 22 192

Legend

Size Number of uni�ation problems

Bktrk Number of baktraking steps

i+d Iterative seletion strategy in dedutive method

ded Dedutive method

i+d-, ded- Same as i+d/ded, butAC-omponent replaed by one that uses

only ollapse-freeness and regularity

it Iterative seletion strategy in original algorithm

orig Original unoptimised algorithm

Table 1: Run time of some example sets

We want to emphasise the di�erenes between olumn `ded' and `ded-'. Col-

umn `ded-' shows the run time of the algorithm when using only syntati

properties as desribed in [3℄; a omparison with olumn `ded' demonstrates

the power of the dedutive method and the dedutive omponent algorithms.

The run time dereases dramatially for most examples and some examples

even annot be solved in suitable time when using only syntati properties.

The use of the iterative seletion strategy does not lead to a performane

inrease in the dedutive algorithm in the �rst six example sets, beause

these examples are too simple: They ontain too few omponent theories.

22

The last three examples show that the use of the iterative seletion strategy

an lead to a speed-up by more than one order of magnitude. The equations

in these examples ontain several AC and ACI -funtion symbols besides

free funtion symbols. It is a general observation that the iterative seletion

strategy is advantageous, if the number of systems is large or the dedutive

omponent algorithms do not dedue many deisions.

Set Equations term- # ACI Ded+Iter Ded

depth time bktrk time bktrk

1 199/98 6 3 816 1953 81 152

2 200/99 6 3 232 780 >1h

3 199/101 6 3 330 800 1158 1982

4 200/127 6 3 58 250 42 110

5 200/97 6 3 1362 3971 141 401

6 200/113 6 3 >1h 103 295

7 200/112 6 3 676 2217 189 689

8 200/100 5 0 19 1 19 1

9 200/90 5 0 67 33 75 33

10 200/95 5 0 16 1 15 1

11 200/87 5 0 20 7 21 10

12 200/89 5 0 21 8 21 8

13 200/99 5 1 32 50 31 30

14 200/93 5 1 21 47 26 22

15 200/109 5 1 154 394 3931 12335

16 200/116 5 1 26 50 30 31

17 200/107 5 2 319 1116 83 147

18 200/106 5 2 1250 2627 44 107

19 200/95 5 2 178 462 58 169

20 200/108 5 2 99 414 43 159

Legend: The signature of these problems onsists of 2 A, 2 AC, 0{3 ACI and several free

funtion symbols. Equations: number of equations in set and number of solvable equations;

term depth: maximal depth of terms; # ACI : Number of ACI-funtion symbols in signa-

ture; Ded+Iter: dedutive ombination with iterative seletion strategy; Ded: dedutive

ombination with a seletion strategy that hooses all identi�ations �rst; bktrk: number of

baktraking steps.

Table 2: Run time of randomly generated example sets

In order to get more examples, we developed a test set generator. With it,

one generates sets of random ombined uni�ation problems over signatures

ontaining several funtion symbols from di�erent theories. Certain means

were taken to ensure that about half of the generated problems are solvable.

23

Table 2 presents some run time results for these randomly generated problem

sets. The signature ontains 2 A, 2 AC, 0{3 ACI and several free funtion

symbols. The problems are that omplex that a use of a ombination method

di�erent from the dedutive ombination makes no sense at all.

It is interesting to observe that with these problems, the iterative sele-

tion strategy is not always the best hoie. There are examples (sets 2, 3,

and 15) in whih the iterative seletion strategy is superior. On the other

hand, in the sets 1, 5, 6, and 18 it is muh worse than a strategy whih

�rstly settles all variable identi�ation and disrimination deisions for all

omponent problems. It is urrently not lear what the onditions are under

whih one should hoose the iterative seletion strategy, and when to rather

use the other strategy. The presene of several ollapsing theories is impor-

tant, but there are several ollapsing theories both in those examples where

the iterative seletion strategy works well and in those where it ounders.

In all these examples, it seems important to make the \right" deisions �rst,

but there is at urrent no way to state what the \right" deisions are.

Another observation is that there is no simple, e.g., linear, onnetion

between the run time and the number of baktraking steps. Obviously,

some baktraking steps require a lot of time, beause they appear high up

in the searh tree, while others that are lose to the leaf nodes of the searh

tree have a very small inuene on the run time.

8 Related Work and Conlusion

The work that is most losely related to ours is the one by Boudet [5℄. He

presents an optimised algorithm for the ombination of �nitary equational

theories. Our method is hene onsiderably more general, we are neither re-

strited to equational theories nor to strutures for whih minimal omplete

sets of solutions must be �nite. But sine ombining uni�ation algorithms

is suh an important instane of our methods, we want to ompare the two

approahes a bit more detailed. Boudet's algorithm omputes a omplete set

of uni�ers for eah theory, subsequently treats arisen onits between the

theories (like one variable getting assigned to di�erent terms in di�erent sys-

tems), and repeats these two steps until all onits have been solved. Thus

there is an important di�erene in the way the non-determinism inherent in

most onstraint problems is handled. Our algorithm prophylatially makes

a hoie for all possible onit situations before solving the omponent

systems. | We showed that many of these hoies an be made determinis-

tially, but some have to be made non-deterministially. | Boudet follows

another approah: his algorithm only makes a non-deterministi hoie if a

onit atually arises. But as a drawbak his approah introdues another

soure of non-determinism: in order to detet atual onits, the algorithm

has to ompute omplete sets of uni�ers for the omponent systems and it

24

has to hoose one of the uni�ers non-deterministially if the omputed set

ontains more than one solution. The set of uni�ers an by very large, e.g.,

doubly-exponential in the number of variables of the input problem for the

theory AC.

Both algorithms have to perform several rounds of omputation for the

omponent systems, i.e., onsequenes (in our algorithm) or omplete sets

of uni�ers (in Boudet's algorithm) have to be omputed more than one

for eah omponent system. In our algorithm the onstraint problem to be

solved by a omponent has the same size in eah round. In Boudet's algo-

rithm the omputation of a omplete set of uni�ers is based on the uni�er

found in the previous round. This means that the uni�ation problem to

be solved by a omponent theory an grow in eah round, e.g., the number

of variables in an AC-uni�er an be exponential in the number of variables

of the input problem. This an result in a higher worst-ase omplexity of

Boudet's algorithm: It may well be non-elementary. And that, though the

inherent omplexity of ombination is in NP. Our algorithm on the other

hand has singly exponential omplexity. Despite its high worst-ase om-

plexity, Boudet's algorithm performs quite well in many pratial examples.

It seems to be a promising line of researh to try to integrate some of our

optimisation ideas into Boudet's algorithm.

We presented an optimised algorithm for ombining onstraint solvers.

Our empirial analysis indiates that the ombined onstraint solvers ob-

tained this way an indeed be used in pratie. It should be noted, however,

that some of the non-determinism is inherent in the ombination problem,

whih means that even the best optimisation methods annot avoid this

omplexity, unless the strutures to be ombined are severely restrited, as

pointed out in the subsetion on deterministi ombination.

Referenes

[1℄ Peter Azel. Non-wellfounded Sets. Number 14 in CSLI Leture Notes.

CSLI, Stanford University, USA, 1988.

[2℄ Franz Baader and Klaus U. Shulz. Combination of Constraint Solvers

for Free and Quasi-Free Strutures. Tehnial Report CIS-Beriht-96-

90, CIS, Universit�at M�unhen, 1996.

[3℄ Franz Baader and Klaus U. Shulz. Uni�ation in the Union of Dis-

joint Equational Theories: Combining Deision Proedures. Journal of

Symboli Computation, 21:211{243, 1996.

[4℄ Franz Baader and J�org H. Siekmann. Uni�ation Theory. In Dov M.

Gabbay, Christopher J. Hogger, and John Alan Robinson, editors,

25

Handbook of Logi in Arti�ial Intelligene and Logi Programming,

volume 2, pages 41{125. Oxford University Press, 1994.

[5℄ Alexandre Boudet. Combining Uni�ation Algorithms. Journal of Sym-

boli Computation, 16(6):597{626, 1993.

[6℄ Alan Bundy, editor. Automated Dedution, Proeedings CADE-12,

Nany, Frane, LNAI 814. Springer-Verlag, 1994.

[7℄ Hans-J�urgen B�urkert. A Resolution Priniple for Clauses with Con-

straints. In Stikel [23℄, pages 178{192, 1990.

[8℄ Ta Chen and Siva Anantharaman. STORM: A Many-to-one

Assoiative-ommutative Mather. In Jieh Hsiang, editor, Rewriting

Tehniques and Appliations, Proeedings RTA-95, LNCS 914, pages

414{419. Springer-Verlag, 1995.

[9℄ Alain Colmerauer. Equations and Inequations on Finite and In�nite

Trees. In Institute for New Generation Computer Tehnology, editor,

Proeedings of the 2nd International Conferene on Fifth Generation

Computing Systems, pages 85{99, Tokyo, 1984. Ohmsha et al.

[10℄ Alain Colmerauer. An Introdution to PROLOG III. Communiations

of the ACM, 33:69{90, 1990.

[11℄ Agostino Dovier, Alberto Poliriti, and Gianfrano Rossi. Integrating

lists, multisets, and sets in a logi programming framework. In Franz

Baader and Klaus U. Shulz, editors, Frontiers of Combining Systems,

Proeedings of the 1st Int. Workshop, FroCoS'96. Kluwer Aademi

Publishers, 1996.

[12℄ Xiaorong Huang, Manfred Kerber, Mihael Kohlhase, Eria Melis, Dan

Nesmith, J�orn Rihts, and J�org H. Siekmann. KEIM: A Toolkit for

Automated Dedution. In Bundy [6℄, pages 807{810, 1994.

[13℄ Jean-Pierre Jouannaud and H�el�ene Kirhner. Completion of a Set

of Rules modulo a set of Equations. SIAM Journal on Computing,

15:1155{1195, 1986.

[14℄ Deepak Kapur and Paliath Narendran. Complexity of Uni�ation Prob-

lems with Assoiative-Commutative Operators. Journal of Automated

Reasoning, 9:261{288, 1992.

[15℄ Claude Kirhner and H�el�ene Kirhner. Constrained Equational Rea-

soning. In Gaston H. Gonnet, editor, Proeedings of SIGSAM 1989

International Symposium on Symboli and Algebrai Computation: IS-

SAC'89, pages 382{389. ACM Press, 1989.

26

[16℄ Anatolij Ivanovi� Mal'ev. The Metamathematis of Algebrai Systems.

Edited by Benjamin Franklin Wells, volume 66 of Studies in Logi.

North-Holland Publishing Company, 1971.

[17℄ Robert Nieuwenhuis and Albert Rubio. AC-superposition with Con-

straints: No AC-uni�er Needed. In Alan Bundy, editor, Proeedings

of the 12th International Conferene on Automated Dedution, Nany,

Frane, LNAI, pages 545{559. Springer, 1994.

[18℄ Gordon D. Plotkin. Building-in Equational Theories. Mahine Intelli-

gene, 7:73{90, 1972.

[19℄ Manfred Shmidt-Shau�. Uni�ation in a Combination of Arbi-

trary Disjoint Equational Theories. Journal of Symboli Computation,

8(1,2):51{99, 1989.

[20℄ Klaus U. Shulz. Combining Uni�ation and Disuni�ation

Algorithms|Tratable and Intratable Instanes. Tehnial Report

CIS-Beriht-96-99, CIS, Universit�at M�unhen, 1996.

[21℄ Gert Smolka and Ralf Treinen. Reords for Logi Programming. Jour-

nal for Logi Programming, 18(3):229{258, 1994.

[22℄ Mark E. Stikel. A Uni�ation Algorithm for Assoiative-Commutative

Funtions. Journal of the ACM, 28(3):423{434, 1981.

[23℄ Mark E. Stikel, editor. Automated Dedution, Proeedings CADE-10,

LNAI 449, Berlin, Germany, 1990. Springer{Verlag.

[24℄ Peter Van Roy, Mihael Mehl, and Ralf Sheidhauer. Integrating eÆ-

ient reords into onurrent onstraint programming. In 8th Interna-

tional Symposium on Programming Languages, Implementations, Logi,

and Programs (PLILP96), Aahen, September 1996.

27

