
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

Characterizing the semantics of terminological

cycles in ALN using �nite automata

Ralf K�usters

LTCS-Report 97-04

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany



Characterizing the semantics of terminological

cycles in ALN using �nite automata

Ralf K�usters



Abstract

The representation of terminological knowledge may naturally lead to terminological

cycles. In addition to descriptive semantics, the meaning of cyclic terminologies can

also be captured by �xed-point semantics, namely, greatest and least �xed-point

semantics. To gain a more profound understanding of these semantics and to obtain

inference algorithms as well as complexity results for inconsistency, subsumption,

and related inference tasks, this paper provides automata theoretic characteriza-

tions of these semantics. More precisely, the already existing results for FL

0

are

extended to the language ALN , which additionally allows for primitive negation

and number-restrictions. Unlike FL

0

, the language ALN can express inconsistent

concepts, which makes non-trivial extensions of the characterizations and algorithms

necessary. Nevertheless, the complexity of reasoning does not increase when going

from FL

0

to ALN . This distinguishes ALN from the very expressive languages

with �xed-point operators proposed in the literature. It will be shown, however,

that cyclic ALN -terminologies are expressive enough to capture schemata in cer-

tain semantic data models.



Chapter 1

Introduction

Description logics (DLs) and the corresponding DL-systems can be used to capture

the terminological knowledge of a problem domain in a formally well-de�ned way.

In such representation formalisms the concepts of the domain are de�ned in termi-

nologies by concept de�nitions. The de�nitions are complex terms constructed by

atomic concepts and roles as well as concept constructors. A terminology T is a

�nite set of concept de�nitions of the form A = C where A denotes an atomic con-

cept and C a concept term. The atomic concept A is called de�ned concept. If there

is no such concept de�nition in T for a given atomic concept, then this atomic con-

cept is called primitive concept. Formally, atomic concepts are interpreted as unary

relations and the roles are binary relations over the domain of the interpretation.

The interpretation is extended to concept terms such that concept terms describe

certain subsets of the domain. An example of a terminology consisting only of one

concept de�nition is

Human = Mammal u (� 2 parents) u (� 2 parents) u 8parents.Human (1.1)

Intuitively, the de�ned concept Human contains all individuals which are mammals

with exactly two parents all of whom are human beings. Thus, all ancestors of an

individual in Human (transitive closure of the role parents) should be mammals with

exactly two parents.

Intuitively, it is expected that the interpretation of a de�ned concept of a termi-

nology is uniquely determined by the interpretation of the primitive concepts and

roles (primitive interpretation). This is the case for acyclic terminologies since by

macro extension every de�ned concept can be described by a concept term with-

out de�ned concepts. In general, for cyclic terminologies (see, e.g., (1.1)) there are

several possible extensions of given primitive interpretation to a model of the con-

sidered terminology. Therefore, beside the descriptive semantics, which is used to

describe the semantics of acyclic terminologies, also �xed-point semantics, namely,

greatest and least �xed-point semantics, are employed to capture the meaning of

cyclic terminologies.

Cyclic terminologies were �rst investigated by B. Nebel [17, 18, 19], who has

introduced the mentioned �xed-point semantics in addition to descriptive semantics.

1
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Subsumption

general

Inconsistency

general

Inconsistency

(weak-)acyclic

descriptive PSPACE-complete PSPACE-complete NP-complete

gfp PSPACE-complete PSPACE-complete NP-complete

lfp PSPACE-complete PSPACE-complete NP-complete

Table 1.1: Complexity of inference problems in ALN -terminologies

Which of the semantics should be prefered depends on the particular representation

problem at hand. Nebel has shown|by proving the �nite model property|that

for the language ALN , which allows for concept conjunction, (universal) value-

restriction, primitive negation, and unquali�ed number-restrictions, subsumption

w.r.t. cyclic terminologies and the descriptive semantics is decidable.

In order to gain a more profound understanding of all three semantics as well as

more feasible decision algorithm and complexity results for subsumption, F. Baader

[4] has proposed automata theoretic characterizations of the three semantics for

the small representation language FL

0

, which allows for concept conjunction and

(universal) value-restrictions. Following this approach, B. Nebel [20] has given an

automata theoretic characterization of equivalence of concepts w.r.t. cyclic FL

0

-

terminologies. Although [20] introduces the semantics for ALN , the results are

restricted to the sub-language FL

0

.

Since FL

0

is not expressive enough for most practical representation problems,

in this paper the results for FL

0

are extended to the language ALN . Generalizing

the results from FL

0

to ALN is not trivial due to inconsistent concepts, which

are expressible in ALN , but not in FL

0

. The new complexity results presented in

this paper are summarized in table 1.1 for all three semantics both for general (i.e.,

possibly cyclic) and (weak-)acyclic terminologies.

Terminological cycles in much more expressive extensions of FL

0

have been in-

vestigated in [22] and [13]. K. Schild has extended the language ALC by the �xed-

point operators of the �-calculus to �ALCand has shown|among other results|

that �ALC is more expressive than general ALC-terminologies.

1

Moreover, the lan-

guage �ALC has been extended in [13] by (quali�ed) number-restrictions toALCQ�.

Thus, the language ALCQ� contains ALN . Consistency as well as subsumption

for ALCQ�-concepts is EXPTIME-complete, whereas these problems are merely

PSPACE-complete for general ALN -terminologies (see table 1.1), which justi�es to

consider this restricted case separately. For both ALCQ� and ALN , the important

inference problems can be decided with the help of �nite automata. However, the

automata for ALCQ� are of exponential size and they are tree automata reecting

certain semantic structures, while the automata for ALN are �nite automata on

words that are merely syntactic variants of ALN -terminologies.

Cycles can increase the complexity of inference problems or even lead to un-

decidability. For instance, subsumption for general FL

0

-terminologies which allow

1

To ensure the existence of least and greatest �xed-point models, recursively de�ned concepts

must occur positively in their de�nition.
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for feature agreements is undecidable [20], whereas this problem is decidable for

acyclic terminologies.

2

Furthermore, in this paper it is shown that inconsistency

w.r.t. acyclic ALN -terminologies is NP-complete, whereas it is PSPACE-complete

for general ALN -terminologies (see table 1.1).

Nevertheless, the relevant literature points out the need for cyclic de�nitions

of concepts (see, e.g., [16, 7, 8]). Example (1.1) reveals that cyclic terminologies

can be natural descriptions of terminological knowledge. Additionally, they al-

low for describing properties of concepts using the transitive closure of relations

(parents in the example). Furthermore, description logics can be used to describe

schemas w.r.t. most semantic and object-oriented data models (e.g., [10, 6, 5]).

These schemas are often cyclic, e.g., the Boss of an Employee is a Manager who

is himself an Employee. Unlike terminologies, which consist of concept de�nitions,

schemas state only necessary (rather than necessary and su�cient) conditions for

concepts. In this paper, however, it is shown that the important inference prob-

lems for so-called (cyclic) SL

dis

-schemas, which where introduced in [7], can be

reduced to corresponding problems for (cyclic) ALN -terminologies. Hence, the de-

cision algorithms for terminologies presented below can be used to decide inference

problems for schemas. This yields new proofs for the upper bounds complexity for

such schemas, and in fact, for a more expressive schema language, which allows

for arbitrary number-restrictions. Conversely, existing results for lower complexity

bounds for schemas will be used to derive complexity results for terminologies.

In the following chapter we will recall some de�nitions and results concern-

ing ordinals, �xed-points, and automata. A formal introduction to general ALN -

terminologies is given in chapter 3, which also motivates the mentioned �xed-point

semantics. The heart of this paper are the following three chapters, which deal

with the characterization of the three semantics as well as the important inference

problems inconsistency and subsumption. Due to inconsistency, which in ALN in

contrast to FL

0

also occurs w.r.t. the greatest �xed-point semantics and the de-

scriptive semantics, the notion of \exclusion" and \exclusion sets" are introduced.

These notions will turn out to be very useful for the characterization of subsumption

and inconsistency as well as for deciding these inference problems. In chapter 7 the

already mentioned relationship between schemas and terminologies is investigated;

also (weak-)acyclic terminologies and schemas will be considered. Finally, we will

summarize and discuss the results in the conclusion.

2

One can use the technique described in [1] to obtain this result.



Chapter 2

Preliminaries

For the readers' convenience we recall some de�nitions and properties involving

ordinals, �xed-points, and �nite automata.

2.1 Ordinals

A more thorough introduction to ordinals can be found in [21].

A linear ordering < over a domainD is a binary, transitive, total

1

, and irreexive

relation over D. Such an ordering is called well-founded if, in addition, every non-

empty sub-ordering

2

of < contains a least element. An order type is an equivalence

class of isomorphic, linear orderings. An ordinal denotes an order type of isomorphic,

well-founded orderings. One can de�ne a well-founded ordering on the set of ordinals.

We de�ne such an ordering < as follows: � < � i� � is a proper initial segment

of �. Since this de�nes a well-founded ordering, there is a least element for every

subset of ordinals as well as a least upper bound (i.e., a least element of the set of

upper bounds). Furthermore, no such subset contains an in�nite decreasing chain

of ordinals.

2, 17, 42 are examples of �nite ordinals, where, e.g., 17 denotes the order type

f0; 1; 2; : : : ; 16g for the usual ordering < on non-negative integers. The ordinal ! is

the least order type with an in�nite number of elements, i.e., the set f0; 1; 2; : : :g

with the usual ordering < on non-negative integers. It holds n < ! for each ordinal

n.

For the ordinal � the ordinal � + 1 is called successor of �. An ordinal which

is successor of one ordinal is a successor ordinal, otherwise we call it limit ordinal.

Because 17 = 16 + 1, e.g., 17 is a successor ordinal, whereas ! is a limit ordinal.

The successor ordinal !+1 of ! has the order type f0; 1; 2; : : :g [ f1g where every

element in f0; 1; 2; : : :g is less than 1. One can obtain a limit ordinal � as least

upper bound (lub) of the set of all less ordinals, i.e., � = lub(f� j � < �g).

1

For each a; b 2 D, a 6= b, it holds a < b or b < a.

2

A relation <

S

is called sub-ordering of < if there is a subset S of D such that <

S

=< \S �S.

4
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2.2 Fixed-points

The de�nitions and results of this section can also be found in [15]. A partial

ordering

3

D is called complete lattice

4

if every sub-ordering C of D has a least upper

bound lub(C) in D. In this case, since glb(C) = lub(fd 2 D j d is lower bound of

Cg), there exits also a greatest lower bound for C. With that, D contains a least

element, bottom = lub(;), and a greatest element, top = glb(;). In order to de�ne

�xed-point semantics we need the following complete lattice.

Example 1.

Let D = 2

S

� � � � � 2

S

be the n-fold cartesian product where 2

S

denotes the set of

all subsets of S. The set D is ordered component-wise by inclusion: (A

1

; : : : ; A

n

) �

(B

1

; : : : ; B

n

) i� A

1

� B

1

; : : : ; A

n

� B

n

. With that, D is a complete lattice; top =

(S; : : : ; S) and bottom = (;; : : : ; ;). 3

For the partial ordering D the mapping T : D �! D is monotonic i� for all

a; b 2 D, a � b implies T (a) � T (b). An element f 2 D where T (f) = f is called f

�xed-point of T . Let D be a complete lattice and T : D �! D monotonic. Then T

has a least �xed-point lfp(T ) and a greatest �xed-point gfp(T ), which are possibly

identical. Every �xed-point of T lays in between the least and greatest �xed-point

([21], Proposition 5.1). Least and greatest �xed-points are expressible in terms of

ordinal powers. The ordinal powers T "

�

and T #

�

are inductively de�ned:

i.) T "

0

:= bottom and T #

0

:= top;

ii.) T "

�+1

:= T (T "

�

) and T #

�+1

:= T (T #

�

);

iii.) if � is a limit ordinal, then T "

�

:= lub(fT "

�

; � < �g) and T #

�

:=

glb(fT #

�

; � < �g).

Proposition 2.

Let D be a complete lattice and T : D �! D a monotonic mapping. Then for any

ordinal � it holds: T "

�

� lfp(T ) and T #

�

� gfp(T ). In addition, there exist

ordinals � and  such that T "

�

= lfp(T ) and T #



= gfp(T ).

Proof. see [15], Proposition 5.3. 2

The mapping T is called upward !-continuous (resp., downward !-continuous) i� for

any increasing chain d

0

� d

1

� d

2

� � � � (resp., decreasing chain d

0

� d

1

� d

2

� � � �)

it holds: T (lub(fd

i

j i � 0g) = lub(fT (d

i

) j i � 0g) (resp., T (glb(fd

i

j i � 0g) =

glb(fT (d

i

) j i � 0g)). It is easy to see that in this case T is monotonic. Furthermore,

the ordinals � and  in the above proposition can be chosen less or equal !. More

precisely, we have

3

reexive, transitive, anti-symmetric binary relation

4

D shall denote both domain and ordering.
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Proposition 3.

Let D be a complete lattice and T : D �! D a upwards !-continuous (resp., down-

ward !-continuous) mapping. Then lfp(T ) = T "

!

= lub(fT

n

(bottom) j n � 0g)

(resp., gfp(T ) = T #

!

= glb(fT

n

(top) j n � 0g)).

Proof. Consequence of Proposition 4. 2

The following Proposition is a generalization of Proposition 3 for downward !-

continuous mappings. An analogous statement can be proven for upward !-contin-

uous mappings, but this is not needed in the sequel.

Proposition 4.

Let D be a complete lattice and T : D �! D a downward !-continuous map-

ping. Furthermore, let d be an element in D with d � T (d). Then d-gfp(T ) :=

glb(fT

n

(d) j n � 0g) is the greatest �xed-point of T which is less or equal d.

Proof. see [4] 2

2.3 Automata and languages

In this section we recall some notions and statements of �nite automata and lan-

guages. More detailed informations can be found in [14, 12].

For a �nite alphabet � the set of all �nite words over � is denoted �

�

. Let

W 2 �

�

where W = a

0

� � �a

n�1

; a

i

2 �, 0 � i � n � 1, n 2 IN. Then jW j := n

is the length of W . We denote the empty word, i.e., the word with length zero,

". Furthermore, �

"

denotes the set � [ f"g. The �nite word W can be seen as a

mapping of the ordinal n = f0; : : : ; n� 1g into �: W (i) := a

i

for all 0 � i < n. An

in�nite word (!-word) is a mapping of the ordinal ! into �. The set of all in�nite

words over � is denoted �

!

. An !-word W is also written W (0)W (1)W (2) � � �. For

the language L � �

�

and the letter a we de�ne L � a := fW � a j W 2 Lg. The set

L

!

contains exactly those !-words over � which are of the form W

1

W

2

W

3

� � � where

W

i

2 L for all i � 1.

A semi-automaton (with word-transitions) is a triple A = (�; Q; E), which con-

sists of a �nite alphabet �, a �nite set of states Q, and a �nite set of transitions

E � Q � �

�

� Q. If E � Q � �

"

� Q, then A is called semi-automaton with-

out word-transitions. If E � Q � � � Q, then A is called semi-automaton with

letter-transitions.

Let A be a semi-automaton and p, q states of A. There is a �nite path of length

n from p to q in A with label U if there are transitions (p

i�1

; U

i

; p

i

) in A with p

0

= p,

p

n

= q, and U = U

1

� � �U

n

. For n = 0 this is an empty path labeled with U = " and

q = p. The sequence q

0

; V

1

; q

1

; V

2

; q

2

; : : : ; V

n

; q

n

with q

i

2 Q for all 0 � i � n and

V

i

2 �

�

for all 1 � i � n denotes a �nite path from q

0

to q

n

if for all 1 � i � n

there is a �nite path from q

i�1

to q

i

with label V

i

. Note, that (q

i�1

; V

i

; q

i

) need not

to be a transition in A, otherwise this will be mentioned explicitly. Analogously, the

sequence q

0

; V

1

; q

1

; V

2

; q

2

; V

3

; : : : denotes an in�nite path starting from q

0

and labeled

with W = V

1

V

2

V

3

� � � if for all i � 1, there is a �nite path from q

i�1

to q

i

labeled
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with V

i

. Additionally, it is required that for an in�nite number of indices i � 1 the

path from q

i�1

to q

i

is non-empty. The word W is possibly �nite or in�nite. For a

�nite word W there is an index i � 0 such that q

i

lays on an "-cycle|due to the

fact that Q is �nite. Thus, the sequence q

0

;W; q

i

; "; q

i

; "; q

i

; : : : denotes an in�nite

path in A labeled withW starting from q

0

. A state q of A lays on an "-cycle if there

is a non-empty path in A from q to q with label ".

Let I and J be subsets of Q. Then L

A

(I; J) (resp., L(I; J) if the relationship to

A is clear from the context) denotes the set of �nite words over � which are labels

of �nite paths starting from a state in I and terminating in one state in J . Note

that L

A

(I; J) is a regular language. For sets I = fpg and J = fqg we write L

A

(p; q)

(resp., L(p; q)) instead of L

A

(I; J) (resp., L(I; J)).

Furthermore, we will consider labels of in�nite paths in the sequel. Let p be a

state of A. Then we de�ne U

A

(p) resp. U(p) := fW 2 �

�

[ �

!

j W is a label of an

in�nite path starting from pg.

In order to simulate an equivalent deterministic automaton of A we need some

more de�nitions. Let A = (�; Q; E) be a semi-automaton, then the "-closure of

I � Q is de�ned by

"-closure

A

(F ) := fq

0

j there is a state q in F and a (possibly empty) "-path

from q to q

0

in Ag.

The successor set of I w.r.t. a 2 � is

next

A

(I; a) := fq 2 Q j there is a state q

0

2 I where (q

0

; a; q) 2 Eg.

Finally, for W 2 �

�

we de�ne inductively

next

"A

(I; ") := "-closure

A

(I) and

next

"A

(I; aW ) := next

"A

(next

A

("-closure

A

(I); a);W )

the successor set of a set of states and a word. If the relation to A is clear from the

context we write "-closure(I), next(I; a) and next

"

(I;W ), respectively. This sets

are computable in time polynomial in the size of A (and W ).

The following lemma is easy to prove by induction on the length n of W .

Lemma 5.

Let A = (�; Q; E) be a semi-automaton without word-transitions, W 2 �

�

, and q,

q

0

states in Q. Then it holds:

q

0

2 next

"

(fqg;W ) i� W 2 L(q; q

0

):

2

In Lemma 5 it is necessary to assume a semi-automaton without word-transitions.

Consider for example a semi-automaton with the states q

0

, q

1

and the transition

(q

0

; ab; q

1

). Then ab 2 L(q

0

; q

1

), but q

1

=2 next

"

(fq

0

g; ab) = ;. For this purpose,

next(I; a) and next

"

(I; A) always refer to semi-automaton without word-transitions.

With respect to the introduced languages L(I; J) and U(q) every semi-automaton

can be reduced (w.l.o.g.) to a semi-automaton without word-transitions.
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Lemma 6.

Let A = (�; Q; E) be a semi-automaton (with word-transitions). Then there exists

a semi-automaton B = (�; Q

0

; E

0

) without word-transitions and with the following

properties:

i.) Q � Q

0

;

ii.) For all q 2 Q

0

n Q there is no empty path from q to q which only contains

states in Q

0

nQ;

iii.) no state q 2 Q

0

nQ lays on an "-cycle;

iv.) for all I; J � Q it holds: L

A

(I; J) = L

B

(I; J);

v.) for all q 2 Q it holds: U

A

(q) = U

B

(q).

Proof. One can construct B as follows: Every word-transition (p; a

1

� � �a

n

; q) 2 E

where n > 1 is substituted by the transitions (p; a

1

; p

1

); (p

1

; a

2

; p

2

); : : : ; (p

n�1

; a

n

; q)

where p

1

; : : : ; p

n�1

are new states. The other transitions in E are added to E

0

without change. Now the above properties can easily be proven. 2

For the language U

A

(q) we need

Lemma 7.

Let A be a semi-automaton without word-transitions, q a state in A, and W =

a

1

a

2

a

3

� � � an !-word. For T

i

:= next

"

(q; a

1

� � �a

i

), i � 0, it holds: W =2 U(q) i�

there is a k � 0 with T

k

= ;; in this case it is T

i

= ; for all i � k.

Proof. \)": Let T

i

6= ; for all i � 0. Thus, for all i � 0 there is a state q

i

2 T

i

such that W

i

:= a

1

� � �a

i

2 L(q; q

i

). We consider the following tree: The root of the

tree is labeled with q. Successor nodes of q are exactly those nodes labeled with q

0

such that there is an A-path from q to q

0

with label a

1

. The node labeled with q

0

has a successor node labeled with q

00

i� there is a path from q

0

to q

00

with label a

2

.

Analogously, one de�nes successor nodes for a

3

; a

4

; a

5

; : : : Since Q is a �nite set, the

de�ned tree is �nitely branched. Because of W

i

2 L(q; q

i

) for all i � 0 and Lemma

5 the tree contains paths of arbitrary length. As a consequence of K�onig's Lemma,

the tree contains an in�nite path. Hence, W 2 U(q).

\(": Let k � 0 with T

k

= ;. Assume W 2 U(q). Thus, there are states

q

1

; q

2

; q

3

; : : : such that q = q

0

; a

1

; q

1

; a

2

; q

2

; : : : is a in�nite path in A. Consequently,

q

l

2 T

l

for all l � 0 (Lemma 5). This is a contradiction since T

k

= ;. 2



Chapter 3

Cyclic ALN -terminologies

In this chapter we formally introduce general ALN -terminologies as well as the

descriptive semantics and �xed-point semantics for such terminologies. First, we

de�ne syntax and descriptive semantics of ALN -terminologies.

3.1 ALN -terminologies

The syntax of ALN -concepts and ALN -terminologies is de�ned in

De�nition 8 (syntax).

Let N

d

, N

p

, and N

r

be pairwise disjoint sets. The sets N

d

, N

r

contain concept names

and N

r

contains role names. ALN -concepts are inductively de�ned as follows:

i.) Every C 2 N

d

is an (atomic) concept.

ii.) Every P 2 N

p

is an (atomic) concept and (:P ) is a concept (primitive nega-

tion).

iii.) For every n 2 IN and R 2 N

r

the terms (� n R) (maximum-restriction) and

(� n R) (minimum-restriction) are concepts (number-restrictions).

Let C, D be concepts and R 2 N

r

. Then

iv.) CuD (concept conjunction) and

v.) 8R.C ((universal) value-restriction) are concepts.

A (general) ALN -terminology T consists of a �nite set of concept de�nitions of the

form A = D where A denotes an atomic concept in N

d

and D an ALN -concept.

In addition, it is required that for every atomic concept A 2 N

d

in T there is at most

one concept de�nition with left-hand side A. We call atomic concepts appearing on

the left-hand side of some concept de�nition in T de�ned. Atomic concepts P 2 N

p

occurring in T are called primitive. For such atomic concepts there are no concept

de�nitions in T . For an ALN -terminology T only primitive negation is allowed, i.e.,

if :P is a sub-concept in T then P is a primitive concept. 3

9
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Beside ALN we also consider some sub-languages. The language FL

0

allows for

universal value-restriction and concept conjunction. The language FLN augment

FL

0

by unquali�ed number-restrictions. The languageAL extends FL

0

by primitive

negation and allows for maximum-restrictions of the form (� 1 R). Analogous to

ALN we de�ne FL

0

-, AL-, and FLN -terminologies.

The following examples reveal that cyclic de�nitions of concepts can be a nat-

ural way to de�ne concepts. Furthermore, they show that the (reexive-)transitive

closure of relations are expressible in cyclic terminologies. A (reexive-)transitive

closure is de�ned as follows: Let R �M �M be a binary relation on a set M . We

de�ne R

0

:= f(e; e); e 2 Mg and R

n+1

:= R � R

n

; n � 0, where \�" denotes the

composition of binary relations. Then

S

n�1

R

n

is the transitive closure of R and

S

n�0

R

n

the reexive-transitive closure.

Example 9.

Let Mammal, Human, Male, Woman, and Man be atomic concepts and let parents be

a role. The ALN -terminology T is de�ned as follows:

Human = Mammal u (� 2 parents) u (� 2 parents) u 8parents.Human

Man = Human uMale

Woman = Human u :Male

Intuitive, in this terminology a human being is de�ned as a mammal with exactly

two parents all of whom are human beings, i.e., all ancestors (transitive closure of

parents) of a human being are them self mammals with exactly two parents. A man

is de�ned as male human being. A woman is de�ned as human being which is not

male. 3

A second example:

Example 10.

Let Binary-tree, Ternary-tree, Leaves and Tree be atomic concepts and direct-successor

a role. Then

Binary-tree = Tree u (� 2 direct-successor) u

8direct-successor.Binary-tree (3.1)

Ternary-tree = Tree u (� 3 direct-successor) u

8direct-successor.Ternary-tree (3.2)

Leaves = Tree u (� 0 direct-successor) (3.3)

is an ALN -terminology with de�ned concepts Binary-tree, Ternary-tree and Leaves.

The atomic concept Tree is primitive. An individual is instance of Binary-tree if it

is an instance of Tree, has at most two direct-successors, and all (direct and indi-

rect) successors (transitive closure of direct-successors) are instances of Binary-tree.

The atomic concept Ternary-tree is de�ned analogously. The atomic concept Leaves

describes those individuals which do not have successors. 3
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Until now we only refer to the intuitive semantics of terminologies. The formal

semantics is de�ned as follows.

De�nition 11 (semantics).

An interpretation I consists of a set dom(I) of individuals and objects, domain of

I, and a function �

I

, which maps every atomic concept A to a subset A

I

of dom(I)

and every role R to a binary relation R

I

over dom(I), i.e., R

I

� dom(I)� dom(I).

The sets A

I

and R

I

are called extensions of A and R w.r.t. I.

The interpretation function of I is extended to concepts:

i.) (:P )

I

:= dom(I) n P

I

for every P 2 N

p

;

ii.) forR 2 N

r

and d 2 dom(I) letR

I

(d) := fe; (d; e) 2 R

I

g be the set of role �llers

of d w.r.t. R and I. Then for n 2 IN the number-restrictions are interpreted

(� n R)

I

:= fd 2 dom(I); jR

I

(d)j � ng and (� n R)

I

:= fd 2 dom(I);

jR

I

(d)j � ng.

Assume that for the concepts C, D the sets C

I

, D

I

are already de�ned. Let R 2 N

r

,

then

iii.) (CuD)

I

:= C

I

\D

I

and

iv.) (8R.C)

I

:= fd 2 dom(I);R

I

(d) � C

I

g.

This de�nes the interpretation function of I for all concepts.

Two concepts C and D are equivalent if C

I

= D

I

for all interpretations I.

An interpretation I is model of a terminology T (T -model) i� A

I

= D

I

for all

concept de�nitions A = D in T .

1

The descriptive semantics of T is de�ned by the set of all T -models. Two termi-

nologies are equivalent w.r.t. the descriptive semantics if their descriptive semantics

coincide. 3

The characterization of the descriptive semantics will reveal that this semantics is

not always appropriate to capture the intuition of a terminology. Furthermore, the

interpretation of the primitive concepts and roles (the so-called primitive interpre-

tation) may have di�erent possible extensions for the de�ned concepts.

Both problems arise if the terminology at hand is cyclic. In this case also other

semantics are considered.

3.2 Semantics of cyclic ALN -terminologies

As pointed out in the preceding chapter there are some problems concerning the

descriptive semantics with respect to cyclic terminologies. In this chapter, we will

address this|and other|problems of the descriptive semantics in more detail. This

1

Obviously, it is su�cient if I only interprets concepts and roles occurring in T .
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leads us to alternative semantics whose advantages and disadvantages we will briey

discuss.

First, we will de�ne the already mentioned notions \terminological cycle" and

\primitive interpretation".

De�nition 12 (terminological cycle).

Let T be an (ALN -)terminology, A a de�ned concept, and B an atomic concept in

T . The concept A `directly uses' B if B occurs on the right-hand side of the concept

de�nition A = C in T . Let `uses' denote the transitive closure of `directly uses'.

Then T is cyclic (contains a terminological cycle) i� there exists a de�ned concept

A in T that uses itself; otherwise T is called acyclic. 3

The terminologies in the examples 9 and 10 are cyclic.

De�nition 13 (the primitive interpretation and its extension).

Let T be a terminology, P

1

; : : : ; P

m

the primitive concepts, R

1

; : : : ; R

k

the roles, and

A

1

; : : : ; A

n

the de�ned concepts in T . A primitive interpretation J consists of the

domain dom(J), and the extensions of the primitive concepts (P

J

1

; : : : ; P

J

m

) and the

extension of the roles (R

J

1

; : : : ; R

J

k

).

An interpretation I of T extends J i� dom(I) = dom(J), P

I

1

= P

J

1

; : : : ; P

I

m

= P

J

m

and

R

I

1

= R

J

1

; : : : ; R

I

k

= R

J

k

. Therefore, I is uniquely determined by J and the n-tuple

A = (A

I

1

; : : : ; A

I

n

) 2 (2

dom(J)

)

n

. We call J the corresponding primitive interpretation

of I. For a de�ned concept B the position of B in the tuple A is denoted by

index(B) 2 f1; : : : ; ng. The ith component of tuple A is (A)

i

. 3

In [4] it is pointed out that involving cyclic terminologies one can in general not

uniquely extend the primitive interpretation to a model of a terminology. Depend-

ing on the intuitive semantics di�erent semantics may be prefered. For acyclic

terminologies there is always a unique extension of the primitive interpretation to a

model of the considered terminology.

For a model I of a terminology one can de�ne the extensions of the de�ned

concepts as �xed-point of a mapping, which we introduce in the sequel (see also

[17, 18, 4]). This mapping will allow us to de�ne so-called �xed-point semantics.

De�nition 14.

Let T be a terminology consisting of the concept de�nitions A

1

= D

1

; : : : ; A

n

= D

n

,

and J be a primitive interpretation. The mapping T

J

: (2

dom(J)

)

n

�! (2

dom(J)

)

n

is

de�ned as follows: Let A 2 (2

dom(J)

)

n

be a tuple and I the interpretation corre-

sponding to J and A. Then T

J

(A) := (D

I

1

; : : : ; D

I

n

). 3

It is easy to see that an interpretation I consisting of J and A is a model of the

terminology T i� A is a �xed-point of T

J

. According to example 1 (2

dom(J)

)

n

is a

complete lattice. Analogous to [4], Proposition 16 it holds that T

J

is upward !-

continuous.

2

Consequently, T

J

is monotonic, and thus, has at least one �xed-point.

2

In [4] this has been proven for the language FL

0

. The proof for ALN is a straightforward

extension.
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In other words, every primitive interpretation of a terminology can be extended to

a model of this terminology. With that, the following de�nition is well-de�ned.

De�nition 15 (semantics of (cyclic) terminologies).

Let T be a (cyclic) terminology.

i.) The descriptive semantics allows all models of T as admissible models.

ii.) The least �xed-point semantics (lfp-semantics) allows only those models of T

as admissible models which come from the least �xed-point of a mapping T

J

(lfp-models).

iii.) The greatest �xed-point semantics (gfp-semantics) allows only those models of

T as admissible models which come from the greatest �xed-point of a mapping

T

J

(gfp-models).

3

As already mentioned, there is always an unique extension of a primitive interpre-

tation J to a model of an acyclic terminology T . Therefore, T

J

has exactly one

�xed-point, and thus, the three semantics coincide for acyclic terminologies. For

cyclic terminologies every primitive interpretation can uniquely be extended to a

lfp- resp. gfp-model.

Since T

J

is upward !-continuous, we have gfp(T

J

) =

T

i�0

T

i

J

(top) = T

J

#

!

for top = (dom(J))

n

as a consequence of Proposition 3. Proposition 4 yields

A-gfp(T

J

) =

T

i�0

T

i

J

(A) for A � (dom(J))

n

and A � T

J

(A). For the least �xed-

point lfp(T

J

) of T

J

we may have lfp(T

J

) 6=

S

i�0

T

i

J

(bottom) = T

J

"

!

. Consider for

example the terminology T with concept de�nitions A = Qu8S.B, B = Pu8R.B

[4]. Furthermore, let J be a primitive interpretation: dom(J) := fa

0

; a

1

; a

2

; : : :g,

P

J

:= fa

1

; a

2

; a

3

; : : :g, Q

J

:= fa

0

g, R

J

:= f(a

i+1

; a

i

); i � 1g, and S

J

:= f(a

0

; a

i

); i �

1g. Then it holds lfp(T

J

) = T

J

"

!+1

6= T

J

"

!

because the equality (T

J

"

!

)

2

= P

I

(index(B) = 2) is valid for ! but not for ordinals less than !. Thus, (T

J

"

!+1

)

1

= Q

J

(index(A) = 1) for ! + 1 but not earlier.

Now the question arises which of the three semantics is to prefer. As argued in

[18, 20], none of the semantics �ts best in any given representation task. For example,

we will show that w.r.t. the lfp-semantics the concept Human is inconsistent. One

would expect that the concept Binary-tree in example 10 is subsumed by Ternary-

tree. However, as we will show using the characterization of subsumption w.r.t. the

descriptive semantics, this intuition is not captured by the descriptive semantics.

Finally, if the atomic concept Donkey is de�ned in the same way as Human in example

9, then Donkey and Human are equivalent w.r.t. the gfp-semantics which contradicts

the intuition.

Nevertheless, in many cases the gfp- and descriptive semantics are the seman-

tics of choice. Additionally, the gfp-semantics allows for a more natural automata

theoretic characterization than the other two semantics.

In this paper, we not only characterize the three semantics using �nite automata,

but also give an automata theoretic characterization of the important inference
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problems inconsistency and subsumption w.r.t. all three semantics. The formal

de�nitions of these problems are as follows:

De�nition 16.

Let T be a terminology, A, B atomic concepts in T .

A v

T

B i� A

I

� B

I

for all models I of T:

A v

lfp;T

B i� A

I

� B

I

for all lfp-models I of T:

A v

gfp;T

B i� A

I

� B

I

for all gfp-models I of T:

In order to refer to the terminology we will say that A is T -subsumed by B w.r.t. de-

scriptive (lfp-, gfp-)semantics. The concept A is inconsistent (T -inconsistent) w.r.t. the

descriptive (lfp-, gfp-)semantics i� for all (lfp-, gfp-)models I of T it holds: A

I

= ;.

3



Chapter 4

Semi-automata and gfp-semantics

In this chapter we characterize the gfp-semantics for ALN -terminologies. We will

see that this semantics allows for a very natural description using �nite automata.

With the help of this characterization we prove automata theoretic characterizations

of inconsistency and subsumption which leads to decision algorithms and complexity

results for these problems. With that, the already existing results for FL

0

[4] are

extended by number-restrictions and primitive negation.

Unlike FL

0

, in ALN inconsistent concepts are expressible. It has turned out

that this fact prohibits a straightforward extension of the results for subsumption

w.r.t. FL

0

. Therefore, the notion \exclusion of concepts" will be introduced. Fur-

thermore, words which exclude concepts will be described by so-called \exclusion

sets" in order to formulate decision algorithms not only for subsumption but also

for inconsistency. Both \exclusion" and \exclusion sets" will be important even for

the other two semantics, which we deal with in the following chapters. However, for

these semantics the notions have to be modi�ed appropriately.

Since ALN allows for number-restrictions, primitive negation can be dispensed

with using the technique proposed in [3]: The concepts :P and P in a terminology

can respectively be replaced by (� 0 R

P

) and (� 1 R

P

) for a new role name R

P

.

Without loss of generality, we will thus restrict our attention to FLN in the se-

quel. In addition, to simplify the formal de�nition of the notion \exclusion" we may

(without loss of generality) assume that an FLN -terminology contains no minimum-

restrictions of the form (� 0 R) since such a term can be substituted by 8R.?.

1

For

the characterization of subsumption we therefore consider only terminologies with-

out (� 0 R), which we call FLN

r

-terminologies. Since these reductions of ALN to

FLN and FLN

r

are polynomial, the here presented complexity results for these

languages are also valid for ALN .

1

The symbol ? denotes the empty concept, which can be expressed by (� 2 R) u (� 1 R).

15
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4.1 The semi-automaton A

T

In order to state automata theoretic characterizations we associate a semi-automaton

A

T

to a FLN -terminology T . First, we need a further de�nition and additionally

have to normalize T :

For a word W = R

1

� � �R

n

and an interpretation I the composition R

I

1

� � � � �R

I

n

of

the relations R

I

i

, 1 � i � n, is denoted by W

I

, where for the empty word "

I

denotes

the identity relation.

For FLN -concepts C, D and a role R the concepts 8R.(C u D) and 8R.C u 8R.D

are obviously equivalent. Thus, every FLN -concept is equivalent to a conjunction

of concepts of the form 8R

1

:8R

2

: : : : :8R

n

:C where C denotes an atomic concept

or a number-restriction. According to the above de�nition 8R

1

:8R

2

: : : : :8R

n

:C is

equivalent to 8W:C whereW = R

1

� � �R

n

; note that 8".C is equivalent to C. We call

a FLN -terminology T normalized if the right-hand side of the concept de�nitions

in T are conjunctions of concepts of the form 8W .C where C and W are de�ned as

above.

De�nition 17 (The semi-automaton A

T

).

Let T (w.o.l.g.) be a normalized FLN -terminology. The corresponding semi-

automaton (with word-transitions) A

T

= (�; Q; E) is de�ned as follows: The al-

phabet � of A

T

is the set of all role names occurring in T ; the states Q of A

T

are

the atomic concepts and number-restrictions in T ; every concept de�nition of the

formA = 8W

1

.A

1

u � � � u 8W

n

.A

n

in T gives rise to the transitions (A;W

1

; A

1

); : : : ;

(A;W

n

; A

n

) 2 E. 3

Obviously, one can construct A

T

in time polynomial in the size of T .

Remark 18.

By Lemma 6 one can construct| with linear complexity|a semi-automaton A

T

0

without word-transitions such that the introduced languages for A

T

and A

T

0

(see

Lemma 6) coincide. Thus, we can (w.l.o.g.) assume that A

T

is a semi-automaton

without word-transitions. This is needed if decision algorithms for subsumption are

considered.

Let T

0

be a terminology corresponding to A

T

0

. Then, T

0

can directly be con-

structed out of T as follows: Every sub-concept of the form 8RW .C in T (R 2 �

and W 2 �

+

) is replaced by 8R.A where A is a new introduced concept with con-

cept de�nition A = 8W .C. This substitution can be iterated until there are only

sub-concepts of the form 8W .C for W = " or W = R, R 2 �. 3

The following is an example of a normalized FLN -terminology with corresponding

semi-automaton A

T

.

Example 19.

Let T be de�ned by the following concept de�nitions:

A = 8RS.C u 8RS.(� 1 R)
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C = 8R.D u 8R.E

D = 8".(� 2 R) u 8R.(� 3 S)

E = 8".(� 2 R) u 8R.(� 3 S)

B = 8RS.P

The corresponding semi-automaton A

T

is given by the following graph:

A C

RS

RS

DPB

RS

(� 1 R)

E

R

(� 2 S)

(� 3 S)

(� 2 R)

"

"R

R

R

3

In order to characterize inconsistency and subsumption, the notion \requiring" is

very useful. Due to number-restrictions, atomic concepts can \require" chains of

role successors for every instance of such a concept.

De�nition 20 (require).

Let T be an FLN -terminology, A

T

the corresponding semi-automaton and A an

atomic concept in T . LetW = R

1

� � �R

n

be a �nite word and V = R

1

� � �R

m

a pre�x

of W , i.e. m � n. The word W is required by A starting from V i� for all i, m � i <

n, there are numbers m

i+1

� 1 such that V R

m+1

� � �R

i

2 L(A; (� m

i+1

R

i+1

)). Let

W 2 �

!

, W = R

1

R

2

R

3

� � �, be an in�nite word and V = R

1

� � �R

m

an �nite pre�x

of W . Then W is required by A starting from V i� every �nite pre�x of W which

also has V as pre�x is required by A starting from V , i.e.: for all i � m there are

numbers m

i+1

� 1 such that VR

m+1

� � �R

i

2 L(A; (� m

i+1

R

i+1

)) for all i � m.

If V = " we say \W is required by A" instead of \W is required by A starting from

"". 3

The important property of this notion is captured by

Lemma 21.

In addition to the above denotation let I be a model of T and d, e

m

individuals in

dom(I) such that dV

I

e

m

and d 2 A

I

. We distinguish two cases. (a) W is a �nite

word. Then there is a f 2 dom(I) such that dV

I

e

m

(R

m+1

� � �R

n

)

I

f . (b) W is an

in�nite word. Then there are individuals e

m+1

; e

m+2

; e

m+3

; : : : 2 dom(I) such that

dV

I

e

m

R

I

m+1

e

m+1

R

I

m+2

e

m+2

� � �.

Proof. We only consider the case W 2 �

!

; the case W 2 �

�

can be shown analo-

gously. The existence of the individuals e

i

, i � m such that dV

I

e

m

(R

m+1

� � �R

i

)

I

e

i

is proven by induction over i starting from m:
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For i = m there nothing is to show. For i � m the word V R

m+1

� � �R

i

is an element

of L(A; (� m

i+1

R

i+1

)). We have dV

I

e

m

(R

m+1

� � �R

i

)

I

e

i

as induction hypothesis.

The characterizations of the semantics (see Theorems 22, 42 resp. 51)

2

yield e

i

2

(� m

i+1

R

i+1

)

I

because of d 2 A

I

. Since m

i+1

� 1, there is an R

i+1

-successor e

i+1

of e

i

. 2

Because of parents

j

2 L

A

T

(Human; (� 2 parents)) for all j � 0, every word parents

j

is required by Human (example 9). As a consequence of Lemma 21, every instance

of Human has an in�nite chain of ancestors.

With that, we are prepared to characterize the gfp-semantics as well as inconsis-

tency and subsumption.

4.2 Characterizing the gfp-semantics

The characterization of the gfp-semantics w.r.t. FLN -terminologies is a straight-

forward extension of the characterization for FL

0

-terminologies [4].

Theorem 22 (Characterizing the gfp-semantics w.r.t. FLN).

Let T be an FLN -terminology, A

T

the corresponding semi-automaton, I a gfp-

model of T , and A an atomic concept occurring in T . For every d 2 dom(I) we have

d 2 A

I

i� the following properties hold:

(P1) for all primitive concepts P in T and wordsW 2 L(A; P ) it holds d 2 (8W .P )

I

;

(P2) for all maximum-restrictions (� n R) in T and all words W 2 L(A; (� n R))

it holds d 2 (8W .(� n R))

I

; and

(P3) for all minimum-restrictions (� n R) in T and all words W 2 L(A; (� n R))

it holds d 2 (8W .(� n R))

I

.

Proof. Analogous to the proof of [4], Proposition 19 2

Remark 23.

As a consequence of the reduction from ALN to FLN for the characterization

w.r.t. ALN -terminologies only the following property has to be added in Theorem

22: For all terms of the form :P in T and words W 2 L(A;:P ) it holds d 2

(8W .:P )

I

. 3

In example 9 we have L(Human; (� 2 parents)) = L(Human; (� 2 parents)) =

parents

�

. Thus, the ancestors of the individuals in Human

I

must have exactly two par-

ents. This reveals, that cyclic de�nitions allow to expressive the reexive-transitive

closure of relations.

2

To proof Lemma 21 these Theorems are not necessary.
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4.3 Inconsistency w.r.t. gfp-semantics

If the de�nition of the concept Human in example 9 is extended by the value-

restriction 8parents parents parents.(� 3 parents) (the grand-grandparents of a human

being have at least three parents) then Human is inconsistent because of conicting

number-restrictions. Formally, number-restrictions (� l R) and (� r R) are con-

icting if l > r.

To prove a characterization for inconsistency we de�ne a canonical model I =

I(A; d

0

) for an atomic concept A and an individual d

0

such that d

0

2 A

I

if A is

consistent. The primitive interpretation of this model can be seen as a tree with

root d

0

. The edges of this tree are de�ned by the extensions of the roles. The

idea is to satisfy property (P2) in Theorem 22. If there are no conicting number-

restrictions for A then it can be shown that property (P3) is also satis�ed.

De�nition 24 (canonical gfp-model w.r.t. FLN ).

Let T be an FLN -terminology, A

T

= (�; Q; E) the corresponding semi-automaton,

and A an atomic concept in T . The primitive canonical interpretation J = J(A; d

0

)

for A and the individual d

0

is de�ned as follows:

Let W

0

;W

1

;W

2

;W

3

; : : : be the in�nite (w.o.l.g., the �nite case can be dealt with

analogously) enumeration of the words required by A such that W

i

6= W

j

for all

i 6= j, and for all i; j � 0, i < j, it holds: jW

i

j � jW

j

j. Note that if one word is

required by A then all pre�xes of this word are also required. Consequently, W

0

= "

and jW

i

j < jW

i+1

j implies jW

i+1

j = jW

i

j+ 1. We de�ne J inductively:

J

0

: dom(J

0

) := fd

0

g; R

J

0

:= ; for all roles R in T ; the extensions of the primi-

tive concepts are only de�ned for J . Obviously, J

0

only consists of a �nite set of

individuals (basis step) .

J

i+1

: For W

i+1

there is exactly one j < i + 1 and one role R in T such that

W

i+1

= W

j

R. Let m � 1 maximal such that W

j

2 L(A; (� m R)), i.e., there is

no m

0

> m with W

j

2 L(A; (� m

0

R)). (Such a positive integer m exists, because

W

i+1

is required by A and T contains only a �nite number of number-restrictions.

According to the induction hypothesis dom(J

i

) is a �nite set. Thus, the set K

i+1

:=

fd

1

; : : : ; d

r

g := fd 2 dom(J

i

); d

0

W

J

i

j

dg (r � 0 size of K

i+1

) of W

j

-successors of d

0

in

J

i

is �nite. Let e

1

1

; : : : ; e

1

m

; : : : ; e

r

1

; : : : ; e

r

m

be (r�m) new individuals. We extend J

i

to

J

i+1

:

dom(J

i+1

) := dom(J

i

)

_

[fe

1

1

; : : : ; e

1

m

; : : : ; e

r

1

; : : : ; e

r

m

g; S

J

i+1

:= S

J

i

for all roles S 6= R

and R

J

i+1

:= R

J

i

_

[f(d

k

; e

k

l

); 1 � k � r, 1 � l � mg.

Obviously, dom(J

i+1

) is �nite (induction step). With that, we de�ne J :

dom(J) :=

S

i�0

dom(J

i

); S

J

:=

S

i�0

S

J

i

for all roles S in T ; for all primitive concepts

P and individuals d 2 dom(J) let: d 2 P

J

i� there exists a word W 2 �

�

such that

W 2 L(A; P ) and d

0

W

J

d.

The canonical gfp-model I = I(A; d

0

) for A and d

0

is de�ned as the gfp-model given

by J(A; d

0

) and T . 3

In de�nition 24 every J

i

can be seen as a �nite tree with root d

0

. The nodes are

given by dom(J

i

) and the edges are de�ned by the extensions of the roles. The tree
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J

0

consist only of the root d

0

. The tree J

i

is extended to J

i+1

by adding m (see

above) new R-successors to paths labeled with W

j

(see above for the de�nition of

j). The primitive interpretation J is the \limes" of these trees. The nodes in J

belonging to the primitive concept P are labeled with P . For an in�nite sequence

W

0

;W

1

;W

2

; : : : of words required by A the tree described by J has at least one

in�nite path (K�onig's Lemma).

To conclude d

0

2 A

I

for the canonical model I = I(A; d

0

) the following condition

is su�cient:

3

There is no word W 2 �

�

and there are no conicting number-

restriction (� l R) and (� r R), l > r, such that W is required

by A and W 2 L(A; (� l R)) \ L(A; (� r R)).

(4.1)

The following lemma summarizes some properties of J and I:

Lemma 25.

Using the denotations and conditions of de�nition 24 it holds:

1.) The primitive canonical interpretation J is a tree with root d

0

, i.e., for every

individual (node) e 2 dom(J) there is an unique �nite word W such that

d

0

W

J

e, and every node e 2 dom(J), e 6= d

0

has a unique predecessor, i.e.,

there is a unique role S 2 � and an unique node d 2 dom(J) such that dS

J

e;

there is no predecessor for d

0

. The tree J is �nitely branched. Every word W

with d

0

W

J

e is required by A.

2.) For V 2 L(A; (� m R)), m maximal with this property and d

0

V

J

d, d 2

dom(J), it holds: jR

J

(d)j = m.

3.) For every W 2 �

�

required by A there is (at least) one individual e 2 dom(J)

satisfying d

0

W

J

e.

4.) Let V be a �nite word and d be an individual. Then d

0

V

J

d implies: d 2 P

J

i� V 2 L(A; P ).

5.) Assuming that condition (4.1) is satis�ed the properties (P1), (P2), and (P3)

in Theorem 22 hold for A, d

0

, T and J . Since I is a gfp-model of T it follows

from Theorem 22, d

0

2 A

I

.

Proof. 1.) This is can easily be proven using the construction of J and induction

over i.

2.) Statement 1.) and d

0

V

J

d imply that V is required by A. For m � 1 (m

maximal) and V 2 L(A; (� m R)) the word VR is also required by A. Thus, there

are non-negative integers j, i, 0 � j < i + 1, such that W

j

= V and W

i+1

= VR.

According to the construction exactly m R-successors of d are generated in J

i+1

.

Since in no J

k

, k > i + 1, R-successors of d are generated, we have jR

J

(d)j = m.

3

and following Theorem 29 also necessary



CHAPTER 4. SEMI-AUTOMATA AND GFP-SEMANTICS 21

For m = 0 the word VR is not required by A, thus, 1.) implies that d has no

R-successors, otherwise VR would be required by A.

3.) IsW 2 �

�

required by A then there is (exactly) one i � 0 such thatW = W

i

.

We show the existence of an individual e 2 dom(J), d

0

W

J

i

e, by induction over i:

For i = 0 we haveW = ". Thus, de�ning e = d

0

yields d

0

W

J

i

e. The induction step is

a consequence of statement 2.): ForW

i+1

there is a non-negative integer j, j < i+1,

and a role R such that W

i+1

= W

j

R. Now let V := W

j

. As a consequence of the

induction hypothesis there is an individual d for V which satis�es d

0

V

J

d. Since

W

i+1

is required by A there is a m � 1 such that V 2 L(A; (� m R)). Statement

2.) implies the existence of an individual e 2 dom(J) satisfying d

0

W

J

j

dR

J

e.

4.) According to 1.) there is exactly one V 2 �

�

satisfying d

0

V

J

d. Using the

de�nition of the extensions of the primitive concepts the statement follows immedi-

ately.

5.) Assume that condition (4.1) holds. Property (P1) w.r.t. A, d

0

, T and J of

Theorem 22 is a consequence of 4.).

Let (� n R) be a maximum-restriction of T , W 2 L(A; (� n R)) and e 2

dom(J), where (d

0

; e) 2 W

J

. If n � 1, then there is a maximal non-negative

integer m � 1 such hat W 2 L(A; (� m R)). Since 2.) implies jR

J

(e)j = m and

since m � n it follows: e 2 (� n R)

J

. Hence, (P2) is valid. For n = 0 we have

e 2 (� n R)

J

since (� 0 R)

J

= dom(J).

Let (� n R) be a minimum-restriction in T , W 2 L(A; (� n R)), and e 2

dom(J), where (d

0

; e) 2 W

J

. In particular, 1.) implies that W is required by

A. The assumption yields that there is no m > n such that W 2 L(A; (� m R))

(no conicting number-restrictions). Now 2.) implies jR

J

(e)j � n, and hence,

e 2 (� n R)

J

. Thus, (P3) is valid. 2

Remark 26.

For ALN -terminologies also conicts caused by P and :P (analogous to conicting

number-restrictions) have to be taken into account. With that, one can de�ne a

similar canonical model I = I(A; d

0

) satisfying d

0

2 A

I

if A is consistent. 3

For an algorithmic characterization of inconsistency and subsumption we need the

following

De�nition 27 (exclusion set w.r.t. gfp-semantics in FLN ).

Let T be a terminology and A

T

= (�; Q; E) the corresponding semi-automaton

without word-transitions (see Remark 18). The set F

0

� Q is called exclusion set

w.r.t. A

T

(and to the gfp-semantics in FLN ) if the following holds: There is a non-

negative integer n, a word R

1

� � �R

n

2 �

�

, conicting number-restrictions (� l R)

and (� r R), l > r, and for all 1 � i � n there are integers m

i

� 1 such that

F

i

:= next

"

(F

i�1

; R

i

), 1 � i � n, implies (� m

i

R

i

) 2 F

i�1

for all 1 � i � n and

(� l R), (� r R) 2 F

n

. 3

For ALN -terminologies the set F

0

� Q is also called exclusion set if F

n

contains P

and :P for a primitive concept P .
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To decide inconsistency and subsumption of concepts we formulate a NPSPACE-

decision algorithm for deciding the set of exclusion sets. In the following algorithm

the statements output \yes" and \no", respectively, not only lead to the correspond-

ing output but also terminates the computation.

Algorithm 28.

Input: Semi-automaton A

T

= (�; Q; E) without word-transitions correspond-

ing to the FLN -terminology T ; F

0

� Q.

Output: There exists a computation with output \yes" i� F

0

is an exclusion set.

F := F

0

;

z := 0;

while z < 2

jQj

do

if \there are conicting number-restrictions (� l R); (� r R) 2 F , l > r"

then output \yes";

if \there exists an integer m � 1 and a maximum-restriction (� m R) 2 F"

then \Guess (non-det.) (� m R) 2 F where m � 1"

else output \no";

F := next

"

(F;R);

z := z + 1

end;

output \no". 4

Obviously, this algorithm terminates on every input. The correctness is easy to see

considering the de�nition of exclusion sets. For the completeness of the above algo-

rithm it is to show that if there is a word R

1

� � �R

n

such that F

n

(see de�nition 27)

contains conicting number-restrictions and n � 2

jQj

, then there is also a word sat-

isfying n < 2

jQj

such that for this word F

n

contains conicting number-restrictions.

Using a \pumping-lemma" argument this is not hard to prove. Thus, the set of

exclusion sets is decidable using polynomial space.

Theorem 29 (Characterizing inconsistency w.r.t. gfp-semantics).

Let T be an FLN -terminology, A

T

the corresponding semi-automaton without

word-transitions,

4

and A be an atomic concept in T . The following statements

are equivalent:

1.) A is T -inconsistent w.r.t. the gfp-semantics in FLN .

2.) There exists a word W required by A and conicting number-restrictions

(� l R) and (� r R), l > r, where W 2 L(A; (� l R)) \ L(A; (� r R)).

3.) "-closure(fAg) is an exclusion set.

4

The equivalence of 1.) and 2.) is valid even for an arbitrary semi-automaton A

T

.
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Proof. Equivalence of 1.) and 2.):

\1. ( 2.": Assume that 2.) is valid and let I be a gfp-model of T where A

I

6= ;,

i.e., there is an individual d 2 A

I

. Lemma 21 implies the existence of an individual

e 2 dom(I) such that dW

I

e. As a consequence of (P2) and (P3) of Theorem 22 we

have e 2 (� l R)

I

and e 2 (� r R)

I

which is a contradiction because of l > r.

\1. ) 2.": Assume that 2.) is not valid. Then Lemma 25, 5.) implies the

existence of the canonical gfp-model I = I(A; d

0

) such that d

0

2 A

I

. Hence, A is

consistent.

Equivalence of 2.) and 3.):

\2. ) 3.": Let W 2 �

�

be the word R

1

� � �R

n

which is required by A and which

satis�es W 2 L(A; (� l R)) \ L(A; (� r R)), l > r. Let F

i

:= next

"

(A;R

1

� � �R

i

)

for all 0 � i � n. Since W is required by A there are maximum-restrictions

(� m

i

R

i

), m

i

� 1, where R

1

� � �R

i

2 L(A; (� m

i+1

R

i+1

)) for all 0 � i < n.

Thus, Lemma 5 implies (� m

i+1

R

i+1

) 2 F

i

for all 0 � i < n. Additionally, since

W 2 L(A; (� l R))\L(A; (� r R)) the number-restrictions (� l R) and (� r R) are

contained in F

n

. Hence, F

0

= "-closure(fAg) is an exclusion set.

\2. ( 3.": Let F

0

:= "-closure(fAg) be an exclusion set. Consequently there is

a word W = R

1

� � �R

n

2 �

�

, and maximum-restrictions (� m

i

R

i

), m

i

� 1, for all

1 � i � n such that for F

i

:= next

"

(F

i�1

; R

i

), 1 � i � n, it holds: (� m

i

R

i

) 2 F

i�1

for all 1 � i � n. In addition, F

n

contains conicting number-restrictions (� l R)

and (� r R), l > r. Thus, Lemma 5 implies: R

1

� � �R

i

2 L(A; (� m

i+1

R

i+1

)) for all

0 � i < n, i.e., W is required by A, and W 2 L(A; (� l R)) \ L(A; (� r R)). 2

Remark 30.

For ALN -terminologies also conicts of the form W 2 L(A; P )\ L(A;:P ) have to

be considered in 2.). Furthermore, the de�nition of exclusion sets has to be modi�ed

according to the remark on page 21. 3

Since "-closure(fAg) is computable in time polynomial in the size of T it follows as

a consequence of the above theorem that inconsistency is decidable using polynomial

space. We also have

Theorem 31 (Inconsistency w.r.t. gfp-semantics).

Inconsistency w.r.t. gfp-semantics for ALN - and FLN -terminologies is PSPACE-

complete and NP-complete for (weak-)acyclic ALN - and FLN -terminologies (see

De�nition 78).

Proof. As already shown, inconsistency for ALN - and FLN -terminologies is in

PSPACE. D. Calvanese [8] has shown that consistency w.r.t. AL-schemas (see chap-

ter 7) and descriptive semantics is PSPACE-complete. Since a concept is consistent

w.r.t. descriptive semantics i� it is consistent w.r.t. gfp-semantics, consistency in-

volvingAL-schemas is PSPACE-complete even for gfp-semantics. Thus, Theorem 75

implies the PSPACE-completeness for general ALN -(FLN -)terminologies. Note,

that SLN -schemas introduced in chapter 7 comprise AL-schemas.

NP-completeness for (weak-)acyclic terminologies is shown in Theorem 79. 2
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On page 19 we have extend the de�nition of the de�ned concept Human by a con-

dition for grand-grandparents. For this concept the word parents parents parents

is required by Human. As a consequence of Theorem 29 parents parents parents 2

L(Human; (� 2 parents))\L(Human; (� 3 parents)) implies the inconsistency of Hu-

man.

4.4 Subsumption w.r.t. gfp-semantics

For the language FL

0

subsumption has been characterized in [4] via inclusion of

regular languages. With respect to gfp-semantics this characterization is as follows:

A v

gfp;T

B i� L(B;P ) � L(A; P )

for all primitive concepts P in T .

(4.2)

The straightforward extension of this characterization to FLN -terminologies would

be to add inclusions L(B; (� n R)) � L(A; (� n R)) as well as L(B; (� n R)) �

L(A; (� n R)) for the number-restrictions (� n R), (� n R) in T . Using Theorem 22

it is easy to see that this condition is su�cient for A v

gfp;T

B. However, the example

19 shows that the straightforward extension is not necessary for subsumption:

Although, RS 2 L(B;P) and RS =2 L(A;P), hence L(B;P) 6� L(A;P), it holds

A v

gfp;T

B in example 19. Proof: Let I be a gfp-model of T and d an individual

where d 2 A

I

. Since RS 2 L(A; (� 1 R)) and RSR 2 L(A; (� 2 R)) the word RSRR

is required by A starting from RS. Is there a RS-successor of d then Lemma 21

implies the existence of an individual e such that d(RSRR)

I

e. Because of RSRR 2

L(A; (� 3 S))\L(A; (� 2 S)) Theorem 22 yields the contradiction e 2 (� 3 S)

I

and

e 2 (� 2 S)

I

. Consequently, d has no RS-successors. Hence, Theorem 22 implies

d 2 B

I

, and thus, A v

gfp;T

B.

Formally, we describe the property of the word RS in the following de�nitions. Ac-

cording to this de�nition the word RS \excludes" the atomic concept A. Subsumption

relations B v

gfp;T

A may be valid, although excluding words violet inclusions like

L(B;P ) � L(A; P ) (in the example fRS 2 L(B;P ) n L(A; P )). The notion \ex-

clusion" will be important for the other two semantics as well, even though with

adapted de�nitions.

De�nition 32 (exclusion).

Let T be an FLN

r

-terminology,A

T

= (�; Q; E) the corresponding semi-automaton,

and A an atomic concept in T . The word W 2 �

�

[�

!

excludes A i� there exists a

�nite pre�x V 2 �

�

of W , a word V

0

2 �

�

as well as conicting number-restrictions

(� l R), (� r R), l > r, such that V V

0

2 L(A; (� l R)) \ L(A; (� r R)) and V V

0

is

required by A starting from V . The set E

A

denotes the set of �nite words excluding

A.

5

3

5

The corresponding terminology and semantics will be clear from the context. In�nite words

W 2 �

!

will be crucial for the descriptive semantics.
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If A is inconsistent, then Theorem 29 implies that the empty word " excludes A,

thus, E

A

= �

�

since for every word in E

A

all words with pre�x W are contained in

E

A

as well.

Additionally to the denotations and conditions in de�nition 32 let I be a gfp-

model of T and d, e individuals such that dV

I

e. By Lemma 21 there is an individual

f where dV

I

eV

0I

f since V V

0

is required by A starting from V . Theorem 22 and

d 2 A

I

imply the contradiction: f 2 (� l R)

I

and f 2 (� r R)

I

. Thus, we have

Lemma 33.

Let W 2 �

�

[ �

!

be an A-excluding word and V de�ned as in de�nition 32 such

that dV

I

e for individuals d, e and a gfp-model I. Then it holds: d =2 A

I

. 2

Note, that we only address FLN

r

-terminologies in de�nition 32. The reason for

this is the following: Let V 2 �

�

, R 2 � such that VR is a pre�x of W and

V 2 L(A; (� 0 R)). Let d, e be individuals where dW

I

e. Hence, there is an f ,

dV

I

f . For d 2 A

I

Theorem 22 implies f 2 (� 0 R)

I

, in contradiction to the fact

that f has an R-successor. Thus, d =2 A

I

. In terms of Lemma 33 the word W

excludes A, i.e., dW

I

e implies that d cannot belong to the extension of A. Thus,

minimum-restrictions of the form (� 0 R) state, additional to conicting number-

restrictions, further reasons for the exclusion of concepts. It turns out that this

would prohibit to characterize the set E

A

only using exclusion sets. Therefore, for

the sake of simplicity we restrict our attention (w.l.o.g., see page 15) to FLN

r

-

terminologies.

Before characterizing subsumption formally, we motivate the characterization

looking at some examples: Similar to the inclusions in (4.2) we will formulate

inclusions for number-restrictions. As we have already seen, the set E

A

of A-

excluding words must be taken into account. For primitive concepts P we have

L(B;P ) � L(A; P ) [ E

A

instead of L(B;P ) � L(A; P ). For number-restrictions

more sophisticated conditions are needed. Let T consists of the concept de�-

nitions A = 8R.(� 3 R) and B = 8R.(� 2 R). Although, R 2 L(B; (� 2 R)) n

(L(A; (� 2 R)) [ E

A

) it holds A v

gfp;T

B, since for an individual in A it is required

that there are at least three R-successors for all R-successors of this individual.

On the other hand for individuals in B only two R-successors are required for R-

successors. In fact, it will turn out that not L(B; (� l R)) � (L(A; (� l R)) [ E

A

),

but L(B; (� l R)) � (

S

r�l

L(A; (� r R)) [ E

A

) is necessary for A v

gfp;T

B. For

minimum-restrictions a further extension is needed. For a wordW 2 L(B; (� l R))n

(

S

r�l

L(A; (� r R)) [ E

A

) it should be possible to de�ne a gfp-model I such that

d 2 A

I

n B

I

for an individual d. For this purpose, there should be an individual

e 2 dom(I) where dW

I

e and e =2 (� l R)

I

such that one can derive d =2 B

I

using

Theorem 22. This requires that e has at least (l + 1) R-successors. Is, on the other

hand, A excluded by WR the condition d 2 A

I

implies that R-successors for e are

not allowed. Hence, we should also assume that A is not excluded byWR. Example:

For the concept de�nitions A = 8RR.(� 1 R) u 8RR.(� 2 R), B = 8R.(� 1 R)

it holdsW=R 2 L(B; (� 1 R))n(

S

r�1

L(A; (� r R))[E

A

). Let I be a gfp-model and

d an individual where d 2 A

I

. The individual d has no (WR=)RR-successor, since
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RR excludes A. Thus, for d there is no R-successor e such that e has at least two

R-successors and therefore is not an element of (� 1 R)

I

. In fact, it holds A v

gfp;T

B.

We will now de�ne an extended canonical gfp-model I such that d

0

2 A

I

n B

I

if one of the necessary inclusions|briey discussed above|for the subsumption

relation A v

gfp;T

B does not hold. For this purpose, the canonical model for A and

d

0

will be extended as follows: If an inclusion is invalid because of the word W , i.e.,

this word is contained on the left-hand side but not on the right-hand side of the

inclusion relation, then the tree of the canonical model with root d

0

is extended such

that there is a path in the tree starting at the root labeled with W . If W violates

the inclusion relation of a minimum-restriction (� l R), then the path with labelW

additionally has to be extended by (l + 1) R-successors; more precisely by (l + 1)

minus the already existing R-successors. Finally, this tree has to be completed such

that the conditions formulated in (P1), (P2), and (P3) are satis�ed w.r.t. A and

d

0

. Because of the extension of the canonical model, these conditions need not be

satis�ed anymore. Formally the extended model is de�ned as follows:

De�nition 34 (extended canonical gfp-model w.r.t. FLN

r

).

Let T be an FLN

r

-terminology,A

T

the corresponding semi-automaton, A an atomic

concept in T , W a word in �

�

, r 2 IN and R 2 �. For r = 0 we denote the extended

primitive canonical interpretation by J

0

= J(A; d

0

;W ); for r > 0 it is denoted by

J

0

= J(A; d

0

;W;R; r). Let U

1

; U

2

; U

3

; : : : be an enumeration of all words in �

�

where

U

i

6= U

j

for i 6= j and jU

i

j � jU

j

j for all i < j. Let J = J(A; d

0

) be the primitive

canonical interpretation (see De�nition 24) and I = I(A; d

0

) the corresponding gfp-

model of T . We de�ne J

0

inductively as follows:

J

0

: If W is required by A, then Lemma 25, 3.) implies the existence of d

1

2 dom(J)

such that d

0

W

I

d

1

. Let k := r� jR

J

(d

1

)j (if greater or equal0 and k := 0 otherwise)

and f

1

; : : : ; f

k

be new, pairwise distinct individuals. For the sake of an uniformed

denotation (also see the case in which W is not required by A) let U := W . We

de�ne:

dom(J

0

) := dom(J)

_

[ff

1

; : : : ; f

k

g; S

J

0

:= S

J

for all roles S 6= R; R

J

0

:= R

J

_

[f(d

1

; f

i

);

1 � i � kg.

If W is not required by A, then there is a pre�x U of W of maximal length

which is required by A. Consequently, there is a d

1

2 dom(J) such that d

0

U

J

d

1

.

Furthermore, since W is not required by A, there is a V 2 �

+

, V = R

1

� � �R

n

,

where W = UR

1

� � �R

n

. Let k := r, and d

2

; d

3

; : : : ; d

n+1

; f

1

; : : : ; f

k

be new, pairwise

distinct individuals. We de�ne:

dom(J

0

) := dom(J)

_

[ fd

2

; : : : ; d

n+1

; f

1

; : : : ; f

k

g; S

J

0

:= S

J

_

[ f(d

i

; d

i+1

); 1 � i � n,

S = R

i

g

_

[ f(d

n+1

; f

i

); 1 � i � k, S = Rg for all roles S in T .

The extensions of the primitive concepts are only de�ned for J

0

. By Lemma 25,

1.) and the construction of J

0

there are only �nite many direct successors for every

individual in dom(J

0

). Thus, jV

0J

0

(d

0

)j <1 for all V

0

2 �

�

(basis step).

J

i+1

: For the word U

i+1

of the above enumeration the induction hypothesis implies:

jU

J

i

i+1

(d

0

)j <1. With that also the following set is �nite: M

i+1

� dom(J

i

)���(INn

f0g) where (g; S;m) 2 M

i+1

i� d

0

U

J

i

i+1

g, U

i+1

2 L(A; (� m S)), m � 1, m maximal
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with that property (i.e., there is no m

0

> m such that U

i+1

2 L(A; (� m

0

S))), and

jS

J

i

(g)j < m. Let (g

1

; S

1

; m

1

); : : : ; (g

k

i+1

; S

k

i+1

; m

k

i+1

) denote the triples in M

i+1

and k

i+1

2 IN the size of M

i+1

. Thus, M

i+1

contains a triple (g; S;m) if in the tree

corresponding to J

i

for g additionally (m� jS

J

i

(g)j) S-successors must be added in

order to satisfy condition (P2) in Theorem 22 w.r.t. d

0

and A.

For this purpose, let l

j

:= jS

J

i

j

(g

j

)j (note l

j

< m

j

) for all 1 � j � k

i+1

and

D

i+1

:= fg

1

1

; : : : ; g

1

m

1

�l

1

; : : : ; g

k

i+1

1

; : : : ; g

k

i+1

m

k

i+1

�l

k

i+1

g a set of new, pairwise distinct

individuals. We de�ne:

dom(J

i+1

) := dom(J

i

)

_

[D

i+1

; S

J

i+1

:= S

J

i

_

[

S

1�j�k

i+1

;S=S

j

f(g

j

; g

j

1

); : : : ; (g

j

; g

j

m

j

�l

j

)g

for all roles S in T .

Since there are only a �nite number of direct successors generated for g

1

; : : : ; g

k

i+1

,

it holds for J

i+1

: jV

0J

i+1

(d

0

)j <1 for all V

0

2 �

�

(induction step).

With that the extended primitive canonical interpretation J

0

is de�ned as follows:

dom(J

0

) :=

S

i2IN

dom(J

i

); S

J

0

:=

S

i2IN

S

J

i

for all roles S in T ; for all primitive

concepts P and individuals d let d 2 P

J

0

i� there is a V

0

2 L(A; P ) such that

d

0

V

0J

0

d.

The extended canonical gfp-models I

0

= I(A; d

0

;W ) and I

0

= I(A; d

0

;W;R; r), re-

spectively, are the gfp-models of T with the corresponding primitive interpretations

J

0

= J(A; d

0

;W ) and J

0

= J(A; d

0

;W;R; r), respectively. 3

The extended primitive canonical interpretation J

0

is sketched in �gure 4.1 (also

see Lemma 35, 4.) and 5.)). This interpretation can be seen as a tree with root d

0

which is iterative constructed out of J

0

. The tree for J

0

is extended iteratively at

�nal nodes of paths labeled with U

i+1

, i � 0, which are not necessarily leaves of the

tree J

i

).

In order to prove d

0

2 A

I

0

for the extended canonical model I

0

= I(A; d

0

;W )

(r = 0) and I

0

= I(A; d

0

;W;R; r) (r > 0), the following condition is su�cient (and

as it is easy to show using Theorem 29 and Lemma 33 even necessary):

The concept A is consistent and A is not excluded by W ; additionally,

for r > 0 the concept A is not excluded by WR. For all l < r it holds

W =2 L(A; (� l R)).

(4.3)

We summarize the properties of J

0

and I

0

in

Lemma 35.

Using the denotations in De�nition 34 it holds:

1.) J

0

is a tree with root d

0

, i.e., for each e 2 dom(J

0

) there is a unique (label)

V

0

2 �

�

such that d

0

V

0J

0

e and for each (node) e 2 dom(J

0

), e 6= d

0

, there

is a unique predecessor, i.e., a unique role S 2 � and a unique individual

d 2 dom(J

0

) such that dS

J

0

e; the node d

0

has no predecessor.

2.) For each d 2 dom(J

0

) successors are generated in J

i+1

for at most one i � 0.

More precisely, only �nitely many direct successors are generated. Thus, the

individual d has only �nitely many direct successors, i.e., J

0

is a �nite branched

tree.
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0

d
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Figure 4.1: extended primitive canonical interpretation J

0

3.) If r = 0 and W is required by A, then S

J

0

= S

J

for all roles S, P

J

0

= P

J

for

all primitive concepts P , and dom(J

0

) = dom(J), i.e., J

0

and J coincide.

4.) All elements d 2 dom(J

0

) n dom(J) are (direct or indirect) successors of d

1

2

dom(J). Apart from the direct successors in dom(J) the individual d

1

merely

has direct successors in dom(J

0

) n dom(J), i.e., d

2

if W is not required by A

and f

1

; : : : ; f

k

if W is required by A.

5.) For all individuals d; e 2 dom(J) and V

0

2 �

�

it holds: dV

0J

0

e i� dV

0J

e; and

if d

0

V

0J

0

d, then V

0

is required by A.

6.) If V

0

2 �

�

is required by A, there is (at least) one d 2 dom(J) such that

d

0

V

0J

d. Furthermore, 5.) implies d

0

V

0J

0

d.

7.) For V

0

2 �

�

and d 2 dom(J

0

) where d

0

V

0J

0

d it holds: d 2 P

J

0

i� V

0

2 L(A; P ).
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8.) Let V

0

2 L(A; (� m S)), m maximal with this property, and d 2 dom(J

0

) n

fd

1

; : : : ; d

n+1

g where d

0

V

0J

0

d. Then jS

J

0

(d)j = m. For r = 0 this holds even

for d = d

n+1

.

9.) There is an individual d 2 dom(J

0

) such that d

0

W

J

0

d and jR

J

0

(d)j � r.

If conditions (4.3) is satis�ed, the properties (P1), (P2), and (P3) in Theorem

22 are valid w.r.t. A, d

0

, T , and J

0

. Since I

0

is the gfp-model w.r.t. J

0

and T ,

Theorem 22 implies d

0

2 A

I

0

.

Proof. Statement 1.) can be shown easily by induction over the inductive de�nition

of J

0

: Considering Lemma 25, 1.) and the de�nition of J

0

it is not hard to see that J

0

is a tree with root d

0

. According to the construction of J

i+1

the tree J

i

is extended at

the �nal points (g

j

) of paths labeled with U

i+1

by a �nite number of (S

j

-)successors

(g

j

1

; : : : ; g

j

m

j

�l

j

). It should be obvious that this preserves the tree property.

Statement 2.) is a consequence of 1.) since there is a unique i � 0 for every

d 2 dom(J

0

) such that d

0

U

J

0

i+1

d. Following the construction of J

0

, only in J

i+1

(a

�nite number of) successors for d are generated. Thus, in J

0

there are only a �nite

number of direct successors of d.

3.): Provided that r = 0 and W is required by A, no individuals are generated

in J

0

. Since for J condition (P2) of Theorem 22 is satis�ed, for all i � 0 we have:

M

i+1

= ;. Hence the construction leaves J unchanged. Note that the extensions of

primitive concepts of J

0

and J are de�ned in the same way.

4.): (P2) of Theorem 22 is satis�ed by A, d

0

, and J . Consequently, for elements

in dom(J) n fd

1

g no successors are generated in J

0

. Therefore, all elements in

dom(J

0

) n dom(J) are (direct or indirect) successors of d

1

. Additionally, for d

1

no direct successors are generated in J

i+1

, i � 0: otherwise a role S and a non-

negative integerm would exist such that U

i+1

2 L(A; (� m S)),mmaximal with this

property, as well as d

0

U

J

i

i+1

d

1

and jS

J

i

(d

1

)j < m. Furthermore, 1.) and d

0

U

J

i

d

1

imply

U

i+1

= U . According to the de�nition of U it holds d

0

U

J

d

1

. Finally, jS

J

i

(d

1

)j < m

implies jS

J

(d

1

)j < m. Because of U 2 L(A; (� m S)) this is a contradiction to the

validity of (P2) w.r.t. A, d

0

, and J . Thus, all direct successors of d

1

are contained

in dom(J

0

).

Statement 5.) is a consequence of the fact that (the tree) J

0

is an extension of

J and a consequence of Lemma 25, 1.). Statement 6.) follows from 5.) and Lemma

25, 3.). The validity of 7.) can easily be shown using the de�nition of the extensions

of the primitive concepts and 1.).

Now assume that the conditions of statement 8.) hold. For d 2 dom(J) 5.)

implies d

0

V

0J

d. Lemma 25, 2.) yields jS

J

(d)j = m. According to 4.) no successors

are generated in J

i+1

, i � 0, for elements d in dom(J); there may be direct R-

successors (resp., R

1

-successors) in J

0

for d = d

1

. This veri�es statement 8.) for

individuals d 2 dom(J) n fd

1

g. Now let d 2 dom(J

0

) n (dom(J) [ fd

2

; : : : ; d

n+1

g).

Consequently, d is an element of ff

1

; : : : ; f

k

g or an element generated in J

j+1

for one

j � 0. Thus, there are no successors of d in J

0

and J

j+1

, respectively. There is an

i � 0 such that V

0

= U

i+1

. For S-successors of d to be generated in J

i+1

the condition

d 2 J

i

is necessary. This condition is true for d 2 J

0

. If d has been generated in
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J

j+1

, then there is an e in J

j

such that for V

0

= V

00

S

0

, S

0

2 �, the statement d

0

V

00J

j

e

is valid and d is a S

0

-successor of e. It holds V

00

= U

j+1

, hence j + 1 < i + 1, since

the enumeration U

1

; U

2

; : : : of �

�

is ascending ordered by the length of the words.

Because of j + 1 � i it follows d 2 J

i

. Following the construction, in J

i+1

exactly m

S-successors of d are generated, thus jS

J

i+1

(d)j = m. No other successors of d are

generated (see 2.)) which implies jS

J

0

(d)j = m. Provided that r = 0, even for d

n+1

in J

0

there are no successors. Thus, the above argument can be applied for d = d

n+1

as well. This proves 8.).

9.): According to the de�nition of J

0

there is an individual d 2 dom(J

0

) such

that d

0

W

J

0

d and jR

J

0

(d)j � r.

We assume that condition (4.3) is satis�ed. The properties (P1), (P2), and (P3)

of Theorem 22 w.r.t. A, d

0

, T , and J

0

have to be shown.

(P1): Let P be a primitive concept in T , V

0

a word with V

0

2 L(A; P ), and

g 2 dom(J

0

) such that (d

0

; g) 2 V

J

0

. Statement 7.) implies g 2 P

J

0

. Thus, (P1)

holds.

(P2): Now let (� l S) be a maximum-restriction in T , V

0

a word where V

0

2

L(A; (� l S)), and g 2 dom(J

0

) with (d

0

; g) 2 V

0J

0

. For l = 0 it follows immediately

g 2 (� l S)

J

0

because of (� l S)

J

0

= dom(J

0

). Let l � 1. There is an i � 0 such

that V

0

= U

i+1

. Let m (m � l) be maximal with V

0

2 L(A; (� m S)). Analogous

to the proof of 8.) it can be shown g 2 dom(J

i

). If jS

J

i

(g)j < m, then it follows

(g; S;m) 2 M

i+1

, and according to the de�nition of J

i+1

we have jS

J

i+1

(g)j � m.

On the other hand, if jS

J

i

(g)j � m, then we have jS

J

i+1

(g)j � m since J

i+1

is an

extension of J

i

. Now in both cases the de�nition of J

0

yields jS

J

0

(g)j � m � l, hence

g 2 (� l S)

J

0

. This proves (P2).

(P3): Let (� l S) be a minimum-restriction in T| l > 0 because of T in FLN

r

|, V

0

a word where V

0

2 L(A; (� l S)) as well as g 2 dom(J

0

) such that (d

0

; g) 2

V

0J

0

.

For g 2 dom(J) n fd

1

g statement 5.) implies (d

0

; g) 2 V

0J

. Since A is consistent,

Lemma 25, 5.) implies g 2 (� l S)

J

. Because of 4.), there is no other individual

than d

1

in dom(J) with successors in dom(J

0

)ndom(J). Thus it holds g 2 (� l S)

J

0

,

and in particular g 2 (� l S)

J

0

.

Now let g 2 (dom(J

0

) n dom(J)) [ fd

1

g. First, let W be required by A, i.e.,

g = d

1

or g 2 ff

1

; : : : ; f

k

g. For g = d

1

statement 1.) implies V

0

= W . For

S = R we have W =2 L(A; (� l

0

R)) for l

0

< r according to the assumption, and thus

l � r. Consequently, for jR

J

0

(d

1

)j = r it follows d

1

2 (� l S)

J

0

. For jR

J

0

(d

1

)j > r

the construction of J

0

implies R

J

(d

1

) = R

J

0

(d

1

). Because of V

0

= W it follows

d

0

V

0J

d

1

. Furthermore, Lemma 25, 5.) implies the validity of (P3) w.r.t. A, d

0

, and

J . Thus, we have d

1

2 (� l R)

J

, and because of R

J

(d

1

) = R

J

0

(d

1

) and S = R

also g 2 (� l S)

J

0

. For S 6= R it follows S

J

(d

1

) = S

J

0

(d

1

) which also yields d

1

2

(� l S)

J

0

because of Lemma 25, 5.). Since f

1

; : : : ; f

k

have no successors in J

0

, we

have g 2 (� l S)

J

0

for g = f

i

, 1 � i � k.

Now let W not be required by A, i.e., it holds g 2 fd

1

; : : : ; d

n+1

g or g 2

ff

1

; : : : ; f

k

g. Since d

j

, 2 � j � n, has exactly one successor in J

0

, namely the
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R

j+1

-successor d

j+1

, for g = d

j

, 2 � j � n, it follows g 2 (� l S)

J

0

because l > 0.

For g = d

1

and S 6= R

1

we have S

J

(d

1

) = S

J

0

(d

1

), which by Lemma 25, 5.) also im-

plies g 2 (� l S)

J

0

. For g = d

1

and S = R

1

the word UR

1

is not required by A, i.e.,

according to Lemma 25, 1.) g has no R

1

-successor in J . Consequently, in J

0

there

is exactly one R

1

-successor of g, namely d

2

which again implies g 2 (� l S)

J

0

. For

g = d

n+1

we have V

0

=W . By the construction of J

0

and because W is not required

by A the individual g has exactly r R-successors in J

0

and no other successors: For

S = R we have l � r sinceW =2 L(A; (� l

0

R)) for all l

0

< r, and thus g 2 (� l S))

J

0

.

For S 6= R it holds jS

J

0

(g)j = 0, hence g 2 (� l S)

J

0

. There are no successors for

f

1

; : : : ; f

k

in J

0

which, again, for g = f

i

, 1 � i � k, implies g 2 (� l S)

J

0

.

This means that g 2 (� l S)

J

0

holds for all g 2 dom(J

0

) where d

0

V

0J

0

g and

V

0

2 L(A; (� l S)) (basis step).

Induction hypothesis: for all g 2 dom(J

i

), d

0

V

0J

0

g, and V

0

2 L(A; (� l S)) it

holds g 2 (� l S)

J

i

. We will prove in the induction step:

For all g 2 dom(J

i+1

), d

0

V

0J

0

g and V

0

2 L(A; (� l S)) it holds g 2

(� l S)

J

i+1

.

(4.4)

Before proving (4.4), we show that this implies (P3): Let g 2 dom(J

0

), d

0

V

0J

0

g, and

V

0

2 L(A; (� l S)). Then there is a j � 0 such that g 2 dom(J

j

). For at most one

i � 0 (see 2.)) successors are generated for g in J

i+1

, j < i + 1 (proof of 8.)). By

(4.4) it holds g 2 (� l S)

J

i+1

. Thus, 2.) implies g 2 (� l S)

J

0

.

Proof of (4.4): Let g 2 dom(J

i+1

), d

0

V

0J

0

g, and V

0

2 L(A; (� l S)). For

g 2 dom(J

i+1

)ndom(J

i

) the individual g was newly generated in J

i+1

and according

to the construction of J

i+1

has no successors. This yields g 2 (� l S)

J

i+1

.

If g 2 dom(J

i

) and there is notm such that (g; S;m) 2M

i+1

, then no S-successor

of g are generated in J

i+1

. The induction hypothesis yields g 2 (� l S)

J

i

, and thus

g 2 (� l S)

J

i+1

.

If on the other hand (g; S;m) 2 M

i+1

, i.e., it holds d

0

U

J

i

i+1

g as well as U

i+1

2

L(A; (� m S)), m � 1 maximal with this property, and jS

J

i

(g)j < m, then exactly

m � jS

J

i

(g)j new successors are generated for g. Thus, jS

J

i+1

(g)j = m. If g =2

(� l S)

J

i+1

, then it holds jS

J

i+1

(g)j > l, hence m > l. Because of d

0

V

0J

0

g and

d

0

U

J

0

i+1

g by 1.) it follows: V

0

= U

i+1

. Thus, U

i+1

2 L(A; (� m S)) \ L(A; (� l S))

and m > l. If U

i+1

is required by A, by 6.) the individual g is an element of dom(J).

Following 5.) it holds d

0

U

J

i+1

g. Since (P2) and (P3) of Theorem 22 hold for A and d

0

by Lemma 25, 5.), we have g 2 (� m S)

J

\(� l S)

J

= ;. But this is a contradiction.

Hence, U

i+1

is not required by A, and thus g 2 dom(J

0

) n dom(J). All elements in

dom(J

0

) n dom(J) are (direct or indirect) successors of d

1

(4.)). Consequently, U

i+1

is of the form UXY for X 2 �

+

(4.)), Y 2 �

�

such that UX is maximum pre�x of

WR (r > 0) or W (r=0), respectively. According to the construction of J

0

the word

UXY is required by A starting from UX, because for a �nal point of a path labeled

with U

j

, j � 0, S

0

-successors are generated if and only if U

j

2 L(A; (� m

0

S

0

)) for

m

0

� 1. Now UXY 2 L(A; (� m S)) \ L(A; (� l S)) and m > l implies that WR

(r > 0) and W (r = 0), respectively, exclude A which is a contradiction to the

assumption. Thus, g 2 (� l S)

J

i+1

. This completes the proof of (4.4). 2
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Note that in Lemma 35, 9.) (proof of (P3)) we have used the fact that T is an

FLN

r

-terminology. Therefore, in the following characterization of subsumption we

restrict our attention to FLN

r

-terminologies (w.o.l.g.).

Theorem 36 (Characterizing subsumption w.r.t. gfp-semantics).

Let T be an FLN

r

-terminology, A

T

the corresponding semi-automaton and A, B

atomic concepts in T . Then it holds: A v

gfp;T

B i�

1.) L(B;P ) � L(A; P ) [ E

A

for all primitive concepts P in T ;

2.) L(B; (� l R)) �

S

r�l

L(A; (� r R)) [ E

A

for all maximum-restrictions of the

form (� l R) in T where l > 0; and

3.) L(B; (� l R)) �R � (

S

r�l

L(A; (� r R))) �R[E

A

for all minimum-restrictions

of the form (� l R) in T .

Proof. \)": We assume that one of the inclusions is invalid and show A 6v

gfp;T

B.

(1) Assumption: L(B;P ) 6� L(A; P ) [ E

A

for a primitive concept P in T .

Consequently, there is a word W 2 L(B;P ) n (L(A; P ) [ E

A

). If A is inconsistent,

then E

A

= �

�

which is a contradiction to W =2 E

A

. Thus, A is consistent. Because

of W =2 E

A

the concept A is not excluded by W . Hence, according to Lemma 35,

9.) the extended canonical model I

0

= I(A; d

0

;W ) for A, the individual d

0

, and

W exists such that d

0

2 A

I

0

. Furthermore, Lemma 35, 9.) implies the existence of

d 2 dom(I

0

) where d

0

W

I

0

d. Lemma 35, 7.) yields d =2 P

I

0

because of W =2 L(A; P ).

Using W 2 L(B;P ), d

0

W

I

0

d, and d =2 P

I

0

Theorem 22 implies d

0

=2 B

I

0

. Hence,

A 6v

gfp;T

B.

(2) Assumption: L(B; (� l R)) 6�

S

r�l

L(A; (� r R)) [ E

A

for a maximum-

restriction (� l R) in T where l > 0. Thus, there is a W 2 �

�

where W 2

L(B; (� l R)) n (

S

r�l

L(A; (� r R)) [ E

A

). Analogous to (1) A is consistent and

is not excluded by W . With that, the extended canonical model I

0

= I(A; d

0

;W )

for A, the individual d

0

, andW exists an it holds d

0

2 A

I

0

(Lemma 35, 9.)). Further-

more, there is a d 2 dom(I

0

) such that d

0

W

J

0

d. Because of W =2

S

r�l

L(A; (� r R))

Lemma 35, 8.) implies that the individual d has less than l R-successors (l > 0),

and thus, d =2 (� l R)

I

0

. Now by Theorem 22 w.r.t. B and d

0

we know d

0

=2 B

I

0

.

Again, this shows A 6v

gfp;T

B.

(3) Assumption: L(B; (� l R)) � R 6� ((

S

r�l

L(A; (� r R))) � R [ E

A

) for a

minimum-restriction (� l R) in T .

Thus, there is a W 2 �

�

where WR 2 L(B; (� l R)) � R n ((

S

r�l

L(A; (� r R))) �

R [ E

A

). Analogous to (1) the concept A is consistent and not excluded by WR.

Using W =2

S

r�l

L(A; (� r R)) it follows that the extended canonical model I

0

=

I(A; d

0

;W;R; l + 1) exists, where d

0

2 A

I

0

, jR

I

0

(d)j � l + 1, and d

0

W

I

0

d for a

d 2 dom(I

0

) (Lemma 35, 9.)). Because of W 2 L(B; (� l R)) and (P3) of Theorem

22 w.r.t. B and d

0

it follows d

0

=2 B

I

0

, and thus A 6v

gfp;T

B.

\(": Let the right-hand side of the equivalence be valid. Assume A 6v

gfp;T

B.

Thus, there is a gfp-model I for T and an individual d

0

2 dom(I) such that d

0

2
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A

I

n B

I

. Because of d

0

=2 B

I

at least one of the conditions (P1), (P2), and (P3) of

Theorem 22 is violated w.r.t. B and d

0

.

(4) If (P1) is invalid, then there is a primitive concept P , a word W 2 L(B;P ),

and an individual e 2 dom(I) such that d

0

W

I

e and e =2 P

I

. Because of L(B;P ) �

L(A; P ) [ E

A

is holds W 2 L(A; P ) or W 2 E

A

. In case W 2 L(A; P ), (P1)

for A and d

0

implies immediately d

0

=2 P

I

in contradiction to the assumption. In

case W 2 E

A

, Lemma 33 and d

0

W

I

e imply d

0

=2 A

I

, again, in contradiction to the

assumption.

(5) If (P2) is invalid, then there is a maximum-restriction (� l R) in T , a word

W 2 L(B; (� l R)), and a e 2 dom(I) such that d

0

W

I

e and e =2 (� l R)

I

which,

in particular, implies l > 0. Because of L(B; (� l R)) � (

S

r�l

L(A; (� r R)) [ E

A

)

it follows W 2

S

r�l

L(A; (� r R)) or W 2 E

A

. Let r 2 IN where r � l and

W 2 L(A; (� r R)). Because of jR

I

(e)j < l � r it holds e =2 (� r R)

I

which using

d

0

W

I

e and (P2) w.r.t. A and d

0

implies d

0

=2 A

I

in contradiction to the assumption.

In case of W 2 E

A

, analogously to (4), it follows d

0

=2 A

I

, again.

(6) If (P3) is invalid, then there is a minimum-restriction (� l R) in T , a W 2

L(B; (� l R)), and an individual e 2 dom(I) such that d

0

W

I

e and e =2 (� l R)

I

.

Because of L(B; (� l R)) � R � ((

S

r�l

L(A; (� r R))) � R [ E

A

) we have W 2

L(A; (� r R)) for a r � l or WR 2 E

A

. First, let W 2 L(A; (� r R)). Since

jR

I

(e)j > l � r, we know e =2 (� r R)

I

which using d

0

W

I

e and (P3) w.r.t. A and

d

0

implies d

0

=2 A

I

in contradiction to the assumption. Analogous to (4) WR 2 E

A

,

d

0

W

I

e, and jR

I

(e)j > l yield d

0

=2 A

I

which is again a contradiction to the assump-

tion. 2

Note that the unions in 2.) and 3.) of the above theorem are �nite since a termi-

nology contains only a �nite number of number-restrictions.

Remark 37.

For an ALN

r

-terminology the following condition must be added in Theorem 36:

L(B;:P ) � L(A;:P ) [ E

A

for all terms of the form :P in T .

Additionally, the de�nition of E

A

must be modi�ed, i.e., beside conicting number-

restrictions also pairs P , :P must be taken into account. 3

In Example 19 we have E

A

= RS�

�

, L(B;P) = fRSg, and L(B; (� 1 R)) =

L(B; (� 2 R)) = L(B; (� 3 S)) = L(B; (� 2 S)) = ;. With that, it is easy to see

that the conditions of Theorem 36 are satis�ed w.r.t. A and B. Thus, A v

gfp;T

B.

By Theorem 36 it follows the intuitively expected subsumption relation

Binary-tree v

gfp;T

Ternary-tree in Example 10. Since the terminology contains no

maximum-restrictions, it holds E

Binary-tree

= E

Ternary-tree

= ;. Furthermore, the lan-

guages L(Binary-tree;Tree), L(Ternary-tree;Tree) as well as L(Binary-tree;

(� 2 direct-successor)) and L(Ternary-tree; (� 3 direct-successor)) are equal to the

language direct-successor

�

. Thus, the inclusions required in Theorem 36 for the

subsumption relation Binary-tree v

gfp;T

Ternary-tree are satis�ed. The subsumption

relation Ternary-tree v

gfp;T

Binary-tree does not hold as intuitively expected. If in
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Example 9 a concept de�nition for Donkey is added, which is de�ned analogously

to the de�nition of Human, then the languages concerned in Theorem 36 for Human

and Donkey coincide. Thus, the concepts Human and Donkey are equivalent which

intuitively is not expected.

Using Theorem 36 one can decide subsumption by verifying the conditions 1.),

2.), and 3.). For this purpose, we �rst characterize the set E

A

with the help of

exclusion sets. Therefore, we need

De�nition 38 (reaching an exclusion set).

Let T be a terminology and A

T

the corresponding semi-automaton without word-

transitions (see Remark 18). An exclusion set is reachable by a word W 2 �

�

[ �

!

starting from the atomic concept A if there is a �nite pre�x V of W such that

next

"

(A; V ) is an exclusion set.

6

3

Lemma 39.

Let T be an FLN

r

-terminology, A

T

the corresponding semi-automaton without

word-transitions, and A an atomic concept in T . Then it holds:

E

A

= fW 2 �

�

; an exclusion set is reachable by W starting from

Ag.

Proof. It is not hard to prove this lemma by using the de�nitions of the notions

exclusion words, exclusions sets, and applying Lemma 5. 2

As already mentioned on page 25, de�nition 32 has to be modi�ed for FLN -

terminologies. A word W excludes an atomic concept A even if W contains a

pre�x VR, V 2 �

�

, R 2 � where V 2 L(A; (� 0 R)). This case cannot be handle by

the reachability of exclusion sets. Let (� 0 R) be an element of the set next

"

(A; V ).

Now it depends on the next letter S (W = V SV

0

) in W if W excludes A; A is

excluded by W if S = R. For S 6= R the fact (� 0 R) 2 next

"

(A; V ) does not imply

exclusion. Such a condition can easily be veri�ed. But for the sake of simplicity we

only consider FLN

r

-terminologies.

We now formulate a non-deterministic algorithm (NPSPACE-algorithm) in or-

der to decide L(B;P ) � L(A; P ) [ E

A

for a primitive concept P . The idea of

this algorithm is as follows: The algorithm guesses a word which refutes the inclu-

sion. More precisely, the algorithm simulates the product automaton constructed

of the power-set automaton of A

T

to decide the emptiness problem of the language

L(B;P ) \ (�

�

n (L(A; P ) [ E

A

)). It holds:

W 2 L(B;P ) \ (�

�

n (L(A; P ) [ E

A

)) i� (*) P 2 next

"

(B;W ),

P 62 next

"

(A;W ), and by W no exclusion set is reachable starting

from A (consequence of Lemma 5 and Lemma 39). Furthermore,

using an "pumping-lemma" argument it is easy to see that if there

is a word W with properties (*), then there is also such a word W

0

which additionally satis�es jW

0

j � 2

2�jQj

� 1.

(4.5)

6

The case W 2 �

!

will be relevant in the next chapter.
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With that, correctness and completeness of the following algorithm is not hard to

prove.

Algorithm 40.

Input: semi-automatonA

T

= (�; Q; E) without word-transitions for the FLN

r

-

terminology T ; atomic concepts A, B, and primitive concept P in T .

(n = jQj)

Output: There is a computation with output \yes" i� L(B;P ) 6� L(A; P )[E

A

.

T

1

:= "-closure(fBg);

T

2

:= "-closure(fAg);

z := 0;

while z < 2

2�n

� 1 and T

2

=2 fF � Q; F exclusion setg and (P =2 T

1

or P 2 T

2

) do

z := z + 1;

Guess (non-deterministic) an R 2 �;

T

1

:= next

"

(T

1

; R);

T

2

:= next

"

(T

2

; R)

end;

If T

2

=2 fF � Q; F exclusion setg and P 2 T

1

and P =2 T

2

then output \yes"

else output \no" 4

Since T

2

=2 fF � Q; F exclusion setg is decidable using polynomial space (see

algorithm 28), the above algorithm is an NPSPACE-algorithm. Algorithm 40 can

also be used to decide L(B; (� l R)) �

S

r�l

L(A; (� r R)) [ E

A

for a maximum-

restriction (� l R) in T , l � 1. However, because of the union of regular languages

L(A; (� l R)), r � l, some modi�cations are necessary: Let Z := f(� r R); r � l

and (� r R) a maximum-restriction in Tg. The expression \(P =2 T

1

or P 2 T

2

)"

in algorithm 40 (while-loop) is replaced by \((� l R) =2 T

1

or T

2

\ Z 6= ;)". In

the last if-condition \(P 2 T

1

and P =2 T

2

)" is substituted by \((� l R) 2 T

1

and

T

2

\Z = ;)". Analogous to algorithm 40, it is not hard to see that for the so modi�ed

algorithm it holds: There is a computation with output \yes" i� L(B; (� l R)) 6�

S

r�l

L(A; (� r R))[E

A

. Obviously, this algorithm requires only polynomial space.

Now we specify a (non-deterministic) algorithmwhich decides L(B; (� l R))�R �

(

S

r�l

L(A; (� r R))) �R[E

A

for a minimum-restriction (� l R) in T . The algorithm

guesses a word which refutes the inclusion if such a word exists. The inclusion says

that for every W 2 L(B; (� l R)) it holds: W 2

S

r�l

L(A; (� r R)) or WR 2 E

A

.

Thus, the algorithm must guess a word W such that W 2 L(B; (� l R)) as well as

W 62

S

r�l

L(A; (� r R)) and WR 62 E

A

. If we had had the condition W =2 E

A

in

place ofWR =2 E

A

, we could have applied the algorithm proposed for the maximum-

restrictions. We would have only had to substitute (� l R) by (� l R) and de�ne

Z := f(� r R); r � l and (� r R) a minimum-restrictions in Tg (*). It holds

WR =2 E

A

i� both W =2 E

A

and for T

0

2

:= next

"

(A;W ) the set next

"

(T

0

2

; R) is not an

exclusion set. Thus, the algorithm for maximum-restriction has to be modi�ed as



CHAPTER 4. SEMI-AUTOMATA AND GFP-SEMANTICS 36

follows in order to apply it to minimum-restrictions: The algorithm has minimum-

restrictions (� l R) instead of (� l R) as input; Z is de�ned according to (*); the last

if-condition is replaced by \T

2

=2 fF � Q; F exclusion setg and next

"

(T

2

; R) =2 fF �

Q; F exclusion setg and (� l R) 2 T

1

and T

2

\ Z = ;". Condition T

2

=2 fF � Q;

F exclusion setg ensures W =2 E

A

, and next

"

(T

2

; R) =2 fF � Q; F exclusion setg

guarantees WR =2 E

A

.

As shown in [4] subsumption for FL

0

w.r.t. gfp-semantics is PSPACE-complete.

Thus, we have

Corollary 41.

Subsumption with respect to gfp-semantics in generalALN - and FLN -terminologies

is PSPACE-complete. 2



Chapter 5

Semi-automata and descriptive

semantics

For the descriptive semantics structurally identical de�nitions (like those for Human

and Donkey, see page 33) need not lead to semantically equivalent concepts, as we

verify later in this chapter. The characterization of the descriptive semantics already

reveals that for de�ned concepts the relation to (possibly) other de�ned concepts is

crucial.

5.1 Characterizing the descriptive semantics

As for the gfp-semantics the characterization of the descriptive semantics in FLN is

a straightforward extension of the characterization in FL

0

, which has been proved

in [4].

Theorem 42 (Characterizing the descriptive semantics w.r.t. FLN ).

Let T be an FLN -terminology,A

T

the corresponding semi-automaton, J a primitive

interpretation, and A a tuple where T

J

(A) � A. Let I denote an model of T given by

J and A-gfp(T

J

) (see Proposition 4). For all atomic concepts A and all individuals

d 2 dom(I) it holds: d 2 A

I

i�

(P1) for all primitive concepts P in T and all words W 2 L(A; P ) it holds d 2

(8W .P )

I

;

(P2) for all maximum-restrictions (� n R) in T and all words W 2 L(A; (� n R))

it holds d 2 (8W .(� n R))

I

;

(P3) for all minimum-restrictions (� n R) in T and all words W 2 L(A; (� n R))

it holds d 2 (8W .(� n R))

I

; and

(P4) for all de�ned concepts B, all W 2 L(A;B), and all individuals e 2 dom(I)

where (d; e) 2 W

I

it holds e 2 (A)

j

(j = index(B)).

Proof. Analogous to the proof of [4], Proposition 28. 2

37
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Remark 43.

Analogous to Remark 23 one can generalize the above theorem to the language

ALN by taking primitive negation into account. 3

5.2 Inconsistency w.r.t. descriptive semantics

Since every atomic concept A is T -consistent w.r.t. descriptive semantics i� A is T -

consistent w.r.t. gfp-semantics, Theorem 29 also holds for the descriptive semantics.

In particular, the notions \canonical model" (de�nition 24) and \exclusion set"

(de�nition 27) are de�ned for the descriptive semantics as for the gfp-semantics.

Consequently, we have

Theorem 44 (Inconsistency w.r.t. descriptive semantics).

Inconsistency with respect to descriptive semantics for ALN -(FLN -)terminologies

is PSPACE-complete and NP-complete for (weak-)acyclic ALN -(FLN -)terminolo-

gies. 2

5.3 Subsumption w.r.t. descriptive semantics

For atomic concepts A, B and an FLN -terminology T the subsumption relation

A v

T

B implies A v

gfp;T

B. For this reason, we adopt the conditions formulated

in Theorem 36 as well as the notions \exclusion" and E

A

(de�nition 32) for the

descriptive semantics.

Remark 45.

Lemma 33 also holds for the descriptive semantics which can easily be veri�ed by

Theorem 42. 3

In [4], Theorem 29 subsumption w.r.t. descriptive semantics for atomic concepts A,

B, and an FL

0

-terminology T has been characterized as follows:

A v

T

B i�

1.) L(B;P ) � L(A; P ) for all primitive concepts P in T ; and

2.) for all de�ned concepts C and in�nite paths of the form

B;U

0

; C; U

1

; C; U

2

; : : : there is a k � 0 such that U

0

� � �U

k

2

L(A;C).

(5.1)

As already mentioned, in 1.) we have to take excluding words into account. Ad-

ditionally, as for the gfp-semantics, conditions for number-restrictions are needed.

Furthermore, in 2.) excluding words must be taken into account. We show this fact

in the following example where the words R

n

, n � 1, exclude A.
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Example 46.

Let T be a terminology given by the corresponding semi-automaton A

T

:

B C
A

(� 2 S)

(� 3 S)

R

R

R

R

The automaton A

T

contains an in�nite path B;R;C;R;C;R;C; : : : ;, and it holds

R

n

=2 L(A;C) = ; for all n � 1. As a consequence of 2.) the concept A should not be

subsumed by B. Nevertheless, A v

T

B holds since if I is a model of T where d 2 A

I

,

the individual d cannot have an R-successor. Such an R-successor would be an el-

ement of (� 2 S)

I

and (� 3 S)

I

according to Theorem 42 which is a contradiction.

Thus, Theorem 42 implies d 2 B

I

. 3

In the proof of the characterization of A v

T

B we use a model which refutes this

subsumption relation. Similar to the gfp-semantics (de�nition 34) we de�ne an

extended primitive canonical interpretation. In de�nition 34 we have considered

J

0

= J(A; d

0

;W ) for an atomic concept A, an individual d

0

, and a �nite word W .

Because of condition (P4) of Theorem 42 also !-words W have to be taken into

account for the descriptive semantics.

De�nition 47 (extended primitive canonical interpretation).

Let T be an FLN

r

-terminology, A

T

the corresponding semi-automaton as well as

A an atomic concept in T , and W a word in �

�

[ �

!

. For W 2 �

�

the extended

primitive canonical interpretation J

0

= J(A; d

0

;W ) for A, an individual d

0

, and W

is declared as in de�nition 34. For W = R

0

1

R

0

2

R

0

3

� � � 2 �

!

we de�ne J

0

as follows:

If W is required by A, then let J

0

be the primitive canonical interpretation J(A; d

0

)

(see de�nition 24). If W is not required by A, then there is a �nite pre�x U of W

with maximum length (W = UR

1

R

2

R

3

� � �) which is required by A. According to

Lemma 25, 3.) there is an individual d

1

such that d

0

U

J

d

1

. Let d

2

; d

3

; : : : be new

individuals. We de�ne J

0

by:

dom(J

0

) := dom(J)

_

[fd

2

; d

3

; d

4

; : : :g; S

J

0

:= S

J

_

[f(d

i

; d

i+1

); i � 1, S = R

i

g for all

roles S in T . As in de�nition 34 it holds jV

0J

0

(d

0

)j <1 for all V

0

2 �

�

.

Thus, J

0

is de�nable inductively by J

1

; J

2

; : : : as in de�nition 34.

1

3

In order to verify the properties (P1), (P2), (P3), and (P4) of Theorem 42 w.r.t. A,

d

0

, T , and J

0

the following condition it su�cient:

2

The atomic concept A is consistent and is not excluded by the

(�nite or in�nite) word W .

(5.2)

1

The primitive interpretation J

0

= J(A; d

0

;W;R; r) for R 2 � and r > 0 is not needed (see

proof of Theorem 48 (\)")).

2

and necessary (see Theorem 29 and Remark 45)
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For the extended primitive canonical interpretation J

0

w.r.t. a �nite word W the

properties stated in Lemma 35 also hold, because J

0

is de�ned as in de�nition 34.

Note, that we have not extended J

0

to a model so far. We de�ne a model in the

proof of the characterization of subsumption. Therefore, we can not prove d

0

2 A

I

0

yet. For a word W 2 �

!

the statements of Lemma 35 can be veri�ed as for the case

W 2 �

�

where the properties 8.) and 9.) are formulated as follows:

8.) Let V

0

2 L(A; (� m S)), m maximal with this property, and d 2 dom(J

0

) n

fd

1

; d

2

; d

3

; : : :g where d

0

V

0J

0

d. Then it holds jS

J

0

(d)j = m.

9.) There are individuals d

1

; d

2

; d

3

; : : : 2 dom(J

0

) such that d

0

U

J

0

d

1

R

J

0

1

d

2

R

J

0

2

d

3

� � �

If condition (5.2) is satis�ed, then the properties (P1), (P2), and (P3) of

Theorem 42 (Theorem 22) w.r.t. A, d

0

, T , and J

0

hold.

Now we can prove

Theorem 48 (Characterizing subsumption w.r.t. descriptive semantics).

Let T be an FLN

r

-terminology, A

T

the corresponding semi-automaton, and A, B

atomic concepts in T . It holds A v

T

B i�

1.) L(B;P ) � L(A; P ) [ E

A

for all primitive concepts P in T ;

2.) L(B; (� l R)) �

S

r�l

L(A; (� r R)) [ E

A

for all maximum-restrictions of the

form (� l R) in T where l > 0;

3.) L(B; (� l R)) �R � (

S

r�l

L(A; (� r R))) �R[E

A

for all minimum-restrictions

of the form (� l R) in T ; and

4.) for all de�ned concepts C and all in�nite paths of the form B;U

0

; C; U

1

; C;

U

2

; C; : : : there is a k � 0 such that U

0

� � �U

k

2 L(A;C) [ E

A

.

Proof. \(": Assume that the right-hand side of the equivalence is valid. Fur-

thermore, let I be a model of T de�ned by the primitive interpretation J and the

�xed-point A of T

J

. Obviously, T

J

(A) � A and A = A-gfp(T

J

). Let d 2 dom(I)

where d =2 B

I

. It is to show d =2 A

I

.

Because of d =2 B

I

Theorem 42 implies that at least one of the conditions (P1),

(P2), (P3), and (P4) do not hold. The case in which (P1), (P2), or (P3) do not hold

can be shown analogously to the proof of Theorem 36 (\(") using Theorem 42 (in

place of Theorem 22).

Now consider the case that (P4) is invalid. Thus, there is a de�ned concept C

1

,

a word W

1

2 L(B;C

1

) as well as an individual e

1

2 dom(I) where (d; e

1

) 2 W

I

1

and

e

1

=2 (A)

i

1

(i

1

= index(C

1

)). According to the assumption it holds (A)

i

1

= C

I

1

, and

we can proceed with C

1

in place of B. We assume that we already have a sequence

C

1

;W

1

; e

1

; : : : ; C

k

;W

k

; e

k

for e

0

:= d and C

0

:= B such that e

i

=2 C

I

i

, e

i�1

W

I

i

e

i

, and

W

i

2 L(C

i�1

; C

i

) for all 1 � i � k.

Because of e

k

=2 C

I

k

one of the conditions (P1), (P2), (P3), or (P3) of Theo-

rem 42 is invalid. In case of (P1) there is a primitive concept P , a word W 2
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L(C

k

; P ), and an individual e 2 dom(I) where (e

k

; e) 2 W

I

and e =2 P

I

. Thus,

W

1

� � �W

k

W 2 L(B;P ) � L(A; P ) [ E

A

, e =2 P

I

, and d(W

1

� � �W

k

W )

I

e. In case of

W

1

� � �W

k

W 2 L(A; P ) condition (P1) of Theorem 42 is violated, hence, d =2 A

I

. In

case of W

1

� � �W

k

W 2 E

A

Remark 45 implies d =2 A

I

. In case of (P2) and (P3) it

follows d =2 A

I

, analogously.

In case that (P4) is invalid we can assume for all k 2 IN that (P4) does not hold,

otherwise we can apply the already considered cases (P1), (P2), and (P3). Thus, we

have an in�nite path B;W

1

; C

1

;W

2

; C

2

;W

3

; C

3

; : : : and individuals e

1

; e

2

; e

3

; : : : with

the properties stated above. Consequently, there is an atomic concept C such that

C = C

i

for an in�nite number of indices i. Hence, we have an in�nite path of the

form B;U

0

; C; U

1

; C; U

2

; : : : By 4.) there is a k � 0 where U

0

� � �U

k

2 L(A;C)[E

A

.

Furthermore, there is an index i such that d(U

0

� � �U

k

)

I

e

i

and e

i

=2 C

I

= (A)

j

(j = index(C)). In case of U

0

� � �U

k

2 L(A;C) condition (P4) of Theorem 42

implies d =2 A

I

; for U

0

� � �U

k

2 E

A

Lemma 45 yields d =2 A

I

as well.

\)": Assume that A v

T

B holds. This implies A v

gfp;T

B. Since E

A

is the same

for the gfp-semantics and the descriptive semantics, the statements 1.), 2.), and 3.)

of Theorem 36 and Theorem 48 coincide. Thus, it remains to show condition 4.).

We assume that 4.) does not hold and construct a model which refutes A v

T

B. If

4.) does not hold, there is an in�nite path of the form B;U

0

; C; U

1

; C; U

2

; : : : such

that U

0

� � �U

k

=2 L(A;C) [ E

A

for all k � 0. Because of U

0

� � �U

k

=2 E

A

the concept

A is consistent, otherwise E

A

= �

�

. Furthermore, A is not excluded by the (�nite or

in�nite) word W = U

0

U

1

U

2

� � �. This yields the existence of the extended primitive

canonical interpretation J = J

min

(A; d

0

;W ) for A, the individual d

0

, and the word

W with the properties stated in Lemma 35 (and on page 40). Let j

1

� j

2

� � � � be

indices such that d

0

U

J

0

d

j

1

U

J

1

d

j

2

U

J

2

� � � holds. The tuple A is de�ned as follows: for

a de�ned concept D in T with index m let (A)

m

:= dom(J) n fe; there are words

X, Y , and a k � 0 where XY = U

0

� � �U

k

, X 2 L(B;D), Y 2 L(D;C), d

0

X

J

e, and

eY

J

d

j

k+1

g.

Claim: T

J

(A) � A.

Proof of the claim: Let D be a de�ned concept in T and m = index(D). We assume

e =2 (A)

m

. It is to show e =2 (T

J

(A))

m

.

According to the de�nition of A from e =2 (A)

m

it follows that there are �nite words

X, Y , and an index k � 0 such that XY = U

0

� � �U

k

, X 2 L(B;D), Y 2 L(D;C) as

well as d

0

X

J

e and eY

J

d

j

k+1

. Without loss of generality we can assume that the path

from D to C is not empty (otherwise consider k+1 instead of k). Therefore, we can

choose Y = Y

1

Y

2

such that there is an individual e

0

where eY

J

1

e

0

and e

0

Y

J

2

d

j

k+1

, and

such that the concept de�nition of D is of the form D = � � � u 8Y

1

.D

0

u � � �. Let m

0

be the index of D

0

. The de�nition of A yields e

0

=2 (A)

m

0

, and thus, e =2 (T

J

(A))

m

.

This completes the proof of the claim.

Now let I be the (well-de�ned, see claim) model of T de�ned by J and A-gfp(T

J

).

Let j be the index of B, i.e., B

I

= (A-gfp(T

J

))

j

. Because of d

0

"

I

d

0

, d

0

U

J

0

d

j

1

, and

U

0

2 L(B;C) it follows d

0

=2 (A)

j

, thus d

0

=2 (A-gfp(T

J

))

j

= B

I

.

Assumption: d

0

=2 A

I

. Since A is consistent and not excluded by W , Lemma 35, 9.)

implies that (P1), (P2), and (P3) for A, d

0

, T , and J are satis�ed. By Theorem 42,
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(P4) is not satis�ed. But then, there is a de�ned concept D, a word U 2 L(A;D),

and an individual e 2 dom(I) where d

0

U

I

e and e =2 (A)

l

(l = index(D)). Thus,

according to the de�nition of A, there are words X, Y , and an index k � 0 such

that XY = U

0

� � �U

k

, X 2 L(B;D), Y 2 L(D;C) as well as d

0

X

J

e and eY

J

d

j

k+1

.

Because of d

0

U

J

e and d

0

X

J

e Lemma 35, 1.) yields that the word U and X are

identical. Thus, UY = XY = U

0

� � �U

k

2 L(A;C), which is a contradiction to the

assumption that 4.) does not hold. 2

Analogously to Remark 37, Theorem 48 can be generalized to ALN -terminologies.

On page 33 we have pointed out that the concepts Human and Donkey are

equivalent w.r.t. the gfp-semantics. On the other hand, Theorem 48 yields that

these concepts are incomparable w.r.t. the descriptive semantics. Proof: The semi-

automaton contains the in�nite path Human; parents;Human; parents;Human; : : : and

Donkey; parents;Donkey; parents;Donkey; : : :, respectively. Since E

Human

= E

Donkey

=

; and L(Human;Donkey) = L(Donkey;Human) = ;, there is no k � 0 such that

parents

k

2 L(Human;Donkey) [ E

Human

and parents

k

2 L(Donkey;Human) [ E

Donkey

,

respectively. Although, the descriptive semantics yields the intuitive subsumption

relation in this example, this is not the case for example 10|unlike the gfp-semantics

(see page 33): It holdsE

Binary-tree

= E

Ternary-tree

= ; and L(Binary-tree;Ternary-tree) =

L(Ternary-tree;Binary-tree) = ;. For the in�nite paths Binary-tree, direct-successor,

Binary-tree, direct-successor,: : : and Ternary-tree, direct-successor, Ternary-tree, direct-

successor,: : : there is no k � 0 such that direct-successor

k

is an element of the language

L(Binary-tree;Ternary-tree)[E

Binary-tree

and L(Ternary-tree;Binary-tree)[E

Ternary-tree

,

respectively. Thus, Theorem 48 implies that Binary-tree and Ternary-tree are incom-

parable which contradicts the intuition Binary-tree v

T

Ternary-tree.

Since the conditions 1.), 2.), and 3.) of Theorem 48 are the same as in Theorem

36, this conditions can be decided using polynomial space. Now we formulate an

(NPSPACE-)decision algorithm for condition 4.). To prove that there is a PSPACE-

algorithm for this problem it is su�cient to show that there is a NPSPACE-algorithm

for the following problem: Given an semi-automaton A

T

without word-transitions

as well as atomic concepts A, B, and C the question is,

if there exists an in�nite path of the form B;U

0

; C; U

1

; C; U

2

; C; : : : such

that for all k � 0 it holds U

0

� � �U

k

=2 L(A;C) [ E

A

.

(5.3)

The following NPSPACE-algorithm guesses such an in�nite path, if there is such a

path. To be more precise, if n is the size of the set of states of A

T

, then the algorithm

guesses the words U

0

2 �

�

, jU

0

j < 2

2�n

, and U

1

2 �

+

, jU

1

j � 2

2�n

, such that

B;U

0

; C; U

1

; C; U

1

; C; U

1

; C : : : is an in�nite path in A

T

where U

0

U

k

1

=2 L(A;C)[E

A

for all k � 0. If C lies on an an "-cycle, then in order to satisfy condition (5.3), it is

su�cient to �nd a word U

0

2 �

�

such that U

0

2 L(B;C) and U

0

=2 L(A;C) [ E

A

.

Algorithm 49.

Input: semi-automaton A

T

= (�; Q; E) without word-transitions for a FLN

r

-

terminology T ; atomic concepts A, B, and C in T



CHAPTER 5. SEMI-AUTOMATA AND DESCRIPTIVE SEMANTICS 43

Output: There is a computation with output \yes" i� (5.3) is satis�ed.

Let n denote the size of the set of states, M the set of atomic concepts in T which

lay on an "-cycle as well as L the set of exclusion sets. For S � Q the set S denotes

the complement of S, i.e., S := Q n S.

T

1

:="-closure(fBg);

T

2

:="-closure(fAg);

z:=0;

stop:=false;

(* Guess U

0

*)

(1) If C 2 T

1

\ T

2

then begin

let stop be false or true (* (non-det.) U

0

= " *)

end;

while z < 2

2�n

� 1 and (not stop) and T

2

=2 L do begin

z:=z+1;

Guess (non-det.) one R 2 �;

T

1

:= next

"

(T

1

; R);

T

2

:= next

"

(T

2

; R);

(2) If C 2 T

1

\ T

2

then begin

let stop be true or false

end

end;

(3) If T

2

=2 L and C 2 T

1

\ T

2

and C 2M then output \yes";

(4) If T

2

=2 L and C 2 T

1

\ T

2

then begin

(* Guess U

1

*)

z := 0;

T

1

:= "-closure(fCg);

T

0

2

:= T

2

;

stop := false;

while z < 2

2�n

and (not stop) and T

2

=2 L do begin

z := z + 1;

Guess (non-det.) one R 2 �;

T

1

:= next

"

(T

1

; R);

T

2

:= next

"

(T

2

; R);

(5) If C 2 T

1

and T

2

= T

0

2

(* in particular C =2 T

2

*) then begin

let stop be false or true

end

end; (*while*)

(6) If T

2

=2 L and C 2 T

1

and T

2

= T

0

2

then output \yes"

end; (*if*)

output \no" 4

Soundness: If the algorithm has \yes" as output, then by the de�nition of the

algorithm there is a U

0

2 �

�

, U

0

= R

1

� � �R

m

0

, m

0

< 2

2�n

, such that for T

1;i

:=
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next

"

(B;R

1

� � �R

i

) and T

2;i

:= next

"

(A;R

1

� � �R

i

) holds: T

2;i

=2 L for all 0 � i � m

0

and C 2 T

1;m

0

\ T

2;m

0

. Furthermore, we distinguish the following cases:

i) C 2M (if-condition in (3) is satis�ed.)

Because of C 2 T

1;m

0

Lemma 5 implies that the word U

0

is an element of L(B;C).

Thus, using C 2 M for U

i

= ", i � 1, the path B;U

0

; C; U

1

; C; U

2

; : : : is an in�nite

path in A

T

. Furthermore, we know U

0

=2 L(A;C) because of C =2 T

2;m

0

(Lemma

5). By Lemma 39 we have U

0

=2 E

A

since T

2;i

=2 L for all 0 � i � m

0

. Thus,

for the in�nite path B;U

0

; C; U

1

; C; U

2

; : : : there is no k � 0 such that U

0

� � �U

k

2

L(A;C) [ E

A

.

ii) (if-condition in (6) is satis�ed)

There is a non-empty word U

1

2 �

+

, U

1

= R

0

1

� � �R

0

m

1

, 1 � m

1

� 2

2�n

such that

for T

0

1;i

:= next

"

(C;R

0

1

� � �R

0

i

) and T

0

2;i

:= next

"

(T

2;m

0

; R

0

1

� � �R

0

i

) for all 0 � i � m

1

it holds: C 2 T

0

1;m

1

and T

0

2;m

1

= T

2;m

0

(resp., C =2 T

0

2;m

1

) and T

0

2;i

=2 L for all

0 � i � m

1

. Consequently, there is an in�nite path B;U

0

; C; U

1

; C; U

2

; : : : in A

T

where U

i

= U

1

for all i � 1, since U

0

2 L(B;C) (because of C 2 T

1;m

0

) and

U

1

2 L(C;C) (because of C 2 T

0

1;m

1

and T

0

1;0

= "-closure(fCg)). Due to T

2;i

=2 L

for all 0 � i � m

0

no exclusion set is reachable by U

0

starting from A. Because of

T

0

2;i

=2 L for 0 � i � m

1

no exclusion set is reachable by U

1

starting form T

0

2;0

= T

2;m

0

.

Thus, U

0

U

1

=2 E

A

. Since T

0

2;m

1

and T

2;m

0

coincide, no exclusion set is reachable by

U

0

U

1

� � �U

k

starting from A for any k � 0. But then U

0

U

1

� � �U

k

=2 E

A

for all k � 0.

Due to C =2 T

2;m

0

it follows U

0

=2 L(A;C). Because of C =2 T

0

2;m

1

and T

0

2;0

= T

2;m

0

we

have U

0

U

1

=2 L(A;C). Hence, using T

2;m

0

= T

0

2;m

1

this yields U

0

� � �U

k

=2 L(A;C) for

all k � 0. Thus, for the in�nite path B;U

0

; C; U

1

; C; U

2

; : : : there is no k � 0 such

that U

0

� � �U

k

2 L(A;C) [ E

A

. This shows the correctness of the algorithm.

Completeness: Let B;U

0

; C; U

1

; C; U

2

; : : : be an in�nite path such that there is no

k � 0 with U

0

� � �U

k

2 L(A;C)[E

A

. We prove the existence of a computation with

output \yes". For this purpose, we distinguish the cases iii) and iv).

iii) If U

0

U

1

U

2

� � � is a �nite word, it follows C 2 M . Let W = U

0

U

1

U

2

� � �

be the �nite word R

1

� � �R

m

. We de�ne T

1;i

:= next

"

(B;R

1

� � �R

i

) and T

2;i

:=

next

"

(A;R

1

� � �R

i

) for all 0 � i � m. The path B;W;C; "; C; "; : : : is in�nite where

W =2 L(A;C) and W =2 E

A

(choose k such that W = U

0

� � �U

k

).

Without loss of generality we can assume m < 2

2�n

. Otherwise there exist l

and r where 0 � l < r � 2

2�n

as well as T

1;l

= T

1;r

and T

2;l

= T

2;r

. For W

0

=

R

1

� � �R

l

R

r+1

� � �R

m

starting from T

1;0

and T

2;0

, respectively, A

T

is caused to pass

through the sets T

1;0

; T

1;1

; : : : ; T

1;l

, T

1;r+1

; : : : ; T

1;m

and T

2;0

; T

2;1

; : : : ; T

2;l

; T

2;r+1

; : : : ;

T

2;m

. Thus, even for the shorter wordW

0

it holdsW

0

2 L(B;C) andW

0

=2 L(A;C)[

E

A

.

Now let W = R

1

� � �R

m

be a word with m < 2

2�n

such that B;W;C; "; C; "; : : : is

an in�nite path in A

T

, and additionally, W =2 L(A;C) [ E

A

. With that, we show

the existence of a computation with output \yes". Therefore, we distinguish the

cases W = " and W 6= ".

For W = " we can assign true to the variable stop in (1).Thus, the �rst while-

loop is skipped. Because of " =2 L(A;C) and " 2 L(B;C) it holds C 2 T

1

\ T

2

.

The atomic concept C is an element of M according to the assumption. Because of
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" =2 E

A

we have T

2

= "-closure(fAg) =2 L. Thus, the condition in (3) is satis�ed,

and the algorithm terminates with output \yes".

For W 6= " we assign false to stop in (1) if the if-condition is satis�ed. Due to

W =2 E

A

it holds T

2

=2 L before and after every iteration of the loop. In particular,

after (1) the algorithm proceeds in the while-loop. In the i-th iteration of the loop

one chooses for R the letter R

i

. If the condition in (2) is satis�ed, then, if i < m,

stop is assigned to false. Because of m < 2

2�n

and W =2 E

A

the while-condition is

satis�ed even at the end of the (m � 1)-th iteration. In the m-th iteration of the

loop we assign R

m

to R. Then, since W 2 L(B;C) and W =2 L(A;C), the condition

C 2 T

1

\ T

2

in (2) is satis�ed. Now we assign true to stop. Thus, the while-

loop terminates. Since the condition in (3) is satis�ed (W =2 E

A

), the algorithm

terminates with output \yes".

iv) Now let W = U

0

U

1

U

2

� � � be the !-word W = R

1

R

2

R

3

� � � 2 �

!

. Without

loss of generality we can assume U

i

6= " for all i � 1. Let T

1;i

:= next

"

(B;R

1

� � �R

i

)

and T

2;i

:= next

"

(A;R

1

� � �R

i

) for all i � 0. Let i

0

; i

1

; i

2

; : : : be indices such that

R

1

� � �R

i

k

= U

0

� � �U

k

for all k � 0. Because of j2

Q

j = 2

n

there are numbers l

and r such that 0 � l < r and T

2;i

l

= T

2;i

r

. Thus, for U

0

� � �U

l

and U

l+1

� � �U

r

it holds: U

0

� � �U

l

2 L(B;C), U

0

� � �U

l

=2 L(A;C) [ E

A

, U

l+1

� � �U

r

2 L(C;C),

T

2;i

l

= T

2;i

r

= next

"

(T

2;i

l

; U

l+1

� � �U

r

) and U

0

� � �U

l

� � �U

r

=2 E

A

.

We now de�ne words U

0

0

and U

0

1

using the words U

0

� � �U

l

and U

l+1

� � �U

r

such

that B;U

0

0

; C; U

0

1

; C; U

0

1

; : : : is an in�nite path in A

T

where U

0

0

U

0

1

k

=2 L(A;C) [ E

A

for all k � 0, jU

0

0

j < 2

2�n

, and 0 < jU

0

1

j � 2

2�n

.

If i

l

� 2

2�n

, then there are numbers s and t such that 0 � s < t � 2

2�n

, T

1;s

= T

1;t

,

and T

2;s

= T

2;t

. We de�ne U

0

0

:= R

1

� � �R

s

R

t+1

� � �R

i

l

. Hence, for U

0

0

starting from

T

1;0

and T

2;0

the sets T

1;0

; T

1;1

; : : : ; T

1;s

; T

1;t+1

; : : : ; T

1;i

l

and T

2;0

; T

2;1

; : : : ; T

2;s

; T

2;t+1

;

: : : ; T

2;i

l

=2 L are passed through. Consequently, as for U

0

� � �U

l

, it holds U

0

0

=2

L(A;C)[E

A

and U

0

0

2 L(B;C). Thus, if U

0

0

is of minimal length we have jU

0

0

j < 2

2�n

,

since for a word in L(B;C) n (L(A;C) [E

A

), which is greater or equal 2

2�n

, we can

construct a shorter word with corresponding properties.

Because of U

i

6= " for all i � 1 and l < r we know U

l+1

� � �U

r

6= ". If

jU

l+1

� � �U

r

j > 2

2�n

, then for T

0

1;j

:= next

"

(C;R

i

l

+1

� � �R

j

) (i

l

� j � i

r

) and the word

U

l+1

� � �U

r

the sequence (T

0

1;i

l

; T

2;i

l

); (T

0

1;i

l

+1

; T

2;i

l

+1

); : : : ; (T

0

1;i

r

; T

2;i

r

) of pairs in 2

Q

�

2

Q

is passed through. Since j2

Q

�2

Q

j = 2

2�n

, there are numbers s and t such that i

l

�

s < t � i

l

+ 2

2�n

, T

0

1;s

= T

0

1;t

, and T

2;s

= T

2;t

. Thus, for U

0

1

:= R

i

l

+1

� � �R

s

R

t+1

� � �R

i

r

starting from T

0

1;i

l

and T

2;i

l

, respectively, the sets T

0

1;i

l

; : : : ; T

0

1;s

; T

0

1;t+1

; : : : ; T

0

1;i

r

and

T

2;i

l

; : : : ; T

2;s

; T

1;t+1

; : : : ; T

2;i

r

=2 L are passed through. Thus, as for U

l+1

� � �U

r

, it

holds for U

0

1

: U

0

1

2 L(C;C), T

2;i

l

= T

2;i

r

= next

"

(T

2;i

l

; U

0

1

), U

0

0

U

0

1

=2 E

A

, and jU

0

1

j > 0.

Following the above argumentation it holds for a non-empty word U

0

1

of minimal

length which satis�es the above properties 0 < jU

0

1

j � 2

2�n

.

Let U

0

i

:= U

0

1

for all i � 2. Then because of U

0

0

2 L(B;C), U

0

1

2 L(C;C),

and jU

0

1

j > 0 the path B;U

0

0

; C; U

0

1

; C; U

0

2

; C; : : : is an in�nite path in A

T

. Due to

U

0

0

=2 L(A;C) [ E

A

, U

0

0

U

0

1

=2 L(A;C) [ E

A

, and C =2 T

2;i

l

= T

2;i

r

= next

"

(T

2;i

l

; U

0

1

)

we know U

0

0

� � �U

0

k

=2 L(A;C) [ E

A

for all k � 0.
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With that, we can specify a computation of algorithm 49 with output \yes" as

follows: If U

0

0

= ", then " 2 L(B;C) and " =2 L(A;C), hence C 2 T

1

\ T

2

. In (1)

we assign true to stop. Thus, the �rst while-loop is skipped. On the other hand, if

U

0

0

6= ", then, if the if-condition in (1) is satis�ed, stop is assigned to false. Since

U

0

0

=2 E

A

, the condition of the while-loop is satis�ed. In this loop R is choosen

according to U

0

0

. Besides the last iteration of the loop, stop is assigned to false if

the if-condition in (2) is satis�ed. Because of jU

0

0

j < 2

2�n

, stop = false (apart from

the last iteration), and U

0

0

=2 E

A

, i.e., T

2

=2 L, the loop is iterated jU

0

0

j times. In the

last iteration condition (2) is satis�ed because of U

0

0

2 L(B;C) and U

0

0

=2 L(A;C)

such that we can assign true to stop.

If after termination of the while-loop the condition in (3) is satis�ed, then there

is nothing more to do. Otherwise, it follows that the condition in (4) is satis�ed.

In the second while-loop R is choosen according to U

0

1

. If (5) is satis�ed, then

stop is assigned to false, apart from the last iteration. Because of jU

0

1

j � 2

2�n

,

stop = false, and U

0

0

U

0

1

=2 E

A

the condition of the while-loop is satis�ed until the

last iteration. Furthermore, since U

0

0

U

0

1

2 L(B;C) and T

2;i

l

= T

2;i

r

, the condition

in (5) is satis�ed in the last iteration such that stop can be assigned to true, which

leads to the termination of the while-loop. Finally, because of U

0

0

U

0

1

=2 E

A

and

since the condition in (5) was satis�ed, the condition in (6) is satis�ed. Thus, the

computation terminates with output \yes".

Hence, in any case we were able to construct a computation with output \yes".

Obviously, algorithm 49 is a NPSPACE-algorithm. Since inconsistency can be

reduced to subsumption in FLN , Theorem 44 implies

Corollary 50.

Subsumption w.r.t. descriptive semantics in general ALN - and FLN -terminologies

PSPACE-complete. 2



Chapter 6

Semi-automaton and lfp-semantics

Di�erent from FL

0

in FLN in�nite chains of roles can be required. This will be

crucial for the characterization of inconsistency and subsumption in FLN .

6.1 Characterizing the lfp-semantics

Again, the extension of the characterization of the lfp-semantics from FL

0

to FLN

is easy.

Theorem 51 (Characterizing the lfp-semantics w.r.t. FLN).

Let T be an FLN -terminology, A

T

the corresponding semi-automaton, I a lfp-

model of T , and A an atomic concept in T . Then it holds for every d 2 dom(I):

d 2 A

I

i�

(P1) for all primitive concepts P in T and all words W 2 L(A; P ) it holds d 2

(8W .P )

I

;

(P2) for all maximum-restrictions (� n R) in T and all words W 2 L(A; (� n R))

it holds d 2 (8W .(� n R))

I

;

(P3) for all minimum-restrictions (� n R) in T and all words W 2 L(A; (� n R))

it holds d 2 (8W .(� n R))

I

;

(P4) for all in�nite paths of the form A;W

1

; C

1

;W

2

; C

2

; : : : and all individuals d

1

; d

2

;

d

3

; : : : 2 dom(I) there is a n � 1 such that (d

n�1

; d

n

) =2 W

I

n

. (\In�nite chains

are prohibited.")

Proof. Analogous to the proof of [4], Proposition 19 2

Remark 52.

Similar to Remark 23 one can generalize Theorem 51 to ALN -terminologies. 3

47
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In example 9 it holds parents

n

2 L(Human; (� 2 parents)) for all n � 0, i.e., the

!-word parents parents parents: : : is required by the concept Human. Let I be a

lfp-model of T and d

0

2 Human

I

an individual. Following Lemma 21 there are in-

dividuals d

1

; d

2

; d

3

; : : : such that d

0

parents

I

d

1

parents

I

d

2

: : : Furthermore, parents

!

2

U(Human). Thus, for d

0

there is an in�nite chain which is prohibited according to

(P4). Consequently, Human is inconsistent w.r.t. the lfp-semantics (see also page 50).

Thus, the lfp-semantics seems not to be a appropriate semantics in this example.

6.2 Inconsistency w.r.t. lfp-semantics

As mentioned, in�nite chains can lead to inconsistent concepts. Again, in order to

prove the characterization of inconsistency we need

De�nition 53 (canonical lfp-model w.r.t. FLN ).

Let T be an FLN -terminology, A

T

= (�; Q; E) the corresponding semi-automaton,

and A an atomic concept in T . The primitive canonical interpretation J = J(A; d

0

)

for A and individual d

0

is de�ned as for the gfp-semantics (de�nition 24). The

canonical lfp-model I = I(A; d

0

) is the lfp-model de�ned by J and T . 3

In order to derive d

0

2 A

I

for the canonical lfp-model I, condition (4.1) has to be

extended.

There is no word W 2 �

�

and there are no conicting number-

restrictions (� l R) and (� r R), l > r, such that W is required by

A andW 2 L(A; (� l R))\L(A; (� r R)); furthermore, there is no

word W 2 �

�

[ �

!

required by A such that W 2 U(A).

(6.1)

Since J is de�ned as in de�nition 24, the properties 1.) { 4.) of J formulated in

Lemma 25 hold. Additionally, we show

Lemma 54.

If condition (6.1) holds, then (P1), (P2), (P3), and (P4) of Theorem 51 w.r.t. A, d

0

,

and J are satis�ed. In particular, for the canonical lfp-model I it follows d

0

2 A

I

.

Proof. According to Lemma 25, 5.) the conditions (P1), (P2), and (P3) of Theorem

22 (and thus, the conditions of Theorem 51) hold, since condition (6.1) implies (4.1).

In order to show d

0

2 A

I

, by Theorem 51 it is su�cient to show (P4) w.r.t. A,

d

0

, and J . If (P4) does not hold, then there is an in�nite path A;W

1

; C

1

;W

2

; C

2

; : : :

in A

T

and there are individuals d

1

; d

2

; d

3

; : : : such that d

i�1

W

I

i

d

i

for all i � 1. Thus,

for W =W

1

W

2

W

3

� � � we have W 2 U(A) and because of d

0

(W

1

W

2

� � �W

i

)

J

d

i

for all

i � 0, Lemma 25, 1.) implies that every �nite pre�x of W is required by A. Thus,

W is required by A which which contradicts (6.1) since W 2 U(A). Hence, (P4) is

satis�ed and it follows d

0

2 A

I

. 2

Again, the notion \exclusion set" comes into the picture in order to specify decision

algorithms for inconsistency and subsumption.
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De�nition 55 (exclusion set w.r.t. the lfp-semantics in FLN ).

Let T denote an FLN -terminology and A

T

= (�; Q; E) the corresponding semi-

automaton without word-transitions. A set of states F

0

� Q is called exclusion set

w.r.t. A

T

(and w.r.t. to the lfp-semantics in FLN ), if

1.) there exists an !-word R

1

R

2

R

3

� � � 2 �

!

and there are sets F

1

; F

2

; F

3

; : : : � Q

as well as number-restrictions (� m

i

R

i

), m

i

� 1, for all i � 1 such that

F

i

= next

"

(F

i�1

; R

i

), i � 1, and (� m

i+1

R

i+1

) 2 F

i

, i � 0; or

2.) there exists a number n � 0 as well as a word R

1

� � �R

n

2 �

�

and there are sets

F

1

; : : : ; F

n

� Q and number-restrictions (� m

i

R

i

), m

i

� 1, for all 1 � i � n

such that F

i

= next

"

(F

i�1

; R

i

), 1 � i � n, and (� m

i+1

R

i+1

) 2 F

i

for all

0 � i < n. Additionally, there are conicting number-restrictions (� l R) and

(� r R), l > r, such that (� l R), (� r R) 2 F

n

, or there is a de�ned concept

C laying on an "-cycle such that C 2 F

n

.

3

In De�nition 55, 2.) also P and :P for the primitive concept P must be consid-

ered if T is an ALN -terminology. In order to formulate decision algorithms for

inconsistency and subsumption we �rst specify a (NPSPACE-)decision algorithm

for exclusion sets.

Algorithm 56.

Input: semi-automaton A

T

= (�; Q; E) without word-transitions for the ter-

minology T ; F

0

� Q.

Output: There is a computation with output \yes" i� F

0

is an exclusion set.

Let M denote the set of de�ned concepts which lay on an "-cycle.

F := F

0

;

z := 0;

while z < 2

jQj

do

(1) if F \M 6= ; or \there are conicting number-restrictions

(� l R); (� r R) 2 F , l > r" then output \yes";

if \there are m � 1 and a maximum-restriction (� m R) 2 F"

then \Guess (non-det.) a (� m R) 2 F where m � 1"

else output \no";

F := next

"

(F;R);

z := z + 1

end;

(2) output \yes". 4

It is not hard to see that this is an NPSPACE-algorithm. Correctness and com-

pleteness can easily be shown by using an \pumping-lemma" argument.



CHAPTER 6. SEMI-AUTOMATON AND LFP-SEMANTICS 50

Theorem 57 (characterizing inconsistency w.r.t. lfp-semantics).

Let T be an FLN -terminology, A

T

the corresponding semi-automaton without

word-transitions,

1

and A an atomic concept in T . The following statements are

equivalent:

1.) A is T -inconsistent w.r.t. the lfp-semantics in FLN .

2.) i.) There is a (�nite or in�nite) word W required by A where W 2 U(A); or

ii.) there are conicting number-restrictions (� l R) and (� r R), l > r, and

there is a word W 2 �

�

required by A such that W 2 L(A; (� l R)) \

L(A; (� r R)).

3.) "-closure(fAg) is an exclusion set.

Proof. Equivalence of 1.) and 2.):

\1. ) 2.": If the right-hand side of the equivalence is not valid, then according

to Lemma 54 there exists the canonical lfp-model I = I(A; d

0

) for A and individual

d

0

such that d

0

2 A

I

. Thus, A is consistent.

\1. ( 2.": Assume, there is a lfp-model I of T as well as an individual d

0

2

dom(I) such that d

0

2 A

I

. Furthermore, one of the following cases should hold:

i.) There is a word W 2 U(A) required by A.

IfW is �nite, then following Lemma 21 there is an individual e such that d

0

W

I

e.

Because of W 2 U(A) there exists a de�ned concept C such that A;W;C; "; C; "; C;

: : : is an in�nite path inA

T

; furthermore, d

0

W

I

e"

I

e"

I

e � � �. Hence, Theorem 51, (P4)

implies d

0

=2 A

I

, which is a contradiction to the assumption. If W is the in�nite

word R

1

R

2

R

3

� � �, then according to Lemma 21 there are individuals d

1

; d

2

; d

3

; : : :

such that d

0

R

I

1

d

2

R

I

2

d

2

� � �. Again, using W 2 U(A) and Theorem 51, (P4) it follows

d

0

=2 A

I

, which also contradicts the assumption.

ii.) There is a word W 2 �

�

required by A and there are conicting number-

restrictions (� l R), (� r R), l > r, such that W 2 L(A; (� l R)) \ L(A; (� r R)).

Thus, Lemma 21 implies that there is an individual e such that d

0

W

I

e. Because of

d

0

2 A

I

Theorem 51, (P2) and (P3) imply: e 2 (� l R)

I

and e 2 (� l R)

I

which is

a contradiction since l > r.

The equivalence of 2.) and 3.) is not hard to prove using Lemma 5 and Lemma

7. 2

Theorem 57, i.) describes the case that for elements in the extension of A in�nite

chains are required. Thus, Human in Example 9 is inconsistent by Theorem 57, i.),

since parents

!

2 U(Human) and parents

!

is required by Human.

If in Theorem 57, ii.) also P and :P are considered, then this Theorem is also

valid for ALN -terminologies.

1

The equivalence of 1.) and 2.) is also valid for arbitrary semi-automaton A

T

.
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Theorem 58 (Inconsistency w.r.t. lfp-semantics).

Inconsistency w.r.t. lfp-semantics for ALN -(FLN -)terminologies is PSPACE-com-

plete and NP-complete for (weak-)acyclic ALN -(FLN -)terminologies (see De�ni-

tion 78)

Proof. As already shown, inconsistency for ALN -(FLN -)terminologies is decid-

able using polynomial space. It remains to show that inconsistency is PSPACE-hard.

As already mentioned, in [8] consistency w.r.t. AL-schemas (see Remark 71) and

descriptive semantics was shown to be PSPACE-complete. The proof is by reducing

the validity of an (arbitrary) quanti�ed Boolean formulae q to consistency of an

atomic concept C

s

w.r.t. a cyclic AL-schema S

q

(for details see [9]). The problem of

this reduction is that AL does not allow for disjunction such that it is straightfor-

ward to construct a tree encoding the allocations of the variables. For this purpose,

a binary counter is simulated to test the possible allocations of the variables of q.

The schema S

q

may contain in�nite chains starting from C

s

although q is valid. For

example, if q = 9v

1

8v

2

v

1

, then q is obviously valid. But C

s

is inconsistent w.r.t. S

q

since there is an in�nite chain starting from C

s

(see Theorem 57). In S

q

the word

A

0

(A

�

A

c

A

1

)

!

is required by C

S

.:

C

s

A

0

�! fB

1

1

; B

�1

2

g

A

�

�! fC

�

10

; C

�

20

g

A

c

�! fC

�

11

; C

�

21

g

A

1

�! fB

1

1

; B

�1

2

g

A

�

�! � � �

Fortunately, one can avoid such in�nite chains. It is only necessary to be able

to increase the counter for Boolean variables which are existential quanti�ed. For

all-quanti�ed variables the following is su�cient: Let

q = � � � 8v

h

� � � 9v

i

� � � 8v

j

� � �

If the counter for v

i

changes, then the value of v

h

must be propagated. In the

construction [9] this is done by propagating B

�1

h

and B

+1

h

, respectively, depending

on the value of v

h

. On the other hand, both values of v

j

has to be tested. This is done

by propagating B

1

j

. For existential quanti�ed variables v

k

the B's are propagated

according to the counter, i.e., if k < i then B

�1

k

is propagated and if k > i, then the

propagation coincides with the current value of v

k

. Thus, for the atomic concepts

C

�

in

and C

+

in

, v

i

all quanti�ed, the concept inclusions C

�

in

v 9A

i

and C

+

in

v 9A

i

(and hence, C

�

in

v 8A

i

:B

1

i

and C

+

in

v 8A

i

:B

1

i

) in S

q

can be dispensed with. This

yields a schema without in�nite chains. Consequently, C

s

(in the modi�ed schema)

is consistent w.r.t. the gfp-semantics i� C

s

is consistent w.r.t. the lfp-semantics.

Thus, with this modi�ed schema the reduction of validity of quanti�ed Boolean

formulae to consistency w.r.t. AL-schemas also holds for the lfp-semantics. Hence,

Theorem 75 implies the PSPACE-hardness of consistency for general ALN -(FLN -

)terminologies.

NP-completeness of inconsistency for (weak-)acyclic terminologies is shown in

Theorem 79. 2
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6.3 Subsumption w.r.t. lfp-semantics

Theorem 51 implies that for A v

lfp;T

B the conditions L(B;P ) � L(A; P ) for all

primitive concepts P , L(B; (� n R)) � L(A; (� n R)) for all maximum-restrictions

(� n R), L(B; (� n R)) � L(A; (� n R)) for all minimum-restrictions (� n R), and

U(B) � U(A) are su�cient. Example 19 shows that the conditions for primitive

concepts and number-restrictions are not necessary. The condition U(B) � U(A) is

not necessary as well, as the following example shows.

Example 59.

Let T be the terminology which is de�ned by the corresponding automaton A

T

as

follows:

B

R

-

"

RR

A C

Although RRR � � � 2 U(B) and RRR � � � =2 U(A), thus U(B) 6� U(A), it holds A v

lfp;T

B.

Proof: Let I be a lfp-model of T and d an individual such that d 2 A

I

. Then d

cannot have RR-successors. If the individual e is an RR-successor of d, then because

of the in�nite path A;RR;C; ";C; ";C; ";C; : : :, d(RR)

I

e, and e"

I

e condition (P4) im-

plies that d is an element of A

I

. For B and d the conditions (P1), (P2), and (P3)

are obviously satis�ed. The only in�nite path starting from B is B;R;B;R;B;R; : : :

Since d has no RR-successor, (P4) w.r.t. B and d is satis�ed. Hence, d 2 B

I

. 3

In this example the subsumption relation A v

lfp;T

B holds because the words in

RRR

�

exclude A in the following sense.

De�nition 60 (exclusion w.r.t. the lfp-semantics in FLN

r

).

Let T be an FLN

r

-terminology,

2

A

T

= (�; Q; E) the corresponding semi-auto-

maton, and A an atomic concept in T . The �nite word W 2 �

�

excludes A if one

of the following conditions hold:

1.) There is a (�nite or in�nite) word � 2 U(A) as well as a word V 2 �

�

which

is pre�x of W and � such that � is required by A starting from V .

2.) There is a pre�x V 2 �

�

of W as well as a word V

0

2 �

�

, and there are

conicting number-restriction (� l R) and (� r R), l > r, such that V V

0

2

L(A; (� l R)) \ L(A; (� r R)) and V V

0

is required by A starting from V .

The !-word W 2 �

!

excludes A if there is a �nite pre�x of W which excludes A or

if W 2 U(A).

Furthermore, let E

A

:= fW 2 �

�

; W excludes Ag, E

A;!

:= fW 2 �

�

[ �

!

; W

excludes Ag, and E

f

A;!

:= fW 2 �

�

[ �

!

; a �nite pre�x of W excludes Ag. 3

2

By considering P and :P beside conicting number-restrictions the de�nition can be general-

ized to ALN

r

-terminologies.
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Note that as for the gfp-semantics the notion \exclusion" is only de�ned for FLN

r

-

terminologies rather than for FLN -terminologies.

If A is inconsistent, then it holds E

A

= �

�

and E

f

A;!

= E

A;!

= �

�

[ �

!

, since

by Theorem 57 the empty word " already excludes A. Conversely, if E

A

= �

�

(E

f

A;!

= �

�

[ �

!

or E

A;!

= �

�

[ �

!

), then A is excluded by ". Thus, Theorem 57

and De�nition 60 imply that A is inconsistent. An important statement concerning

De�nition 60 is captured in

Lemma 61.

Using the denotations and assumptions of De�nition 60 it holds for the lfp-model I

of T :

1.) If W 2 �

�

[�

!

as well as V 2 �

�

a pre�x of W with the properties 1.) or 2.)

in De�nition 60, and d; e 2 dom(I) individuals where dV

I

e, then d =2 A

I

.

2.) IfW 2 U(A) is an !-wordW = R

1

R

2

R

3

� � � and d

0

; d

1

; d

2

; : : : individuals where

d

0

R

I

1

d

1

R

I

2

d

2

� � �, then d

0

=2 A

I

.

Proof. 1.) The proof is very similar to the proof of Lemma 33.

2.) Using Theorem 51, (P4) it follows immediately d

0

=2 A

I

. 2

As for the other two semantics the following de�nition is useful to prove the char-

acterization of subsumption.

De�nition 62 (extended canonical lfp-model in FLN

r

).

Let T be an FLN

r

-terminology, A

T

the corresponding semi-automaton, and A

an atomic concept in T . Furthermore, let W denote a word in �

�

[ �

!

, r 2 IN,

and R 2 �. For W 2 �

�

the extended primitive canonical interpretations J

0

=

J(A; d

0

;W ) (r = 0) and J

0

= J(A; d

0

;W;R; r) (r > 0), respectively, are de�ned

as for the gfp-semantics in De�nition 34. For W 2 �

!

the primitive interpretation

J

0

= J(A; d

0

;W ) is de�ned as for the descriptive semantics in De�nition 47. The

extended canonical lfp-models I

0

= I(A; d

0

;W ) and I

0

= I(A; d

0

;W;R; r) are the

lfp-models de�ned by T , J

0

= J(A; d

0

;W ), and J

0

= J(A; d

0

;W;R; r), respectively.

3

In order to prove d

0

2 A

I

0

, i.e., the validity of (P1) { (P4) of Theorem 51 w.r.t. A,

d

0

, T , and J

0

, we need the following condition:

The atomic concept A is consistent and is not excluded by W ;

for r > 0 | in this case W should be a �nite word | also WR

should not exclude A. Furthermore, for all l < r it is assumed

W =2 L(A; (� l R)).

(6.2)

If one �nite word W 2 � excludes the atomic concept A w.r.t. to De�nition 32,

then also w.r.t. De�nition 60. Thus, condition (6.2) implies the conditions (4.3) and

(5.2). Furthermore, since the extended primitive canonical interpretation for the lfp-

semantics is de�ned as for the other two semantics, Lemma 35 and the statements
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8.) and 9.) also hold w.r.t. De�nition 62. Thus, in order to prove d

0

2 A

I

0

(I

0

de�ned as in De�nition 62) it is su�cient to verify (P4) of Theorem 51 w.r.t. A, d

0

,

T , and J

0

. This statement is proven in

Lemma 63.

Using the denotations of De�nition 62 condition (6.2) implies d

0

2 A

I

0

.

Proof. As mentioned above we only have to show (P4) for A, d

0

, T , and J

0

.

Assume that (P4) does not hold. Thus, there is an in�nite path of the form

A; V

1

; C

1

; V

2

; C

2

; : : : in A

T

, and there are individuals e

1

; e

2

; e

3

; : : : 2 dom(J

0

) such

that (e

i�1

; e

i

) 2 V

J

0

i

for all i � 1, e

0

:= d

0

. Let I = I(A; d

0

) be the canonical model

of A and d

0

as well as J = J(A; d

0

) the corresponding primitive interpretation. If

e

1

; e

2

; e

3

; : : : 2 dom(I), then (P4) of Theorem 51 is violated w.r.t. A, d

0

, and J , since

by Lemma 35, 5.) it holds (e

i�1

; e

i

) 2 V

J

i

. On the other hand, following Lemma

54 it holds d

0

2 A

I

which by Theorem 51 implies the validity of Theorem 51, (P4)

w.r.t. A, d

0

, and J . Thus, we have a contradiction.

Consequently, there is a i � 1 where e

i

2 dom(J

0

) n dom(J). Following Lemma

35, 4.) all elements in dom(J

0

) n dom(J) are (direct or indirect) successors of d

1

(see De�nition 34, d

0

U

J

d

1

). Thus, for V = V

1

V

2

V

3

� � � and e

i

2 dom(J

0

) n dom(J)

it holds: V = W (for r = 0), V = WR (for r > 0), or V = UXY where X 2 �

+

,

Y 2 �

�

[ �

!

, UX maximal pre�x of W (for r = 0) and of WR (for r > 0)(see proof

of Lemma 35, 9.)). In the case of V = W or V = WR the concept A is excluded

by W and WR, respectively, because of V 2 U(A), which is a contradiction to the

assumption. Thus, it holds V 6= W and V 6= WR, respectively, and thus V = UXY .

By the De�nition of J

0

the word V is required by A starting from UX. Because of

V 2 U(A) and since UX is a pre�x of W (resp., WR) A is excluded by W (resp.,

WR), which is a contradiction to the assumption. Thus, (P4) holds, and hence it

follows d

0

2 A

I

0

. 2

Now we are prepared to show

Theorem 64 (Characterizing subsumption w.r.t. lfp-semantics).

Let T be an FLN

r

-terminology, A

T

the corresponding semi-automaton, and A, B

atomic concepts in T . Then it holds A v

lfp;T

B i�

1.) L(B;P ) � L(A; P ) [ E

A

for primitive concepts P in T ;

2.) L(B; (� l R)) �

S

r�l

L(A; (� r R)) [ E

A

for all maximum-restrictions of the

form (� l R) in T where l > 0;

3.) L(B; (� l R)) �R � (

S

r�l

L(A; (� r R))) �R[E

A

for all minimum-restrictions

of the form (� l R) in T ; and

4.) U(B) � U(A) [ E

A;!

.

Proof. \)": We assume that (at least) one of the conditions 1.) { 4.) are not

valid and prove that this implies A 6v

lfp;T

B.
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The cases 1.), 2.), and 3.) can be treated using Lemma 63 and Theorem 51 as

in the proof of Theorem 36.

For 4.) we assume U(B) 6� U(A) [ E

A;!

.

Thus, there is a word W 2 U(B) n (U(A)[E

A;!

). Because of W =2 E

A;!

the concept

A is consistent, since otherwise E

A;!

= �

�

[�

!

. Furthermore, A is not excluded by

W . Consequently, by Lemma 63 there exists the lfp-model I

0

= I

0

(A; d

0

;W ) such

that d

0

2 A

I

0

.

If W is �nite, then there is d 2 dom(I

0

) such that d

0

W

I

d. Because of W 2 U(B)

there is a (de�ned) concept C which lays on an "-cycle. Thus, A;W;C; "; C; "; C; : : :

is an in�nite path in A

T

. Using d

0

W

I

0

d and d"

I

0

d Theorem 64, (P4) w.r.t B and d

0

implies d

0

=2 B

I

0

.

IfW is the !-word R

1

R

2

R

3

� � �, then there are individuals d

1

; d

2

; d

3

; : : : 2 dom(I

0

)

such that d

0

R

I

0

1

d

1

R

I

0

2

d

2

� � �. Because of W 2 U(B) and (P4) w.r.t. B and d

0

this

implies d

0

=2 B

I

0

. Hence, A 6v

lfp;T

B.

\(": We assume that the right-hand side of the equivalence is valid and addi-

tionally A 6v

lfp;T

B. Thus, there is a lfp-model of T and an individual d

0

2 dom(I)

such that d

0

2 A

I

n B

I

. Because of d

0

=2 B

I

one of the conditions (P1), (P2), (P3),

and (P4) of Theorem 51 w.r.t. B, d

0

, T , and I do not hold.

The cases (P1), (P2), and (P3) can be treated with the help of Theorem 51 and

Lemma 61 as in the proof of Theorem 36 (\(").

If (P4) is not valid, then there is an in�nite path of the formB;W

1

; C

1

;W

2

; C

2

; : : :

in A

T

, and individuals d

1

; d

2

; d

3

; : : : such that (d

n�1

; d

n

) 2 W

I

n

for all n � 1 (*).

Because of W =W

1

W

2

W

3

� � � 2 U(B) and U(B) � U(A)[E

A;!

we know W 2 U(A)

or W 2 E

A;!

. Now W 2 U(A), (*) and (P4) w.r.t. A and d

0

imply d

0

=2 A

I

, which

contradicts the assumption. Furthermore, using (*) and Lemma 61W 2 E

A;!

imply

d

0

=2 A

I

, which is also a contradiction. Hence, A is subsumed by B. 2

In order to generalize Theorem 64 to ALN

r

-terminologies see Remark 37.

Again, restricting De�nition 60 to FLN

r

we can characterize the sets E

A

and

E

f

A;!

using exclusion sets.

Lemma 65.

Let T be a FLN

r

-terminology,A

T

the corresponding semi-automaton without word-

transitions, and A an atomic concept in T . Then is holds:

1.) E

A

= fW 2 �

�

; an exclusion set is reachable by W starting from Ag;

2.) E

f

A;!

= fW 2 �

�

[ �

!

; an exclusion set is reachable by W starting from Ag.

\Reaching an exclusion set" is de�ned in De�nition 38.

Proof. The proof is very similar to the proof of Lemma 39, and therefore is omitted

here. 2

This characterization of the set E

A

allows to decide the conditions 1.), 2.), and 3.) of

Theorem 64 as for the gfp-semantics using Algorithm 40 and the modi�ed versions

(see page 35). Note that the condition T

2

=2 fF � Q; F exclusion setg must be
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interpreted w.r.t. De�nition 55. Algorithm 56 shows that this condition is decidable

using polynomial space. Thus, the problem to decide 1.), 2.), and 3.) of Theorem

64 is decidable using polynomial space.

It remains to formulate a (NPSPACE-)decision algorithm for condition 4.) of

Theorem 64, U(B) � U(A)[E

A;!

. Because of E

A;!

= E

f

A;!

[U(A) this condition is

equivalent to U(B) � U(A) [ E

f

A;!

.

The algorithm guesses non-deterministicaly a word W 2 U(B) n (U(A) [ E

f

A;!

)

if such a word exists. If there is a �nite word U

0

= W 2 U(B) n (U(A)[E

f

A;!

), then

there is also a word of length jU

0

j < 2

2�n

. If there is a !-word W 2 U(B) n (U(A) [

E

f

A;!

), the algorithm �rst guesses a word U

0

, jU

0

j < 2

2�n

, such that next

"

(A;U

0

) =

; and next

"

(B;U

0

) 6= ;. Then it guesses a word U

1

of length 2

n

� 1 where

next

"

(next

"

(B;U

0

); U

1

) 6= ;. Now, using U

0

and U

1

it is possible to construct an

!-word W such that W 2 U(B) n (U(A) [ E

f

A;!

).

Algorithm 66.

Input: semi-automaton A

T

= (�; Q; E) without word-transitions for the ter-

minology T ; atomic concepts A, B in T

Output: There is a computation with output \yes" i� U(B) 6� U(A) [ E

A;!

(=

U(A) [ E

f

A;!

)

Let n denote the size of Q, M the set of atomic concepts in T which lay on an

"-cycle, and L the set of exclusion sets.

T

1

:="-closure(fBg);

T

2

:="-closure(fAg);

z:=0;

(* Guess U

0

*)

while z < 2

2�n

� 1 and T

2

=2 L and (T

1

\M = ; or T

2

\M 6= ;) do begin

z:=z+1;

Guess (non-det.) R 2 �;

T

1

:= next

"

(T

1

; R);

T

2

:= next

"

(T

2

; R)

end;

(1) If T

2

=2 L then begin

(2) If T

1

\M 6= ; and T

2

\M = ; then output \yes"

else

(3) if (* z = 2

2�n

� 1 and *) T

2

= ; then begin

(* Guess U

1

*)

z := 0;

while z < 2

n

� 1 do begin

z := z + 1;

Guess (non-det.) R 2 �;

T

1

:= next

"

(T

1

; R);
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(*T

2

:= next

"

(T

2

; R) = ;;*)

end; (*while*)

(4) If T

1

6= ; then output \yes"

else output \no"

end

else output \no"

end(*if*)

end

else output \no". 4

Soundness: If the algorithm terminates with \yes", then two cases have to be

distinguished:

i) (Ouput \yes" in (2)) There is a �nite word W = R

1

� � �R

m

2 �

�

, m < 2

2�n

,

such that for T

1

:= next

"

(B;W ) and T

2

:= next

"

(A;W ) it holds: T

1

\ M 6= ;

and T

2

\M = ;. Thus, there is an atomic concept C 2 T

1

\M . Consequently,

there is an in�nite path of the form B;W;C; "; C; "; C; : : :, and hence, W 2 U(B).

If W 2 U(A), then there would be a (de�ned) concept C

0

which lays on an "-cycle

such that A;W;C

0

; "; C

0

; "; C

0

; : : : is an in�nite path in A

T

. Thus, it would hold

C

0

2 T

2

\M in contradiction to T

2

\M = ;. Hence, W =2 U(A). Furthermore, the

algorithm ensures for T

2;i

:= next

"

(A;R

1

� � �R

i

), 0 � i � m, that T

2;i

=2 L for all

0 � i � m (because of the condition in the �rst while-loop and because of (1)). By

Lemma 65 this implies W =2 E

f

A;!

. Thus, we have W 2 U(B) n (U(A) [ E

f

A;!

), and

consequently U(B) 6� U(A) [ E

f

A;!

.

ii) (Output \yes" in (4)) There is a word W = R

1

� � �R

m

2 �

�

, m = 2

2�n

�

1 + 2

n

� 1, such that for T

1;i

:= next

"

(B;R

1

� � �R

i

) and T

2;i

:= next

"

(A;R

1

� � �R

i

),

0 � i � m, it holds: T

1;i

6= ; for all 0 � i � m, T

2;j

= ; for all 2

2�n

� 1 � j � m as

well as T

2;i

=2 L for all 0 � i � m (note: ; =2 L). Because of j2

Q

nf;gj = 2

n

� 1 there

are non-negative integers l and r such that 2

2�n

� 1 � l < r � m and T

1;l

= T

1;r

.

Since for the !-word � := R

1

� � �R

2

2�n

�1

� � �R

l

(R

l+1

� � �R

r

)

!

starting from T

1;0

the

sets T

1;0

; T

1;1

; : : : ; T

1;l

; T

1;l+1

; : : : ; T

1;r�1

; T

1;r

; T

1;l+1

; : : : ; T

1;r

; : : : are passed through,

which, in addition, are all non-empty, it follows � 2 U(B) (Lemma 7). Furthermore,

for � starting form T

2;0

the sets T

2;0

; T

2;1

; : : : ; T

2;2

2�n

�2

; ;; ;; ;; : : : are passed through.

Now Lemma 7 implies � =2 U(A). Since this sequence of sets contain no exclusion

sets, it follows from Lemma 65: � =2 E

f

A;!

. Thus, we have � 2 U(B) n (U(A)[E

f

A;!

),

and hence U(B) 6� U(A) [ E

f

A;!

.

Completeness: If U(B) 6� U(A) [ E

f

A;!

, then we distinguish the cases iii) and iv).

iii) (Veri�cation of a computation with output \yes" in (2)) There is a �nite

word W = R

1

� � �R

m

2 �

�

such that W 2 U(B) n (U(A) [ E

f

A;!

). Let T

1;i

:=

next

"

(B;R

1

� � �R

i

) and T

2;i

:= next

"

(A;R

1

� � �R

i

) for all 0 � i � m. If m � 2

2�n

,

then because of j2

Q

�2

Q

j = 2

2�n

there are numbers l and r such that 0 � l < r � 2

2�n

as well as T

1;l

= T

1;r

and T

2;l

= T

2;r

. For W

0

= R

1

� � �R

l

R

r+1

� � �R

m

the tu-

ples (T

1;0

; T

2;0

); (T

1;1

; T

2;1

); : : : ; (T

1;l

; T

2;l

); (T

1;r+1

; T

2;r+1

); : : : ; (T

1;m

; T

2;m

) are passed

through. Because of T

1;m

\M 6= ; (since W 2 U(B)) it follows as in i): W

0

2 U(B).
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Analogously to i), T

2;m

\M = ; (because of W =2 U(A)) implies W

0

=2 U(A). Since

T

2;i

is not contained in L for any i, 0 � i � m (because of W =2 E

f

A;!

and Lemma

65) we also know W

0

=2 E

f

A;!

. Thus, for W

0

we have W

0

2 U(B) n (U(A) [ E

f

A;!

).

Without loss of generality we can assume m = jW j < 2

2�n

. With that, we can de�ne

a computation of algorithm 66 with output \yes" in (2). In the �rst while-loop

of the algorithm we choose R = R

i

in the ith iteration. As a consequence of the

de�nition of W , in every iteration step it holds T

2

=2 L. If the while-loop is iterated

m times, then at the end of the mth iteration it holds T

1

\M 6= ;, T

2

\M = ;, and

T

2

=2 L. Thus, in (2) the algorithm terminates with output \yes". If the while-loop

is iterated less than m-times, then before the mth iteration it must hold T

1

\M 6= ;

and T

2

\M = ;. Again, we get the output \yes" in (2).

Or:

iv) (Veri�cation of a computation with output \yes" in (4)) There is an !-

word W = R

1

R

2

R

3

� � � 2 �

!

such that W 2 U(B) n (U(A) [ E

f

A;!

). For T

1;i

:=

next

"

(B;R

1

� � �R

i

) and T

2;i

:= next

"

(A;R

1

� � �R

i

), i � 0, it holds: (*) T

1;i

6= ; for

all i � 0 (because of W 2 U(B) and Lemma 7); furthermore, there is a number

k � 0 such that T

2;k

= ; (because of W =2 U(A) and Lemma 7); �nally, we have

T

2;i

=2 L for all i � 0 because of W =2 E

f

A;!

and Lemma 65.

Due to j2

Q

� 2

Q

j = 2

2�n

there are numbers l and r where 0 � l < r � 2

2�n

as

well as T

1;l

= T

1;r

and T

2;l

= T

2;r

. Thus, for W

0

:= R

1

� � �R

l

R

r+1

R

r+2

R

r+3

� � � 2 �

!

the tuples (T

1;0

; T

2;0

); (T

1;1

; T

2;1

); : : : ; (T

1;l

; T

2;l

); (T

1;r+1

; T

2;r+1

); (T

1;r+2

; T

2;r+2

); : : : are

passed through. Statement (*) implies W

0

2 U(B) n (U(A) [ E

f

A;!

). Thus, we can

assume k < 2

2�n

without loss of generality.

We now specify for W a computation of algorithm 66 with output \yes". In the

�rst while-loop we choose R = R

i

in the ith iteration. Because of T

2;i

=2 L for all

i � 0 it holds T

2

=2 L in every iteration. If T

1

\M 6= ; and T

2

\M = ;, then because

of T

2

=2 L in (2) \yes" is displayed, and nothing more is to show. Otherwise, the

algorithm continues in (3). By the assumption it holds k < 2

2�n

. Since the �rst

while-loop was iterated (2

2�n

� 1) times, it follows T

2

= ;. Consequently, the second

loop is iterated (2

n

� 1)-times. In the ith iteration we choose R = R

2

2�n

�1+i

. After

termination of the loop it holds T

1

6= ; because of T

1;i

6= ; for all i � 0. Thus, the

algorithm terminates in (4) with output \yes".

Algorithm 66 shows that the problem U(B) � U(A) [ E

A;!

is decidable us-

ing polynomial space. Thus, since subsumption w.r.t. the lfp-semantics in FL

0

is PSPACE-complete [4] (and since inconsistency w.r.t. lfp-semantics in FLN is

PSPACE-complete, Theorem 58), it follows

Corollary 67.

Subsumption w.r.t. the lfp-semantics in general ALN - and FLN -terminologies is

PSPACE-complete. 2



Chapter 7

SLN -schemas and

ALN -terminologies

In [7], terminologies are divided into a schema and a view part|following (object-

oriented) databases. Schemas allow to specify necessary conditions for atomic con-

cepts (concept inclusions instead of concept de�nitions) as well as simple necessary

conditions for roles (role inclusions, which are not allowed in terminologies consid-

ered here). Such necessary conditions are for example subsumption relations for

atomic concepts and range restrictions for roles. The schema merely restricts the

number of admissible models of the terminology which implies that the meaning of

schemas is captured by descriptive semantics. In the view part of the terminology

concepts are de�ned with the help of schema concepts. For this reason, �xed-point

semantics is used for this part.

Knowledge and database engineers are interested in validity of schemas as well as

subsumption w.r.t. schemas. In [7], SL

dis

-schemas have been introduced, which can

express constraints frequently occurring in the static part of object-oriented database

schemas. Furthermore, a special PSPACE-decision algorithm has been developed

for deciding (local) validity of these schemas. In this paper, it is formally shown that

inconsistency, validity, and subsumption for SLN -schemas (and hence, for SL

dis

-

schemas) can be reduced to corresponding problems for ALN -terminologies. In

addition, it is possible|as already mentioned|to prove some hardness results for

ALN -terminologies using this reduction.

7.1 SLN -schemas

An SLN -schema de�nes necessary conditions for atomic concepts and roles.

De�nition 68 (SLN -schemas).

Syntax:

A SLN -schema S consists of a �nite set of concept inclusions and role inclusions.

Let A, B be atomic concepts in S (atomic S-concepts), R a role name in S

(S-role), and n a non-negative integer. Concept inclusions are of the form A v C

59
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where C denotes a concept of the form

B j :B j 8R.B j (� n R) j (� n R)

Role inclusions are of the form R v A� B for a role name R and atomic

concepts A, B. An atomic concept A with at least one concept inclusion of the

form A v C in S is called de�ned, and otherwise primitive. Analogous, we refer to

de�ned and primitive roles. We only allow for primitive negation, i.e., for concept

inclusions A v :B where B is primitive.

Semantics:

An interpretation I of S is de�ned as in De�nition 11. An interpretation I is a

(S-)model of S if all concept inclusions A v C and all role inclusions R v A� B

in S are satis�ed, i.e., A

I

� C

I

and R

I

� A

I

� B

I

. The semantics of S is de�ned

by the descriptive semantics, i.e., the set of all S-models.

A concept A is consistent w.r.t. S (S-consistent) if there is a model I of S such

that A

I

6= ;. A schema S is locally valid if every atomic concept in S is consistent.

We call a schema S valid if there is a S-model I with A

I

6= ; for every atomic

concept A in S.

The concept A is subsumed by B w.r.t. S (S-subsumed) if for all S-models I it

holds A

I

� B

I

. 3

The following is an example of an SLN -schema describing a extract of a company

environment [7].

Example 69.

S:

Employee v (� 1 salary)

Employee v (� 1 salary)

Employee v (� 1 boss)

Manager v Employee

Manager v 8salary.HighSalary

High v Salary

salary v Employee� Salary

boss v Employee�Manager

3

The following fact can be used to reduce validity of schemas to consistency in ter-

minologies:

Proposition 70.

An SLN -schema is valid i� it is locally valid.

Proof. The proof is analogous to the proof for SL

dis

-schemas (see below) in [7]. Let

I

1

, I

2

be models of the SLN -schema S with disjoint domains. By induction over the
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structure of the concept terms it is easy to verify thatD

I

= D

I

1

_

[D

I

2

for every ALN -

concept D where I denotes the union of I

1

and I

2

, i.e., dom(I) := dom(I

1

)[dom(I

2

),

C

I

:= C

I

1

[ C

I

2

for all atomic S-concepts C, and R

I

:= R

I

1

[R

I

2

for all S-roles R.

Furthermore, it is not hard to prove that I is a model of S.

Now if S is locally valid, one only has to construct the union of all S-models

I

A

for the atomic S-concepts A, which satisfy A

I

A

6= ;. The other direction of the

proof is trivial. 2

A schema S

0

has the same properties w.r.t. consistency, (local) validity, and sub-

sumption as the schema S if the following conditions hold:

1.) For all atomic S-concepts A it holds: A is S-consistent i� A is S

0

-consistent;

2.) S is locally valid i� for every atomic S-concept A there is a S

0

-model I

A

such

that A

I

A

6= ;;

3.) S is valid i� there is a S

0

-model I such that A

I

6= ; for all atomic S-concepts;

and

4.) for all atomic S-concepts A, B it holds: A v

S

B i� A v

S

0

B.

Obviously 1.) implies 2.) and using Proposition 70 by 2.) it follows 3.).

Remark 71 (ALN -, SL

dis

-, and AL-schemas).

SLN -schemas as de�ned above only allow for \at" concepts on the right-hand side

of a concept inclusion, whereasALN -schemas allow for arbitrary ALN -concepts on

the right-hand side of concept inclusions. However, it can easily be shown that for

every ALN -schemas S one can construct in time linear in the size S an SLN -schema

with the same properties w.r.t. consistency, (local) validity, and subsumption. For

this purpose, �rst every ALN -concept inclusion of the form A v D

1

u � � � u D

n

is

replaced by the inclusions A v D

1

; : : : ; A v D

n

. Secondly, every ALN -concept

inclusion of the form A v 8RW .D is replaced by A v 8R.A

1

and A

1

v 8W .D

(where A

1

denotes a new atomic concept) until there are only SLN -concept inclu-

sions left.

As SLN -schemas, SL

dis

-schemas, which have been introduced in [7], allow only

for \at" concept inclusions, however, number-restrictions are restricted to the form

(� 1 R) and (� 1 R). On the other hand, SL

dis

-schemas allow for concept inclu-

sions of the form A v :B where B may be a de�ned concept in the schema. Such

inclusions can be substituted by A v :P

B

and B v P

B

for a newly introcuded

primitive concept P

B

. The resulting schema has the same properties w.r.t. con-

sistency, (local) validity, and subsumption as S. Consequently, SLN -schemas and

SL

dis

-schemas only di�er in terms of number-restrictions.

AL-schemas introduced in [8] coincide with SL

dis

-schemas apart from the fact

that they do not allow for role inclusions. 3
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7.2 Reducing schemas to terminologies

In this section we construct an ALN -terminology T

S

from an SLN -schema S such

that the properties of T

S

are the same as for S w.r.t. consistency and subsumption.

Before de�ning T

S

, we transform S into a schema S

0

that does not contain role

inclusions. Role inclusions only have to be taken into account if role successors are

required, otherwise they can be neglected. The formal de�nition of S

0

is as follows:

The schema S

0

contains all concept inclusions of S of the form A v B, A v :B,

A v 8R.B, and A v (� n R). For every A v (� n R) 2 S, n � 1, we dis-

tinguish two cases: (a) R is not de�ned in S; (b) R is de�ned in S. In case (a),

A v (� n R) is contained in S

0

. In case (b), S

0

contains the concept inclusion

A v (� n R) u 8R.C

2

u C

1

for every R v C

1

� C

2

2 S. The schema S

0

contains

no other inclusions than these, in particular no role inclusions.

De�nition 72 (the terminology T

S

).

Let S be an SLN -schema and S

0

as de�ned above. For every de�ned concept A in

S a concept de�nition for A in T

S

is constructed as follows:

Let A v C

1

; : : : ; A v C

n

be all concept inclusions belonging to the de�ned con-

cept A in S

0

. Let A be a new (primitive) concept. Then the concept de�nition for

A in T

S

is of the form A = A u C

1

u � � � u C

n

. 3

Obviously, we can construct T

S

from S in time linear in the size of S.

Instead of de�ning concept de�nitions of the form A = A u � � � in De�nition

72, where A denotes a newly introduced primitive concept, one could also consider

concept de�nition A = A u � � �. However, in this case Theorem 77 is only valid for

the descriptive semantics.

The corresponding terminology to the schema S in Example 69 is the following:

Example 73 (continuation of example 69).

T

S

:

Employee = Employee u (� 1 salary) u 8salary.Salary u Employee u

(� 1 salary) u (� 1 boss) u 8boss.Manager u Employee

Manager = Manager u Employee u 8salary.HighSalary

HighSalary = HighSalary u Salary

3

Before considering S and T

S

w.r.t. consistency we need the following

Lemma 74.

Let T be an ALN -terminology, A

T

the corresponding semi-automaton, and A, B

atomic concepts in T . Furthermore, let W denote a word where W 2 L

A

T

(A;B), I

a model of T , and d; e 2 dom(I) where dW

I

e and d 2 A

I

. Then it holds e 2 B

I

.

Proof. Let A = B

1

; U

1

; B

2

; U

2

; : : : ; U

n

; B

n+1

= B be a path from A to B labeled

with W = U

1

� � �U

n

such that (B

i

; U

i

; B

i+1

) are transitions in A

T

for all 1 � i � n.
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We prove the claim by induction over the length n of the path.

Basis step (n = 0): We know A = B and W = ". Thus, d = e because of dW

I

e.

Now d 2 A

I

implies e 2 B

I

.

Induction step: Because of dW

I

e there is an individual f 2 dom(I) such that

dU

I

1

f(U

2

� � �U

n+1

)

I

e. The concept de�nition of A is A = � � �u 8U

1

.B

2

u � � �. Since

I is a model of T , the individual f must be contained in B

I

2

because of d 2 A

I

and

dU

I

1

f . Thus, the induction hypothesis yields e 2 B

I

. 2

We now show that consistency/inconsistency of atomic concepts in S is preserved

by T

S

.

Theorem 75 (consistency).

Let S be an SLN -schema and T

S

as de�ned in De�nition 72. For all atomic concepts

A in S it holds: A is S-consistent i� A is T

S

-consistent w.r.t. gfp-semantics.

Proof. \)": Let A be a S-consistent atomic S-concept, i.e., there is a S-model

I such that A

I

6= ;. We de�ne a gfp-model I of T

S

such that A

I

6= ;. The

interpretation I coincide with I on all atomic concepts and roles of S. Furthermore,

for the corresponding primitive concept B of B in T

S

let B

I

:= B

I

.

Claim: I is gfp-model of T

S

where A

I

6= ;.

Proof of the Claim: In order to show that I is a model of T

S

it is su�cient to

show that every S

0

-concept inclusion B v C (see page 62 for the de�nition of S

0

)

is satis�ed w.r.t. I (*). We �rst verify that this is indeed su�cient: For the concept

de�nition B = B u C

1

u � � � u C

n

of B in T

S

, where B v C

i

, 1 � i � n, are the

S

0

-concept inclusions of B, it holds (B u C

1

u � � � u C

n

)

I

� B

I

since B

I

= B

I

.

Conversely by (*), we have B

I

� (B u C

1

u � � � u C

n

)

I

because of B

I

= B

I

and

B

I

� C

I

i

.

We prove (*): Let B v C be a S

0

-concept inclusion. If B v C is a S-

concept inclusion, then by the De�nition of I and since I is a S-model it fol-

lows B

I

� C

I

. On the other hand, if B v C is no concept inclusion of S,

then C = (� n R) u 8R.C

2

u C

1

, n � 1. Thus, S contains the inclusion axioms

B v (� n R) and R v C

1

� C

2

. Because of R

I

= R

I

, C

I

1

= C

I

1

, and C

I

2

= C

I

2

we

know B

I

� (� n R)

I

and R

I

� C

1

I

� C

2

I

. Thus, (� n R)

I

� C

I

1

(note: n � 1) and

(8R.C

2

)

I

= dom(I). Hence, B

I

� C

I

. This proves that I is a model of T

S

.

Furthermore, it is to show that I is a gfp-model of T

S

. For this purpose, let I

0

be

a model of T

S

such that the primitive interpretations of I

0

and I coincide. Because

of B

I

= B

I

0

, B

I

= B

I

and B

I

0

� B

I

0

(since I

0

satis�es B = B u � � �) it follows

B

I

0

� B

I

for all de�ned concepts B. Hence, I is a gfp-model of T

S

.

Finally, because of A

I

6= ; and A

I

= A

I

we have A

I

6= ;. Thus, A is T

S

-consistent

w.r.t. the gfp-semantics.

\(": Let A be an atomic concept in S which is consistent w.r.t. T

S

and the gfp-

semantics. We show the existence of a model I of S such that A

I

6= ;. Since A is

consistent w.r.t. T

S

, by Remark 26 there exists the canonical gfp-model I = I(A; d

0

)

for A and the individual d

0

such that d

0

2 A

I

. We denote the corresponding

primitive interpretation by J = J(A; d

0

).
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Claim: I is a model of S.

Proof of the Claim: Let B v C (C 6= (� 0 R)) be a concept inclusion in S. The

concept de�nition of B in T

S

is of the form B = B u � � � u C u � � �. Since I satis�es

this concept de�nition, it follows B

I

� C

I

. If C = (� 0 R), then because of C

I

=

dom(I) it also holds B

I

� C

I

. Thus, I satis�es all S-concept inclusions.

Now let R v C

1

� C

2

be a role inclusion in S and (d; e) 2 R

I

for individuals

d; e. It is to show (d; e) 2 C

1

I

� C

2

I

. According to 25, 1.) for d there is an unique

word W required by A such that d

0

W

J

d. By Lemma 25, 1.) we also have that

WR is required by A because of d

0

W

J

dR

J

e; in particular W 2 L

A

T

S

(A; (� n R))

for one n � 1. Following the de�nition of T

S

the maximum-restriction (� n R)

occurs in a concept de�nition in the form � � �u (� n R) u � � �. Thus, there is a

de�ned concept C in T

S

such that A;W;C; "; (� n R) is a path in A

T

S

labeled

with W . The concept de�nition of C is of the form C = C u � � � u (� n R) u � � �.

By the de�nition of T

S

this implies that C v (� n R) is a S-concept inclusion.

Since R v C

1

� C

2

is a S-role inclusion, more precisely, we have for the concept

de�nition of C: C = C u � � � u (� n R) u 8R.C

2

u C

1

u � � �. Lemma 74 implies

d 2 C

I

1

because of d

0

W

I

d and W 2 L

A

T

S

(A;C

1

). Furthermore, using d

0

(WR)

I

e and

WR 2 L

A

T

S

(A;C

2

) Lemma 74 implies e 2 C

I

2

. Thus, (d; e) 2 C

1

I

� C

2

I

. With that

it has been shown that I satis�es the S-role inclusions. Hence, I is model of S,

which proves the claim.

Due to d

0

2 A

I

the claim implies the consistency of A w.r.t. S. 2

Since the gfp- and descriptive semantics coincide w.r.t. consistency, Theorem 75 also

holds for the descriptive semantics.

As an immediate consequence of Proposition 70 and the above Theorem we have

Corollary 76 (validity).

Using the denotation of Theorem 75 it holds: S is valid i� all atomic S-concepts are

consistent w.r.t. T

S

and the descriptive (gfp-semantics). 2

In chapter 4.3 it has been shown that inconsistency, and therefore consistency, is

decidable using polynomial space. Thus, Theorem 75 and Corollary 76 imply that

both consistency and validity for SLN -(ALN , SL

dis

-)schemas are also decidable

using polynomial space.

It remains to show that T

S

and S coincide w.r.t. subsumption.

Theorem 77 (subsumption).

Let S be an SLN -schema and T

S

the corresponding ALN -terminology. Then for

all atomic concepts A, B in S it holds: A v

S

B i� A v

T

S

B (i� A v

gfp;T

S

B).

Proof. \(": If A 6v

S

B, then there is a model I of S and an individual d such that

d 2 A

I

nB

I

. Let I be de�ned as in the proof of Theorem 75 (\("). With that I is

a (gfp-)model of T

S

in which the atomic concepts of S are interpreted as in I. Thus,

d 2 A

I

nB

I

, and hence A 6v

T

S

B (resp., A 6v

gfp;T

S

B).

\)": If A 6v

T

S

B (resp., A 6v

gfp;T

S

B), then there is a (gfp-)model I of T

S

and an

individual d such that d 2 A

I

nB

I

. We de�ne an S-model I

0

such that d 2 A

I

0

nB

I

0
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holds, and thus A 6v

S

B:

dom(I

0

) := dom(I); C

I

0

:= C

I

for all atomic concepts C in S; for given s-roles

T and all S-role inclusions R v C

1

1

� C

1

2

; : : : ; R v C

n

1

� C

n

2

of R in S we de�ne

R

I

0

:= R

I

\ ((C

1

1

)

I

� (C

1

2

)

I

) \ � � � \ ((C

n

1

)

I

� (C

n

2

)

I

) (for n = 0 let R

I

0

= R

I

).

By de�nition of I

0

the role inclusions of S are satis�ed I

0

.

For an S-concept inclusion C v D (resp., C v :D) where C, D are atomic

concepts the concept de�nition of C in T

S

is of the form C = C u � � � u D u � � �

(resp., C = C u � � � u :D u � � �). Since I is a T

S

-model, C

I

0

= C

I

, and D

I

0

= D

I

,

we have C

I

0

� D

I

0

(and because of dom(I

0

) = dom(I) also C

I

0

� (:D)

I

0

). Thus,

the concept inclusion C v D (resp., C v :D) is satis�ed w.r.t. I

0

.

If C v 8R.D is an S-concept inclusion, then due to R

I

0

� R

I

and D

I

0

= D

I

it

holds (8R.D)

I

� (8R.D)

I

0

. Furthermore, the concept inclusion of C in T

S

is of the

form C = C u � � � u 8R.D u � � �. Consequently, it follows C

I

� (8R.D)

I

. Using

C

I

0

= C

I

this implies C

I

0

� (8R.D)

I

0

. Analogously it can be shown that I

0

satis�es

inclusions of the form C v (� n R) in S because of R

I

0

� R

I

.

A concept inclusionC v (� 0 R) in S is trivially satis�ed by I

0

since (� 0 R)

I

0

=

dom(I

0

).

If C v (� n R), n � 1, is an S-concept inclusion and R v C

1

1

� C

1

2

; : : : ;

R v C

m

1

�C

m

2

are the S-role inclusions for R, then the concept inclusion for C in T

S

is of the form C = C u � � � u (� n R) u 8R.C

1

2

u � � � u 8R.C

m

2

u C

1

1

u � � � u C

m

1

u � � �.

Since I is a (gfp-)model of T

S

, it holds for an individual d 2 C

I

that d has at least n

distinct R-successors e

1

; : : : ; e

n

for which holds e

1

; : : : ; e

n

2 (C

1

2

u � � �u C

m

2

)

I

. Fur-

thermore, d 2 (C

1

1

u � � � u C

m

1

)

I

. Thus, by de�nition of R

I

0

the individuals e

1

; : : : ; e

n

are R-successors of d w.r.t. I

0

. Hence, d 2 (� n R)

I

0

. Consequently, I

0

satis�es the

concept inclusion C v (� n R).

Hence we have shown that I

0

is a model of S. Additionally, A

I

0

= A

I

and

B

I

0

= B

I

imply d 2 A

I

0

nB

I

0

, and thus A 6v

S

B. 2

By the Corollaries 41 and 50 this theorem provides us with PSPACE decision al-

gorithms for subsumption w.r.t. SLN - (resp., ALN -)schemas. This Theorem im-

plies using the Corollaries 41 and 50 that subsumption for SLN - (resp.< ALN -,

SL

dis

)schemas is decidable using polynomial space.

In [7] it has been shown that consistency and subsumption involving SL

dis

-

schemas is decidable using polynomial space by an algorithm working on special

graphs.

The results presented here not only extends the upper bound complexity results

for SL

dis

-schemas to SLN -schemas, but also uses well-known results and techniques

in automata theory, rather than de�ning special graphs as in [7]. Furthermore,

it clari�es the relationship between schemas and terminologies for the considered

languages: ALN -terminologies are at least as expressive as SLN -schemas w.r.t. the

important inference problems.

Finally, it should also be noted that the complexity of subsumption w.r.t. schemas
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is only due to testing consistency of concepts. By [7], Proposition 4.15 it holds:

1

Let S be an SL

dis

-schema and A, A

1

; : : : ; A

m

atomic concepts where

A

1

u � � � u A

m

is S-consistent. Then it holds:

A

1

u � � � u A

m

v

S

A i� A 2 "-closure

A

T

S

(fA

1

; : : : ; A

m

g)

Hence, disallowing concept forming operators that enable the de�nition of incon-

sistent concepts (number restrictions and primitive negation) makes reasoning for

schemas tractable, whereas for FL

0

-terminologies subsumption is already PSPACE-

complete (w.r.t. �xed-point semantics). Furthermore, (weak-)acyclic terminologies

and schemas also di�er in terms of complexity.

7.3 (Weak-)acyclic terminologies and schemas

De�nition 78 (weak-acyclic).

An ALN -terminology T is called weak-acyclic i� for all non-empty words W 2 �

+

and all (de�ned) concepts A in T it holds: W =2 L

A

T

(A;A).

A schema S is called weak-acyclic if the corresponding terminology T

S

is weak-

acyclic. 3

The following Theorem shows that consistency for weak-acyclic terminologies is

\easier" to decide than for general terminologies.

Theorem 79.

Consistency (w.r.t. gfp-, lfp-, and descriptive semantics) for (weak-)acyclic ALN -

(FLN -)terminologies is co-NP-complete.

Proof. We �rst show the upper bound. Let T be an ALN - (FLN -)terminology,

A

T

the corresponding semi-automaton without word-transitions (see Remark 18),

and A an atomic concept in T . By Theorem 29 and Theorem 57, respectively, A is

consistent i� the set "-closure

A

T

(fAg) is an exclusion set. Thus, to show the claim

of the theorem it is su�cient to prove the existence of a NP-algorithm for deciding

exclusion sets w.r.t. weak-acyclic terminologies. In fact, in the algorithms 28 and 56

n+ 1, n = jQj, iterations of the while-loop are su�cient. Proof:

Let F � Q. For F

0

:= F and F

i

:= next

"

(F

i�1

; R

i

), R

i

2 � (arbitrary), i � 1, it

holds: F

n+1

= ;. If F

n+1

6= ;, then there are de�ned concepts A

0

; : : : ; A

n

as well

as an atomic concept, a number-restriction, or a primitive negation A

n+1

such that

A

0

; R

1

; A

1

; R

2

; : : : ; R

n+1

; A

n+1

is a path in A

T

. Since A

T

has only n states, there

are numbers i; j where 0 � i < j � n and A

i

= A

j

. This implies " 6= R

i+1

� � �R

j

2

L(A

i

; A

j

) which contradicts the assumption that T is weak-acyclic.

Thus in the algorithms 28 and 56 the while-condition z < 2

jQj

can be substituted

by z < jQj + 1 since for z = jQj + 1 the variable F is the empty set. Furthermore,

in algorithm 56 the output in (2) has to be modi�ed from \yes" to \no" since an

1

This statement is adapted to the automata theoretic characterization used in the present paper.
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empty set of states can not be an exclusion set in terms of De�nition 55, 1.). This

completes the prove of the upper bound complexity.

Now we prove the lower bound complexity. In [7], validity of SL

dis

-schemas has

been reduced to consistency of ALE-concepts which is co-NP-complete [11]. More

precisely, for a ALE-concept C an SL

dis

-schema S

C

has been de�ned such that

C is consistent i� S

C

is valid.

(7.1)

The schema S

C

as de�ned in [7] contains an atomic concept A

C

. The proof of (7.1)

reveals that also the following statement holds:

C is consistent i� A

C

is consistent w.r.t. S

C

.

(7.2)

Moreover, the schema S

C

is acyclic. Thus, also T

S

C

is acyclic such that the three

semantics coincide. Hence, Theorem 75 implies the co-NP-hardness of consistency

for (weak-)acyclic ALN -(FLN -)terminologies w.r.t. all three semantics. 2

The proof of the above theorem also shows that consistency and validity (see Propo-

sition 70) for (weak-)acyclic SLN - (ALN -)schemas is co-NP-complete.

As for general terminologies and schemas, even for acyclic terminologies and

schemas there are di�erences in terms of complexity for subsumption, e.g., subsump-

tion for acyclic FL

0

-terminologies is co-NP-complete [19], whereas it is NP-complete

for acyclic SL

dis

-schemas [7].



Chapter 8

Conclusion

In several examples we have seen that cyclic terminologies are a natural way to

describe the terminological knowledge of a problem domain. Unlike �rst-order pred-

icate logic, the transitive closure of relations is expressible using the gfp-semantics.

In [2], description logics have been explicitly extended by role constructors union,

composition, and transitive closure. Nevertheless, as already pointed out cyclic def-

initions occur frequently, e.g., in constraints for semantic and object-oriented data

models. The previous chapter has shown that the here considered general ALN -

terminologies are expressive enough to capture important parts of such constraints.

The examples considered in this work as well as the literature reveal that the

descriptive semantics is not suitable in every representation task to capture the

intuition of a cyclic terminology. On the other hand, also the introduced �xed-point

semantics do not �t in any case. Therefore, it is crucial to gain a more profound

understanding of the intuition of these semantics, in order to make decision easier

which semantics is to prefer in the representation task at hand. For this reason,

automata theoretic characterizations have been provided for the three semantics

with respect to ALN . The characterization of the three semantics itself was an

easy extension of the characterization for FL

0

[4].

Using this characterizations we have also proven characterizations for the im-

portant inference problems inconsistency and subsumption for FLN (ALN ). Due

to primitive negation and conicting number-restrictions inconsistent concepts can

occur for all three semantics|unlike FL

0

, where inconsistent concepts are only ex-

pressible for the lfp-semantics. From the characterizations of inconsistency we have

derived decision algorithms and complexity results (see table 1.1) using exclusion

sets, which where de�ned by semi-automata.

Due to inconsistency a straightforward extension of the characterization of sub-

sumption for FL

0

to FLN is not possible. Rather the notion \exclusion words" was

needed, which also has been de�ned in terms of the corresponding semi-automaton

of a terminology. We have described the set of exclusion words with the help of

exclusion sets. Again, using this sets we were able to formulate decision algorithms

and to show complexity results for subsumption (see table 1.1). It has turned out

that subsumption for ALN is less complex (namely, PSPACE-complete instead of

68
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EXPTIME-complete) than subsumption for much more expressive languages pro-

posed in the literature which allow for �xed-points operators.

Finally, we have shown that the important inference problems for SLN - and

SL

dis

-schemas can be reduced to corresponding problems for terminologies. These

schemas are expressive enough to describe constraints frequently occurring in seman-

tic and object-oriented data models. This reduction has provided us with automata

theoretic decision algorithms for such problems and clari�es the expressive power

of the considered schemas and terminologies; in addition, it extends the results for

SL

dis

-schemas [7] to SLN -schemas, which allow for arbitrary number-restrictions.

We have also pointed out the di�erence between schemas and terminologies. The

complexity of subsumption in the here considered schemas is only due to incon-

sistency, whereas subsumption w.r.t. terminologies is already complex for FL

0

-

terminologies.
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