
A Rule-Based Data Manipulation Language for

OLAP Systems

?

Mohand-Sa��d Hacid

1

, Patrick Marcel

2

, and Christophe Rigotti

2

1

LuFg Theoretical Computer Science

RWTH Aachen, Ahornstra�e 55, 52074 Aachen, Germany

hacid@cantor.informatik.rwth-aachen.de

2

Laboratoire d'Ing�enierie des Syst�emes d'Information

INSA Lyon, Bâtiment 501, F-69621 Villeurbanne Cedex

T�el : +33 4 72 43 85 88 - Fax : +33 4 72 43 87 13

fpatrick,crigg@lisi.insa-lyon.fr

Abstract. This paper proposes an extension of Datalog devoted to data

manipulations in On-Line Analytical Processing (OLAP) systems. This

language provides a declarative and concise way to specify the basic

standard restructuring and summarizing operations on multidimensional

cubes used in these systems. We de�ne its model-theoretic semantics and

an equivalent �xpoint semantics that leads to a naive evaluation proce-

dure. We also illustrate its applicability to specify usefull more complex

data manipulations arising in OLAP systems.

1 Introduction

On-Line Analytical Processing (OLAP) [7,9] has emerged to support multidi-

mensional data analysis, by providing manipulations and aggregations of data

according to multiple dimensions. Codd & al. [7] have proposed an informal

model for OLAP in which data are organized in n-dimensional matrices (called

cubes in OLAP terminology). Systems supporting this model have been devel-

oped and several commercial products exist. Foundations of OLAP languages

are now a growing �eld of interest in the database research community. Algebras

have been designed [4,11], but to our knowledge no rule-based language has been

proposed.

This paper is a contribution in this direction. It introduces an extension

of Datalog devoted to the manipulation of data organized in multidimensional

cubes. This extension is based on the point of view that a Datalog fact represents

an entry (called cell reference) in a cube. The resulting language allows to de�ne

intuitively relationships between cells, and provides a declarative way to specify:

1. all the basic cube restructuring operations used in OLAP systems, and

2. complex summarizations of data according to ad-hoc aggregation levels.

?

This work is partially supported by Esprit Basic Research Action no. 22469 - Foun-

dations of Data Warehouse Quality.

The semantics of the language has been set up by combining techniques stem-

ming from previous works done in the area of databases and logic programming:

{ a higher-order syntax as in Hilog [6] to allow schema browsing;

{ a speci�c relation to specify the aggregation levels, in the spirit of the isa

hierarchy of F-logic [14];

{ the semantics of monovaluation as in Datalog with single-valued data func-

tions [2] to ensure the association of each cell reference with an unique con-

tents.

The main contributions of this paper are the following: �rstly, we de�ne a

model-theoretic declarative semantics that allows a high level speci�cation of the

operations used in OLAP systems. Secondly, we give an equivalent constructive

semantics, that is a basis for the reuse of evaluation methods developed for

deductive databases.

This paper is a major extension of our previous works [13,5,12]. It is or-

ganized as follows. Section 2 introduces the multidimensional data model we

propose. Motivating examples are given in Section 3 to illustrate informally the

most salient features of the data manipulation language. In Section 4 we de�ne

its model-theoretic semantics, and an equivalent �xpoint semantics. A variety

of complex OLAP manipulations are considered in Section 5. We conclude in

Section 6.

2 Data Model Overview

In this section, we outline informally the underlying data model of the language.

Names. The constants we use in the model are called atomic names. Structured

names can be built from atomic names using the constructor \�", and are called

nested names. In the following, we use the term names to denote both atomic

and nested names.

Cells. In this multidimensional data model, data are organized in cells. A cell is

identi�ed by a cell reference, and is associated with a unique cell contents. A cell

reference is of the form N (N

1

; N

2

; : : : ; N

p

), where N;N

1

; N

2

; : : : ; N

p

are names.

N is called the cube name, and N

1

; N

2

; : : : ; N

p

are called attribute names

1

. Given

a cell reference N (N

1

; N

2

; : : : ; N

p

), we can view N

1

; : : : ; N

p

as coordinates in a

p-dimensional space.

A cell contents is a tuple of names. Associations of cells contents with cells

references are represented by ground atoms of the form:

N (N

1

; N

2

; : : : ; N

p

) : hN

p+1

; : : : ; N

p+q

i

where the tuple hN

p+1

; : : : ; N

p+q

i denotes the cell contents. We call this form

of atoms cell-atoms.

1

Also called members in the OLAP terminology.

2

Cubes. A cube is a set of ground cell-atoms having a commoncube name, in which

the same reference does not appear more than once to ensure cell monovaluation.

Database. A multidimensional database is a set of ground cell-atoms in which

the same reference does not appear more than once.

It should be noted that our model distinguishes clearly a cell that doesn't

exist (i.e., no ground cell-atom with this cell reference in the database), from an

existing but empty cell, which is represented by a ground cell-atom of the form

N (N

1

; N

2

; : : : ; N

p

) : hi.

Example 1. Consider the cube sales of Figure 1, which is based on a typical toy

example of the OLAP literature [11,16]. The cube sales contains information on

product sales in areas, over time. In our model, this cube can be represented by:

fsales(nuts; 1996; east) : h50i;

.

.

.

sales(bolts; 1995; north) : h20ig

nuts
bolts

screws east
west

south

north

sales

1995

1996

1994

60

40

50

50

50

60

40
50

40

20

30

1010

30

20

40

20

60

70

100

60

10

70

Fig. 1. The cube sales

Example 2. A particular 2-dimensional representation of a cube can be obtained

by using nested names. Consider the cube 2Dsales of Figure 2 which represents

a nested organization of the data of cube sales. Using nested names, this new

cube can be described in the model by the set:

f2Dsales(nuts � east; 1996) : h50i;

.

.

.

2Dsales(bolts � north; 1995) : h20ig

3

2Dsales 1996 1995 1994

east 50 70 100

west 60 10 30

nuts

north 10

south 40 20

east 10 10

west 50 50 50

screws

north 60 30 20

south 50 60 60

east 70 50 40

west 10 40

bolts

north 40 20

south 10

Fig. 2. A 2-dimensional representation of the cube sales

3 Motivating Examples

In this section, we present informally the syntax and the semantics of the lan-

guage, and show how basic OLAP operations can be expressed.

3.1 Syntax and Semantics

Rules �a la Datalog are used to de�ne new cell references and their associated

contents from existing cells. The higher order syntax stemming from Hilog [6]

allows variables to range over every atomic name used in cell references or cell

contents. It should be noted that variables cannot range over nested names but

only over atomic names.

We adopt the following conventions: symbols beginning with an upper-case

letter denote variables, and symbols beginning with a lower-case letter or a digit

denote constants.

Intuitive Meaning. Consider the rule p(X) � q(X;Y); r(Y): The standard

(Datalog) informal meaning of this rule is if q(X,Y) holds and r(Y) holds, then

p(X) holds. The basic intuition of our extension is to read such a rule in the

following way: if there are two cells of references q(X,Y) and r(Y), then there

is a cell of reference p(X). We also add the handling of cell contents, and then

a typical rule will be: p(X) : hW i � q(X;Y) : hW i; r(Y) : hXi: This rule

will be informally read: if there exists a cell of reference q(X,Y) containing W,

and there exists a cell of reference r(Y) containing X, then there exists a cell of

reference p(X) containing W.

3.2 OLAP Data Manipulations

We now illustrate how rules can specify typical data manipulations used in OLAP

systems [11,7,4,16].

4

Restructuring Cubes. We �rst show how the basic cube restructuring oper-

ations (called nesting, slicing or dicing, splitting, pivotating or rotating) can be

trivialy speci�ed.

Nesting. The nested representation of Figure 2 can be obtained from the cube

of Figure 1 by the rule:

2Dsales(P � R; Y) : hSi � sales(P; Y;R) : hSi:

Slicing - Dicing. Suppose now we are interested in a subset (a slice) of the cube

sales, that contains only the data for year 1996. One can de�ne a corresponding

2-dimensional cube from sales by the rule:

sales � 1996(P;R) : hSi � sales(P; 1996; R) : hSi:

A graphical counterpart of cube sales � 1996 is represented in Figure 3.

sales 1996 east west north south

nuts 50 60 40

screws 50 60 50

bolts 70 40

Fig. 3. The cube sales � 1996

Splitting. Suppose we want to split the cube sales in order to obtain a cube per

region. We can use a variable ranging over regions to form new cube names. This

is shown by the following rule:

sales � R(P; Y) : hSi � sales(P; Y;R) : hSi:

Graphical counterparts of cubes sales � east, sales � west, sales � south and

sales � north are represented in Figure 4.

sales east 1996 1995 1994

nuts 50 70 100

screws 10 10

bolts 70 50 40

sales west 1996 1995 1994

nuts 60 10 30

screws 50 50 50

bolts 10 40

sales south 1996 1995 1994

nuts 40 20

screws 50 60 60

bolts 10

sales north 1996 1995 1994

nuts 10

screws 60 30 20

bolts 40 20

Fig. 4. A cube per region

5

Pivoting - Rotating. The following rule can be used to transpose the cube sales �

1996:

transposed(R;P) : hSi � sales � 1996(P;R) : hSi:

A graphical counterpart of cube transposed is represented in Figure 5.

transposed nuts screws bolts

east 50 70

west 60 50

north 60 40

south 40 50

Fig. 5. The cube transposed

Summaries Speci�cation. We now present how rules can be used to specify

summarizations of data at di�erent levels of aggregation. The following examples

are based on a 2-dimensional cube named sales � byCity, that contains informa-

tion on product sales in various cities (Figure 6). The speci�cation of summaries

requires that the grouping relationship between attribute names is known (e.g.,

how cities are grouped in regions). This relationship represents what is called

hierarchies in the OLAP literature. Such a relationship is depicted in Figure 7.

In this example, cities can be grouped in regions, and regions can be grouped to

form the whole area. In the same way, the di�erent products can be grouped to

form the whole production called product.

sales byCity bordeaux dijon grenoble lille lyon marseille montpellier nantes paris poitier

nuts 50 60 40 70 50 80 20 60

screws 50 60 50 50 60 50 60

bolts 70 40 100 50 60 80 40

Fig. 6. The cube sales � byCity

The grouping relationship can be speci�ed by rules. This relationship is rep-

resented by particular literals of the form in(�; �), where � and � are atomic

names. For example the grouping relationship of Figure 7 is described by the

following set of ground grouping atoms:

fin(nuts; product); : : : ; in(marseille; south); : : : ; in(south; area)g

Aggregate subgoals Aggregate subgoals used to specify the summaries are of

the form: T = f(N (N

1

; : : : ; N

p

)) where T is a constant or a variable, f is an

6

product

nuts screws bolts

paris lille

north

nanteslyon grenoble dijon poitierbordeaux

area

east west south

marseille montpellier

Fig. 7. The product and area grouping hierarchies

aggregate operator (e.g., sum, min) and N (N

1

; : : : ; N

p

) is a possibly non ground

cell reference.

Their intuitive meaning is illustrated by the following example. Consider the

ground aggregate subgoal 130 = sum(sales � byCity(nuts; east)). It holds if the

sum of the sales of nuts over the cities in region east is equal to 130.

More precisely, consider a set noted detailRef(sales�byCity(nuts; east)) that

contains the references of the existing cells corresponding to the lowest level

of description for the sales of nuts in region east. According to the grouping

relationship depicted in Figure 7, we have:

detailRef(sales � byCity(nuts; east)) =

fsales�byCity(nuts; lyon); sales�byCity(nuts; dijon)g.

It should be noticed that sales � byCity(nuts; grenoble) does not belong to

this set, since no cell with this reference exists in the database.

Consider detailCont(sales�byCity(nuts; east)) de�ned as the multiset formed

with the cell contents of the cell references in detailRef(sales�byCity(nuts; east)).

We have:

detailCont(sales � byCity(nuts; east)) = fh70i; h60ig.

The semantics of the aggregate subgoal can now be stated more precisely:

130 = sum(sales � byCity(nuts; east)) holds if the sum of the elements in

detailCont(sales � byCity(nuts; east)) is equal to 130.

It should be noticed that detailRef collects the most detailed existing de-

scription according to all coordinates. Consider for example the set

detailRef(sales � byCity(product; area)). We have:

detailRef(sales � byCity(product; area)) =

fsales � byCity(nuts; bordeau); sales � byCity(nuts; dijon);

.

.

.

sales � byCity(bolts; nantes); sales � byCity(nuts; paris)g.

7

Hence sum(sales � byCity(product; area) denotes the total of sales for the

whole production over the whole area.

Rolling-up. Suppose we want to roll-up

2

the sales from cities to the whole area,

to obtain a cube containing the global sales for each product over the whole

area. This can be done with the rule:

globalSales � byProduct(P; total) : hT i � T = sum(sales � byCity(P; area));

in(P; product):

A graphical counterpart of cube globalSales � byProduct is represented in

Figure 8.

globalSales

byProduct

total

nuts 430

screws 380

bolts 440

Fig. 8. The cube globalSales � byProduct

Rolling-up from Cities to Regions. If we do not want to roll-up to the whole

area, but only to the di�erent regions, this can be speci�ed by using a variable

ranging over the region names:

sales � byRegion(P;R) : hT i � T = sum(sales � byCity(P;R));

in(P; product); in(R; area):

A graphical counterpart of cube sales � byRegion is represented in Figure 9.

sales byRegion east west south north

nuts 130 110 130 60

screws 110 110 110 50

bolts 90 150 60 140

Fig. 9. The cube sales � byRegion

Multiple Roll-up. To obtain the global sales by region, we can roll-up simulta-

neously from the product names to the whole production, and from the cities to

the regions:

globalSales � byRegion(R; total) : hT i � T = sum(sales � byCity(product;R));

in(R; area):

2

Roll-up is synonymous with consolidate or summarize in the OLAP literature.

8

A graphical counterpart of the cube globalSales � byRegion is represented in

Figure 10.

globalSales

byRegion

total

east 330

west 370

south 300

north 250

Fig. 10. The cube globalSales � byRegion

4 Syntax and Semantics

In this section, we formally present the syntax and the semantics of the language.

4.1 Syntax

Constants and variables. Let D be a decidable set of constants called atomic

names, and V be a decidable set of variables, disjoint from D.

Aggregates An aggregate operator f is a partial mapping frommultisets of tuples

over D to a single value in D. Let AGG be a set of aggregate operators.

Rule-Based Language. The syntactical expressions allowed in the rule-based lan-

guage are:

atomicName := c j v

name := atomicName j name � name

contents := hname; : : : ; namei

reference := name(name; : : : ; name)

cell � atom := reference : contents

groupingAtom := in(atomicName; atomicName)

atom := cell � atom j groupingAtom

aggregateSubgoal := atomicName = f(reference)

literal := atom j aggregateSubgoal

body := literal; : : : ; literal

head := atom

rule := head � body

where c 2 D; v 2 V; and f 2 AGG.

9

De�nitions. We note ref(A) the reference part of a cell-atom or aggregate sub-

goal A, and val(A) the contents part of a cell-atom A. Let var be a computable

function that assigns to each syntactical expression the subset of V correspond-

ing to the set of variables occuring in this expression. var is extended in a

straightforward manner to sets of syntactical expressions. A ground name (resp.

reference, literal) is a name n (resp. reference rf , literal l) for which var(n) = ;

(resp. var(rf) = ;, var(l) = ;).

Range Restricted Rule. A range restricted rule is a rule r = A � B

1

; : : : ; B

n

where:

{ var(A) � var((fB

1

; : : : ; B

n

g)), and

{ let Ag be the set of references occuring in aggregate subgoals in r, and B be

the set of atoms occuring in the body of r, then var(Ag) � var(B).

Restructuring Programs. A restructuring program is a set of range restricted

rules having no aggregate subgoal in their body.

Summarizing Programs. A summarizing program is a set of range restricted

rules having no grouping atom in their head.

OLAP Programs. An OLAP program is a pair hR;Si, where R is a restructuring

program, and S is a summarizing program. Informally, the semantics of an OLAP

program hR;Si will be to consider R and S in two stages. The restructuring

program R will be used �rst, and then S will be applied.

4.2 Semantics

In this section, we give a declarative model-theoretic semantics and an equivalent

�xpoint-based constructive semantics.

Input. The semantics of a program (restructuring, summarizing or OLAP pro-

gram) is given with respect to a set of ground atoms describing the extensional

part of the database. Following [3], we call this set an input.

Model-Theoretic Semantics.

Grouping Relationship. Let J be a set of ground atoms. Then in

J

is the relation

corresponding to the description of the grouping atoms within J . More precisely,

we de�ne the relation in

J

by: 8x; y 2 D; in

J

(x; y) () in(x; y) 2 J .

Extending the Grouping Relationship Over References. Let J be a set of ground

atoms. We de�ne a relation noted <

J

over references in the following way: for

all references rf and rf

0

, with rf = n(n

1

; : : : ; n

p

) and rf

0

= n(n

0

1

; : : : ; n

0

p

),

then rf <

J

rf

0

() rf 6= rf

0

and 8i 2 [1; : : : ; p], either in

J

(n

i

; n

0

i

) holds, or

n

i

= n

0

i

.

Informally, we have rf <

J

rf

0

when rf references a cell at a strictly lower

level of detail than rf

0

, with respect to the grouping relationship de�ned in J .

10

Interpretation with respect to an input. Let I be an input. A set J of ground

atoms is an interpretation with respect to I if the following conditions are sat-

is�ed:

{ for all A

1

; A

2

cell-atoms in I, ref(A

1

) = ref(A

2

) =) A

1

= A

2

, where

\=" is the syntactical equality. This criterion is drawn from the semantics

of Datalog with single-valued data functions [2]. It garantees that a cell is

associated with an unique cell contents;

{ the transitive closure of in

J

is irre
exive. This ensures that the grouping

relationship has no directed cycle;

{ I � J (i.e., if something holds in the input, it also holds in the interpreta-

tion).

Most Detailed Information. The satisfaction of a ground aggregate subgoal

of the form k = f(n(n

1

; : : : ; n

p

)) depends on the most detailed information

available for n(n

1

; : : : ; n

p

) in the input. This is formalized by two functions:

detailRef and detailCont. detailRef(n(n

1

; : : : ; n

p

)) is the set of cell refer-

ences of the most detailed information available for n(n

1

; : : : ; n

p

) in the in-

put, and detailCont(n(n

1

; : : : ; n

p

)) is the multiset of the contents of these cells.

More formally: let J be an interpretation with respect to an input I. Let B

be a ground aggregate subgoal. We de�ne the set detailRef

J

I

(B) = fA 2 I j

ref(A) <

J

ref(B)g, and the multiset detailCont

J

I

(B) = fk j k = val(A); A 2

detailRef

J

I

(B)g.

Valuation. A valuation � is a total function from V into D. � is extended to

be the identity on D. � is also extended in a straightforward manner to names,

literals, and rules.

Satisfaction. Let J be an interpretation with respect to an input I. J satis�es a

ground literal B with respect to I, denoted J j=

I

B, i�

{ B is a ground atom and B 2 J , or

{ B is a ground aggregate subgoal of the form k = f(n(n

1

; : : : ; n

p

)), such that

detailRef

J

I

(B) 6= ;, f(detailCont

J

I

(B)) is de�ned, and f(detailCont

J

I

(B)) =

k.

Remark 3. It should be noticed that our semantics restricts the use of aggregate

subgoals to the input. This simpli�es the semantics but limits the expressivity of

a summarizing program. However, in the case of an OLAP program of the form

hR;Si, the input of the summarizing part S will be speci�ed by the restructuring

program R.

Let r = A � B

1

; : : : ; B

n

be a rule, and I be an input. An interpretation

J satis�es r with respect to I, denoted J j=

I

r i� for each valuation � we have:

{ J j=

I

�(A), or

{ 9B

i

; i 2 [1; : : : ; n]; J 2

I

�(B

i

).

11

Model of a Restructuring or Summarizing Program. An interpretation J is a

model of a restructuring or summarizing program P with respect to an input I,

denoted J j=

I

P , i� 8r 2 P; J j=

I

r.

Remark 4. It should be noticed that even simple programs may have no model,

as it is the case in other languages that allow some kind of monovaluation (e.g.,

Datalog with single-valued data functions [2], COL [1]). As an example, the

following program de�nes two di�erent cell contents for the same cell reference

and thus it has no model:

a(b; c) : hei � :

a(b; c) : hdi � :

Remark 5. Inconsistency may also arise from the speci�cation of the grouping

relationship. As in other languages that handle some kind of hierarchy (e.g., the

subclass relationship in F-logic [14]), a program like:

in(a; b) � :

in(b; a) � :

will have no model, since it speci�es a directed cycle in the grouping rela-

tionship.

Remark 6. We insist on the fact that the valuations map variables of V only to

constants of D. They don't map variables of V to names constructed with \�".

This guarantees that if a program admits a model then it admits also a �nite

model. Consider the following program:

a(b; c) : hei � :

a(X � b; c) : hei � a(X; c) : hei:

f a(b; c) : hei, a(b � b; c) : hei g is a �nite model of the program since no

valuation can map X to b � b. The in�nite interpretation f a(b; c) : hei, a(b �b; c) :

hei a(b � b � b; c) : hei, a(b � b � b � b; c) : hei, : : : g is also a model of this program,

but not a minimal one.

Semantics of a Restructuring or Summarizing Program. For a restructuring or

summarizing program P and an input I, the semantics of P on I is the unique

minimal model of P with respect to I, if it exists. It is denoted P (I).

Using standard techniques, we can prove:

Proposition 7. Let P be a restructuring or summarizing program and I be an

input. If P admits a model, then P (I) exists and is �nite.

Semantics of an OLAP Program. Let Q = hR;Si be an OLAP program, and I

be an input. The semantics of Q on I is S(R(I)) if it exists. It is denoted Q(I).

Fixpoint Semantics.

12

Immediate Consequence Operator. Let P be a restructuring or summarizing

program, I be an input, and J be an interpretation with respect to I. A ground

atom A is an immediate consequence for J and P with respect to I if either

A 2 J , or 9r 2 P and 9� with �(r) = A � B

1

; : : : ; B

n

, such that 8i 2

[1; : : : ; n]; J j=

I

B

i

.

For a restructuring or summarizing program P and an input I, we de�ne

the immediate consequence operator T

P;I

to be a partial mapping from inter-

pretations of P to interpretations of P with respect to I, such that, for an

interpretation J :

T

P;I

(J) = fA j A is an immediate consequence for J and P with respect to Ig

if this set is an interpretation with respect to I;

otherwise, T

P;I

(J) is unde�ned.

The following proposition can be established:

Proposition 8. Let P be a restructuring or summarizing program and I be an

input such that P (I) exists. Then T

P;I

has a unique minimal �xpoint, that equals

P (I).

Let P be a program and I an input, then let

{ T

0

P

(I) = I,

{ T

n+1

P

(I) = T

P;I

(T

n

P

(I)), if de�ned.

Using standard techniques, we can prove:

Proposition 9. Let P be a restructuring or summarizing program and I an

input such that P (I) exists. Then the sequence fT

i

P

(I)g

i

reaches a �xpoint after

a �nite number N of steps, with T

N

P

(I) = P (I).

Let Q = hR;Si be an OLAP program and I be an input. Proposition 9

de�nes a constructive semantics for R(I), and then for S(R(I)) (i.e., Q(I)).

This provides a straightforward naive evaluation procedure.

5 Applications of the Language

In this section, we illustrate the applicability of our language to specify in a clear

and concise way various complex manipulations [8,4,7,10,15] arising in OLAP

applications (push-pull, drill-down, ad-hoc grouping and the so-called cube oper-

ator).

5.1 Description of the Database

We use in our examples a restricted form of the database described in the OLAP

Benchmark APB-1 [8]. It consists in a cube named c1, that contains the informa-

tion required by a supplier to analyze product sales to customers over time. The

sales information are units sold and dollar sales. In our model, we use cell-atoms

13

of the form c1(m; p; st) : hus; dsi to represent the units sold (us) and dollar sales

(ds) for a product p sold to a store st on month m. So the cube c1 contains the

monthly results (units sold and dollar sales) of products (represented by codes)

sold to stores for a whole year. The possible groupings described by the relation

in are:

{ stores can be grouped by retailers, and retailers can be grouped to form the

whole distribution to customers, called customer;

{ the di�erent products can be grouped to form the whole production called

product;

{ the months can be grouped to form the whole year, called time-period.

5.2 Manipulations

In this section, the rules of the restructuring (resp. summarizing) part of the

OLAP program will be noted with an arrow of the form

r

 � (resp.

s

 �).

Push - Pull. The operations of pushing and pulling [4] allow meta-data (cell

references) and data (cell contents) to be treated uniformally:

{ pushing the period in the cell contents:

c2(M;P; St) : hUS;DS;M i

r

 � c1(M;P; St) : hUS;DSi

{ pulling the units sold in the cell reference:

c3(M;P; St; US) : hDSi

r

 � c1(M;P; St) : hUS;DSi

For the sake of simplicity, we use in the rest of the section the cube c4

containing only monthly dollar sales per store. c4 is obtained by:

c4(M;P; St) : hDSi

r

 � c1(M;P; St) : hUS;DSi

Roll-up to All Possible Levels. A single rule can specify the summaries of the

sales in cube c4 at all grouping levels. Moreover, the resulting summaries can be

placed within the cube c4 itself. Suppose we want to include into the cube c4

for each product P , the summaries of the january sales at two di�erent levels:

at the retailer level, and at the global level grouping all customers. This can be

done with the single rule:

c4(january; P;C) : hSi

s

 � S = sum(c4(january; P;C));

in(P; product);

in(X;C):

Each value of C according to each instantiation of in(X;C) gives rise to

a di�erent grouping. Hence, summaries are speci�ed at all grouping levels for

customers.

Drill-down. Navigation towards more detailed data [7], called drill-down in the

OLAP literature, can also be speci�ed by rules. Consider the cube c4 extended

with the cells speci�ed by the previous rule. Suppose that having �ltered the sales

by retailer greater than 100 in january, we want to extract the corresponding

14

sales at a more detailed level (i.e., the store level). This can be expressed by the

following rule, where � is a built-in predicate having its standard meaning:

retailerDetails � january(St; P) : hDSi

s

 � c4(january; P;R) : hSi;

S � 100;

in(R; customer);

in(P; product);

c4(january; P; St) : hDSi;

in(St;R):

It should be noticed that this rule must be in the summarizing part of the

OLAP program since its intended meaning is to use the summaries speci�ed by

the previous rule.

Ad-hoc Grouping [7]. The grouping relationship can be speci�ed by rules, in order

to de�ne speci�c summaries. Consider a new cube named responsible, in which

a cell of reference responsible(P; St) contains the name of the person responsible

for a product P in a store St (a person may be responsible for several products

in several stores). For each person, we want to summarize the sales concerning

the products he is responsible for in january (according to the products and the

stores).

First, we de�ne how products are grouped by responsible names:

in(P;R)

r

 � responsible(P; St) : hRi:

And we specify the way stores may be grouped by responsibles:

in(St;R)

r

 � responsible(P; St) : hRi:

Then we simply summarize the sales for each responsible names appearing

in the cube responsible:

result(R; totalSales) : hSi

s

 � S = sum(c4(january;R;R));

responsible(X;Y) : hRi:

Cube Operator. The cube operator proposed by Gray & al. [10] is a n-dimensional

generalization of the SQL group by operator. Intuitively, the query:

select : : :

from : : :

cube by a; b; c

computes the group by aggregates for each possible subset of fa; b; cg. This

operator has in turn been generalized by Shukla & al [15] towards cubes with

aggregation hierarchies. In this case, the cube operator computes the group by

aggregates for each possible subset of the given set of attributes at each possible

level of aggregation in the hierarchies.

On the cube c4, this operation can simply be speci�ed by:

cubeOperatorResult(T; P;C) : hSi

s

 � S = sum(c4(T; P;C));

level(T) : hi;

level(P) : hi;

level(C) : hi:

where level may be de�ned by the two following rules:

level(X) : hi

r

 � in(X;Y):

level(Y) : hi

r

 � in(X;Y):

15

6 conclusion

We proposed an extension of datalog devoted to the speci�cation of data manip-

ulations in OLAP systems. We formally de�ned its model-theoretic semantics,

an equivalent �xpoint semantics, and we illustrated on typical examples its ca-

pabilities of handling standard restructuring and summarizing operations on

multidimensional cubes.

Because of the growing interest in OLAP systems, the foundations of their

data manipulation languages are currently investigated. Gyssens et al. [11] pro-

posed a model of tabular database and developed an algebra for querying and

restructuring tabular information. Agrawal et al. [4] de�ned an algebra for pro-

viding multidimensional manipulations capabilities on top of relational database

systems. Speci�c grouping operators have also been designed [10,15], but to our

knowledge, no rule-based language has been proposed.

We present such a language, having two main interests. Firstly, it allows a

clear and concise speci�cation of complex operations used in OLAP systems. And

secondly, it can serve as a basis for the reuse in these systems of the optimization

methods developed for deductive databases.

Our previous works have investigated several related aspects:

{ [12] focuses on the manipulations of ordered multidimensional databases;

{ [13] presents an orthogonal combination with a constraint language over a

concrete domain;

{ [5] discusses the use of such a rule-based language as a data manipulation

language for spreadsheet programs.

This paper concentrates on OLAP systems, and is a major extension of our

previous works to handle the speci�cation of summarizing operations. Future

works include investigations of e�cient evaluation techniques based on those

used in classical deductive database systems.

References

1. S. Abiteboul and S. Grumbach. A rule-based language with functions and sets.

ACM TODS, 16(1):1{30, Mar. 1991.

2. S. Abiteboul and R. Hull. Data functions, datalog and negation. In Proc. ACM

SIGMOD, pages 143{153, Chicago, IL, Jun. 1988.

3. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. 1995.

4. R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In

Proc. 13th ICDE, Birmingham, United Kingdom, Apr. 1997.

5. J.-F. Boulicaut, M.-S. Hacid, P. Marcel, and C. Rigotti. Un langage de manipula-

tion de donn�ees pour feuilles de calcul. Research report RR-97-01, LISI, INSA de

Lyon, Jan. 1997. 24 pages, in french, submitted.

6. W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-order logic

programming. JLP, 15(3):187{230, Feb. 1993.

7. E. F. Codd, S. B. Codd, and C. T. Salley. Providing olap (on-line

analytical processing) to user-analysts: An IT mandate. White paper -

http://www.arborsoft.com/essbase/wht ppr/coddTOC.html, 1993.

16

8. The OLAP Council. Apb-1 benchmark. http://www.olapcouncil.org/research

/bmarkly.htm, 1997.

9. R. Finkelstein. Understanding the need for on-line analytical servers. White paper

- http://www.arborsoft.com/essbase/wht ppr/�nkTOC.html, 1995.

10. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube : a relational

operator generalizing group-by, cross-tab, and sub-totals. In Proc. 12th ICDE,

pages 152{159, New Orleans, LO, Feb. 1996.

11. M. Gyssens, L. V. S. Lakshmanan, and I. N. Subramanian. Tables as a paradigm

for querying and restructuring. In Proc. 15th ACM PODS, Montreal, PQ, Canada,

Jun. 1996.

12. M. S. Hacid, P. Marcel, and C. Rigotti. Extending datalog for ordered multidi-

mensional databases. In Proc. 5th Int. Workshop on Deductive Database and Logic

Programming (DDLP'97), Leuven, Belgium, Jul. 1997. To appear.

13. M. S. Hacid, P. Marcel, and C. Rigotti. A rule based CQL for 2-dimensional tables.

In V. Gaege, A. Brodsky, O. G�unther, D. Srivastava, V. Vianu, and M. Wallace, ed-

itors, Proc. 2nd Int. Workshop on Constraint Database Systems (CDB'97), volume

1191 of LNCS, pages 92{104, Delphi, Greece, Jan. 1997.

14. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-

based languages. JACM, 42(4):741{843, Jul. 1995.

15. A. Shukla, P. M. Deshpande, J. F. Naughton, and K. Ramasamy. Storage estima-

tion for multidimensional aggregates in the presence of hierarchies. In Proc. 22nd

VLDB, pages 522{531, Bombay, India, Sep. 1996.

16. Pilot Software. An introduction to olap, 1995. http://www.pilotsw.com/r and t

/whtpaper/olap/olap.htm.

17

