
Optimisation Te
hniques for

Combining Constraint Solvers

Stephan Kepser

CIS, Universit�at M�un
hen

Oettingenstr. 67

80538 M�un
hen, Germany

kepser�
is.uni-muen
hen.de

J�orn Ri
hts

Theoretis
he Informatik

RWTH Aa
hen

52056 Aa
hen, Germany

ri
hts�informatik.rwth-aa
hen.de

Abstra
t

In re
ent years, te
hniques that had been developed for the
ombi-

nation of uni�
ation algorithms for equational theories were extended

to
ombining
onstraint solvers. These te
hniques inherited an old

de�
it that was already present in the
ombination of equational theo-

ries whi
h makes them rather unsuitable for pra
ti
al use: The under-

lying
ombination algorithms are highly non-deterministi
. This paper

is
on
erned with the pra
ti
al problem of how to optimise the
om-

bination method of Baader and S
hulz. We present two optimisation

methods,
alled the iterative and the dedu
tive method. The iterative

method reorders and lo
alises the non-deterministi
 de
isions. The de-

du
tive method uses spe
i�
 algorithms for the
omponents to rea
h

ertain de
isions deterministi
ally. Run time tests of our implementa-

tion indi
ate that the optimised
ombination method yields
ombined

de
ision pro
edures that are eÆ
ient enough to be used in pra
ti
e.

1 Introdu
tion

One idea behind
onstraint solving is to use spe
ialised formalisms and in-

feren
e me
hanisms to solve domain-spe
i�
 tasks. In many appli
ations,

however, one is fa
ed with a
omplex
ombination of di�erent problems.

Therefore
onstraint solvers tailored to solving a single problem
an only

be applied, if it is possible to
ombine them with others. Con
rete exam-

ples of the
ombination of
onstraint solvers
an be found, e.g., in [11, 10℄.

In a re
ent paper [2℄, Baader and S
hulz present a general method for the

ombination of
onstraint systems. Their method is appli
able to a large

lass of stru
tures, the so-
alled quasi-free stru
tures. Quasi-free stru
tures

�

This work was funded by the \S
hwerpunkt Deduktion" of the Deuts
he Fors
hungs-

gemeins
haft (DFG) and was supported by the Esprit working group 22457 { CCL II of

the European Union.

1

omprise many important in�nite non-numeri
al solution domains su
h as

(quotient) term algebras [16℄, rational tree algebras [9℄, ve
tor spa
es, hered-

itarily �nite wellfounded and non-wellfounded lists, sets [1℄ and multi sets

as well as
ertain types of feature stru
tures [21℄. The
ombined solution

domain the authors present in [2℄, the so
alled free amalgamated produ
t,

has the
hara
terising property of being the most general
ombination in

the sense that every other
ombined domain
ontains a homomorphi
 image

of it.

The question of how to
ombine spe
ialised methods was �rst dis
ussed

in the �eld of uni�
ation theory (see [4℄ for an overview). Equational uni-

�
ation algorithms, whi
h
an be seen as an instan
e of
onstraint solvers,

were built into resolution-based theorem provers [18℄ and rewriting engines

[13℄ to improve their handling of equality. Sin
e the uni�
ation problems o
-

urring in these appli
ations usually
ontain fun
tion symbols from various

equational theories, the question of how to
ombine equational uni�
ation

algorithms be
ame important. For algorithms that
ompute
omplete sets

of uni�ers for equational theories over disjoint signatures, this problem was

solved by S
hmidt-S
hau� [19℄ and Boudet [5℄. With the development of

onstraint-based approa
hes to theorem proving [7, 17℄ and rewriting [15℄,

the interest in
ombining uni�
ation algorithms extended towards
ombi-

nations of de
ision pro
edures, for whi
h Baader and S
hulz [3℄ �nally pre-

sented a general algorithm.

As a generalisation of the one given in [3℄, the algorithm for
ombining

onstraint solvers in [2℄ inherits the old weakness of being so highly non-

deterministi
 that it is of very limited pra
ti
al use. The aim of this paper is

to provide optimisation te
hniques for the
ombination algorithm by Baader

and S
hulz that make the
ombination of
onstraint solvers pra
ti
ally usable

and are still general enough to be appli
able to a large
lass of
onstraint

solvers. The methods we propose are the so
alled iterative and dedu
tive

method. The iterative method reorders the non-deterministi
 de
isions. In

order to dete
t unsolvability of a single
omponent faster, we �rst make all

non-deterministi
 de
isions relative to one
omponent before we pro
eed to

the next one. The dedu
tive method is based on the insight that many

de
isions of the
ombination algorithm do not really need to be made non-

deterministi
ally, but
an rather be dedu
ed on the base of the
onstraint

domains involved, the input problem and other de
isions made earlier. In

our dedu
tive
ombination method the
omponent solvers are
onsulted to

gain information on what further steps
an be made deterministi
ally. This

obviously requires
omponent solvers
apable of doing so. The strength of

this
ombination method lies in the inter
hange of information between the

omponent algorithms. The impa
t of this inter
hange is highlighted by the

fa
t that, although developed for the more general
ase, our
ombination

algorithm turns out to be an implementation of the PTIME
ombination

algorithm given in [20℄ for a spe
ial sub
lass of
onstraint solvers. The

2

run time tests we present in this paper show the enormous e�e
t of our

optimisation methods making us
on�dent that
ombination of
onstraint

solvers is feasible in pra
ti
e.

In this paper, we present our
ombination method as an algorithm for

ombining
onstraint solvers, but our optimisation te
hniques are never-

theless useful for the spe
ial
ase of equational uni�
ation. Moreover our

method
an be dire
tly extended to
ompute
omplete sets of uni�ers.

2 Preliminaries

Quasi-free Stru
tures and the Free Amalgamated Produ
t

A signature �
onsists of a set �

F

of fun
tion symbols and a disjoint set �

P

of predi
ate symbols (not
ontaining \="), ea
h of �xed arity. �-stru
tures

over the
arrier set A are denoted by A

�

. �-terms (t; t

1

; : : :) and atomi

�-formulae (of the form t

1

= t

2

, or of the form p(t

1

; : : : ; t

n

)) are built as

usual from � and a
ountable set of variables V. A �-formula ' is written

in the form '(v

1

; : : : ; v

n

) in order to indi
ate that the set Var(') of free

variables of ' is a subset of fv

1

; : : : ; v

n

g. A mapping � : V ! A from the

set of variables to the
arrier set of A

�

is
alled an assignment. A
onstraint

problem over signature � is a set of atomi
 �-formulae. An assignment � is

a solution for a
onstraint problem � in A

�

i� '(�(v

1

); : : : ; �(v

n

)) be
omes

true in A

�

for all formulae '(v

1

; : : : ; v

n

) 2 �.

�-homomorphisms and �-endomorphisms are de�ned as usual, see e.g.,

[16℄. With End

A

�

we denote the monoid of all endomorphisms of A

�

, with

omposition as operation.

We will now introdu
e the solution domains for
onstraint solving we

onsider here, namely quasi-free stru
tures. Quasi-free stru
tures, a gener-

alisation of free stru
tures, were introdu
ed by Baader and S
hulz [2℄. We

onsider a �xed �-stru
ture A

�

.

Let A

0

; A

1

be subsets of A

�

. Then A

0

stabilises A

1

i� all elements m

1

and m

2

of End

A

�

that
oin
ide on A

0

also
oin
ide on A

1

. For A

0

� A the

stable hull of A

0

is the set SH

A

(A

0

) := fa 2 A j A

0

stabilises fagg:

SH

A

(A

0

) is always a �-substru
ture of A

�

, and A

0

� SH

A

(A

0

). The

stable hull of A

0

an be larger than the �-subalgebra generated by A

0

.

The set X � A is an atom set for A

�

if every mapping X ! A
an be

extended to an endomorphism of A

�

.

De�nition 2.1 A
ountably in�nite �-stru
ture A

�

is a quasi-free stru
ture

i� A

�

has an in�nite atom set X where every a 2 A is stabilised by a �nite

subset of X. We denote this quasi-free stru
ture by (A

�

;X).

The
lass of quasi-free stru
tures
ontains many important non-nu-

meri
al in�nite solution domains. For example, all free stru
tures (see, e.g.,

3

[16℄), rational tree algebras ([9℄), feature stru
tures with arity ([21℄), do-

mains with nested, �nite or rational lists (rational lists are used in Prolog

III, see [10℄), and domains with nested, �nite or rational sets ([1℄) are quasi-

free stru
tures. For details we refer to [2℄.

A fundamental property of quasi-free stru
tures is the following: for

ea
h a 2 A there exists a unique minimal �nite set Y � X su
h that

a 2 SH

A

(Y). The stabiliser of a 2 A, Stab

A

(a), is the unique minimal �nite

subset Y of X su
h that a 2 SH

A

(Y). The stabiliser of A

0

� A is the set

Stab

A

(A

0

) :=

S

a2A

0

Stab

A

(a).

We extend the notions regular and
ollapse-free, known from equational

uni�
ation, to quasi-free stru
tures.

De�nition 2.2 A quasi-free stru
ture (A

�

;X) is
alled
ollapse-free, i� ev-

ery endomorphism maps non-atoms to non-atoms, i.e., m(a) 2 A nX for all

m 2 End

A

�

and all a 2 A nX. The quasi-free stru
ture (A

�

;X) is regular,

i� for all m 2 End

A

�

and all a 2 A : Stab

A

(m(a)) = Stab

A

(m(Stab

A

(a))).

Note that m(Stab

A

(a)), the image of Stab

A

(a) under m,
an
ontain

non-atoms; therefore we have to apply Stab

A

again.

Baader and S
hulz [2℄ present a
ombined solution domain of two or

more quasi-free stru
tures, the so-
alled free amalgamated produ
t, whi
h

is
hara
terised amongst all
onsiderable
ombined solution domains as be-

ing the most general in the sense that every domain
ontains a homomor-

phi
 image of it. The authors also provide a
onstru
tion method to ob-

tain the free amalgamated produ
t of arbitrary quasi-free stru
tures. If

(A

�

1

1

;X); : : : ; (A

�

n

n

;X) are n quasi-free stru
tures over paiwise disjoint sig-

natures, we write A

�

1

1

 : : :
A

�

n

n

for their free amalgamated produ
t. If the

quasi-free stru
tures one
ombines are free algebras de�ned by equational

theories over disjoint signatures, then their free amalgamated produ
t is the

free algebra de�ned by the theory over the union of the axiom sets.

In this paper, we investigate \mixed"
onstraint problems. For i =

1; : : : ; n (n � 2), let �

i

be pairwise disjoint signatures and let (A

�

i

i

;X) be

a quasi-free stru
ture over signature �

i

. A \mixed"
onstraint problem is a

onjun
tion of atomi
 formulae over the joined signature �

1

[: : : [�

n

. A

onstraint problem � is in de
omposed form, if � has the form

S

n

i=1

�

i

where

ea
h �

i

is a pure
onstraint problem over the signature �

i

. Any
onstraint

problem �
an be transformed into a
onstraint problem in de
omposed form

that is solvable, i� the original problem is solvable, by a simple deterministi

prepro
essing step (variable abstra
tion, see [3℄). In the following, we will

therefore always assume that a
onstraint problem is in de
omposed form

S

n

i=1

�

i

.

Only variables o

urring in more than one
omponent system �

i

have

to be
onsidered by the
ombination algorithm. Hen
e we de�ne the set of

shared variables U := fx j 9i; j : i 6= j; x 2 Var(�

i

) \ Var(�

j

)g. The
om-

bination algorithm presented in the next se
tion imposes some restri
tions

4

on the shared variables in order to prevent
on
i
ts between the solutions

of the
omponent stru
tures (like a variable being assigned to di�erent ele-

ments by solutions of di�erent stru
tures). The solutions of the
omponent

problems �

i

have to obey these so-
alled linear
onstant restri
tions.

De�nition 2.3 A linear
onstant restri
tion L = (�;Lab; <

L

) for vari-

ables U
onsists of a partition

1

� of U , a labelling fun
tion Lab : U=

�

!

f�

1

; : : : ;�

n

g and a linear order <

L

on U=

�

. We use Lab(x) and x <

L

y

instead of Lab([x℄

�

) and [x℄

�

<

L

[y℄

�

.

An assignment � of U into A

�

i

i

is a solution for the
onstraint problem with

linear
onstant restri
tions (�

i

; L) in (A

�

i

i

;X), i� it is a solution for �

i

and

for ea
h x; y 2 U :

� �(x) = �(y) if x �

�

y,

� �(x) 2 X if Lab(x) 6= �

i

, and

� �(x) =2 Stab

A

(�(y)) if Lab(x) 6= �

i

;Lab(y) = �

i

; y <

L

x.

Intuitively speaking, item two guarantees that all variables re
eiving a label

di�erent from �

i

are treated as
onstants by �. By item three, the use of

these
onstants in � is further restri
ted in order to prevent
y
les. Two

linear
onstant restri
tions L

1

and L

2

over U are
alled equivalent, if they

have identi
al partitions and labelling fun
tions and their orders di�er at

most in the ordering of variables with identi
al label. This de�nition indu
es

an equivalen
e relation on all linear
onstant restri
tions for a given set of

variables U . If L

1

and L

2

are equivalent and an assignment � solves (�; L

1

),

then � also solves (�; L

2

).

The Original Combination Algorithm

In the following we des
ribe the
ombination algorithm given by Baader and

S
hulz in [2℄, where one
an �nd the details. Here we give a straightforward

generalisation of this algorithm to the
ase where more than two stru
tures

are
ombined. Additionally, we in
lude basi
 optimisations similar to those

des
ribed in [3℄.

Let � be a
onstraint problem in de
omposed form. We assume the
on-

straints in � are
onne
ted by shared variables, i.e., there is no partition

� = �

0

[�

00

where �

0

and �

00

do not have variables in
ommon. Other-

wise �

0

and �

00

an be solved separately. The algorithm
onsists of three

non-deterministi
 steps whi
h result in a linear
onstant restri
tion for the

onstraint problem.

Step 1: Variable identi�
ation Non-deterministi
ally
hoose a partition-

ing � of U .

Step 2: Labelling Non-deterministi
ally
hoose a labelling fun
tion Lab :

1

The equivalen
e relation indu
ed by � is denoted by �

�

, [x℄

�

is the equivalen
e
lass

of a variable x, and U=

�

is the set of all equivalen
e
lasses of variables in U .

5

U=

�

! f�

1

; : : : ;�

n

g.

Step 3: Ordering Non-deterministi
ally
hoose a linear order <

L

on U=

�

.

L = (�;Lab; <

L

)
onstitutes a linear
onstant restri
tion. Note that for

ea
h equivalen
e
lass of linear
onstant restri
tions, it suÆ
es to
hoose

just one member. The output tuple determined by these three steps is

((�

1

; L); : : : ; (�

n

; L)).

Theorem 2.4 The input problem � has a solution in the free amalgamated

produ
t A

�

1

1

 : : :
A

�

n

n

, if and only if there exists an output tuple ((�

1

; L);

: : : ; (�

n

; L)) su
h that for ea
h i = 1; : : : ; n, the
onstraint problem with

linear
onstant restri
tion (�

i

; L) has a solution in A

�

i

i

.

De
ision Sets

The original algorithm makes all non-deterministi
 de
isions �rst, and only

thereafter it
alls the
omponent algorithms to determine whether the input

problem with the thus
hosen
onstant restri
tion is solvable. Our optimisa-

tions interleave these two parts. Hen
e we have to deal with linear
onstant

restri
tions whi
h are only partially spe
i�ed, i.e., restri
tions representing

the
hoi
es already made but making no statements about the de
isions still

open. In order to des
ribe these partial
onstant restri
tions and to have a

framework for des
ribing our optimisations on a formal level we introdu
e

the notion of de
ision sets. A de
ision des
ribes a single non-deterministi

hoi
e. There exist �ve di�erent types of de
isions.

De�nition 2.5 Let U be the set of variables. A de
ision is an expression

of the form x

:

= y, x 6 _= y, x

_

� y, x _7! �

i

, or x 6 _7! �

i

, where x; y 2 U and

1 � i � n. The de
ision x

_

< y is used as an abbreviation for x

_

� y; x 6 _= y.

We speak about sets of de
isions (for a set of variables U) whi
h are|

as usual|read
onjun
tively. In order to represent the two options when

making a non-deterministi

hoi
e, we de�ne the negation of a de
ision.

De�nition 2.6 Let d be a de
ision. Its negation :d is de�ned as follows:

:x

:

= y := x 6 _= y, :x 6 _= y := x

:

= y,

:x _7! �

j

:= x 6 _7! �

j

, :x 6 _7! �

j

:= x _7! �

j

,

:x

_

� y := y

_

< x.

These rules of negation re
e
t the three non-deterministi
 steps of the

algorithm: Two variables have to be identi�ed or treated as di�erent vari-

ables; ea
h variable has to be treated as a variable or like a
onstant in a

parti
ular
omponent system; and two variables with distin
t labels have to

be ordered in one way or the other. In the following we formally de�ne this

orresponden
e between sets of de
isions and linear
onstant restri
tions.

6

De�nition 2.7 Let U be a set of variables. A linear
onstant restri
tion

L = (�;Lab; <

L

) over U satis�es a de
ision set D, if the following holds:

x �

�

y if x

:

= y 2 D; x 6�

�

y if x 6 _= y 2 D;

Lab(x) = �

i

if x _7! �

i

2 D; Lab(x) 6= �

i

if x 6 _7! �

i

2 D;

x <

L

y or x �

�

y if x

_

� y 2 D:

The set of linear
onstant restri
tions satisfying D is denoted by L(D). A

set D is
alled in
onsistent if L(D) = ;.

So, the de
isions are interpreted by a linear
onstant restri
tion in a

straightforward way. We
an now use de
ision sets to represent
onstraint

problems with partially spe
i�ed linear
onstant restri
tions.

De�nition 2.8 A
onstraint problem with de
ision set (�;D)
onsists of a

onstraint problem � together with a set of de
isions D. An assignment �

is a solution of (�;D) if � is a solution of (�; L) for some L 2 L(D).

Sin
e de
ision sets represent linear
onstant restri
tions, they inherit

some properties like

_

< representing an ordering. This is re
e
ted by the

following de�nition.

De�nition 2.9 A de
ision set D is
alled
losed if D = fd j every L 2

L(D) satis�es fdgg.

This de�nition implies that for ea
h de
ision set D there is exa
tly one

losed set whi
h is equivalent to D; this set is
alled the
losure of D. This

losure
an be
omputed eÆ
iently; one has to
onsider that

:

= denotes a

ongruen
e,

_

< stands for an ordering, and x _7! �

i

represents a fun
tional

relation. For example, a
losure always
ontains x

:

= x for all variables

x 2 U , the two de
isions x

:

= y 2 D and y

_

< z 2 D imply that x

_

< z

is in the
losure of D, and the
losure of fx _7! �

i

g
ontains x 6 _7! �

j

for

all i 6= j. In the following we will always assume that sets of de
isions are

losed, i.e., when adding de
isions to a set we assume that the
losure is

formed immediately.

We need a
riterion to tell when a set of de
isions already represents one

linear
onstant restri
tion, i.e., when no more de
isions have to be made.

De�nition 2.10 A set of de
isions D is
omplete, if all linear
onstant

restri
tion in L(D) are equivalent.

From this de�nition and the one above it follows that there is a one-

to-one
orresponden
e between the equivalen
e
lasses of linear
onstant

restri
tions over U and
losed and
omplete sets of de
isions for U . In order

to test in
onsisten
y and
ompleteness of de
ision sets by an algorithm, we

need a synta
ti
 formulation of these properties. This is provided by the

following lemma.

7

Lemma 2.11

1. A
losed set of de
isions D is in
onsistent i� d 2 D and :d 2 D for

some de
ision d.

2. A
losed and
onsistent set of de
isions D (for variables U) is
omplete

i� for all x; y 2 U

either x

:

= y 2 D or x 6 _= y 2 D, and

either x

_

< y 2 D or y

_

< x 2 D if x _7! �

i

; y 6 _7! �

i

2 D, and

x _7! �

i

2 D for one �

i

.

3 Iterative De
omposition

The Prin
iple

A major disadvantage of the original method is late dete
tion of failure.

Suppose the input problem
onsists of
onstraint problems of �ve di�erent

omponents and that the se
ond sub
onstraint problem { and thus the whole

problem { is unsolvable. The original method always makes all de
isions for

all
onstraint problems. In order to dete
t the insolvability of the se
ond

omponent, all de
isions for all the following
omponents must be
onsidered

as well before testing solvability. Thus the whole sear
h tree of the remaining

onstraint problems must be
onsidered before the algorithm establishes that

at any leaf of this tree the se
ond
omponent is unsolvable, independently

of the de
isions made for later
omponents.

Avoiding this problem is the main goal of the iterative de
omposition

method:
omponents are solved iteratively, one
omponent at a time. All

de
isions in the non-deterministi
 steps are made lo
ally, for the
urrent

omponent only, and after that, this
omponent is tested for solvability.

So we start by non-deterministi
ally
hoosing a variable identi�
ation, a

labelling, and an ordering that solves the �rst
omponent problem. And

we pro
eed from one
omponent
onstraint problem to another by making

the
hoi
es ne
essary to solve the next
omponent problem while respe
ting

previously made
hoi
es. If it turns out that previously made
hoi
es make

the
urrent
omponent problem unsolvable, we have to ba
ktra
k to the pre-

vious
omponent problem and try another set of
hoi
es. Making
hoi
es

lo
ally just for one
omponent problem means the following. We identify

or dis
riminate variables of the
urrent
omponent problem, only. We label

variables of the
urrent
omponent problem, and furthermore we only de-

termine whether a variable re
eives the signature of the
urrent
omponent

problem as label or whether it is treated as a
onstant in this
omponent.

And just the variables of the
urrent
omponent problem are ordered.

The advantages of the iterative de
omposition are twofold. Firstly, itera-

tive de
omposition remedies the disadvantage of late dete
tion of insolvabil-

ity as des
ribed above. If a
omponent problem is unsolvable, this is dete
ted

8

when trying to solve this
omponent problem. Therefore no de
isions about

later
omponent problems will be made.

Se
ondly, the sear
h spa
e is redu
ed as
ompared to the original algo-

rithm by avoiding
ertain super
uous
hoi
es. Even under the assumption

that all
omponent problems of the input
onstraint problem are interre-

lated, there are variable identi�
ations and orderings that are not needed.

For example, if two variables do not o

ur
ommonly in one
omponent

problem after all identi�
ations being made, then ordering them either way

does not a�e
t solvability. Sin
e iterative de
omposition
an make de
isions

only on variables that o

ur together in at least one
omponent problem,

these super
uous
hoi
es will not be made.

The Algorithm

Before we present the algorithm, we have to de�ne a
ondition when all

hoi
es for one
omponent
onstraint problem have been made. Re
all that

U

i

denotes the set of
ombination variables of problem �

i

.

De�nition 3.1 A de
ision set D is
omplete for
omponent i, i� for all

variables x; y 2 U

i

either x

:

= y 2 D or x 6 _= y 2 D, and

either x _7! �

i

2 D or x 6 _7! �

i

2 D, and

either x

_

< y 2 D or y

_

< x 2 D if x _7! �

i

; y 6 _7! �

i

2 D.

In the following des
ription, we
olle
t previously made de
isions in the

form of sets of de
isions D

i

. Ea
h set D

i

will be a
onsistent
losed set of

de
isions
olle
ting the
hoi
es we have made so far. De�ne D

0

:= Clo(;),

i.e., the initial set of de
isions is trivial.

For
omponent problems i := 1 to n repeat the following steps

Step 1: Variable Identi�
ation

Choose a partition � amongst the variables U

i

. De�ne D

0

i;=

:= fx

:

=

y j x �

�

y�g and D

0

i; 6=

:= fx 6 _= y j x 6�

�

y�g. The partition � must be

hosen in su
h a way, that D

i�1

[D

0

i;=

[D

0

i; 6=

is
onsistent. This means that

previously made identi�
ations and dis
riminations must be observed.

Step 2: Labelling

Choose some set V � U

i

to form the labelling de
ision set D

0

i;Lab

:=

fx _7! �

i

j x 2 V g [fx 6 _7! �

i

j x 2 U

i

n V g in su
h a way that D

i�1

[D

0

i;=

[

D

0

i; 6=

[D

0

i;Lab

is
onsistent. Therefore labels are assigned to whole
lasses of

the partition �, and a label
an only be assigned to variables that have not

yet re
eived one.

Step 3: Ordering

Choose a set of ordering de
isions D

0

i;<

� fx

_

< y; y

_

< x j x; y 2

U

i

and x _7! �

i

; y 6 _7! �

i

2 D

0

i;Lab

g su
h that ea
h pair x; y 2 U

i

with distin
t

labels is ordered and D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

[D

0

i;<

is
onsistent. This

9

implies amongst other things that the order is non-
y
li
 and that previous

ordering de
isions are respe
ted.

De�ne D

i

as the
losure of D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

[D

0

i;<

. De�ne

D

i

j

U

i

� D

i

as the subset of D

i

that
ontains only de
isions over the variable

set U

i

.

Step 4: Testing the Component Problem �

i

with De
ision Set

If there is a �

i

-substitution that solves (�

i

;D

i

j

U

i

),
ontinue with the next

omponent problem. Otherwise
hoose another set of de
isions. If no other

hoi
e is left for the
urrent
omponent problem �

i

, ba
ktra
k over
ompo-

nents i� 1; : : : ; 1, i.e., try another
hoi
e in the pre
eding
omponents.

Proposition 3.2 The input problem � is solvable, i� there is a set D

n

su
h

that for ea
h i = 1; : : : ; n the
omponent problem with de
ision set (�

i

;D

i

j

U

i

)

is solvable.

Note that testing (�

i

;D

i

j

U

i

) for solvability
an be performed by the same

omponent algorithms as are used in the original algorithm.

We will now give synta
ti

riteria for when an extension is
onsistent.

Lemma 3.3 In Step 1, D

i�1

[D

0

i;=

[D

0

i; 6=

is
onsistent, i� the following

two
onditions are true: both x �

�

y� if x

:

= y 2 D

i�1

, and x 6�

�

y� if

x 6 _= y 2 D

i�1

for all x; y 2 U

i

.

Proof. If D

i�1

[D

0

i;=

[D

0

i; 6=

is
onsistent, then
learly the two
onditions

hold. For the inverse dire
tion, D

i�1

and D

0

i;=

[D

0

i; 6=

are
onsistent. So the

only way in
onsisten
ies
an arise by d 2 D

i�1

and :d 2 D

0

i;=

[D

0

i; 6=

for

some de
ision d. This
an only happen by either x

:

= y 2 D

i�1

and x 6�

�

y�

or x 6 _= y 2 D

i�1

and x �

�

y� for some x; y 2 U

i

.

Lemma 3.4 In Step 2, D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

is
onsistent, i� the

following two
onditions are true: both [x℄

�

� V for all x 2 V , and V \fx j

9j < i : x _7! �

j

2 D

i�1

g = ;.

Proof. If D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

is
onsistent, then
learly the two

onditions hold. For the inverse dire
tion, D

i�1

[D

0

i;=

[D

0

i; 6=

and D

0

i;Lab

are
onsistent. There are two ways in
onsisten
ies
an arise. There
an be

some de
ision d su
h that d 2 D

i�1

[D

0

i;=

[D

0

i; 6=

and :d 2 D

0

i;Lab

. Or the

in
onsisten
y o

urs when forming the
losure of D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

.

The former
ase
an only happen if there is an x 2 V su
h that x _7! �

j

2

D

i�1

for some j < i. The latter
ase o

urs only, when x 6 _7! �

i

2 D

0

i;Lab

and

x _7! �

i

2 Clo(D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

) n (D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

).

This happens, when x

:

= y 2 D

i�1

[D

0

i;=

[D

0

i; 6=

and y _7! �

i

2 D

0

i;Lab

. Thus

there is a y su
h that y 2 V but [y℄

�

6� V .

10

Corre
tness and Completeness

We presume the
orre
tness and
ompleteness of the original de
omposition

with basi
 optimisations, as stated in Proposition 2.4.

Lemma 3.5 For ea
h i with 1 � i � n, the de
ision set D

i

j

U

i

is
losed,

onsistent and
omplete for
omponent i.

Proof. D

i

j

U

i

is
onsistent as a subset of the
onsistent set D

i

. D

i

j

U

i

is
losed, be
ause it is the redu
tion of the
losed set D

i

that
ontains all

de
isions over variables U

i

.

Let x; y 2 U

i

. Then either x

:

= y 2 D

i

j

U

i

or x 6 _= y 2 D

i

j

U

i

due to

Step 1 of the algorithm. And either x _7! �

i

2 D

i

j

U

i

or x 6 _7! �

i

2 D

i

j

U

i

due

to Step 2. If x _7! �

i

; y 6 _7! �

i

2 D

i

j

U

i

then immediately by Step 3 either

x

_

< y 2 D

i

j

U

i

or y

_

< x 2 D

i

j

U

i

. Therefore D

i

j

U

i

is
omplete for
omponent

i by De�nition 3.1.

Proposition 3.6 If for all i with 1 � i � n there exists a �

i

-substitution

�

i

that solves (�

i

;D

i

j

U

i

), then the input problem � is solvable.

Proof. D

n

is
onsistent by de�nition. De�ne the following generalised

linear
onstant restri
tion L = (�;Lab; <

L

) by

� x �

�

y�, i� x

:

= y 2 D

n

,

� Lab(x) =

(

�

i

; if x _7! �

i

2 D

n

;

�

n

; otherwise;

� <

L

is given by any
onsistent extension of

x <

L

y, if x

_

< y 2 D

n

that orders ea
h two variables with di�erent labels.

L satis�es D

n

, and if �

i

solves (�

i

;D

i

j

U

i

) then �

i

solves (�

i

; L). Thus the

input problem � is solvable due to
orre
tness of the original algorithm

(Proposition 2.4).

Now, we pro
eed to show
ompleteness of the algorithm. The aim is to

show the following

Proposition 3.7 If the input problem � is solvable, then � is solvable by

iterative de
omposition.

We will prove this proposition using the
ompleteness of the original

algorithm with basi
 optimisations. Due to the
ompleteness of the original

algorithm, if the input problem is solvable, there exists a generalised linear

onstant restri
tion L su
h that the output tuples ((�

i

; L))

1�i�n

are solvable.

This generalised linear
onstant restri
tion is used to guide the
hoi
es that

will be made in ea
h iteration of the iterative method.

11

De�nition 3.8 Let L = (�; <

L

;Lab) be a generalised linear
onstant re-

stri
tion. De�ne

the set of equality de
isions

D

#=

:= fx

:

= y j x �

�

y� and 9i � n : x; y 2 U

i

g,

the set of disequality de
isions

D

#6=

:= fx 6 _= y j x 6�

�

y� and 9i � n : x; y 2 U

i

g,

the set of labelling de
isions

D

#Lab

:= fx _7! �

i

j Lab(x) = �

i

and x 2 U

i

g,

the set of ordering de
isions as the set

D

#<

:= fx

_

< y j x <

L

y;9j : x; y 2 U

j

; (Lab(x) = �

j

;

Lab(y) 6= �

j

) or (Lab(x) 6= �

j

;Lab(y) = �

j

)g:

Set D

#L

, the de
ision set indu
ed by L, as the
losure of the union D

#=

[

D

#6=

[D

#<

[D

#Lab

.

Lemma 3.9 D

#L

is a
losed
onsistent set.

Lemma 3.10 Let �

i

be a
onstraint problem. Let L = (�;Lab; <

L

) be a

linear
onstant restri
tion and D

#L

the de
ision set indu
ed thereby. Then

(�

i

; L) is solvable , if and only if (�

i

;D

#L

j

U

i

) is solvable, where D

#L

j

U

i

is

D

#L

restri
ted to de
isions over variables U

i

.

Proof. If (�

i

; L) is solvable, then (�

i

;D

#L

j

U

i

) is solvable, be
ause the

de
ision set D

#L

j

U

i

indu
ed by L
ontains only a subset of the de
isions of

L.

For the inverse dire
tion, suppose � solves (�

i

;D

#L

j

U

i

). If for x; y 2 U

i

:

�(x) = �(y), then x

:

= y 2 D

#L

j

U

i

and therefore x �

�

y�.

Now let x �

�

y�. Then x

:

= y 2 D

#L

j

U

i

by de�nition of D

#L

and therefore

�(x) = �(y).

Let for y 2 U

i

: Lab(y) = �

j

with j 6= i. If y 2 U

j

, then y _7! �

j

2

D

#L

j

U

i

. If y =2 U

j

, then there is no k su
h that y _7! �

k

2 D

#L

j

U

i

. In both

ases y _7! �

i

=2 D

#L

j

U

i

. Therefore �(x) 2 X as demanded.

Let for x; y 2 U

i

: Lab(x) = �

j

;Lab(y) = �

i

; j 6= i and �(x) 2

Stab(�(y)). Then y _7! �

i

2 D

#L

j

U

i

; and x 6 _7! �

i

2 D

#L

j

U

i

a

ording to

the same argument as in the previous paragraph. Therefore x

_

< y 2 D

#L

j

U

i

and x <

Lj

U

i

y by de�nition of D

#L

j

U

i

.

We now have to show that D

#L

is a potential de
ision set
al
ulated by

the iterative de
omposition.

Lemma 3.11 Let (�; L) be a solvable
omponent problem with de
ision set

L. Then the indu
ed de
ision set D

#L

an be
onstru
ted by the iterative

de
omposition, i.e., D

#L

= D

n

.

12

Proof. In ea
h
omponent i, we make the following
hoi
es. Two vari-

ables x; y 2 U

i

are identi�ed a

ording to D

#L

, that is, i� x

:

= y 2 D

#L

, then

x

:

= y 2 D

0

i;=

; i� x 6 _= y 2 D

#L

, then x 6 _= y 2 D

0

i; 6=

. I� x _7! �

i

2 D

#L

, then

x _7! �

i

2 D

0

i;Lab

. I� x

_

< y 2 D

<

, then x

_

< y 2 D

0

i;<

.

Claim 1: For 0 � i � n: D

i

is
onsistent and D

i

� D

#L

.

Proof of Claim 1:

D

0

= ; is obviously
onsistent and a subset of D

#L

.

Let i > 0. D

i�1

� D

#L

by hypothesis. D

0

i;=

;D

0

i; 6=

;D

0

i;Lab

and D

0

i;<

are

subsets of D

#L

by de�nition, thus D

i�1

[D

0

i;=

[D

0

i; 6=

[D

0

i;Lab

[D

0

i;<

is

onsistent, be
ause it is a subset of the
onsistent set D

#L

. D

i

de�ned as

the
losure of the above union is a subset of D

#L

by monotoni
ity of the

losure operator and
onsistent, be
ause it is a subset of a
onsistent set.

Claim 2: D

#L

= D

n

.

Proof of Claim 2:

D

n

� D

#L

by Claim 1.

Let x

:

= y 2 D

#L

, then x

:

= y 2 Clo(D

#=

). D

#=

=

S

n

i=1

D

0

i;=

by de�nition,

thus Clo(D

#=

) = Clo(

S

n

i=1

D

0

i;=

) � D

n

.

Let x 6 _= y 2 D

#L

. Then, by de�nition, x 6 _= y 2 Clo(D

#=

[D

#6=

). D

#=

� D

n

by the above. If w 6 _= z 2 D

#6=

, then there is a j su
h that w; z 2 U

j

, and

thus w 6 _= z 2 D

0

j; 6=

. Therefore D

#6=

� D

n

. Thus x 6 _= y 2 D

n

, sin
e D

n

is

losed.

Let x _7! �

i

2 D

#L

for some i. Then x 2 U

i

by de�nition, and therefore

x _7! �

i

2 D

0

i;Lab

� D

n

.

Con
erning the ordering, D

#<

=

S

n

i=1

D

0

i;<

by de�nition. Clo(D

#=

[D

#6=

) =

Clo(

S

n

i=1

D

0

i;=

[

S

n

i=1

D

0

i; 6=

) by the above. Now x

_

< y 2 D

#L

implies x

_

< y 2

Clo(D

#<

[D

#=

[D

#6=

) = Clo(

S

n

i=1

D

0

i;<

[

S

n

i=1

D

0

i;=

[

S

n

i=1

D

0

i; 6=

) � D

n

.

Claim 3: All of the above
hoi
es of the sets D

0

i;=

;D

0

i; 6=

;D

0

i;Lab

;D

0

i;<

are

valid as steps in iterative de
omposition.

Proof of Claim 3:

That all of these
hoi
es
an be made
onsistently, is shown by Claim 1.

For variable identi�
ation, the partitioning is dire
tly given by the equiva-

len
e
lasses that result when restri
ting the equality and disequality de
i-

sions of D

#L

to the variables of a parti
ular
omponent problem, as done in

D

0

i;=

and D

0

i; 6=

.

For labelling, the generalised linear
onstant restri
tions ensure that ea
h

variable re
eives only one label and that
lasses of variables that are identi-

�ed re
eive one and the same label.

For ordering, D

0

i;<

ontains only ordering de
isions on variables of
ompo-

nent i. It respe
ts the variable identi�
ation, be
ause the generalised linear

onstant restri
tion (�; <

L

;Lab) does so. And, by de�nition, ea
h pair

x; y 2 U

i

of variables where one has
omponent i as label while the other

has not is ordered in D

0

i;<

.

13

Proof of Proposition 3.7.

Let � be solvable. By Proposition 2.4 there exists a generalised linear
on-

stant restri
tion L = (�; <

L

;Lab) su
h that the output tuples ((�

i

; L))

1�i�n

have a solution. By Lemma 3.10 the output tuples ((�

i

;D

#L

j

U

i

))

1�i�n

with

the indu
ed de
ision set D

#L

are solvable. By Lemma 3.11, there exists a

set of
hoi
es of the iterative algorithm su
h that the de
ision set D

#L

is

onstru
ted thereby.

4 Dedu
tive Method

In this se
tion we will show how information dedu
ed from the
omponent

systems and their individual stru
tures
an be used to prune the sear
h

spa
e. The power of the method lies in the inter
hange of this information

between the
omponents.

Inter
hanging De
isions

A severe disadvantage of the original
ombination algorithm is that all non-

deterministi
 de
isions are made blindfoldedly without respe
ting the re-

quirements that the
omponent stru
tures may impose. For example, if a

omponent stru
ture A

i

is
ollapse-free and the problem
ontains an equa-

tion x = f(: : : y : : :) where f 2 �

i

, then x must re
eive label �

i

. If A

i

is

also regular then the problem is unsolvable if y 6 _7! �

i

2 D and x

_

< y 2 D.

Hen
e the algorithm
an
hoose x _7! �

i

2 D deterministi
ally and take into

a

ount that y 6 _7! �

i

2 D implies y

_

< x 2 D.

As the example shows, some de
isions that have been dedu
ed ear-

lier in one
omponent
an be used to dedu
e new de
isions in another

one. This possible interplay between di�erent stru
tures suggests to use

a method where
omponent algorithms
omputing new de
isions are
alled

alternately in the beginning of the
ombination algorithm and whenever a

non-deterministi

hoi
e has been made: Starting with some initial de
isions,

ea
h
omponent algorithm
omputes new de
isions; these new de
isions are

added to the
urrent set of de
isions, whi
h is used when
alling the other

omponent algorithms. When this pro
ess
omes to an end be
ause no new

de
isions
an be dedu
ed, the next non-deterministi

hoi
e has to be made

by the
ombination algorithm. After this
hoi
e the pro
ess of
omputing

new
onsequen
es
an be started again. At any step of
omputing the
onse-

quen
es, a
omponent algorithm may return that its subproblem has be
ome

unsolvable with the
urrent set of de
isions. Thereby, unsolvable bran
hes

of the sear
h tree
an be dete
ted earlier.

Obviously, this method requires new
omponent algorithms that are
a-

pable of
omputing
onsequen
es implied by the
omponent stru
tures, the

problem, and the de
isions
omputed so far. A stru
ture for whi
h su
h

14

an algorithm does not exist
an still be used in this method, but it
annot

ontribute to the dedu
tive pro
ess. It is
learly the quality of the dedu
tive

omponent algorithms that determines the amount of optimisation a
hieved.

The optimisations of our
omponent algorithms go quite beyond using only

synta
ti
 properties of stru
tures as in the example above. The goal is to

dedu
e as mu
h information as is possible with a reasonable e�ort.

The Algorithm

First we de�ne the task of the new dedu
tive
omponent algorithms. Their

input is a pure
onstraint problem and a set of de
isions whi
h need not be

omplete. The result is a set of de
isions that follows from the
onstraint

problem and the input de
isions. If the input is unsolvable, the result may

also be an in
onsistent set of de
isions.

De�nition 4.1 Let (�;D) be a
onstraint problem with de
ision set. The

de
ision set C is a
onsequen
e of (�;D), i� C is
ontained in every
omplete

de
ision set D

0

� D su
h that (�;D

0

) is solvable, that is, i�

C �

\

fD

0

j D � D

0

;D

0

is
omplete; and (�;D

0

) is solvableg:

2

Note that C = ; is always a
onsequen
e and that the
onsequen
e

need not be in
onsistent if (�;D

0

) is unsolvable for all
omplete extensions

D

0

of D. Therefore, the standard algorithms for
onstraint solving with

linear
onstant restri
tions must be
alled in the end when a
omplete set

of de
isions is rea
hed. See Se
tion 5 for a dis
ussion on how dedu
tive

omponent algorithms
o-operate with standard ones.

Figure 1 shows the
ombination algorithm. Like before we present the

method as a non-deterministi
 algorithm, i.e., the algorithm
ontains non-

deterministi
 steps for whi
h both alternatives have to be regarded. In

the algorithm, D denotes the
urrent set of de
isions. The termination

ondition in
ase of su

ess is that the set of de
isions is
omplete, as given

in Lemma 2.11.

Proposition 4.2 The input problem � is solvable, i� the algorithm
om-

putes a
onsistent set D su
h that for ea
h i = 1; : : : ; n the
onstraint prob-

lem with de
ision set (�

i

;D) is solvable.

Again, testing (�

i

;D) for solvability
an be performed by the
omponent

algorithms used in the original
ombination algorithm. Sin
e a
onsequen
e

is a de
ision that is
ontained in every solvable
omplete de
ision set, it

is
lear that we prune those bran
hes of the sear
h spa
e that are unsolv-

able. Hen
e
orre
tness of the algorithm is an immediate
onsequen
e of the

orre
tness of the original
ombination algorithm in Theorem 2.4.

2

T

fg is the (in
onsistent) set of all de
isions over U .

15

D := ;

loop: Repeat

Dedu
e
onsequen
es:

Repeat

For ea
h system i

all the
omponent algorithm of system i to
al
ulate

new
onsequen
es C of (�

i

;D),

set the new
urrent set of de
isions D := D [C.

If D is in
onsistent

break loop. /� exit from outer loop �/

Until no
omponent algorithm
omputes new de
isions.

If D is not
omplete

Sele
t next
hoi
e:

Sele
t a de
ision d =2 D su
h that D [fdg is
onsistent.

Non-deterministi
ally
hoose either

D := D [fdg or

D := D [f:dg.

Until D is
omplete.

Return D.

Figure 1: The dedu
tive
ombination algorithm

The dedu
tive method additionally allows to redu
e
ertain redundan
ies

in the sear
h spa
e. We
an prune some solvable bran
hes that would only

lead to redundant solutions. For example, let �

1

= fx = a; y = ag and

�

2

= fz = x+yg where + is asso
iative and
ommutative. Clearly, Lab(x) =

Lab(y) = �

1

and Lab(z) = �

2

. And the order must be su
h that x and y

are below z. But there are two di�erent partitions that lead to a solution:

We
an identify x and y or leave them di�erent. The resulting solution

looks the same in both
ases. Hen
e we
ompute only one partition. Other,

more
ompli
ated examples o

ur in ordering de
isions. It turns out, that

sometimes it is useful to order variables of the same label to avoid the

omputation of super
uous orders that only lead to redundant solutions. A

longer dis
ussion of this side issue would be beyond the limited s
ope of this

paper.

Deterministi
 Combination

It is interesting to observe that there exists a
lass of
onstraint systems for

whi
h the dedu
tive
ombination algorithm has PTIME
omplexity, whi
h

entails that all steps
an be made deterministi
ally. In [20℄, S
hulz gives

a general des
ription of a PTIME
ombination algorithm for
ertain equa-

16

tional theories. This algorithm
an be extended to the
ombination of quasi-

free stru
tures. The
lass of stru
tures that are deterministi
ally
ombinable

is quite restri
ted. Currently, only unitary regular
ollapse-free stru
tures

are known to belong to it.

Although our dedu
tive
omponent algorithm is designed for the general

ase, it turns out to be an implementation of the deterministi
 algorithm

when applied to
omponent algorithms satisfying the
onditions imposed

in [20℄. Our
omponent algorithms for uni�
ation in the empty theory,

for rational tree algebras, and for feature stru
tures meet these
onditions.

Thus, when applied to these stru
tures, our
ombination algorithm runs

deterministi
ally. This deterministi
 behaviour shows the great impa
t of

inter
hanging de
isions between
omponent algorithms.

5 Component Algorithms

In order to prune the sear
h spa
e signi�
antly, new
omponent algorithms

are needed for the dedu
tive method. When designing these algorithms one

should take into a

ount the spe
ial way in whi
h they are
alled. Constraint

solvers are usually designed to work in
rementally (e.g., [10℄). But standard

uni�
ation algorithms are \one shot" algorithms: they are started only on
e

with all information they need given and
ompute �nal results. Dedu
tive

omponent algorithms must be able to
ope with partial information and

deliver a meaningful but not ne
essarily the �nal result. More importantly,

when re
eiving new information the algorithms should not restart
ompu-

tation from s
rat
h but rather
ontinue on the base of their prior internal

states. Otherwise, the sear
h spa
e would be partially shifted from the
om-

bination algorithm to the dedu
tive
omponent algorithms. The same holds

for the standard
omponent algorithms for problems with linear
onstant

restri
tions that perform a
omplete test at the end of the
ombination al-

gorithm: they should take into a

ount the information already
omputed

by the
orresponding dedu
tive
omponent algorithms.

Note that there is no need for
ompleteness in the dedu
tive
omponent

algorithm: the algorithm need not
ompute all de
isions implied by the

input and it need not return an in
onsistent set if the problem is unsolvable.

Thus an algorithm returning always the empty set would be
orre
t, though

it would not
ontribute to the dedu
tive pro
ess. This, however, enables

us to use every stru
ture that is suitable for the original algorithm. In the

other extreme it might not be advisable to
ompute new de
isions at any

ost; there should be a
areful
onsideration between optimisations of the

ombination algorithm resulting from new de
isions and a higher
omplexity

of the dedu
tive
omponent algorithm.

We have developed dedu
tive
omponent algorithms for the free theory,

A, AC, and ACI and for rational trees and feature stru
tures. This is not

17

the pla
e to give detailed des
riptions of these algorithms. In the following,

we outline the ideas underlying the algorithms for the free theory, a theory

in whi
h one
an dedu
e many de
isions, and for ACI as a more
ompli
ated

example.

Synta
ti
 Uni�
ation

The dedu
tive algorithm for the free theory is based on the quasi-linear al-

gorithm des
ribed in [4℄ where terms and uni�ers are represented as dire
ted

a
y
li
 graphs. We assume that the reader is familiar with this representa-

tion. When the dedu
tive
omponent algorithm is
alled for the �rst time,

the dag is built, whi
h is then used again for all further
alls of this
ompo-

nent algorithm. De
isions of the form x 6 _= y, x _7! �

i

, x 6 _7! �

i

, or x

_

� y do

not initiate any
omputation. Only identi�
ation de
isions x

:

= y
ause a

all of the
orresponding uni�
ation pro
edure, whi
h updates the existing

dag. The de
ision set to be returned by the
omponent algorithm
an be

omputed from the dag: x

:

= y is returned if x and y are identi�ed in the

dag; x _7! �

Free

is returned if x is
onne
ted to a non-variable term; x

_

< y is

returned if x
an be rea
hed from y. Additionally x 6 _= y is returned if x and

y are
ertainly not uni�able. The algorithm does not test real uni�ability

of x and y sin
e it would be too
ostly to do this for all pairs of variables;

instead it tests if the variables are
onne
ted to non-variable terms with

di�erent topsymbol. The dag is also used by the de
ision pro
edure for

problems with linear
onstant restri
tions. This algorithm works exa
tly

like the dedu
tive
omponent algorithm, ex
ept that it does not
ompute a

de
ision set but returns solvable or unsolvable.

The dedu
tive algorithm for rational trees works similarly to this algo-

rithm. It does not perform an o

ur-
he
k and it returns x

_

< y only if x

an be rea
hed from y and y has been labelled by another stru
ture.

The Theory ACI

In the theory of Abelian monoids, ACI, the binary fun
tion symbol + is

asso
iative,
ommutative and idempotent. In [14℄, an algorithm was given

that de
ides solvability of ACI -uni�
ation with
onstants. The main idea

is to set up Horn
lauses whi
h des
ribe the solvability of the equations.

The Horn
lauses are built from propositional variables P

x;a

whi
h are true

i� the
onstant a does not o

ur in a solution for the variable x. A
lause

P

x;a

^P

y;a

) False means that the problem is unsolvable if a appears neither

in x nor in y, or equivalently: if we
an dedu
e that a does not o

ur in x,

then it must appear in y.

We extend the algorithm given in [14℄ for our situation where the set of

variables and
onstants is not �xed in the beginning. By this, we prevent

that new Horn
lauses have to be set up when a new labelling de
ision

18

is made. Let V

ACI

be the set of variables in �

ACI

; note that there are no

onstants in �

ACI

. We introdu
e a new
onstant �x for ea
h variable x 2 V

ACI

and
onstru
t two types of Horn
lauses:

�

^

y2V

ACI

P

x;�y

) False for ea
h variable x 2 V

ACI

;

� P

x

1

;�y

^ : : : ^ P

x

k

;�y

, P

u

1

;�y

^ : : : ^ P

u

l

;�y

for ea
h y 2 V

ACI

and ea
h equation

x

1

+ : : : + x

k

= u

1

+ : : :+ u

l

2 �

ACI

:

The �rst type of
lauses guarantees that the solution for ea
h variable

ontains at least one
onstant. The se
ond type represents the equations of

�

ACI

: if a
onstant does not appear on the left hand side, it must not appear

on the right hand side, and vi
e versa. A de
ision x 6 _7! �

ACI

introdu
es the

Horn
lauses P

x;�x

) False and) P

x;�y

for ea
h y 2 V

ACI

with y 6= x, i.e.,

the propositional variables are set to False and True, respe
tively. The e�e
t

of these
lauses is that �x is the only
onstant that appears in x, i.e., x is

identi�ed with �x and is treated like a
onstant by the algorithm. A de
ision

x

_

< y
auses the atom P

x;�y

to be set to True.

The
onstraint problem with linear
onstant restri
tions is solvable i�

the set of Horn
lauses is solvable. This
an be tested eÆ
iently by an

algorithm whi
h
onstru
ts a graph from the Horn
lauses and propagates

True and False through this graph (see [14℄). The set of Horn
lauses (and the

orresponding
onstraint problem) is unsolvable if True meets False during

this propagation. New de
isions
an be dedu
ed from the atoms mapped to

True or False: x _7! �

ACI

is returned if P

x;�y

is set to False and x 6 _= y has

been already dedu
ed or if P

x;�y

and P

x;�z

have been set to False for three

di�erent variables x, y, and z. The de
ision x

_

< y is returned if P

x;�y

has

been set to False with x 6= y.

Like the dag for synta
ti
 uni�
ation, the Horn
lauses and the state of

the propositional variables are stored and used again for ea
h further
all

of the
omponent algorithm; only when a new identi�
ation de
ision x

:

= y

is dedu
ed by another
omponent algorithm, the
lauses have to be set up

anew.

Other Component Algorithms

Here, we would like to present at least the basi
 ideas for the other
om-

ponent algorithms. The theory A = fx + (y + z) = (x + y) + zg, i.e., the

theory of an asso
iative fun
tion symbol + is basi
ally the theory of free

word equations. The dedu
tive
omponent algorithm translates the input

into word equations and simpli�es them. The simpli�
ation steps allow the

omputation of new identi�
ation, labelling and ordering information. This

is an example of a dedu
tive
omponent algorithm whi
h does not
om-

19

pute all
onsequen
es. Hen
e we need to
all the standard algorithm for

A-uni�
ation with linear
onstant restri
tions in the end.

For the theory AC = fx + (y + z) = (x + y) + z;x + y = y + xg,

i.e., the theory of an asso
iative and
ommutative fun
tion symbol +, the

dedu
tive algorithm is based on [22℄. First, the set of minimal solutions

of the homogeneous Diophantine equations
orresponding to the uni�
ation

problem is
omputed. Some of these solutions
an be deleted with the help

of the existing de
isions. From the remaining set of solutions, information

about labelling, ordering and identi�
ation
an be dedu
ed.

The set of minimal solutions has to be re
omputed when new identi�
a-

tion de
isions o

ur. This might seem to be a drawba
k at �rst glan
e, sin
e

omputing the solutions of Diophantine equations
an be a time-
onsuming

task; but it
annot be worse than in the original
ombination algorithm, i.e.,

Diophantine equations are not solved more often, sin
e this happens at most

on
e for every partition of variables. Unfortunately, the number of minimal

solutions of the Diophantine equations
an be exponential in the size of the

uni�
ation problem. But at least we do not need to
ompute
omplete sets

of uni�ers, whi
h
an even be doubly-exponential in number.

The algorithms for the free theory and for the theories AC and ACI

have in
ommon that they behave like de
ision pro
edures for uni�
ation

with linear
onstant restri
tions if
alled with a
omplete set of de
isions,

i.e., they return a
orre
t and
omplete answer. Therefore the �nal test does

not need to
ompute anything; it
an simply return the result a
hieved by

the
orresponding dedu
tive
omponent algorithm.

Rational Trees and Feature Stru
tures

As examples of a quasi-free stru
tures whi
h are not an equational the-

ories the author implemented rational tree algebras and feature stru
tures

of the Smolka and Treinen variety [21℄. The algorithm for rational tree al-

gebras is a simple extension of the algorithm for synta
ti
 uni�
ation. The

o

urs-
he
k has to be left out and the
omputation of new de
isions is a

bit more
ompli
ated sin
e
ertain
y
li
 solution whi
h are impossible in

the free theory have to be taken into a

ount.

We introdu
ed feature stru
tures as examples of quasi-free stru
tures in

the paragraph following de�nition 2.1. The implementation employs te
h-

niques for integrating re
ord like data types (as feature stru
tures) into logi

programming frameworks developed by Van Roy, Mehl and S
heidhauer [24℄.

Upon �rst
all, the internal graph-like representation of the feature theory is

onstru
ted and used to
al
ulate new identi�
ation, labelling and ordering

information. This representation needs to be
onstru
ted only on
e. Later

on, new in
oming identi�
ation information does not trigger a
omplete new

setup, rather starts a feature stru
ture uni�
ation of the the two stru
tures

pending below the newly identi�ed variables. Additional information
an be

read out of the new stru
tures, if uni�
ation su

eeds. In
oming labelling or

20

ordering information triggers no uni�
ation. Labelling information
an help

to dedu
e more information on the ordering. The algorithm is designed in

su
h a way that it behaves like a de
ision pro
edure for feature
onstraint

problems with linear
onstant restri
tions when
alled with a
omplete set

of de
isions.

6 Integrating the Dedu
tive and Iterative Method

The two methods des
ribed above
an easily be integrated. The iterative

method is a sele
tion strategy for non-deterministi
 steps, while the dedu
-

tive method dedu
es deterministi

onsequen
es from the de
isions already

made. Therefore integration is a
hieved by plugging the iterative sele
tion

strategy into the dedu
tive algorithm. The
ombined method looks as fol-

lows. Suppose
omponent
onstraint problems �

1

to �

i�1

are solved, the

urrent de
ision set is D, and D is not
omplete for
omponent i, the
ur-

rent
omponent. Sele
t a de
ision d =2 D over the variables of
omponent i

su
h that D[fdg is
onsistent. Nondeterministi
ally
hoose d or its negation

and add it to D. Compute
onsequen
es and add them to D. If D is still

not
omplete for
omponent i, sele
t the next de
ision for this
omponent.

If D is
omplete and (�

i

;Dj

U

i

) is solvable, pro
eed to the next
omponent

problem. Otherwise perform ba
ktra
king and make an alternative
hoi
e

for one of the de
isions made so far.

The method to
ompute
onsequen
es of a non-deterministi
 de
ision

should be amended to the new sele
tion strategy as follows. Components

that are already solved
annot
ontribute any new de
isions. Consequently

only
omponents that still have non-deterministi

hoi
es left open are
on-

sulted.

7 Tests

The
ombination method and
omponent algorithms for the free theory, A,

AC, and ACI as well as for rational tree algebras and feature stru
tures

are implemented

3

in Common Lisp using the Keim toolkit [12℄. In the

following we show some results of our optimisations. As already stated, the

onstraint solvers for rational tree algebras and feature stru
tures are su
h

that one
an
ombine them even deterministi
ally. Hen
e we do not present

any test data for them. In order to test our algorithms with examples

that o

ur in pra
ti
e we used the reveal theorem prover [8℄. For some

example theorems, we
olle
ted all uni�
ation problems that are generated

and solved by reveal while proving this theorem. These theorems (and

3

The implementation
an be found at http://www-lti.informatik.rwth-aa
hen.de/

Fors
hung/unimok.html.

21

the
orresponding set of uni�
ation problems)
ontain free fun
tion symbols

and
onstants and one or two AC-symbols.

Table 1 gives an overview of the run time for some sets of uni�
ation

problems. The �rst six lines
ontain all uni�
ation problems that have to be

solved by reveal during the proof sear
h or
ompletion of the respe
tive

example. All examples ex
ept the �rst one
ontain two AC-symbols and

several free symbols. The last three examples,
ontaining several AC- and

ACI -symbols, are added to demonstrate the potential of the iterative sele
-

tion strategy. In order to see the e�e
t of the iterative sele
tion strategy on

its own, we integrated it into the original algorithm (
olumn `it'). An empty

ell in the
olumns indi
ates that the algorithm was aborted after one hour.

Time in se
onds Bktrk

Example Size i+d ded i+d- ded- it orig i+d ded

Abelian group 29 3.7 3.7 5.0 5.0 11.6 17.2 4 4

Boolean ring 51 3.2 3.2 4.8 4.8 3.5 3.3 0 0

Boolean algebra 122 15.8 15.7 20.5 24.5 12 12

exboolston 87 12 12 948 997 17 14

exgrobner 1002 154 155 1442 1488 65 66

exuqsl2 404 109 108 74 74

AC*{ACI* 1 1 16 101 74 385 15 16 103

AC*{ACI* 2 1 31 407 393 841 13 205

AC*{ACI* 3 1 67 557 248 22 192

Legend

Size Number of uni�
ation problems

Bktrk Number of ba
ktra
king steps

i+d Iterative sele
tion strategy in dedu
tive method

ded Dedu
tive method

i+d-, ded- Same as i+d/ded, butAC-
omponent repla
ed by one that uses

only
ollapse-freeness and regularity

it Iterative sele
tion strategy in original algorithm

orig Original unoptimised algorithm

Table 1: Run time of some example sets

We want to emphasise the di�eren
es between
olumn `ded' and `ded-'. Col-

umn `ded-' shows the run time of the algorithm when using only synta
ti

properties as des
ribed in [3℄; a
omparison with
olumn `ded' demonstrates

the power of the dedu
tive method and the dedu
tive
omponent algorithms.

The run time de
reases dramati
ally for most examples and some examples

even
annot be solved in suitable time when using only synta
ti
 properties.

The use of the iterative sele
tion strategy does not lead to a performan
e

in
rease in the dedu
tive algorithm in the �rst six example sets, be
ause

these examples are too simple: They
ontain too few
omponent theories.

22

The last three examples show that the use of the iterative sele
tion strategy

an lead to a speed-up by more than one order of magnitude. The equations

in these examples
ontain several AC and ACI -fun
tion symbols besides

free fun
tion symbols. It is a general observation that the iterative sele
tion

strategy is advantageous, if the number of systems is large or the dedu
tive

omponent algorithms do not dedu
e many de
isions.

Set Equations term- # ACI Ded+Iter Ded

depth time bktrk time bktrk

1 199/98 6 3 816 1953 81 152

2 200/99 6 3 232 780 >1h

3 199/101 6 3 330 800 1158 1982

4 200/127 6 3 58 250 42 110

5 200/97 6 3 1362 3971 141 401

6 200/113 6 3 >1h 103 295

7 200/112 6 3 676 2217 189 689

8 200/100 5 0 19 1 19 1

9 200/90 5 0 67 33 75 33

10 200/95 5 0 16 1 15 1

11 200/87 5 0 20 7 21 10

12 200/89 5 0 21 8 21 8

13 200/99 5 1 32 50 31 30

14 200/93 5 1 21 47 26 22

15 200/109 5 1 154 394 3931 12335

16 200/116 5 1 26 50 30 31

17 200/107 5 2 319 1116 83 147

18 200/106 5 2 1250 2627 44 107

19 200/95 5 2 178 462 58 169

20 200/108 5 2 99 414 43 159

Legend: The signature of these problems
onsists of 2 A, 2 AC, 0{3 ACI and several free

fun
tion symbols. Equations: number of equations in set and number of solvable equations;

term depth: maximal depth of terms; # ACI : Number of ACI-fun
tion symbols in signa-

ture; Ded+Iter: dedu
tive
ombination with iterative sele
tion strategy; Ded: dedu
tive

ombination with a sele
tion strategy that
hooses all identi�
ations �rst; bktrk: number of

ba
ktra
king steps.

Table 2: Run time of randomly generated example sets

In order to get more examples, we developed a test set generator. With it,

one generates sets of random
ombined uni�
ation problems over signatures

ontaining several fun
tion symbols from di�erent theories. Certain means

were taken to ensure that about half of the generated problems are solvable.

23

Table 2 presents some run time results for these randomly generated problem

sets. The signature
ontains 2 A, 2 AC, 0{3 ACI and several free fun
tion

symbols. The problems are that
omplex that a use of a
ombination method

di�erent from the dedu
tive
ombination makes no sense at all.

It is interesting to observe that with these problems, the iterative sele
-

tion strategy is not always the best
hoi
e. There are examples (sets 2, 3,

and 15) in whi
h the iterative sele
tion strategy is superior. On the other

hand, in the sets 1, 5, 6, and 18 it is mu
h worse than a strategy whi
h

�rstly settles all variable identi�
ation and dis
rimination de
isions for all

omponent problems. It is
urrently not
lear what the
onditions are under

whi
h one should
hoose the iterative sele
tion strategy, and when to rather

use the other strategy. The presen
e of several
ollapsing theories is impor-

tant, but there are several
ollapsing theories both in those examples where

the iterative sele
tion strategy works well and in those where it
ounders.

In all these examples, it seems important to make the \right" de
isions �rst,

but there is at
urrent no way to state what the \right" de
isions are.

Another observation is that there is no simple, e.g., linear,
onnetion

between the run time and the number of ba
ktra
king steps. Obviously,

some ba
ktra
king steps require a lot of time, be
ause they appear high up

in the sear
h tree, while others that are
lose to the leaf nodes of the sear
h

tree have a very small in
uen
e on the run time.

8 Related Work and Con
lusion

The work that is most
losely related to ours is the one by Boudet [5℄. He

presents an optimised algorithm for the
ombination of �nitary equational

theories. Our method is hen
e
onsiderably more general, we are neither re-

stri
ted to equational theories nor to stru
tures for whi
h minimal
omplete

sets of solutions must be �nite. But sin
e
ombining uni�
ation algorithms

is su
h an important instan
e of our methods, we want to
ompare the two

approa
hes a bit more detailed. Boudet's algorithm
omputes a
omplete set

of uni�ers for ea
h theory, subsequently treats arisen
on
i
ts between the

theories (like one variable getting assigned to di�erent terms in di�erent sys-

tems), and repeats these two steps until all
on
i
ts have been solved. Thus

there is an important di�eren
e in the way the non-determinism inherent in

most
onstraint problems is handled. Our algorithm prophyla
ti
ally makes

a
hoi
e for all possible
on
i
t situations before solving the
omponent

systems. | We showed that many of these
hoi
es
an be made determinis-

ti
ally, but some have to be made non-deterministi
ally. | Boudet follows

another approa
h: his algorithm only makes a non-deterministi

hoi
e if a

on
i
t a
tually arises. But as a drawba
k his approa
h introdu
es another

sour
e of non-determinism: in order to dete
t a
tual
on
i
ts, the algorithm

has to
ompute
omplete sets of uni�ers for the
omponent systems and it

24

has to
hoose one of the uni�ers non-deterministi
ally if the
omputed set

ontains more than one solution. The set of uni�ers
an by very large, e.g.,

doubly-exponential in the number of variables of the input problem for the

theory AC.

Both algorithms have to perform several rounds of
omputation for the

omponent systems, i.e.,
onsequen
es (in our algorithm) or
omplete sets

of uni�ers (in Boudet's algorithm) have to be
omputed more than on
e

for ea
h
omponent system. In our algorithm the
onstraint problem to be

solved by a
omponent has the same size in ea
h round. In Boudet's algo-

rithm the
omputation of a
omplete set of uni�ers is based on the uni�er

found in the previous round. This means that the uni�
ation problem to

be solved by a
omponent theory
an grow in ea
h round, e.g., the number

of variables in an AC-uni�er
an be exponential in the number of variables

of the input problem. This
an result in a higher worst-
ase
omplexity of

Boudet's algorithm: It may well be non-elementary. And that, though the

inherent
omplexity of
ombination is in NP. Our algorithm on the other

hand has singly exponential
omplexity. Despite its high worst-
ase
om-

plexity, Boudet's algorithm performs quite well in many pra
ti
al examples.

It seems to be a promising line of resear
h to try to integrate some of our

optimisation ideas into Boudet's algorithm.

We presented an optimised algorithm for
ombining
onstraint solvers.

Our empiri
al analysis indi
ates that the
ombined
onstraint solvers ob-

tained this way
an indeed be used in pra
ti
e. It should be noted, however,

that some of the non-determinism is inherent in the
ombination problem,

whi
h means that even the best optimisation methods
annot avoid this

omplexity, unless the stru
tures to be
ombined are severely restri
ted, as

pointed out in the subse
tion on deterministi

ombination.

Referen
es

[1℄ Peter A
zel. Non-wellfounded Sets. Number 14 in CSLI Le
ture Notes.

CSLI, Stanford University, USA, 1988.

[2℄ Franz Baader and Klaus U. S
hulz. Combination of Constraint Solvers

for Free and Quasi-Free Stru
tures. Te
hni
al Report CIS-Beri
ht-96-

90, CIS, Universit�at M�un
hen, 1996.

[3℄ Franz Baader and Klaus U. S
hulz. Uni�
ation in the Union of Dis-

joint Equational Theories: Combining De
ision Pro
edures. Journal of

Symboli
 Computation, 21:211{243, 1996.

[4℄ Franz Baader and J�org H. Siekmann. Uni�
ation Theory. In Dov M.

Gabbay, Christopher J. Hogger, and John Alan Robinson, editors,

25

Handbook of Logi
 in Arti�
ial Intelligen
e and Logi
 Programming,

volume 2, pages 41{125. Oxford University Press, 1994.

[5℄ Alexandre Boudet. Combining Uni�
ation Algorithms. Journal of Sym-

boli
 Computation, 16(6):597{626, 1993.

[6℄ Alan Bundy, editor. Automated Dedu
tion, Pro
eedings CADE-12,

Nan
y, Fran
e, LNAI 814. Springer-Verlag, 1994.

[7℄ Hans-J�urgen B�ur
kert. A Resolution Prin
iple for Clauses with Con-

straints. In Sti
kel [23℄, pages 178{192, 1990.

[8℄ Ta Chen and Siva Anantharaman. STORM: A Many-to-one

Asso
iative-
ommutative Mat
her. In Jieh Hsiang, editor, Rewriting

Te
hniques and Appli
ations, Pro
eedings RTA-95, LNCS 914, pages

414{419. Springer-Verlag, 1995.

[9℄ Alain Colmerauer. Equations and Inequations on Finite and In�nite

Trees. In Institute for New Generation Computer Te
hnology, editor,

Pro
eedings of the 2nd International Conferen
e on Fifth Generation

Computing Systems, pages 85{99, Tokyo, 1984. Ohmsha et al.

[10℄ Alain Colmerauer. An Introdu
tion to PROLOG III. Communi
ations

of the ACM, 33:69{90, 1990.

[11℄ Agostino Dovier, Alberto Poli
riti, and Gianfran
o Rossi. Integrating

lists, multisets, and sets in a logi
 programming framework. In Franz

Baader and Klaus U. S
hulz, editors, Frontiers of Combining Systems,

Pro
eedings of the 1st Int. Workshop, FroCoS'96. Kluwer A
ademi

Publishers, 1996.

[12℄ Xiaorong Huang, Manfred Kerber, Mi
hael Kohlhase, Eri
a Melis, Dan

Nesmith, J�orn Ri
hts, and J�org H. Siekmann. KEIM: A Toolkit for

Automated Dedu
tion. In Bundy [6℄, pages 807{810, 1994.

[13℄ Jean-Pierre Jouannaud and H�el�ene Kir
hner. Completion of a Set

of Rules modulo a set of Equations. SIAM Journal on Computing,

15:1155{1195, 1986.

[14℄ Deepak Kapur and Paliath Narendran. Complexity of Uni�
ation Prob-

lems with Asso
iative-Commutative Operators. Journal of Automated

Reasoning, 9:261{288, 1992.

[15℄ Claude Kir
hner and H�el�ene Kir
hner. Constrained Equational Rea-

soning. In Gaston H. Gonnet, editor, Pro
eedings of SIGSAM 1989

International Symposium on Symboli
 and Algebrai
 Computation: IS-

SAC'89, pages 382{389. ACM Press, 1989.

26

[16℄ Anatolij Ivanovi�
 Mal'
ev. The Metamathemati
s of Algebrai
 Systems.

Edited by Benjamin Franklin Wells, volume 66 of Studies in Logi
.

North-Holland Publishing Company, 1971.

[17℄ Robert Nieuwenhuis and Albert Rubio. AC-superposition with Con-

straints: No AC-uni�er Needed. In Alan Bundy, editor, Pro
eedings

of the 12th International Conferen
e on Automated Dedu
tion, Nan
y,

Fran
e, LNAI, pages 545{559. Springer, 1994.

[18℄ Gordon D. Plotkin. Building-in Equational Theories. Ma
hine Intelli-

gen
e, 7:73{90, 1972.

[19℄ Manfred S
hmidt-S
hau�. Uni�
ation in a Combination of Arbi-

trary Disjoint Equational Theories. Journal of Symboli
 Computation,

8(1,2):51{99, 1989.

[20℄ Klaus U. S
hulz. Combining Uni�
ation and Disuni�
ation

Algorithms|Tra
table and Intra
table Instan
es. Te
hni
al Report

CIS-Beri
ht-96-99, CIS, Universit�at M�un
hen, 1996.

[21℄ Gert Smolka and Ralf Treinen. Re
ords for Logi
 Programming. Jour-

nal for Logi
 Programming, 18(3):229{258, 1994.

[22℄ Mark E. Sti
kel. A Uni�
ation Algorithm for Asso
iative-Commutative

Fun
tions. Journal of the ACM, 28(3):423{434, 1981.

[23℄ Mark E. Sti
kel, editor. Automated Dedu
tion, Pro
eedings CADE-10,

LNAI 449, Berlin, Germany, 1990. Springer{Verlag.

[24℄ Peter Van Roy, Mi
hael Mehl, and Ralf S
heidhauer. Integrating eÆ-

ient re
ords into
on
urrent
onstraint programming. In 8th Interna-

tional Symposium on Programming Languages, Implementations, Logi
,

and Programs (PLILP96), Aa
hen, September 1996.

27

