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Abstract

Uni�cation of concept terms is a new kind of inference problem for

Description Logics, which extends the equivalence problem by allowing to

replace certain concept names by concept terms before testing for equiva-

lence. We show that this inference problem is of interest for applications,

and present �rst decidability and complexity results for a small concept

description language.

1 Introduction

Knowledge representation languages based on Description Logics (DL languages)

can be used to represent the terminological knowledge of an application domain

in a structured and formally well-understood way [8, 3]. With the help of these

languages, the important notions of the domain can be described by concept

terms, i.e., expressions that are built from atomic concepts (unary predicates)

and atomic roles (binary predicates) using the concept constructors provided

�
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by the DL language. The atomic concepts and concept terms represent sets of

individuals, whereas roles represent binary relations between individuals. For

example, using the atomic concept Woman and the atomic role child, the concept

of all women having only daughters (i.e., women such that all their children are

again women) can be represented by the concept term

Woman u 8child:Woman:

Knowledge representation systems based on Description Logics provide their users

with various inference capabilities that allow them to deduce implicit knowledge

from the explicitly represented knowledge. For instance, the subsumption algo-

rithm allows one to determine subconcept-superconcept relationships: C is sub-

sumed by D (C v D) i� all instances of C are also instances of D, i.e., the �rst

term is always interpreted as a subset of the second term. For example, the con-

cept term Woman obviously subsumes the concept term Womanu 8child:Woman.

With the help of the subsumption algorithm, a newly introduced concept term

can automatically be placed at the correct position in the hierarchy of the already

existing concept terms.

Two concept terms C;D are equivalent (C � D) i� they subsume each other,

i.e., i� they always represent the same set of individuals. For example, the terms

Woman u 8child:Woman and (8child:Woman) uWoman are equivalent since u is

interpreted as set intersection, which is obviously commutative. The equivalence

test can, for example, be used to �nd out whether a concept term representing a

particular notion has already been introduced, thus avoiding multiple introduc-

tion of the same concept into the concept hierarchy. Uni�cation of concept terms

extends this inference capability by allowing to replace certain concept names by

concept terms before testing for equivalence.

The �rst motivation for considering uni�cation of concept terms comes from an

application in chemical process engineering [5]. In this application, the DL sys-

tem is used to support the design of a large terminology of concepts describing

parts of chemical plants as well as processes that take place in these plants. Since

several knowledge engineers are involved in de�ning new concepts, and since this

knowledge acquisition process takes rather long (several years), it happens that

the same (intuitive) concept is introduced several times, often with slightly dif-

fering descriptions. Our goal was to use the reasoning capabilities of the DL

system (in particular, testing for equivalence of concept terms) to support avoid-

ing this kind of redundancy. However, testing for equivalence of concepts is not

always su�cient to �nd out whether, for a given concept term, there already

exists another concept term in the knowledge base describing the same notion.

For example, assume that one knowledge engineer has de�ned the concept of all

women having only daughters

1

by the concept term

Woman u 8child:Woman:

1

We use an example from the family domain since examples from process engineering would

require too much explanation.
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A second knowledge engineer might represent this notion in a somewhat more

�ne-grained way, e.g., by using the term FemaleuHuman in place of Woman. The

concept terms Woman u 8child:Woman and

Female u Human u 8child:(Female u Human)

are not equivalent, but they are meant to represent the same concept. The two

terms can obviously be made equivalent by replacing the atomic concept Woman

in the �rst term by the concept term Female u Human. This leads us to uni�ca-

tion of concept terms, i.e., the question whether two concept terms C;D can be

made equivalent by applying an appropriate substitution �, where a substitution

replaces (some of the) atomic concepts by concept terms. A substitution is a

uni�er of C;D i� �(C) � �(D). Of course, it is not necessarily the case that

uni�able concept terms are meant to represent the same notion. A uni�ability

test can, however, suggest to the knowledge engineer possible candidate terms.

Another motivation for considering uni�cation of concept terms comes from the

work of Borgida and McGuinness [7], who introduce matching of concept terms

(of the DL language used by the classic system) modulo subsumption: for given

concept terms C and D they ask for a substitution � such that C v �(D). More

precisely, they are interested in �nding \minimal" substitutions for which this

is the case, i.e., � should satisfy the property that there does not exist another

substitution � such that C v �(D) < �(D). Since C v D i� C u D � C, this

matching problem can be reduced to a uni�cation problem.

In the following, we consider the uni�cation problem for a rather small DL lan-

guage, called FL

0

in the literature [2]. We shall see that this problem can be

viewed as a uni�cation problem modulo an appropriate equational theory: the

theory ACUIh of a binary associative, commutative, and idempotent function

symbol with a unit and several homomorphisms. This theory turns out to be a

so-called commutative (or monoidal) theory [1, 13, 4], in which uni�cation can

be reduced to solving equations in a corresponding semiring, which in the case of

ACUIh is the polynomial semiring (in non-commuting indeterminates) over the

Boolean semiring.

2

The problem of solving linear equations over this semiring

can in turn be reduced to a certain formal language problem, which can be solved

using automata on �nite trees. This provides us with an exponential time algo-

rithm for deciding solvability of ACUIh-uni�cation problems, and thus also for

uni�cation of concept terms of the DL language FL

0

. We can also show that this

is the best wqe can do since the problem is Exptime-hard. Finally, we consider

the matching problem for FL

0

-concept terms, and show that it is decidable in

polynomial time.

2

Note that this is not the Boolean ring (with operations conjunction and ex-or), but the

Boolean semiring (with operations conjunction and disjunction).
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2 The DL language FL

0

In this section, we introduce syntax and semantics of the knowledge representation

language FL

0

, and give a formal de�nition of subsumption, equivalence, and

uni�cation of concept terms.

De�nition 1 Let C and R be disjoint �nite sets, the set of atomic concepts

and the set of atomic roles. The set of all FL

0

-concept terms over C and R is

inductively de�ned as follows:

� Every element of C is a concept term (atomic concept).

� The symbol > is a concept term (top concept).

� If C and D are concept terms, then C u D are concept terms (concept

conjunction).

� If C is a concept term and R is an atomic role (i.e., R 2 R), then 8R:C is

a concept term (value restriction).

The following de�nition provides a model-theoretic semantics for FL

0

:

De�nition 2 An interpretation I consists of a nonempty set �

I

, the domain of

the interpretation, and an interpretation function that assigns to every atomic

concept A 2 C a set A

I

� �

I

, and to every atomic role R 2 R a binary relation

R

I

� �

I

��

I

. The interpretation function is extended to complex concept terms

as follows:

>

I

:= �

I

;

(C uD)

I

:= C

I

\D

I

;

(8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

! e 2 C

I

g:

Based on this semantics, subsumption and equivalence of concept terms is de�ned

as follows: Let C and D be FL

0

-concept terms.

� C is subsumed by D (C v D) i� C

I

� D

I

for all interpretations I.

� C is equivalent to D (C � D) i� C

I

= D

I

for all interpretations I.

In order to de�ne uni�cation of concept terms, we must �rst introduce the notion

of a substitution operating on concept terms. To this purposes, we partition the

set of atomic concepts into a set C

v

of concept variables (which may be replaced

by substitutions) and a set C

c

of concept constants (which must not be replaced

4



by substitutions). Intuitively, C

v

are the atomic concepts that have possibly been

given another name or been speci�ed in more detail in another concept term

describing the same notion. The elements of C

c

are the ones of which it is assumed

that the same name is used by all knowledge engineers (e.g., standardized names

in a certain domain).

A substitution � is a mapping from C

v

into the set of all FL

0

-concept terms. This

mapping is extended to concept terms in the obvious way, i.e.,

� �(A) := A for all A 2 C

c

,

� �(>) := >,

� �(C uD) := �(C) u �(D), and

� �(8R:C) := 8R:�(C).

De�nition 3 Let C andD be FL

0

-concept terms. The substitution � is a uni�er

of C and D i� �(C) � �(D). In this case, the concept terms C and D are called

uni�able.

For example, if A 2 C

c

and X; Y 2 C

v

, then � = fX 7! A u 8S:A; Y 7! 8R:Ag is

a uni�er of the concept terms 8R:8R:A u 8R:X and Y u 8R:Y u 8R:8S:A.

3 The equational theory ACUIh

Uni�cation of FL

0

-concept terms can be reduced to the well-known notion of

uni�cation modulo an equational theory , which allows us to employ methods and

results developed in uni�cation theory [6].

First, we show how concept terms can be translated into terms over an appropriate

signature �

R

, which consists of a binary function symbol ^, a constant symbol

T, and for each R 2 R a unary function symbol h

R

. In addition, every element of

C

v

is considered as variable symbol, and every element of C

c

as a (free) constant.

The translation function � is de�ned by induction on the structure of concept

terms:

� �(A) := A for all A 2 C,

� �(>) := T,

� �(C uD) := �(C) ^ �(D), and

� �(8R:C) := h

R

(�(C)).
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Obviously, � is a bijective mapping between the set of all FL

0

-concept terms

(with atomic concepts from C = C

v

[ C

c

and atomic roles from R) and the set of

all terms over the signature �

R

built using variables from C

v

and free constants

from C

c

.

The equational theory ACUIh that axiomatizes equivalence of FL

0

-concept terms

consists of the following identities:

ACUIh := f (x ^ y) ^ z = x ^ (y ^ z); x ^ y = y ^ x; x ^ x = x; x ^ T = x g

[ f h

R

(x ^ y) = h

R

(x) ^ h

R

(y); h

R

(T) = T j R 2 R g:

Let =

ACUIh

denote the congruence relation on terms induced by ACUIh, i.e.,

s =

ACUIh

t holds i� s can be transformed into t using identities from ACUIh.

Lemma 4 Let C and D be FL

0

-concept terms. Then

C � D i� �(C) =

ACUIh

�(D):

Proof. The if-direction is an easy consequence of the semantics of FL

0

-concept

terms. In fact, since concept conjunction is interpreted as set intersection, it in-

herits associativity, commutativity, and idempotency (modulo equivalence) from

set intersection. In addition, it is easy to see that C u > � C, 8R:> � >, and

8R:(C uD) � (8R:C) u (8R:D) hold for arbitrary concept terms C and D.

To show the only-if-direction, we �rst represent FL

0

-concept terms in a certain

normal form. Using the equivalences noted in the proof of the if-direction, any

FL

0

-concept term can be transformed into an equivalent FL

0

-concept term C

0

that is either > or a (nonempty) conjunction of terms of the form 8R

1

: � � � 8R

n

:A

for n � 0 (not necessarily distinct) role names R

1

; : : : ; R

n

and a concept name

A 6= >. Since the transformation into this normal form uses only identities from

ACUIh, we have �(C) =

ACUIh

�(C

0

).

Now, assume that �(C) 6=

ACUIh

�(D). Consequently, the corresponding normal

forms C

0

; D

0

also satisfy �(C

0

) 6=

ACUIh

�(D

0

). This implies that one of these two

normal forms contains a conjunct 8R

1

: � � � 8R

n

:A (for n � 0 and A 6= >) that

does not occur in the other normal form. We assume without loss of generality

that this conjunct occurs in C

0

, but not in D

0

.

We use this conjunct to construct an interpretation I such that C

0I

6= D

0I

, which

implies C

0

6� D

0

and thus C 6� D. The domain �

I

of this interpretation consists

of n + 1 distinct individuals d

0

; : : : ; d

n

. The interpretation of the concept names

is given by B

I

:= �

I

for all names B 6= A, and A

I

:= �

I

n fd

n

g. Finally, the role

names are interpreted as S

I

:= f(d

i�1

; d

i

) j S = R

i

g. As an obvious consequence

of this de�nition, we obtain d

0

62 (8R

1

: � � � 8R

n

:A)

I

, and thus d

0

62 C

0I

= C

I

.

On the other hand, d

0

2 >

I

and d

0

2 (8S

1

: � � � 8S

m

:B)

I

for all concept terms

of the form 8S

1

: � � � 8S

m

:B that are di�erent to 8R

1

: � � � 8R

n

:A. Consequently,

d

0

2 D

0I

= D

I

.
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As a consequence of this lemma, the concept terms C and D are uni�able i� the

corresponding terms �(C) and �(D) are uni�able modulo ACUIh. For example,

the concept terms 8R:8R:A u 8R:X and Y u 8R:Y u 8R:8S:A are translated

into the terms t

1

:= h

R

(h

R

(a)) ^ h

R

(x) and t

2

:= y ^ h

R

(y) ^ h

R

(h

S

(a)), and

the substitution �

0

:= fx 7! a ^ h

S

(a); y 7! h

R

(a)g is an ACUIh-uni�er of these

terms, i.e., �(t

1

) =

ACUIh

�(t

2

).

3

In uni�cation theory, one usually considers uni�cation problems that consist of

a �nite set of term equations � = fs

1

=

?

t

1

; :::; s

n

=

?

t

n

g rather than a single

equation s =

?

t. For ACUIh, we can show that the system � has an ACUIh-uni�er

i� the single equation

h

R

1

(s

1

) ^ � � � ^ h

R

n

(s

n

) =

?

h

R

1

(t

1

) ^ � � � ^ h

R

n

(t

n

)

has an ACUIh-uni�er, provided that h

R

1

; : : : ; h

R

n

are n distinct unary function

symbols in �

R

. Thus, solving systems of equations is equivalent to solving a single

equation in this case. The correctness of this reduction is an easy consequence of

the following lemma.

Lemma 5 Let C

1

; : : : ; C

n

; D

1

; : : : ; D

n

be FL

0

-concept terms, and R

1

; : : : ; R

n

be

n pairwise distinct role names. Then

8R

1

:C

1

u � � � u 8R

n

:C

n

� 8R

1

:D

1

u � � � u 8R

n

:D

n

i� C

1

� D

1

; : : : ; C

n

� D

n

:

Proof. The if-direction of the lemma is trivially satis�ed. In order to show the

only-if-direction, assume that C

i

6� D

i

for some i; 1 � i � n. Thus, there exists an

interpretation I such that C

I

i

6= D

I

i

. We assume (without loss of generality) that

there exists d 2 �

I

such that d 2 C

I

i

nD

I

i

. We extend the interpretation I to an

interpretation I

0

by de�ning �

I

0

:= �

I

[ feg, where e 62 �

I

. The interpretation

in I

0

of all concept names and of all role names di�erent from R

i

coincides with

their interpretation in I. Finally, R

I

0

i

:= R

I

i

[ f(e; d)g. By construction of I

0

,

we have e 62 (8R

i

:D

i

)

I

0

. In addition, e 2 (8R

j

:C

j

)

I

0

for all j; 1 � j � n. Thus,

e 2 (8R

1

:C

1

u � � � u 8R

n

:C

n

)

I

0

, but e 62 (8R

1

:D

1

u � � � u 8R

n

:D

n

)

I

0

, which shows

that the two terms are not equivalent.

For readers that are familiar with uni�cation theory, we want to point out that

the uni�cation type of ACUIh has already been determined in [1]: ACUIh is of

type zero, which means that ACUIh-uni�cation problems need not have a min-

imal complete set of ACUIh-uni�ers. In particular, this implies that there exist

ACUIh-uni�cation problems for which the set of all uni�ers cannot be repre-

sented as the set of all instances of a �nite set of uni�ers. For our application

in knowledge representation, this result seems not to be very relevant since we

3

To distinguish between concept names in concept terms and variable and constant symbols

in terms over �

R

, we use upper-case letters for concept names and the corresponding lower-case

letters for constants and variables.
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are mainly interested in ground solutions of the uni�cation problems, i.e., in uni-

�ers that do not introduce concept variables. In the present paper, we restrict

our attention to the decision problem, i.e., the problem of deciding solvability of

ACUIh-uni�cation problems. This problem has not been considered in [1]. In

the following, we will show that this problem is decidable. Note that uni�cation

in the closely related theory ACUh, which is obtained from ACUIh by removing

the axiom x ^ x = x, has been shown to be undecidable [12].

4 Reducing ACUIh-uni�cation to solving linear

equations

The purpose of this section is to show that ACUIh-uni�cation can be reduced to

solving the following formal language problem: Let S

0

; S

1

; : : : ; S

n

; T

0

; T

1

; : : : ; T

n

be �nite sets of words over the alphabet of all role names. We consider the

equation

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

[ T

1

X

1

[ � � � [ T

n

X

n

: (�)

A solution of this equation assigns �nite sets of words to the variables X

i

such

that the equation holds. The operation [ stands for set union and expressions

like S

i

X

i

for element-wise concatenation of sets of words; e.g., fSR; SgfR;RRg =

fSRR; SR; SRRRg.

This reduction can either be obtained directly, or as a consequence of results from

uni�cation theory. In the following, we consider both approaches.

4.1 Commutative theories and semirings

The theory ACUIh is a so-called commutative theory [1], for which solving uni-

�cation problems can be reduced to solving systems of linear equations over a

corresponding semiring [13, 4]. Conversely, every system of linear equations over

this semiring corresponds to a uni�cation problem.

Let us �rst consider the theory ACUI, which consists of the axioms specifying

that ^ is associative, commutative and idempotent, and that T is a unit element

with respect to ^. The corresponding semiring is obtained by considering the

ACUI-free algebra in one generator (say x), and then taking the set of all endo-

morphisms of this algebra. Since the ACUI-free algebra generated by x consists

of two congruence classes, with representatives x and T, respectively, there are

two possible endomorphisms: 0, which is de�ned by x 7! T, and 1, which is

de�ned by x 7! x. The multiplication � of this semiring is just composition of

endomorphisms, and the addition + is obtained by applying ^ argument-wise,

e.g., (1 + 0)(x) := 1(x) ^ 0(x) = x ^ T =

ACUI

x = 1(x). It is easy to see that +

8



behaves like disjunction and � like conjunction on the truth values 0 and 1. Thus,

the semiring corresponding to ACUI is the Boolean semiring.

As shown in [4], adding homomorphisms to a commutative theory corresponds to

going to a polynomial semiring (in non-commuting indeterminates) on the semi-

ring side, where every indeterminate corresponds to one of the homomorphisms.

Thus, the semiring S

ACUIh

corresponding to ACUIh is the polynomial semiring

(in jRj non-commuting indeterminates) over the Boolean semiring. Let � be the

set of these indeterminates (which are w.l.o.g. just the role names). Monomials

in S

ACUIh

are simply words over the alphabet �, and since the addition operation

in the semiring is idempotent, the elements of the semiring can be seen as �nite

sets of words over this alphabet. Thus, the semiring S

ACUIh

can be described as

follows:

� its elements are �nite sets of words (over the alphabet � of all role names),

� its addition operation is union of sets with the empty set ; as unit,

� its multiplication operation is element-wise concatenation with the set f"g

consisting of the empty word as unit.

As described in [13, 4], ACUIh-uni�cation problems (consisting w.l.o.g. of a single

equation) are now translated into (inhomogeneous) linear equations over this

semiring. According to the above description of S

ACUIh

, these are just equations

of the form (�). In the next section we explain in more detail how these equations

can be obtained from a given uni�cation problem.

4.2 A direct reduction to linear equations

The fact that equivalence of FL

0

-concept terms can be axiomatized by a commu-

tative equational theory has allowed us to employ known results from uni�cation

theory about the connection between uni�cation modulo commutative theories

and solving linear equations in semirings. In this subsection, we show how the

linear equations corresponding to a uni�cation problem between FL

0

-concept

terms can be obtained directly, without the detour through equational uni�ca-

tion. On the one hand, this may be helpful for readers not familiar with the

relevant literature in uni�cation theory. On the other hand, it opens the possibil-

ity to use a similar approach for concept languages for which equivalence cannot

be axiomatized by a commutative theory.

Let C;D be the two FL

0

-concept terms to be uni�ed, and assume that ; 6=

fA

1

; : : : ; A

k

g � C

c

contains all the concept names of C

c

that occur in C;D. In

addition, let X

1

; : : : ; X

n

be the concept names of C

v

that occur in C;D.

9



First, we show that C;D can be transformed into a certain normal form. We

know that any FL

0

-concept term can be transformed into an equivalent FL

0

-

concept term that is either > or a (nonempty) conjunction of terms of the form

8R

1

: � � � 8R

m

:A for m � 0 (not necessarily distinct) role names R

1

; : : : ; R

m

and

a concept name A 6= >. We abbreviate 8R

1

: � � � 8R

m

:A by 8R

1

: : : R

m

:A, where

R

1

: : : R

m

is considered as a word over the alphabet of all role names �. In

addition, instead of 8w

1

:A u : : : u 8w

`

:A we write 8L:A where L := fw

1

; : : : ; w

`

g

is a �nite set of words over �. The term 8;:A is considered to be equivalent to

>. Using these abbreviations, the terms C;D can be rewritten as

C � 8S

0;1

:A

1

u : : : u 8S

0;k

:A

k

u 8S

1

:X

1

u : : : u 8S

n

:X

n

;

D � 8T

0;1

:A

1

u : : : u 8T

0;k

:A

k

u 8T

1

:X

1

u : : : u 8T

n

:X

n

;

for �nite sets of words S

0;i

; S

j

; T

0;i

; T

j

(i = 1; : : : ; k; j = 1; : : : ; n). If C;D are

ground terms, i.e., FL

0

-concept terms that do not contain concept variables,

then we have S

1

= : : : = S

n

= ; = T

1

= : : : = T

n

. In fact, the terms 8;:X

i

are

equivalent to >, and can thus be removed from the conjunction.

The next lemma characterizes equivalence of ground terms in FL

0

.

Lemma 6 Let C;D be ground terms such that

C � 8U

1

:A

1

u : : : u 8U

k

:A

k

;

D � 8V

1

:A

1

u : : : u 8V

k

:A

k

:

Then C � D i� U

i

= V

i

for all i = 1; : : : ; k.

Proof. The if-direction is trivial. To show the only-if-direction, assume that U

i

6=

V

i

. Without loss of generality, let w = R

1

: : : R

r

be such that w 2 U

i

n V

i

. Thus,

the conjunct 8R

1

: � � � 8R

r

:A

i

occurs in C, but not in D. As in the proof of the

only-if-direction of Lemma 4, this fact can be used to construct an interpretation

I such that D

I

n C

I

6= ;, which shows that the two terms cannot be equivalent.

As an easy consequence of this lemma, we can now characterize uni�ability of

FL

0

-concept terms:

Theorem 7 Let C;D be FL

0

-concept terms such that

C � 8S

0;1

:A

1

u : : : u 8S

0;k

:A

k

u 8S

1

:X

1

u : : : u 8S

n

:X

n

;

D � 8T

0;1

:A

1

u : : : u 8T

0;k

:A

k

u 8T

1

:X

1

u : : : u 8T

n

:X

n

:

Then C;D are uni�able i� for all i = 1; : : : ; k, the linear equation E

C;D

(A

i

):

S

0;i

[ S

1

X

1;i

[ � � � [ S

n

X

n;i

= T

0;i

[ T

1

X

1;i

[ � � � [ T

n

X

n;i

has a solution.

10



Note that this is not a system of k equations that must be solved simultaneously:

since they do not share variables, each of these equations can be solved separately.

Before proving the theorem, let us consider a simple example: The concept terms

in normal form corresponding to

C = 8R:(A

1

u 8R:A

2

) u 8R:8S:X

1

;

D = 8R:8S:(8S:A

1

u 8R:A

2

) u 8R:X

1

u 8R:8R:A

2

are

C

0

= 8fRg:A

1

u 8fRRg:A

2

u 8fRSg:X

1

;

D

0

= 8fRSSg:A

1

u 8fRSR;RRg:A

2

u 8fRg:X

1

:

Thus, uni�cation of C;D leads to the two linear equations

fRg [ fRSgX

1;1

= fRSSg [ fRgX

1;1

;

fRRg [ fRSgX

1;2

= fRSR;RRg [ fRgX

1;2

:

The �rst equation (the one for A

1

) has X

1;1

= f"; Sg as a solution, and the

second (the one for A

2

) has X

1;2

= fRg as a solution. These two solutions yield

the following uni�er of C;D:

fX

1

7! A

1

u 8S:A

1

u 8R:A

2

g:

Proof of the theorem. It is easy to see that the uni�cation problem for C;D has

a solution i� it has a ground solution, i.e., a uni�er that replaces the variables

X

i

by terms containing no other concept names than A

1

; : : : ; A

k

. In fact, in a

given uni�er, concept constants not occurring in C;D and concept variables can

simply be instantiated by (arbitrary) ground terms. The obtained substitution is

ground and still a uni�er.

Now, let � := fX

1

7!

k

u

i=1

8U

1;i

:A

i

; : : : ; X

n

7!

k

u

i=1

8U

n;i

:A

i

g be a ground substitu-

tion. Using the identities in ACUIh, it is easy to see that

�(C) �

k

u

i=1

8 (S

0;i

[ S

1

U

1;i

[ � � � [ S

n

U

n;i

) :A

i

;

�(D) �

k

u

i=1

8 (T

0;i

[ T

1

U

1;i

[ � � � [ T

n

U

n;i

) :A

i

:

Lemma 6 implies that �(C) � �(D) i�, for all i = 1; : : : ; k,

S

0;i

[ S

1

U

1;i

[ � � � [ S

n

U

n;i

= T

0;i

[ T

1

U

1;i

[ � � � [ T

n

U

n;i

:

Thus, if � is a uni�er of C;D, then X

1;i

:= U

1;i

; : : : ; X

n;i

:= U

n;i

is a solution of

E

C;D

(A

i

) (i = 1; : : : ; k). Conversely, solutions of E

C;D

(A

i

) for i = 1; : : : ; k can be

used to build a uni�er of C;D.

11



5 Solving linear equations in S

ACUIh

In this section, we show that solvability of ACUIh-uni�cation problems, and thus

also uni�cation of FL

0

-concept terms, is decidable:

Theorem 8 Solvability of ACUIh-uni�cation problems can be decided in deter-

ministic exponential time.

This decidability result can be obtained by reducing solvability of linear equa-

tions in the semiring S

ACUIh

to the emptiness problem for (root-to-frontier) tree

automata working on �nite trees [11]. The main idea underlying the proof is as

follows. A �nite set of words over an alphabet � of cardinality k can be repre-

sented by a �nite tree, where each node has at most k sons. In such a tree, every

path from the root to a node can be represented by a unique word over �. If the

nodes of the tree are labelled with 0 or 1, then we can take the set of all words

representing paths from the root to nodes with label 1 as the �nite set of words

represented by the tree. In the following, we assume w.l.o.g. that � = f1; : : : ; kg.

De�nition 9 A k-ary tree with labels in f0; 1g is a mapping t : dom(t)! f0; 1g

such that dom(t) is a �nite subset of f1; : : : ; kg

�

such that

� dom(t) is pre�x-closed, i.e., uv 2 dom(t) implies u 2 dom(t).

� ui 2 dom(t) for some i; 1 � i � k, implies uj 2 dom(t) for all j = 1; : : : ; k.

The elements of dom(t) are the nodes of the tree t, and t(u) is called the label of

node u. The empty word " is the root of t, and the nodes u such that ui 62 dom(t)

for all i = 1; : : : ; k are the leaves of t. The set of all leaves of t is called the frontier

of t. Nodes of t that are not in the frontier are called inner nodes. If ui 2 dom(t)

then it is called the ith son of u in t. By our de�nition of k-ary trees, any node

of t is either a leaf, or it has exactly k sons.

For a k-ary tree t with labels in f0; 1g we de�ne

L(t) := fu 2 dom(t) j t(u) = 1g:

Obviously, L(t) is a �nite set of words over � = f1; : : : ; kg, and any �nite set of

words over � can be represented in this way.

De�nition 10 A (nondeterministic) root-to-frontier (or top-down) tree automa-

ton that works on k-ary trees with labels in f0; 1g is a 4-tuple A = (Q; I; T; F )

where

� Q is a �nite set of states,

12



� I � Q is the set of initial states,

� T � Q� f0; 1g �Q

k

is the transition relation, and

� F : f0; 1g ! 2

Q

assigns to each label l in f0; 1g a set of �nal states F (l) � Q.

A run of A on the tree t is a mapping r : dom(t)! Q such that

� (r(u); t(u); r(u1); : : : ; r(uk)) 2 T for all inner nodes u.

The run r is called successful i�

� r(") 2 I (root condition),

� r(u) 2 F (t(u)) for all leaves u (leaf condition).

The tree language accepted by A is de�ned as

L(A) := ft j there exists a successful run of A on tg:

The emptiness problem for A is the question whether L(A) 6= ;.

The following theorem is well-known (see, e.g., [15]):

Theorem 11 The emptiness problem for root-to-frontier tree automata is decid-

able in polynomial time.

Our approach for solving linear equations in S

ACUIh

with the help of tree automata

cannot treat equations of the form

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

[ T

1

X

1

[ � � � [ T

n

X

n

(�)

directly:

4

it needs an equation where the variables X

i

are in front of the co-

e�cients S

i

. However, such an equation can easily be obtained from (�) by

considering the mirror images (or reverse) of the involved languages. For a word

w = i

1

: : : i

m

, its mirror image is de�ned as w

mi

:= i

m

: : : i

1

, and for a �nite set of

words L = fw

1

; : : : ; w

`

g, its mirror image is L

mi

:= fw

mi

1

; : : : ; w

mi

`

g. Obviously,

X

1

= L

1

; : : : ; X

n

= L

n

is a solution of (�) i� Y

1

= L

mi

1

; : : : ; Y

n

= L

mi

n

is a solution

of the corresponding mirrored equation (��):

S

mi

0

[ Y

1

S

mi

1

[ � � � [ Y

n

S

mi

n

= T

mi

0

[ Y

1

T

mi

1

[ � � � [ Y

n

T

mi

n

: (��)

In principle, we build a tree automaton that accepts the trees representing the

�nite sets of words obtained by instantiating this equation with its solutions. To

4

Basically, this is due to Theorem 11.6, (b) in [15].
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achieve this goal, the automaton guesses at each node whether it (more precisely,

the path leading to it) belongs to one of the Y

i

s (more precisely, to the set of

words instantiated for Y

i

), and then does the necessary book-keeping to make

sure that the concatenation with the elements of S

mi

i

and T

mi

i

is realized: if S

mi

i

contains a word w, and the automaton has decided that a given node � belongs

to Y

i

, then if one starts at � and follows the path corresponding to w, one must

�nd a node with label 1. Vice versa, every label 1 in the tree must be justi�ed

this way. The same must hold for T

mi

i

in place of S

mi

i

. The size of the set of

states of this automaton will turn out to be exponential in the the size of the

equation (due to the necessary book-keeping). Since the emptiness problem for

tree automata working on �nite trees can be solved in polynomial time (in the

size of the automaton), this will yield the exponential time algorithm claimed in

Theorem 8.

Before we can de�ne the automaton corresponding to the (solutions of) equation

(��), we need some more notation. For a �nite set of words S and a word u,

we de�ne u

�1

S := fv j uv 2 Sg. The su�x closure of S is the set suf(S) :=

fu j there exists v such that vu 2 Sg. Obviously, the cardinality of suf(S) is

linear in the size of S (which is the sum of the length of the words in S), and

u

�1

S � suf(S).

The root-to-frontier tree automaton A

��

= (Q; I; T; F ) corresponding to equation

(��) is de�ned as follows:

� Let M

L

:= suf(

S

n

i=0

S

mi

i

), M

R

:= suf(

S

n

i=0

T

mi

i

) and N := f1; : : : ; ng. Then

Q := 2

N

�2

M

L

�2

M

R

, i.e., the states ofA

��

are triples whose �rst component

is a subset of the set of indices of the variables in (��), the second component

is a �nite set of words that are su�xes of words occurring on the left-hand

side of (��), and the third component is a �nite set of words that are su�xes

of words occurring on the right-hand side of (��). Obviously, the size of Q

is exponential in the size of equation (��).

Intuitively, the �rst component of a state \guesses" to which of the Y

i

s

the word represented by the current node of the tree belongs. The second

component does the book-keeping for the left-hand side of the equation: if

u is the word represented by the current node of the tree and v belongs to

the second component of the state, then uv must belong to the (evaluated)

left-hand side. The third component does the same for the right-hand side.

� The set of initial states is de�ned as

I := f(G;L;R) j G � N; L = S

mi

0

[

[

i2G

S

mi

i

; R = T

mi

0

[

[

i2G

T

mi

i

g:

Intuitively, G is our initial guess which of the Y

i

s contain the empty word.

Every word in S

mi

0

belongs to the (evaluated) left-hand side, and if " 2 Y

i

,

then every word in S

mi

i

also belongs to the left-hand side.
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� The transition relation T consists of all tuples

((G

0

; L

0

; R

0

); l; (G

1

; L

1

; R

1

); : : : ; (G

k

; L

k

; R

k

)) 2 Q� f0; 1g �Q

k

such that

{ " 2 L

0

i� " 2 R

0

i� l = 1.

This makes sure that the left-hand side is evaluated to the same set of

words as the right-hand side, and that this is the set of words repre-

sented by the accepted tree.

{ For i = 1; : : : ; k,

L

i

= i

�1

L

0

[

[

j2G

i

S

mi

j

;

R

i

= i

�1

R

0

[

[

j2G

i

T

mi

j

:

This updates the book-keeping information: if iu 2 L

0

then u must

belong to L

i

, the corresponding book-keeping component of the ith son

of the current node. If G

i

contains j, i.e., we have guessed that the

word represented by the ith son belongs to Y

j

, then the book-keeping

component L

i

of this son must also contain all elements of S

mi

j

. The

equation for R

i

can be explained similarly.

� The assignment of sets of �nal states to labels is de�ned as follows:

F (0) := f(G;L;R) j L = R = ;g;

F (1) := f(G;L;R) j L = R = f"gg:

Again, this makes sure that the left-hand side is evaluated to the same set

of words as the right-hand side, and that this is the set of words represented

by the accepted tree.

Lemma 12 Let t be a k-ary tree with labels in f0; 1g. Then the following are

equivalent:

1. t 2 L(A

��

).

2. There are �nite sets of words �(Y

1

); : : : ; �(Y

n

) such that

S

mi

0

[ �(Y

1

)S

mi

1

[ � � � [ �(Y

n

)S

mi

n

= L(t) = T

mi

0

[ �(Y

1

)T

mi

1

[ � � � [ �(Y

n

)T

mi

n

:

Proof. If t 2 L(A

��

), then there exists a successful run ofA

��

on t. From the �rst

components of the states assigned to the nodes of t we can read o� appropriate

sets �(Y

1

); : : : ; �(Y

n

): if the �rst component of the state assigned to the node �
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contains i, then the word represented by � belongs to �(Y

i

). The de�nition of A

��

makes sure that this assignment of �nite sets of words to the variables in (��)

satis�es the equations in statement 2 of the lemma.

Conversely, if �(Y

1

); : : : ; �(Y

n

) is an assignment of �nite sets of words to the

variables Y

i

, then this assignment can be used to determine appropriate �rst

components of states for a run of A

��

. Once these �rst components are �xed, an

appropriate tree t and the full run of A

��

on t can be reconstructed. The fact

that the equations in statement 2 are satis�ed guarantees that this run exists and

that it is successful.

As an immediate consequence of this lemma we obtain that equation (��) has

a solution i� L(A

��

) 6= ;. Since the emptiness problem can be decided in time

polynomial in the size of A

��

, and since A

��

is exponential in the size of (��),

this completes the proof of Theorem 8.

6 ACUIh-uni�cation is Exptime-hard

We show in this section that the ACUIh-uni�cation problem is Exptime-hard.

The reduction is from the intersection problem of deterministic root-to-frontier

automata, which has been shown to be Exptime-complete by Seidl [14]. This

problem can be described as follows: given a sequence A

1

; : : : ;A

n

of determin-

istic root-to-frontier automata (drfa) over the same ranked alphabet �, decide

whether there exists a tree t accepted by each of these automata. (Note that, as

a consequence of Theorem 11, the problem is polynomial for any �xed number n

of automata.)

In contrast to the k-ary trees with labels in f0; 1g considered in Section 5, we con-

sider trees with labels in the ranked alphabet �, where the number of successors

of a node is determined by the rank of its label. Obviously, such trees are simply

representations of terms over the signature �. As shown by Seidl, it is su�cient

to restrict the attention to trees of rank � 2. We represent such a tree by a set

S(t) of words over the alphabet �[f1; 2g, where each word describes a path from

a leaf to the root of the tree. The symbols 1 and 2 are used to represent the left

and the right son of a node, respectively. For example, the tree t := f(g(a; b); a)

yields the set S(t) := fa1g1f; b2g1f; a2fg. More generally, for a symbol a of rank

0 we have S(a) := fag, and for a symbol g of rank k and trees t

1

; : : : t

k

we have

S(g(t

1

; : : : t

k

)) :=

S

k

i=1

fuig j u 2 S(t

i

)g. We call the sets S(t) tree sets, and a

union of �nitely many such sets is called a union of tree sets.

The root-to-frontier automaton A is deterministic i�

� the set of initial states consists of a single initial state q

0

,

� for a given state q and symbol g of rank k there exists exactly one k-tuple
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(q

1

; : : : ; q

k

) such that (q; g; q

1

; : : : ; q

k

) belongs to the transition relation T of

A. In this case we write �

A

(q; g) = (q

1

; : : : ; q

k

).

It should be noted that deterministic root-to-frontier automata are weaker than

nondeterministic ones. For example, the language consisting of the trees (written

in term notation) f(a; a) and f(b; b) cannot be accepted by a deterministic root-

to-frontier automaton since a drfa accepting these two trees would also accept

f(a; b) and f(b; a). It is easy to see that ff(a; a); f(b; b)g can be accepted by a

nondeterministic rfa (see [11], Example 2.11). More generally, the values assigned

by a run r of a drfa to the nodes on a path from the root to a leaf in a given tree

are uniquely determined by the labels of the nodes on the path. This fact will be

important for our reduction.

In the following, we may (w.l.o.g.) assume that the alphabet contains exactly

one symbol ] of rank 0 (i.e., all the leaves are labeled with ]), and that the drfa

has exactly one �nal state q

f

, i.e., the �nal assignment is F (]) = fq

f

g. In fact,

we can simple turn the original symbols of rank 0 into symbols of rank 1, and

add the new symbol ] of rank 0 to �. For a symbol a of original rank 0, the �nal

assignment I(a) is replaced by a transition satisfying �(q; a) = q

f

i� q 2 F (a).

5

Obviously, this transformation can be done such that the original automaton A

accepts the tree t i� the new automaton A

]

accepts the modi�ed tree t

]

that is

obtained from t by adding a son labeled with ] to every leaf of t. If we apply

this transformation to automata A

1

; : : : ;A

n

, then the resulting automata accept

a common tree i� the original ones did.

Given such a drfa A over �

]

with �nal state q

f

and initial state q

0

, we consider

the alphabet � that consists of � := �

]

n f]g, the states Q of A, and 1; 2.

6

We

construct the following linear equation, where the variables X;X

(q;g)

range over

�nite sets of words over �:

fq

f

gX [

[

(q;g)2Q��

fqgX

(q;g)

= fq

0

g [

[

�(q;g)=(q

1

;:::;q

k

)

fq

1

1g; : : : ; q

k

kggX

(q;g)

(�)

In order to show how solutions of (�) look like, we must generalize the notions

\tree set" and \union of tree sets" to trees over the alphabet � [ Q, where the

states in Q are assumed to be symbols of rank 0. A tree over the alphabet �[Q

can be seen as a possible intermediate con�guration of a run of the drfa on a

given tree. Informally, a run starts with label q

0

at the root and then uses the

transition function of the automaton to propagate states towards the frontier (i.e.,

the leaves of the tree). A tree over � [Q is obtained by pruning branches of the

tree and using the states assigned by the run as labels of the cutting points. For

example, assume that f; g are binary symbols, and ] is the only nullary symbol.

5

To be more precise, if q 62 F (a), then �(q; a) is a new non-accepting state which reproduces

itself.

6

Recall that we assume that 2 is the maximal rank of symbols in our trees.
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Let �(q

0

; f) := (q

1

; q

f

) and �(q

1

; g) := (q

f

; q

f

). Then the unique run starting with

q

0

at the root of the tree f(g(]; ]); ]) labels the root with q

0

, its left son with q

1

,

and all leaves with q

f

. Possible intermediate con�gurations obtained from this

run are described by the trees q

0

, f(q

1

; q

f

), and f(g(q

f

; q

f

); q

f

). Such a tree is

called a run tree, and the tree set obtained from it is called run tree set . If all

the leaves of a given run tree t are labeled with q

f

, then the tree t

]

obtained from

t by replacing the label q

f

by ] is accepted by the drfa A.

We claim that, for any solution � of equation (�), the set fq

f

g�(X) is a union of

run tree sets. Since the leaves of the run trees t generating this set are all labeled

with q

f

, this means that the corresponding trees t

]

are all accepted by the drfa

A, i.e., fq

f

g�(X) =

S

m

i=1

S(t

i

) for run trees t

1

; : : : ; t

m

whose leaves are labeled

with q

f

, and thus the trees t

]

1

; : : : ; t

]

m

are accepted by A.

To prove the claim (and its converse), we consider a more general situation. Let

T be a �nite set of words over �. We consider the equation T (�) that is obtained

from (�) by replacing fq

f

gX by T .

Lemma 13 Let � be a solution of T (�). If w is a word of maximal length in

T [

[

(q;g)2Q��

fqg�(X

(q;g)

) = fq

0

g [

[

�(q;g)=(q

1

;:::;q

k

)

fq

1

1g; : : : ; q

k

kgg�(X

(q;g)

);

then w 2 T .

Proof. If w 62 T , then w 2

S

(q;g)2Q��

fqg�(X

(q;g)

). Consequently, w = qu for

a word u 2 �(X

(q;g)

). This implies that, for some state q

i

, the longer word q

i

igu

occurs on the right-hand side of the equation, which contradicts the maximality

of w.

Lemma 14 Equation T (�) has a solution i� T is a union of run tree sets.

Proof. The if-direction is not hard to see. Thus, let us consider the only-

if direction, i.e., assume that � is a solution of T (�). We proof the statement

simultaneously for all �nite sets T by induction on the size of the solution �,

where the size of � is the sum of the cardinalities of the sets �(X

(q;g)

). Note that

this sum is a well-de�ned natural number since the sets �(X

(q;g)

) are �nite.

Let w be a word of maximal length in

T [

[

(q;g)2Q��

fqg�(X

(q;g)

) = fq

0

g [

[

�(q;g)=(q

1

;:::;q

k

)

fq

1

1g; : : : ; q

k

kgg�(X

(q;g)

):

By Lemma 13 we know that w 2 T . Again, note that such a maximal word exists

since the sets �(X

(q;g)

) are �nite.
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Case 1: If w = q

0

, then the maximality of w implies that �(X

(q;g)

) = ; for all

pairs (q; g) 2 Q � �. Consequently, T = fq

0

g, and this is obviously a union of

run tree sets.

Case 2: Assume that w = p

i

ifu for a word u 2 �(X

(p;f)

), let ` be the rank of f ,

and let �(p; f) := (p

1

; : : : ; p

`

). Since w is of maximal length, all the words p

j

jfu

for j 2 f1; : : : ; `g are of maximal length as well, and thus they are all contained

in T .

We de�ne a new substitution �

0

and a new set T

0

as follows:

� �

0

(X

(p;f)

) := �(X

(p;f)

) n fug, and

� on all other variables �

0

coincides with �.

The set T

0

is obtained from T by

� adding pu,

� for each j 2 f1; : : : ; `g, removing p

j

jfu unless it is contained in

S

�(q;g)=(q

1

;:::;q

k

)

fq

1

1g; : : : ; q

k

kgg�

0

(X

(q;g)

):

Obviously, the substitution �

0

is smaller than the substitution �. Thus, we can

apply the induction hypothesis to T

0

provided that we can show that �

0

solves

T

0

(�).

The only di�erence between the old and the new right-hand side of the equation

is that some of the words p

j

jfu may have been removed from the new right-

hand side. However, in this case we have also removed these words from T

0

. In

addition, they cannot occur in one of the sets fp

j

g�

0

(X

(p

j

;g)

) since this would

contradict the maximality of w.

On the left-hand side, the fact that pu does not occur in fpg�

0

(X

(p;f)

is compen-

sated by the fact that pu 2 T

0

. Thus, the only di�erence between the old and the

new left-hand side is that some of the words p

j

jfu do not belong to T

0

. However,

these are exactly the words that do not belong to the new right-hand side.

To sum up, we have shown that �

0

solves T

0

(�), and thus we know by induction

that T

0

is a union of run tree sets, i.e., T

0

= S(t

1

) [ : : : [ S(t

m

) for run trees

t

1

; : : : ; t

m

. We want to show that T is also a union of run tree sets.

First, assume that pu 62 T . Thus, we have T = (T

0

n fpug) [ fp

1

1fu; : : : p

`

`fug.

Let t

i

be such that pu 2 S(t

i

). Since �(p; f) = (p

1

; : : : ; p

`

), the tree t

0

i

that

is obtained from t

i

by replacing the leave corresponding to the word pu by

the tree f(p

1

; : : : ; p

`

) is also a run tree. In addition, S(t

0

i

) = (S(t

i

) n fpug) [

fp

1

1fu; : : : p

`

`fug. Thus, if we replace every tree t

i

with pu 2 S(t

i

) by the

corresponding tree t

0

i

, we can represent T as a union of run tree sets.
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If pu 2 T , then we simply add one of the trees t

0

i

without removing the corre-

sponding tree t

i

.

Now, let A

1

; : : : ;A

n

be a sequence of deterministic root-to-frontier automata. For

each automaton, we construct the corresponding equation, where the variable X

is the only one shared by the di�erent equations. Let (i) denote the equation

corresponding to A

i

.

If there is a tree t

]

that is accepted by each of these automata, then the tree t that

is obtained from t

]

by replacing ] by q

f

is a run tree for each of the automata.

Consequently, the if-direction of the above lemma implies that equation (i) corre-

sponding to the automaton A

i

has a solution �

i

such that q

f

�

i

(X) = S(t). Since

X is the only variable shared by the equations, and since the solutions �

i

coincide

on X, there is a substitution � that solves the equations (i) simultaneously.

Now, assume that � solves all the equations (i). The only-if direction of the above

lemma implies that, for each automaton A

i

, the set q

f

�(X) is a union of run tree

sets. Consequently, for each i; 1 � i � n, there exist run trees t

i;1

; : : : ; t

i;m

i

for A

i

such that q

f

�(X) = S(t

i;1

) [ : : : [ S(t

i;m

i

). Since the leaves of the trees t

i;j

are

all labeled with q

f

, we know that the corresponding trees t

]

i;j

are accepted by A

i

.

The remaining obstacle is that the set q

f

�(X) can be represented as the union of

many di�erent tree sets, and thus it is not clear that the same tree is accepted by

all the automata. This obstacle is obviously overcome by the following lemma,

which depends on the fact we consider deterministic root-to-frontier automata.

Lemma 15 Let t

1

; : : : ; t

m

be run trees for the drfa A, and let t be a tree. If

S(t) � S(t

1

) [ : : : [ S(t

m

), then t is also a run tree for A.

Proof. We consider a node � in t immediately above the leaves.

7

Let f be

the label of this node, and assume that f is of rank k. Thus, S(t) contains the

words q

1

1fu; : : : ; q

k

kfu for a word u and states q

1

; : : : ; q

k

of A. Since S(t) �

S(t

1

)[ : : : S(t

m

), each word q

j

jfu is contained in a set S(t

i

j

) for i

j

2 f1; : : : ; mg.

Let �

j

be the node in t

i

j

corresponding to fu. Let r be the run of A on t, and

let r

j

(j = 1; : : : ; k) be the run of A on t

i

j

. Since the values assigned by a run of

a drfa to the nodes on a path from the root to a leaf are uniquely determined by

the labels of the nodes on this path, we know that r(�) = r

1

(�

1

) = � � � = r

k

(�

k

).

Let q := r(�). Since A is deterministic, we can deduce �(q) = (q

1

; : : : ; q

k

) from

the fact that the trees t

i

j

are run trees. Since this argument applies to all nodes

in t immediately above the leave, we have shown that t is in fact a run tree.

To sum up, we have shown that the intersection problem for deterministic root-

to-frontier automata, which is known to be Exptime-hard, can be reduced to

solving a system of linear equations over sets of �nite words. This proves

7

By our assumptions on the automata, no trees consisting of a root that is itself a leaf can

be accepted.
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Theorem 16 Solvability of ACUIh-uni�cation problems is Exptime-hard.

Consequently, solvability of ACUIh-uni�cation problems and uni�ability of FL

0

-

concept terms are Exptime-complete problems.

7 ACUIh-matching is polynomial

For the purpose of this article, where we are only interested in the existence of

matchers, matching can be seen as the special case of uni�cation where the term

t on the right-hand side of the equation s =

?

t does not contain variables [9]. As

for uni�cation, we can restrict our attention to the case of a single such equation.

As an easy consequence of Theorem 7 we obtain that matching of FL

0

-concept

terms (equivalently, ACUIh-matching) can be reduced to solving linear equations

of the form

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

; (���)

where S

0

; : : : ; S

n

; T

0

are �nite sets of words over the alphabet of all role names.

A solution of this equation assigns �nite sets of words to the variables X

i

such

that the equation holds.

Lemma 17 Equation (���) has a solution i� the following is a solution of (���):

�(X

i

) :=

\

u2S

i

u

�1

T

0

(i = 1; : : : ; n):

Proof. The if-direction is trivial. To show the only-if-direction, we assume that

�(X

1

); : : : ; �(X

n

) are �nite sets of words that solve (���).

First, we prove that �(X

i

) � �(X

i

) holds for all i = 1; : : : ; n. Thus, let v 2 �(X

i

)

and u 2 S

i

. Since S

i

�(X

i

) � T

0

, we know that uv 2 T

0

, and thus v 2 u

�1

T

0

.

This shows that �(X

i

) � u

�1

T

0

for all u 2 S

i

, which yields �(X

i

) � �(X

i

).

As an immediate consequence, we obtain

T

0

= S

0

[ S

1

�(X

1

) [ � � � [ S

n

�(X

n

) � S

0

[ S

1

�(X

1

) [ � � � [ S

n

�(X

n

):

It remains to be shown that the other inclusion holds as well. Obviously, we have

S

0

� T

0

since there exists a solution. To conclude the proof, let u 2 S

i

and

v 2 �(X

i

). We must show that uv 2 T

0

. By de�nition of �(X

i

), we know that

v 2 u

�1

T

0

, and thus uv 2 T

0

.

Obviously, computing the sets �(X

i

) and checking whether they yield a solution

of (���) can be done in time polynomial in the size of (���). Thus, we have

proved the following theorem:
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Theorem 18 Solvability of ACUIh-matching problems can be decided in polyno-

mial time.

Consequently, matching of FL

0

-concept terms is also polynomial.

The connection to the work of Borgida and McGuinness

In [7], Borgida and McGuinness consider a slightly di�erent matching problem:

matching modulo subsumption. For given concept terms C and D, where C

does not contain variables, they ask for a substitution � such that C v �(D).

Moreover, they are interested in a substitution � such that �(D) is as small as

possible w.r.t. the subsumption hierarchy.

Obviously, since C does not contain variables, C v �(D) i� �(C u D) = C u

�(D) � C, which shows that matching modulo subsumption can be reduced to

matching as considered above. In particular, this shows that for FL

0

-concept

terms matching modulo subsumption is polynomial:

Corollary 19 The following problem is decidable in polynomial time:

Instance: FL

0

-concept terms C and D, where C does not contain variables.

Question: Does there exist a substitution � such that C v �(D)?

As an easy consequence of the proof of Lemma 17, we can also compute a substi-

tution � such that �(D) is as small as possible w.r.t. the subsumption hierarchy,

if the matching problem is solvable. In fact, we have shown that the solution

� of (���) constructed in the proof is larger (w.r.t. set inclusion) than all other

solutions of (���). Since each word in a solution of (���) gives rise to an addi-

tional value restriction, it is clear that the largest solution of (���) gives rise to a

solution � of the matching problem such that �(D) is as small as possible w.r.t.

subsumption.

Borgida and McGuinness consider a language that is more expressive than FL

0

.

In addition, they allow for role variables (which may be replaced by role con-

stants). They present a polynomial matching algorithm, which is, however, not

complete. In addition they state (without proof) that matching for FL

0

-concept

terms containing role variables is NP-complete. This result can easily be proved

as follows:

Theorem 20 Solvability of matching problems for FL

0

-concept terms containing

role variables is NP-complete.
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Proof. Since role variables may only be replaced by role constants (and not by

complex role terms), we can nondeterministically guess the right assignment of

role names to role variables, and then apply our polynomial decision procedure

for matching of FL

0

-concept terms without role variables. This shows that the

problem is in NP.

To show the hardness result, we reduce monotone 1-in-3-SAT (see [10]) to the

matching problem for FL

0

-concept terms containing role variables. For every

propositional variable p in an instance of monotone 1-in-3-SAT we introduce a

role variable R

p

. In addition, we use role constants R

0

and R

1

to represent the

truth values. A clause p _ q _ r is translated into the matching problem

8R

p

:8R

q

:8R

r

:A uX =

?

8R

0

:8R

0

:8R

1

:A u 8R

0

:8R

1

:8R

0

:A u 8R

1

:8R

0

:8R

0

:A;

where X is a concept variable used only in this equation. It is easy to see that

a solution of this problem assigns R

1

to exactly one of the three role variables

R

p

; R

q

; R

r

, and R

0

to the other two. Vice versa, any such assignment can be

extended to a solution of the matching problem by assigning an appropriate value

to X. Thus, the system of all matching problems obtained from the clauses of the

instance of monotone 1-in-3-SAT is solvable i� the monotone 1-in-3-SAT problem

has a solution. Since solving systems of matching problems can be reduced to

solving a single matching problem, this reduction also shows NP-hardness for

single matching problems.

8 Future work

The main topic for future work is to extend the decidability results for uni�cation

and matching to more expressive DL languages. Using a direct reduction of the

uni�cation problem to a corresponding formal language problem (as described in

the previous section), our approach may also be applicable to languages for which

equivalence of concept terms is not axiomatizable by a commutative equational

theory.

Another interesting problem is how to de�ne an appropriate ordering on uni�ers.

For the instantiation preorder usually employed in uni�cation theory, ACUIh is

not well-behaved [1]: it is not possible to represent all uni�ers by �nitely many

most general ones. However, note that a more expressive language might lead

to a theory with a better behaviour (since in a richer signature there are more

substitutions available). Second, it might well be the case that the instantiation

ordering on substitutions (which is appropriate for the applications of equational

uni�cation in theorem proving, term rewriting, and logic programming) is not

the right ordering to use when dealing with substitutions operating on concept

terms. As indicated by the work of Borgida and McGuinness [7], another ordering,

induced by the subsumption hierarchy, might be more appropriate.
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