
Uni�cation Theory { An Introduction

�

Franz Baader

Lehr- und Forschungsgebiet Theoretische Informatik, RWTH Aachen

Ahornstra�e 55, 52074 Aachen, Germany

e-mail: baader@informatik.rwth-aachen.de

Klaus U. Schulz

CIS, Universit�at M�unchen

Oettingenstra�e 67, 80538 M�unchen, Germany

e-mail: schulz@cis.uni-muenchen.de

1 Preface

Equational uni�cation is a generalization of syntactic uni�cation in which se-

mantic properties of function symbols are taken into account. For example,

assume that the function symbol \+" is known to be commutative. Given the

uni�cation problem x+ y

:

= a+ b (where x and y are variables, and a and b are

constants), an algorithm for syntactic uni�cation would return the substitution

fx 7! a; y 7! bg as the only (and most general) uni�er: to make x+ y and a+ b

syntactically equal, one must replace the variable x by a and y by b. However,

commutativity of \+" implies that fx 7! b; y 7! bg also is a uni�er in the sense

that the terms obtained by its application, namely b + a and a + b, are equal

modulo commutativity of \+". More generally, equational uni�cation is con-

cerned with the problem of how to make terms equal modulo a given equational

theory, which speci�es semantic properties of the function symbols that occur

in the terms to be uni�ed.

In this chapter, we �rst motivate equational uni�cation by its applications

in theorem proving and term rewriting. In addition to applications that require

the computation of uni�ers, we will also mention constraint-based approaches,

in which only solvability of uni�cation problems (i.e., the existence of uni�ers)

must be tested. Then we extend the de�nitions known from syntactic uni�ca-

tion (such as most general uni�er) to the case of equational uni�cation. It turns

out that, for equational uni�cation, one must be more careful when introducing

these notions. In the third section, we will mention some uni�cation results for

speci�c equational theories. In the fourth, and central, section of this chapter,

�

This work is a preliminary version of the chapter on uni�cation theory in a volume on

automated deduction produced by the participants of the nationwide German research pro-

gramme on automated deduction (SSP \Deduktion"). It was supported by a DFG grant (SSP

\Deduktion") and by the EC Working Group CCL II.

1

we treat the important problem of how to combine uni�cation algorithms. This

problem occurs, for example, if we have a uni�cation algorithm that can treat

the commutative symbol \+" and another algorithm that can treat the asso-

ciative symbol "�", and we want to unify terms that contain both symbols. In

Section 6, we will reconsider uni�cation from a more logical and algebraic point

of view. This will yield an interesting logical characterization of the theories

to which the combination approach introduced in the previous section applies.

Finally, we conclude with a short section in which other interesting topics in

the �eld of equational uni�cation are mentioned, which could not be treated in

more detail in this chapter.

2 Motivation

It is a well-known phenomenon that general purpose methods that can treat a

wide range of problems are usually less e�cient on a speci�c problem than spe-

cial purpose methods designed for solving this very problem. The integration of

such special purpose methods into general purpose approaches thus combines

the advantages of the general purpose method (such as
exibility and wide

applicability) with the advantages of the special purpose method (such as e�-

ciency). An instance of this phenomenon can be observed in automated deduc-

tion, where general purpose theorem provers are known to go astray when faced

with equational axioms that specify simple \semantic" properties of function

symbols, such as associativity or commutativity. Already in 1967 J.A. Robin-

son [53] proposed that substantial progress (\a new plateau") could be achieved

by removing these troublesome axioms from the data base, and building them

directly into the inference rules of the deductive machinery. One way of achiev-

ing this goal was proposed by G. Plotkin in his pioneering paper [50]. He showed

that (under certain assumptions) equational axioms can be removed from the

set of input clauses of a resolution-based theorem prover if the usual syntactic

(Robinson-style) uni�cation is replaced by equational uni�cation. Plotkin's ap-

proach of building-in equational theories is thus only applicable if there exist

special purpose uni�cation algorithms for equational theories that axiomatize

common semantic properties of function symbols. In the area of equational

uni�cation, such theories have been thoroughly studied, and this has lead to

an impressive collection of results on and e�cient algorithms for uni�cation in

equational theories (see Section 4 for some examples).

The usefulness of equational uni�cation has independently been discovered

in the area of term rewriting, where certain equational axioms like commuta-

tivity cause problems because they cannot be oriented into terminating rewrite

rules. Rewriting modulo equational theories [49, 36] takes such problematic ax-

ioms completely out of the rewriting process: in principle, these axioms generate

a congruence relation on terms, and rewriting is performed modulo this congru-

ence. Consequently, in the computation of critical pairs during Knuth-Bendix

completion, syntactic uni�cation must be replaced by uni�cation modulo this

congruence, that is, equational uni�cation.

2

The traditional applications of syntactic uni�cation in term rewriting and

resolution-based theorem proving depend on an algorithm that computes a most

general (syntactic) uni�er of the terms to be uni�ed. In Plotkin's approach and

in Knuth-Bendix completion modulo equational theories, the rôle of the most

general uni�er is taken on by a complete sets of uni�ers, that is, a set of uni�ers

that \represents" all solutions of the uni�cation problem (see Section 3 for a

formal de�nition). Unfortunately, such complete sets may become very large

or even in�nite. In the context of term rewriting, this may lead to a huge

or even in�nite number of critical pairs and possibly new rules, and in the

theorem proving application it may lead to a combinatorial explosion of the

search space or even an in�nitely branching search space. It should be noted,

however, that this may still be more e�cient than \blindly" searching for all

solutions of the uni�cation problem with a general purpose theorem prover,

and more promising than terminating the Knuth-Bendix completion procedure

unsuccessfully because a non-orientable equational axiom was encountered.

Constraint-based approaches to automated deduction and term rewriting

[15, 47, 41] require decision procedure for equational uni�cation, that is, algo-

rithms that decide whether a given equational uni�cation problem is solvable

or not. To be more precise, these approaches avoid the problems caused by

large complete sets of uni�ers since equational uni�cation is no longer used as

a mechanism for generating instantiations of variables (by applying the com-

puted uni�ers), but rather as a �lter that prohibits instantiations that do not

satisfy the (uni�cation) constraints. In each step of the deductive process, con-

straints are added that describe under which conditions the step is possible.

No additional branching of the search space is introduced this way. At suitable

points in the deductive process, the accumulated constraints are tested for solv-

ability, to �nd out whether there are still admissible instances. For uni�cation

constraints, this test can be realized with the help of a decision procedure for

equational uni�cation.

3 Basic notions

An equational theory over the signature � is de�ned by a set E of identities

between �-terms, i.e., a subset of T (�; V) � T (�; V), where V is a countably

in�nite set of variables. From a logical point of view, such an identity is a

universally quanti�ed equational axiom. With =

E

we denote the equational

theory de�ned by E, that is, the least congruence relation on T (�; V) that is

closed under substitution and contains E. T (�; V)==

E

denotes the quotient

term algebra modulo =

E

, which is the free algebra with generators V in the

class of all models of E. In the following, we will usually forget about the formal

distinction between an equational theory =

E

and its de�ning set of identities

E, i.e., we will also call E an equational theory. An equational theory E is

non-trivial i� x 6=

E

y for distinct variables x; y 2 V . It is easy to see that this

is equivalent to saying that E has a model of cardinality greater than 1.

3

Example 3.1 Let � = ffg for the binary function symbol f . The theory A

f

:=

ff(f(x; y); z) = f(x; f(y; z))g expresses associativity of f , C

f

:= ff(x; y) =

f(y; x)g expresses commutativity of f , and AC

f

:= A

f

[C

f

states that f must

be associative and commutative. From a logical point of view, A

f

corresponds

to the formula 8x:8y:8z:f(f(x; y); z) = f(x; f(y; z)). The class of all models of

A

f

is the class of all semigroups. For a set of variables V , the quotient term

algebra T (�; V)==

A

f

is isomorphic to V

+

, the free semigroup with generators

V , which consists of all words over the alphabet V and interprets the function

symbol f as concatenation of words.

If the function symbol f is clear from the context or irrelevant, then these

theories will be denoted A, C, and AC.

In equational uni�cation, as in the case of the usual (Robinson-style) syn-

tactic uni�cation, to \unify" terms means to make them equal by applying a

suitable substitution. Instead of using syntactic equality, equational uni�cation

employs equality modulo a given equational theory E. Syntactic uni�cation

can be obtained as a special case if one takes the empty set of identities, which

has syntactic equality of terms as its equational theory, i.e., s =

;

t i� s = t.

De�nition 3.2 Let � be a signature and E be an equational theory over �. An

E-uni�cation problem over � is a �nite set of equations between �-terms, that

is, a set of the form � := fs

1

:

= t

1

; : : : ; s

n

:

= t

n

g where s

1

; : : : ; t

n

2 T (�; V).

The �-substitution � is an E-uni�er (or solution) of � i� s

i

� =

E

t

i

� holds for

all i; 1 � i � n. The set of all E-uni�ers of � is denoted by U

�

E

(�).

For example, let � = fa; b; fg, where a; b are nullary function symbols (i.e., con-

stant symbols) and f is a binary function symbol. The C

f

-uni�cation problem

� := ff(x; y)

:

= f(a; b)g has two C

f

-uni�ers:

fx 7! a; y 7! bg and fx 7! b; y 7! ag:

If we consider � as an ;-uni�cation problem, then only the �rst of these two

substitutions is an ;-uni�er (i.e., syntactic uni�er).

For a given E-uni�cation problem over �, the signature � determines which

function symbols may occur in the terms to be uni�ed and in the uni�ers.

The above example shows that � may be larger than sig(E), the set of all

function symbols that occur in an identity of E: considered as a C

f

-uni�cation

problem, � contains the additional constant symbols a; b, and considered as

an ;-uni�cation problem, � also contains an additional binary function symbol.

These additional symbols are called free symbols since their interpretation is not

constrained by the equational theory. The next de�nition classi�es uni�cation

problems according to which symbols may be contained in � n sig(E).

De�nition 3.3 Let � be a signature, and let E be an equational theory and �

an E-uni�cation problem over �.

4

1. � is called an elementary E-uni�cation problem i� � n sig(E) = ;.

2. � is called an E-uni�cation problem with constants i� �n sig(E) contains

only constant symbols.

3. � is always a general E-uni�cation problem, i.e., for general E-uni�cation

problems, � n sig(E) may contain function symbols of arbitrary arity.

For syntactic uni�cation, we have E = ;, and thus there are no elementary

uni�cation problems, and uni�cation problems with constants are rather trivial.

Thus, only general uni�cation problems are of interest.

1

For other equational

theories E, all three types of uni�cation may be of interest, and they may lead

to di�erent results:

� There exists an equational theory for which elementary uni�cation is de-

cidable, but uni�cation with constants is undecidable (see [14]).

� From the development of the �rst algorithm for AC-uni�cation with con-

stants [61, 45], it took almost a decade until the termination of an algo-

rithm for general AC-uni�cation was shown [24, 25].

Thus, it is usually important to specify, for which type of uni�cation a par-

ticular result holds, and to �nd out which kind of uni�cation problems occur

in an application. In the applications in term rewriting and theorem proving

mentioned above, one usually obtains general E-uni�cation problems. The next

example demonstrates this for the case of building-in equational theories into

resolution-based theorem provers.

Example 3.4 When talking about A

f

-uni�cation, one may �rst think of uni-

fying modulo A

f

terms built by using just the symbol f and variables, or

equivalently, of unifying words over the alphabet V of all variables. However,

suppose that a resolution-based theorem prover|which has built-in the theory

A

f

|receives the formula

9x: (8y:f(x; y) = y ^ 8y:9z:f(z; y) = x)

as an axiom. In a �rst step, this formula must be Skolemized, i.e., the existential

quanti�ers have to be replaced by new function symbols. In our example, we

need a nullary symbol e and a unary symbol i in the Skolemized form

8y:f(e; y) = y ^ 8y:f(i(y); y) = e

of the axiom. Hence, even if we start with formulae containing only terms built

over f , the theorem prover eventually has to handle terms containing additional

free symbols.

1

Sometimes it is more convenient to represent a syntactic uni�cation problem � as an ele-

mentary uni�cation problem with respect to the \free theory" that is de�ned by the \dummy"

identities f(x

1

; : : : ; x

n

) = f(x

1

; : : : ; x

n

) for all function symbols f occurring in �.

5

For many interesting equational theories (such as the theory AC), designing

an algorithm for uni�cation with constants is a lot easier than directly coming

up with an algorithm for the general case. Hence, the question arises whether

there is a general method that allows to \lift" an algorithm for E-uni�cation

with constants to an algorithm for general E-uni�cation. It turns out that this

is a special case of the more general problem of how to combine uni�cation

algorithms for equational theories over disjoint signature, to which we devote

the central section of this chapter (see Section 5).

Complete sets of E-uni�ers

For a given E-uni�cation problem � over �, the set of all E-uni�ers is usually

in�nite. For syntactic uni�cation, the most general uni�er � of � yields a com-

pact representation of U

�

;

(�) since all uni�ers can be obtained as instances of �.

For arbitrary equational theories, a single uni�er is often not su�cient to repre-

sent the set of all uni�ers: the rôle of the most general uni�er is taken on by the

complete set of uni�ers. Before we can de�ne this notion, we must make precise

what kind of instantiation relation is used in the case of E-uni�cation. The

instantiation preorder �

W

E

, which is parameterized by a �nite set of variables

W , is de�ned as follows:

� �

W

E

� i� there exists a substitution � such that x� =

E

x��

for all variables x 2W .

If � �

W

E

� then � is called an E-instance of � on W , and � is said to be more

general than � onW . Obviously, if � is an E-uni�er of �, and � is an E-instance

of � on the set of variables occurring in �, then � is also an E-uni�er of �.

De�nition 3.5 Let � be an E-uni�cation problem over �. A complete set of

E-uni�ers of � is a set cU

�

E

(�) that satis�es the following conditions:

1. each � 2 cU

�

E

(�) is an E-uni�er of �, and

2. for all � 2 U

�

E

(�) there exists � 2 cU

�

E

(�) such that � �

W

E

�, where W is

the set of variables occurring in �.

For reasons of e�ciency, such a complete set should be as small as possible.

For example, in term rewriting modulo equational theories each element of the

complete set leads to a critical pair, which must be tested for con
uence and

may lead to a new rule, and in resolution-based theorem proving each element of

the complete set opens a new branch of the search tree. Thus, one is interested

in minimal complete sets �U

�

E

(�) of E-uni�ers of �, that is, complete sets

satisfying the additional condition

3. For all �; � 2 �U

E

(�), � �

W

E

� implies � = �.

6

If �U

�

E

(�) = f�g has cardinality 1, then the element � of this set is called a

most general E-uni�er of �.

Example 3.6 Consider the A

f

-uni�cation problem with constants

� := ff(x; a)

:

= f(a; x)g:

For n � 1, let �

n

be a substitution that maps x to the term f(a; : : : f(a; a) : : :)

having n occurrences of the free constant a. Each substitution �

n

solves �

modulo A

f

, and each A

f

-uni�er of � is equal modulo A

f

to a substitution �

n

for some n � 1. It follows that f�

n

j n = 1; 2; : : :g is a complete set of A

f

-

uni�ers of �. Since the terms x�

n

are ground terms, and since x�

n

6=

A

f

x�

m

for n 6= m, it is easy to see that the set f�

n

j n = 1; 2; : : :g is minimal as well.

A minimal complete set of E-uni�ers may not always exist, but if it does then

it is unique up to the equivalence relation �

W

E

induced by the preorder �

W

E

(see

[26]):

� �

W

E

� i� � �

W

E

� ^ � �

W

E

�

For this reason, the uni�cation type of an equational theory E can be de�ned

with respect to the cardinality and existence of minimal complete sets. More

precisely, an equational theory has three di�erent kinds of uni�cation types,

depending on which type of uni�cation problems are considered. The de�ni-

tion below is formulated for elementary uni�cation. The uni�cation types for

uni�cation with constants (general uni�cation) are obtained by replacing \el-

ementary E-uni�cation problem" by \E-uni�cation problem with constants"

(\general E-uni�cation problem").

Elementary uni�cation type 1 (unitary):

A minimal complete set �U

E

(�) exists for all elementary E-uni�cation

problems �, and it always has cardinality � 1.

Elementary uni�cation type ! (�nitary):

A minimal complete set �U

E

(�) exists for all elementary E-uni�cation

problems �, and it is always �nite.

Elementary uni�cation type 1 (in�nitary):

A minimal complete set �U

E

(�) exists for all elementary E-uni�cation

problems �, and there exists at least one elementary E-uni�cation prob-

lem for which this set is in�nite.

Elementary uni�cation type 0 (zero):

There exists at least one elementary E-uni�cation problem � that does

not have a minimal complete set of E-uni�ers.

Examples 3.7 We give an example for each uni�cation type:

� The empty theory ; is unitary (for general uni�cation) since every solvable

uni�cation problem has a most general syntactic uni�er, which yields a

minimal complete set of cardinality 1 (see [52]). Unsolvable uni�cation

problems always have the empty set as minimal complete set of uni�ers.

7

� Commutativity C

f

is �nitary for all three kinds of uni�cation (see, e.g.,

[59]). The problem ff(x; y)

:

= f(a; b)g is an example of a C

f

-uni�cation

problem with constants that has a minimal complete set of C

f

-uni�ers of

cardinality > 1.

� Plotkin [50] has shown that a general A

f

-uni�cation problem always has

a minimal complete set of A

f

-uni�ers, and he described an algorithm that

enumerates such a set (see Section 4 below). Example 3.6 shows that such

sets may already be in�nite for A

f

-uni�cation with constants, and one can

show that even the elementary A

f

uni�cation problem ff(x; y)

:

= f(y; x)g

has an in�nite minimal complete set of A

f

-uni�ers.

2

� The theory AI

f

:= A

f

[ff(x; x) = xg of idempotent semigroups is of

type zero. This was shown in [54] for uni�cation with constants, and

in [1] for elementary uni�cation: the elementary AI

f

-uni�cation problem

ff(x; f(y; x))

:

= f(x; f(z; x))g does not have a minimal complete set of

AI

f

-uni�ers.

For these examples, the uni�cation type does not depended on which kind of

uni�cation (elementary, general, or with constants) is considered. In general,

however, they may lead to di�erent uni�cation types. For example, there exist

theories that are unitary with respect to elementary uni�cation, but only �ni-

tary with respect to uni�cation with constants. One such example is the theory

of Abelian monoids, i.e., AC1 := AC

f

[ff(1; x) = xg, where 1 is a constant

symbol (see, e.g., [30]).

Readers that are more familiar with syntactic uni�cation may have won-

dered why our de�nition of complete and minimal complete sets of uni�ers

di�ers from the usual de�nition of most general uni�ers for syntactic uni�ca-

tion in that the instantiation preorder �

W

E

is restricted to the set W of all

variables occurring in the uni�cation problem. If we changed the de�nition of

minimal complete sets of uni�ers such that substitutions are compared on all

variables, then we would obtain di�erent uni�cation types. For example, the

theory AC1 would no longer be unitary for elementary uni�cation [2]. Since

the restricted instantiation preorder is su�cient for the above mentioned appli-

cations of E-uni�cation, there is no reason for using an instantiation preorder

that yields worse uni�cation types.

Another di�erence to the usual presentation of syntactic uni�cation is that

our uni�cation problems consist of sets of equations rather than of one sin-

gle equation. For general E-uni�cation, there is no di�erence between solv-

ing a system of equations or a single equation: the E-uni�cation problem

� := fs

1

:

= t

1

; : : : ; s

n

:

= t

n

g can be encoded in the general E-uni�cation problem

ff(s

1

; : : : ; s

n

)

:

= f(t

1

; : : : ; t

n

)g, where f is an n-ary free function symbol that

does not occur in �. However, for elementary E-uni�cation and E-uni�cation

with constants, there may be signi�cant di�erences. For example, there ex-

ists an equational theory E such that all elementary E-uni�cation problems of

2

This can, for example, be seen when analyzing the behaviour of Plotkin's algorithm on

this input.

8

cardinality 1 (i.e., single equations) have minimal complete sets of E-uni�ers,

but E is of elementary uni�cation type 0 since there exists an elementary E-

uni�cation problems of cardinality 2 that does not have a minimal complete set

of E-uni�ers [16].

Uni�cation algorithms

As mentioned in Section 2, there are two di�erent types of applications of E-

uni�cation. The �rst, more \traditional" type of applications simply replaces

the most general uni�er by a complete set of uni�ers. Usually, these approaches

are only applied to �nitary theories, i.e., theories that allow for �nite complete

sets of uni�ers. In these applications, one needs an algorithm that is able to

compute a �nite complete set of E-uni�ers for a given E-uni�cation problem.

We will call such an algorithm an E-uni�cation algorithm. For reasons of e�-

ciency, the algorithm should in fact compute a minimal complete set.

For non-�nitary theories, one is sometimes interested in an enumeration

of a complete set of uni�ers. We call a procedure that is able to enumerate

a (minimal) complete set of E-uni�ers a (minimal) E-uni�cation procedure.

It should be noted that the set of all E-uni�ers is a complete set, and that

it is always possible to enumerate this set since equality modulo E is semi-

decidable: simply dove-tail an enumeration of all substitution with a semi-

decision procedure that tests whether a given substitution is a uni�er. Thus, if

one designs an E-uni�cation procedure, one must take care that this procedure

is more e�cient and less redundant than the trivial E-uni�cation procedure

sketched above.

Constraint-based applications of E-uni�cation need to know whether a given

E-uni�cation problem has a solution or not. An algorithm that is able to decide

this problem is called a decision procedure for E-uni�cation. In constraint-based

applications, one usually has the situation that the constraint sets are increas-

ing: after a set of constraints � has been tested for solvability, an inference step

adds a new constraint, and then the augmented set of constraints �

0

must again

be tested for solvability. Hence, it is desirable to have an incremental decision

procedure, i.e., a procedure that is able to reuse (some of) the work done during

testing � for solvability when faced with the larger set �

0

.

Note that an E-uni�cation algorithm always yields a decision procedure

since a given input problem has a solution i� the complete set that is returned

by the algorithm is non-empty. An E-uni�cation procedure (even a minimal

one) need not yield a decision procedure since it may run forever even though

there are no solutions.

4 Three example theories

In uni�cation theory, the uni�cation properties of a larger number of di�er-

ent equational theories have been investigated. Usually, one was interested in

9

�nding answers to (some of) the following questions:

� Is solvability of E-uni�cation problems decidable? What is the complexity

of this decision problem? How can one design practical algorithms for the

decision problem? Can one �nd incremental decision procedures?

� What is the uni�cation type of E? If E is �nitary: is there an (e�cient)

E-uni�cation algorithm? How large are the minimal complete sets? What

is the complexity of computing these sets? For non-�nitary E: is there a

minimal E-uni�cation procedure? Are there interesting special cases for

which this procedure is guaranteed to terminate?

As mentioned above, the answers to these questions may di�er, depending on

which kind of uni�cation problem (elementary, with constants, or general) is

considered. In many cases, it turned out to be easier to design uni�cation

algorithms or decision procedure �rst for E-uni�cation with constants, and

then use general combination methods (see Section 5) to obtain an algorithm

or decision procedure for general E-uni�cation.

Most of the results for speci�c theories and references to the literature can

be found in survey articles on uni�cation [60, 35, 9]. A table of complexity

results for uni�cation is contained in [37]. Instead of recounting these results,

we consider three equational theories as examples:

A

f

:= ff(f(x; y); z) = f(x; f(y; z))g;

AC

f

:= A

f

[ff(x; y) = f(y; x)g;

ACI

f

:= AC

f

[ff(x; x) = xg:

The goal is not to provide an extensive list of references (which can be found in

the above mentioned overviews) or to give a detailed description of a uni�cation

algorithm or decision procedure, but rather to convey an intuition on how

uni�cation in these theories works. For the �rst theory, we sketch a minimal

uni�cation procedure, for the second a uni�cation algorithm, and for the third

a decision procedure.

Uni�cation under associativity

The theory A

f

axiomatizes associativity of the binary function symbol f . Since

the corresponding free algebra is the free semigroup, whose elements are words,

A

f

-uni�cation problems with constants are often called word equations. The

following is a brief synopsis of the known results:

Uni�cation type: in�nitary for all three kinds of uni�cation [50],

Uni�cation procedure: there exists a minimal uni�cation procedure for gen-

eral A

f

-uni�cation [50, 43]. Using a decision procedure (see below) as a

subprocedure it is possible to modify this procedure such that it always

terminates on uni�cation problems that have a �nite minimal complete

set of A

f

-uni�ers [34, 57].

10

Decision problem: A

f

-uni�cation is decidable both for uni�cation with con-

stants [46] and for general A

f

-uni�cation [4],

Complexity: the decision problem is known to be NP-hard [10], but the current

best bound on the time complexity of Makanin's algorithm is nondeter-

ministic triple-exponential [42].

After a long series of attacks and partial solutions, the decision problem was

�nally solved by G.S. Makanin [46]. His description of the decision procedure

for A

f

-uni�cation with constants is rather long and complex (70 pages of very

tersely written material), but this appears to be due to the inherent complex-

ity of the problem. Subsequent descriptions of the algorithm [48, 34, 57] have

simpli�ed and clari�ed the presentation, but in essence they still coincide with

Makanin's original version, from which they inherit the complexity. The de-

cision problem for general A

f

-uni�cation was solved with the help of general

combination techniques (see Section 5).

In the following, we brie
y describe Plotkin's minimal A

f

-uni�cation proce-

dure. To make the presentation simpler, we restrict ourselves to A

f

-uni�cation

with constants, and consider only single equations (i.e., A

f

-uni�cation problems

with constants of cardinality 1). Let V be a set of variables, and C be a set of

(free) constants. Modulo A

f

, terms built using the binary symbol f , variables

from V , and constants from C can be seen as non-empty words over the alpha-

bet V [C. In uni�cation problems reached by applying Plotkin's procedure,

we will sometimes also encounter the empty word ".

The procedure builds a (possibly in�nite) tree, which can be seen as a search

tree for A

f

-uni�ers of the uni�cation problem at the root of the tree. The tree

is inductively de�ned as follows. Let fu

0

:

= v

0

g be the original uni�cation

problem, where u

0

; v

0

2 (V [C)

+

.

Initialization: Create a tree that consists just of a root, which is labelled

by the pair (u

0

:

= v

0

j id) where id stands for the identity substitution.

Leaf extension: Assume that the leaf node k under consideration has label

(u

:

= v j �), where u; v are (possibly empty) words over V [C. We distinguish

the following cases:

1. Assume that one of u; v is the empty word. If u = " = v, then k is a

success-node, and � is a uni�er. Otherwise, k is a failure-node.

2. Assume that u = au

0

starts with the constant a and v = bv

0

starts with

the constant b. If a = b, then create one new leaf node that is a direct

successor of k and is labelled by (u

0

:

= v

0

j �). Otherwise, k is a failure-

node.

3. Assume that u = au

0

starts with the constant a and v = yv

0

starts with

the variable y. Let �

1

:= fy 7! ag and �

2

:= fy 7! ayg. Create two

new leaf nodes that are direct successors of k. Label one of them with

(u

0

�

1

:

= v

0

�

1

j ��

1

) and the other with (u

0

�

2

:

= y(v

0

�

2

) j ��

2

).

11

4. The case where u starts with a variable and v with a constant is treated

symmetrically.

5. Assume that u = xu

0

and v = xv

0

start with the same variable x. Create

a new leaf node that is a direct successor of k and is labelled with (u

0

:

=

v

0

j �).

6. Assume that u = xu

0

starts with the variable x and v = yv

0

starts with the

variable y 6= x. Let �

1

:= fy 7! xyg, �

2

:= fy 7! xg, and �

3

:= fx 7! yxg.

Create three new leaf nodes that are direct successors of k. Label the �rst

with (u

0

�

1

:

= y(v

0

�

1

) j ��

1

), the second with (u

0

�

2

:

= v

0

�

2

j ��

2

), and the

third with (x(u

0

�

3

)

:

= v

0

�

3

j ��

3

).

The substitutions that are labels of success-nodes in this tree form a minimal

complete set of A

f

-uni�ers of the A

f

-uni�cation problem with constants fu

0

:

=

v

0

g [58, 57]. Since the tree may have in�nite paths, it must be generated in a

breadth-�rst manner.

To get an intuition of how the procedure works, let us consider the third

case of the leaf extension step in more detail. If � is a uni�er of the word

equation au

0

:

= yv

0

, then a(u

0

�) = (au

0

)� = (yv

0

)� = (y�)(v

0

�). Hence, y� must

start with the constant a. Now, either y� = a or y� starts with a and continues

with a non-empty su�x. This corresponds to the two cases considered in the

corresponding leaf extension step. In the second case, the variable y is replaced

by ay, that is, y is reused and now stands for the non-empty su�x obtained by

removing the leading a from y�. The equations in the label of the new leaves

are obtained by applying �

1

or �

2

to au

0

:

= yv

0

, and removing the two leading

a's.

As an example, let us �rst consider the uni�cation problem fax

:

= xag:

ax

:

= xa j id ! a

:

= a j fx 7! ag ! "

:

= " j fx 7! ag

#

ax

:

= xa j fx 7! axg ! a

:

= a j fx 7! aag ! "

:

= " j fx 7! aag

#

ax

:

= xa j fx 7! aaxg ! a

:

= a j fx 7! aaag ! "

:

= " j fx 7! aaag

#

� � �

We see that the uni�cation problem fax

:

= xag reproduces itself, and that there

are in�nitely many success-nodes, which yield the uni�ers fx 7! a

n

g for n � 1.

The uni�cation problem fax

:

= xbg produces in�nitely many failure nodes and

12

no success-node:

ax

:

= xb j id ! a

:

= b j fx 7! ag failure

#

ax

:

= xb j fx 7! axg ! a

:

= b j fx 7! aag failure

#

ax

:

= xb j fx 7! aaxg ! a

:

= b j fx 7! aaag failure

#

� � �

In both examples, the tree generated by Plotkin's procedure is in�nite, but only

�nitely many di�erent uni�cation problems occur as labels of nodes in the tree.

It is easy to see that this phenomenon always occurs if one starts with a

uni�cation problem fu

0

:

= v

0

g such that every variable occurs at most twice

in the word u

0

v

0

. In fact, in this situation, the length of the words uv such

that u

:

= v occurs as a uni�cation problem in the tree generated by Plotkin's

procedure is bounded by the length of u

0

v

0

. Since the uni�cation problems

u

:

= v occurring in the tree are built with the variables and free constants

occurring in u

0

v

0

, there are only �nitely many di�erent uni�cation problems

of this kind. As a consequence, one obtains that Plotkin's procedure yields a

decision procedure for A

f

-uni�cation problems in which every variable occurs

at most twice. This is achieved by not extending a leaf k if it is labelled with a

uni�cation problem that occurs in the label of a node above k. In our example

fax

:

= xbg, the node with label (ax

:

= xb j fx 7! axg) need not be extended,

and one can immediately decide that the problem does not have a solution. In

the example fax

:

= xag, it is easy to determine from a �nite part of the tree how

all uni�ers look like. However, this is not always possible, even for the cases

where Plotkin's procedure equipped with the above described cycle test yields a

decision procedure (see [32] for an example of an A

f

-uni�cation problem where

the set of uni�ers cannot be represented in a \parameterized way").

If variables occur more than twice, then the tree may become in�nite without

any repetitions of uni�cation problems. As an example, the interested reader

may consider what happens if Plotkin's procedure is applied to the uni�cation

problem faxx

:

= xxbg.

Uni�cation under associativity and commutativity

The theory AC

f

, which axiomatizes associativity and commutativity of a bi-

nary function symbol, is the theory most frequently used in rewriting modulo

equational theories and in theorem proving with built-in theories. It turns

out that it is more convenient to investigate �rst uni�cation in the theory

AC1

f

:= AC

f

[ff(x; 1) = xg, which extends AC

f

by an identity that says

that the constant symbol 1 is a unit element for f . Let us start with a brief

synopsis of the results known about these two theories:

13

Uni�cation type: AC1 is unitary for elementary uni�cation, and �nitary for uni-

�cation with constants and for general uni�cation, whereas AC is �nitary

for all three types of uni�cation [61, 45, 24, 25]. The number of uni�ers

in a minimal complete set of AC

f

-uni�ers may be doubly exponential in

the size of a given (elementary) AC

f

-uni�cation problem [22].

Uni�cation algorithm: there exist AC

f

and AC1

f

-uni�cation algorithms for all

three types of uni�cation [61, 45, 40, 27, 17, 30, 31, 44, 12].

Complexity of the decision problem: The decision problem for AC

f

and AC1

f

-

uni�cation with constants is NP-complete, and solvability of general AC

f

and AC1

f

-uni�cation problems can also be decided by NP-algorithms [37].

In the following, we sketch a uni�cation algorithm. To keep things simple,

we will mainly restrict our attention to elementary AC

f

and AC1

f

-uni�cation.

We start with an algorithm that computes a most general AC1

f

-uni�er for every

elementary AC1

f

-uni�cation problems. The algorithm for AC

f

takes this most

general uni�er and derives a complete set of AC

f

-uni�ers from it.

Let � := ff; 1g where f is binary and 1 is a constant symbol, and let V

be a countably in�nite set of variables. For a term t 2 T (�; V) and a variable

x 2 V , we denote with jtj

x

the number of occurrences of x in t. These numbers

can be used to characterize equality modulo AC1

f

:

s =

AC1

f

t i� jsj

x

= jtj

x

for all x 2 V:

It is easy to see that 1 is the only element of its =

AC1

f

-equivalence class. Any

term in T (�; V) n f1g is equivalent to a term in T (ffg; V), and for terms

s; t 2 T (ffg; V) we have s =

AC1

f

t i� s =

AC

f

t.

An equation s

:

= t between terms in T (�; V) can be translated into a homo-

geneous linear Diophantine equation. Let fx

1

; : : : ; x

n

g be the set of variables

occurring in s or t. The equation s

:

= t corresponds to the equation

(�) a

1

x

1

+ : : :+ a

n

x

n

= b

1

x

1

+ : : : + b

n

x

n

;

where a

i

:= jsj

x

i

and b

i

:= jtj

x

i

for i = 1; : : : ; n. If (c

1

; : : : ; c

n

) 2 IN

n

is a solution

of (�), i.e., an n-tuple of nonnegative integers such that a

1

c

1

+ : : : + a

n

c

n

=

b

1

c

1

+ : : : + b

n

c

n

, then the following is an AC1

f

-uni�er of s

:

= t:

fx

1

7! z

c

1

; : : : ; x

n

7! z

c

n

g;

where z is a variable and z

c

i

abbreviates the term f(z; f(z; � � � f(z; z) � � �)) that

has c

i

occurrences of z.

3

Conversely, if � is an AC1

f

-uni�er of s

:

= t and z 2 V

is a variable, then (jx

1

�j

z

; : : : ; jx

n

�j

z

) is a solution of (�) in IN

n

. If one has more

than one equation in the uni�cation problem, then one obtains a system of linear

Diophantine equations of the form (�), which must be solved simultaneously.

Obviously, the tuple (0; : : : ; 0) is a (trivial) solution of every homogeneous

linear Diophantine equation of the form (�), which corresponds to the trivial

3

We have z

0

= 1 (for c

i

= 0) and z

1

= z (for c

i

= 1).

14

AC1

f

-uni�er of s

:

= t, i.e., the substitution that replaces every variable occur-

ring in s or t by 1. Thus, every elementary AC1

f

-uni�cation problem has a

uni�er.

The most general AC1

f

-uni�er of a given elementary AC1

f

-uni�cation prob-

lem can be obtained from the set of minimal non-trivial solutions of the cor-

responding system of linear Diophantine equations. A solution (c

1

; : : : ; c

n

)

of a system of homogeneous linear Diophantine equations is a minimal non-

trivial solution i� it is not the trivial solution (0; : : : ; 0) and every solution

(d

1

; : : : ; d

n

) 6= (c

1

; : : : ; c

n

) satisfying d

1

� c

1

; : : : ; d

n

� c

n

is trivial. One can

show that the set of all minimal non-trivial solutions of a given system of ho-

mogeneous linear Diophantine equations is always �nite. Algorithms for com-

puting these solutions are, for example, described in [28, 33, 19, 12, 51, 21, 20].

If this set is empty, then the trivial uni�er that replaces every variable occur-

ring in the uni�cation problem by 1 is the most general uni�er. Otherwise, let

f(c

1;1

; : : : ; c

1;n

); : : : ; (c

k;1

; : : : ; c

k;n

)g be the set of minimal non-trivial solutions

of the system of linear Diophantine equations corresponding to the elementary

AC1

f

-uni�cation problem �. Then the following is a most general AC1

f

-uni�er

of �:

fx

1

7! z

c

1;1

1

� � � z

c

k;1

k

; : : : ; x

n

7! z

c

1;n

1

� � � z

c

k;n

k

g;

where z

c

1;i

1

� � � z

c

k;i

k

abbreviates the term f(z

c

1;i

1

; f(� � � f(z

c

k�1;i

k�1

; z

c

k;i

k

) � � �)).

As an example, let us consider the AC1

f

-uni�cation problem

� := ff(x

1

; x

2

)

:

= f(x

3

; x

4

)g:

The corresponding linear Diophantine equation is x

1

+x

2

= x

3

+x

4

, which has

the minimal non-trivial solutions f(1; 0; 1; 0); (1; 0; 0; 1); (0; 1; 1; 0); (0; 1; 0; 1)g.

Hence, the most general AC1

f

-uni�er

4

of � is

� := fx

1

7! f(z

1

; z

2

); x

2

7! f(z

3

; z

4

); x

3

7! f(z

1

; z

3

); x

4

7! f(z

2

; z

4

)g:

Assume that � is an AC

f

-uni�cation problem, i.e., in contrast to an AC1

f

-

uni�cation problem, the terms in the problem and the terms introduced by the

uni�ers cannot be the unit element 1. � may, however, also be seen as a AC1

f

-

uni�cation problem, and thus we can compute the most general AC1

f

-uni�er

of �. Obviously, every AC

f

-uni�er of � is also an AC1

f

-uni�er of �, and thus

an instance of the most general AC1

f

-uni�er. However, the instantiation may

depend on the presence of the unit element 1. In our example, � := fx

1

7!

z

1

; x

2

7! z

4

; x

3

7! z

1

; x

4

7! z

4

g is an AC

f

-uni�er of �, which is an AC1

f

-

instance of the most general AC1

f

-uni�er �: � = �� for the �-substitution

� := fz

2

7! 1; z

3

7! 1g. However, � is not an admissible substitution for the

smaller signature ffg. Consequently, � is not an AC

f

-instance of �.

In order to obtain a minimal complete set of AC

f

-uni�ers of an AC

f

-

uni�cation problem �, one must look at all possible ways of applying such

4

In the representation of this uni�er, we have used the fact that 1 is an unit element for

f ; for example, x

1

� = f(z

1

; z

2

) instead of f(z

1

; f(z

2

; f(1; 1))).

15

erasing substitutions � to the most general AC1

f

-uni�er of �. To be more pre-

cise, assume that the most general AC1

f

-uni�er � of � introduces the variables

z

1

; : : : ; z

k

. For every subset Z of fz

1

; : : : ; z

k

g, we de�ne �

Z

:= fz 7! 1 j z 2 Zg.

Obviously, each substitution ��

Z

is an AC1

f

-uni�ers of �. This substitution

can also be seen as an AC

f

-uni�er i� x

i

��

Z

6=

AC1

f

1 for all variables x

i

occur-

ring in �. In this case, we say that �

Z

is admissible for �. It can be shown that

the set

f��

Z

j Z � fz

1

; : : : ; z

k

g and �

Z

admissible for �g

is a minimal complete set of AC

f

-uni�ers of �. In our example, this set contains

7 elements, corresponding to the subsets ;, fz

1

g, fz

2

g, fz

3

g, fz

4

g, fz

1

; z

4

g, and

fz

2

; z

3

g of Z = fz

1

; z

2

; z

3

; z

4

g.

There are two di�erent ways of extending this approach to AC

f

-uni�cation

with constants. Stickel [61] �rst treats free constants like variables, computes

the minimal complete set of uni�ers for the elementary problem obtained this

way, and uses this set to read o� a minimal complete set for the original problem.

Thus, in Stickel's approach one still solves homogeneous linear Diophantine

equations. In contrast, Livesey and Siekmann handle constants with the help

of inhomogeneous equations (see [31] for details). General AC

f

-uni�cation can

again be treated using general combination techniques (see Section 5).

Uni�cation under associativity, commutativity, and idempotence

The theory ACI

f

axiomatizes associativity, commutativity and idempotence of

the binary symbol f . For example, logical conjunction and disjunction, and

union and intersection of sets satisfy these axioms. Let us �rst summarize the

results from uni�cation theory concerning this equational theory:

Uni�cation type: ACI

f

is �nitary for all three types of uni�cation [45, 18, 3, 38].

As for AC

f

, the number of uni�ers in a minimal complete set of ACI

f

-

uni�ers may be doubly exponential in the size of a given (elementary)

ACI

f

-uni�cation problem [38].

Uni�cation algorithm: there exist uni�cation algorithms for all three types of

ACI

f

-uni�cation [3, 38].

5

Complexity of the decision problem: For elementary ACI

f

-uni�cation and for

ACI

f

-uni�cation with constants, the decision problem is polynomial, and

solvability of general ACI

f

-uni�cation problems is NP-complete [37].

In the following, we sketch the polynomial decision procedure for ACI

f

-

uni�cation with constants. Let � := ffg where f is binary, and let V and C

be countably in�nite sets of variables and (free) constants, respectively. For a

term t 2 T (� [C; V), we denote with V (t) the set of variables occurring in t,

5

To be more precise, [3] describes an algorithm for ACI1

f

-uni�cation with constants (where

an additional unit element is present). The transition from ACI1

f

-uni�cation to ACI

f

-

uni�cation can be achieved in the same way as for AC

f

.

16

and with C(t) the set of free constants occurring in t. These sets can be used

to characterize equality modulo ACI

f

:

s =

ACI

f

t i� V (s) = V (t) and C(s) = C(t):

Let � := fs

1

:

= t

1

; : : : ; s

n

:

= t

n

g be an ACI

f

-uni�cation problem with con-

stants, let x

1

; : : : ; x

k

2 V be the variables and c

1

; : : : ; c

`

2 C the free constants

occurring in �. Without loss of generality, we assume that ` � 1: if � is an ele-

mentary ACI

f

-uni�cation problem, then we take an arbitrary constant c

1

2 C.

It is easy to see that � is solvable i� it has an ACI

f

-uni�er � such that

(�) V (x

i

�) = ; and C(x

i

�) � fc

1

; : : : ; c

`

g for i = 1; : : : ; k:

In fact, if � is an arbitrary ACI

f

-uni�er of �, then � can be obtained from � by

replacing in the terms x

i

� all free constants in C n fc

1

; : : : ; c

`

g and all variables

by c

1

.

The existence of a solution � satisfying (�) can now be expressed with the

help of propositional Horn formulae. To this purpose, we introduce a propo-

sitional variable P

x;c

for every pair (x; c) 2 fx

1

; : : : ; x

k

g � fc

1

; : : : ; c

`

g, which

has the intended meaning \c 62 C(x�)". These variables are used to build the

following formulae:

� For each x 2 fx

1

; : : : ; x

k

g the formula

`

^

i=1

P

x;c

i

!

) false;

which expresses that each variable must be replaced by a non-empty term,

i.e., C(x�) 6= ;.

� For each equation s

:

= t 2 � and each c 2 C(s) n C(t) the formula

0

@

^

x2V (t)

P

x;c

1

A

) false:

Since c occurs in s, and thus also in s�, it must also occur in t�. Because

c does not occur in t, this is only possible if it is introduced by �, i.e., if

c 2 C(x�) for some x 2 V (t).

� Symmetrically, we have for each equation s

:

= t 2 � and each c 2 C(t) n

C(s) the formula

0

@

^

x2V (s)

P

x;c

1

A

) false:

� For each equation s

:

= t 2 � and each c 2 C n (C(s) [C(t)) the formula

0

@

^

x2V (s)

P

x;c

1

A

,

0

@

^

x2V (t)

P

x;c

1

A

;

17

which expresses that a constant that does not occur in s

:

= t may be

introduced on the left-hand side i� it is introduced on the right-hand

side. Actually, this formula is not a Horn formula, but it can easily be

expressed by a set of jV (s)j � jV (t)j Horn formulae.

It is easy to see that the set of these Horn formulae is satis�able i� � has a

solution (satisfying (�)). Since the size of this set of Horn formulae is polynomial

in the size of �, and since satis�ability of sets of propositional Horn formulae

can be decided in linear time [23], this shows that solvability of ACI

f

-uni�cation

problems with constants can be decided in polynomial time.

For example, consider the equation f(a; x)

:

= f(y; b), where a; b are constants

and x; y are variables. The corresponding set of propositional Horn formulae

consists of

� (P

x;a

^ P

x;b

)) false and (P

y;a

^ P

y;b

)) false,

� P

y;a

) false and P

x;b

) false.

Because of the second two formulae, an evaluation that satis�es these formulae

must assign false to P

y;a

and to P

x;b

, that is, in a solution � of f(a; x)

:

= f(y; b),

the constant a must occur in y� and the constant b must occur in x�. With this

assignment, the �rst two formulae are trivially satis�ed. For this reason, P

x;a

and P

y;b

can be assigned arbitrary Boolean values. For example, if we assign the

value true to both, then this corresponds to the substitution fx 7! b; y 7! ag,

which is an ACI

f

-uni�er of the equation satisfying (�).

5 Combination of uni�cation algorithms

The uni�cation algorithms and decision procedures for the theories AC and

ACI sketched above cannot treat general uni�cation problems, that is, prob-

lems containing additional free function symbols. The interpretation of these

free function symbols is not constrained by the theory under consideration.

Thus, an AC- or ACI-uni�cation problem that contains only these free symbols

can be solved by an algorithm for syntactic uni�cation. This suggest that an

algorithm for general AC- or ACI-uni�cation could be obtained by appropri-

ately combining an algorithm for AC- or ACI-uni�cation with constants with

an algorithm for syntactic uni�cation. More generally, the additional function

symbols not contained in the signature of AC may be non-free themselves, that

is, their properties may be de�ned by another equational theory. For example,

in many application one must deal with AC-uni�cation problems that contain

more than one AC-symbol. As an example, consider the theory of Boolean

rings: both addition + and multiplication � are associative-commutative. If

one tries to handle this theory via term rewriting, one usually employs rewrit-

ing modulo associativity and commutativity of addition and multiplication, i.e.,

modulo the theory AC

+

[AC

�

. In this setting, the computation of critical pairs

depends on an algorithm for general (AC

+

[AC

�

)-uni�cation. The question is

18

thus how to obtain such an algorithm from algorithms for AC-uni�cation with

constants and for syntactic uni�cation. The research on this question resulted

in uni�cation algorithms that can treat uni�cation problems containing several

AC-symbols and free symbols [61, 62, 24, 31].

It turned out that the approaches used in the context of combining AC-

uni�cation with syntactic uni�cation can also be employed in the more general

setting of the so-called combination problem for uni�cation:

Assume that E

1

; : : : ; E

n

are equational theories over pairwise dis-

joint signatures.

6

How can algorithms for uni�cation modulo E

i

(i = 1; : : : ; n) be combined to an algorithm for uni�cation modulo

E

1

[� � � [E

n

.

The �rst solutions to this more general problem [40, 63, 29, 64, 13] were re-

stricted to theories that satisfy certain restrictions (such as collapse-freeness or

regularity

7

) on the syntactic form of their de�ning identities. These restrictions

made sure that the theories behaved similar to AC and syntactic equality. The

theory ACI could not be treated by these methods since it is not collapse-free.

The problem was �nally solved in a very general form by Schmidt-Schau�

[55]. His approach imposes no restriction on the syntactic form of the identi-

ties. The only requirements on the single theories E

i

to be combined are of

an algorithmic nature: E

i

-uni�cation problems with constants must be �nitary

solvable in E

i

, and so-called \constant elimination problems" (see [55] for a

de�nition) must be �nitary solvable in E

i

. It is easy to see that ACI satis�es

these properties. The major drawback of this method is that it can combine

only uni�cation algorithms (i.e., algorithms computing complete sets of uni-

�ers). Decision procedures cannot be treated with this approach. For example,

it is not possible to show decidability of general A-uni�cation with the help of

this method.

A general combination method

We shall now describe the combination method introduced in [4]. In contrast

to the method by Schmidt-Schau�, it can be used both for combining uni�ca-

tion algorithms and for combining decision procedures. As for the method of

Schmidt-Schau�, algorithms for uni�cation with constants for the single theories

E

i

are not really su�cient for the combination approach to apply. However,

instead of splitting the algorithmic problem into two parts (uni�cation with

constants and constant elimination), we restrict our attention to only one type

of problem, which is a generalization of uni�cation with constants:

6

Note that without this disjointness condition there cannot be a general combination

method since, for non-disjoint signatures, (E

1

[: : : [E

n

)-uni�cation may be undecidable

(non-�nitary) even though E

i

-uni�cation is decidable (�nitary) (for i = 1; : : : ; n).

7

A theory E is called collapse-free if it does not contain an identity of the form x = t where

x is a variable and t is a non-variable term, and it is called regular if the left- and right-hand

sides of the identities contain the same variables.

19

De�nition 5.1 An E-uni�cation problem with linear constant restrictions con-

sists of an E-uni�cation problem with constants � and a linear ordering < on

the variables and free constants occurring in �. An E-uni�er (or solution) of

this problem is an E-uni�er � of � that satis�es

x < c) c does not occur in x�

for all variables x and free constants c occurring in �.

For example, let E := fh(x) = h(x)g and consider the E-uni�cation problem

with constants � := fh(x)

:

= h(c)g. Since E contains only a trivial identity

for h, E-uni�cation is simply syntactic uni�cation, and thus any solution of �

must substitute x by c. If we add the constant restriction x < c to �, then the

obtained E-uni�cation problem with linear constant restrictions does not have

a solution.

In order to make clear which are the free constants and which the variables

of a given E-uni�cation problem with linear constant restrictions, we will write

such a problem as a 4-tuple h�;X;C;<i where X denotes the set of variables

and C the set of free constants, and < is a linear ordering on X [C. Complete

sets of solutions of E-uni�cation problems with linear constant restrictions are

de�ned as in the case of E-uni�cation with constants.

Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint signatures.

Our �rst goal is to reduce solvability of a given elementary (E

1

[� � � [E

n

)-

uni�cation problem �

0

to solvability of E

i

-uni�cation problems with linear con-

stant restrictions. To this purpose, �

0

is �rst transformed into an equivalent

problem in decomposed form. An (elementary) (E

1

[� � �[E

n

)-uni�cation prob-

lem � is in decomposed form i� � = �

1

[� � �[�

n

where each �

i

is an elementary

E

i

-uni�cation problem. The transformation simply introduces new variables

for alien subterms and adds appropriate new equations (see [4] for details).

Example 5.2 Let E

1

:= f(x � y) � z = x � (y � z)g for a binary (in�x) symbol

� and E

2

:= fh(x)

:

= h(x)g for a unary symbol h, and consider the (E

1

[E

2

)-

uni�cation problem

�

0

:= fh(x) � y

:

= y � h(z

1

� z

2

)g:

On the left-hand side, h(x) is an alien subterm of the term h(x) � y. This term

can be replaced by a new variable x

1

, provided that we add a new equation

x

1

:

= h(x). Similarly, the alien subterms on the right-hand side can be replaced

by variables. This results in the decomposed problem

� := fx

1

� y

:

= y � x

2

; x

3

:

= z

1

� z

2

g [fx

1

:

= h(x); x

2

:

= h(x

3

)g:

Unfortunately, it is not the case that a decomposed (E

1

[� � � [E

n

)-uni�cation

problem � = �

1

[� � � [�

n

is solvable if all the subproblems �

i

are separately

solvable modulo E

i

. The reason is that there is an interaction between the

problems �

i

via shared variables. Thus, a solution of �

1

might replace a shared

20

variable by one term, and a solution of �

2

might replace this variable by a com-

pletely di�erent term, and it is not clear how these two incompatible solutions

could be combined to a solution of the whole problem. To avoid incompati-

ble solutions of the single problems, we must (nondeterministically) add some

additional information:

1. First, we must choose a partition � = fP

1

; : : : ; P

k

g of the set of variables

occurring in �. For each of the classes P

i

, let x

i

2 P

i

be a representative of

this class, and let X

�

:= fx

1

; : : : ; x

k

g be the set of these representatives.

The substitution that replaces, for all i = 1; : : : ; k, each element of P

i

by

its representative x

i

is denoted by �

�

. The uni�cation problem ��

�

=

�

1

�

�

[� � � [�

n

�

�

is obtained from � = �

1

[� � � [�

n

by applying �

�

to

the terms occurring in �. Obviously, X

�

is the set of variables occurring

in ��

�

.

2. Second, we choose a labelling function L : X

�

! f1; : : : ; ng, which assigns

a theory label to each variable occurring in ��

�

. We denote the set of

variables with label i by X

i

, and de�ne C

i

:= X

�

nX

i

.

3. Finally, we choose a linear ordering < on X

�

.

With the help of L and <, each of the elementary E

i

-uni�cation problems

�

i

�

�

is turned into the E

i

-uni�cation problem with linear constant restrictions

h�

i

�

�

;X

i

; C

i

; <i, i.e., the variables with label i are still treated as variables,

but the variables with di�erent label are treated as (free) constants.

Proposition 5.3 Let � := �

1

[� � � [�

n

be an (elementary) (E

1

[� � � [E

n

)-

uni�cation problem in decomposed form. Then the following statements are

equivalent:

1. � is solvable, i.e., there exists an (E

1

[� � � [E

n

)-uni�er of �.

2. There exists a partition �, a labelling function L : X

�

! f1; : : : ; ng, and a

linear ordering < on X

�

such that, for all i = 1; : : : ; n, the E

i

-uni�cation

problem with linear constant restrictions h�

i

�

�

;X

i

; C

i

; <i is solvable.

A proof of this proposition can be found in [4, 8]. Obviously, any (E

1

[� � �[E

n

)-

uni�cation problem can be transformed into a decomposed (E

1

[� � � [E

n

)-

uni�cation problem in polynomial time, and an appropriate partition �, a

labelling function L and linear ordering < can be guessed in nondeterminis-

tic polynomial time. This yield the following combination result for decision

procedures:

Theorem 5.4 Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint

signatures.

1. If solvability of E

i

-uni�cation problems with linear constant restrictions is

decidable for i = 1; : : : ; n, then solvability of elementary (E

1

[� � � [E

n

)-

uni�cation problems is decidable.

21

2. If solvability of E

i

-uni�cation problems with linear constant restrictions is

decidable by an NP-algorithm for i = 1; : : : ; n, then solvability of elemen-

tary (E

1

[� � �[E

n

)-uni�cation problems is decidable by an NP-algorithm.

As an example, let us reconsider the decomposed uni�cation problem

� := fx

1

� y

:

= y � x

2

; x

3

:

= z

1

� z

2

g [fx

1

:

= h(x); x

2

:

= h(x

3

)g

computed in Example 5.2. Let � be the partition where x

1

and x

2

constitute

one class, and all the other classes are singletons, and assume that x

1

is the

representative of the class fx

1

; x

2

g. Hence, X

�

= fx; x

1

; x

3

; y; z

1

; z

2

g, �

�

=

fx

2

7! x

1

g, and ��

�

= �

1

�

�

[�

2

�

�

where

�

1

�

�

= fx

1

� y

:

= y � x

1

; x

3

:

= z

1

� z

2

g and �

2

�

�

= fx

1

:

= h(x); x

1

:

= h(x

3

)g:

If we choose the labelling L(x

3

) = L(y) = 1 and L(x

1

) = L(x) = L(z

1

) =

L(z

2

) = 2, and the linear ordering z

1

< z

2

< x

3

< x < x

1

< y, then we

have X

1

= C

2

= fx

3

; yg and X

2

= C

1

= fx

1

; x; z

1

; z

2

g. The substitution

�

1

:= fx

3

7! z

1

� z

2

; y 7! x

1

g solves the E

1

-uni�cation problem with linear

constant restrictions h�

1

�

�

;X

1

; C

1

; <i, and �

2

:= fx

1

7! h(x

3

); x 7! x

3

g solves

the E

2

-uni�cation problem with linear constant restrictions h�

2

�

�

;X

2

; C

2

; <i.

By Proposition 5.3, this implies that the decomposed problem � (and thus

also the original problem �

0

) has a solution. The solutions �

1

and �

2

can be

combined into a solution � of � by induction on the linear order <:

� = fz

1

7! z

1

; z

2

7! z

2

; x

3

7! z

1

� z

2

; x 7! z

1

� z

2

;

x

1

7! h(z

1

� z

2

); x

2

7! h(z

1

� z

2

); y 7! h(z

1

� z

2

)g:

A formal de�nition of the combined solution can be found in [4, 8]. Given

complete sets of solutions of the E

i

-uni�cation problems with linear constant

restrictions induced by a chosen triple (�; L;<), one obtains a set of solutions

of the original problem by constructing all possible combined solutions. It

can be shown (see [4, 8]) that the union of these sets for all possible triples

(�; L;<) yields a complete set of solutions of the original problem. Since there

are only �nitely many di�erent triples (�; L;<), we thus obtain the following

combination result for uni�cation algorithms:

Theorem 5.5 Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint

signatures that are �nitary for E

i

-uni�cation with linear constant restrictions.

Then E

1

[� � � [E

n

is �nitary for elementary uni�cation.

This theorem is e�ective in the sense that algorithms computing �nite complete

sets of solutions of E

i

-uni�cation problems with linear constant restrictions can

be used to construct (via the above described nondeterministic combination

method) an algorithm for elementary (E

1

[� � � [E

n

)-uni�cation.

As examples of theories that satisfy the prerequisites of our two combination

theorems, we mention free theories, A, AC and ACI:

22

1. For a �nite signature �, the free theory F

�

consists of the identities

f(x

1

; : : : ; x

n

)

:

= f(x

1

; : : : ; x

n

) where f is an n-ary symbol in �. Obvi-

ously, uni�cation modulo F

�

is just syntactic uni�cation. It is easy to see

that F

�

-uni�cation with linear constant restrictions is unitary and decid-

able in linear time. In fact, such a problem has a solution i� the most

general uni�er of the corresponding syntactic uni�cation problem satis�es

the constant restrictions. In this case, this uni�er is also a most general

solution of the problem with linear constant restrictions. Consequently,

free theories can always be handled by our combination method. This

shows that the results of Theorem 5.4 and 5.5, which were formulated for

elementary uni�cation in the combined theory, can be lifted to general

uni�cation by just adding an appropriate free theory in the combination

process.

2. For A, decidability of uni�cation problems with linear constant restric-

tions is an easy consequence of a result by Schulz [56] on a generalization

of Makanin's decision procedure. Together with decidability of uni�cation

with linear constant restrictions for free theories, this implies that general

A-uni�cation is decidable by Theorem 5.4.

3. For AC, solvability of uni�cation problems with constants can be reduced

to solvability of systems of homogeneous and inhomogeneous linear Dio-

phantine equations (see [31]). It is very easy to handle constant restric-

tions in this reduction: x

i

< c simply means that the variable x

i

must be

set to zero in the inhomogeneous equation corresponding to c (see [6] for

more details). Consequently, solvability of AC-uni�cation problems with

linear constant restrictions can be reduced to an integer programming

problem, and is thus decidable by an NP-algorithm. By Theorem 5.4 this

implies that general AC-uni�cation is NP-decidable.

Since AC is a regular equational theory, the fact that AC is �nitary for

uni�cation with constants implies that it is also �nitary for uni�cation

with linear constant restrictions. In fact, for a regular equational theory,

a complete set of solutions of a given uni�cation problem with linear

constant restrictions can be obtained from a complete set of solutions of

the corresponding uni�cation problem with constants by simply removing

those uni�ers not satisfying the constant restrictions. The reason is that

any instance of a uni�er not satisfying the constant restrictions also does

not satisfy the constant restrictions.

8

By Theorem 5.5, we can conclude

that AC is �nitary with respect to general uni�cation.

4. For ACI, the decision procedure for uni�cation with constants described

in Section 4 can easily be extended to a decision procedure for ACI-

uni�cation with linear constant restrictions: since the intuitive meaning

of the propositional variable P

x;c

is \c 62 C(x�)", a constant restriction

x < c simply means that P

x;c

must be assigned the value true. However,

we can no longer restrict our attention to uni�ers that introduce only

8

Note that this need not be the case for non-regular theories.

23

free constants contained in the uni�cation problem: we must allow for

an additional free constant c in C (see [6] for details). As for the case

of uni�cation with constants, this reduction yields a polynomial decision

procedure for ACI-uni�cation with linear constant restrictions. Thus,

Theorem 5.4 implies that general ACI-uni�cation is NP-decidable.

Since the theory ACI is regular, the same argument as for AC shows that

ACI is �nitary for uni�cation with linear constant restrictions, and thus

also with respect to general uni�cation.

Optimization techniques

Both Schmidt-Schauss' method and the general combination method described

above solve the problem of how to combine uni�cation algorithms and decision

procedures for uni�cation only from a theoretical point of view. Since these

methods are highly nondeterministic, signi�cant optimizations are necessary

before one can hope for a combined uni�cation algorithms that can be used in

a realistic application.

Some simple optimizations are quite straightforward. In both algorithms,

it is possible to restrict all nondeterministic choices to \shared" variables, that

is, variables that occur in at least two subproblems of the decomposed prob-

lem. Another simple optimization for the algorithm given in [8] relies on the

observation that di�erent linear orders need not lead to di�erent constant re-

strictions. For example, assume that x; y are variables and c; d are constants.

Then the ordering x < c < d < y leads to the same restrictions on solutions of

a uni�cation problem as the ordering x < d < c < y (both just say that x must

not be replaced by a term containing c or d). This observation can be used to

prune the number of di�erent linear orderings that must be considered.

An optimized version of Schmidt-Schauss' algorithm has been described by

A. Boudet [11]. Basically, Boudet's algorithm takes a mixed uni�cation prob-

lem in decomposed form and computes uni�ers for the pure subproblems in the

component theories. Nondeterministic choices (of theory labels for variables,

etc.) are only made to resolve con
icts that are created by incompatible instan-

tiations made by these uni�ers. In this respect, the algorithm creates only the

\necessary" nondeterminism. However, for non-unitary theories, it introduces

another source of nondeterminism, which is due to the fact that, for every uni-

�er in a complete set computed during the algorithm, it opens a new branch of

the search tree.

When combining decision procedures, no information on the form of the uni-

�ers of the pure subproblems is available in general. For this reason, Boudet's

optimization techniques cannot be used in this context. Two orthogonal op-

timization approaches for the general combination algorithm described above

have been introduced in [39]. The �rst method, called iterative decomposition,

applies to the combination of n > 2 theories. Unlike the general combination

method described above, it does not make all the nondeterministic decisions

before trying to solve the resulting uni�cation problems with linear constant

24

restrictions. It starts with the �rst theory by making only the decisions that

are necessary for solving �

1

. If this system turns out to be solvable for some

speci�c combination of decisions, the remaining decisions necessary for the sec-

ond system are made, etc. Whereas this �rst method determines in which order

nondeterministic decision should best be made, the second one shows how to use

speci�c algorithms for the component theories to reach certain decisions deter-

ministically. In principle, these speci�c algorithms provide partial information

on the form of the uni�ers, and this information is used to preclude certain

decisions. A synthesis of both techniques has been implemented, and run time

tests show that the optimized combination method obtained this way leads to

combined decision procedures that have a quite reasonable time complexity [39].

6 Uni�cation from a logical and algebraic point of

view

It is well-known that the decision problems for elementary uni�cation and for

uni�cation with constants correspond to \natural" classes of logical decision

problems. In addition, they can also be seen as decision problems for certain

free algebras. In the following, we shall show that a similar logical and alge-

braic characterization can (simultaneously) be given for general uni�cation and

uni�cation with linear constant restrictions.

Before we can recall the characterizations for elementary uni�cation and

for uni�cation with constants, we must introduce some notation. Let � be a

signature and E be an equational theory such that sig(E) = �. An atomic �-

formula is an equation s = t between �-terms. A positive �-matrix is built from

atomic �-formulae using conjunction and disjunction, and a positive �-sentence

is a quanti�er-pre�x followed by a positive �-matrix containing only variables

bound by the pre�x. Such a positive �-sentence is called existential i� its pre�x

contains only existential quanti�ers, and it is called a positive AE �-sentence

i� its quanti�er pre�x consists of a block of universal quanti�ers followed by

a block of existential quanti�ers. The positive (positive existential, positive

AE) �-theory of E consists of all positive (positive existential, positive AE)

�-sentences that are true in all models of E. The positive (positive existential,

positive AE) �-theory of the free algebra T (�; V)==

E

consists of all positive

(positive existential, positive AE) sentences that are true in T (�; V)==

E

.

Theorem 6.1 Let � be a signature, and E be a non-trivial equational theory

such that sig(E) = �.

1. Solvability of elementary E-uni�cation problems is decidable i� the pos-

itive existential �-theory of E is decidable i� the positive existential �-

theory of T (�; V)==

E

for a countably in�nite set of variables V is decid-

able.

2. Solvability of E-uni�cation problems with constants is decidable i� the

25

positive AE �-theory of E is decidable i� the positive AE �-theory of

T (�; V)==

E

for a countably in�nite set of variables V is decidable.

The �rst statement should be obvious, and the second becomes clear if one

Skolemizes the universal quanti�ers in the positive AE sentence (which replaces

the universally quanti�ed variables by free constants).

For example, the elementary A

f

-uni�cation problem ff(x; y)

:

= f(y; x)g

can be translated into the positive existential sentence 9x:9y:f(x; y) = f(y; x),

and the A

f

-uni�cation problem with constants ff(a; y)

:

= f(y; a)g (where a is

a constant) can be translated into the positive AE sentence 8x:9y:f(x; y) =

f(y; x).

In [8, 5], this characterization was generalized to general uni�cation and

uni�cation with linear constant restrictions as follows:

Theorem 6.2 Let � be a signature, and E be a non-trivial equational theory

such that sig(E) = �. Then the following statements are equivalent:

1. Solvability of E-uni�cation problems with linear constant restrictions is

decidable.

2. The positive �-theory of E is decidable.

3. The positive �-theory of T (�; V)==

E

for a countably in�nite set of vari-

ables V is decidable.

4. Solvability of general E-uni�cation problems is decidable.

This theorem gives a nice logical and algebraic characterization of general E-

uni�cation and of the (at �rst sight rather technical) concept of E-uni�cation

with linear constant restrictions. From a practical point of view, it is interesting

because it shows that any theory that can reasonably be integrated in a univer-

sal deductive machinery via uni�cation can also be combined with other such

theories. In fact, we have pointed out above (see Example 3.4) that such an

integration usually requires algorithms for general uni�cation, and the theorem

shows that such an algorithm also makes sure that the preconditions for our

combination method are satis�ed.

9

In the following, we motivate the equivalence between the decision problems

for E-uni�cation with linear constant restrictions, for the positive theory of E,

and for general E-uni�cation by sketching how these problems can be translated

into each other (see [8] for details):

� Any E-uni�cation problem with linear constant restrictions h�;X;C;<i

can be translated into an an equivalent positive �-sentence �

�

as follows:

9

Actually, the theorem makes this statement only for decision procedure, but in [8] it is

shown that the equivalence between general uni�cation and uni�cation with linear constant

restrictions also holds with respect to uni�cation algorithms.

26

both variables and free constants are treated as variables in this formula;

the matrix of �

�

is the conjunction of all equations in �; and in the quan-

ti�er pre�x, the elements of X (variables in �) are universally quanti�ed,

the elements of C (free constants in �) are existentially quanti�ed, and

the order of the quanti�cations is given by the linear ordering <.

� Given a positive �-sentence � with conjunctive

10

matrix, one �rst removes

universal quanti�ers by Skolemization. The obtained existential formula

is translated into a uni�cation problem in the obvious way. The resulting

problem may contain Skolem function, which explains why it may be a

general E-uni�cation problem.

� The combination method described above shows how solvability of a

given general E-uni�cation problem can be reduced to solvability of E-

uni�cation problems with linear constant restrictions.

As an example, consider the free theory F

fgg

:= fg(x) = g(x)g, and the F

fgg

-

uni�cation problem with constants fx

:

= g(c)g. If we add the constant restric-

tion x < c, then this problem is not solvable (since any solution must substitute

x by the term g(c), which contains the constant c). However, under the restric-

tion c < x the problem is solvable. The following are the positive sentences

and general uni�cation problems obtained by translating these two uni�cation

problems with linear constant restrictions:

uni�cation with lcr positive sentence general uni�cation

fx

:

= g(c)g; x < c 9x:8y: x = g(y) fx

:

= g(h(x))g

fx

:

= g(c)g; c < x 8y:9x: x = g(y) fx

:

= g(d)g

For example, 9x:8y: x = g(y) is not valid in the theory of F

fgg

since this formula

says that g must be a constant function, which obviously does not follow from

F

fgg

. Correspondingly, fx

:

= g(h(x))g does not have a solution because it leads

to an occur-check failure during syntactic uni�cation.

Theorem 6.2 together with our combination result for decision procedures

yields the following modularity result for decidability of positive theories:

Theorem 6.3 Let E

1

; : : : ; E

n

be non-trivial equational theories over disjoint

signatures. Then the positive theory of E

1

[: : :[E

n

is decidable i� the positive

theories of the component theories E

i

are decidable, for i = 1; : : : ; n.

In its equivalent algebraic formulation, this theorem says that the positive the-

ory of the combined free algebra T (�; V)==

E

for � := �

1

[� � � [�

n

and

E := E

1

[� � � [E

n

is decidable i� the positive theories of the free algebras

T (�

i

; V)==

E

i

are decidable, for i = 1; : : : ; n. This algebraic combination result

10

To make the description simpler, we do not consider disjunction her; in [8] it is shown

how disjunction can be handled.

27

can be proved directly (see [5]), using an explicit algebraic construction of the

combined free algebra from the single free algebras. In addition, the combina-

tion result is generalized in [5] to free structures, i.e., to the case of signatures

that may also contain predicate symbols, and in [7] to a more general class of

structures, which we called quasi-free structures. The algebra of rational trees

is an example of a quasi-free structure that is not free.

7 Further topics

The purpose of this chapter was to introduce the notions that are important

in uni�cation theory, and to illustrate the results obtained in this research

area by giving some examples. There are, however, other interesting topics

in uni�cation theory that we have not addressed at all. Exhaustive surveys

on most aspects of equational uni�cation and related topics can be found in

[60, 35, 9]. To give an impression on what additional topics there are in this area,

we mention the following three problems (references to the relevant literature

can, for example, be found in [9]:

General procedures for equational uni�cation. The uni�cation algorithms and

procedure described in Section 4 were speci�c to the equational theory under

consideration. In contrast, a general uni�cation procedure receives as input not

only the uni�cation problem, but also the equational theory modulo which the

problem is to be solved. A special case of such a procedure is the narrowing

procedure, which assumes that the equational theory is given by a con
uent

and terminating term rewriting system.

Higher-order uni�cation and matching. Instead of considering �rst-order terms

and equational theories, one may ask how to compute a representation of the

set of all solutions of an equation between higher-order terms? The main dif-

ference to �rst-order uni�cation is that the terms may now contain variables

for functions, which may be replaced by substitutions.

Uni�cation in sort theories. In many applications, the universe on which func-

tion symbols operate is not just one homogeneous set, but it is divided into

di�erent subsets, which are represented by sorts (such as the sort of integers,

the sort of lists, etc.). In a simple many-sorted environment (where sorts are

interpreted as arbitrary non-empty sets), uni�cation does not behave very dif-

ferently from the single-sorted case considered in this chapter. However, as soon

as one considers order-sorted signatures (where one sort may be declared to be

a subsort of another), things become a lot more complex.

References

[1] F. Baader. Uni�cation in idempotent semigroups is of type zero. J. Auto-

mated Reasoning, 2(3):283{286, 1986.

28

[2] F. Baader. Uni�cation, weak uni�cation, upper bound, lower bound, and

generalization problems. In R.V. Book, editor, Proceedings of the 4th In-

ternational Conference on Rewriting Techniques and Applications, volume

488 of Lecture Notes in Computer Science, pages 86{97, Como, Italy, 1991.

Springer-Verlag.

[3] F. Baader and W. B�uttner. Uni�cation in commutative idempotent

monoids. Theoretical Computer Science, 56(1):345{352, 1988.

[4] F. Baader and K.U. Schulz. Uni�cation in the union of disjoint equational

theories: Combining decision procedures. In D. Kapur, editor, Proceedings

of the 11th International Conference on Automated Deduction, volume 607

of Lecture Notes in Arti�cial Intelligence, pages 50{65, Saratoga Springs,

NY, USA, 1992. Springer-Verlag.

[5] F. Baader and K.U. Schulz. Combination techniques and decision prob-

lems for disuni�cation. In C. Kirchner, editor, Proceedings of the 5th In-

ternational Conference on Rewriting Techniques and Applications, Lecture

Notes in Arti�cial Intelligence, Montreal, Canada, 1993. Springer-Verlag.

[6] F. Baader and K.U. Schulz. General A- and AX-uni�cation via optimized

combination procedures. In Proceedings of the Second International Work-

shop on Word Equations and Related Topics, volume 677 of Lecture Notes

in Computer Science, pages 23{42, Rouen, France, 1993. Springer-Verlag.

[7] F. Baader and K.U. Schulz. On the combination of symbolic constraints,

solution domains, and constraint solvers. In Proceedings of the Interna-

tional Conference on Principles and Practice of Constraint Programming,

CP95, volume 976 of Lecture Notes in Arti�cial Intelligence, Cassis, France,

1995. Springer Verlag.

[8] F. Baader and K.U. Schulz. Uni�cation in the union of disjoint equa-

tional theories: Combining decision procedures. J. Symbolic Computation,

21:211{243, 1996.

[9] F. Baader and J.H. Siekmann. Uni�cation theory. In D.M. Gabbay, C.J.

Hogger, and J.A. Robinson, editors, Handbook of Logic in Arti�cial Intel-

ligence and Logic Programming, pages 41{125. Oxford University Press,

Oxford, UK, 1994.

[10] D. Benanav, D. Kapur, and P. Narendran. Complexity of matching prob-

lems. In J.-P. Jouannaud, editor, Proceedings of the 1st International Con-

ference on Rewriting Techniques and Applications, volume 202 of Lecture

Notes in Computer Science, pages 417{429, Dijon, France, 1985. Springer-

Verlag.

[11] A. Boudet. Combining uni�cation algorithms. Journal of Symbolic Com-

putation, 8:449{477, 1993.

29

[12] A. Boudet, E. Contejean, and H. Devie. A new AC-uni�cation algorithm

with a new algorithm for solving diophantine equations. In Proceedings

of the 5th Annual IEEE Symposium on Logic in Computer Science, pages

141{150, 1990.

[13] A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schau�. Uni�cation in

Boolean rings and Abelian groups. J. Symbolic Computation, 8:449{477,

1989.

[14] H.-J. B�urckert. Some relationships between uni�cation, restricted uni�-

cation and matching. In J.H. Siekmann, editor, Proceedings of the 8th

International Conference on Automated Deduction, volume 230 of Lecture

Notes in Computer Science, Oxford, UK, 1986. Springer-Verlag.

[15] H.-J. B�urckert. A Resolution Principle for a Logic with Restricted Quan-

ti�ers, volume 568 of Lecture Notes in Arti�cial Intelligence. Springer-

Verlag, 1991.

[16] H.-J. B�urckert, A. Herold, and M. Schmidt-Schau�. On equational theories,

uni�cation, and decidability. J. Symbolic Computation, 8(3,4):3{49, 1989.

[17] W. B�uttner. Uni�cation in the data structure multiset. J. Automated

Reasoning, 2(1):75{88, 1986.

[18] W. B�uttner. Uni�cation in the data structure sets. In J.H. Siekmann,

editor, Proceedings of the 8th International Conference on Automated De-

duction, volume 230 of Lecture Notes in Computer Science, pages 470{488,

Oxford, UK, 1986. Springer-Verlag.

[19] M. Clausen and A. Fortenbacher. E�cient solution of linear diophantine

equations. J. Symbolic Computation, 8(1,2):201{216, 1989.

[20] E. Contejean. An e�cient algorithm for solving systems of diophantine

equations, 1992. To appear in Information and Computation.

[21] E. Domenjoud. Outils pour la d�eduction automatique dans les th�eories

associatives-commutatives. Th�ese de Doctorat d'Universit�e, Universit�e de

Nancy I, 1991.

[22] E. Domenjoud. A technical note on AC-uni�cation. The number of minimal

uni�ers of the equation �x

1

+ � � � + �x

p

= �y

1

+ � � � + �y

q

. J. Automated

Reasoning, 8(1):39{44, 1992.

[23] W.F. Dowling and J. Gallier. Linear-time algorithms for testing the satis-

�ability of propositional horn formulae. Journal of Logic Programmming,

1(3):267{284, 1984.

[24] F. Fages. Associative-commutative uni�cation. In R.E. Shostak, editor,

Proceedings of the 7th International Conference on Automated Deduction,

volume 170 of Lecture Notes in Computer Science, pages 194{208, New

York, 1984. Springer-Verlag.

30

[25] F. Fages. Associative-commutative uni�cation. J. Symbolic Computation,

3:257{275, 1987.

[26] F. Fages and G. Huet. Complete sets of uni�ers and matchers in equational

theories. Theoretical Computer Science, 43(1):189{200, 1986.

[27] A. Fortenbacher. An algebraic approach to uni�cation under associativity

and commutativity. In J.-P. Jouannaud, editor, Proceedings of the 1st In-

ternational Conference on Rewriting Techniques and Applications, volume

202 of Lecture Notes in Computer Science, pages 381{397, Dijon, France,

1985. Springer-Verlag.

[28] P. Gordan.

�

Uber die Au
�osung linearer Gleichungen mit reellen Coe�zien-

ten. Mathematische Annalen, pages 23{28, 1873.

[29] A. Herold. Combinations of uni�cation algorithms. In J.H. Siekmann,

editor, Proceedings of the 8th International Conference on Automated De-

duction, volume 230 of Lecture Notes in Computer Science, pages 450{469,

Oxford, UK, 1986. Springer-Verlag.

[30] A. Herold. Combination of Uni�cation Algorithms in Equational Theories.

Ph.D. thesis, Universit�at Kaiserslautern, Kaiserslautern, Germany, 1987.

[31] A. Herold and J.H. Siekmann. Uni�cation in Abelian semigroups. J.

Automated Reasoning, 3:247{283, 1987.

[32] Ju. I. Hmelevskij. Equations in Free Semigroups, volume 107 of Proceedings

of the Steklov Institute of Mathematics. AMS, Providence, Rhode Island,

1976.

[33] G.P. Huet. An algorithm to generate the basis of solutions to homogeneous

linear diophantine equations. Information Processing Letters, 7(3), 1978.

[34] J. Ja�ar. Minimal and complete word uni�cation. J. of the ACM, 37(1):47{

85, 1990.

[35] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:

A rule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin, edi-

tors, Computational Logic: Essays in Honor of A. Robinson. MIT Press,

Cambridge, MA, 1991.

[36] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a

set of equations. SIAM J. Computing, 15, 1986.

[37] D. Kapur and P. Narendran. Complexity of uni�cation problems with

associative-commutative operators. J. Automated Reasoning, 9:261{288,

1992.

[38] D. Kapur and P. Narendran. Double exponential complexity of computing

complete sets of AC-uni�ers. In Proceedings of the 7th Annual IEEE Sym-

posium on Logic in Computer Science, pages 11{21, Santa Cruz, California,

1992.

31

[39] S. Kepser and J. Richts. Optimisation techniques for combining uni�cation

algorithms. LTCS-Report 96-04, Theoretische Informatik, RWTH Aachen,

Germany, 1996.

[40] C. Kirchner. M�ethodes et Outils de Conception Syst�ematique d'Algorithmes

d'Uni�cation dans les Th�eories Equationelles. Th�ese d'

�

Etat, Universit�e de

Nancy I, France, 1985.

[41] C. Kirchner and H. Kirchner. Constrained equational reasoning. In Pro-

ceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic

and Algebraic Computation, Portland, Oregon, 1989. ACM Press.

[42] A. Koscielski and L. Pacholski. Complexity of uni�cation in free groups

and free semigroups. In Proceedings of the 31st Annual IEEE Symposium

on Foundations of Computer Science, pages 824{829, Los Alamitos, 1990.

[43] A. Lentin. Equations in free monoids. In M. Nivat, editor, Automata,

Languages and Programming, 1972.

[44] P. Lincoln and T. Christian. Adventures in associative-commutative uni-

�cation. J. Symbolic Computation, 8(1,2):217{240, 1989.

[45] M. Livesey and J.H. Siekmann. Uni�cation of AC-terms (bags) and ACI-

terms (sets). Internal report, University of Essex, 1975. Also published as

Technical Report 3-76, Universit�at Karlsruhe, 1976.

[46] G.S. Makanin. The problem of solvability of equations in a free semigroup.

Math. Sbornik, 103:147{236, 1977. English translation in Math. USSR

Sbornik 32, 1977.

[47] R. Nieuwenhuis and A. Rubio. AC-supperposition with constraints: No

AC-uni�ers needed. In A. Bundy, editor, Proceedings of the 12th Interna-

tional Conference on Automated Deduction, volume 814 of Lecture Notes

in Arti�cial Intelligence, pages 545{559, Nancy, France, 1990. Springer-

Verlag.

[48] J.P. P�ecuchet.

�

Equations avec constantes et algorithme de Makanin. Th�ese

de doctorat, Laboratoire d'Informatique, University of Rouen, 1981.

[49] G. Peterson and M.E. Stickel. Complete sets of reductions for equational

theories with complete uni�cation algorithms. J. of the ACM, 28(2):233{

264, 1981.

[50] G. Plotkin. Building in equational theories. Machine Intelligence, 7:73{90,

1972.

[51] L. Pottier. Minimal solutions of linear diophantine equations: Bounds and

algorithms. In R.V. Book, editor, Proceedings of the 4th International Con-

ference on Rewriting Techniques and Applications, volume 488 of Lecture

Notes in Computer Science, pages 162{173, Como, Italy, 1991. Springer-

Verlag.

32

[52] J.A. Robinson. A machine oriented logic based on the resolution principle.

J. of the ACM, 12(1):23{41, 1965.

[53] J.A. Robinson. A review of automatic theorem proving. In Annual Sym-

posium in Applied Mathematics, pages 1{18, Providence, 1967. American

Mathematical Society.

[54] M. Schmidt-Schau�. Uni�cation under associativity and idempotence is of

type nullary. J. Automated Reasoning, 2(3):277{282, 1986.

[55] M. Schmidt-Schau�. Uni�cation in a combination of arbitrary disjoint

equational theories. J. Symbolic Computation, 8(1,2):51{99, 1989.

[56] K.U. Schulz. Makanin's algorithm { two improvements and a general-

ization. Technical Report CIS-Report 91{39, CIS, University of Munich,

1991.

[57] K.U. Schulz. Word uni�cation and transformation of generalized equations.

J. Automated Reasoning, 11:149{184, 1993.

[58] J.H. Siekmann. Uni�cation and Matching Problems. Memo, Essex Univer-

sity, 1978.

[59] J.H. Siekmann. Uni�cation of commutative terms. In Proceedings of the

International Symposium on Symbolic and Algebraic Manipulation, EU-

ROSAM'79, volume 72 of Lecture Notes in Computer Science, pages 531{

545. Springer-Verlag, 1979.

[60] J.H. Siekmann. Uni�cation theory: A survey. J. Symbolic Computation,

7(3,4):207{274, 1989.

[61] M.E. Stickel. A complete uni�cation algorithm for associative-commutative

functions. In Proceedings of the 4th International Joint Conference on

Arti�cial Intelligence, pages 71{82, Tblisi, USSR, 1975.

[62] M.E. Stickel. A uni�cation algorithm for associative commutative func-

tions. J. of the ACM, 28(3):423{434, 1981.

[63] E. Tid�en. Uni�cation in combinations of collapse-free theories with disjoint

sets of function symbols. In J.H. Siekmann, editor, Proceedings of the 8th

International Conference on Automated Deduction, volume 230 of Lecture

Notes in Computer Science, pages 431{449, Oxford, UK, 1986. Springer-

Verlag.

[64] K. Yelick. Uni�cation in combinations of collapse-free regular theories. J.

Symbolic Computation, 3(1,2):153{182, 1987.

33

