
Deciding the Word Problem in

the Union of Equational Theories

Franz Baader

1

Cesare Tinelli

baader@informatik.rwth-aachen.de tinelli@cs.uiuc.edu

Department of Computer Science

University of Illinois at Urbana-Champaign

Report No. UIUCDCS-R-98-2073, UILU-ENG-98-1724

October 1998

1

Address: Lehr- und Forschungsgebiet Theoretische Informatik, RWTH Aachen, Ahornstra�e

55, 52074 Aachen, Germany.

i

Deciding the Word Problem in

the Union of Equational Theories

Franz Baader

Lehr- und Forschungsgebiet Theoretische Informatik

RWTH Aachen

Ahornstra�e 55, 52074 Aachen, Germany

baader@informatik.rwth-aachen.de

Cesare Tinelli

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. Spring�eld Ave, Urbana, IL 61801 { USA

tinelli@cs.uiuc.edu

October 1998

Abstract

The main contribution of this report is a new method for combining de-

cision procedures for the word problem in equational theories. In contrast to

previous methods, it is based on transformation rules, and also applies to theo-

ries sharing \constructors." In addition, we show that|contrary to a common

belief|the Nelson-Oppen combination method cannot be used to combine de-

cision procedures for the word problem, even in the case of equational theories

with disjoint signatures.

1

Contents

1 Introduction 3

2 Formal Preliminaries 5

3 The Nelson-Oppen Combination Method 7

3.1 The General Method : 7

3.2 Its Application to Equational Theories : : : : : : : : : : : : : : : : : 10

3.3 Its Application to the Word Problem : : : : : : : : : : : : : : : : : : 12

4 A Combination Procedure for the Word Problem: The Disjoint

Case 13

4.1 Abstraction Systems : 13

4.2 The Combination Procedure : 15

4.3 The Correctness Proof : 17

5 Combining Non-Disjoint Equational Theories 22

5.1 Fusions of Algebras and Unions of Equational Theories : : : : : : : : 22

5.2 Theories Admitting Constructors : 25

5.3 Combination of Theories Sharing Constructors : : : : : : : : : : : : : 34

6 An Extended Combination Procedure 41

6.1 Abstraction Systems as Directed Acyclic Graphs : : : : : : : : : : : : 42

6.2 The Extended Combination Procedure : : : : : : : : : : : : : : : : : 43

6.3 The Correctness Proof : 45

7 Related work 55

8 Conclusion and Open Questions 60

2

1 Introduction

Equational theories, that is, theories de�ned by a set of (implicitly universally quan-

ti�ed) equational axioms of the form s � t, and their appropriate treatment in

theorem provers play an important rôle in research on automated deduction. On the

one hand, equational axioms occur in many axiom sets handled by theorem provers

since they de�ne common mathematical properties of operators (such as associativ-

ity, commutativity). On the other hand, the straightforward approach for treating

equality (namely, axiomatizing the special properties of equality, and adding these

axioms to the input axioms of the prover) often leads to unsatisfactory results. This

explains the interest in developing special inference methods and decision procedures

for handling equational theories.

The word problem, the problem of whether an equation s � t is entailed by a given

equational theory E, is the most basic decision problem for equational theories. It is,

of course, undecidable, as exempli�ed by the undecidability of the word problem for

�nitely presented semigroups [Mat67]. Nevertheless, there are decidability results for

certain classes of equational theories (such as theories de�ned by a �nite set of ground

equations [NO80]), and there are general approaches for tackling the word problem

(such as Knuth-Bendix completion [KB70], which tries to generate a conuent and

terminating term rewriting system for the theory).

The present report is concerned with the question of whether the decidability of

the word problem is a modular property of equational theories: given two equational

theories E

1

and E

2

with decidable word problems, is the word problem for E

1

[E

2

also decidable? In this general formulation, the answer is obviously no, with the

word problem for semigroups again providing a counterexample. In fact, consider a

�nitely presented semigroup with undecidable word problem. The set of equational

axioms corresponding to the semigroup's presentation can be seen as the union of

a set A axiomatizing the associativity of the semigroup operation, and a set G of

ground equations corresponding to the de�ning relations of the presentation. The

word problem for G is decidable, since G is a �nite set of ground equations, and

it is quite obvious that the word problem for A is decidable as well. But the word

problem for A [G is just the word problem for the presented semigroup, which is

undecidable by assumption.

The theories A and G of this example share a function symbol (the binary semi-

group operation). What happens if we assume that there are no shared symbols,

that is, the theories to be combined are built over disjoint signatures? Modularity

properties for term rewriting systems over disjoint signatures have been studied in

detail. It has turned out that conuence is a modular property [Toy87b], but unfor-

tunately termination is not. In [Toy87a] it is shown that there exist two conuent

and terminating rewrite systems over disjoint signatures such that their union is not

terminating. Thus, the union of systems that provide a decision procedure for the

3

word problem in the single theories does not yield a decision procedure for the word

problem in the combined theory.

Nevertheless, decision procedures for the word problem can be combined in the

case of disjoint signatures (independently of where these decision procedures come

from), that is, if E

1

and E

2

are equational theories over disjoint signatures, and

both have a decidable word problem, then E

1

[E

2

has a decidable word problem as

well. This combination result was �rst proved in [Pig74] using results from universal

algebra. It was more recently rediscovered in the term rewriting and automated

deduction community [Tid86, SS89, Nip89, KR94]. Surprisingly, even these more

recent presentations did not appear to be widely known in the computer science

community, possibly because the result was obtained and presented as a side result

of the research on combining matching and uni�cation algorithms. As a matter

of fact, although the result in principle follows from a technical lemma in [Tid86],

it is not explicitly stated there; in [SS89, KR94] it is stated as a corollary, but

not mentioned in the abstract or the introduction; only [Nip89] explicitly refers to

the result in the abstract. The combination methods used in all these papers are

essentially identical, the main di�erences lying in the proofs of correctness. They

all directly transform the terms for which the word problem is to be decided, by

applying collapse equations

1

and abstracting alien subterms. This transformation

process must be carried on with a rather strict strategy (in principle, going from the

leaves of the terms to their roots) and it is not easy to describe and comprehend.

In this report, which is a revised and signi�cantly extended version of [BT97],

we introduce a new method for combining decision procedures for the word problem

that works on a set of equations rather than terms. Its transformation rules can

be applied in arbitrary order, that is, no strategy is needed. Thus, the di�erence

between this new approach and the old ones is similar to the di�erence between

Martelli and Montanari's transformation-based uni�cation algorithm [MM82] and

Robinson's original one [Rob65]. We claim that, as in the uni�cation case, this

di�erence makes the method more exible, easier to describe and comprehend, and

thus also easier to generalize. This claim is supported by the fact that the approach is

not restricted to the disjoint signature case: the theories to be combined are allowed

to share function symbols that are \constructors" (in a sense to be made more precise

later).

The only other work that presents a combination method for the word problem

in the union of non-disjoint theories is [DKR94], where the problem of combining

algorithm for the uni�cation, matching, and word problem was also investigated

for theories sharing so-called \constructors." The combination method for the word

problem described in [DKR94] is not rule-based since it is a straightforward extension

of the algorithms for the disjoint case, as described in [Pig74, SS89, Nip89, KR94],

1

i.e., equations of the form x � t, where x is a variable occurring in the non-variable term t.

4

and thus shares the disadvantages of these algorithms. We will show that the notion

of a constructor introduced in [DKR94] is a strict subcase of our notion, and that the

combination result for the word problem presented in [DKR94] can also be obtained

with the help of our rule-based approach.

There is a persistent rumor that combining decision procedures for the word

problem in the disjoint signature case is a special case of Nelson and Oppen's com-

bination method [NO79]. At �rst sight, the idea is persuasive: the Nelson-Oppen

method combines decision procedures for the validity of quanti�er-free formulae in

�rst-order theories, and the word problem is concerned with the validity of quanti�er-

free formulae of the form s � t in equational theories. Considered more closely, this

idea does not quite work, and for two reasons. First, Nelson and Oppen require

the single theories to be stably in�nite, and equational theories need not satisfy

this property.

2

Second, although we are only interested in the word problem for

the combined theory, Nelson and Oppen's method generates more general validity

problems in the single theories. Thus, just knowing that the word problems in the

single theories are decidable is not su�cient. However, our method for combining

decision procedures for the word problem follows an approach very similar to Nelson

and Oppen's.

Outline of the report The next section introduces some necessary notation. Sec-

tion 3 briey describes the Nelson-Oppen combination procedure, and investigates

whether it can be applied to equational theories. In Section 4, we introduce a �rst

version of our combination procedure for the word problem, which works for equa-

tional theories over disjoint signatures. Before we can extend this procedure to the

nondisjoint combination of equational theories, we must establish (in Section 5) some

general model-theoretic results for combined equational theories (Subsection 5.1) and

introduce our notion of a constructor (Subsection 5.2). Subsection 5.3 contains some

results concerning the union of theories sharing constructors. In Section 6 we de-

scribe the extended combination procedure for theories sharing constructors, and

prove its correctness. Section 7 investigates the connection between our notion of a

constructor and the one introduced in [DKR94].

2 Formal Preliminaries

In the context of the Nelson-Oppen procedure, we will consider arbitrary �rst-order

theories over a given signature �, which consists of a set �

F

of function symbols

and a set �

P

of relation symbols. We treat equality � as a logical symbol, i.e., it is

2

It turns out, however, that they satisfy a somewhat weaker property, which in principle su�ces

to apply their method.

5

always present and thus needs not be included in the signature. The signature � is

called functional i� �

P

= ;. In this case, we will use � in place of �

F

.

Throughout the report, we will only consider countable signatures, we will denote

by V a �xed countably in�nite set of variables and by T (�

F

; V) the set of �

F

-terms

over V . We will use the symbols r; s; t to denote terms, and the symbols x; y; u; v; w; z

to denote variables. With a common abuse of notation we will also use x; y; u; v; w

as the actual variables in our examples. If t is a term, we will denote by t(�) the top

symbol of t and by Var(t) the set of all variables occurring in t. Similarly, if ' is a

formula, Var(') will denote the set of free variables of '.

Where �v is a tuple of variables without repetition, we will write t(�v) to say that

�v lists all the variables of t. When convenient we will treat a tuple

�

t of terms as the

set of its elements.

A quanti�er-free formula is a Boolean combination of �-atoms, i.e., of formulae

of the form P (s

1

; : : : ; s

n

), where P 2 �

P

[f�g is an n-ary predicate symbol and

s

1

; : : : ; s

n

2 T (�

F

; V) are �

F

-terms with variables from V . As usual, we say that a

quanti�er-free formula ' is valid in a theory � i� it holds in all models of �, i.e., i� for

all �-structures A that satisfy � and all valuations � of the variables in ' by elements

of A we have A; � j= '. Since a formula is valid in � i� its negation is unsatis�able

in �, we can turn the validity problem for � into an equivalent satis�ability problem:

we know that a formula ' is not valid in � i� there exist a �-model A of � and a

valuation � such that A; � j= :'.

Given a function symbol f 2 �

F

and a �-structure A, we denote by f

A

the

interpretation of f in A. This notation can be extended to terms in the obvious

way: if s is a �-term containing n distinct variables, then we denote by s

A

the n-ary

term function induced by the term s in A. Given a �

F

-term s, a �-structure A,

and a valuation � (of the variables in s by elements of A), we denote by [[s]]

A

�

the

interpretation of the term s in A under the valuation �. Using the term function

induced by s, this interpretation of s can also be written as [[s]]

A

�

= s

A

(�a), where �a

is the tuple of values which � assigns to the variables in s.

In the context of equational theories, the attention is restricted to functional

signatures. An equational theory E over the functional signature � is a set of uni-

versally quanti�ed equations between �-terms. As usual, we will omit the universal

quanti�ers; for example, we will denote the equational theory C axiomatizing the

commutativity of the binary function symbol f by C := ff(x; y) � f(y; x)g instead

of C := f8x; y:f(x; y) � f(y; x)g. For an equational theory E, the word problem is

concerned with the validity in E of quanti�er-free formulae of the form s � t. Equiv-

alently, the word problem asks for the (un)satis�ability of the disequation s 6� t in

E|where s 6� t is an abbreviation for the formula :(s � t). As usual, we often

write \s =

E

t" to express that the formula s � t is valid in E. An equational theory

E is collapse-free i� x 6=

E

t for all variables x and non-variable terms t.

The equational theory E over the signature � de�nes a �-variety , i.e., the class

6

of all model of E. When E is non-trivial i.e., has models of cardinality greater

1, this variety contains free algebras for any set of generators. We will call these

algebras E-free algebras. Given a set of generators (or variables) X, the E-free

algebra with generatorsX can be obtained as the quotient term algebra T (�; X)==

E

.

The following is a well-known characterization of free algebras (see, e.g., [Hod93]):

Proposition 1 Let E be an equational theory over � and A a �-algebra. Then, A

is E-free with generators X i� the following holds:

1. A is a model of E;

2. X generates A;

3. for all s; t 2 T (�; V), if A; � j= s � t for some injection � of Var(s � t) into

X, then s =

E

t.

In this report, we are interested in combined equational theories, that is, equa-

tional theories E of the form E := E

1

[E

2

, where E

1

and E

2

are equational theories

over two (not necessarily disjoint) functional signatures �

1

and �

2

. The elements

of �

1

\ �

2

are called shared symbols. We call 1-symbols the elements of �

1

and 2-

symbols the elements of �

2

. A term t 2 T (�

1

[�

2

; V) is an i-term i� t(�) 2 V [�

i

,

i.e., if it is a variable or has the form t = f(t

1

; :::; t

n�1

) for some i-symbol f (i = 1; 2).

Notice that variables and terms t with t(�) 2 �

1

\ �

2

are both 1- and 2-terms. A

subterm s of a 1-term t is an alien subterm of t i� it is not a 1-term and every proper

superterm of s in t is a 1-term. Alien subterms of 2-terms are de�ned analogously.

For i = 1; 2, an i-term s is pure i� it contains only i-symbols and variables. Notice

that every �

i

-term is a pure i-term and vice versa. An equation s � t is pure i�

there is an i such that both s and t are pure i-terms.

3 The Nelson-Oppen Combination Method

We will �rst recall the general procedure, and then investigate whether it can be

applied to equational theories.

3.1 The General Method

This method is concerned with combining decision procedures for the validity of

quanti�er-free formulae. Assume that �

1

and �

2

are two disjoint signatures and

that � is obtained as the union of a �

1

-theory �

1

and a �

2

-theory �

2

. How can

decision procedures for validity (equivalently: satis�ability) in �

i

(i = 1; 2) be used

to obtain a decision procedure for validity (equivalently: satis�ability) in �?

7

When considering the satis�ability problem, as done in Nelson and Oppen's

method, we may without loss of generality restrict our attention to conjunctive

quanti�er-free formulae, i.e., conjunctions of �-atoms and negated �-atoms. In fact,

a given quanti�er-free formula can be transformed into an equivalent formula in dis-

junctive normal form (i.e., a disjunction of conjunctive quanti�er-free formulae), and

this disjunction is satis�able in � i� one of its disjuncts is satis�able in �.

Given a conjunctive quanti�er-free (�

1

[�

2

)-formula ' to be tested for satis�-

ability, Nelson and Oppen's method for combining decision procedures proceeds in

three steps:

1. Generate a conjunction '

1

^ '

2

that is equivalent to ', where '

i

is a pure

�

i

-formula (i = 1; 2).

Here equivalent means that ' and '

1

^ '

2

are satis�able in exactly the same

models of �. This is achieved by replacing alien subterms by variables and

adding appropriate equations (see the example below).

2. Test the pure formulae for satis�ability in the respective theories.

If '

i

is unsatis�able in �

i

for i = 1 or i = 2, then return \unsatis�able."

Otherwise proceed with the next step.

3. Propagate equalities between di�erent shared variables (i.e., variables u

j

6= v

j

occurring in both '

1

and '

2

), if a disjunction of such equalities can be deduced

from the pure parts.

A disjunction u

1

� v

1

_ : : : _ u

k

� v

k

of equations between di�erent shared

variables can be deduced from '

i

in �

i

i� '

i

^ u

1

6� v

1

^ : : : ^ u

k

6� v

k

is

unsatis�able in �

i

. Since the satis�ability problem in �

i

was assumed to be

decidable, and since there are only �nitely many shared variables, it is decidable

whether such a disjunction exists.

If no such disjunctions can be deduced, return \satis�able." Otherwise, take

any of them,

3

and propagate its equations as follows. For every disjunct u

j

�

v

j

, proceed with the second step for the formula '

1

�

j

^ '

2

�

j

, where �

j

:=

fu

j

7! v

j

g for j = 1; : : : ; k. Return \satis�able" i� one of these cases yields

\satis�able."

Example 2 Consider the (equational) theories E

1

:= ff(x; x) � xg and E

2

:=

fg(g(x)) � g(x)g over the signatures �

1

:= ffg and �

2

:= fgg.

4

If we want to know

whether the (mixed) quanti�er-free formula

g(f(g(z); g(g(z)))) � g(z)

3

For e�ciency reasons, one should take a disjunction with minimal k.

4

Recall that the equations in E

i

are implicitly assumed to be universally quanti�ed.

8

is valid in E

1

[E

2

, we can apply the Nelson-Oppen procedure to its negation

g(f(g(z); g(g(z)))) 6� g(z):

In Step 1, f(g(z); g(g(z))) is an alien subterm in g(f(g(z); g(g(z)))) (since g 2 �

2

and f 2 �

1

). In addition, g(z) and g(g(z)) are alien subterms in f(g(z); g(g(z))).

Replacing these subterms by variables yields the conjunction '

1

^ '

2

, where

'

1

:= u � f(v; w) and '

2

:= g(u) 6� g(z) ^ v � g(z) ^ w � g(g(z)):

In Step 2, it is easy to see that both pure formulae are satis�able in their respective

theories. The equation u � f(v; w) is obviously satis�able in the trivial model of E

1

(of cardinality 1). The formula '

2

is, for example, satis�able in the E

2

-free algebra

with two generators, where u is interpreted by one generator, z by the other, and

v; w as required by the equations.

In Step 3, we can deduce w � v from '

2

in E

2

since '

2

contains v � g(z) ^

w � g(g(z)) and E

2

contains the universally quanti�ed equation g(g(x)) � g(x).

Propagating the equality w � v yields the pure formulae

'

0

1

:= u � f(v; v) and '

0

2

:= g(u) 6� g(z) ^ v � g(z) ^ v � g(g(z));

which again turn out to be separately satis�able in Step 2 (with the same models as

used above).

In Step 3, we can now deduce the equality u � v from '

0

1

in E

1

, and its propa-

gation yields

'

00

1

:= v � f(v; v) and '

00

2

:= g(v) 6� g(z) ^ v � g(z) ^ v � g(g(z)):

In Step 2, it turns out that '

00

2

is not satis�able in E

2

, and thus the answer is

\unsatis�able," which shows that g(f(g(z); g(g(z)))) � g(z) is valid in E

1

[E

2

. In

fact, v � g(z) and the equation g(g(x)) � g(x) of E

2

imply that g(v) � g(z), which

contradicts g(v) 6� g(z).

Obviously, the procedure always terminates since there are only �nitely many

shared variables to be identi�ed. In addition, it is easy to see that satis�ability

is preserved at each step. This implies that the procedure is complete, that is, if

it answers \unsatis�able" (because variable propagation has made one of the pure

subformulae unsatis�able in the corresponding component theory), then the original

formula is in fact unsatis�able.

For arbitrary theories �

1

and �

2

, the combination procedure need not be sound

(see Example 4 below). One must assume that each �

i

is stably in�nite, that is,

such that a quanti�er-free formula '

i

is satis�able in �

i

i� it is satis�able in an

in�nite model of �

i

. This restriction was not mentioned in Nelson and Oppen's

9

original article [NO79]; it was introduced in [Opp80]. Two new and simple proofs

of soundness and completeness of the procedure are given in [Rin96, TH96]. In

essence, both depend on the following proposition (see [TH96] for a proof). For a

�nite set of variables X, let �

X

denote the conjunction of all disequations x 6� y for

x; y 2 X; x 6= y.

Proposition 3 Let �

1

and �

2

be two stably in�nite theories over the disjoint signa-

tures �

1

and �

2

, respectively. Let '

i

be a quanti�er-free �

i

-formula (i = 1; 2) and

X be the set of variables occurring in both '

1

and '

2

. If '

i

^�

X

is satis�able in �

i

for i = 1; 2, then '

1

^ '

2

is satis�able in �

1

[�

2

.

It is easy to see that this proposition yields soundness of the procedure, that is,

if the procedure answers \satis�able" then the original formula was satis�able. In

fact, if in Step 3 no disjunction of equalities between shared variables can be derived

from the pure formulae, then the prerequisite for the proposition is satis�ed (take

the disjunction of all x 6� y for x; y 2 X; x 6= y). We will use this proposition also to

prove the correctness of our combination procedure in the disjoint case.

3.2 Its Application to Equational Theories

We now turn to the question of whether the Nelson-Oppen method applies to equa-

tional theories, that is, sets of (implicitly) universally quanti�ed equations. For this

purpose, we will consider only functional signatures, which means that the only

predicate symbol in our formulae will be the equality symbol.

First, note that a trivial equational theory E (i.e., a theory that has only the

trivial 1-element model, or equivalently a theory that entails x � y for distinct

variables x; y) cannot be stably in�nite. However, this is not a real problem since

satis�ability and validity in the trivial model are obviously decidable. In addition,

if E

1

or E

2

are trivial, then their union is trivial, and thus one does not need a

combination procedure to decide satis�ability in E

1

[E

2

. The next example shows

that non-trivial equational theories need not be stably in�nite either, and that Nelson

and Oppen's procedure is not correct for such theories.

Example 4 Consider the theory

E

1

:= ff(g(x); g(y)) � x; f(g(x); h(y)) � yg:

It is easy to see that E

1

is non-trivial. In fact, by orienting the equations from left

to right, one obtains a canonical term rewriting system, in which any two distinct

variables have a di�erent normal form. Now, consider the quanti�er-free formula

g(x) � h(x). Obviously, this formula is satis�able in the trivial model of E

1

. In

10

every model A of E

1

in which g(x) � h(x) is satis�able, there exists an element e

such that g

A

(e) = h

A

(e). But then we have that

a = f

A

(g

A

(a); g

A

(e)) = f

A

(g

A

(a); h

A

(e)) = e

for every element a of A, which entails that A is the trivial model. Thus, g(x) �

h(x) is only satis�able in the trivial model of E

1

, which show that the (non-trivial)

equational theory E

1

is not stably in�nite. To see that this really leads to an incorrect

behavior of the Nelson-Oppen method, let

E

2

:= fk(x) � k(x)g

and consider the conjunction g(x) � h(x)^k(x) 6� x. Clearly, k(x) 6� x is satis�able

in E

2

(for instance, in the E

2

-free algebra with 1 generator) and, as we saw earlier,

g(x) � h(x) is satis�able in E

1

. In addition, no equations between distinct shared

variables can be deduced (since there is only one shared variable). It follows that

Nelson and Oppen's procedure would answer \satis�able" on input g(x) � h(x) ^

k(x) 6� x. However, since g(x) � h(x) is only satis�able in the trivial model of E

1

,

and no disequation can be satis�ed in a trivial model, g(x) � h(x) ^ k(x) 6� x is

unsatis�able in E

1

[E

2

.

The problem pointed out by the example is solely due to the fact that one of

the pure subformulae is only satis�able in the trivial model, whereas the other is

not satis�able in the trivial model. Given a quanti�er-free formula ', it is obviously

decidable whether ' is satis�able in the trivial model of E

1

[E

2

: just replace all

equations by \true" and all negated equations by \false." To test satis�ability in a

non-trivial model of E

1

[E

2

, one can then consider satis�ability in E

0

1

[E

0

2

, where

E

0

i

:= E

i

[f9x; y: x 6� yg.

Lemma 5 Let E be a non-trivial equational theory.

1. The theory E

0

:= E [f9x; y: x 6� yg is stably in�nite.

2. If the satis�ability in E of quanti�er-free formulae is decidable, then the satis-

�ability in E

0

is also decidable.

Proof. The second statement is immediate. In fact, let ' be a quanti�er-free formula.

Then ' is satis�able in E

0

i� the quanti�er-free formula ' ^ x 6� y is satis�able in

E, where x; y are two distinct variables not occurring in '.

The �rst statement is an easy consequence of the fact that the class of models

of an equational theory is closed under direct products. In fact, assume that the

quanti�er-free formula ' is satis�able in E

0

, i.e., ' is satis�able in a non-trivial

model A of E. Then the countably in�nite direct product of A with itself is an

in�nite model of E (and of E

0

), and it is easy to see that it satis�es '. ut

11

The lemma shows that the prerequisites for applying Nelson and Oppen's pro-

cedure are satis�ed for the combined theory E

0

1

[E

0

2

, provided that the theories

E

i

are non-trivial and satis�ability of quanti�er-free formulae are decidable in E

i

(i = 1; 2). Thus, satis�ability of quanti�er-free formulae in E

0

1

[E

0

2

is decidable.

Since a quanti�er-free formula is satis�able in E

1

[E

2

i� it is satis�able in the trivial

model or in a model of E

0

1

[E

0

2

, and since we have already seen that satis�ability in

the trivial model is decidable, we obtain the following theorem.

Theorem 6 Let E

1

and E

2

be two equational theories over disjoint signatures. If

the satis�ability in E

i

of quanti�er-free formulae is decidable (i = 1; 2), then the

satis�ability of quanti�er-free formulae in E

1

[E

2

is also decidable.

3.3 Its Application to the Word Problem

Recall that the word problem is concerned with the validity in E of quanti�er-free

formulae of the form s � t (equivalently: (un)satis�ability of s 6� t in E). Now, let E

1

and E

2

be two equational theories over disjoint signatures. Theorem 6 implies that

the word problem is decidable for E

1

[E

2

, provided that the validity (equivalently:

satis�ability) in E

1

and E

2

of arbitrary quanti�er-free formulae is decidable.

However, the assumption that the word problem (equivalently: the satis�ability

of formulae of the form s 6� t) is decidable for E

i

(i = 1; 2) is too weak for a

straightforward application of the Nelson-Oppen procedure. In fact, the satis�ability

tests in the second and third step of the procedure need not be of the speci�c form

that can be handled by a procedure for the word problem. The procedure for the

word problem considers the satis�ability of a single disequation. In the second step

of Nelson and Oppen's procedure, satis�ability of a conjunction consisting of at

most one disequation and �nitely many equations must be tested, and in the third

step, satis�ability of a conjunction of �nitely many disequations and �nitely many

equations must be tested.

In our method for combining decision procedures for the word problem, the main

ideas to overcome these di�culties are in principle

5

the following:

� In Step 3, propagate only equalities that can be deduced with the help of a

decision procedure for the word problem in E

i

:

{ If we have x � s; y � t and s =

E

i

t, then propagate x � y.

{ If we have x � s, y occurs in s, and s =

E

i

y, then propagate x � y.

� In Step 2, return \unsatis�able" only if equality propagation has generated a

trivially unsatis�able disequation of the form x 6� x.

5

The rules of our combination approach are somewhat more complex for technical reasons.

12

The main part of the proof of correctness will be to show that this restricted form

of equality propagation and satis�ability test is su�cient for our purposes.

4 A Combination Procedure for the Word Prob-

lem: The Disjoint Case

In the following, we will present a decision procedure for the word problem in an

equational theory of the form E

1

[E

2

where each E

i

is a non-trivial equational

theory with decidable word problem. To simplify the exposition, we will start by �rst

considering the case in which the signatures of E

1

and E

2

are disjoint. In Section 6

we will then extend the results given in this section to the case in which the two

signatures are not disjoint. Of course, this requires some additional restrictions on

the theories to be combined. These restrictions will be introduced in Section 5. Both

in the disjoint and the nondisjoint case, we will assume (with no loss of generality)

that all the signatures considered are countable.

To decide the word problem for E := E

1

[E

2

, we consider the satis�ability

problem for quanti�er-free formulae of the form s

0

6� t

0

, where s

0

and t

0

are terms in

the signature of E. As in the Nelson-Oppen procedure, the �rst step of our procedure

transforms a formula of this form into a conjunction of pure formulae by means of

variable abstraction. To de�ne the puri�cation process in more detail, we need to

introduce a little notation and some new concepts.

4.1 Abstraction Systems

We will use �nite sets of formulae in place of conjunctions of such formulae. We will

then say that a set of formulae is satis�able in a theory i� the conjunction of its

elements is satis�able in that theory.

We can de�ne a procedure which, given a disequation s

0

6� t

0

with s

0

; t

0

2 T (�

1

[

�

2

; V), produces an equisatis�able set AS (s

0

6� t

0

) consisting of pure equations and

disequations.

6

The puri�cation procedure starts with the set S

0

:= fx 6� y; x �

s

0

; y � t

0

g, where x; y are distinct variables not occurring in s

0

; t

0

, if s

0

and t

0

are

not variables. If s

0

(t

0

) is a variable, the procedure uses s

0

in place of x (t

0

in

place of y), and omits the corresponding (trivial) equation. Assume that a �nite

set S

i

consisting of x 6� y and equations of the form u � s (where u 2 V and

s 2 T (�

1

[�

2

; V) n V) has already been constructed. If S

i

contains an equation

u � s such that s has an alien subterm t at position p, then S

i+1

is obtained from

S

i

by replacing u � s by the equations u � s

0

and v � t, where v is a variable not

6

Equisatis�able means that, for all algebras A, the disequation s

0

6� t

0

is satis�able in A i�

AS(s

0

6� t

0

) is satis�able in A.

13

occurring in S

i

, and s

0

is obtained from s by replacing t at position p by v. Otherwise,

if all terms occurring in S

i

are pure, then the procedure stops and returns S

i

.

It is easy to see that this process terminates and yields a set AS (s

0

6� t

0

) which is

satis�able in E i� s

0

6� t

0

is satis�able in E. The set AS (s

0

6� t

0

) satis�es additional

properties, whose importance will become clear later on.

De�nition 7 Let x; y 2 V and S be a set of equations of the form v � t where

v 2 V and t 2 T (�

1

[�

2

; V) nV . The relation � is the smallest binary relation on

fx 6� yg [S such that, for all u � s; v � t 2 S,

(x 6� y) � (v � t) i� v 2 fx; yg;

(u � s) � (v � t) i� v 2 Var(s):

By �

+

we denote the transitive and by �

�

the reexive-transitive closure of �. The

relation � is acyclic if there is no equation v � t in S such that (v � t) �

+

(v � t).

Notice that, when� is acyclic, �

�

is a partial order, and �

+

is the corresponding

strict partial order. Since � is the smallest relation satisfying the above properties,

the disequation x 6� y is not larger than any equation u � s, even if x or y occurs in

s.

De�nition 8 (Abstraction System) The set fx 6� yg[S is an abstraction system

with initial formula x 6� y i� x; y 2 V and the following holds:

1. S is a �nite set of equations of the form v � t where v 2 V and t 2 (T (�

1

; V)[

T (�

2

; V)) nV ;

2. the relation � on S is acyclic;

3. for all (u � s); (v � t) 2 S,

(a) if u = v then s = t;

(b) if (u � s) � (v � t) and s 2 T (�

i

; V) with i 2 f1; 2g

then t(�) 62 �

i

.

Condition (1) above states that S consists of equations between variables and

pure non-variable terms; Condition (2) implies that for all (u � s); (v � t) 2 S, if

(u � s) �

�

(v � t) then u 62 Var(t); Condition (3a) implies that a variable cannot

occur as the left-hand side of more than one equation of S; Condition (3b) implies,

together with Condition (1), that the elements of every �-chain of S have strictly

alternating signatures (: : : ;�

1

;�

2

;�

1

;�

2

; : : :).

The following proposition is an easy consequence of the de�nition of the puri�-

cation procedure.

14

Input: (s

0

; t

0

) 2 T (�

1

[�

2

; V)� T (�

1

[�

2

; V)

1. Let S := AS (s

0

6� t

0

).

2. Repeatedly apply (in any order) Coll1, Coll2, Ident, Simpl to S until none

of them is applicable.

3. Succeed if S has the form fv 6� vg [T , and fail otherwise.

Figure 1: The Combination Procedure.

Proposition 9 Let A be a (�

1

[�

2

)-algebra. The set AS (s

0

6� t

0

) obtained by

applying the puri�cation procedure to the disequation s

0

6� t

0

is an abstraction system

which is satis�able in A i� s

0

6� t

0

is satis�able in A.

In particular, this proposition implies that the disequation s

0

6� t

0

is satis�able

in E i� AS (s

0

6� t

0

) is satis�able in E.

4.2 The Combination Procedure

Let �

1

and �

2

be two disjoint (functional) signatures, and assume that E

i

is a non-

trivial equational theory over �

i

with decidable word problem, for i = 1; 2. Fig. 1

describes a procedure that decides the word problem for the theory E := E

1

[E

2

by

deciding, as we will show, the satis�ability in E of disequations of the form s

0

6� t

0

where s

0

; t

0

are (�

1

[�

2

)-terms. It repeatedly applies the transformation rules of

Fig. 2 until no more rules are applicable.

The main idea of the procedure is to see whether the disequation between the

two input terms is satis�able in E by turning the disequation into an abstraction

system, and then propagating some of the equations between variables that are valid

in one of the single theories. The transformations the initial system goes through

will eventually produce an abstraction system whose initial formula has the form

v 6� v i� the initial disequation s

0

6� t

0

is unsatis�able in E (that is, i� s

0

=

E

t

0

).

During the execution of the procedure, the set S of formulae on which the pro-

cedure works is repeatedly modi�ed by the application of one of the derivation rules

de�ned in Fig. 2. We describe these rules in the style of a sequent calculus. The

premise of each rule lists all the formulae in S before the application of the rule,

where T stands for all the formulae not explicitly listed. The conclusion of the rule

lists all the formulae in S after the application of the rule. It is understood that any

two formulas explicitly listed in the premise of a rule are distinct.

15

Coll1

T u 6� v x � t[y] y � r

T [x=r] (u 6� v)[x=y] y � r

if t is an i-term and y =

E

i

t for i = 1 or i = 2.

Coll2

T x � t[y]

T [x=y]

if t is an i-term and y =

E

i

t for i = 1 or i = 2

and

there is no (y � r) 2 T .

Ident

T x � s y � t

T [x=y] y � t

if s; t are i-terms and s =

E

i

t for i = 1 or i = 2

and

(y � t) 6�

�

(x � s).

Simpl

T x � t

T

if x 62 Var(T).

Figure 2: The Derivation Rules.

In essence, Coll1 and Coll2 remove from S collapse equations that are valid in

E

1

or E

2

, while Ident identi�es any two variables equated to equivalent �

i

-terms

and then discards one of the corresponding equations. We have used the notation

t[y] to express that the variable y occurs in the term t, and the notation T [x=t] to

denote the set of formulae obtained by substituting every occurrence of the variable

x by the term t in the set T .

7

Simpl eliminates those equations that have become unreachable along a �-path

from the initial disequation because of the application of previous rules. As we will

see, this rule is not essential but it reduces clutter in S by eliminating equations that

do not contribute to the solution of the problem anymore. It can be used to obtain

7

Notice that our use of the notation [x=t] contrasts with the common practice in the literature

(for instance, of programming languages theory). There, the expression T [x=t] above would be

written as T [t=x] instead. We prefer our convention because we �nd it more intuitive, especially in

the case of composed substitutions.

16

optimized, complete implementations of the combination procedure.

We prove in Section 4.3 that this combination procedure decides the word problem

for E by showing that the procedure is partially correct (i.e., sound and complete)

and terminates on all inputs.

4.3 The Correctness Proof

In the following, we will denote by S

0

the abstraction system AS (s

0

6� t

0

) obtained

by applying the puri�cation procedure to the input disequation, and by S

j

(j � 1)

the set S of formulae generated by the combination procedure at the j

th

iteration

of Step 2. If Step 2 is iterated only n times, we will de�ne S

j

:= S

n

for all j > n.

Correspondingly, we will let �

j

denote the relation � on S

j

(cf. Def. 7).

We �rst show that all sets S

j

obtained in correspondence of one run of the com-

bination procedure are in fact abstraction systems. The proof of acyclicity (Condi-

tion 2 in De�nition 8) will be facilitated by the following lemma, whose simple proof

is omitted.

Lemma 10 Let < be a binary relation on a �nite set A, and a; b 2 A be such that

b 6<

�

a. We denote the restriction of < to A n fag by <

a

,

8

and consider the relations

<

1

:= <

a

[fhd; ei j d < a; b < eg

<

2

:= <

a

[fhd; bi j d < ag:

If < is acyclic, then <

1

and <

2

are acyclic as well.

Lemma 11 Given an execution of the combination procedure, S

j

is an abstraction

system for all j � 0.

Proof. We prove the claim by induction on j. The induction base (j = 0) is

immediate by construction of S

0

and Proposition 9. Thus, assuming that j > 0

and that S

j�1

is an abstraction system, consider the following cases, labeled by the

derivation rule applied to S

j�1

to obtain S

j

.

Coll1. By the rule's de�nition, S

j�1

and S

j

must have the following form:

S

j�1

= fu 6� vg [fx � t[y]g [fy � rg [T

S

j

= fu 6� vg[x=y] [fy � rg [T [x=r]

Let u

0

6� v

0

:= (u 6� v)[x=y]. We show that S

j

is an abstraction system with initial

formula u

0

6� v

0

.

Let S

0

j�1

:= S

j�1

n fu 6� vg and S

0

j

:= S

j

n fu

0

6� v

0

g, and let �

0

j�1

and �

0

j

respectively be the restrictions of �

j�1

and �

j

to these sets of equations. If we take

8

That is, <

a

:=< \ (A n fag)

2

.

17

�

0

j�1

to be the relation < of Lemma 10, x � t to be a, and y � r to be b, it is

easy to see that �

0

j

coincides with <

1

(as de�ned in the lemma). Because �

j�1

is

acyclic by induction, its subrelation < = �

0

j�1

is acyclic as well. Since we know that

a < b, this also implies that b 6<

�

a, and thus the preconditions of Lemma 10 are

satis�ed. It follows that �

0

j

is acyclic. By de�nition of the relation �, the initial

disequation cannot be involved in a cycle, and thus �

j

is acyclic as well. This shows

that condition (2) of De�nition 8 holds.

Since applying the substitution [x=r] does not change the left-hand sides of equa-

tions in T , it is immediate that condition (3a) of De�nition 8 holds as well.

Finally, observe that x can appear in T only in an equation of the form z � s[x]

and that (z � s) �

j�1

(x � t) �

j�1

(y � r): By induction, we know that there

is an i 2 f1; 2g such that s and r are both non-variable �

i

-terms; therefore, the

replacement of x by r in T does not generate non-pure terms and it does not change

the signature of the equations in T . It follows that S

j

satis�es both conditions (1)

and (3b) of De�nition 8.

Coll2. The proof is essentially a special case of the one above, with r replaced

by y. The proof of condition (2) of De�nition 8 is, however, easier in this case. If

we take x � t to be a and �

j�1

to be the relation <, then �

j

coincides with <

a

as

de�ned in Lemma 10. If < is acyclic, then its subrelation <

a

is acyclic as well.

Ident. By the rule's de�nition, S

j�1

and S

j

must have the following form:

S

j�1

= T [fu 6� vg [fx � sg [fy � tg

S

j

= (T [fu 6� vg)[x=y] [fy � tg;

where it is not the case that (y � t) �

�

j�1

(x � s). It is not di�cult to see that this

time �

j

is derivable from �

j�1

in the same way <

2

is derivable from < in Lemma 10,

where x � s is a and y � t is b. Again, the preconditions of the lemma are satis�ed,

and it follows that �

j

satis�es condition (2) of De�nition 8. By induction, we know

that x appears as the left-hand side of no equations in T , and so it is immediate

that S

j

satis�es condition (3a). It is also immediate that S

j

satis�es condition (1).

Finally, since s and t are both non-variable i-terms, S

j

also satis�es condition (3b).

It follows that S

j

is an abstraction system with initial formula (u 6� v)[x=y].

Simpl. Immediate consequence of the easily provable fact that, if fu 6� vg [T

0

is an abstraction system, then fu 6� vg [T is also an abstraction system for every

T � T

0

. ut

The next lemma shows that the derivation rules preserve satis�ability.

Lemma 12 For all j > 0 and all models A of E = E

1

[E

2

, S

j

is satis�able in A

i� S

j�1

is satis�able in A.

18

Proof. First assume that S

j

has been produced by an application of Coll1. We

know that S

j�1

and S

j

have the form

S

j�1

= fu 6� vg [fx � t[y]g [fy � rg [T

S

j

= fu 6� vg[x=y] [fy � rg [T [x=r]

and that y =

E

i

t for i = 1 or i = 2. Assume that the valuation � satis�es S

j�1

in the

model A of E. Since y � t is valid in E, for being valid in E

i

, � must assign both x

and y with [[t]]

A

�

, i.e., the interpretation of the term t in A under the valuation �. In

addition, since � satis�es S

j�1

, we know that �(y) = [[r]]

A

�

. It follows immediately

that � satis�es S

j

in A.

Now, assume that the valuation � satis�es S

j

in the model A of E. Observe

that, since S

j�1

is an abstraction system, x does not occur in y � r, and as a

consequence it does not occur in S

j

at all. Let �

0

be the valuation de�ned by

�

0

(z) := �(z) for all z 6= x and �

0

(x) := �(y). It is immediate that �

0

satis�es the

set T

1

:= T [fx � rg [fu 6� vg [fx � yg [fy � rg in A. Since A is a model of

E and the equation y � t is valid in E, it is also immediate that �

0

satis�es the set

T

2

:= fx � tg in A. It follows that �

0

satis�es S

j�1

, which is a subset of T

1

[T

2

.

The proof for Coll2 can be derived as a special case of the one for Coll2 with r

replaced by y. Ident can be treated similarly.

Simpl. In this case S

j�1

and S

j

have the form

S

j�1

= T [fx � tg

S

j

= T

with x 62 Var(T). It immediate that, if S

j�1

is satis�able in A, so is S

j

. Assume then

that S

j

is satis�ed in A by a valuation � of T 's variables. We can �rst choose an

arbitrary extension �

0

of � to the variables in Var(t) n Var(T). From the assumptions

and the fact that S

j�1

is an abstraction system we know that x does not occur in

Var(t) [Var(T). Therefore, we can further extend �

0

so that it assigns to x the

individual denoted by t, i.e., �

0

(x) := [[t]]

A

�

0

. It follows that �

0

satis�es T [fx � tg

in A. ut

It is now easy to show that the combination procedure is sound.

Proposition 13 If the combination procedure succeeds on an input (s

0

; t

0

), then

s

0

=

E

t

0

.

Proof. By the procedure's de�nition, we know that, if the procedure succeeds, there

is an n > 0 such that S

n

= fv 6� vg [T . Since S

n

is clearly unsatis�able in E, we

can conclude by a repeated application of Lemma 12 that S

0

= AS (s

0

6� t

0

) is also

unsatis�able in E. By Proposition 9, it follows that s

0

6� t

0

is unsatis�able in E,

which means that s

0

=

E

t

0

. ut

19

Next, we show that the combination procedure always terminates.

Lemma 14 The combination procedure halts on all inputs.

Proof. As mentioned above, the puri�cation procedure used in Step 1 of the combina-

tion procedure terminates. In addition, since every equivalence test in the derivation

rules can be performed in �nite time because of the decidability of the word problems

in E

1

and in E

2

, every run of Step 2 is also executable in �nite time. All we need to

show then is that the procedure performs Step 2 only �nitely many times. For j � 0,

let N

j

be the number of variables occurring on the left-hand side of an equation in

S

j

. Looking at each derivation rule, it is easy to see that N

0

> N

1

> N

2

: : : , which

means that the total number of repetitions of Step 2 is bounded by N

0

. ut

Finally, we show that the combination procedure is also complete.

Proposition 15 The combination procedure succeeds on input (s

0

; t

0

) if s

0

=

E

t

0

.

Proof. By Lemma 14, the procedure either succeeds or fails; therefore, we can prove

the claim by proving that, if the procedure fails on input (s

0

; t

0

), then s

0

6=

E

t

0

.

Thus, assume that the procedure fails and let S

n

be the set obtained in the last

transformation step. Given Lemma 12 and the construction of S

0

, it is su�cient to

show that S

n

is satis�able in E.

From Lemma 11 we know that S

n

is an abstraction system with an initial formula

of the form x 6� y for distinct variables x and y (otherwise the procedure would have

succeeded). It follows that S

n

n fx 6� yg can be partitioned into the sets

T

1

:= fx

j

� s

j

(�u

j

)g

j2I

and T

2

:= fy

j

� t

j

(�v

j

)g

j2J

;

where I and J are �nite, s

j

2 T (�

1

; V) nV , t

j

2 T (�

2

; V) nV , and �u

j

(resp. �v

j

)

is the sequence of variables occurring in s

j

(resp. t

j

). It is an easy consequence of

De�nition 8 that each x

j

occurs only once in T

1

,

9

each y

j

occurs only once in T

2

, and

fx

i

g

i2I

and fy

j

g

j2J

are disjoint.

Let X be the set Var(T

1

)\ Var(T

2

) of all variables occurring in both T

1

and T

2

.

For i = 1; 2, let A

i

be an E

i

-free algebra over a countably in�nite set of generators Y

i

.

Since E

i

is non-trivial by assumption, this free algebra exists and has a cardinality

greater than 1. Consequently, A

i

is also a model of E

0

i

:= E

i

[f9u; v: u 6� vg. By

Lemma 5, the theory E

0

i

is stably in�nite. We show below that, for i = 1; 2,

T

i

[fx 6� yg [�

X

9

Note that condition (2) of De�nition 8 entails that x

j

cannot occur in �u

j

, condition (3b) entails

that x

j

cannot occur in �u

j

0

for j 6= j

0

, and condition (3a) entails that x

j

6= x

j

0

for j 6= j

0

.

20

is satis�able in A

i

, where �

X

is the set of all the disequations between two distinct

elements of X. It will then follow from an application of Proposition 3 that S

n

is

satis�able in E

0

1

[E

0

2

, and thus also in E = E

1

[E

2

.

We restrict our attention to the case in which i = 1 (i = 2 can be treated

analogously). Let U be the set of all variables occurring on the right-hand sides of

equations in T

1

(that is, the variables in the sequences �u

j

). We consider a valuation

� of Var(T

1

) into A

1

assigning each u 2 U with a distinct element of Y

1

and each x

j

with [[s

j

]]

A

1

�

(the interpretation of the term s

j

in A

1

under the variable assignment

�). Notice that � is well-de�ned because all the x

j

's are distinct and x

j

62 U , as we

saw earlier. By construction, � satis�es T

1

.

Next, we show that �(u) 6= �(v) for all distinct variables u; v 2 Var(T

1

), which

will imply that � satis�es �

X

.

If both u and v are in U , �(u) 6= �(v) is obvious by the construction of �. Hence,

let u = x

j

for some j 2 I and assume by contradiction that �(x

j

) = �(v). If v = x

`

for some ` 2 I, by the construction of � we have that A

1

; � j= s

j

� s

`

. Since �

evaluates the variables in the equation s

i

� s

j

by distinct generators of A

1

, and A

1

is E

1

-free, it follows by Proposition 1 that s

j

=

E

1

s

`

; but then, given that either

(x

`

� s

`

) 6�

�

(x

j

� s

j

) or (x

j

� s

j

) 6�

�

(x

`

� s

`

) by the acyclicity of abstraction

systems, the derivation rule Ident applies to S

n

, against the assumption that S

n

was

the last set. If v 2 U , similarly to the previous case we obtain that v =

E

1

s

j

. Now,

if v does not occur in s

j

, it is easy to see that E

1

only admits trivial models, against

the assumption that E

1

is non-trivial. If v occurs in s

j

, either Coll1 or Coll2 applies

to S

n

, again against the assumption that S

n

was the last set.

In conclusion, we have shown that

A

1

; � j= T

1

[�

X

:

To complete the proof, we must show that � also satis�es x 6� y. Recall that x; y

are distinct. Thus, if they both occur in T

1

, we already know by the above that

�(x) 6= �(y). Otherwise, we simply need to extend � to Var(T

1

) [fx; yg so that

�(x) 6= �(y). ut

As an aside, we would like to point out that nowhere in the proof of Proposition 15

did we use the fact that Simpl can no longer be applied. Thus, the proof also

shows that the modi�ed procedure obtained by removing the rule Simpl is complete.

Obviously, this modi�ed procedure is sound and terminating as well.

Combining the results of this section, which show total correctness of the proce-

dure, we also obtain the known modularity result for the word problem in case of

component theories with disjoint signatures.

Theorem 16 For i = 1; 2, let E

i

be a non-trivial equational theory of signature �

i

such that �

1

\�

2

= ;. If the word problem is decidable for E

1

and for E

2

, then it is

also decidable for E

1

[E

2

.

21

A closer look at the termination proof and the de�nition of the puri�cation pro-

cedure reveals that, modulo the complexity of the decision procedures for the word

problem in the single theories, our combination procedure is polynomial.

Corollary 17 Let E

1

and E

2

be non-trivial equational theories over disjoint signa-

tures whose word problems are decidable in polynomial time. Then the word problem

for E

1

[E

2

is also decidable in polynomial time.

5 Combining Non-Disjoint Equational Theories

The rest of this report is concerned with the question of how the combination result

stated in Theorem 16 can be lifted to the combination of equational theories whose

signatures are not disjoint. As shown in the introduction, the union of equational

theories with decidable word problem need not have a decidable word problem. Thus,

one needs appropriate restrictions on the theories to be combined. The purpose of

this section is to introduce such restrictions, and to establish some useful properties

of theories satisfying these conditions. In particular, we will show a result that

will play the rôle of Proposition 3 in the proof of completeness of the combination

procedure.

Several of the results in Subsections 5.1 and 5.2 below

10

are special cases of

more general results �rst described in [TR98]. That work considers the problem

of combining decision procedures for the satis�ability of �rst-order formulae with

respect to arbitrary �rst-order theories. The combination method described there

is a proper extension of the Nelson-Oppen method and as such cannot be applied

to the word problem, exactly for the same reasons given in Section 3. However,

the proof of correctness for the combination procedure in [TR98] uses some general

results about the combination of models of �rst-order sentences which are useful for

our purposes as well. We have adapted some of the concepts and results introduced

in [TR98] to the more speci�c context of equational theories. Although the proofs

of the original results carry over to this special case, we provide direct proofs here

both for completeness' sake and because they are simpler.

5.1 Fusions of Algebras and Unions of Equational Theories

In the following, given an
-algebra A and a subset � of
, we will denote by A

�

the reduct of A to the subsignature �. Furthermore, we will use the symbol A to

denote the carrier of A.

10

Speci�cally, Proposition 19, Lemma 20, Proposition 21, and Proposition 31. Also, what we give

as a characterization of constructors in Theorem 24 is a special case of the de�nition of constructors

in [TR98].

22

De�nition 18 The (�

1

[�

2

)-algebra F is a fusion of the �

1

-algebra A

1

and the

�

2

-algebra A

2

i� F

�

1

is �

1

-isomorphic to A

1

and F

�

2

is �

2

-isomorphic to A

2

.

We will denote by Fus(A

1

;A

2

) the set of all the fusions of A

1

and A

2

. By

the above de�nition, it is immediate that Fus(A

1

;A

2

) = Fus(A

2

;A

1

) and that

Fus(A

1

;A

2

) is closed under (�

1

[�

2

)-isomorphism.

11

In essence, a fusion of A

1

and A

2

, if it exists, is an algebra that is identical to A

1

when seen as a �

1

-algebra, and identical to A

2

when seen as a �

2

-algebra. We can

show that two algebras admit a fusion exactly when they have the same cardinality

and interpret in the same way the symbols shared by their signatures.

Proposition 19 Let A be a �

1

-algebra, B a �

2

-algebra, and � := �

1

\ �

2

. Then,

Fus(A;B) 6= ; i� A

�

is �-isomorphic to B

�

.

Proof. ()) Let F 2 Fus(A;B). By de�nition we have that A

�

=

F

�

1

and B

�

=

F

�

2

.

From the fact that � � �

1

and � � �

2

it follows immediately that A

�

�

=

F

�

and

B

�

�

=

F

�

, which implies that A

�

�

=

B

�

.

(() Let h be an arbitrary �-isomorphism of A

�

onto B

�

. Consider a (�

1

[�

2

)-

structure F whose carrier is the carrier B of B, and which interprets the function

symbols of �

1

[�

2

as follows: for all g 2 �

1

[�

2

of arity n � 0 and all b

1

; : : : ; b

n

2 B,

g

F

(b

1

; : : : ; b

n

) :=

�

h(g

A

(h

�1

(b

1

); : : : ; h

�1

(b

n

))) if g 2 (�

1

n�

2

)

g

B

(b

1

; : : : ; b

n

) if g 2 �

2

Intuitively, F interprets �

2

-symbols as B does. For �

1

-symbols that are not also

�

2

-symbols, the isomorphism h is used to transfer their interpretation from A to B.

By construction of F , it is immediate that B and F

�

2

are isomorphic (with the

identity mapping as isomorphism). We prove below that h is a �

1

-isomorphism of

A onto F

�

1

. It will then follow from De�nition 18 that F is a fusion of A and B.

Since we already know that h is a bijection, it remains to be shown that it is a

�

1

-homomorphism. If g is an n-ary function symbol of �

1

n�

2

and a

1

; : : : ; a

n

2 A,

then

h(g

A

(a

1

; : : : ; a

n

)) = h(g

A

(h

�1

(h(a

1

); : : : ; h

�1

(h(a

1

)a

n

)))) (by def. of inverse)

= g

F

(h(a

1

); : : : ; h(a

n

)) (by def. of g

F

):

If g is an n-ary function symbol of � = �

1

\ �

2

and a

1

; : : : ; a

n

2 A, then

h(g

A

(a

1

; : : : ; a

n

)) = g

B

(h(a

1

); : : : ; h(a

n

)) (since h is a hom.)

= g

F

(h(a

1

); : : : ; h(a

n

)) (by def. of g

F

):

ut

11

We must point out, however, that Fus(A

1

;A

2

) may contain non-isomorphic structures.

23

If A

1

and A

2

are two algebras and h is a isomorphism between their �-reducts

(with � being the intersection of their signatures), we will call canonical fusion of

A

1

and A

2

with respect to h the fusion of A

1

and A

2

constructed exactly as in the

proof above.

Fusions of algebras have a close link with unions of theories, which we will exploit

later.

Lemma 20 If E

1

; E

2

are two equational theories of signature �

1

;�

2

, respectively,

and F is a fusion of a model of E

1

and a model of E

2

, then F is a model of E

1

[E

2

.

Proof. By the de�nition of fusion it is immediate that F

�

1

models every sentence

in E

1

while F

�

2

models every sentence in E

2

; therefore, F models every sentence of

E

1

[E

2

. ut

Conversely, it is also easy to see that every model of E

1

[E

2

is the fusion of a

model of E

1

and a model of E

2

(see [TR98] for a proof).

In the presence of certain conditions, the test for satis�ability in a fusion of two

algebras can be reduced to a \local" satis�ability test in each of the algebras. For i =

1; 2, consider a �

i

-algebra A

i

and an arbitrary �

i

-formula '

i

, and let � := �

1

\�

2

.

Obviously, if we know that the joint formula '

1

^ '

2

is satis�able in a fusion of A

1

and A

2

, we also know that '

1

is satis�able in A

1

and '

2

is satis�able in A

2

.

What about the converse? Assume we know that '

1

is satis�able in A

1

and '

2

is

satis�able in A

2

. Under which additional conditions can we conclude that '

1

^'

2

is

satis�able in a fusion of A

1

and A

2

? Intuitively, and speaking modulo isomorphism,

we know from the de�nition of fusion that, for i = 1; 2, a valuation �

i

of Var('

i

)

that makes '

i

true in A

i

will also make '

i

true in every element of Fus(A

1

;A

2

). For

'

1

^ '

2

to be satis�able in an element of Fus(A

1

;A

2

), however, it is necessary that

�

1

and �

2

agree on the values they assign to the variables shared by '

1

and '

2

. The

problem is that, in general, we cannot tell whether there exist valuations �

1

and �

2

that agree on the shared variables. One case in which we can is described by the

proposition below.

Proposition 21 Let A

1

be a �

1

-algebra and and A

2

be a �

2

-algebra, and � :=

�

1

\�

2

. Assume that their reducts A

1

�

and A

2

�

are both free in the same �-variety

and their respective sets of generators Y

1

and Y

2

have the same cardinality. If '

i

is

satis�able in A

i

with the variables in Var('

1

) \ Var('

2

) taking distinct values over

Y

i

for i = 1; 2, then there is a fusion of A

1

and A

2

in which '

1

^ '

2

is satis�able.

Proof. Let U := Var('

1

) \ Var('

2

). Then for i = 1; 2, consider a valuation �

i

:

Var('

i

) �! A

i

such that A

i

; �

i

j= '

i

, and whose restriction to U is an injection

24

of U into Y

i

. Where �

1

(U) denotes the image of U under �

1

, consider the map

f : �

1

(U) �! Y

2

such that

f(�

1

(v)) = �

2

(v) for all v 2 U:

Since f is injective by construction and Y

1

and Y

2

have the same cardinality, f can

be extended to a bijection f

0

of Y

1

onto Y

2

. Now, by assumption the algebras A

1

�

and A

2

�

are free in the same variety. By well-known results from Universal Algebra

(see, e.g., [BN98], Theorem 3.3.3) then, f

0

, which is a bijection between their sets

of generators, can be extended to a �-isomorphism h between the two algebras. It

follows by Proposition 19 that Fus(A

1

;A

2

) is nonempty.

Let F be the canonical fusion of A

1

and A

2

with respect to h.

12

Then let

� : Var('

1

^ '

2

) �! F be a valuation such that

�(v) :=

�

h(�

1

(v)) if v 2 Var('

1

)

�

2

(v) if v 2 Var('

2

)

Notice that � is well-de�ned because by construction h(�

1

(v)) = �

2

(v) for all v 2

Var('

1

) \ Var('

2

). We show that F ; � j= '

1

^ '

2

, which will prove the claim.

We know from the proof of Proposition 19 that h is actually a �

1

-isomorphism

of A

1

onto F

�

1

. Similarly, the identity map between the carriers of A

2

and F is a

�

2

-isomorphism of A

2

onto F

�

2

. From this it is easy to see that

F

�

1

; h � �

1

j= '

1

and F

�

2

; �

2

j= '

2

:

From the de�nition of � (and of reduct) it follows immediately that F ; � j= '

1

and

F ; � j= '

2

. Therefore, F ; � j= '

1

^ '

2

. ut

Notice that the proposition does not require that the whole algebras be free but

just their reducts to the common signature. In the following, however, we will be

interested in countably generated E

i

-free �

i

-algebras (i = 1; 2) whose reducts to the

common signature � := �

1

\ �

2

are free for the same variety, and over a countably

in�nite set of generators. In the next subsection then, we will �rst develop criteria

that make sure that the reduct of a free algebra is again free.

5.2 Theories Admitting Constructors

In general, the property of being a free algebra is not preserved under signature

reduction. The problem is that the reduct of an algebra may need more generators

than the algebra itself. For example, consider the signature
 := fp; sg and the

equational theory E axiomatized by the equations

E := fx � p(s(x)); x � s(p(x))g : (1)

12

Recall that, by construction, F and A

2

have the same carrier.

25

The integers Z are a free model of E over a set of generators of cardinality 1 when s

and p are interpreted as the successor and the predecessor function, respectively. In

fact, any singleton set of integers is a set of free generators for Z. The number zero,

for instance, generates all the positive integers with the successor function and the

negative ones with predecessor function. Now, if � := fsg, then Z

�

is de�nitely not

free because it does not even admit a non-redundant set of generators,

13

which is a

necessary condition for an algebra to be free.

Nonetheless, there are free algebras some of whose reducts, although requiring a

possibly larger set of generators, are still free. These algebras are models of equa-

tional theories that admit constructors in the sense explained below.

In the following,
 will be an at most countably in�nite functional signature, and

� a subset of
. For a given equational theory E over
 we de�ne the �-restriction

of E as E

�

:= fs � t j s; t 2 T (�; V) and s =

E

tg:

De�nition 22 (Constructors) The subsignature � of
 is a set of constructors

for E if the following two properties hold:

1. The �-reduct of the countably in�nitely generated E-free
-algebra is an E

�

-

free algebra.

2. E

�

is collapse-free.

De�nition 22 is a rather abstract formulation of our requirements on the theory E.

In the following, we develop a more concrete characterization of theories admitting

constructors. In particular, this characterization will make it easier to show that a

given theory admits constructors. But �rst, we must introduce some more notation.

Given a subset G of T (
; V), we denote by T (�; G) the set of terms over the

\variables" G. More precisely, every member of T (�; G) is obtained from a term

s 2 T (�; V) by replacing the variables of s with terms from G. To express this

construction we will denote any such term by s(�r) where �r is the tuple made, without

repetitions, of the terms ofG that replace the variables of s. Notice that this notation

is consistent with the fact that G � T (�; G). In fact, every r 2 G can be represented

as s(r) where s is a variable of V . Also notice that T (�; V) � T (�; G) whenever

V � G. In this case, every s 2 T (�; V) can be trivially represented as s(�v) where �v

are the variables of s.

For every equational theory E over the signature
 and every subset � of
, we

de�ne the following subset of T (
; V):

G

E

(�; V) := fr 2 T (
; V) j r 6=

E

f(

�

t) for all f 2 � and

�

t in T (
; V)g:

13

A set of generators for an algebra A is redundant if one of its proper subsets is also a set of

generators for A.

26

In essence, G

E

(�; V) is made, modulo E equivalence, of
-terms whose top symbol is

not in �. We will show that, if � is a set of constructors for E, then G

E

(�; V) deter-

mines a set of free generators for the �-reduct of the countably in�nitely generated

E-free algebra.

But �rst, let us prove the following properties of G

E

(�; V).

Lemma 23 Let E be an equational theory over
 and � �
.

1. G

E

(�; V) is closed under equivalence in E;

2. G

E

(�; V) is nonempty i� V � G

E

(�; V);

3. If V � G

E

(�; V), then E

�

is collapse-free.

Proof. Let G := G

E

(�; V).

(1) Let r 2 G. Then, any t 2 T (
; V) such that t =

E

r is an element of G.

Otherwise, there would be a term t

0

2 T (
; V) such that t

0

=

E

t and t

0

(�) 2 �. But

then we would also have that t

0

=

E

r, against the assumption that r 2 G.

(2) Since V is assumed to be countably in�nite, V � G obviously implies that

G is nonempty. We prove the other direction by proving its contrapositive. Assume

that there exists a variable v 2 V nG. By de�nition of G then, there exists an f 2 �

and a tuple

�

t of
-terms such that v =

E

f(

�

t). Now consider any r 2 T (
; V). By

applying the substitution fv 7! rg to the equation v � f(

�

t), we obtain a tuple of

-terms

�

t

0

such that r =

E

f(

�

t

0

), which means that r 62 G. From the generality of r

it follows that G is empty.

(3) Again, we prove the contrapositive. Assume that E

�

is not collapse-free.

Then there exists a non-variable �-term s and a variable v 2 V such that v =

E

� s.

By de�nition of G this implies that v 62 G, and thus V 6� G. ut

Theorem 24 (Characterization of constructors) Let � �
, E a non-trivial

equational theory over
, and G := G

E

(�; V). Then � is a set of constructors for E

i� the following holds:

1. V � G.

2. For all t 2 T (
; V), there is an s(�r) 2 T (�; G) such that

t =

E

s(�r):

3. For all s

1

(�r

1

); s

2

(�r

2

) 2 T (�; G),

s

1

(�r

1

) =

E

s

2

(�r

2

) i� s

1

(�v

1

) =

E

s

2

(�v

2

);

where �v

1

; �v

2

are fresh variables abstracting �r

1

; �r

2

so that two terms in �r

1

; �r

2

are

abstracted by the same variable i� they are equivalent in E.

27

Proof. Let A be an E-free
-algebra with the countably in�nite set of generators

X. Where � is any bijective valuation of V onto X,

14

let

Y := f[[r]]

A

�

j r 2 Gg:

(() Assume that the three conditions in the formulation of the theorem are

satis�ed. We show that E

�

is collapse-free and A

�

is E

�

-free with generators Y .

By Lemma 23(3), the assumption that V � G implies that E

�

is collapse-free.

To show that A

�

is E

�

-free we start by observing that, since A is a model of

E, its reduct A

�

is a model of E

�

. Next, we show that A

�

is generated by Y . In

fact, let a be an element of A|which is also the carrier of A

�

. We know that as

an
-algebra A is generated by X; thus there exists a term t 2 T (
; V) such that

a = [[t]]

A

�

. By condition (2), the term t 2 T (
; V) is equivalent modulo E to a term

s(�r) 2 T (�; G). Since A is a model of E, this implies that a = [[t]]

A

�

= [[s(�r)]]

A

�

, from

which it easily follows by de�nition of Y that a is �-generated by Y .

The above entails that A

�

satis�es the �rst two conditions of Proposition 1. To

show that it is E

�

-free then it is enough to show that it also satis�es the third

condition of the same proposition.

Thus, let s

1

(�v

1

); s

2

(�v

2

) 2 T (�; V) and assume that A

�

; �

0

j= s

1

(�v

1

) � s

2

(�v

2

) for

some injection �

0

of V

0

:= Var(s

1

(�v

1

) � s

2

(�v

2

)) into Y . By de�nition of Y we know

that, for all v 2 V

0

, there is a term r

v

2 G such that �

0

(v) = [[r

v

]]

A

�

. Using these

terms we can construct two tuples �r

1

and �r

2

of terms in G such that, for i = 1; 2,

the term s

i

(�r

i

) is obtained from s

i

(�v

i

) by replacing each variable v in Var(s

i

(�v

i

)) by

the term r

v

, and A; � j= s

1

(�r

1

) � s

2

(�r

2

). Since A is E-free with generators X and �

is injective as well we can conclude by Proposition 1(3) that s

1

(�r

1

) =

E

s

2

(�r

2

).

Since �

0

is injective, we know that r

u

6=

E

r

v

for distinct variables u; v 2 V

0

. Thus,

considered the other way round, the equation s

1

(�v

1

) � s

2

(�v

2

) can be obtained from

s

1

(�r

1

) � s

2

(�r

2

) by abstracting the terms �r

1

; �r

2

such that two terms are abstracted by

the same variable i� they are equivalent modulo E. Thus, we can apply condition

(3) to obtain s

1

(�v

1

) =

E

s

2

(�v

2

). Since the terms s

1

(�v

1

); s

2

(�v

2

) are �-terms, this is the

same as saying that s

1

(�v

1

) =

E

� s

2

(�v

2

).

()) Now assume that � is a set of constructors for E, which implies that A

�

is

E

�

-free for some set Z of generators. First, notice that Z cannot be the empty set.

Otherwise, the
-algebra A would also be generated by the empty set, contradicting

our assumption that the theory E is non-trivial. In fact, take an arbitrary element

x from the (countably in�nite) set of generators X of A. If A is also generated by

the empty set, then there exists a ground term s (i.e., a term without variables)

such that x = [[s]]

A

�

.

15

Where v 2 V is such that �(v) = x, the identity x = [[s]]

A

�

14

Such a valuation � exist since V is assumed to be countably in�nite.

15

Since s is a ground term, the value [[s]]

A

�

does not depend on �.

28

entails that A; � j= v � s, and so, by Proposition 1(3), that v =

E

s. Since s does

not contain v, this implies that any term is equivalent in E to s, i.e., E is trivial.

Next, we prove that Z = Y . Ad absurdum, assume that Y nZ is nonempty and

let y 2 Y nZ. Since A is
-generated by X and A

�

is �-generated by Z, we know

that there exist a non-variable �-term s and a tuple

�

t of
-terms such that [[t

i

]]

A

�

2 Z

for all elements t

i

of

�

t and y = [[s(

�

t)]]

A

�

. By de�nition of Y we know that there is

a term r 2 G such that y = [[r]]

A

�

. As A is E-free and � is injective, we can then

conclude by Proposition 1(3) that r =

E

s(

�

t), but then r cannot be in G. It follows

that Y � Z.

To show the other inclusion, consider a generator z 2 Z. We prove below that

z 2 Y and so Z � Y . Since A is
-generated by X, there exists an
-term r such

that z = [[r]]

A

�

. If r 62 G, there exists a function symbol f 2 � and a tuple of

-terms

�

t such that r =

E

f(

�

t). Since the elements of the tuple

�

t are all �-generated

by Z, there is a variable v, a non-variable �-term s, and an injective mapping �

0

of

Var(s)[fvg into Z such that �

0

(v) = z = [[s]]

A

�

�

0

.

16

As A

�

is E

�

-free with generators

Z, we obtain that v =

E

� s. But this contradicts the fact that E

�

is collapse-free. It

follows that r 2 G, which implies that z 2 Y by de�nition of Y .

In conclusion, we have shown that Z is nonempty and coincides with Y =

f[[r]]

A

�

j r 2 Gg. In particular, this means that G is nonempty either. The �rst

condition in the formulation of the theorem then follows directly from Lemma 23(2).

The second condition follows from the fact that A

�

is �-generated by Z. Similarly,

the third condition follows from Proposition 1(3). ut

The proof of the theorem provides a little more information than stated in the

formulation of the theorem.

Corollary 25 Let � be a set of constructors for E, A an E-free
-algebra with the

countably in�nite set of generators X, and � a bijective valuation of V onto X. Then

the reduct A

�

is an E

�

-free algebra with generators Y := f[[r]]

A

�

j r 2 G

E

(�; V)g, and

X � Y .

Notice that X � Y is an immediate consequence of V � G

E

(�; V).

Condition 2 of Theorem 24 says that, when � is a set of constructors for E, every

-term t is equivalent in E to a term s(�r) 2 T (�; G) where G := G

E

(�; V). We

will call s(�r) a normal form of t in E|in general, a term may have more than one

normal form. We will say that a term t is in normal form if it is already of the form

t = s(�r) 2 T (�; G). Because V � G, it is immediate that �-terms are in normal

form, as are terms in G. We will say that a term t is E-reducible if it is not in normal

form. Otherwise, we will say that it is E-irreducible.

We will make use of normal forms in the extended combination procedure. In

particular, we will consider normal forms that are computable in the following sense.

16

Note that v may be an element of Var(s).

29

De�nition 26 (Computable Normal Forms) Let � be a set of constructors for

the equational theory E over the signature
. We say that normal forms are com-

putable for � and E if there is a computable function

NF

E

�

: T (
; V) �! T (�; G)

such that NF

E

�

(t) is a normal form of t, i.e., NF

E

�

(t) =

E

t.

Notice that De�nition 26 does not entail that the variables of NF

E

�

(t) are included

in the variables of t. However, if V

0

:= Var(NF

E

�

(t)) n Var(t) is nonempty, then

�(NF

E

�

(t)) is also a normal form of t for any injective renaming � of the variables in

V

0

. Consequently, if V

1

is a given �nite subset of V , we can always assume without

loss of generality that Var(NF

E

�

(t)) n Var(t) and V

1

are disjoint.

17

As a rule then we

will always assume that the variables occurring in a normal form NF

E

�

(t) but not in

t, if any, are fresh variables.

An important consequence of De�nition 26|to which we will appeal in proving

the termination of the extended combination procedure|is that, when normal forms

are computable for � and E, it is always possible to tell whether a term is in normal

form or not.

Proposition 27 Let � be a set of constructors for the equational theory E over the

signature
 and assume that normal forms are computable for � and E. Then, the

E-reducibility of terms in T (
; V) is decidable.

Proof. Observe that any t 2 T (
; V) can be seen as having the form s(�r) where s

is a �-term and �r are terms whose top symbols are not in �. From the de�nition

of normal form it is immediate that s(�r) is in normal form exactly when every

components of �r is in G. But being a member of G is a decidable property of
-

terms: to test whether any r 2 T (
; V) is in G, it is enough to compute NF

E

�

(r)

and look at its top symbol. In fact,

r 2 G i� NF

E

�

(r)(�) 62 �:

To see that �rst notice that, by the de�nition of G, if NF

E

�

(r) starts with a �-symbol

then r 62 G. Now, if NF

E

�

(r) does not start with a �-symbol, since it is a term in

T (�; G) it must be an element of G, r

0

say. But then, by de�nition of NF

E

�

, r and

r

0

are equivalent in E, which entails that r 2 G by Lemma 23(1). ut

We provide below two examples of equational theories admitting constructors

in the sense of De�nition 22. But �rst, let us consider some immediate counter-

examples:

17

Otherwise, we apply an appropriate renaming that produces a normal form of t satisfying such

disjointness condition.

30

� The signature � :=
 := ffg is not a set of constructors for the theory E

axiomatized by fx � f(x)g because De�nition 22(2) is not satis�ed.

� The signature � := ffg � ff; gg =:
 is not a set of constructors for the theory

E axiomatized by fg(x) � f(g(x))g because Theorem 24(2) is not satis�ed.

In fact, the term g(x) does not have a normal form. (The signature ff; gg,

however, is a set of constructors for the same theory.)

� Finally, take
 := ff; gg and � := ffg and consider the theory E := ff(g(x)) �

f(f(g(x)))g. Then we have G

E

(�; V) = V [fg(t) j t 2 T (
; V)g. It is easy

to see that conditions (1) and (2) of Theorem 24 hold. However, condition (3)

does not hold since f(g(x)) =

E

f(f(g(x))), although f(y) 6=

E

f(f(y)).

Example 28 The theory of the natural numbers with addition is the most imme-

diate example of a theory with constructors. Consider the signature �

1

:= f0; s;+g

and the equational theory E

1

axiomatized by the equations below:

x + (y + z) � (x + y) + z;

x + y � y + x;

x+ s(y) � s(x + y);

x + 0 � x:

(2)

The signature � := f0; sg is a set of constructors for E

1

in the sense of De�nition 22.

Instead of showing this directly, we prove that the three conditions of Theorem 24

are satis�ed.

First observe that the �rst two equations of E

1

de�ne associativity and commu-

tativity of +. Let us call the theory axiomatized by these two equations AC. It is

possible to show

18

that orienting the other equations in E

1

from left to right, one

obtains a canonical term rewrite system R modulo AC. Here \modulo AC" means

that, instead of syntactic matching, AC-matching is used when determining whether

a rule is applicable. We denote the rewrite relation induced by R modulo AC by

!

R;AC

. The normal form of a term t w.r.t.!

R;AC

(i.e., the irreducible term reached

by applying !

R;AC

as long as possible starting with t), is unique only modulo AC.

For any t 2 T (
; V), we use t#

R;AC

to denote a normal form of t with respect!

R;AC

.

Because R is canonical modulo AC, any term has a normal form (termination), and

the normal forms of two E

1

-equivalent terms are equivalent modulo AC, that is,

s =

E

1

t i� s#

R;AC

=

AC

t#

R;AC

(Church-Rosser modulo AC).

We claim that G

E

1

(�; V) is the set of
-terms whose normal form w.r.t. !

R;AC

not 0 and does not start with s.

19

In other words, G := G

E

1

(�; V) coincides with

18

For example by employing a term rewriting laboratory like REVEAL.

19

Note that this property is invariant under AC, i.e., whether it is satis�ed or not does not depend

on which representative of the AC-class of the normal form is taken.

31

the set

G

0

:= ft 2 T (
; V) j t#

R;AC

(�) 62 �g:

From the fact that t =

E

t#

R;AC

, it follows immediately that G � G

0

. To prove that

G

0

� G we show that no term not in G is in G

0

.

If t 62 G, then t is equivalent in E

1

to a term t

0

where t

0

is either 0 or starts with

s. Since t and t

0

have the same normal form (modulo AC) it is enough to show that

t

0

#

R;AC

(�) 2 �. This is immediate if t

0

is 0 because 0#

R;AC

is obviously 0. If t

0

starts

with s, notice that, since the left-hand sides of the rules in R do not start with s,

there cannot be a rewrite at the top of t

0

(or any of its descendants). In addition,

the equations from AC do not contain s at all. It follows that t

0

#

R;AC

starts with s

as well. This completes the proof of G

0

= G

E

1

(�; V).

Now, it is immediate that v 2 G

0

for all variables v 2 V as v#

R;AC

= v. Hence,

Theorem 24(1) is satis�ed by E

1

and �.

To see that Theorem 24(2) is satis�ed it is enough to show that t#

R;AC

2 T (�; G

0

)

for all t 2 T (
; V). This is immediate if t#

R;AC

2 T (�; ;) [G

0

. Otherwise is is easy

to show that t#

A

C = s

n

(r) where n � 1 and r is not 0 and does not start with

s. Since any subterm of an irreducible term is irreducible as well, we know that

r#

R;AC

= r. Thus, r 2 G

0

by de�nition of G

0

, and so t#

R;AC

2 T (�; G

0

).

To see that Theorem 24(3) is satis�ed, �rst observe that (again a consequence of

the fact that s does not occur at the top in the left-hand sides of the rewrite rules)

s

n

(r)#

R;AC

= s

n

(r#

R;AC

) for all n � 0 and terms r.

Now let t

1

; t

2

2 T (�; G

0

) be such that t

1

=

E

1

t

2

. We know that each t

i

has

the form s

n

i

(r

i

) where n

i

� 0 and r

i

does not start with the symbol s. Since R is

canonical modulo AC, t

1

=

E

1

t

2

implies that s

n

1

(r

2

)#

R;AC

=

AC

s

n

2

(r

2

)#

R;AC

. As seen

before s

n

i

(r

i

)#

R;AC

= s

n

1

(r

i

#

R;AC

) for i = 1; 2, and r

i

#

R;AC

does not start with s. It

follows that n

1

= n

2

, and thus r

1

#

R;AC

=

AC

r

2

#

R;AC

, which entails that r

1

=

E

1

r

2

.

Abstracting then r

1

and r

2

by the same variable v in the equation s

n

1

(r

1

) � s

n

1

(r

2

)

we obtain the equation s

n

1

(v) � s

n

1

(v), which is trivially valid in E

1

.

Note that the restriction of E

1

to � (i.e., the theory E

1

�

) is the syntactic equality

of �-terms. This is an immediate consequence of the fact that the rules in R and

the equations in AC cannot be applied to terms that do not contain +.

Example 29 Consider the signature �

2

:= f0; s;mod2g and the equational theory

E

2

axiomatized by the equations below:

mod2(0) � 0;

mod2(s(0)) � s(0);

mod2(s(s(x))) � mod2(x);

mod2(mod2(x)) � mod2(x):

(3)

32

The signature � := f0; sg is a set of constructors for E

2

in the sense of De�nition 22.

As in the previous example we can show that the three conditions of Theorem 24.

Here we can use the fact that orienting the equations from left to right yields a

canonical term rewriting system.

20

As in the previous example, the restriction of E

2

to � (i.e., the theory E

2

�

) is the syntactic equality of �-terms.

The next example di�ers from the previous ones in that the restriction of the

theory to the constructor signature is no longer syntactic equality.

Example 30 Consider the signature �

3

:= f0; 1; rev; �g and the equational theory

E

3

axiomatized by the equations below:

x � (y � z) � (x � y) � z;

rev(0) � 0;

rev(1) � 1;

rev(x � y) � rev(y) � rev(x);

rev(rev(x)) � x:

(4)

Note that orienting the equations from left to right yields a canonical term rewriting

system R

3

. We denote the normal form of a term t w.r.t. this rewrite system by

t#

R

3

.

We claim that the signature �

0

:= f0; 1; �g is a set of constructors for E

3

in the

sense of De�nition 22. Again, we prove this by showing that the three conditions of

Theorem 24 are satis�ed.

First, we show that G := G

E

(�

0

; V) is equal to

G

0

:= frev

k

(v) j v 2 V and k � 0g:

Assume that s 62 G. Then s is E

3

-equivalent to 0 or 1, or it is of the form s

1

� s

2

.

If we analyze the rules in R

3

, and take into account that the R

3

-normal forms of

E

3

-equivalent terms are equal, then we see that the R

3

-normal form of s is 0 or 1, or

has top symbol �. Since the R

3

-normal form of any term in G

0

is either v or rev(v),

this shows that s 62 G

0

, and thus G

0

� G.

Conversely, assume that s 2 G nG

0

, and let s be minimal with this property. Since

s(�) 2 �

0

would contradict our assumption that s 2 G, we know that s = rev(s

0

) for

a term s

0

. Obviously, s

0

62 G

0

since otherwise s 2 G

0

as well. In addition, since s

was assumed to be a minimal term in G nG

0

, we know that s

0

2 G. However, this

means that s

0

=

E

1

t for a term t with t(�) 2 �

0

. But then the rules of R

3

can be

applied to rev(t) such that the resulting term has its top symbol in �

0

as well. Since

20

Termination should be clear and conuence can easily be checked by computing all critical

pairs.

33

s =

E

3

rev(t), this contradicts our assumption that s 2 G. Thus, we have shown that

G � G

0

.

Now it is immediate from the de�nition of G

0

that V � G

0

, and thus Theo-

rem 24(1) is satis�ed by E

3

and �

0

.

To see that Theorem 24(2) is satis�ed, it is su�cient to show that the R

3

-normal

form of any term t 2 T (�

3

; V) is of the form

t#

R

3

= (� � � ((r

1

� r

2

) � r

3

) � � � � � r

k

)

where r

i

2 f0; 1g[V [frev(v) j v 2 V g. This can easily be proved by showing that,

to any term not in this form, one of the rules of R

3

applies.

To see that Theorem 24(3) holds, we consider a term s(�r) 2 T (�

0

; G), that is

s(�v) is a �

0

-term and any r in the tuple �r belongs to G. It is easy to see that the

R

3

-normal form of s(�r) can be obtained by computing the normal form of s(�v) w.r.t.

the rule x � (y � z) ! (x � y) � z, and then inserting into this term the normal forms

of the terms in �r w.r.t. the rule rev(rev(x)) ! x. Now, Theorem 24(3) is an easy

consequence of this fact.

5.3 Combination of Theories Sharing Constructors

For the next results, in which we go back to the problem of combining equational

theories, we will consider two non-trivial equational theories E

1

, E

2

with respective

signatures �

1

;�

2

such that

� � := �

1

\ �

2

is a set of constructors for E

1

and for E

2

, and

� E

1

�

= E

2

�

.

The theories E

1

; E

2

introduced in the above examples satisfy these conditions. In

fact, we have already seen that � is a set of constructors for E

1

and for E

2

, and

E

1

�

= E

2

�

is syntactic equality of �-terms.

For i = 1; 2, let A

i

be an E

i

-free �

i

-algebra with a countably in�nite set X

i

of generators,

21

and let Y

i

:= f[[r]]

A

i

�

i

j r 2 G

E

(�

i

; V)g; where �

i

is any bijective

valuation of V onto X

i

.

Proposition 31 Let '

1

; '

2

be two arbitrary �rst-order formulas of respective signa-

ture �

1

;�

2

. If '

i

is satis�able in A

i

with Var('

1

) \ Var('

2

) taking distinct values

over Y

i

for i = 1; 2, then '

1

^ '

2

is satis�able in E

1

[E

2

.

21

A

i

exists because E

i

is non-trivial.

34

Proof. Let E

0

:= E

1

�

(= E

2

�

). By Corollary 25, A

i

�

is E

0

-free with generators

Y

i

for i = 1; 2. Moreover, Y

1

and Y

2

have the same cardinality because, for i =

1; 2, X

i

� Y

i

� A

i

by construction of Y

i

and X

i

and A

i

are countably in�nite by

assumption. By Proposition 21 then '

1

^ '

2

is satis�able in a fusion of A

1

and A

2

,

which is a model of E

1

[E

2

by Lemma 20. ut

Again, note that '

1

and '

2

in the proposition above are arbitrary formulae.

Therefore, if we take both of them to be the disequation x 6� y we immediately

obtain the following corollary.

Corollary 32 If E

1

and E

2

satisfy the above assumptions, then E

1

[E

2

is non-

trivial.

In the following we will show that, under the assumptions on E

1

; E

2

stated at the

beginning of this subsection, the signature � := �

1

\�

2

is also a set of constructors

for E := E

1

[E

2

, and E

�

= E

1

�

= E

2

�

. In addition, if the word problem for E

i

is decidable and normal forms are computable for � and E

i

(i = 1; 2), then normal

forms are also computable for � and E.

We start by showing that E is a conservative extension of both E

1

and E

2

.

Proposition 33 For all j 2 f1; 2g and t

1

; t

2

2 T (�

j

; V)

t

1

=

E

j

t

2

i� t

1

=

E

t

2

:

Proof. The implication from left to right is immediate since E

j

� E. For the

converse, assume that j = 2 (the proof for j = 1 is symmetrical), and let t

1

; t

2

2

T (�

2

; V) such that t

1

=

E

t

2

.

Then, for i = 1; 2, let A

i

be the E

i

-free algebra with the countably in�nite set of

generators X

i

. In the proof of Proposition 31 we have already seen that (under the

given assumptions) A

1

�

and A

2

�

are isomorphic. Consider the canonical fusion F of

A

1

and A

2

w.r.t. some isomorphism h of A

1

�

onto A

2

�

, and recall that F

�

2

= A

2

.

Now, since t

1

=

E

t

2

and F is a model of E, we have that F ; � j= t

1

� t

2

for

any valuation � of Var(t

1

� t

2

) into F (= A

2

). In particular, we can choose �

to be an injection into X

2

. Observing that t

1

; t

2

are �

2

-terms we then have that

A

2

; � j= t

1

� t

2

. It follows by Proposition 1 that t

1

=

E

2

t

2

. ut

From the above result it is almost trivial to show the following.

Corollary 34 E

�

= E

1

�

= E

2

�

.

To show that � is a set of constructors for E

1

[E

2

, we will show that the three

conditions in Theorem 24 are satis�ed. Before we can do that, we need an appropriate

characterization of G

E

(�; V). We will show that, modulo E, this set is identical to

the set G

0

de�ned below.

35

De�nition 35 For i = 1; 2, let G

i

:= G

E

i

(�; V). The set G

0

is inductively de�ned

as follows:

1. Every variable is an element of G

0

, that is, V � G

0

.

2. Assume that r(�v) 2 G

i

for i 2 f1; 2g and �r is a tuple of elements of G

0

such

that the following conditions are satis�ed:

(a) r(�v) 6=

E

v for all variables v 2 V ;

(b) r

k

(�) 62 �

i

for all components r

k

of �r;

(c) the tuple �v consists of all variables of r without repetitions;

(d) the tuples �v and �r have the same length;

(e) r

k

6=

E

r

`

if r

k

; r

`

occur at di�erent positions in the tuple �r.

Then r(�r) 2 G

0

.

Notice that G

i

� G

0

for i = 1; 2 because the components of �r above can also be

variables. Also notice that an element of G

0

cannot have a shared symbol (i.e., a

symbol in �) as top symbol since it is a variable or it \starts" with an element of

G

i

.

Lemma 36 For all t 2 T (�

1

[�

2

; V), there exists a term s(�r) 2 T (�; G

0

) such that

t =

E

s(�r), and this term can be e�ectively computed from t.

Proof. In order to show that s(�r) is computable, we will need to know that the

word problem for E is decidable. In the next section we will show that, under the

assumptions on E

i

made above, this is in fact the case (see Theorem 51). We prove

the claim by term induction.

(Base case) If t 2 V then t 2 G

0

, and thus the claim is trivially true.

(Induction step) Let t 2 T (�

1

[�

2

; V) nV . If t 2 T (�

i

; V) for i = 1 or i = 2,

then we can simply compute the normal for � and E

i

, which does the job since

G

i

� G

0

.

Otherwise, t has the form t

1

(

�

t), where t

1

2 T (�

i

; V) nV for i = 1 or i = 2, and

�

t is a tuple with at least one nonvariable term and such that the top symbol of no

term in

�

t is in �

i

. For simplicity, let us assume that

�

t has length 1 and i = 1. (The

proof for the general case is an easy generalization of what follows.)

Therefore, let

�

t = t

2

and so t = t

1

(t

2

). We know that t

2

is a nonvariable term with

top symbol in �

2

n�

1

. By the induction hypothesis there is a term t

3

2 T (�; G

0

)

e�ectively computable from t

2

and such that t

2

=

E

t

3

. This means that t =

E

t

1

(t

3

).

If t

3

is a variable then t

1

(t

3

) 2 T (�

1

; V) and so we can prove the claim as before.

36

Therefore, assume that t

3

is not a variable (and is not equivalent to one in E).

22

Since t

3

2 T (�; G

0

), there exists a �-term s

3

(�u

3

) and a tuple �r

3

of elements of G

0

such that t

3

= s

3

(�r

3

).

For components r of �r

3

we distinguish three cases. If r is a variable, then r 2 G

0

and r(�) 62 �

1

. If r(�) 2 �

2

, then r 2 G

0

also implies r(�) 62 �

1

by de�nition of G

0

.

If r(�) 2 �

1

, then r 2 G

0

and the de�nition of G

0

imply that r is of the form br(�r

4

)

where br(�u

4

) is a �

1

-term and the components of �r

4

are elements of G

0

whose top

symbol does not belong to �

1

. From this it is clear that the decomposition of r into

the form br(�r

4

) can be e�ectively computed.

As an easy consequence of the above case distinction we can represent t

3

in the

form t

3

=

E

t

4

(�r) where t

4

(�u) is a �

1

-term and the components of �r are elements of

G

0

whose top symbol does not belong to �

1

. In addition, since the word problem

for E is decidable and E is nontrivial, we can assume without loss of generality that

di�erent positions in the tuple �r are occupied by terms that are not equivalent in

E, and that a nonvariable component of �r is not equivalent in E to a variable.

23

To

sum up, we have that

t =

E

t

1

(t

4

(�u))[�u=�r];

where t

1

(t

4

(�u)) is a �

1

-term, and each component of �r is an element of G

0

whose top

symbol does not belong to �

1

.

By our assumption on E

1

, since t

1

(t

4

(�u)) is a �

1

-term, it is possible to compute a

normal form of it for � and E

1

. This normal form is a term s

1

(�r

1

) 2 T (�; G

1

) such

that t

1

(t

4

(�u)) =

E

1

s

1

(�r

1

). Furthermore, we can assume without loss of generality

that: (a) all variables occurring in �r

1

but not in �u are fresh; and (b) if r =

E

v for a

variable v and a component r of �r

1

, then r = v.

24

From the fact that E

1

� E it follows that

t =

E

t

1

(t

4

(�u))[�u=�r] =

E

s

1

(�r

1

)[�u=�r]:

Because of the way s

1

(�r

1

)[�u=�r] was constructed, it is immediate that this term is

computable from t. To complete the proof of the lemma, it remains to show that

s

1

(�r

1

)[�u=�r] 2 T (�; G

0

). To do that it is enough to show that r[�u=�r] 2 G

0

for each

component r of �r

1

.

If r is a variable not occurring in �u, the claim is obvious because r[�u=�r] = r 2 V

and V � G

0

. If r is a variable in �u, then r[�u=�r] is a component of �r and so an element

of G

0

by the above.

22

The second assumption is without loss of generality since E is nontrivial and the word problem

for E is decidable.

23

Because of this assumption we need not have syntactic equality between t

3

and t

4

(�r).

24

Recall that V � G

1

, and that the word problem for E is decidable.

37

Otherwise, r has the form r(�z) where �z are the variables of r with no repetitions.

Observe that assumption (b) above entails that r(�z) 6=

E

v for all v 2 V , and thus

De�nition 35(2a) is satis�ed for r(�z). Now let �r

0

:= �z[�u=�r]. It is easy to see that

each component of �r

0

is an element of G

0

satisfying De�nition 35(2b) (for i = 1).

In fact, each component of �r

0

is either a component of �r or a variable. To see that

De�nition 35(2e) is satis�ed, recall that, �rst, the tuple �r satis�es this property, and

the possible additional variables in �r

0

(i.e., the variables in �z that are not contained

in �u) were assumed to be fresh. It is easy to see that the other conditions of De�ni-

tion 35(2) are satis�ed as well. It follows that r[�u=�r] = r(�z)[�z=�r

0

] 2 G

0

. ut

Lemma 37 For all t 2 G

E

(�; V) there exists r 2 G

0

such that t =

E

r.

Proof. By the previous lemma, there exists s(�r) 2 T (�; G

0

) such that t =

E

s(�r).

The de�nition of G

E

(�; V) implies that s cannot be a nonvariable term, and thus

s(�r) = r for some r 2 G

0

. ut

Lemma 38 G

0

� G

E

(�; V).

Proof. For i = 1; 2, let A

i

be an E

i

-free �

i

-algebra with a countably in�nite set X

i

of generators and let

Y

i

:= f[[r]]

A

i

�

i

j r 2 G

E

i

(�; V)g

where �

i

is any bijective valuation of V onto X

i

. By Corollary 25, A

i

�

is E

i

�

-free

with generators Y

i

and X

i

� Y

i

.

Now let Z

i

:= Y

i

nX

i

and let fX

1;1

; X

1;2

g be a partition of X

1

such that X

1;1

is countably in�nite and Card(X

1;2

) = Card(Z

2

).

25

Similarly, let fX

2;1

; X

2;2

g be

a partition of X

2

such that Card(X

2;2

) = Card(Z

1

) and X

2;1

is countably in�nite.

Then consider 3 arbitrary bijections

h

1

: Z

1

�! X

2;2

; h

2

: X

1;1

�! X

2;1

; h

3

: X

1;2

�! Z

2

:

Observing that fZ

i

; X

i;1

; X

i;2

g is a partition of Y

i

for each i, it is immediate that

h

1

[h

2

[h

3

is a (well-de�ned) bijection of Y

1

onto Y

2

.

Since E

1

�

= E

2

�

by Corollary 34, A

1

�

and A

2

�

are free in the same variety

with sets of generators of the same cardinality. As we have seen in the proof of

Proposition 21, the bijection h

1

[h

2

[h

3

can be extended to a �-isomorphism h of

A

1

�

onto A

2

�

.

Let F be the canonical fusion of A

1

;A

2

w.r.t. h as constructed in the proof

of Proposition 19. Recall that F is a model of E and A

�

2

= A

2

, and let � be

25

This is possible because Z

2

is countable (possibly �nite).

38

an arbitrary bijective valuation of V onto X

2;1

. We will prove later that for all

r 2 G

0

nV ,

[[r]]

F

�

2 Z

2

if r(�) 2 �

2

and [[r]]

F

�

2 X

2;2

if r(�) 2 �

1

(5)

which entails that [[r]]

F

�

2 Y

2

for all r 2 G

0

.

To prove the lemma's claim now let r 2 G

0

and assume by contradiction that

r 62 G

E

(�; V). Then, by the de�nition of G

E

(�; V) and Lemma 36, there is a term

s(�r) 2 T (�; G

0

) with s nonvariable such that r =

E

s(�r). In fact, since r 62 G

E

(�; V)

we know by de�nition of G

E

(�; V) that there is a term f(

�

t) with f 2 � such that

r =

E

f(

�

t). By Lemma 36 we can assume that each term in

�

t is in T (�; G

0

). It

follows that the term f(

�

t) is in T (�; G

0

) as well. Obviously, this term has the form

s(�r) with s nonvariable.

Since F is a model of E, we then have that F ; � j= r � s(�r). Let, v; �v be fresh

variables abstracting r; �r in r � s(�r) so that terms equivalent in E are replaced by

the same variable. Since we know that [[r]]

F

�

2 Y

2

for all r 2 G

0

, it is clear that there

exists an injective valuation � of v; �v into Y

2

such that

F ; � j= v � s(�v):

Since v � s(�v) is a �-equation and F

�

is E

2

�

-free with generators Y

2

, this entails

by Proposition 1 that v =

E

2

� s(�v). However, this is impossible because E

2

�

is

collapse-free by assumption. From the generality of r it follows that G

0

� G

E

(�; V).

We are left with proving that (5) above holds. We will do this by term induction.

(Base case) Assume that r 2 G

E

2

(�; V) nV . First, we show that [[r]]

F

�

2 Y

2

. Since

� is a bijective valuation of V onto X

2;1

, �

2

is a bijective valuation of V onto X

2

, and

X

2;1

� X

2

, there is a term r

0

obtained by a bijective renaming of the variables in r

such that [[r]]

F

�

= [[r

0

]]

A

2

�

2

. It is easy to see that r 2 G

E

2

(�; V) implies r

0

2 G

E

2

(�; V),

and thus [[r

0

]]

A

2

�

2

2 Y

2

by de�nition of Y

2

. We prove by contradiction that [[r]]

F

�

62 X

2

.

In fact, if [[r]]

F

�

2 X

2

, it is easy to show that there is a v 2 V and an injective

valuation � of Var(v � r) into X

2

such that F ; � j= v � r. Recalling that F

�

2

is

E

2

-free with generators X

2

we then obtain by Proposition 1 that v =

E

2

r, which

contradicts the fact that v 6=

E

r by construction of G

0

(see De�nition 35(2a)). It

follows that [[r]]

F

�

2 Z

2

= Y

2

nX

2

.

If r(�v) 2 G

E

1

(�; V) nV , let

�

b be the tuple of values that � assigns, in order, to

the variables in �v. By construction of F , we know that

26

[[r]]

F

�

= r

F

(

�

b) = h(r

A

1

(h

�1

(

�

b))):

Since

�

b contains no repetitions and is included in X

2;1

, we have by construction of h

that h

�1

(

�

b) contains no repetitions and is included in X

1;1

. As we did in the previous

26

The expression h

�1

(

�

b) below denotes the tuple obtained from

�

b by replacing each element b of

�

b by h

�1

(b).

39

case then, we can prove that r

A

1

(h

�1

(

�

b)) 2 Z

1

. By construction of h again this then

implies that [[r]]

F

�

= h(r

A

1

(h

�1

(

�

b))) 2 X

2;2

.

(Induction step) If t 2 G

0

n (G

E

1

(�; V) [G

E

2

(�; V)), then t has the form

r(�v; �r)

where r 2 G

E

i

(�; V) nV with i 2 f1; 2g, �v � V , �r � G

0

nV , �r is nonempty and

r

0

(�) 62 �

i

for all r

0

2 �r. Let

�

b be the tuple of values that � assigns, in order, to the

variables in �v and �c the tuple made, in order, of all the elements [[r

0

]]

F

�

with r

0

2 �r.

If i = 2, then

�

b � X

2;1

by de�nition of � and �c � X

2;2

by induction hypothesis.

It is immediate that

�

b contains no repetitions and has no elements in common with

�c. We claim that �c contains no repetitions either. In fact, assume that [[r

1

]]

F

�

=

[[r

2

]]

F

�

for two distinct r

1

; r

2

2 �r. Then, F ; � j= r

1

� r

2

, which implies, again by

Proposition 1, that r

1

=

E

2

r

2

. This contradicts the fact that the tuple �r must satisfy

De�nition 35(2e). Given these facts, it is easy to show (as in the base case) that

[[r(�v; �r)]]

F

�

2 Z

2

.

If i = 1, by construction of F we know that

r

F

(

�

b; �c) = h(r

A

1

(h

�1

(

�

b); h

�1

(�c))):

Now, observe that

�

b � X

2;1

by de�nition of � and �c � Z

2

by induction hypothesis.

It follows by construction of h that h

�1

(

�

b) � X

1;1

and h

�1

(�c) � X

1;2

. Observing that

�

b and �c do not contain repetitions (and have no common elements) we can prove (as

in the case i = 2 before) that r

A

1

(h

�1

(

�

b); h

�1

(�c)) 2 Z

1

. By construction of h again,

we then �nally have that r

F

(

�

b; �c) 2 X

2;2

which means that [[r]]

F

�

2 X

2

. ut

Theorem 39 Let E

1

, E

2

be two non-trivial equational theories with respective sig-

natures �

1

;�

2

such that

� � := �

1

\ �

2

is a set of constructors for E

1

and for E

2

;

� E

1

�

= E

2

�

;

� the word problem for E

i

is decidable and normal forms are computable for �

and E

i

for i = 1; 2.

Then the following holds:

1. � is a set of constructors for E

1

[E

2

.

2. E

�

= E

1

�

= E

2

�

.

3. Normal forms are computable for � and E.

40

Proof. Point 2 is immediate by Corollary 34. Point 3 is an easy consequence of

Lemma 36 and 38. We prove point 1 by showing that E and � satisfy Theorem 24.

Now, Theorem 24(1) and (2) are an immediate consequence of the de�nition of

G

0

and Lemma 36 and 38. To prove Theorem 24(3) we will use the algebra F and

the valuation � de�ned in the proof of Lemma 38.

Let s

1

(�r

1

); s

2

(�r

2

) be terms in T (�;G

E

(�; V)) and s

1

(�v

1

); s

2

(�v

2

) the terms ob-

tained from them by abstracting E-equivalent elements in �r

1

; �r

2

with the same vari-

able. It is immediate that s

1

(�v

1

) =

E

s

2

(�v

2

) implies s

1

(�r

1

) =

E

s

2

(�r

2

).

Therefore, assume that s

1

(�r

1

) =

E

s

2

(�r

2

). By Lemmas 37 we can assume with

no loss of generality that s

1

(�r

1

); s

2

(�r

2

) 2 T (�; G

0

). Now, since F is a model of E,

s

1

(�r

1

) =

E

s

2

(�r

2

) entails that

F ; � j= s

1

(�r

1

) � s

2

(�r

2

):

Recall that F

�

is E

�

-free with generators Y

2

and [[r]]

F

�

2 Y

2

for all elements of G

0

.

From this it is easy to see that there is an injective valuation � of �v

1

[�v

2

into the

generators of F

�

such that F

�

; � j= s

1

(�v

1

) � s

2

(�v

2

). It follows by Proposition 1 that

s

1

(�v

1

) =

E

�
s

2

(�v

2

), which implies immediately that s

1

(�v

1

) =

E

s

2

(�v

2

). ut

6 An Extended Combination Procedure

In the following, we consider the equational theory E := E

1

[E

2

where, for i = 1; 2,

� E

i

is a non-trivial equational theory over the (countable) signature �

i

;

� � := �

1

\ �

2

is a set of constructors for E

i

;

� the word problem for E

i

is decidable;

� normal forms are computable for � and E

i

.

For now, we do not assume that E

1

�

= E

2

�

, as we did in the previous subsec-

tion. As we will see, such a restriction is not required to show the termination and

soundness properties of the extended combination procedure. It will be used only to

prove the procedure's completeness.

In the previous section, we would have represented the normal form of a term in

T (�

i

; V) (i = 1; 2) as s(�q) where s was a term in T (�; V) and �q a tuple of terms in

G

E

i

(�; V). Considering that G

E

i

(�; V) contains V because of the assumption that

� is a set of constructors, we will now use a more descriptive notation. We will

distinguish the variables in �q from the non-variables terms and write s(�y; �r) instead,

where �y collects the elements of �q that are in V and �r those that are in G

E

i

(�; V) nV .

In Section 4, we have introduced the notion of an abstraction system to prove

some properties of the combination procedure. Now we will view the elements of

41

the abstraction system (i.e., the equations and the initial disequation) as nodes of a

graph whose edges are induced by the relation �.

6.1 Abstraction Systems as Directed Acyclic Graphs

Consider an abstraction system A as de�ned in Section 4. Such a system induces a

graph G

A

:= (A;�) whose set of nodes is A and whose set of edges consists of all

pairs (a

1

; a

2

) 2 A� A such that a

1

� a

2

. According to De�nition 8, G

A

is in fact a

directed acyclic graph (or dag).

27

Assuming the standard de�nition of path between two nodes and of length of a

path in a dag, we de�ne below a notion of height of a node, which measures the

longest possible path from a \root" of the graph to the node. This notion will be

used in the de�nition of our combination procedure, and it will be important for the

termination proof.

De�nition 40 (Node Height) Let G := (N;E) be a dag with �nite sets of nodes

and edges. A node a 2 N is a root of G i� there is no a

0

2 N such that (a

0

; a) 2 E.

28

The function h : N �! N is de�ned as follows. For all a 2 N,

� h(a) = 0, if a is a root of G;

� h(a) equals the maximum of the lengths of all the paths from the roots of G to

a, otherwise.

29

Later, we will appeal to the following easily provable facts about the height

function introduced above.

Lemma 41 The following holds for every �nite dag G and associated height function

h.

1. For all nodes a; b of G, if there is a non-empty path from a to b then h(a) < h(b).

2. Adding an edge from a node of G to another of greater height does not change

the height of any node of G.

3. Removing an edge in G does not increase the height of any node of G (although

it may decrease the height of some).

4. Removing a node and relative edges from G does not increase the height of the

remaining nodes (although it may decrease the height of some).

27

Observe that G

A

need not be a tree or even be connected.

28

Because of the acyclicity condition, any �nite dag has at least one root.

29

This maximum exists because G is �nite and acyclic.

42

Input: (s

0

; t

0

) 2 T (�

1

[�

2

; V)� T (�

1

[�

2

; V).

1. Let S := AS (s

0

6� t

0

).

2. Repeatedly apply (in any order) Coll1, Coll2, NIdent, Simpl, Shar1,

Shar2 to S until none of them is applicable.

3. Succeed if S has the form fv 6� vg [T and fail otherwise.

Figure 3: The Extended Combination Procedure.

We say that an equation of an abstraction system A is reducible i� one of its

sides is E

i

-reducible for i = 1 or i = 2. The disequation in A is always irreducible.

De�nition 42 (Node Reducibility) Let (A;�) be the dag induced by the abstrac-

tion system A and let a 2 A. We say that the reducibility of a is 1, and write

r

A

(a) = 1, if a is reducible; we say that it is 0, and write r

A

(a) = 0, otherwise.

6.2 The Extended Combination Procedure

The combination procedure described in Fig. 3 is an extension of the combination

procedure introduced in Section 4. We have added two new derivation rules, Shar1

and Shar2, and have modi�ed the rule Ident (see Fig. 4). Notice that neither Shar1

nor Shar2 applies if �

1

and �

2

do not share function symbols.

The only di�erence between the rules Ident and NIdent is that the condition

\(y � t) 6�

�

(x � s)" is replaced by \x 6= y and h(x � s) � h(y � t)." Since

(y � t) �

+

(x � s) implies h(x � s) > h(y � t) (by Lemma 41(1)), the condition in

NIdent implies the one in Ident, although the converse need not be true. However,

the strengthening of the precondition will not have any impact on the completeness

of the new combination procedure. In fact, we still have the property that for any

two equations x � s; y � t in an abstraction system, either h(x � s) � h(y � t) or

h(x � s) � h(y � t). Thus, if the abstraction system contains two distinct equations

x � s; y � t satisfying the condition that s; t are i-terms and s =

E

i

t for i = 1 or

i = 2, then NIdent is applicable. As a consequence, all the previous proofs in which

we assumed that Ident had been applied carry over unchanged to this section where

we assume that NIdent has been applied.

The main idea of the rules Shar1 and Shar2 is to push shared function symbols

towards lower positions of the �-chains they belong to so that they can be processed

by other rules. To do that, the rules replace the reducible right-hand side t of an

equation x � t by its normal form, and then plug the \shared part" of the normal

43

NIdent

T x � s y � t

T [x=y] y � t

if s; t are i-terms and s =

E

i

t for i = 1 or i = 2

and

x 6= y and h(x � s) � h(y � t).

Shar1

T u 6� v x � t �y

1

� �r

1

T [x=s(�y; �z)[�y

1

=�r

1

]] �z � �r u 6� v x � s(�y; �r) �y

1

� �r

1

if (a) t is an E

i

-reducible i-term for i = 1 or i = 2,

(b) NF

E

i

�

(t) = s(�y; �r) 62 V ,

(c) �r non-empty,

(d) �z fresh variables with no repetitions,

(e) �r

1

irreducible (for both theories),

(f) �y

1

� Var(s(�y; �r)) and

(x � s(�y; �r)) � (y � r) for no (y � r) 2 T .

Shar2

T u 6� v x � t[�y] �y � �r

T [x=s[�y=�r]] u 6� v x � s[�y=�r] �y � �r

if (a) t is an E

i

-reducible i-term for i = 1 or i = 2,

(b) NF

E

i

�

(t) = s 2 T (�; V) nV ,

(c) �r irreducible (for both theories),

(d) �y � Var(s) and

(x � s) � (y � r) for no (y � r) 2 T .

Figure 4: The New Derivation Rules.

form into all equations whose right-hand sides contain x. The exact formulation of

the rules is somewhat more complex since we must ensure that the resulting system

is again an abstraction system. In particular, the \alternating signature" condition

(3b) of De�nition 8 must be respected.

In the description of the rules, an expression like �z � �r denotes the set fz

1

�

r

1

; : : : ; z

n

� r

n

g where �z = (z

1

; : : : ; z

n

) and �r = (r

1

; : : : ; r

n

), and s(�y; �z) denotes

the term obtained from s(�y; �r) by replacing the subterm r

j

with z

j

for each j 2

f1; : : : ; ng. Observe that this notation also accounts for the possibility that t reduces

to a non-variable term of G

E

i

(�; V). In that case, s will be a variable, �y will be

empty, and �r will be a tuple of length 1. Substitution expressions containing tuples

are to be interpreted accordingly; e.g., [�z=�r] replaces the variable z

j

by r

j

for each

44

j 2 f1; : : : ; ng.

In both Shar rules it is assumed that the normal form is not a variable. The

reason for this restriction is that the case where an i-term is equivalent modulo E

i

to a variable is already taken care of by the rules Coll1 and Coll2. By requiring

that �r be non-empty, Shar1 excludes the possibility that the normal form of the

term t is a shared term. It is Shar2 that deals with this case. The reason for a

separate case is that we want to preserve the property that every �-chain is made

of equations with alternating signatures (cf. De�nition 8(3b)). When the equation

x � t has immediate �-successors, the replacement of t by the �-term s may destroy

the alternating signatures property because x � s, which is both a �

1

- and a �

2

-

equation, may inherit some of these successors from x � t.

30

Shar2 restores this

property by merging into x � s all of its immediate successors|which are collected,

if any, in the set �y � �r. Condition (d) in Shar2 makes sure that the tuple �y � �r

collects all these successors. The replacement of �y

1

by �r

1

in Shar1 is done for similar

reasons. In both Shar rules, the restriction that all the terms in �r (resp. �r

1

) be in

normal form is necessary to ensure termination. We will see that it can be imposed

without loss of generality.

We prove below that the new combination procedure decides the word problem

for E = E

1

[E

2

again by showing that the procedure is sound, terminates on all

inputs, and, whenever E

1

�

= E

2

�

, is also complete.

6.3 The Correctness Proof

In the following, we assume that S

i

and �

i

are de�ned as in Subsection 4.3. Again,

we will �rst show that all sets S

j

obtained in correspondence of one run of the

combination procedure are in fact abstraction systems.

Lemma 43 Given an execution of the combination procedure, S

j

is an abstraction

system for all j � 0.

Proof. We prove the claim by induction on j. The induction base (j = 0) is

again immediate by construction of S

0

and Proposition 9.

31

The induction step is

also proved as in Lemma 11 for the cases in which S

j

is derived from S

j�1

by an

application of Coll1, Coll2, or NIdent.

32

We show below that S

j

is an abstraction

system even when it is derived by Shar1 or by Shar2.

30

Recall that we may assume, without loss of generality, that the variables in Var(s) n Var(t) do

not occur in the abstraction system (cf. the remark after De�nition 26). Thus, the equations in

�y � �r are in fact successors of x � t.

31

Note that this proposition also holds if the signatures �

1

and �

2

are not disjoint.

32

To reuse the proof in Lemma 11 for the NIdent case, we appeal to the fact that x 6= y and

h(x � s) � h(y � t) imply (y � t) 6�

�

(x � s).

45

Shar1. We know that S

j�1

and S

j

have the following form:

S

j�1

= T [fu 6� vg [fx � tg [f�y

1

� �r

1

g

S

j

= T [x=s(�y; �z)[�y

1

=�r

1

]] [�z � �r [fu 6� vg [fx � s(�y; �r)g [f�y

1

� �r

1

g

To see that S

j

satis�es Condition (1) of De�nition 8, �rst notice that s(�y; �r) is not

a variable by precondition (b) of the rule, and that the terms in �r are also non-

variable terms. Because S

j�1

is assumed to be an abstraction system, it satis�es

the alternating signature assumption, and thus the terms in �r

1

are �

�

-terms for

� 2 f1; 2g n fig. Since s(�y; �z) is a �-term, we know that s(�y; �z)[�y

1

=�r

1

] is also a �

�

-

term. The alternating signature assumption for S

j�1

also implies that any term in

T containing x is a �

�

-term, and so the replacement of x by s(�y; �z)[�y

1

=�r

1

] does not

generate mixed terms.

Condition (3a) is satis�ed because �z consists of fresh variables with no repetitions.

Condition (3b) is satis�ed because

� the replacement of x by s(�y; �z)[�y

1

=�r

1

] in T does not change the signature of

any equations there, nor does it change the top symbol of any term;

� the elements of �r are members of G

E

i

(�; V) nV , and thus do no start with a

�-symbol;

� �r has the same signature as t, and every immediate �-predecessor of an equa-

tion in �z � �r has the signature of the immediate predecessors of x � t in

S

j�1

;

� x � s(�y; �r), which possibly starts with a shared symbol, has no �-predecessors

in S

j

n fu 6� vg since x has been replaced;

� all the immediate successors of x � s(�y; �r) are inherited from x � t be-

cause, by our assumptions on the variables of normal forms, the variables in

Var(s(�y; �r)) n Var(t) do not occur in S

j�1

;

� s(�y; �r) is not a shared term because the tuple �r is assumed to be non-empty;

� if an equation x

0

� t

0

[x] in T is replaced by x

0

� t

0

[s(�y; �z)[�y

1

=�r

1

]], then any

new successor of such an equation is an equation in �z � �r or a successor of an

equation in �y

1

� �r

1

.

To show that Condition (2) is satis�ed, we �rst prove that T

j

:= S

j

n f�z � �rg gives

rise to an acyclic graph. This graph has essentially the same nodes (i.e., equations) as

S

j�1

, although the right-hand sides of the equations may have changed. Even if there

are possibly new edges, it is easy to see that there are no new connections between

nodes, since any connection achieved by such a new edge in T

j

can be achieved by a

46

path in S

j�1

. Since S

j�1

gives rise to an acyclic graph by assumption, this implies

that the graph corresponding to T

j

is acyclic as well. The additional nodes in S

j

(i.e., the equations in �z � �r) cannot cause a cycle either since any path through

such a node comes from a predecessor of x � t[�y] in S

j�1

and goes to a successor of

x � t[�y] in S

j�1

. Thus, the cycle would have already been present in S

j�1

.

Shar2. We know that S

j�1

and S

j

have the following form:

S

j�1

= T [fu 6� vg [fx � t[�y]g [�y � �r

S

j

= T [x=s[�y=�r]] [fu 6� vg [fx � s[�y=�r]g [�y � �r

We can show that S

j

satis�es Conditions (1), (2), (3a), and (3b) of De�nition 8

essentially in the same way as in the Shar1 case. For Condition (3b), additionally

observe that we cannot use x � s in S

j

since s is a shared term. In fact, x � s together

with an equation in �y � �r would violate the alternating signature assumption. By

using x � s[�y=�r] instead, we make sure that any successors of this equation is a

successor of an equation in �y � �r. Since every equation in �y � �r is a successor of

x � t in S

j�1

,

33

and S

j�1

satis�es Condition (3b) by induction, all the equations

in �y � �r have the same signature, which is also the signature of x � s[�y=�r]. Thus,

Condition (3b) for x � s[�y=�r] and its successors in S

j

is satis�ed since it is satis�ed

for the equations in �y � �r and their successors in S

j�1

. ut

In the lemma below we show that the combination procedure halts on all inputs.

For that we will make use of a well-founded ordering

34

on abstraction systems, de�ned

in the following.

Let >

l

denote the lexicographic ordering over the set P := N � f0; 1g obtained

from the standard strict ordering over N and its restriction to f0; 1g. Where M(P)

denotes the set of all �nite multisets of elements of P , we will denote by A the

multiset ordering induced by >

l

, that is, the relation on M(P) de�ned as follows|

where 2;�;=; n ;[are to be interpreted as multiset operators (see [DM79] for more

details).

De�nition 44 (A) For all M;N 2 M(P), M A N i� there exist X; Y 2 M(S)

such that

� ; 6= X �M ,

� N = (M nX) [Y , and

� for all y 2 Y there is an x 2 X such that x >

l

y.

33

Recall again that the variables in Var(s) n Var(t) do not occur in S

j�1

.

34

A strict ordering > is well-founded if there are no in�nitely decreasing chains a

1

> a

2

> a

3

>

� � � .

47

It is possible to show that A is a well-founded total ordering on M(P) [DM79].

Intuitively, this ordering says that a multisetM is reduced by removing one or more

elements fromM , and replacing them by a �nite number of >

l

-smaller elements. As

customary, we will denote by w the reexive closure of A.

Now, given a run of the combination procedure, let h

j

and r

j

be the height and

reducibility functions on the nodes of the dag induced by S

j

, for j � 0. These

functions can be used to associate a �nite multiset to the abstraction system S

j

:

the multiset M

j

consisting of the pairs (h

j

(a); r

j

(a)) for every (dis)equation a in S

j

.

Notice that M

j

is indeed a multiset: if S

j

contains m irreducible nodes with height

n, M

j

contains m occurrences of the pair (n; 0). Similarly, if S

j

contains m reducible

nodes with height n, M

j

contains m occurrences of the pair (n; 0).

The next lemma shows that each application of a derivation rule decreases the

multiset associated to the current abstraction system with respect to the ordering

A.

Lemma 45 For all j � 0, M

j

A M

j+1

whenever S

j+1

is generated from S

j

by an

application of Coll1 or Coll2 or Simpl or NIdent or Shar1 or Shar2.

Proof. We consider only the application of Coll1, NIdent, Shar1, and Shar2. The

proof for Coll2 is very similar to that for Coll1, and the proof for Simpl is trivial.

Coll1. We can think of S

j+1

as being derived from S

j

by applying the interme-

diate steps below.

S

j

= T [fu 6� vg [fv

1

� s

1

[v

2

]g [fv

2

� s

2

g

S = T [fu 6� vg[v

1

=v

2

] [fv

1

� s

1

[v

2

]g [fv

2

� s

2

g

S

0

= T [v

1

=s

2

] [fu 6� vg[v

1

=v

2

] [fv

1

� s

1

[v

2

]g [fv

2

� s

2

g

S

j+1

= T [v

1

=s

2

] [fu 6� vg[v

1

=v

2

] [fv

2

� s

2

g

As in the proof of Lemma 11 we can easily show that S and S

0

are abstraction

systems as well. Then, where M and M

0

are the multisets associated to S and S

0

,

respectively, we show that M

j

wM wM

0

AM

j+1

:

(M

j

w M) If v

1

does not occur in u 6� v then M

j

= M , as S

j

and S coincide. If

v

1

occurs in u 6� v, then we know that, since the height of u 6� v in S

j

is 0, the height

of v

2

� s

2

is at least 2. Now, the replacement of v

1

by v

2

turns the dag induced by

S

j

into the dag induced by S essentially by adding an edge from u 6� v to v

2

� s

2

and removing the edge from u 6� v to the equation v

1

� s

1

. By points 2 and 3 of

Lemma 41, some nodes in S may have a smaller height than they had in S

j

, but no

node in S has a greater height. It is obvious that all the nodes have in S the same

reducibility they had in S

j

. Thus, when going fromM

j

toM , the �rst component of

some pairs may decrease, but no pair increases. By de�nition of A (De�nition 44),

we can then conclude that M

j

wM .

48

(M w M

0

) If v

1

does not occur in T then M = M

0

, as S and S

0

coincide. If

v

1

occurs in T , since S is an abstraction system, it will necessarily occur in the

right-hand side of some equations of T . Let v

0

� s

0

be any such equation. Since

(v

0

� s

0

[v

1

]) � (v

1

� s

1

[v

2

]) � (v

2

� s

2

) (6)

we know from Lemma 41(1) that every v � t in S such that (v

2

� s

2

) � (v � t)

has a higher height in S than v

0

� s

0

. The replacement of v

1

by s

2

adds an edge

from v

0

� s

0

only to nodes v � t like the one above. This means that, going from

S to S

0

, the only new edges are from a node of S to one that is already higher. By

Lemma 41(2) then no node in S moves to a greater height in S

0

because of such

edge additions. Now, v

0

� s

0

[v

1

] above becomes v

0

� s

0

[v

1

=s

2

] in S

0

, hence it may

become reducible even if it was irreducible before. If n is the height of v

0

� s

0

in S,

then a pair of the form (n; 0) may be replaced by the larger pair (n; 1) when going

from M to M

0

. This, however, is not a problem because at least one greater pair,

(n + 1; r(v

1

� s

1

)), is replaced by a smaller one as well. To see this observe that,

since v

1

does not occur in S

0

n fv

1

� s

1

g, the height of v

1

� s

1

in S

0

is 0. However,

because of (v

0

� s

0

) � (v

1

� s

1

) it was greater than 0 in S. By de�nition of A, we

can conclude that M A M

0

.

(M

0

A M

j+1

) As S

j+1

is obtained from S

0

by removing the node v

1

� s

1

, we

can use Lemma 41(4) to show that the pairs corresponding to the remaining nodes

do not increase. Since one pair (the one corresponding to v

1

� s

1

) is removed, this

implies M

0

AM

j+1

.

NIdent. We have S

j

= T [fx � s; y � tg and S

j+1

= T [x=y] [fy � tg, where

h(x � s) � h(y � t) in S

j

.

The graph induced by S

j+1

can be obtained from the one induced by S

j

as follows.

First, add edges from the immediate predecessors in S

j

of x � s to y � t. Since the

height of y � t is at least the height of x � s, and thus larger than the height of

these predecessors, Lemma 41(2) shows that this does not change the height of any

node. Second, remove the edges that go from the immediate predecessors in S

j

of

x � s to x � s. By Lemma 41(3), this does not increase the height of any node.

Third, remove the node x � s. By Lemma 41(4), this does not increase the height

of any of the remaining nodes.

By applying the substitution [x=y] to the equations in T , the reducibility of a

node containing x may change from 0 to 1. However, these nodes have a height that

is smaller than the height of x � s. Thus, an increase in the pair associated to such

a node in the multiset is compensated by the fact that the pair associated to x � s

is removed. This shows that M

j

AM

j+1

.

Shar1. We know that S

j

and S

j+1

have the following form:

S

j

= T [fu 6� vg [fx � tg [f�y

1

� �r

1

g

S

j+1

= T [x=s(�y; �z)[�y

1

=�r

1

]] [�z � �r [fu 6� vg [fx � s(�y; �r)g [f�y

1

� �r

1

g

49

Observe that there may be more nodes in S

j+1

than S

j

: those corresponding to

equations in �z � �r. Let n be the height of x � t in S

j

. We start by showing that

the height of the new nodes in S

j+1

cannot be greater than n.

Going from S

j

to S

j+1

, the new equations �z � �r are introduced while each

occurrence of x in the right-hand side of an equation is replaced by s(�y; �z)[�y

1

=�r

1

].

Consider any equation z � r in �z � �r. Observing that z occurs in the tuple �z we

then obtain

'[x=s(�y; �z)[�y

1

=�r

1

]] �

j+1

(z � r)

for all equations ' (and only those) such that

' �

j

(x � t):

Using the fact that �

j

is acyclic, it is easy to see that no such equation ' changes its

height when going from S

j

to S

j+1

. As a consequence, z � r has in S

j+1

the height

that x � t had in S

j

, namely, n.

The new node z � r may also have outgoing edges. Since the variables in

Var(s(�y; �r)) n Var(t) do not occur in S

j

, however, these edges will go only into old

nodes such that x � t �

j

 . In other words, all the edges out of z � r will end in

nodes whose height was already > n in S

j

.

Similarly, the replacement of x by s(�y; �r)[�y

1

=�r

1

] in T may introduce new edges

in S

j+1

between old nodes,

35

but it is again easy to see that each of these edges will

go from a node to one with already greater height. Finally, and again because the

variables in Var(s(�y; �r)) n Var(t) do not occur in S

j

, the replacement of t by s(�y; �r)

in the node x � t will possibly remove some edges from S

j+1

, but will not introduce

new ones.

By Points 1 and 3 of Lemma 41 then some old nodes may move to a lower height

in S

j+1

but none will move to a higher height because of the mentioned replacements.

In conclusion, we can say that the number of nodes at heights > n will not increase

from S

j

to S

j+1

. In addition, the reducibility value of these nodes will not change

(since their right-hand sides are not modi�ed).

Now, if some node with height > n in S

j

moves to a smaller height in S

j+1

, we

can already conclude that M

j

A M

j+1

. If, on the contrary, all the nodes at height

> n keep the same height, to prove that M

j

A M

j+1

we argue that some of the

nodes at height n change their reducibility from 1 to 0. To see that, it is enough

to make the following three observations. First, it is possible that the replacement

of x by s(�y; �z) alters the reducibility of some nodes to 1, but as shown above this

will happen only at heights < n. Second, when no old node at height > n moves

35

Speci�cally, between a node of the form x

0

� t

0

[x] and a successor node of one of the equations

in �y

1

� �r

1

.

50

to a smaller height, the number of nodes at height n increases only because of the

presence of the new nodes in �z � �r, whose reducibility is 0, as each r 2 �r is already

in normal form. Third, the node x � t in S

j

, which by assumption had height n

and was reducible, may or may not move to a lower height in S

j+1

, but it certainly

becomes irreducible for being changed to x � s(�y; �r) where s(�y; �r) is in normal form.

Shar2. We know that S

j

and S

j+1

have the following form:

S

j

= T [fu 6� vg [fx � t[�y]g [�y � �r

S

j+1

= T [x=s[�y=�r]] [fu 6� vg [fx � s[�y=�r]g [�y � �r

Let n be the height of x � t in S

j

. As in the Shar1 case we can show that the

number of nodes at height > n does not increase going from S

j

to S

j+1

, and that

the reducibility value of these nodes does not change. It is enough to show then that

the number of reducible nodes at height n decreases by one. Now, the node x � t

in S

j

changes to x � s[�y=�r] in S

j+1

. Because S

j

is an abstraction system, we know

that the elements of �r are all �

i

-terms for i = 1 or i = 2. Moreover, each of them is

irreducible by assumption and so has the form s

0

(�r

0

) where s

0

is a �-term and all the

terms in �r

0

are in G

E

i

(�; V). It is easy to see that s[�y=�r] too is a �

i

-term in normal

form, which means that x � s[�y=�r] is irreducible. ut

Proposition 46 (Termination) The combination procedure halts on all inputs.

Proof. Consider any run of the combination procedure. Since, for i = 1; 2, NF

E

i

�

is computable by assumption and the E

i

-irreducibility of �

i

-terms is decidable by

Proposition 27, it is immediate that Shar1, Shar2 are applicable in �nite time. We

already know that the other derivation rules are applicable in �nite time as well. As

in the proof of Proposition 14 then all we need to show is that the procedure applies

the various rules only �nitely many times. But this is immediate by Lemma 45 and

the well-foundedness of A. ut

The next lemma shows that the derivation rules preserve satis�ability.

Lemma 47 For all j > 0 and all models A of E = E

1

[E

2

, the abstraction system

S

j

is satis�able in A i� S

j�1

is satis�able in A.

Proof. As before, we can index all the possible cases by the derivation rule applied

to S

j�1

to obtain S

j

. The cases Coll1, Coll2, NIdent, Simpl are proved exactly as

in Lemma 12. Below we give a proof only of the Shar1 case, as the proof for Shar2

is almost identical.

When S

j

is generated by an application of Shar1, S

j�1

and S

j

have the form

S

j�1

= T [fu 6� vg [fx � tg [f�y

1

� �r

1

g

S

j

= T [x=s(�y; �z)[�y

1

=�r

1

]] [�z � �r [fu 6� vg [fx � s(�y; �r)g [f�y

1

� �r

1

g

51

Since no variable in �z also occurs in T [fu 6� vg, it is easy to see that S

j

is

equisatis�able with the set

T [x=s(�y; �r)] [fu 6� vg [fx � s(�y; �r)g [f�y

1

� �r

1

g

The claim then follows from the fact that A is a model of E and t =

E

s(�y; �r) (because

t =

E

i

s(�y; �r) for i = 1 or i = 2 and E

i

� E). ut

Exactly as we did in Section 4.3 we can now prove that the extended combination

procedure is sound.

Proposition 48 (Soundness) If the combination procedure succeeds on an input

(s

0

; t

0

), then s

0

=

E

t

0

.

The completeness proof will be simpli�ed by appealing to the following lemma.

Lemma 49 The �nal abstraction system S

n

generated by a failed execution of the

combination procedure can be partitioned into the sets

D := fx 6� yg T

1

:= fu

j

� r

j

g

j2J

T

2

:= fv

k

� t

k

g

k2K

where

1. x an y are distinct and J and K are �nite;

2. each r

j

2 T (�

1

; V) nV and each t

k

2 T (�

2

; V) nV ;

3. each u

j

occurs only once in T

1

and each v

k

occurs only once in T

2

;

4. for all v 2 Var(T

1

) \ Var(T

2

),

(a) if v = u

j

for some j 2 J then v 2 Var(t

k

) for some k 2 K,

if v = v

k

for some k 2 K then v 2 Var(r

j

) for some j 2 J ,

(b) if v = u

j

for some j 2 J then r

j

2 G

E

1

(�; V),

if v = v

k

for some k 2 K then t

k

2 G

E

2

(�; V).

Proof. Since the procedure has failed, we know that x 6= y, and thus point 1 is trivial.

Points 2, 3, 4a are an immediate consequence of the fact that S

n

is an abstraction

system.

To prove (4b), let v = u

j

for some j 2 J (if v = v

k

the argument is analogous). We

claim that r

j

is in normal form (i.e., irreducible). In fact, if we assume otherwise we

can also assume with no loss of generality, since� is acyclic and S

n

is �nite, that there

are no equations v

k

� t

k

in S

n

such that t

k

is reducible and (u

j

� r

j

) � (v

k

� t

k

).

36

36

Otherwise we can consider the case in which v = v

k

since v

k

is also a shared variable.

52

But then, one of Coll1, Coll2, Shar1, Shar2 applies to u

j

� r

j

, against the

assumption that S

n

is the �nal abstraction system.

Now, from (4a) above we know that there is an equation v

k

� t

k

in T

2

such

that (v

k

� t

k

) � (u

j

� r

j

). By De�nition 8(3b), the top symbol of r

j

cannot be a

�

2

-symbol and so, in particular, cannot be a �-symbol. But the only �

1

-terms in

normal form that do not start with a �-symbol are the terms of G

E

1

(�; V). ut

To prove that the procedure is complete for the word problem in E := E

1

[E

2

we make the additional assumption that

E

1

�

= E

2

�

:

In this case, we have the following.

Proposition 50 (Completeness) The combination procedure succeeds on input

(t

1

; t

2

) if t

1

=

E

t

2

.

Proof. As before, we can prove the claim by proving that, if the procedure fails on

input (t

1

; t

2

), then t

1

6=

E

t

2

. Suppose then, that the procedure fails and S

n

is the

�nal abstraction system. Given Lemma 47 and the construction of S

0

, it is enough

to show that S

n

is satis�able in E.

From Lemma 49 we know that S

n

is an abstraction system with an initial formula

of the form x 6� y, where x and y are distinct. Furthermore, S

n

n fx 6� yg can be

partitioned into the sets

T

1

:= fu

j

� r

j

g

j2J

and T

2

:= fv

k

� t

k

g

k2K

;

where T

1

and T

2

satisfy Lemma 49(1{4b). For i = 1; 2, letA

i

be an E

i

-free �

i

-algebra

with a countably in�nite set X

i

of generators and let

Y

i

:= f[[r]]

A

i

�

i

j r 2 G

E

i

(�; V)g

where �

i

is any bijective valuation of V onto X

i

as in the proof of Theorem 24. By

Corollary 25, A

i

�

is E

i

�

-free with generators Y

i

and X

i

� Y

i

.

Now, for i = 1; 2, we will construct a valuation �

i

of Var(T

i

) into A

i

that as-

signs with a distinct element of Y

i

each variable shared by fx 6� yg [T

1

and T

2

.

Furthermore, �

1

and �

2

will be such that

A

1

; �

1

j= fx 6� yg [T

1

and A

2

; �

2

j= T

2

:

By Proposition 31 then, this will entail that fx 6� yg [T

1

[T

2

(that is, S

n

) is

satis�able in E. Again, we can restrict our attention to the case in which i = 1, as

the other case (which is even simpler) can be treated analogously.

53

Let �

1

be the valuation of Var(T

1

) de�ned as follows:

�

1

(v) :=

�

�

1

(v) for all v 2

S

j

Var(r

j

)

[[r

j

]]

A

1

�

1

for all v 2

S

j

fu

j

g

Such a valuation is well-de�ned because all the variables u

j

are distinct and none

of them belongs to V

1

:=

S

j

Var(r

j

), as shown in Lemma 49. By construction, �

1

satis�es T

1

in A

1

. We prove below that �

1

is injective.

Let u; v 2 Var(T

1

), u 6= v. If both u and v are in V

1

, then �

1

(u) 6= �

1

(v) by

construction of �

1

. Hence, let u = u

j

for some j 2 J and assume by contradiction

that �

1

(u

j

) = �

1

(v).

If v = u

`

for some ` 2 J , then A

1

; �

1

j= r

j

� r

`

by construction of �

1

. As �

1

evaluates the variables in the equation r

i

� r

j

by distinct generators of A

1

, and

A

1

is E

1

-free, we obtain that r

j

=

E

1

r

`

by Proposition 1; but then, since either

h(u

`

� r

`

) � h(u

j

� r

j

) or h(u

j

� r

j

) � h(u

`

� r

`

), NIdent applies to S

n

against

the assumption that S

n

is the �nal abstraction system.

If v 2 V

1

, similarly to the previous case, we can show that v =

E

1

r

j

and (since E

1

is non-trivial) that v occurs in r

j

. Therefore, either Coll1 or Coll2 applies, again

against the assumption that S

n

is the �nal abstraction system. In conclusion, �

1

is

injective.

We now show that �

1

(v) 2 Y

1

for every variable v that T

1

shares with T

2

. Let

v 2 Var(T

1

) \ Var(T

2

). If v 2 V

1

, then �

1

(v) = �

1

(v) 2 X

1

� Y

1

by construction. If

v = u

j

for some j 2 J , we know from Lemma 49(4b) that r

j

2 G

E

1

(�; V). Observing

that �

1

assigns the variables of r

j

with elements of X

1

and recalling the de�nition of

Y

1

, we can conclude that �

1

(v), which is the same as [[r

j

]]

A

1

�

1

, is an element of Y

1

.

To complete the proof we �nally need to make sure that �

1

is properly de�ned

for x and y as well. If both x and y occur in T

1

, we know by the above that �

1

is

already de�ned for them and that �

1

(x) 6= �

1

(y), as x and y are distinct. If x occurs

in T

2

as well, we also know that �

1

(x) 2 Y

1

(similarly for y). If x or y (or both)

does not occur in T

1

, let Z := fx; yg n Var(T

1

). Since Y

1

is in�nite, we can extend

�

1

arbitrarily to Var(T

1

)[Z so that, for all z 2 Z, �

1

(z) 2 Y

1

and �

1

(z) 6= �

1

(v) for

all v 2 Var(T

1

) [Z n fzg.

In conclusion, we have constructed a valuation �

1

of Var(T

1

) [fx; yg which

satis�es fx 6� yg [T

1

in A

1

and maps the variables shared by fx � yg [T

1

and T

2

to distinct elements of Y

1

. ut

The results of this section, which show the total correctness of the extended

procedure, are indeed a lifting of the correctness results in Section 4.3. In fact,

whenever the set � of symbols shared by E

1

and E

2

is empty, it is a set of constructors

for both E

1

and E

2

, provided that each of them is non-trivial. Furthermore, E

1

�

and E

2

�

are the same because they both coincide with the set fv � v j v 2 V g.

54

Combining the results of this section then we obtain the following modularity result

for the decidability of the word problem, which properly extends Theorem 16.

Theorem 51 Let E

1

; E

2

be two non-trivial equational theories of signature �

1

;�

2

,

respectively, such that � := �

1

\�

2

is a set of constructors for both E

1

and E

2

, and

E

1

�

= E

2

�

. If for i = 1; 2,

� normal forms are computable for � and E

i

, and

� the word problem in E

i

is decidable,

then the word problem in E

1

[E

2

is also decidable.

In contrast to the termination proof in the disjoint case, the termination argument

employed in Lemma 45 does not provide us with an upper-bound on the complexity

of the combination procedure. The actual complexity of the procedure will crucially

depend on the normal forms computed by the functions NF

E

i

�

.

From Theorem 39 it follows that, given the right conditions, the combination

procedure applies immediately by recursion to more than two component theories.

For instance, to obtain a decision procedure for the word problem in E

1

[E

2

[E

3

one �rst applies the combination procedure for E

1

and E

2

, and then for E

1

[E

2

and

E

3

. The next corollary states what the \right conditions" are.

Corollary 52 Let � be a functional signature and E

1

; : : : ; E

n

be n equational theo-

ries of signature �

1

; : : : ;�

n

, respectively, such that � = �

i

\ �

j

and E

i

�

= E

j

�

for

all distinct i; j 2 f1; : : : ; ng. Also, assume that � is a set of constructors for every

E

i

. If for all i 2 f1; : : : ; ng,

� normal forms are computable for � and E

i

, and

� the word problem in E

i

is decidable,

then the word problem in E

1

[� � � [E

n

is also decidable.

Alternatively, one could prove this corollary by directly extending the combi-

nation procedure to handle the union of n > 2 theories pairwise sharing the same

constructors.

7 Related work

In this section, we investigate the connection between our notion of a constructor

and the one introduced in [DKR94]. We will show that their notion is a special case

55

of ours, and that their combination result for the word problem in theories sharing

constructors (Theorem 14 in [DKR94]) can be obtained as a corollary of Theorem 51.

Before we can de�ne the notion of constructors according to [DKR94], called

dkr-constructors in the following, we need to introduce some notation. An ordering

on T (
; V) is called monotonic if s > t implies f(: : : ; s; : : :) > f(: : : ; t; : : :) for all

s; t 2 T (
; V) and all function symbols f 2
. Notice that it is always possible to

construct a (total,) well-founded, monotonic ordering on T (
; V) for any functional

signature
.

37

In the rest of the section, we will consider a non-trivial equational theory E of

signature
 and a subsignature � of
.

De�nition 53 Let > be a well-founded and monotonic ordering on T (
; V). The

signature � is a set of dkr-constructors for E w.r.t. > if

1. the =

E

congruence class of any term t 2 T (
; V) contains a least element

w.r.t. >, which we denote by t#

>

E

, and

2. f(t

1

; : : : ; t

n

)#

>

E

= f(t

1

#

>

E

; : : : ; t

n

#

>

E

) for all f 2 � and
-terms t

1

; : : : ; t

n

.

We will call t#

>

E

the dkr-normal form of t, and then say that t is in dkr-normal

form whenever t = t#

>

E

. The following are some easy consequences of De�nition 53.

Lemma 54 Let � be set of dkr-constructors for E w.r.t. >.

1. For all s; t 2 T (
; V), s =

E

t i� s#

>

E

= t#

>

E

.

2. For all s; t 2 T (�; V), s =

E

t i� s = t,

i.e., E

�

is the theory of syntactic equality on �-terms.

3. If t is in dkr-normal form, then all its subterms are also in dkr-normal form.

4. If f(s

1

; : : : ; s

m

) =

E

g(t

1

; : : : ; t

n

) for some constructors f; g 2 � and terms

s

1

; : : : ; s

m

; t

1

; : : : ; t

n

2 T (
; V) then f = g (and thus n = m) and s

i

=

E

t

i

for

all i 2 f1; : : : ; mg.

For the theories E

1

and E

2

in Examples 28 and 29, the signature � is set of

dkr-constructors for E

i

(i = 1; 2) w.r.t. an appropriate well-founded and monotonic

ordering >

i

:

37

For instance, one can take the lexicographic path ordering induced by a total well-founded

precedence on
[V (see [BN98]), where the variables are treated as constants|which is admissible

since the ordering is not required to be closed under substitutions.

56

� In Example 29 we have seen that orienting the equations of E

2

from left to

right yields a canonical term rewriting system R

2

for E

2

. Consequently, the

transitive closure

+

!

R

2

of the rewrite relation induced by R

2

is monotonic and

well-founded, and every E

2

-equivalence class contains a unique R

2

-irreducible

element. The second point shows that the ordering >

2

:=

+

!

R

2

satis�es De�ni-

tion 53(1). That (2) of De�nition 53 is satis�ed is an easy consequence of the

fact that no element of � occurs on the top of a left-hand side in R

2

.

� In Example 28 we cannot simply take the transitive closure of the rewrite

relation !

R;AC

as monotonic and well-founded ordering >

1

. The problem is

that normal forms are unique only modulo AC, i.e., an E

1

-equivalence class

may contain di�erent normal forms, although they can be transformed into

each other using equations from AC. We can, however, take an arbitrary total,

monotonic, and well-founded ordering > on �

1

-terms, and de�ne >

1

to be the

lexicographic product of

+

!

R;AC

with >. The e�ect of this that the ordering

> \picks" a least representative out of the AC-equivalent!

R;AC

-normal forms

in each E

1

-equivalence class. Therefore, De�nition 53(1) is satis�ed. That

De�nition 53(2) is also satis�ed is again an easy consequence of the fact that

no element of � occurs on the top of a left-hand side in R, and that the same

is true both for left- and right-hand sides of equations in AC.

In contrast, the signature �

0

is not a set of dkr-constructors for the theory E

3

of

Example 30 since the restriction E

3

�

0

of E

3

to �

0

is not the theory of syntactic

equality on �

0

-terms. Hence, a set of constructors in our sense need not be a set of

dkr-constructors.

To show that the notion of dkr-constructors is a special case of our notion of

constructors, we need a representation of the set G

E

(�; V).

Lemma 55 Let � be a set of dkr-constructors for E w.r.t. >. Then G

E

(�; V) =

fr 2 T (
; V) j r#

>

E

(�) 62 �g:

Proof. If r#

>

E

(�) 2 � then r 62 G

E

(�; V) since r =

E

r#

>

E

by de�nition of dkr-normal

forms. Conversely, assume that r 62 G

E

(�; V), i.e., r =

E

f(

�

t) for some function

symbol f 2 � and tuple

�

t of
-terms. By de�nition of dkr-constructors, the dkr-

normal form f(

�

t)#

>

E

of f(

�

t) has top symbol f , and by Lemma 54(1) it is also the

dkr-normal form of r. It follows that r#

>

E

62 �. ut

Proposition 56 If � is a set of dkr-constructors for E w.r.t. >, then � is a set

of constructors for E according to De�nition 22.

Proof. We show that the three conditions of Theorem 24 are satis�ed.

57

(1) It is su�cient to show that v#

>

E

= v for all variables v 2 V . Thus, assume

that v#

>

E

= t 6= v. Since E is consistent, the term t must contain v. However, then

v > v#

>

E

= t contradicts our assumption that > is well-founded and monotonic.

(2) Let t be an arbitrary
-term. Then its dkr-normal form t#

>

E

can be repre-

sented as s(�r), where s(�v) is a �-term and all terms r in the tuple �r have top symbols

not in �. Since these terms r are subterms of a term in dkr-normal form, they are

also in dkr-normal form, and thus belong to G

E

(�; V) by Lemma 55.

(3) Let s

1

(�r

1

); s

2

(�r

2

) 2 T (�;G

E

(�; V)), and assume that s

1

(�v

1

), s

2

(�v

2

) are ob-

tained from s

1

(�r

1

), s

2

(�r

2

) by abstracting �r

1

; �r

2

so that two terms in �r

1

; �r

2

are ab-

stracted by the same variable i� they are equivalent in E. We must show that

s

1

(�r

1

) =

E

s

2

(�r

2

) implies s

1

(�v

1

) =

E

s

2

(�v

2

) (since the converse is trivial).

If s

1

(�v

1

) is a variable, then s

1

(�r

1

) = r for an element r of G

E

(�; V). By de�nition

of G

E

(�; V), this implies that s

2

(�v

2

) is also a variable. In addition, since E-equivalent

terms are abstracted by the same variable, these two variables coincide, and thus

s

1

(�v

1

) = s

2

(�v

2

). The same argument applies if s

2

(�v

2

) is a variable.

Therefore, assume that s

1

(�v

1

) and s

2

(�v

2

) are both nonvariable �-terms. By

Lemma 54(4), they have the same top symbol and their respective subterms are

E-equivalent. Thus, we can easily show the claim by structural induction. ut

Point (2) of the above proof may seem to entail that normal forms for E and �

are computable in the sense of De�nition 26. This is not the case, however, because

the argument in (2) relies on dkr-normal forms, whereas the computability of such

normal forms is not assured by the sole assumption that � is a set of dkr-constructors

for E w.r.t >. In [DKR94], dkr-normal forms are shown to be computable by also

assuming that the so-called symbol matching problem is decidable.

De�nition 57 We say that the symbol matching problem on � modulo E is decid-

able in T (
; V) if there exists an algorithm that decides, for all t 2 T (
; V), whether

there exists a function symbol f 2 � and a tuple of
-terms

�

t such that t =

E

f(

�

t).

We say that t matches onto � modulo E if t =

E

f(

�

t) for some f 2 � and some tuple

�

t of
-terms.

For the theories E

1

and E

2

of Examples 28 and 29, it is easy to see that the

symbol matching problem on � is decidable. In fact, given a �

i

-term t, one simply

computes the normal form

b

t of t w.r.t. the corresponding rewrite relation (i.e.,!

R;AC

if i = 1, and !

R

2

if i = 2). If

b

t starts with a symbol f 2 �, then

b

t = f(

�

t) for some

tuple of
-terms

�

t, and thus t matches onto � modulo E. Otherwise, it is easy to

see that t does not match onto � modulo E. This is again a consequence of the fact

that no symbol from � appears at the top of a left-hand side of a rewrite rule.

As pointed out in [DKR94], if the symbol matching problem and the word prob-

lem are decidable for E, then a symbol f 2 � and a tuple of terms

�

t satisfying

58

t =

E

f(

�

t) can be e�ectively computed, whenever it exists. In fact, once we know

that an appropriate function symbol in � and a tuple of
-terms exists, we can

simply enumerate all pairs consisting of a symbol f 2 � and a tuple

�

t of
-terms,

38

and test whether t =

E

f(

�

t). We call an algorithm that realizes such a computa-

tion a symbol matching algorithm on � modulo E. Using such a symbol matching

algorithm, we can de�ne a function NF

E

�

for E and � with the following recursive

de�nition.

De�nition 58 Assume that � is set of dkr-constructors for E w.r.t. >, the word

problem for E and the symbol matching problem on � modulo E are decidable, and

let M be any symbol matching algorithm on � modulo E. Then, let NF

E

�

be the

function de�ned as follows: For every t 2 T (
; V),

1. NF

E

�

(t) := f(NF

E

�

(t

1

); : : : ;NF

E

�

(t

n

)) if t matches onto � modulo E and f is

the �-symbol and (t

1

; : : : ; t

n

) the tuple of
-terms returned by M on input t.

2. NF

E

�

(t) := t, otherwise.

Lemma 59 Under the assumptions of De�nition 58 the function NF

E

�

is well-de�ned

and satis�es the requirements of De�nition 26.

Proof. To show that NF

E

�

is well-de�ned, it is su�cient to �nd a well-founded

ordering on terms such that, in the �rst case of the de�nition, the terms t

1

; : : : ; t

n

are smaller than t w.r.t. this ordering.

We de�ne this ordering using a mapping � from T (
; V) into the nonnegative

integers. For any
-term s, its dkr-normal form can be uniquely represented in

the form s#

>

E

= s

0

(�r), where s

0

(�v) is a �-term and all terms r in the tuple �r have

top symbols that do not belong to �. Let �(s) be the size of the term s

0

(�v). If we

de�ne s

1

� s

2

i� �(s

1

) > �(s

2

), then � is a well-founded ordering on
-terms. It

remains to be shown that, if t =

E

f(t

1

; : : : ; t

n

) for some f 2 �, then �(t) > �(t

i

)

for all i 2 f1; : : : ; ng. But this is an easy consequence of the fact that t#

>

E

=

f(t

1

; : : : ; t

n

)#

>

E

= f(t

1

#

>

E

; : : : ; t

n

#

>

E

): In conclusion, we have shown that NF

E

�

is well-

de�ned.

By our assumptions, the case distinction in the de�nition is e�ective and a sym-

bol matching algorithm on � modulo E exists. Therefore, the function NF

E

�

is

computable as well.

Now we prove by well-founded induction on � that NF

E

�

(t) is a normal form of t.

When the second case of De�nition 58 applies, t belongs to G

E

(�; V) by de�nition,

which entails immediately that NF

E

�

(t) := t is in normal form. When the �rst case

38

Recall that our signatures are assumed to be countable, and thus the sets of terms are countable

as well.

59

applies, we know that NF

E

�

(t) = f(NF

E

�

(t

1

); : : : ;NF

E

�

(t

n

)) for some �-symbol f and

tuple (t

1

; : : : ; t

n

) such that t =

E

f(t

1

; : : : ; t

n

). As we have seen above, t � t

i

for all

i 2 f1; : : : ; ng, which entails by induction that NF

E

�

(t

i

) is a normal form of t

i

for

each i 2 f1; : : : ; ng. Since f 2 �, it is immediate that f(NF

E

�

(t

1

); : : : ;NF

E

�

(t

n

)) is

in normal form as well. To see that NF

E

�

(t) is indeed a normal form of t, it is now

enough to observe that t =

E

f(t

1

; : : : ; t

n

) =

E

f(NF

E

�

(t

1

); : : : ;NF

E

�

(t

n

)); where the

last equivalence is a consequence of the induction assumption that t

i

=

E

NF

E

�

(t

i

)

for each i 2 f1; : : : ; ng. ut

We are now ready to show that Theorem 14 in [DKR94] can be obtained as a

corollary of our Theorem 51.

Corollary 60 Let E

1

; E

2

be non-trivial equational theories of signature �

1

;�

2

, re-

spectively, such that � := �

1

\ �

2

is a set of dkr-constructors for both E

1

and E

2

.

If for i = 1; 2,

� the symbol matching problem on � modulo E

i

is decidable, and

� the word problem in E

i

is decidable,

then the word problem in E

1

[E

2

is also decidable.

Proof. We show that the prerequisites of Theorem 51 are satis�ed. By Proposi-

tion 56, � is a set of constructors according to De�nition 22 for both E

1

and E

2

. By

Lemma 54(2), E

1

�

= E

2

�

since both coincide with the syntactic equality on �-terms.

Finally, normal forms are computable for � and E

i

(i = 1; 2) by Lemma 59. ut

We believe that our de�nition of constructor has several advantages over the one

introduced in [DKR94]. First, it is more general since we only require E

�

to be

collapse-free whereas [DKR94] requires E

�

to be equal to the theory of syntactic

equality on �-terms. Second, the de�nition of dkr-constructors is rather technical

and depends strongly on the chosen ordering >. In contrast, our de�nition uses

only abstract algebraic properties. Finally, the combination algorithm described in

[DKR94] is not rule-based, since it is a straightforward extension of the algorithms for

the disjoint case described in [SS89, Nip89, KR94], and thus shares the disadvantages

of these algorithms, as mentioned in the introduction.

8 Conclusion and Open Questions

In this report, we have introduced a new, rule-based procedure that combines in a

modular fashion decision procedures for the word problem. The procedure's main

idea, propagation of equality constraints between the component decision procedures,

60

is similar in spirit to the Nelson-Oppen combination method, a general method for

combining decision procedures for the validity of quanti�er-free formulae in theories

over disjoint signatures. Its speci�cs, however, are essentially di�erent because the

word problem is a rather restricted kind of validity problem. As a matter of fact,

and contrary to common belief, the Nelson-Oppen method cannot be used for the

purpose of combining decision procedures for the world problem, as we have shown

in Section 3.

We have �rst presented (in Section 4) a procedure that can deal with equational

theories over disjoint signatures, and then extended this procedure (in Section 6) so

that it can also treat theories sharing symbols that we called constructors. Essen-

tially, this extension was achieved by adding two more rules that handle the shared

constructors. The reasons for choosing this two-step approach were mainly of a

didactic nature. The proof of correctness of the procedure for the disjoint case is

simpler than the one for the extended procedure, but has a very similar structure.

Thus, it prepares the reader for the more complex proof in the general case.

As mentioned in the introduction, the modularity result for the disjoint case has

been known for quite some time [Pig74, Tid86, SS89, Nip89, KR94]. Our main goal

in Section 4 was to develop a rule-based combination procedure, which is more trans-

parent and more exible than the known ones, and uses deterministic rules that can

be applied in arbitrary order. Another distinguishing feature of our approach is that

the proof of completeness of the procedure is based solely on algebraic arguments.

This not only provides for a simpler proof, as we think we have demonstrated, but

it also leads to a rather general extension of the procedure to the non-disjoint case.

The only combination procedure we are aware of for the case of component de-

cision procedures whose theories have symbols in common is described in [DKR94].

We have shown that our approach applies to a more general class of theories than

the one considered in [DKR94]. In addition, we believe that our algebraic method

yields a less technical, and thus more transparent, de�nition of this class. It should

be noted, however, that [DKR94] also contains combination results for uni�cation

and matching, whereas the present report is concerned only with the word problem.

Thus, one direction for future research is to extend our approach to the combination

of decision procedures for the matching and the uni�cation problem as well.

Another direction would be to extend the class of theories even further by relaxing

the restriction that the equational theory over the constructors be collapse-free. A

crucial artifact to our completeness proof is the set G

E

(�; V), which is used to

obtain the (countably in�nite) set of generators of a certain free algebra. When the

equational theory over the constructors is not collapse-free, G

E

(�; V) is empty, and

thus cannot be used to describe this set of generators. An appropriate alternative

characterization of the set of generators might allow us to remove altogether the

restriction that the equational theory over the constructors be collapse-free.

A further generalization would be to extend our results to the case of many-sorted

61

equational logic. This should not be very hard, but from a practical point of view

it would considerably increase the class of theories to which our approach applies.

For instance, many examples from algebraic speci�cation (such as lists of natural

numbers, etc.) make sense only in a sorted environment.

References

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-

bridge University Press, United Kingdom, 1998.

[BT97] Franz Baader and Cesare Tinelli. A new approach for combining decision

procedures for the word problem, and its connection to the Nelson- Oppen

combination method. In W. McCune, editor, Proceedings of the 14th In-

ternational Conference on Automated Deduction (Townsville, Australia),

volume 1249 of Lecture Notes in Arti�cial Intelligence, pages 19{33, 1997.

[DKR94] E. Domenjoud, F. Klay, and C. Ringeissen. Combination techniques for

non-disjoint equational theories. In A. Bundy, editor, Proceedings 12th In-

ternational Conference on Automated Deduction, Nancy (France), volume

814 of Lecture Notes in Arti�cial Intelligence, pages 267{281. Springer-

Verlag, 1994.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset

orderings. Communications of the ACM, 22(8):465{476, August 1979.

[Hod93] Wilfrid Hodges. Model Theory, volume 42 of Enclyclopedia of mathematics

and its applications. Cambridge University Press, 1993.

[KB70] Donald E. Knuth and P.B. Bendix. Simple word problems in universal

algebra. In J. Leech, editor, Computational Problems in Abstract Algebra,

pages 263{297. Pergamon Press, 1970.

[KR94] H�el�ene Kirchner and Christophe Ringeissen. Combining symbolic con-

straint solvers on algebraic domains. Journal of Symbolic Computation,

18(2):113{155, 1994.

[Mat67] J.V. Matijasevic. Simple examples of undecidable associative calculi. Soviet

Mathematics (Doklady), 8(2):555{557, 1967.

[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm.

ACM Transactions on Programming Languages and Systems, 4(2):258{282,

1982.

62

[Nip89] Tobias Nipkow. Combining matching algorithms: The regular case. In

N. Dershowitz, editor, Proceedings of the 3rd International Conference on

Rewriting Techniques and Applications, Chapel Hill (N.C., USA), volume

335 of Lecture Notes in Computer Science, pages 343{358. Springer-Verlag,

April 1989.

[NO79] Greg Nelson and Derek C. Oppen. Simpli�cation by cooperating deci-

sion procedures. ACM Trans. on Programming Languages and Systems,

1(2):245{257, October 1979.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on

congruence closure. J. ACM, 27(2):356{364, 1980.

[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories.

Theoretical Computer Science, 12, 1980.

[Pig74] Don Pigozzi. The join of equational theories. Colloquium Mathematicum,

30(1):15{25, 1974.

[Rin96] Christophe Ringeissen. Cooperation of decision procedures for the sat-

is�ability problem. In F. Baader and K.U. Schulz, editors, Frontiers of

Combining Systems: Proceedings of the 1st International Workshop, Mu-

nich (Germany), Applied Logic, pages 121{140. Kluwer, March 1996.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution principle.

J. ACM, 12:23{41, 1965.

[SS89] Manfred Schmidt-Schau�. Combination of uni�cation algorithms. Journal

of Symbolic Computation, 8(1{2):51{100, 1989. Special issue on uni�cation.

Part II.

[TH96] Cesare Tinelli and Mehdi Harandi. A new correctness proof of the Nelson{

Oppen combination procedure. In F. Baader and K.U. Schulz, editors,

Frontiers of Combining Systems: Proceedings of the 1st International

Workshop, Munich (Germany), Applied Logic, pages 103{120. Kluwer,

March 1996.

[Tid86] E. Tid�en. First-Order Uni�cation in Combinations of Equational Theories.

Phd thesis, The Royal Institute of Technology, Stockholm, 1986.

[Toy87a] Yoshihito Toyama. Counterexamples to termination for the direct sum of

term rewriting systems. Information Processing Letters, 25:141{143, 1987.

[Toy87b] Yoshihito Toyama. On the Church-Rosser property for the direct sum of

term rewriting systems. Journal of the ACM, 34(1):128{143, 1987.

63

[TR98] Cesare Tinelli and Christophe Ringeissen. Non-disjoint unions of theories

and combinations of satis�ability procedures: First results. Technical Re-

port UIUCDCS-R-98-2044, Department of Computer Science, University

of Illinois at Urbana-Champaign, April 1998. (also available as INRIA

research report no. RR-3402).

64

