
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

Description Logics with Aggregates and

Concrete Domains

Franz Baader Ulrike Sattler

LTCS-Report 97-01

An abridged version has appeared in the Proceedings of

the International Workshop on Description Logics, Gif sur

Yvette, France, 1997.

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

Description Logics with Aggregates and

Concrete Domains

Abstract

We show that extending description logics by simple aggregation

functions as available in database systems may lead to undecidability

of inference problems such as satis�ability and subsumption.

1 Motivation

Aggregation is a very useful mechanism available in many expressive repre-

sentation formalisms such as database schema and query languages. Most

systems provide a �xed set of aggregation functions like sum, min, max;

average, count, which can be used over a given built-in domain, like the

integers or the reals. In this paper, the generic Description Logic ALC(D) as

introduced in

[

Baader&Hanschke,1991

]

is extended by aggregation. ALC(D)

is an extension of the well-known description language ALC (see

[

Schmidt-

Schau�&Smolka,1991; Hollunder et al.,1990; Donini et al.,1991

]

) by so-called

concrete domains. In the basic language, ALC, concepts can be built using

propositional operators, (i.e., and (u), or (t), and not (:)), and value re-

strictions on those individuals associated to an individual via a certain role.

These include existential restrictions like in (9has child:Girl) as well as

universal restrictions like (8has child:Human). Additionally, in ALC(D), ab-

stract individuals which are described using ALC can now be related to values

in a concrete domain (e.g., the integers or strings) via features, i.e., functional

roles. This allows us to describe managers that spend more money than they

earn by

Manager u (less(income; expenses)):

1

1 MOTIVATION 2

7.500 12.000 10.400

Concrete Domain: Integers Abstract domain

Year97

Josie

Jan96 Feb96 Dec96...income

income

income

8.000

10.500

9.800

Year96138.000

149.000

sum(

month month month

year year

expenses expenses expenses

oincome)

expenses)montho

monthsum(

Figure 1: Example for aggregation

In our extension of ALC(D), aggregation is viewed as a means to de�ne new

features. In Figure 1, a person, Josie, is given who spends, in some months,

more money than she earns, and in others less. If we want to know the

di�erence between income and expenses for a whole year, we have to consider

the sum over all months. Then we can state that or ask whether Josie is an

instance of

Human u (9year:less(sum(month�income);

sum(month�expenses)));

where the complex feature sum(month � income) relates an individual to the

sum over all values reachable over month followed by income. This new,

complex feature is built using the aggregation function sum, the role name

month, and the feature income.

In this paper, we present a generic extension of ALC(D) by aggregation that

is based on this idea of introducing new \aggregated features". Unfortu-

nately, it turns out that, given a concrete domain together with aggregation

2 PRELIMINARIES: THE BASIC DESCRIPTION LOGIC ALC(D) 3

functions satisfying some very weak conditions, this extension has an unde-

cidable satis�ability problem. Moreover, this result can even be tightened:

extending FL

0

, a very weak Description Logic allowing for conjunction and

universal value restrictions only, by a weak form of aggregation already leads

to undecidability of satis�ability and subsumption.

For database research, these results are, for example, of interest in the context

of intensional reasoning in the presence of aggregation, as considered in

[

Ross

et al.,1998; Gupta et al.,1995; Mumick&Shmueli,1995; Levy&Mumick,1996;

Srivastava et al.,1996

]

. They are not comparable with the undecidability re-

sults presented in

[

Mumick&Shmueli,1995

]

since our prerequisites are weaker

and no recursion mechanisms are used. Neither are they contained in the un-

decidability results in

[

Ross et al.,1998

]

: the results presented there concern

constraints involving multiplication and addition as well as rather complex

aggregation functions like average or count|in contrast to the results pre-

sented here.

2 Preliminaries: The basic Description Logic

ALC(D)

In this section, ALC(D), the Description Logic underlying this investigation,

is presented. ALC(D) is an extension of the well-known Description Logic

ALC (see

[

Schmidt-Schau�&Smolka,1991; Hollunder et al.,1990; Donini et

al.,1991; 1995

]

) by so-called concrete domains. First, we formally specify a

concrete domain.

De�nition 1 (Concrete Domains)

A concrete domain D = (dom(D); pred(D)) consists of

� a set dom(D) (the domain), and

� a set of predicate symbols pred(D).

Each predicate symbol P 2 pred(D) is associated with an arity n and an

n-ary relation P

D

� dom(D)

n

.

2 PRELIMINARIES: THE BASIC DESCRIPTION LOGIC ALC(D) 4

In

[

Baader&Hanschke,1991

]

, concrete domains are restricted to so-called

admissible concrete domains in order to keep the inference problems of this

extension decidable. We recall that, roughly spoken, a concrete domain D is

called admissible i� (1) pred(D) is closed under negation and contains a unary

predicate name> for dom(D), and (2) satis�ability of �nite conjunctions over

pred(D) is decidable.

The syntax of ALC(D)-concepts is de�ned as follows (see

[

Baader&Han-

schke,1991

]

):

De�nition 2 Let N

C

, N

R

, and N

F

be disjoint sets of concept, role, and

feature names. The set of ALC(D)-concepts is the smallest set such that

1. every concept name is a concept and

2. if C, D are concepts, R is a role or a feature name, P 2 pred(D) is an

n-ary predicate name, and u

1

; : : : ; u

n

are feature chains,

1

then (CuD),

(C tD), (:C), (8R:C), (9R:C), and P (u

1

; : : : ; u

n

) are concepts.

In order to �x the exact meaning of these concepts, their semantics is de�ned

in the usual model-theoretic way.

De�nition 3 An interpretation I = (�

I

; �

I

) consists of a set �

I

disjoint

from dom(D), called the domain of I, and a function �

I

which maps every

concept to a subset of �

I

, every role to a subset of �

I

��

I

, and every feature

name f 2 N

F

to a partial function f

I

: �

I

! �

I

[dom(D). Furthermore,

I has to satisfy the following properties

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

:C

I

= �

I

n C

I

(9R:C)

I

= fd 2 �

I

j Exists e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g

(8R:C)

I

= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g

P (u

1

; : : : ; u

n

)

I

= fx 2 �

I

j (u

I

1

(x); : : : ; u

I

n

(x)) 2 P

D

g

where (f

1

� : : :�f

m

)

I

(x) = f

I

m

(f

I

m�1

(: : : (f

I

1

(x) : : :). A concept C is called

satis�able i� there is some interpretation I such that C

I

6= ;. Such an

1

A feature chain u = f

1

�: : :�f

m

is a sequence of features f

i

.

3 EXTENSION OF ALC(D) BY AGGREGATION 5

interpretation is called a model of C. A concept D subsumes a concept C

(written C v D) i� C

I

� D

I

holds for each interpretation I. Two concepts

are said to be equivalent (written C � D) if they mutually subsume each

other. For an interpretation I, an individual x 2 �

I

is called an instance of

a concept C i� x 2 C

I

.

As a consequence of this de�nition, an instance of a concept P (u

1

; : : : ; u

n

)

has necessarily an u

i

-successor in dom(D) for each 1 � i � n. Furthermore,

if x 2 >(f)

I

, then f

I

(x) 2 dom(D). To express that an individual has no f -

successor at all, we will use the abbreviation no

f

= 8f:(Au:A). As ALC(D)

allows for negation and conjunction of concepts, all boolean operators can

be expressed, and we will use C) D as a shorthand for :C tD. Another

consequence of the presence of these two operators is that subsumption and

(un)satis�ability can be reduced to each other:

� C v D i� C u :D is unsatis�able,

� C is unsatis�able i� C v A u :A (for some concept name A).

From the results presented in

[

Baader&Hanschke,1991

]

it follows immedi-

ately that subsumption and satis�ability are decidable forALC(D) concepts|

given that D is admissible. The authors present a tableau-based procedure

that decides these and other inference problems.

3 Extension of ALC(D) by aggregation

In order to de�ne aggregation appropriately, �rst, we will introduce the no-

tion of multisets: In contrast to simple sets, in a multiset an individual can

occur more than once; for example, the multiset f1g is di�erent from the

multiset f1; 1g. Multisets are needed to ensure, e.g., that Josie's income is

calculated correctly in the case she earns the same amount of money in more

than one month.

De�nition 4 (Multisets) Let S be a set. A multiset M over S is a

mapping M : S ! IN, where M(s) denotes the number of occurrences of s

in M . The set of all multisets of S is denoted MS(S).

A multiset M is said to be �nite i� fs jM(s) 6= 0g is a �nite set.

3 EXTENSION OF ALC(D) BY AGGREGATION 6

As the aggregation functions strongly depend on the speci�c concrete do-

mains, the notion of a concrete domain is extended accordingly. Furthermore,

the notion of concrete features is introduced. Those are (possibly complex)

features which can be built using aggregation over roles followed by features.

Then ALC(D + �)-concepts are de�ned.

De�nition 5 The notion of a concrete domain D as introduced in De�-

nition 1 is extended by a set of aggregation functions agg(D), where each

� 2 agg(D) is associated with a partial function �

D

from the set of multisets

of dom(D) into dom(D).

The set of concrete features is inductively de�ned as follows:

� Each feature name f 2 N

F

is a concrete feature,

� chains of concrete features are concrete features,

� ifR 2 N

R

is a role, f is a concrete feature, � 2 agg(D) is an aggregation

function, then �(R�f) is a concrete feature.

Finally, ALC(D + �)-concepts are obtained from ALC(D)-concepts by allow-

ing, additionally, the use of concrete features f

i

in a predicate restrictions

P (f

1

; : : : ; f

n

) (recall that in ALC(D) only feature chains were allowed).

It remains to extend the semantics of ALC(D) to the new feature forming

operator:

De�nition 6 (Extended Semantics) An ALC(D + �)-interpretation I

is an ALC(D)-interpretation which additionally satis�es

(�(R�f))

I

= f(x; y) 2 �

I

� dom(D) j �

D

(M

R�f

x

) = yg

where, for x 2 �

I

, a feature f , and a role R, M

R�f

x

denotes the multiset over

dom(D) where the number of occurrences of z 2 M

R�f

x

is determined by the

number of R

I

-successors y of x with f

I

(y) = z, i.e. for z 2 dom(D) we have

M

R�f

x

(z) = #fy 2 �

I

j (x; y) 2 R

I

and f

I

(y) = zg:

3 EXTENSION OF ALC(D) BY AGGREGATION 7

We point out two consequences of this de�nition, which might not be obvious

at �rst sight:

(a) If (R�f)

I

(x) contains individuals in �

I

, then these individuals have no

inuence on M

R�f

x

: it is de�ned in such a way that it takes only into account

(R�f)

I

-successors of x in the concrete domain dom(D).

(b) Aggregation functions are partial functions, hence (�(R�f))

I

(x) does not

need to be de�ned. For example, the (standard) sum over an in�nite set of

numbers larger than 1 is unde�ned: If dom(D) is the set of reals, and if x

has in�nitely many R-successors in I which all have an f -successor in the

reals that is larger than 1, then (sum(R�f))

I

(x) is unde�ned. To enforce

that an individual has f

i

-successors in dom(D), we can make use of predicate

restrictions P (f

1

; : : : ; f

n

). Recall that for x 2 �

I

to be an instance of a

concept P (f

1

; : : : ; f

n

), it is necessary that for each concrete feature f

i

the

value f

I

i

(x) is de�ned and in dom(D).

3.1 A �rst undecidability result

The following theorem states that admissibility of a concrete domain does

no longer guarantee decidability of the interesting inference problems:

Theorem 7 For a concrete domain D where

� dom(D) includes the non-negative integers,

� pred(D) contains a (unary) predicate P

=1

that tests for equality with

1, and a (binary) equality P

=

,

� agg(D) contains min;max; sum,

satis�ability and subsumption of ALC(D + �)-concepts is undecidable.

Remarks: (a) The aggregation functions min;max; sum are supposed to be

de�ned as usual, i.e., for multisets M over the reals (and thus also for mul-

tisets M over the non-negative integers) we have

3 EXTENSION OF ALC(D) BY AGGREGATION 8

sum(M) =

8

<

:

P

y2M

M(y) � y if M is �nite

unde�ned otherwise

min(M) =

8

>

>

<

>

>

:

m if there exists m 2 M such

that n � m for all n 2M

unde�ned if such an m does not exist

max(M) =

8

>

>

<

>

>

:

m if there exists m 2 M such

that n � m for all n 2M

unde�ned if such an m does not exist

(b) At �rst sight, this undecidability result seems very restricted. Note,

however, that it does not require that dom(D) is the set of non-negative

integers, but that it just requires that dom(D) contains the non-negative

integers. This makes the undecidability result not only more general, but

also stronger: For example, computations over the reals are, in general, easier

than computations over the non-negative integers, i.e., the �rst order theory

of +; �;� is undecidable over the non-negative integers, whereas it is decidable

over the reals.

Furthermore, the aggregation functions min;max; sum are among those nor-

mally considered as built-in functions for databases (see, for example,

[

Gupta

et al.,1995; Mumick&Shmueli,1995; Levy&Mumick,1996; Srivastava et al.,1996

]

).

Finally, to test whether a certain value equals 1 or whether two values are

equal is possible in all database systems with built-in predicates.

(c) We do not suppose that D is admissible|although this precondition

would not make the undecidability result less expressive. Nevertheless, in

the sequel we will make use of the concept >(f). This is in accordance with

the preconditions of Theorem 7 because >(f) (if not available in D) can be

introduced as abbreviation, e.g., for P

=

(f; f).

Proof of Theorem 7: The proof is by reduction of Hilbert's 10th prob-

lem

[

Davis,1973

]

to satis�ability of concepts, i.e., for polynomials P;Q 2

IN[x

1

; : : : ; x

m

], one can construct an ALC(D + �)-concept C

P;Q

that is satis-

�able i� the polynomial equation

P (x

1

; : : : ; x

m

) = Q(x

1

; : : : ; x

m

) (1)

3 EXTENSION OF ALC(D) BY AGGREGATION 9

has a solution in IN

m

. In the sequel, we write x as shorthand for (x

1

; : : : ; x

m

)

and x

i

j

as shorthand for the monomial x

i

j1

1

� � �x

i

jm

m

.

The idea of the reduction is to represent the (sub)term structure of the

polynomial P (resp. Q) as a tree which is related to an instance of C

P;Q

via

the feature P (resp. Q); see Figure 2. The polynomial P is supposed to be

of the form

P (x) = a

0

+ a

1

x

i

1

+ : : :+ a

j

x

i

j

+ : : : a

n

x

i

n

;

where all monomials x

i

j

are supposed to be di�erent.

C

P

C

Q

C

P;Q

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

. . .

.

.

.

.

.

.

. . .

R

R

R

R

R

R

R

1

R

m

.

.

.

.

.

.

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

C

A

0

C

A

n

.

.

.

RR

R

R

P Q

R R

RR

C

A

j

X

i

j1

1

x

1

R-succs.

x

1

R-succs.

X

i

j1

�1

1

X

i

j1

�1

1

X

i

j1

�2

1

X

i

j1

�2

1

C

x

i

j

C

x

i

j

C

x

i

j

a

j

R-succs.

X

i

jm

m

x

i

j1

1

R-succs.

x

i

j2

2

R-succs.

Figure 2: The intuitive structure of C

P;Q

3 EXTENSION OF ALC(D) BY AGGREGATION 10

When building the reduction concept C

P;Q

, one encounters three main prob-

lems: (a) We only know that dom(D) contains IN, but the solution of Equa-

tion 1 has to be in IN

m

, and D need not provide for a predicate that tests for

being a non-negative integer. (b) It has to be assured that (the representation

of) each variable x

i

is associated with the same non-negative integer wherever

it occurs in a model of C

P;Q

. (c) The reduction asks for the representation

of calculations such as addition, multiplication, and exponentiation.

These problems can be overcome as follows:

(a) is solved by making use of the concept E

R

g

,

E

R

g

:= (8R:(P

=1

(f))) u P

=

(sum(R�f); g);

whose instances have as g-successors the number of their R-successors. Hence

their g-successor is in IN or unde�ned (if there are in�nitely manyR-successors).

(b) This problem is solved by introducing features x

i

for each variable x

i

and

by making strong use of the concepts E

R

x

i

as de�ned above and Inv:

Inv := u

1�i�m

(8R:>(x

i

) u P

=

(min(R�x

i

);max(R�x

i

)) u P

=

(x

i

;max(R�x

i

))):

Using E

R

x

i

, we make sure that x

i

-successors are non-negative integers. The

concept Inv is de�ned in such a way that R-successors of an instance a of Inv

have the same x

i

-successor, which coincides with the x

i

-successor of a.

Using this concept at all levels of nested concepts, we can guarantee that all

\relevant" individuals in a model of C

P;Q

have the same x

i

-successor for each

variable x

i

.

(c) Addition can be realized by the aggregation function sum, and multipli-

cation (and hence exponentiation) can be reduced to addition; for details see

the explanation of the reduction concepts below.

Let D be as described in Theorem 7. Then we can de�ne the following

abbreviations:

E

R

1

:= (8R:(P

=1

(f))) u P

=1

(sum(R�f)) (exactly 1 R-successor)

E

R

g

:= (8R:(P

=1

(f))) u P

=

(sum(R�f); g) (exactly g

I

(x) R-successors)

E

R

n

:= 8R:

�

t

1�i�n

(P

=1

(f

i

) u u

j 6=i

no

f

j

�

u (exactly n R-successors)

u

1�i�n

P

=1

(sum(R�f

i

))

3 EXTENSION OF ALC(D) BY AGGREGATION 11

where no

f

j

is the abbreviation for 8f

j

:(A u :A) mentioned in Section 2.

It is easy to see that each instance of E

R

1

has exactly 1 R-successor, and the

concept E

R

g

has already been explained above. Now, for an instance a of E

R

n

,

every R-successor has exactly one f

i

-successor for some i; 1 � i � n, and this

f

i

-successor has value 1 (�rst line). The constraint on the concrete feature

sum(R�f

i

) (second line) makes sure that there is exactly one R-successor with

an f

i

-successor for each i, which implies that a has exactly n R-successors.

More precisely, the reduction concept is built as follows and given in the

Figures 3 and 4.

1. First, we de�ne C

P;Q

such that, for each interpretation I, each instance

x 2 C

I

P;Q

has exactly one P -successor p in C

I

P

and exactly one Q-

successor q in C

I

Q

. The individual p represents the polynomial P , and

q represents Q; see Concept 2. Concept 3 is similar to Inv and makes

sure that for each j, the x

j

-successor of p is in dom(D) and the same

as the x

j

-successor of q. Finally, Concept 4 makes sure that the value

of the polynomial P when evaluated with the x

j

-successors (which are

already ensured to be the same for p and for q) is the same as of Q.

2. An instance p of C

P

has

� for each monomial A

j

= a

j

x

i

j

of P one R-successor which is an

instance of C

A

j

and represents the monomial A

j

; see Concept 5.

� an s-successor which is the sum of the s-successors of its R-

successors; see Concept 6.

Given that the s-successor of each R-successor of p is the value of the

monomial A

j

, the s-successor of p is the corresponding value of P ,

namely the sum over all monomials. Again, the concept Inv makes

sure that each x

i

-successor of p coincides with the x

i

-successors of its

R-successors.

3. For the monomials A

j

, we use n + 1 concepts C

A

j

. The purpose of

the last conjunct of Concept 7 is to achieve disjointness of these con-

cepts C

A

j

. An instance a of C

A

j

has a

j

R-successors, each of them

representing x

i

j

; see Concept 9. The last conjunct makes sure that the

s-successor (representing the value of A

j

) is computed correctly: Since

3 EXTENSION OF ALC(D) BY AGGREGATION 12

C

P;Q

:= E

P

1

u E

Q

1

u 8P:C

P

u 8Q:C

Q

u (2)

u

1�j�m

�

P

=

(sum(P �x

j

); sum(Q�x

j

))

�

u (3)

P

=

(sum(P �s); sum(Q�s)) (4)

C

P

:= E

R

n+1

u u

0�i�n

(9R:C

A

i

) u (5)

Inv u P

=

(s; sum(R�s)) (6)

C

A

j

:= E

R

a

j

u 8R:C

x

i

j

u E

H

j

u (7)

Inv u P

=

(s; sum(R�s)) (8)

C

x

i

j

:= Exp

x

i

j

uMult

m

1

(9)

Figure 3: The reduction concept C

P;Q

and some of its subconcepts.

a has a

j

R-successors, each of them representing x

i

j

, the s-successor of

a is the sum over the s-successors of its R-successors.

4. C

x

i

j

is more complicated. An instance c of it has two di�erent kinds of

role successors:

� For each of them factors x

i

jk

k

in x

i

j

, c has one R

k

-successor inX

i

jk

k

,

whose s

k

-successor stands for its value x

i

jk

k

. The concept Exp

x

i

j

implies this fact. In Exp

x

i

j

, we use the second conjunct instead of

Inv to propagate the value of x

k

down to the according subtree.

The last conjunct of Exp

x

i

j

makes sure that the respective values

s

k

are propagated upwards to c.

� Then, in order to multiply the m factors x

i

jk

k

, we make use of the

concept Mult

m

1

explained below.

3 EXTENSION OF ALC(D) BY AGGREGATION 13

Exp

x

i

j

:= u

1�k�m

�

E

R

k

1

u P

=

(x

k

; sum(R

k

�x

k

))u (10)

8R

k

:X

i

jk

k

u P

=

(s

k

; sum(R

k

�s

k

))

�

(11)

Mult

m

m

:= P

=

(s; s

m

) (12)

Mult

m

k

:= E

R

s

k

u P

=

(s; sum(R�s)) u 8R:Mult

m

k+1

u (13)

m

u

`=k+1

�

P

=

(min(R�s

`

);max(R�s

`

)) u P

=

(min(R�s

`

); s

`

)

�

(14)

X

0

k

:= P

=1

(s) u E

R

x

k

(15)

X

1

k

:= E

R

x

k

u P

=

(s; x

k

) (16)

X

`

k

:= E

R

x

k

u 8R:X

`�1

k

u P

=

(s; sum(R�s)) u (17)

P

=

(min(R�x

k

);max(R�x

k

)) u P

=

(x

k

;max(R�x

k

)); ` � 2

Figure 4: Subconcepts of C

P;Q

used for the representation of calculations.

Again, the s-successor of c denotes the value of this calculation, namely

x

i

j

.

5. For X

i

k

, we have to distinguish two cases : If i = 0, then the value as-

sociated to this factor is 1; see the concept X

0

k

. Otherwise, an instance

y of X

i

k

is the root of an x

k

-ary R-tree of depth i where the s-successor

of each node is the sum of the s-successors of its R-successors. Finally,

the s-successor of a node one level above the leaves (which represents

x

1

k

) equals its x

k

-successor|which is the same for all nodes in the whole

tree. Since dom(D) is only required to contain the non-negative inte-

gers, we have to ensure that all x

k

-successors are non-negative integers.

This is realized by making use of the concept E

R

x

k

. Thus, we use the

possibilities to construct trees and to sum up in order to compute ex-

3 EXTENSION OF ALC(D) BY AGGREGATION 14

ponentiation.

6. Finally, the situation in which we start multiplication looks as follows:

An instance u of Mult

m

1

is at the root of the multiplication tree, u is

also an instance of C

x

i

j

, and we want to multiply all m s

k

-successors of

u. To this purpose, we attach an R-tree of depth m� 1 to u. This tree

is, at level k, of outdegree s

k

. At level m�1, we make sure that the s

m

-

successors coincide with the s-successor. Again, we sum up the values

from the bottom to the top by using the concept P

=

(s; sum(R�s)), and

we make sure that all nodes have the same s

i

successor by a concept

similar to Inv; see Concept 14.

It remains to be shown that C

P;Q

is satis�able i� P (x) = Q(x) admits a

solution in the non-negative integers.

\(" The construction of a model M for C

P;Q

from P;Q, and a solution

n

1

; : : : ; n

m

2 IN

m

for x is not di�cult. M can be constructed along the

explanations given for C

P;Q

in the following way: We start at the bottom of

the tree M by introducing instances x

1

k

of

� X

1

k

that have n

k

R-successors, each of them having 1 as f -successor

(due to the use of E

R

x

k

), n

k

as x

k

successor, and n

k

as s-successor, and

instances x

0

k

of

� X

0

k

that have n

k

R-successors, each of them having 1 as f -successor,

n

k

as x

k

successor, and 1 as s-successor.

Then, for each monomial x

i

j

, the corresponding subtrees representing n

i

jk

k

are built: Starting with (copies of) x

1

k

and x

0

k

, we build trees of depth i

jk

and degree n

k

. Next, instances c of C

x

i

j

are introduced, where each c has

as R

k

-successor the subtree representing the factor n

i

jk

k

in n

i

j1

1

� � �n

i

jm

m

. Now,

we have to append another subtree to each c, namely the one representing

the multiplication of the values n

i

jk

k

. This tree is of depth m� 1 and degree

n

i

jk

k

at level k. The remaining construction is straightforward: We �rst take

a

j

disjoint copies of the c's standing for C

x

i

j

(including the corresponding

subtree) as R-successors of an instance a of C

A

j

, then we append these a's as

3 EXTENSION OF ALC(D) BY AGGREGATION 15

R-successors of an instance of p of C

P

. We suppose that the same construc-

tion has been carried out for Q, which lead to an instance q of C

Q

. Finally,

p and q are P (resp. Q) -successors of an instance c of C

P;Q

.

All over the tree constructed in this way, the s-successor of an individual

equals the sum over the s-successors of its R-successors, and all individuals

have the same x

k

-successor. The fact that a solution n

1

; : : : ; n

m

2 IN

m

for x

has to be used for this construction is reected in the fact that, due to the

de�nition of C

P;Q

, p's s-successor has to coincide with q's s-successor.

\)" Given a model M for C

P;Q

with c 2 C

I

P;Q

, due to the presence of Inv

and similar concepts in C

P;Q

, all x

i

-successors of all \relevant" role successors

of c coincide|where \relevant" role successors are those whose existence is

explicitly required by C

P;Q

. Again, following the description of C

P;Q

, it is

easy to see that (x

I

1

(c); : : : ; x

I

m

(c)) is a solution for P (x) = Q(x). Due to the

use of the concepts E

R

x

i

, this solution is in IN

m

.

Hence satis�ability and thus subsumption of ALC(D)-concepts is undecidable

for concrete domains D as described in Theorem 7.

We want to emphasize that C

P;Q

does not make any use of the possibility to

apply aggregation functions to feature chains, i.e., wherever a subconcept of

C

P;Q

contains �(R�f) for some aggregation function �, f is a feature name

(and not a complex feature chain or concrete feature).

3.2 Tightening the result

A closer investigation of the concept C

P;Q

reveals that (a) negation occurs

only in the concept no

f

, (b) the only place where existential restriction occurs

is in the concepts C

P

and C

Q

, and (c) the only place where disjunction

t occurs is in the concepts E

R

n

describing individuals having exactly n R-

successors.

It can be shown that the concepts no

f

, E

R

n

and C

P

can be rewritten into con-

cepts without negation, disjunction and existential restriction, by extending

only slightly the set of concrete predicates. Hence, the reduction concept

C

P;Q

can be written using only conjunction u and universal value restriction

3 EXTENSION OF ALC(D) BY AGGREGATION 16

8R:C. As introduced in

[

Baader,1996

]

, let FL

0

denote the set of those con-

cepts that are built using conjunction and universal value restriction only,

and let FL

0

(D+�) denote the extension of this language by concrete domains

with aggregation. Then the following undecidability result is an immediate

consequence of the possibility to rewrite the reduction concept C

P;Q

without

using negation, disjunction, and existential restriction.

Theorem 8 For a concrete domain D where

� dom(D) includes the non-negative integers IN,

� pred(D) contains, for all non-negative integers n, (unary) predicates

P

=n

that test for equality with n, the (binary) equality predicate P

=

,

and the (binary) inequality predicate P

6=

,

� agg(D) contains min;max; sum,

satis�ability and subsumption of FL

0

(D+�)-concepts is undecidable.

Remarks: (a) Admissible concrete domains as de�ned in

[

Baader&Han-

schke,1991

]

are closed under negation, hence the presence of a predicate P

=

in pred(D) implies the presence of its negation P

6=

. Thus, for admissible

domains, only the unary predicates P

=n

are required in addition to the pre-

conditions of Theorem 7.

(b) We recall that according to the semantics of FL

0

(D+�), an individual

x can only be an instance of the concept P

6=

(f; g) if x has an f - as well as a

g-successor in the concrete domain dom(D).

Proof: It remains to de�ne FL

0

(D+�)-concepts no

0

f

, E

0

n

R

and C

0

P

which

can play the rôle of no

f

, E

R

n

and C

P

in the reduction concept C

P;Q

of the

proof of Theorem 7.

no

0

f

: This concept is used to make sure that an individual has no f -successor.

It can be clearly replaced by

no

0

f

:= 8f:P

6=

(g; g);

3 EXTENSION OF ALC(D) BY AGGREGATION 17

where P

6=

(g; g) plays the rôle of the empty concept A u :A used in the

de�nition of no

f

.

E

0

n

R

: Given a concrete domain D that provides, for all non-negative integers

n, a unary predicate P

=n

that tests for equality with n, we can de�ne a

concept E

0

n

R

whose instances have exactly n R-successors:

E

0

n

R

:= 8R:P

=1

(f) u P

=n

(sum(R�f)):

Obviously, replacing E

R

n

by E

0

n

R

in C

P;Q

preserves its property of serving as a

reduction concept for Hilbert's 10th problem. Avoiding existential restriction

in C

P

is more complicated.

C

0

P

: In C

P

, existential restriction is used to make sure that for each monomial

A

j

there is one R-successor representing this monomial (the uniqueness of

this R-successor stems from the fact that there are exactly n+1 R-successors

and that the C

A

j

are mutually disjoint). This can also be expressed by

introducing for each j exactly one R

j

-successor (using E

R

j

1

), and then using

universal value restrictions to make sure that the R

j

-successor is an instance

of C

A

j

. Additionally, the x

j

-successors have to be propagated to the R

j

-

successors. All this is ensured by the �rst line of C

0

P

.

C

0

P

:= u

0�j�n

�

E

R

j

1

u 8R

j

:C

A

j

u u

0�`�m

P

=

(x

`

; sum(R

j

�x

`

)) u

P

=

(s

j

; sum(R

j

�s))

�

u

Add

s

0

;:::;s

n

It remains to enforce that the sum of all s-successors of all R

j

-successors of

an instance p of C

0

P

coincides with p's s-successor. For this purpose, we make

sure that p has an s

j

-successor which coincides with the s-successor of its R

j

-

successor. Then the concept Add

s

0

;:::;s

n

is used to sum up p's s

j

-successors.

It is de�ned inductively as follows:

add

t

s

0

;s

1

:= 8R

01

:(E

G

0

g

0

u E

G

1

g

1

u P

6=

(g

0

; g

1

)) u

P

=1

(max(R

01

�g

0

)) u P

=0

(min(R

01

�g

0

)) u

P

=1

(max(R

01

�g

1

)) u P

=0

(min(R

01

�g

1

)) u

P

=

(s

0

; sum(R

01

�g

0

)) u P

=

(s

1

; sum(R

01

�g

1

)) u

E

R

01

t

3 EXTENSION OF ALC(D) BY AGGREGATION 18

The idea underlying this addition is the following. First, the addition of

n + 1 numbers is reduced to the addition of two numbers: Therefore, the

s

0

- and the s

1

-successor of p are summed up and the result is stored as s

01

-

successor of p. Next, the s

01

- and the s

2

-successor are summed up and the

result is stored as s

012

-successor of p, and so forth, until only two arguments

are left. The sum of these last numbers is the result of the whole addition,

and therefore stored as s-successor of p.

The addition of two numbers (given as s

0

- and s

1

-successors) and the storage

of the result as t-successor is realized by the concept add

t

s

0

;s

1

given above:

Let p be an instance of add

s

s

0

;s

1

, let s0 be p's s

0

-successor, and let s1 be p's

s

1

-successor. From the construction of C

P;Q

it follows that s0; s1 are non-

negative integers. We make sure that the number ofR

01

-successors of p equals

s0+s1. Additionally, p's t-successor equals the number of its R

01

-successors,

which is s0 + s1.

To enforce that the number of R

01

-successors of p equals s0+ s1, we need all

but the last line of concept add

s

s

0

;s

1

. The idea is to partition theR

01

-successors

into those contributing to s0 and those contributing to s1. R

01

-successors

contributing to s0 have 1 as g

0

-successor successor and 0 as g

1

-successor,

whereas R

01

-successors contributing to s1 have 0 as g

0

-successor and 1 as

g

1

-successor. The �rst line of add

s

s

0

;s

1

ensures that all g

i

-successors of all R

01

-

successors of p are non-negative integers (by using auxiliary roles G

0

; G

1

) and

that the g

0

-successor always di�ers from the g

1

-successor. The next two lines

make sure that g

i

-successors of R

01

-successors are between 0 and 1. Together

with the fact that they are non-negative integers and di�erent, we have that

each R

01

-successor has either 1 as g

0

-successor and 0 as g

1

-successor or vice

versa. The fourth line states that the number of R

01

-successors representing

s0 (i.e., the ones having 1 as g

0

-successor) is s0, and that the number of

R

01

-successors representing s1 is s1. Finally, the last line enforces that the

number of p's R

01

-successors coincides with its s-successor.

Again, replacing C

P

by C

0

P

(respectively C

Q

by C

0

Q

) in C

P;Q

preserves its

property of serving as a reduction concept for Hilbert's 10th problem, which

is|in contrast to the initial one|an FL

0

(D+�)-concept.

Undecidability of subsumption follows from undecidability of satis�ability

because a concept C is satis�able i� it is not subsumed by an unsatis�able

concept, and because the FL

0

(D+�)-concept P

6=

(f; f) is such an unsatis�-

able concept.

4 CONCLUSION 19

4 Conclusion

Reasoning with constraints involving aggregation functions is a crucial task

for many advanced information systems like decision support and on-line-

analytical processing systems, data warehouses, and (statistical) databases

[

Ross et al.,1998; Gupta et al.,1995; Mumick&Shmueli,1995; De Giacomo&

Naggar,1996; Levy&Mumick,1996; Srivastava et al.,1996

]

. The more the

amount of data that are processed by these systems grows, the more impor-

tant become aggregation functions for summarizing, consolidating and ana-

lyzing these large amounts of data. Hence, traditional techniques for query

rewriting, query optimization, view maintenance, etc. must be extended such

that they are able to cope with aggregation functions.

The two undecidability results presented in this paper indicate that this

task will be di�cult. The aggregation functions min;max; sum that su�ce to

obtain undecidability are the most \well-behaved" ones: aggregation func-

tions like count or average are much more di�cult to handle. For example,

min;max; sum are monotonic, i.e., if S � S

0

, then

min(S) � min(S

0

);

max(S) � max(S

0

);

sum(S) � sum(S

0

);

whereas these relations cannot be established for count or average. Fur-

thermore, they are \compositional" in the sense that the aggregation f 2

fmin;max; sumg of two disjoint multisets S; S

0

can be computed using f ,

f(S), f(S

0

) only|which does not hold, for example, for average. Hence, our

undecidability result cannot be said to be caused by using a too powerful set

of aggregation functions.

Arguing from another perspective, ALC(D + �) is a rather expressive De-

scription Logic and it might not be very surprising that adding aggregation

to ALC(D) leads to undecidability. In contrast, FL

0

is, to our knowledge,

the weakest Description Logic ever considered. It is of such a low expres-

sive power that subsumption between two FL

0

-concepts can be reduced to

answering conjunctive queries: given two FL

0

-concepts C

1

and C

2

, C

1

sub-

sumes C

2

if and only if an individual x of an extensional database edb

C

1

(x)

constructed from C

1

is in the answer set of a conjunctive query q

C

2

con-

structed from C

2

. This reduction is, for several reasons, not possible for

REFERENCES 20

FL

0

(D+�)-concepts. However, it leads to the speculation that (intensional)

reasoning for conjunctive queries with (simple) aggregation functions and

built-in predicates is of high computational complexity.

References

[

Baader, 1996

]

F. Baader. Using automata theory for characterizing the se-

mantics of terminological cycles. Annals of Mathematics and Arti�cial

Intelligence, 18(2{4):175{219, 1996.

[

Baader&Hanschke, 1991

]

F. Baader and P. Hanschke. A schema for inte-

grating concrete domains into concept languages. In Proceedings of the

Twelfth International Joint Conference on Arti�cial Intelligence (IJCAI-

91), pages 452{457, Sydney, 1991.

[

Davis, 1973

]

M. Davis. Hilbert's tenth problem is unsolvable. American

Mathematical Monthly, 80:233{269, 1973.

[

De Giacomo&Naggar, 1996

]

G. De Giacomo and P. Naggar. Conceptual

data model with structured objects for statistical databases. In Proceed-

ings of the Eighth International Conference on Statistical Database Man-

agement Systems (SSDBM'96), pages 168{175. IEEE Computer Society

Press, 1996.

[

Donini et al., 1991

]

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The

complexity of concept languages. In Proceedings of the Second Interna-

tional Conference on the Principles of Knowledge Representation and Rea-

soning (KR-91), Boston (USA), 1991.

[

Donini et al., 1995

]

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The

complexity of concept languages. Technical Report RR-95-07, Deutsches

Forschungszentrum f�ur K�unstliche Intelligenz (DFKI), Kaiserslautern,

Germany, 1995.

[

Gupta et al., 1995

]

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-

query processing in data warehousing environments. In Proceedings of the

21. International Conference on Very Large Data Bases (VLDB-95), 1995.

REFERENCES 21

[

Hollunder et al., 1990

]

B. Hollunder, W. Nutt, and M. Schmidt-Schauss.

Subsumption algorithms for concept description languages. In ECAI-90,

Pitman Publishing, London, 1990.

[

Levy&Mumick, 1996

]

A. Y. Levy and I. S. Mumick. Reasoning with ag-

gregation constraints. In Proceedings of the International Conference on

Extending Database Technology (EDBT-96), Avignon, France, 1996.

[

Mumick&Shmueli, 1995

]

I. S. Mumick and O. Shmueli. How expressive is

strati�ed aggregation. Annals of Mathematics and Arti�cial Intelligence,

15(3-4), 1995.

[

Ross et al., 1998

]

K. Ross, D. Srivastava, P. J. Stuckey, and S. Sudarshan.

Foundations of aggregation constraints. Theoretical Computer Science,

1998. To appear.

[

Schmidt-Schau�&Smolka, 1991

]

M. Schmidt-Schau� and G. Smolka. At-

tributive concept descriptions with complements. Arti�cial Intelligence,

48(1):1{26, 1991.

[

Srivastava et al., 1996

]

D. Srivastava, S. Dar, H. V. Jagadish, and A. Y.

Levy. Answering queries with aggregation using views. In Proceedings of

the 22. International Conference on Very Large Data Bases (VLDB-96),

Bombay, India, 1996.

