Optimisation Techniques for
Combining Constraint Solvers

Stephan Kepser Jorn Richts
CIS, Universitat Miinchen Theoretische Informatik
Oettingenstr. 67 RWTH Aachen
80538 Miinchen, Germany 52056 Aachen, Germany
kepser@cis.uni-muenchen.de richts@informatik.rwth-aachen.de
Abstract

In recent years, techniques that had been developed for the combi-
nation of unification algorithms for equational theories were extended
to combining constraint solvers. These techniques inherited an old
deficit that was already present in the combination of equational theo-
ries which makes them rather unsuitable for practical use: The under-
lying combination algorithms are highly non-deterministic. This paper
is concerned with the practical problem of how to optimise the com-
bination method of Baader and Schulz. We present two optimisation
methods, called the iterative and the deductive method. The iterative
method reorders and localises the non-deterministic decisions. The de-
ductive method uses specific algorithms for the components to reach
certain decisions deterministically. Run time tests of our implementa-
tion indicate that the optimised combination method yields combined
decision procedures that are efficient enough to be used in practice.

1 Introduction

One idea behind constraint solving is to use specialised formalisms and in-
ference mechanisms to solve domain-specific tasks. In many applications,
however, one is faced with a complex combination of different problems.
Therefore constraint solvers tailored to solving a single problem can only
be applied, if it is possible to combine them with others. Concrete exam-
ples of the combination of constraint solvers can be found, e.g., in [11, 10].
In a recent paper [2], Baader and Schulz present a general method for the
combination of constraint systems. Their method is applicable to a large
class of structures, the so-called quasi-free structures. Quasi-free structures

*This work was funded by the “Schwerpunkt Deduktion” of the Deutsche Forschungs-
gemeinschaft (DFG) and was supported by the Esprit working group 22457 — CCL II of
the European Union.

comprise many important infinite non-numerical solution domains such as
(quotient) term algebras [16], rational tree algebras [9], vector spaces, hered-
itarily finite wellfounded and non-wellfounded lists, sets [1] and multi sets
as well as certain types of feature structures [21]. The combined solution
domain the authors present in [2], the so called free amalgamated product,
has the characterising property of being the most general combination in
the sense that every other combined domain contains a homomorphic image
of it.

The question of how to combine specialised methods was first discussed
in the field of unification theory (see [4] for an overview). Equational uni-
fication algorithms, which can be seen as an instance of constraint solvers,
were built into resolution-based theorem provers [18] and rewriting engines
[13] to improve their handling of equality. Since the unification problems oc-
curring in these applications usually contain function symbols from various
equational theories, the question of how to combine equational unification
algorithms became important. For algorithms that compute complete sets
of unifiers for equational theories over disjoint signatures, this problem was
solved by Schmidt-Schauf [19] and Boudet [5]. With the development of
constraint-based approaches to theorem proving [7, 17] and rewriting [15],
the interest in combining unification algorithms extended towards combi-
nations of decision procedures, for which Baader and Schulz [3] finally pre-
sented a general algorithm.

As a generalisation of the one given in [3], the algorithm for combining
constraint solvers in [2] inherits the old weakness of being so highly non-
deterministic that it is of very limited practical use. The aim of this paper is
to provide optimisation techniques for the combination algorithm by Baader
and Schulz that make the combination of constraint solvers practically usable
and are still general enough to be applicable to a large class of constraint
solvers. The methods we propose are the so called iterative and deductive
method. The iterative method reorders the non-deterministic decisions. In
order to detect unsolvability of a single component faster, we first make all
non-deterministic decisions relative to one component before we proceed to
the next one. The deductive method is based on the insight that many
decisions of the combination algorithm do not really need to be made non-
deterministically, but can rather be deduced on the base of the constraint
domains involved, the input problem and other decisions made earlier. In
our deductive combination method the component solvers are consulted to
gain information on what further steps can be made deterministically. This
obviously requires component solvers capable of doing so. The strength of
this combination method lies in the interchange of information between the
component algorithms. The impact of this interchange is highlighted by the
fact that, although developed for the more general case, our combination
algorithm turns out to be an implementation of the PTIME combination
algorithm given in [20] for a special subclass of constraint solvers. The

run time tests we present in this paper show the enormous effect of our
optimisation methods making us confident that combination of constraint
solvers is feasible in practice.

In this paper, we present our combination method as an algorithm for
combining constraint solvers, but our optimisation techniques are never-
theless useful for the special case of equational unification. Moreover our
method can be directly extended to compute complete sets of unifiers.

2 Preliminaries

Quasi-free Structures and the Free Amalgamated Product

A signature X consists of a set %y of function symbols and a disjoint set 3 p
of predicate symbols (not containing “="), each of fixed arity. X-structures
over the carrier set A are denoted by 2A*. ¥-terms (t,t;,...) and atomic
Y-formulae (of the form ¢; = to, or of the form p(ty,...,t,)) are built as
usual from ¥ and a countable set of variables V. A Y-formula ¢ is written
in the form ¢(vy,...,v,) in order to indicate that the set Var(yp) of free
variables of ¢ is a subset of {v1,...,v,}. A mapping o :V — A from the
set of variables to the carrier set of A* is called an assignment. A constraint
problem over signature Y is a set of atomic X-formulae. An assignment o is
a solution for a constraint problem T in A% iff ¢(o(vy),...,0(v,)) becomes
true in A* for all formulae @(vq,...,v,) € L.

Y-homomorphisms and Y-endomorphisms are defined as usual, see e.g.,
[16]. With Endys we denote the monoid of all endomorphisms of 2>, with
composition as operation.

We will now introduce the solution domains for constraint solving we
consider here, namely quasi-free structures. Quasi-free structures, a gener-
alisation of free structures, were introduced by Baader and Schulz [2]. We
consider a fixed ¥-structure A>.

Let Ag, A1 be subsets of A¥. Then Ay stabilises Ay iff all elements m;
and mg of Endys that coincide on Ay also coincide on A;. For Ag C A the
stable hull of Ag is the set SH*(Ag) := {a € A| Ag stabilises {a}}.

SH?(Ay) is always a Y-substructure of 2A”, and Ay C SH*(A4y). The
stable hull of Ay can be larger than the Y-subalgebra generated by Ag.

The set X C A is an atom set for A” if every mapping X — A can be
extended to an endomorphism of 2A>.

Definition 2.1 A countably infinite ¥-structure 2 is a quasi-free structure
iff A> has an infinite atom set X where every a € A is stabilised by a finite
subset of X. We denote this quasi-free structure by (2%, X).

The class of quasi-free structures contains many important non-nu-
merical infinite solution domains. For example, all free structures (see, e.g.,

[16]), rational tree algebras ([9]), feature structures with arity ([21]), do-
mains with nested, finite or rational lists (rational lists are used in Prolog
ITI, see [10]), and domains with nested, finite or rational sets ([1]) are quasi-
free structures. For details we refer to [2].

A fundamental property of quasi-free structures is the following: for
each a € A there exists a unique minimal finite set Y C X such that
a € SHY(Y). The stabiliser of a € A, Stab®(a), is the unique minimal finite
subset Y of X such that ¢ € SH*(Y). The stabiliser of A’ C A is the set
Stab®(A’) := U,e . Stab®(a).

We extend the notions reqular and collapse-free, known from equational
unification, to quasi-free structures.

Definition 2.2 A quasi-free structure (A%, X) is called collapse-free, iff ev-
ery endomorphism maps non-atoms to non-atoms, i.e., m(a) € A\ X for all
m € Endys and all a € A\ X. The quasi-free structure (A*, X) is regular,
iff for all m € Endys and all a € A : Stab¥(m(a)) = Stab™(m(Stab®(a))).

Note that m(Stab™(a)), the image of Stab®(a) under m, can contain
non-atoms; therefore we have to apply Stab® again.

Baader and Schulz [2] present a combined solution domain of two or
more quasi-free structures, the so-called free amalgamated product, which
is characterised amongst all considerable combined solution domains as be-
ing the most general in the sense that every domain contains a homomor-
phic image of it. The authors also provide a construction method to ob-
tain the free amalgamated product of arbitrary quasi-free structures. If
(2[121,X)y, (AZ", X) are n quasi-free structures over paiwise disjoint sig-
natures, we write 9[121 ®...®@A>" for their free amalgamated product. If the
quasi-free structures one combines are free algebras defined by equational
theories over disjoint signatures, then their free amalgamated product is the
free algebra defined by the theory over the union of the axiom sets.

In this paper, we investigate “mixed” constraint problems. For : =
1,...,n (n > 2), let ¥; be pairwise disjoint signatures and let (Qlizi,X) be
a quasi-free structure over signature ;. A “mixed” constraint problem is a
conjunction of atomic formulae over the joined signature ¥y U...UX,. A
constraint problem I is in decomposed form, if ' has the form (J}_; I'; where
each T'; is a pure constraint problem over the signature ;. Any constraint
problem I' can be transformed into a constraint problem in decomposed form
that is solvable, iff the original problem is solvable, by a simple deterministic
preprocessing step (variable abstraction, see [3]). In the following, we will
therefore always assume that a constraint problem is in decomposed form

iz L.

Only variables occurring in more than one component system I'; have
to be considered by the combination algorithm. Hence we define the set of
shared variables U := {x | 34,5 : i # j,x € Var(I';) N Var(T';)}. The com-
bination algorithm presented in the next section imposes some restrictions

on the shared variables in order to prevent conflicts between the solutions
of the component structures (like a variable being assigned to different ele-
ments by solutions of different structures). The solutions of the component
problems I'; have to obey these so-called linear constant restrictions.

Definition 2.3 A linear constant restriction L = (II, Lab,<p) for vari-
ables U consists of a partition! TT of U, a labelling function Lab : U/ —
{Z1,...,%,} and a linear order <z, on U/r. We use Lab(z) and z <p y
instead of Lab([z]n) and [z|n <, [y]n.
An assignment o of U into Qllzl is a solution for the constraint problem with
linear constant restrictions (T';, L) in (Qlizi,X), iff it is a solution for T'; and
for each z,y € U:

o o(x) =o(y) if z =n v,

o o(r) € X if Lab(z) # %;, and

o o(z) ¢ Stab®(o(y)) if Lab(x) # X4, Lab(y) = Zi,y <r, .

Intuitively speaking, item two guarantees that all variables receiving a label
different from X; are treated as constants by o. By item three, the use of
these constants in o is further restricted in order to prevent cycles. Two
linear constant restrictions L; and Ly over U are called equivalent, if they
have identical partitions and labelling functions and their orders differ at
most in the ordering of variables with identical label. This definition induces
an equivalence relation on all linear constant restrictions for a given set of
variables U. If L; and Ly are equivalent and an assignment o solves (T, L1),
then o also solves (', Ls).

The Original Combination Algorithm

In the following we describe the combination algorithm given by Baader and
Schulz in [2], where one can find the details. Here we give a straightforward
generalisation of this algorithm to the case where more than two structures
are combined. Additionally, we include basic optimisations similar to those
described in [3].

Let I" be a constraint problem in decomposed form. We assume the con-
straints in [' are connected by shared variables, i.e., there is no partition
I' = I"UT” where IV and T do not have variables in common. Other-
wise IV and T can be solved separately. The algorithm consists of three
non-deterministic steps which result in a linear constant restriction for the
constraint problem.

Step 1: Variable identification Non-deterministically choose a partition-
ing IT of U.
Step 2: Labelling Non-deterministically choose a labelling function Lab :

!The equivalence relation induced by II is denoted by =i, [z]m is the equivalence class
of a variable z, and U//n is the set of all equivalence classes of variables in .

U/H — {21,...,2n}.

Step 3: Ordering Non-deterministically choose a linear order <z, on U/11.
L = (II, Lab, <y,) constitutes a linear constant restriction. Note that for
each equivalence class of linear constant restrictions, it suffices to choose
just one member. The output tuple determined by these three steps is

(T, L), ..., (T, L)).

Theorem 2.4 The input problem I' has a solution in the free amalgamated
product 91121 ®...@%, if and only if there exists an output tuple ((T'y, L),
ooy (Tpy L)) such that for each i = 1,...,n, the constraint problem with
linear constant restriction (T';, L) has a solution in QIlEl

Decision Sets

The original algorithm makes all non-deterministic decisions first, and only
thereafter it calls the component algorithms to determine whether the input
problem with the thus chosen constant restriction is solvable. Our optimisa-
tions interleave these two parts. Hence we have to deal with linear constant
restrictions which are only partially specified, i.e., restrictions representing
the choices already made but making no statements about the decisions still
open. In order to describe these partial constant restrictions and to have a
framework for describing our optimisations on a formal level we introduce
the notion of decision sets. A decision describes a single non-deterministic
choice. There exist five different types of decisions.

Definition 2.5 Let U be the set of variables. A decision is an expression
of the formz =y, z #y, x <y, x = %;, or x & %;, where z,y € U and
1 <i < n. The decision z < y is used as an abbreviation for z < y,z # y.

We speak about sets of decisions (for a set of variables /) which are—
as usual—read conjunctively. In order to represent the two options when
making a non-deterministic choice, we define the negation of a decision.

Definition 2.6 Let d be a decision. Its negation —d is defined as follows:

r=Ey = F Y, ~rFEY ==y,
-z Xji=x A X, -z s N =1 X,
—r<y =y<u

These rules of negation reflect the three non-deterministic steps of the
algorithm: Two variables have to be identified or treated as different vari-
ables; each variable has to be treated as a variable or like a constant in a
particular component system; and two variables with distinct labels have to
be ordered in one way or the other. In the following we formally define this
correspondence between sets of decisions and linear constant restrictions.

Definition 2.7 Let U be a set of variables. A linear constant restriction
L = (II, Lab, <p) over U satisfies a decision set D, if the following holds:
rz=ny if z=yeD, rZ#ny if z#yeD,
Lab(z) =%; ifz v X; € D, Lab(xz) #%; ifxvh ;€ D,
r<pyorz=ny if z<ye€D.
The set of linear constant restrictions satisfying D is denoted by L£(D). A
set D is called inconsistent if L(D) = ().

So, the decisions are interpreted by a linear constant restriction in a
straightforward way. We can now use decision sets to represent constraint
problems with partially specified linear constant restrictions.

Definition 2.8 A constraint problem with decision set (I, D) consists of a
constraint problem I' together with a set of decisions D. An assignment o
is a solution of (I, D) if o is a solution of (I, L) for some L € L(D).

Since decision sets represent linear constant restrictions, they inherit
some properties like < representing an ordering. This is reflected by the
following definition.

Definition 2.9 A decision set D is called closed if D = {d | every L €
L(D) satisfies {d}}.

This definition implies that for each decision set D there is exactly one
closed set which is equivalent to D; this set is called the closure of D. This
closure can be computed efficiently; one has to consider that = denotes a
congruence, < stands for an ordering, and z ++ ¥; represents a functional
relation. For example, a closure always contains x = z for all variables
x € U, the two decisions z =y € D and y < z € D imply that z < 2
is in the closure of D, and the closure of {x v ¥;} contains z ¥ ¥; for
all i # j. In the following we will always assume that sets of decisions are
closed, i.e., when adding decisions to a set we assume that the closure is
formed immediately.

We need a criterion to tell when a set of decisions already represents one
linear constant restriction, i.e., when no more decisions have to be made.

Definition 2.10 A set of decisions D is complete, if all linear constant
restriction in £(D) are equivalent.

From this definition and the one above it follows that there is a one-
to-one correspondence between the equivalence classes of linear constant
restrictions over I/ and closed and complete sets of decisions for /. In order
to test inconsistency and completeness of decision sets by an algorithm, we
need a syntactic formulation of these properties. This is provided by the
following lemma.

Lemma 2.11

1. A closed set of decisions D is inconsistent iff d € D and —d € D for
some decision d.

2. A closed and consistent set of decisions D (for variables U) is complete
iff for all x,y e U
either =y €D or x#y€ D, and
either <y €D or y<xze€D ifx+s N,yvh ¥, €D, and
x> 3; € D for one 3;.

3 Iterative Decomposition

The Principle

A major disadvantage of the original method is late detection of failure.
Suppose the input problem consists of constraint problems of five different
components and that the second sub constraint problem — and thus the whole
problem — is unsolvable. The original method always makes all decisions for
all constraint problems. In order to detect the insolvability of the second
component, all decisions for all the following components must be considered
as well before testing solvability. Thus the whole search tree of the remaining
constraint problems must be considered before the algorithm establishes that
at any leaf of this tree the second component is unsolvable, independently
of the decisions made for later components.

Avoiding this problem is the main goal of the iterative decomposition
method: components are solved iteratively, one component at a time. All
decisions in the non-deterministic steps are made locally, for the current
component only, and after that, this component is tested for solvability.
So we start by non-deterministically choosing a variable identification, a
labelling, and an ordering that solves the first component problem. And
we proceed from one component constraint problem to another by making
the choices necessary to solve the next component problem while respecting
previously made choices. If it turns out that previously made choices make
the current component problem unsolvable, we have to backtrack to the pre-
vious component problem and try another set of choices. Making choices
locally just for one component problem means the following. We identify
or discriminate variables of the current component problem, only. We label
variables of the current component problem, and furthermore we only de-
termine whether a variable receives the signature of the current component
problem as label or whether it is treated as a constant in this component.
And just the variables of the current component problem are ordered.

The advantages of the iterative decomposition are twofold. Firstly, itera-
tive decomposition remedies the disadvantage of late detection of insolvabil-
ity as described above. If a component problem is unsolvable, this is detected

when trying to solve this component problem. Therefore no decisions about
later component problems will be made.

Secondly, the search space is reduced as compared to the original algo-
rithm by avoiding certain superfluous choices. Even under the assumption
that all component problems of the input constraint problem are interre-
lated, there are variable identifications and orderings that are not needed.
For example, if two variables do not occur commonly in one component
problem after all identifications being made, then ordering them either way
does not affect solvability. Since iterative decomposition can make decisions
only on variables that occur together in at least one component problem,
these superfluous choices will not be made.

The Algorithm

Before we present the algorithm, we have to define a condition when all
choices for one component constraint problem have been made. Recall that
U; denotes the set of combination variables of problem T';.

Definition 3.1 A decision set D is complete for component i, iff for all
variables z,y € U;

either x=y€Dor x#y€ED, and

either z v~ ¥; € Dor x vA 3; € D, and

either z<ye€Dor y<zeD ifzxs N,y 3 €D.

In the following description, we collect previously made decisions in the
form of sets of decisions D;. Each set D; will be a consistent closed set of
decisions collecting the choices we have made so far. Define Dy := Clo((}),
i.e., the initial set of decisions is trivial.

For component problems 7 := 1 to n repeat the following steps

Step 1: Variable Identification

Choose a partition IT amongst the variables ;. Define D’-’: = {zr =
y | © =n ylI} and D;ﬁé = {z # y | x #n ylI}. The partition IT must be
chosen in such a way, that D;_; UD{’: u Dgy 4 is consistent. This means that
previously made identifications and discriminations must be observed.

Step 2: Labelling

Choose some set V' C U; to form the labelling decision set D;,Lab =
{z > 5|z eViu{z & 5|z €U;\V} insuch a way that D;—; UD; _ U
Dgﬁé U Dg’ .ap 18 consistent. Therefore labels are assigned to whole classes of
the partition II, and a label can only be assigned to variables that have not
yet received one.

Step 3: Ordering

Choose a set of ordering decisions D§’< Clr <yy<uz|zy€
U;and z v X,y b X, € Dg,Lab} such that each pair z,y € U; with distinct
labels is ordered and D;—; U D; _ U D’-’# U D;j 1, U D; _ is consistent. This

13 13

implies amongst other things that the order is non-cyclic and that previous
ordering decisions are respected.

Define D; as the closure of D;_; U D’~’_ UD; 2 U D! iLab Y Dj .. Define
D;|y; C D; as the subset of D; that contains only dec151ons over the variable
set U;.

Step 4: Testing the Component Problem I'; with Decision Set
If there is a ¥;-substitution that solves (I';, D;|y;), continue with the next
component problem. Otherwise choose another set of decisions. If no other
choice is left for the current component problem I';, backtrack over compo-
nents ¢ — 1,...,1, i.e., try another choice in the preceding components.

Proposition 3.2 The input problem T is solvable, iff there is a set D,, such
that for each i =1,...,n the component problem with decision set (I';, D;|u;)
1s solvable.

Note that testing (I';, D;y;) for solvability can be performed by the same
component algorithms as are used in the original algorithm.
We will now give syntactic criteria for when an extension is consistent.

Lemma 3.3 In Step 1, D;—1 U D;_ U D, is consistent, iff the following
two conditions are true: both x =n yll if x =y € D;_1, and x #n yll if
z#y € D; 1 for all x,y € U;.

Proof. If D;_1UD; _UD; is consistent, then clearly the two conditions
hold. For the inverse d1rect10n D,;_4 and D' _u D' - are consistent. So the
only way inconsistencies can arise by d € DZ 1 and —~d € D; _UD;_ for
some decision d. This can only happen by either x = y € D;_; and x Zp yIl
orz #vy € D; 1 and z = yII for some z,y € U;. [

Lemma 3.4 In Step 2, D;—1 UD;_UD; , UDj;,, is consistent, iff the
following two conditions are true: both [a:]n C V forallz €V, and V {z]
dj<i:azvs ;€D 1} =0.

Proof. If D;—1 UD; _U D; ,UDj,, is consistent, then clearly the two
conditions hold. For the inverse dlrectlon D, U D' - U D' and D Lab
are consistent. There are two ways inconsistencies can arise. There can be
some decision d such that d € D;_y U D;_ U D; +and ~d € D] Lap- Or the
inconsistency occurs when forming the closure of DU D’ _u D’ # UDZ Lab-
The former case can only happen if there is an £ € V such that T Z €
D; 4 for some j < i. The latter case occurs only, when z +4 3; € D; Lab and
x> 5; € Clo(Di—1 UD; _UD; ,UD;.,)\(Di—1UDj _ UDl#UDzLab)
This happens, whenz =y € D, 1UD; _UD; and Yy N ¥i € Dj 14 Thus
there is a y such that y € V but [yln Z V. [

10

Correctness and Completeness

We presume the correctness and completeness of the original decomposition
with basic optimisations, as stated in Proposition 2.4.

Lemma 3.5 For each i with 1 < i < n, the decision set Dj|y, is closed,
consistent and complete for component 1.

Proof. D;|y, is consistent as a subset of the consistent set D;. D;|y,
is closed, because it is the reduction of the closed set D; that contains all
decisions over variables U;.

Let z,y € U;. Then either z =y € D;|y; or © # y € Dj|y, due to
Step 1 of the algorithm. And either z v+ ¥; € D;|y, or z & 3; € Dj|y, due
to Step 2. If z +» %,y v» E; € D;|y, then immediately by Step 3 either
z <y € Dj|y, or y <z € Dj|y,. Therefore D;|y. is complete for component
1 by Definition 3.1. m

Proposition 3.6 If for all i with 1 < i < n there exists a X;-substitution
oi that solves (T';, Di|y;), then the input problem T is solvable.

Proof. D, is consistent by definition. Define the following generalised
linear constant restriction L = (II, Lab, <r) by

o r=qyll,iff t =y € Dy,

i, ifx v X; € Dy,
Yn, otherwise;

e Lab(z) = {

e <7 is given by any consistent extension of
z <y, ifr<yeD,
that orders each two variables with different labels.

L satisfies Dy, and if o; solves (I';, D;|;) then o; solves (I';, L). Thus the
input problem I' is solvable due to correctness of the original algorithm
(Proposition 2.4). [

Now, we proceed to show completeness of the algorithm. The aim is to
show the following

Proposition 3.7 If the input problem I is solvable, then I' is solvable by
iterative decomposition.

We will prove this proposition using the completeness of the original
algorithm with basic optimisations. Due to the completeness of the original
algorithm, if the input problem is solvable, there exists a generalised linear
constant restriction L such that the output tuples ((I';, L))1<i<n are solvable.
This generalised linear constant restriction is used to guide the choices that
will be made in each iteration of the iterative method.

11

Definition 3.8 Let L = (II, <, Lab) be a generalised linear constant re-
striction. Define

the set of equality decisions
D :={z=y|z=nylland 3 <n:zyecl}
the set of disequality decisions
Dy:={z#y|z#nylland Ji <n:zyecl},
the set of labelling decisions
DJ,Lab = {I > | Lab(x) =Y,and z € Ui},
the set of ordering decisions as the set
Do :={z<yl|z<py3j:zyecU;(Lab(z) =%,
Lab(y) # %) or (Lab(z) # 5, Lab(y) = 5;)}.

Set Dy, the decision set induced by L, as the closure of the union D — U
Di(;,g U D¢< U DiLab-

Lemma 3.9 D,y is a closed consistent set.

Lemma 3.10 Let I'; be a constraint problem. Let L = (II, Lab,<r) be a
linear constant restriction and Dy, the decision set induced thereby. Then
(I';, L) is solvable , if and only if (I'i,D,r|u;) is solvable, where D |y, is
D, 1, restricted to decisions over variables U;.

Proof. If (I';, L) is solvable, then (I';, Dz |y;) is solvable, because the
decision set D, |y, induced by L contains only a subset of the decisions of
L.

For the inverse direction, suppose o solves (I';, D1 |y;). If for =,y € U; :
o(z) = o(y), then =y € D1 |y, and therefore x =p yII.

Now let z = yII. Then =y € D, |y, by definition of D, and therefore
o(z) = o(y).

Let for y € U; : Lab(y) = ¥; with j # 4. If y € U;, then y ¥ ¥; €
D r|u;- If y ¢ U;, then there is no k such that y * X; € Dp|y;. In both
cases y ¥ X; ¢ D1 |u;. Therefore o(z) € X as demanded.

Let for z,y € U; : Lab(x) = %;,Lab(y) = %;,j # ¢ and o(z) €
Stab(o(y)). Then y +» %; € D,r|y;; and z & 3; € Dp|y, according to
the same argument as in the previous paragraph. Therefore z <y € D ||y,
and z <p, y by definition of Dy |y;. [

We now have to show that D7, is a potential decision set calculated by
the iterative decomposition.

Lemma 3.11 Let (T, L) be a solvable component problem with decision set
L. Then the induced decision set D\; can be constructed by the iterative
decomposition, i.e., D f, = Dy,.

12

Proof. In each component ¢, we make the following choices. Two vari-
ables z,y € U; are identified according to Dy, that is, iff z =y € D, then
r=yeD;_;iffz#y€ D, thenz#yeD,. Iff x> ¥; € Dy, then
x> N € Dipy o <ye Do, thenz <yeDj

Claim 1: For 0 <4 < n: D; is consistent and D; C D,,.

Proof of Claim 1:

Dy = () is obviously consistent and a subset of D L

Let i > 0. D;—1 € Dyr by hypothesis. Dj _, z;ész rap and Dj _ are
subsets of D|;, by definition, thus D; ; U D”: U D”;,,é U Dz,Lab U D i< 18
consistent, because it is a subset of the consistent set D|;. D; defined as
the closure of the above union is a subset of D7 by monotonicity of the
closure operator and consistent, because it is a subset of a consistent set.

Claim 2: D7, = D,

Proof of Claim 2:

D, C D, by Claim 1.

Let z =y € Dy, then v =y € Clo(D,=). D)= = Uj_; D; _ by definition,
thus Clo(D =) = Clo(Ui=, D} _) C Dy,.

Let # y € D,r.. Then, by deﬁmtion, z#y€Clo(D-UD.). D— C D,
by the above. If w # z € D, then there is a j such that w,z € U}, and
thus w # z € D’ ,. Therefore Dy» C D,. Thus 7 # y € Dp, since Dj, is
closed.

Let = v X; € D, for some i. Then z € U; by definition, and therefore
T+ i € D 14 C D

Concernlng the orderlng, D, = Uiz, D; . by definition. Clo(D UD#)
Clo(U? _uyUr) by the above Now z < y € DUJ 1mphes r<yE
Clo(D,.- U DL— ¥ D#) Clo(Uiz: Dj< UL Di._ U ULy DY) € D

Claim 3: All of the above choices of the sets Dl —Di 4, D} 1.a4» Dj - are

valid as steps in iterative decomposition.

Proof of Claim 3:

That all of these choices can be made consistently, is shown by Claim 1.
For variable identification, the partitioning is directly given by the equiva-
lence classes that result when restricting the equality and disequality deci-
sions of Dy, to the variables of a particular component problem, as done in
D; _ and D; -

For labelhng, the generalised linear constant restrictions ensure that each
variable receives only one label and that classes of variables that are identi-
fied receive one and the same label.

For ordering, Dg’ - contains only ordering decisions on variables of compo-
nent i. It respects the variable identification, because the generalised linear
constant restriction (II,<r,Lab) does so. And, by definition, each pair
xz,y € U; of variables where one has component ¢ as label while the other
has not is ordered in D; _. n

13

Proof of Proposition 3.7.

Let I' be solvable. By Proposition 2.4 there exists a generalised linear con-
stant restriction L = (TI, <y,, Lab) such that the output tuples ((I';, L))1<i<n
have a solution. By Lemma 3.10 the output tuples ((I';, D, 1.|i;))1<i<n With
the induced decision set D, are solvable. By Lemma 3.11, there exists a
set of choices of the iterative algorithm such that the decision set Dy, is
constructed thereby. |

4 Deductive Method

In this section we will show how information deduced from the component
systems and their individual structures can be used to prune the search
space. The power of the method lies in the interchange of this information
between the components.

Interchanging Decisions

A severe disadvantage of the original combination algorithm is that all non-
deterministic decisions are made blindfoldedly without respecting the re-
quirements that the component structures may impose. For example, if a
component structure 2; is collapse-free and the problem contains an equa-
tion x = f(...y...) where f € %;, then x must receive label ¥;. If 2; is
also regular then the problem is unsolvable if y & ¥, € D and z < y € D.
Hence the algorithm can choose z = ¥; € D deterministically and take into
account that y v» ¥; € D implies y < z € D.

As the example shows, some decisions that have been deduced ear-
lier in one component can be used to deduce new decisions in another
one. This possible interplay between different structures suggests to use
a method where component algorithms computing new decisions are called
alternately in the beginning of the combination algorithm and whenever a
non-deterministic choice has been made: Starting with some initial decisions,
each component algorithm computes new decisions; these new decisions are
added to the current set of decisions, which is used when calling the other
component algorithms. When this process comes to an end because no new
decisions can be deduced, the next non-deterministic choice has to be made
by the combination algorithm. After this choice the process of computing
new consequences can be started again. At any step of computing the conse-
quences, a component algorithm may return that its subproblem has become
unsolvable with the current set of decisions. Thereby, unsolvable branches
of the search tree can be detected earlier.

Obviously, this method requires new component algorithms that are ca-
pable of computing consequences implied by the component structures, the
problem, and the decisions computed so far. A structure for which such

14

an algorithm does not exist can still be used in this method, but it cannot
contribute to the deductive process. It is clearly the quality of the deductive
component algorithms that determines the amount of optimisation achieved.
The optimisations of our component algorithms go quite beyond using only
syntactic properties of structures as in the example above. The goal is to
deduce as much information as is possible with a reasonable effort.

The Algorithm

First we define the task of the new deductive component algorithms. Their
input is a pure constraint problem and a set of decisions which need not be
complete. The result is a set of decisions that follows from the constraint
problem and the input decisions. If the input is unsolvable, the result may
also be an inconsistent set of decisions.

Definition 4.1 Let (T, D) be a constraint problem with decision set. The
decision set C'is a consequence of (I, D), iff C' is contained in every complete
decision set D' O D such that (T, D') is solvable, that is, iff

CC ﬂ{D' | D C D', D’ is complete, and (", D’) is solvable}.?

Note that C' = () is always a consequence and that the consequence
need not be inconsistent if (I, D') is unsolvable for all complete extensions
D’ of D. Therefore, the standard algorithms for constraint solving with
linear constant restrictions must be called in the end when a complete set
of decisions is reached. See Section 5 for a discussion on how deductive
component algorithms co-operate with standard ones.

Figure 1 shows the combination algorithm. Like before we present the
method as a non-deterministic algorithm, i.e., the algorithm contains non-
deterministic steps for which both alternatives have to be regarded. In
the algorithm, D denotes the current set of decisions. The termination
condition in case of success is that the set of decisions is complete, as given
in Lemma, 2.11.

Proposition 4.2 The input problem T is solvable, iff the algorithm com-
putes a consistent set D such that for each i = 1,...,n the constraint prob-
lem with decision set (T';, D) is solvable.

Again, testing (I';, D) for solvability can be performed by the component
algorithms used in the original combination algorithm. Since a consequence
is a decision that is contained in every solvable complete decision set, it
is clear that we prune those branches of the search space that are unsolv-
able. Hence correctness of the algorithm is an immediate consequence of the
correctness of the original combination algorithm in Theorem 2.4.

?N{} is the (inconsistent) set of all decisions over U.

15

D:=
loop: Repeat
Deduce consequences:
Repeat
For each system 1
call the component algorithm of system ¢ to calculate
new consequences C of (T';, D),
set the new current set of decisions D := D U C.
If D is inconsistent
break loop. /* exit from outer loop */
Until no component algorithm computes new decisions.

If D is not complete
Select next choice:
Select a decision d ¢ D such that D U {d} is consistent.
Non-deterministically choose either
D :=DuU{d} or

D := DuU{~d}.
Until D is complete.
Return D.

Figure 1: The deductive combination algorithm

The deductive method additionally allows to reduce certain redundancies
in the search space. We can prune some solvable branches that would only
lead to redundant solutions. For example, let I'y = {z = a,y = a} and
I'y = {z = z+y} where + is associative and commutative. Clearly, Lab(z) =
Lab(y) = £; and Lab(z) = £5. And the order must be such that z and y
are below z. But there are two different partitions that lead to a solution:
We can identify z and y or leave them different. The resulting solution
looks the same in both cases. Hence we compute only one partition. Other,
more complicated examples occur in ordering decisions. It turns out, that
sometimes it is useful to order variables of the same label to avoid the
computation of superfluous orders that only lead to redundant solutions. A
longer discussion of this side issue would be beyond the limited scope of this

paper.

Deterministic Combination

It is interesting to observe that there exists a class of constraint systems for
which the deductive combination algorithm has PTIME complexity, which
entails that all steps can be made deterministically. In [20], Schulz gives
a general description of a PTIME combination algorithm for certain equa-

16

tional theories. This algorithm can be extended to the combination of quasi-
free structures. The class of structures that are deterministically combinable
is quite restricted. Currently, only unitary regular collapse-free structures
are known to belong to it.

Although our deductive component algorithm is designed for the general
case, it turns out to be an implementation of the deterministic algorithm
when applied to component algorithms satisfying the conditions imposed
in [20]. Our component algorithms for unification in the empty theory,
for rational tree algebras, and for feature structures meet these conditions.
Thus, when applied to these structures, our combination algorithm runs
deterministically. This deterministic behaviour shows the great impact of
interchanging decisions between component algorithms.

5 Component Algorithms

In order to prune the search space significantly, new component algorithms
are needed for the deductive method. When designing these algorithms one
should take into account the special way in which they are called. Constraint
solvers are usually designed to work incrementally (e.g., [10]). But standard
unification algorithms are “one shot” algorithms: they are started only once
with all information they need given and compute final results. Deductive
component algorithms must be able to cope with partial information and
deliver a meaningful but not necessarily the final result. More importantly,
when receiving new information the algorithms should not restart compu-
tation from scratch but rather continue on the base of their prior internal
states. Otherwise, the search space would be partially shifted from the com-
bination algorithm to the deductive component algorithms. The same holds
for the standard component algorithms for problems with linear constant
restrictions that perform a complete test at the end of the combination al-
gorithm: they should take into account the information already computed
by the corresponding deductive component algorithms.

Note that there is no need for completeness in the deductive component
algorithm: the algorithm need not compute all decisions implied by the
input and it need not return an inconsistent set if the problem is unsolvable.
Thus an algorithm returning always the empty set would be correct, though
it would not contribute to the deductive process. This, however, enables
us to use every structure that is suitable for the original algorithm. In the
other extreme it might not be advisable to compute new decisions at any
cost; there should be a careful consideration between optimisations of the
combination algorithm resulting from new decisions and a higher complexity
of the deductive component algorithm.

We have developed deductive component algorithms for the free theory,
A, AC, and ACI and for rational trees and feature structures. This is not

17

the place to give detailed descriptions of these algorithms. In the following,
we outline the ideas underlying the algorithms for the free theory, a theory
in which one can deduce many decisions, and for ACT as a more complicated
example.

Syntactic Unification

The deductive algorithm for the free theory is based on the quasi-linear al-
gorithm described in [4] where terms and unifiers are represented as directed
acyclic graphs. We assume that the reader is familiar with this representa-
tion. When the deductive component algorithm is called for the first time,
the dag is built, which is then used again for all further calls of this compo-
nent algorithm. Decisions of the form z # y, z ++ i, z v6 %;, or z < y do
not initiate any computation. Only identification decisions xz = y cause a
call of the corresponding unification procedure, which updates the existing
dag. The decision set to be returned by the component algorithm can be
computed from the dag: x = y is returned if £ and y are identified in the
dag; z > Ypee is returned if z is connected to a non-variable term; z < y is
returned if can be reached from y. Additionally x # y is returned if z and
y are certainly not unifiable. The algorithm does not test real unifiability
of x and y since it would be too costly to do this for all pairs of variables;
instead it tests if the variables are connected to non-variable terms with
different topsymbol. The dag is also used by the decision procedure for
problems with linear constant restrictions. This algorithm works exactly
like the deductive component algorithm, except that it does not compute a
decision set but returns solvable or unsolvable.

The deductive algorithm for rational trees works similarly to this algo-
rithm. It does not perform an occur-check and it returns z < y only if z
can be reached from y and y has been labelled by another structure.

The Theory ACI

In the theory of Abelian monoids, ACI, the binary function symbol + is
associative, commutative and idempotent. In [14], an algorithm was given
that decides solvability of ACI-unification with constants. The main idea
is to set up Horn clauses which describe the solvability of the equations.
The Horn clauses are built from propositional variables P, , which are true
iff the constant a does not occur in a solution for the variable z. A clause
P, o AP, , = False means that the problem is unsolvable if a appears neither
in z nor in y, or equivalently: if we can deduce that a does not occur in z,
then it must appear in y.

We extend the algorithm given in [14] for our situation where the set of
variables and constants is not fixed in the beginning. By this, we prevent
that new Horn clauses have to be set up when a new labelling decision

18

is made. Let Vacr be the set of variables in T'a¢r; note that there are no
constants in ['4¢7. We introduce a new constant Z for each variable z € Vg
and construct two types of Horn clauses:

. /\ P, 5 = False for each variable z € Vacr,
yEVacr

L] le’g/\/\ka’y@Pul’y/\/\Pul’y
for each y € Vacr and each equation
L1+ ...+ 2 =u1 + ... +u € Lacy.

The first type of clauses guarantees that the solution for each variable
contains at least one constant. The second type represents the equations of
Lacr: if a constant does not appear on the left hand side, it must not appear
on the right hand side, and vice versa. A decision z v/ Y s¢r introduces the
Horn clauses P, ; = False and = P,y for each y € Vacr with y # z, i.e.,
the propositional variables are set to False and True, respectively. The effect
of these clauses is that Z is the only constant that appears in z, i.e., x is
identified with Z and is treated like a constant by the algorithm. A decision
z < y causes the atom P, 5 to be set to True.

The constraint problem with linear constant restrictions is solvable iff
the set of Horn clauses is solvable. This can be tested efficiently by an
algorithm which constructs a graph from the Horn clauses and propagates
True and False through this graph (see [14]). The set of Horn clauses (and the
corresponding constraint problem) is unsolvable if True meets False during
this propagation. New decisions can be deduced from the atoms mapped to
True or False: =+ Y cr is returned if P,y is set to False and = # y has
been already deduced or if P, 5 and P, ; have been set to False for three
different variables z, y, and z. The decision z < y is returned if P, ; has
been set to False with z # y.

Like the dag for syntactic unification, the Horn clauses and the state of
the propositional variables are stored and used again for each further call
of the component algorithm; only when a new identification decision x = y
is deduced by another component algorithm, the clauses have to be set up
anew.

Other Component Algorithms

Here, we would like to present at least the basic ideas for the other com-
ponent algorithms. The theory A = {z + (y + z) = (z + y) + z}, i.e., the
theory of an associative function symbol + is basically the theory of free
word equations. The deductive component algorithm translates the input
into word equations and simplifies them. The simplification steps allow the
computation of new identification, labelling and ordering information. This
is an example of a deductive component algorithm which does not com-

19

pute all consequences. Hence we need to call the standard algorithm for
A-unification with linear constant restrictions in the end.

For the theory AC = {z + (y+2) = (z+y) +z52+y = y + z},
i.e., the theory of an associative and commutative function symbol +, the
deductive algorithm is based on [22]. First, the set of minimal solutions
of the homogeneous Diophantine equations corresponding to the unification
problem is computed. Some of these solutions can be deleted with the help
of the existing decisions. From the remaining set of solutions, information
about labelling, ordering and identification can be deduced.

The set of minimal solutions has to be recomputed when new identifica-
tion decisions occur. This might seem to be a drawback at first glance, since
computing the solutions of Diophantine equations can be a time-consuming
task; but it cannot be worse than in the original combination algorithm, i.e.,
Diophantine equations are not solved more often, since this happens at most
once for every partition of variables. Unfortunately, the number of minimal
solutions of the Diophantine equations can be exponential in the size of the
unification problem. But at least we do not need to compute complete sets
of unifiers, which can even be doubly-exponential in number.

The algorithms for the free theory and for the theories AC and ACI
have in common that they behave like decision procedures for unification
with linear constant restrictions if called with a complete set of decisions,
i.e., they return a correct and complete answer. Therefore the final test does
not need to compute anything; it can simply return the result achieved by
the corresponding deductive component algorithm.

Rational Trees and Feature Structures

As examples of a quasi-free structures which are not an equational the-
ories the author implemented rational tree algebras and feature structures
of the Smolka and Treinen variety [21]. The algorithm for rational tree al-
gebras is a simple extension of the algorithm for syntactic unification. The
occurs-check has to be left out and the computation of new decisions is a
bit more complicated since certain cyclic solution which are impossible in
the free theory have to be taken into account.

We introduced feature structures as examples of quasi-free structures in
the paragraph following definition 2.1. The implementation employs tech-
niques for integrating record like data types (as feature structures) into logic
programming frameworks developed by Van Roy, Mehl and Scheidhauer [24].
Upon first call, the internal graph-like representation of the feature theory is
constructed and used to calculate new identification, labelling and ordering
information. This representation needs to be constructed only once. Later
on, new incoming identification information does not trigger a complete new
setup, rather starts a feature structure unification of the the two structures
pending below the newly identified variables. Additional information can be
read out of the new structures, if unification succeeds. Incoming labelling or

20

ordering information triggers no unification. Labelling information can help
to deduce more information on the ordering. The algorithm is designed in
such a way that it behaves like a decision procedure for feature constraint
problems with linear constant restrictions when called with a complete set
of decisions.

6 Integrating the Deductive and Iterative Method

The two methods described above can easily be integrated. The iterative
method is a selection strategy for non-deterministic steps, while the deduc-
tive method deduces deterministic consequences from the decisions already
made. Therefore integration is achieved by plugging the iterative selection
strategy into the deductive algorithm. The combined method looks as fol-
lows. Suppose component constraint problems I'y to I';_; are solved, the
current decision set is D, and D is not complete for component ¢, the cur-
rent component. Select a decision d ¢ D over the variables of component ¢
such that DU{d} is consistent. Nondeterministically choose d or its negation
and add it to D. Compute consequences and add them to D. If D is still
not complete for component %, select the next decision for this component.
If D is complete and (I';, D|y;) is solvable, proceed to the next component
problem. Otherwise perform backtracking and make an alternative choice
for one of the decisions made so far.

The method to compute consequences of a non-deterministic decision
should be amended to the new selection strategy as follows. Components
that are already solved cannot contribute any new decisions. Consequently
only components that still have non-deterministic choices left open are con-
sulted.

7 Tests

The combination method and component algorithms for the free theory, A,
AC, and ACI as well as for rational tree algebras and feature structures
are implemented® in COMMON LISP using the KEIM toolkit [12]. In the
following we show some results of our optimisations. As already stated, the
constraint solvers for rational tree algebras and feature structures are such
that one can combine them even deterministically. Hence we do not present
any test data for them. In order to test our algorithms with examples
that occur in practice we used the REVEAL theorem prover [8]. For some
example theorems, we collected all unification problems that are generated
and solved by REVEAL while proving this theorem. These theorems (and

3The implementation can be found at http://www-1ti.informatik.rwth-aachen.de/
Forschung/unimok.html.

21

the corresponding set of unification problems) contain free function symbols
and constants and one or two AC-symbols.

Table 1 gives an overview of the run time for some sets of unification
problems. The first six lines contain all unification problems that have to be
solved by REVEAL during the proof search or completion of the respective
example. All examples except the first one contain two AC-symbols and
several free symbols. The last three examples, containing several AC- and
ACI-symbols, are added to demonstrate the potential of the iterative selec-
tion strategy. In order to see the effect of the iterative selection strategy on
its own, we integrated it into the original algorithm (column ‘it’). An empty
cell in the columns indicates that the algorithm was aborted after one hour.

Time in seconds Bktrk

Example Size | i+d ded i+d- ded- it orig|i+d ded
Abelian group 29| 3.7 3.7 50 5.0 11.6 17.2 4 4
Boolean ring 51 3.2 3.2 48 48 35 33 0 0
Boolean algebra 122 |15.8 15.7 20.5 24.5 12 12
exboolston 871 12 12 948 997 17 14
exgrobner 1002 | 154 155 1442 1488 65 66
exuqsl2 404 | 109 108 74 74
AC*-ACT* 1 1 16 101 74 385 15 16 103
AC*-ACT* 2 1] 31 407 393 841 13 205
AC*-ACT* 3 1 67 557 248 22 192

Legend

Size Number of unification problems

Bktrk Number of backtracking steps

i+d Iterative selection strategy in deductive method

ded Deductive method

i+d-, ded- Same as i+d/ded, but AC-component replaced by one that uses
only collapse-freeness and regularity

it Iterative selection strategy in original algorithm

orig Original unoptimised algorithm

Table 1: Run time of some example sets

We want to emphasise the differences between column ‘ded’ and ‘ded-’. Col-
umn ‘ded-’ shows the run time of the algorithm when using only syntactic
properties as described in [3]; a comparison with column ‘ded’ demonstrates
the power of the deductive method and the deductive component algorithms.
The run time decreases dramatically for most examples and some examples
even cannot be solved in suitable time when using only syntactic properties.

The use of the iterative selection strategy does not lead to a performance
increase in the deductive algorithm in the first six example sets, because
these examples are too simple: They contain too few component theories.

22

The last three examples show that the use of the iterative selection strategy
can lead to a speed-up by more than one order of magnitude. The equations
in these examples contain several AC and ACI-function symbols besides
free function symbols. It is a general observation that the iterative selection
strategy is advantageous, if the number of systems is large or the deductive
component algorithms do not deduce many decisions.

Set Equations term- # ACI Ded+lIter Ded

depth time Dbktrk time bktrk
1 199/98 6 3 816 1953 81 152

2 200/99 6 3 232 780 >1h
3 199/101 6 3 330 800 1158 1982
4 200/127 6 3 58 250 42 110
5 200/97 6 3 1362 3971 141 401
6 200/113 6 3 >1h 103 295
7 200/112 6 3 676 2217 189 689
8 200/100 5 0 19 1 19 1
9 200/90 5 0 67 33 75 33
10 200/95 5 0 16 1 15 1
11 200/87 5 0 20 7 21 10
12 200/89 5 0 21 8 21 8
13 200/99 5 1 32 50 31 30
14 200/93 5 1 21 47 26 22
15 200/109 5 1 154 394 3931 12335
16 200/116 5 1 26 50 30 31
17 200/107 5 2 319 1116 83 147
18 200/106 5 2 1250 2627 44 107
19 200/95 5 2 178 462 58 169

20 200/108) 2 99 414 43 159
Legend: The signature of these problems consists of 2 A, 2 AC, 0-3 ACI and several free

function symbols. Equations: number of equations in set and number of solvable equations;
term depth: maximal depth of terms; # ACI: Number of ACI-function symbols in signa-
ture; Ded+Iter: deductive combination with iterative selection strategy; Ded: deductive
combination with a selection strategy that chooses all identifications first; bktrk: number of

backtracking steps.

Table 2: Run time of randomly generated example sets

In order to get more examples, we developed a test set generator. With it,
one generates sets of random combined unification problems over signatures
containing several function symbols from different theories. Certain means
were taken to ensure that about half of the generated problems are solvable.

23

Table 2 presents some run time results for these randomly generated problem
sets. The signature contains 2 A, 2 AC, 0-3 ACI and several free function
symbols. The problems are that complex that a use of a combination method
different from the deductive combination makes no sense at all.

It is interesting to observe that with these problems, the iterative selec-
tion strategy is not always the best choice. There are examples (sets 2, 3,
and 15) in which the iterative selection strategy is superior. On the other
hand, in the sets 1, 5, 6, and 18 it is much worse than a strategy which
firstly settles all variable identification and discrimination decisions for all
component problems. It is currently not clear what the conditions are under
which one should choose the iterative selection strategy, and when to rather
use the other strategy. The presence of several collapsing theories is impor-
tant, but there are several collapsing theories both in those examples where
the iterative selection strategy works well and in those where it flounders.
In all these examples, it seems important to make the “right” decisions first,
but there is at current no way to state what the “right” decisions are.

Another observation is that there is no simple, e.g., linear, connetion
between the run time and the number of backtracking steps. Obviously,
some backtracking steps require a lot of time, because they appear high up
in the search tree, while others that are close to the leaf nodes of the search
tree have a very small influence on the run time.

8 Related Work and Conclusion

The work that is most closely related to ours is the one by Boudet [5]. He
presents an optimised algorithm for the combination of finitary equational
theories. Our method is hence considerably more general, we are neither re-
stricted to equational theories nor to structures for which minimal complete
sets of solutions must be finite. But since combining unification algorithms
is such an important instance of our methods, we want to compare the two
approaches a bit more detailed. Boudet’s algorithm computes a complete set
of unifiers for each theory, subsequently treats arisen conflicts between the
theories (like one variable getting assigned to different terms in different sys-
tems), and repeats these two steps until all conflicts have been solved. Thus
there is an important difference in the way the non-determinism inherent in
most constraint problems is handled. Our algorithm prophylactically makes
a choice for all possible conflict situations before solving the component
systems. — We showed that many of these choices can be made determinis-
tically, but some have to be made non-deterministically. — Boudet follows
another approach: his algorithm only makes a non-deterministic choice if a
conflict actually arises. But as a drawback his approach introduces another
source of non-determinism: in order to detect actual conflicts, the algorithm
has to compute complete sets of unifiers for the component systems and it

24

has to choose one of the unifiers non-deterministically if the computed set
contains more than one solution. The set of unifiers can by very large, e.g.,
doubly-exponential in the number of variables of the input problem for the
theory AC.

Both algorithms have to perform several rounds of computation for the
component systems, i.e., consequences (in our algorithm) or complete sets
of unifiers (in Boudet’s algorithm) have to be computed more than once
for each component system. In our algorithm the constraint problem to be
solved by a component has the same size in each round. In Boudet’s algo-
rithm the computation of a complete set of unifiers is based on the unifier
found in the previous round. This means that the unification problem to
be solved by a component theory can grow in each round, e.g., the number
of variables in an AC-unifier can be exponential in the number of variables
of the input problem. This can result in a higher worst-case complexity of
Boudet’s algorithm: It may well be non-elementary. And that, though the
inherent complexity of combination is in NP. Our algorithm on the other
hand has singly exponential complexity. Despite its high worst-case com-
plexity, Boudet’s algorithm performs quite well in many practical examples.
It seems to be a promising line of research to try to integrate some of our
optimisation ideas into Boudet’s algorithm.

We presented an optimised algorithm for combining constraint solvers.
Our empirical analysis indicates that the combined constraint solvers ob-
tained this way can indeed be used in practice. It should be noted, however,
that some of the non-determinism is inherent in the combination problem,
which means that even the best optimisation methods cannot avoid this
complexity, unless the structures to be combined are severely restricted, as
pointed out in the subsection on deterministic combination.

References

[1] Peter Aczel. Non-wellfounded Sets. Number 14 in CSLI Lecture Notes.
CSLI, Stanford University, USA, 1988.

[2] Franz Baader and Klaus U. Schulz. Combination of Constraint Solvers
for Free and Quasi-Free Structures. Technical Report CIS-Bericht-96-
90, CIS, Universitidt Miinchen, 1996.

[3] Franz Baader and Klaus U. Schulz. Unification in the Union of Dis-
joint Equational Theories: Combining Decision Procedures. Journal of
Symbolic Computation, 21:211-243, 1996.

[4] Franz Baader and Jorg H. Siekmann. Unification Theory. In Dov M.
Gabbay, Christopher J. Hogger, and John Alan Robinson, editors,

25

[10]

[11]

Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 2, pages 41-125. Oxford University Press, 1994.

Alexandre Boudet. Combining Unification Algorithms. Journal of Sym-
bolic Computation, 16(6):597-626, 1993.

Alan Bundy, editor. Automated Deduction, Proceedings CADE-12,
Nancy, France, LNATI 814. Springer-Verlag, 1994.

Hans-Jiirgen Biirckert. A Resolution Principle for Clauses with Con-
straints. In Stickel [23], pages 178-192, 1990.

Ta Chen and Siva Anantharaman. STORM: A Many-to-one
Associative-commutative Matcher. In Jieh Hsiang, editor, Rewriting
Techniques and Applications, Proceedings RTA-95, LNCS 914, pages
414-419. Springer-Verlag, 1995.

Alain Colmerauer. Equations and Inequations on Finite and Infinite
Trees. In Institute for New Generation Computer Technology, editor,
Proceedings of the 2nd International Conference on Fifth Generation
Computing Systems, pages 85-99, Tokyo, 1984. Ohmsha et al.

Alain Colmerauer. An Introduction to PROLOG III. Communications
of the ACM, 33:69-90, 1990.

Agostino Dovier, Alberto Policriti, and Gianfranco Rossi. Integrating
lists, multisets, and sets in a logic programming framework. In Franz
Baader and Klaus U. Schulz, editors, Frontiers of Combining Systems,
Proceedings of the 1st Int. Workshop, FroCoS’96. Kluwer Academic
Publishers, 1996.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan
Nesmith, Jorn Richts, and Jorg H. Siekmann. KEIM: A Toolkit for
Automated Deduction. In Bundy [6], pages 807-810, 1994.

Jean-Pierre Jouannaud and Hélene Kirchner. Completion of a Set
of Rules modulo a set of Equations. SIAM Journal on Computing,
15:1155-1195, 1986.

Deepak Kapur and Paliath Narendran. Complexity of Unification Prob-
lems with Associative-Commutative Operators. Journal of Automated
Reasoning, 9:261-288, 1992.

Claude Kirchner and Hélene Kirchner. Constrained Equational Rea-
soning. In Gaston H. Gonnet, editor, Proceedings of SIGSAM 1989
International Symposium on Symbolic and Algebraic Computation: IS-
SAC’89, pages 382-389. ACM Press, 1989.

26

[16]

[17]

Anatolij Ivanovi¢ Mal’cev. The Metamathematics of Algebraic Systems.
Edited by Benjamin Franklin Wells, volume 66 of Studies in Logic.
North-Holland Publishing Company, 1971.

Robert Nieuwenhuis and Albert Rubio. AC-superposition with Con-
straints: No AC-unifier Needed. In Alan Bundy, editor, Proceedings
of the 12th International Conference on Automated Deduction, Nancy,
France, LNAI, pages 545-559. Springer, 1994.

Gordon D. Plotkin. Building-in Equational Theories. Machine Intelli-
gence, 7:73-90, 1972.

Manfred Schmidt-Schauf. Unification in a Combination of Arbi-
trary Disjoint Equational Theories. Journal of Symbolic Computation,
8(1,2):51-99, 1989.

Klaus U. Schulz. Combining Unification and Disunification
Algorithms—Tractable and Intractable Instances. Technical Report
CIS-Bericht-96-99, CIS, Universitidt Miinchen, 1996.

Gert Smolka and Ralf Treinen. Records for Logic Programming. Jour-
nal for Logic Programming, 18(3):229-258, 1994.

Mark E. Stickel. A Unification Algorithm for Associative-Commutative
Functions. Journal of the ACM, 28(3):423-434, 1981.

Mark E. Stickel, editor. Automated Deduction, Proceedings CADE-10),
LNAT 449, Berlin, Germany, 1990. Springer—Verlag.

Peter Van Roy, Michael Mehl, and Ralf Scheidhauer. Integrating effi-
cient records into concurrent constraint programming. In 8th Interna-

tional Symposium on Programming Languages, Implementations, Logic,
and Programs (PLILP96), Aachen, September 1996.

27

