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Abstract

This paper compares two approaches for deriving subsumption algorithms for the

description logic ALN : structural subsumption and an automata-theoretic charac-

terization of subsumption. It turns out that structural subsumption algorithms can

be seen as special implementations of the automata-theoretic characterization.

1 Introduction

Description logics (DLs) and corresponding DL systems can be used to represent the

terminological knowledge of a problem domain in a structured and well-de�ned way. Rel-

evant concepts of the domain are described by concept descriptions, which are formed from

atomic concepts (unary predicates) and roles (binary predicates) using concept forming

operators provided by the DL. One of the most important inference services of a DL sys-

tem is to arrange the represented concepts of the domain in a superconcept/subconcept

hierarchy. This reasoning task is based on the subsumption relation between concept

descriptions. Intuitively, a concept D subsumes a concept C if the set of individuals

represented by D is a superset of the one represented by C.

In the literature several approaches to subsumption have been investigated (see [8]

for an overview). In this work, we are interested in the relation between two of these

approaches for languages of small expressive power, namely, structural subsumption and

an automata theoretic approach.

Structural subsumption algorithms are e�cient methods for deciding subsumption in

description logics without full negation, disjunction, and existential restrictions. The

structural subsumption algorithm employed by the system classic [5, 6] is based on a

speci�c data structure for representing concept descriptions, called description graphs. In

this context, subsumption is reduced to a structural comparison of description graphs.

Another approach for deciding subsumption in sub-languages of classic can be ob-

tained from the automata-theoretic characterizations of subsumption w.r.t. greatest �xed-

point (gfp) semantics in cyclic terminologies [1, 12], which reduce the subsumption prob-
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lem to an inclusion problem for certain regular languages. In the case of acyclic termi-

nologies (and thus in particular for concept descriptions), these languages turn out to be

�nite.

At �rst sight, there is no connection between these two approaches since they are based

on rather di�erent normal forms for concept descriptions. Intuitively speaking, struc-

tural subsumption is based on a normal form that applies the equivalence 8R:(A uB) �

8R:Au8R:B as a rewrite rule from right to left, i.e., the descriptions are grouped w.r.t. role

names, whereas the �nite languages considered in the automata-theoretic approach cor-

respond to a normal form obtained by applying the above equivalence from left to right.

Another di�erence between the two approaches is that they describe decision proce-

dures for subsumption on two di�erent levels of abstraction. The structural subsumption

algorithm for Classic is presented in [5, 6] on the level of the data structure (namely,

description graphs) used in the implementation. This provides a description of the al-

gorithm that is very close to its actual implementation. Consequently, both the formal

description of the algorithm and the proof of its correctness are quite complex [5, 6, 13]. In

contrast, the automata-theoretic approach reduces the subsumption problem to a formal

language problem (namely, inclusion of �nite or regular languages), which means that

the description of the subsumption algorithm (and thus also the proof of its correctness)

can be split into two independent parts: (i) the characterization of subsumption on the

abstract formal language level, and (ii) an algorithm that decides the formal language

problem.

The goal of this report is to show that there is in fact a tight relation between the

approaches. In order to illustrate this relation, we will �rst construct an isomorphism

between the data-structures both approaches are working on. Then we point out, that

structural subsumption algorithms based on description graphs can be seen as \paral-

lel" implementations of the language inclusion tests required by the automata-theoretic

characterizations of subsumption.

The report is structured as follows. We �rst introduce the description logics of interest,

namely, the small language FL

0

, which allows for value restrictions and conjunction, and

the more expressive language ALN , which additionally provides us with atomic negation

and number restrictions. In Section 3 we �rst describe the automata theoretic approach

to subsumption in FL

0

as well as structural subsumption for FL

0

-concept descriptions.

Thereafter, we discuss the tight relation between both approaches in detail. An exten-

sion of the comparison to ALN is given in Section 6. Both approaches to subsumption

of concept descriptions have to be extended in order to cope with inconsistencies that

are expressible in ALN . We will show, that there is a 1-1-correspondence between the

extensions done in the automata theoretic approach and the way inconsistency is han-

dled in structural subsumption. In the last section we summarize our analysis and give

an overview over future work concerned with di�erent approaches to subsumption in de-

scription logics.
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2 Preliminary

We �rst introduce syntax and semantics of the description logics FL

0

and ALN as well

as the inference problem subsumption.

De�nition 1 (Syntax and semantics) Let C be a set of concept names and � a set of

role names. ALN -concept descriptions are inductively de�ned as follows:

� P and :P are concept descriptions for each concept name P 2 C.

� Let C;D be concept descriptions, R 2 � a role name and n 2 IN. Then

{ C uD (conjunction),

{ 8R:C (value restriction),

{ (� n R) and (� n R) (number restrictions)

are concept descriptions as well.

An interpretation I = (dom(I); �

I

) exists of the domain dom(I), i.e., a set of individuals,

and an interpretation function �

I

that maps each concept name P 2 C to a subset P

I

of

dom(I) and each role name R 2 � to a binary relation R

I

� dom(I)�dom(I). The exten-

sion of �

I

to arbitrary concept descriptions is inductively de�ned as shown in Table 1. The

concept descriptions > and ? denote the entire domain and the empty set, respectively.

Syntax Semantics

> dom(I)

? ;

:P dom(I) n P

I

C uD C

I

\D

I

8R:C fx 2 dom(I) j 8y : (x; y) 2 R �! y 2 C

I

g

(� n R) fx 2 dom(I) j jfy j (x; y) 2 R

I

gj � ng

(� n R) fx 2 dom(I) j jfy j (x; y) 2 R

I

gj � ng

Table 1: Semantics of concept descriptions

The description logic FL

0

only allows for the constructors conjunction (C u D) and

value restriction (8R:C), whereas ALN additionally allows for primitive negation and

number restrictions. Notice that both constructors > and ? are expressible in ALN

because of> � (� 0 R) and? � (Pu:P ). W.l.o.g. we will use them only as abbreviations

rather than allowing for these constructors in ALN -concepts explicitly.

For some induction we will need the role depth of a concept description C:
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depth(P ) := depth(:P ) := 0,

depth(8R:C) := depth(C) + 1,

depth((� n R)) := depth((� n R)) := 1,

depth(C

1

u C

2

) := maxfdepth(C

1

); depth(C

2

)g.

De�nition 2 (Subsumption) Let C;D be ALN -concept descriptions. D subsumes C

(for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent to D (for short C � D) i� C v D and D v C, i.e., C

I

= D

I

for all

interpretations I.

De�nition 3 (Terminology) Let A be a concept name and C an ALN -concept de-

scription. Then A = C is a concept de�nition. A �nite set T of concept de�nitions is

an ALN -terminology if each concept name in T occurs at most once as left-hand side

of a concept de�nition. We call concept names appearing on the left-hand side of some

concept de�nition in T de�ned concepts and primitive otherwise. The set of all de�ned

concepts in T is denoted by D

T

. T is called FL

0

-terminology i� each right hand side of

a concept de�nition in T is an FL

0

-concept description.

An interpretation I = (dom(I); �

I

) is called model of T i� A

I

= D

I

for each concept

de�nition in T . The descriptive semantics of a terminology T is de�ned by the set of all

models of T .

Notice that De�nition 3 allows for cyclic terminologies. Formally, cycles are de�ned

as follows: Let A be a de�ned concept and B an atomic concept in T . The concept A

directly uses B if B occurs on the right-hand side of the concept de�nition A = C in T .

Let uses be the transitive closure of `directly uses'. Then T is cyclic i� there exists a

de�ned concept name A in T that uses itself. Otherwise T is called acyclic.

De�nition 4 (Primitive interpretation and its extension) Let T be a terminology,

P

1

; : : : ; P

m

the primitive concepts, R

1

; : : : ; R

k

the role names, and A

1

; : : : ; A

n

the de�ned

concepts in T . A primitive interpretation J = (dom(J); �

J

) consists of the domain dom(J)

as well as the interpretation of the primitive concepts (P

1

J

; : : : ; P

J

m

) and the interpretation

of the role names (R

J

1

; : : : ; R

J

k

).

An interpretation I = (�; �

I

) of T is an extension of J i� P

I

1

= P

J

1

; : : : ; P

I

m

= P

J

m

and

R

1

I

= R

1

J

; : : : ; R

k

I

= R

k

J

.

In [2] it has been pointed out that for cyclic terminologies one can not uniquely extend

an primitive interpretation J to a model I of T in general. Therefore, beside the descrip-

tive semantics also �xed-point semantics are considered in case of cyclic terminologies.

For acyclic terminologies, descriptive and �xed-point semantics coincide since there is al-

ways a unique extension I of a primitive interpretation J to a model of T . Therefore, in

case of acyclic terminologies we do not distinguish between the primitive interpretation J

and its extension. In particular, A

J

denotes the extension of A de�ned by the model of T

which is uniquely determined by J and T . Furthermore, one can de�ne subsumption of

atomic concepts which are de�ned in di�erent terminologies over the same set of primitive

concepts and roles.
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De�nition 5 (Subsumption w.r.t. terminologies) Let T

A

and T

B

be acyclic ALN -

terminologies where A is a de�ned concept in T

A

and B is de�ned in T

B

. Furthermore,

we assume that T

A

and T

B

are de�ned over the same set of primitive concepts and roles.

We say that A in T

A

is subsumed by B in T

B

(A v

T

A

;T

B

B for short) i� for all primitive

interpretations J it holds A

J

� B

J

. A is equivalent to B (for short A �

T

A

;T

B

B) i�

A

J

= B

J

for all primitive interpretations J .

In the sequel, C, D denote concept descriptions, A, B refer to de�ned concepts, P , Q

are used for primitive concepts, and R, S for roles.

3 The automata theoretic approach to subsumption

for FL

0

The automata theoretic approach has been proposed in order to gain a more profound

understanding of cyclic terminologies. The idea of this approach is to assign a semi-

automaton A

T

to a terminology T , and to characterize di�erent semantics as well as

important inference problems, e.g. subsumption, using this semi-automaton. More pre-

cisely, Baader [2] has given an automata theoretic characterization of the semantics and

subsumption of cyclic FL

0

-terminologies. These results are extended in [12] to the lan-

guage ALN .

3.1 Concept descriptions and automata

As mentioned in the introduction, we are interested in comparing the automata theoretic

approach to subsumption of concept descriptions and structural subsumption for concept

descriptions. Therefore we represent concept descriptions by de�ned concepts in (acyclic)

FL

0

-terminologies. The semi-automata corresponding to these terminologies are speci�ed

recursively in order to simplify the comparison presented in Section 5.

De�nition 6 (Terminology of C) Let C = P

1

u : : :uP

n

u8R

1

:C

1

u : : :u8R

m

:C

m

be an

FL

0

-concept description. We represent C by the de�ned concept A in the terminology T

C

of C. We refer to A as the de�ned concept of C in T

C

. The terminology T

C

is recursively

de�ned by

� If C = P

1

u : : : u P

n

, then T

C

:= fA = P

1

u : : : u P

n

g.

� If C = P

1

u : : :uP

n

u8R

1

:C

1

u : : :u8R

m

:C

m

, then let T

C

i

be the recursively de�ned

terminologies of C

i

, 1 � i � m, and A

i

the de�ned concept of C

i

in T

C

i

, respectively.

W.l.o.g. the sets D

T

C

i

are pairwise disjoint. T

C

:= fA = P

1

u : : : u P

n

u 8R

1

:A

1

u

: : : u 8R

m

:A

m

g [

S

1�i�m

T

C

i

Note that the set of primitive concepts and roles in T

C

coincides with the concept

names occuring in C. Thus a primitive interpretation J of T

C

is also an interpretation
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for C. Furthermore, it is easy to see that T

C

is acyclic. By induction on the role depth of

C it is not hard to show that A

J

= C

J

holds for all primitive interpretations J .

After introducing the terminologies representing concept descriptions, we now assign

a �nite semi-automaton A

T

= (�; Q;�) to an FL

0

-terminology T [2]. The alphabet �

denotes the set of role names in T and the concept names in T yield the set of states Q of

A

T

. The transitions � � Q� (� [ f"g)�Q of A

T

are induced by the value restrictions

in T , i.e., every concept de�nition A = P

1

u : : : u P

n

u 8R

1

:A

1

u : : : u 8R

m

:A

m

in T gives

rise to the transitions (A; "; P

i

), 1 � i � n and (A;R

i

; A

i

), 1 � i � m. Notice that for

acyclic terminologies the corresponding semi-automata are acyclic as well. In the general

case of a cyclic terminology T the corresponding automaton A

T

is cyclic (see [2] for an

example).

The semi-automaton A

T

C

corresponding to the concept description C can be con-

structed recursively.

De�nition 7 (Semi-Automaton of C) Let C be an FL

0

-concept description. The

semi-automaton A

T

C

of C is recursively de�ned by

depth(C) = 0: C = P

1

u : : : u P

n

:

Let T

C

= fA = P

1

u : : : u P

n

g be the terminology of C.

Then A

T

C

:= (;; fA; P

1

; : : : ; P

n

g;�) where � = f(A; "; P

i

) j 1 � i � ng.

depth(C) > 0: C = P

1

u : : : u P

n

u 8R

1

:C

1

u : : : u 8R

m

:C

m

:

Let T

C

be the terminology of C with A = P

1

u : : :uP

n

u8R

1

:A

1

u : : :u8R

m

:A

m

2 T

C

and A

i

the de�ned concept name of C

i

, 1 � i � m. W.l.o.g. the setsD

T

C

i

, 1 � i � m,

and D

T

C

are pairwise disjoint. Further, let A

T

C

i

= (�

i

; Q

i

;�

i

) be the recursively

de�ned semi-automaton of C

i

, 1 � i � m.

Then A

T

C

:= (�; Q;�) where

� � := fR

1

; : : : ; R

m

g [

S

1�i�m

�

i

,

� Q := fA; P

1

: : : ; P

n

g [

S

1�i�m

Q

i

and

� � := f(A; "; P

i

) j 1 � i � ng [ f(A;R

i

; A

i

) j 1 � i � mg [

S

1�i�m

�

i

.

In order to de�ne the power set automaton in Section 3 and to compare automata and

description graphs in Section 5, we need the following de�nitions. Let A = (�; Q;�) be a

semi-automaton, p; q 2 Q, and I � Q. There exists a path from p to q with label W 2 �

�

in A i� there are states p

0

; : : : ; p

n

2 Q and R

1

; : : : ; R

n

2 �[f"g such that p

0

= p, p

n

= q,

(p

i�1

R

i

p

i

) 2 � for 1 � i � n, and R

1

: : : R

n

= W . The "-closure of a set I � Q of states

is de�ned by

"-closure(I) := fq

0

2 Q j there exists q 2 I and a (possibly empty)

path from q to q

0

with label " in Ag:

The W -successor set of I � Q in A w.r.t. W 2 �

�

is de�ned by
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S

R

R

R

S

S

Q

A

A

1

A

2

A

3

A

4

A

31

P

"

"

" "

R

S

B

B

1

Q

R

"

"

B

2

B

11

B

111

P

A

T

C

:

A

T

D

:

Figure 1: The semi-automata corresponding to T

C

and T

D

.

next

A

(I;W ) := fq

0

2 Q j there exists q 2 "-closure(I) and a

path from q to q

0

with label W in

Ag.

Example 8 Consider the concept descriptions C := 8R:P u8R:Qu8R:8S:P u8S:Q and

D := 8R:8S:8R:P u8S:Q. These descriptions can be represented by the de�ned concepts

A and B in the following acyclic FL

0

-terminologies:

T

C

: A = 8R:A

1

u 8R:A

2

u 8R:A

3

u 8S:A

4

; T

D

: B = 8R:B

1

u 8S:B

2

;

A

1

= P; B

1

= 8S:B

11

;

A

2

= Q; B

11

= 8R:B

111

;

A

3

= 8S:A

31

; B

111

= P;

A

31

= P; B

2

= Q:

A

4

= Q:

The terminologies T

C

and T

D

yield the semi-automata A

T

C

and A

T

D

of Figure 1.

For a de�ned concept A and a primitive concept P in T , the language L

A

T

(A; P ) is

the set of all words labeling paths in A

T

from A to P . Since for acyclic terminologies T

the corresponding semi-automata A

T

are also acyclic, the languages L

A

T

(A; P ) are �nite.

In the case of cyclic terminologies, these languages can be in�nite.

Example 9 (Example 8 continued) Consider the semi-automataA

T

C

andA

T

D

in Fig-

ure 1 of the concept descriptions C and D from Example 8. In this example, we have

L

A

T

C

(A; P ) = fR;RSg, L

A

T

C

(A;Q) = fR; Sg, L

A

T

D

(B;P ) = fRSRg, and L

A

T

D

(B;Q) =

fSg.

3.2 The automata theoretic characterization of subsumption

In [2], an automata theoretic characterization of subsumption has been proved for cyclic

FL

0

-terminologies w.r.t. to both descriptive semantics and �xed-point semantics. We
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restrict our attention to acyclic terminologies. Thus, the subsumption relation coincides

for these semantics.

Let T denote an ayclic FL

0

-terminology, A a de�ned concept in T , P a primitive

concept, and W a �nite word over �. It can be shown [2] that A v

T

8W .P i� W 2

L

A

T

(A; P ). Thus, roughly speaking, the language L

A

T

(A; P ) represents exactly those

value restrictions that are satis�ed by A. Consequently, an atomic concept A is subsumed

by the atomic concept B i� the set of value restrictions which have to be satis�ed by A

is a superset of the value restrictions which have to be satis�ed by B. Formally, this fact

is stated in

Theorem 10 (Characterizing subsumption for FL

0

) Let T

A

and T

B

be acyclic FL

0

-

terminologies de�ned over the same set of primitive concepts and roles. Furthermore, let

A be de�ned in T

A

and B in T

B

. Then

A v

T

A

;T

B

B i� for all primitive concepts P it holds that L

A

T

B

(B;P ) � L

A

T

A

(A; P ):

Proof. See [2].

In the example we have L

A

T

D

(B;P ) = fRSRg 6� L

A

T

C

(A; P ). By Theorem 10 this

implies A 6v

T

C

;T

D

B.

In order to decide subsumption based on Theorem 10, one must decide the inclusion

problem for regular languages. Note, however, that in case of acyclic terminologies the

considered languages are merely �nite.

In the next section we recall the automata theoretic approach of deciding inclusion of

regular languages given by �nite automata (see [10] for details).

3.3 Deciding inclusion of regular languages

A �nite automaton A is a semi-automaton with initial and �nite states, i.e., A =

(�; Q; I;�; F ) where � denotes the �nite alphabet, Q the �nite set of states, I � Q

the set of initial states, � � Q� (� [ f"g)�Q the transition set, and F � Q the set of

�nal states. Note that w.l.o.g. we can assume I to be a singleton.

In automata theory, the inclusion problem for regular languages L

1

and L

2

, de�ned

by A

1

and A

2

, respectively, is reduced to the emptiness problem: L

2

� L

1

i� L

2

\L

1

= ;.

In order to decide this problem one �rst computes a deterministic automaton B

1

for L

1

,

i.e., one constructs the powerset automaton of A

1

. This automaton is de�ned as follows:

De�nition 11 (Powerset automaton) Let A = (�; Q; q

0

;�; F ) be a �nite automaton.

Then the powerset automaton P(A) of A is de�ned by P(A) := (�;

b

Q;

b

q

0

;

b

�;

b

F ) where

�

b

Q := fG � Q j next

A

("-closure(q

0

);W ) = G for an W 2 �

�

g,

�

b

q

0

:= "-closure(q

0

),

�

b

�(I; R) := next

A

(I; R) 2

b

Q for I 2

b

Q, and R 2 �,
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;

R; S

P(A

1

) :

fAg

R

S

fA

4

;Qg

fA

1

; A

2

; A

3

; P;Qg

S

R

R; S

R; SfA

31

; Pg

Figure 2: The powerset automaton of A

T

C

�

b

F := fG 2

b

Q j G \ F 6= ;g.

From the powerset automaton B

1

of A

1

we obtain a �nite automaton B

1

for L

1

by

permuting the set of �nal and non-�nal states in B

1

. Note that this permutation only

leads to an automaton accepting the complement of L

1

since B

1

is deterministic. Now,

one can construct the product automaton of B

1

and A

2

(without "-transitions), which

accepts the language L

2

\ L

1

. Emptiness of this language can be tested by deciding if

the language accepted by the product automaton is empty. An algorithm deciding this

problem can be described as follows: Search for a word W that is accepted by A

2

and B

1

.

If such a word exists, then the language accepted by the product automaton is not empty.

Using the `Pumping-Lemma' [10] it can be shown that it is su�cient to consider words W

up to a certain length, namely, the product of the size of A

2

and B

1

, which corresponds to

the size of the product automaton, i.e., the number of states of the product automaton.

In the general case of arbitrary �nite automata, the powerset automaton B

1

is of

exponential size in the worst case, and inclusion of regular languages is PSPACE-complete

[9]. In case of acyclic �nite automata, the powerset automaton still may be exponential in

the size of A

1

, whereby inclusion is coNP-complete (see [14]). However, for terminologies

constructed from concept descriptions it can be shown that this exponential blow-up

cannot occur (see Section 3.3.1).

Example 12 (Example 8 continued) Consider the language L

A

T

C

(A; P ) (see Exam-

ple 8). L

A

T

C

(A; P ) is accepted by the semi-automaton A

T

C

if A is the initial state and P

the �nal state. The corresponding powerset automaton is shown in Figure 2 where fAg is

the initial state and the states containing P are �nal states. This automaton accepts the

complement L

A

T

C

(A; P ) of the language L

A

T

C

(A; P ) if we specify fAg as initial state and

all states not containing P as �nal states, i.e., if we permute �nal and non-�nal states.

Hence, we have L

A

T

D

(B;P ) \ L

A

T

C

(A; P ) 6= ; i� there exists a word W such that (1)

there is a path with label W in P(A

T

C

) leading from fAg to a state not containing P ,

and (2) there is a path with label W in A

T

D

leading from B to P . In the example, RSR

is such a word. Consequently, the inclusion L

A

T

D

(B;P ) � L

A

T

C

(A; P ) does not hold.

3.3.1 The complexity of the powerset construction

In this section we are concerned with the complexity of the powerset construction for �nite

automata. As already mentioned, even for an acyclic �nite automaton A the correspond-

ing powerset automaton can be exponential in the size of A. The automata obtained

from concept descriptions are acyclic but have a certain structure, namely a weak tree

9



structure. We will show, that for this class of automata the powerset construction yields

automata of linear size.

Intuitively speaking, a �nite automaton A = (�; Q; q

0

;�; F ) has a tree structure if

� there are no "-transitions in �,

� q

0

has no predecessor, i.e., there is no transition of the form (q; R; q

0

) 2 �, and

� each state q 2 Q n fq

0

g is reachable from q

0

and has exactly one predecessor, i.e.,

for each q 2 Q n fq

0

g there exists a unique state q

0

2 Q and a unique symbol R 2 �

such that (q

0

; R; q) 2 �.

Thus, the graphical notation of A yields a tree with root q

0

. Furthermore, for each q 2 Q

there is exactly one path from q

0

to q in A and each q has a unique level, namely the

length of the label of this path from q

0

to q in A.

The automata corresponding to concept descriptions do not have a tree structure,

because they contain "-transitions (see Figure 1). But in these automata, we have only

"-transitions of a special kind, i.e., each state that is reached via "-transitions has no

outgoing transitions. In other words, these states, namely the primitive concepts occuring

in the concept descriptions, can be seen as special leaves in these automata.

De�nition 13 (weak tree structure) A �nite automaton A = (�; Q; q

0

;�; F ) has a

weak tree structure i�

� q

0

has no predecessor, i.e., there is no transition of the form (q; R; q

0

) 2 �, R 2

� [ f"g,

� for each q 2 Q n fq

0

g, there exists at least one path from q

0

to q in A,

� Q = Q

�

+Q

"

such that

{ each q 2 Q

"

is only reached via "-transitions and has no outgoing transitions,

i.e., for all q 2 Q

"

: (q

0

; R; q) 2 � =) q

0

2 Q

�

and R = ", and there exists no

transition of the form (q; R; q

0

) 2 �, R 2 � [ f"g,

{ for each q 2 Q

�

n fq

0

g there exists a unique state q

0

2 Q and a unique symbol

R 2 � such that (q

0

; R; q) 2 �.

We de�ne the level of each state q 2 Q

�

, level(q) 2 IN, as the length of the unique path

from q

0

to q in A.

Notice that if A has a weak tree structure then A is acyclic. Consequently, A is not

complete, i.e., it exists q 2 Q;R 2 � such that there exists no transition of the form

(q; R; q

0

) 2 �. So one must introduce a sink state ; within the powerset construction.

But due to the weak tree structure of A, each state in the powerset automaton has a

special form.

To make this more precise, let P(A) = (�;

b

Q;

b

q

0

;

b

�;

b

F ) be the powerset automaton

obtained from A by De�nition 11. We refer to

10



� the set of all states q 2 Q

�

with level(q) = l by

Q

l

:= fq 2 Q

�

j level(q) = lg, and

� the set of all states in P(A) that are reached by words of length l by

b

Q

l

:= fnext

A

(fq

0

g;W ) jW 2 �

l

g n f;g.

Intuitively speaking, each state in the powerset automaton beside the sink has a certain

level. Further, the states on one level yield a partition of the set Q

l

w.r.t. Q

�

. Therefore,

the number of states on level l in P(A) can be bounded by jQ

l

j and we get

j

b

Qj = 1 +

X

l�0

j

b

Q

l

j � 1 +

X

l�0

jQ

l

j = 1 + jQ

�

j � 1 + jQj:

1

Consequently, we obtain the desired result, i.e., the size of the powerset automaton of an

automaton A with weak tree structure is linear in the size of A.

Formally, we show by induction on the level l 2 IN that for

b

Q

l

it is

1. I

1

\ I

2

nQ

"

= ; for I

1

; I

2

2

b

Q

l

, I

1

6= I

2

and

2.

S

I2

b

Q

l

I nQ

"

= Q

l

.

l = 0 : It is

b

Q

0

= fnext

A

(fq

0

g; ")g = f"-closure(q

0

)g. So, the �rst condition is satis�ed

trivially. The second condition is satis�ed because it is "-closure(q

0

) nQ

"

= fq

0

g =

Q

0

.

l �! l + 1 : It is

b

Q

l+1

= fnext

A

(I; R) j I 2

b

Q

l

; R 2 �g n f;g.

Let q 2 Q

l+1

. There exists a word W of length l+1 such thatW 2 L

A

(q

0

; q). Thus,

q 2 next

A

(fq

0

g;W ). By de�nition of

b

Q

l+1

we get q 2

S

I2

b

Q

l+1

I n Q

"

and therefore

Q

l+1

�

S

I2

b

Q

l+1

I nQ

"

.

Conversely, let I 2

b

Q

l+1

. There exists I

0

2

b

Q

l

, R 2 � such that I = next

A

(I

0

; R).

Let q 2 I. For q 2 Q

"

nothing has to be shown. Assume q 2 Q

�

. We want to show

q 2 Q

l+1

. SinceA has a weak tree structure q has a unique R-predecessor q

0

2 I

0

. By

induction we get q

0

2 Q

l

and hence q 2 Q

l+1

. Thus we have

S

I2

b

Q

l+1

I nQ

"

� Q

l+1

.

So the second condition is satis�ed. In order to prove claim (1) for l + 1 we show

that for I

1

; I

2

2

b

Q

l+1

I

1

\ I

2

nQ

"

6= ; implies I

1

= I

2

. So let q 2 I

1

\ I

2

nQ

"

. There

exist I

0

1

; I

0

2

2

b

Q

l

and R

1

; R

2

2 � such that I

i

= next

A

(I

0

i

; R

i

) for i = 1; 2. As already

shown it is q 2 Q

l+1

. This implies that there exists a unique q

0

2 Q

l

and a unique

R 2 � with (q

0

; R; q) 2 �. It follows R = R

1

= R

2

and q

0

2 I

0

1

, q

0

2 I

0

2

. Hence

q

0

2 I

0

1

\ I

0

2

nQ

"

. By induction we get I

0

1

= I

0

2

. Since R

1

= R

2

this implies I

1

= I

2

.

We sum up the complexity result for the powerset construction for �nite automata

with weak tree structure in

1

Notice that the upper bound 1 + jQj is reached, if A is deterministic and has a weak tree structure

without "-transitions. In this case, the powerset construction would add the sink state and transitions

leading to the sink in order to obtain a deterministic and complete automaton.

11



Lemma 14 Let A = (�; Q; q

0

;�; F ) be a �nite automaton with weak tree structure and

P(A) = (�;

b

Q;

b

q

0

;

b

�;

b

F ) the powerset automaton of A. Then the size of P(A) is linear in

the size of A.

As an easy consequence of De�nition 6 and De�nition 7 we get that the automata

corresponding to FL

0

-concept descriptions have a weak tree structure

2

. By Lemma 14

this implies that the size of the corresponding powerset automata is linear in the size

of the concept descriptions. So the language inclusion tests required by the automata

theoretic characterization of subsumption can be decided in time polynomial in the size

of the concept descriptions.

4 Structural subsumption algorithms based on de-

scription graphs

In this section we present a characterization of subsumption of FL

0

-concept descriptions

based on structural subsumption in Classic [5, 6]. The idea behind is as follows: given

two FL

0

-concept descriptions C and D, we translate the concept descriptions into equiva-

lent description graphs G

C

and G

D

. A normalization of G

C

yields the canonical description

graph

b

G

C

of C. Thereafter, we can decide C v D by some kind of structural comparison

of

b

G

C

and G

D

.

4.1 Description Graphs

Description graphs were introduced in [5, 6] for deciding subsumption of concept descrip-

tions in Classic. Since FL

0

is a sublanguage of Classic, we �rst con�ne the notion

of description graphs given in [5]. Description graphs are rooted directed acyclic graphs

whose nodes are labeled by sets of primitive concepts and whose edges are labeled by roles.

Concept descriptions can be turned into description graphs by a straightforward transla-

tion of the syntactic structure of the descriptions. It will turn out, that the description

graphs corresponding to FL

0

-concept descriptions are trees.

De�nition 15 (FL

0

-description graphs) Let C be a set of primitive atomic concepts

and � a set of role names. An FL

0

-description graph over C and � is a tuple G =

(V;E; v

0

; l) where V = fv

0

; : : : ; v

n

g is a set of nodes, E � V ���V a set of edges and

v

0

2 V the root of G such that

� there exists no edge vRv

0

in E,

� for each v 2 V n fv

0

g there exists exactly one v

0

2 V and exactly one R 2 � with

v

0

Rv 2 E,

2

The automata corresponding to ALN -concept descriptions also have a weak tree strucuture, so the

result can be extended to ALN .
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� each v 2 V is reachable from v

0

, i.e., there is a path v

0

R

1

v

1

: : : v

n�1

R

n

v in E, and

� the label l(v) of a node v 2 V is a �nite subset of C.

In the sequel, we will use the following notions referring to paths and subgraphs.

p = w

0

R

1

w

1

: : : w

n�1

R

n

w

n

is called path from w

0

to w

n

with label W = R

1

: : : R

n

in G i�

w

i�1

R

i

w

i

2 E for all 1 � i � n. The path p is called rooted path if w

0

= v

0

, i.e., p starts at

the root of G. G j

v

denotes the subgraph of G with root v 2 V , i.e., G j

v

= (V

0

; E

0

; v; l

0

) with

V

0

:= fw 2 V j exists path from v to w in Gg, E

0

:= E \ V

0

� �� V

0

, and l

0

(w) := l(w)

for w 2 V

0

.

The size of a description graph G = (V;E; v

0

; l) is de�ned as the sum of the number of

nodes and edges and the sum of the size of all labels, i.e.,

jGj := jV j+ jEj+

X

v2V

jl(v)j:

After introducing the syntax of description graphs and thus the data structure our

structural subsumption test is working on, we now have to de�ne the semantics: which

set of individuals G

I

is determined by a description graph G under an interpretation I.

De�nition 16 (Extension of Description Graphs) Let I be an interpretation of C

and �, G = (V;E; v

0

; l) a description graph over C and �.

The extension of a node v 2 V is recursively de�ned by x 2 v

I

i�

� x 2 P

I

for all P 2 l(v) and

� for all vRv

0

2 E and y 2 dom(I) with (x; y) 2 R

I

it holds that y 2 v

0

I

.

The extension of G is de�ned as G

I

:= v

I

0

.

We have introduced syntax and semantics of description graphs. Our aim is to use

this representation formalism to characterize subsumption of FL

0

-concept descriptions.

Therefore, we �rst have to translateFL

0

-concept descriptions into (equivalent) description

graphs.

4.2 Translating concept descriptions into description graphs

The translation of FL

0

-concept descriptions into description graphs is formalized by the

algorithm in Figure 3. Obviously, the size of G

C

is linear in the size of C. In the sequel,

G

C

denotes the description graph of C where C is an FL

0

-concept description and G

C

is

obtained from C by the algorithm in Figure 3.

The translation is sound in the following sense:

Lemma 17 (Equivalence of concepts and description graphs) Let C be an arbi-

trary FL

0

-concept description and G

C

the description graph of C. Then for all interpre-

tations I it holds that C

I

= G

I

C

.
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Input: An FL

0

-concept C =

�

P

1

u : : : u P

n

u 8R

1

:C

1

u : : : u 8R

m

:C

m

�

Output: The corresponding description graph G

C

= (V;E; v

0

; l)

m = 0 : G

C

:= (fv

0

g; ;; v

0

; l) where

l(v

0

) := fP

1

; : : : ; P

n

g.

m > 0 : Let G

C

i

= (V

i

; E

i

; v

0i

; l

i

) be the recursively de�ned description graph of C

i

; 1 � i � m,

where w.l.o.g. the V

i

are pairwise disjoint and v

0

62

S

1�i�m

V

i

. G

C

:= (V;E; v

0

; l) is de�ned

by

� V := fv

0

g [

S

1�i�m

V

i

,

� E := fv

0

R

i

v

0i

j 1 � i � mg [

S

1�i�m

E

i

,

� l(v) :=

�

fP

1

; : : : ; P

n

g ; if v = v

0

l

i

(v) ; if v 2 V

i

Figure 3: Translating concept descriptions into description graphs

S

w

2

: ;

S

v

4

: P

R

w

3

: P

G

D

:

R

S w

4

: Q

w

0

: ;

w

1

: ;

G

C

:

R

S

R

R

v

5

: Q

v

2

: Q

v

1

: P

v

0

: ;

v

3

: ;

Figure 4: The description graphs corresponding to C and D.

Proof. By induction on the number of all-quanti�ers jCj

8

in C (see [13] for details).

Example 18 (Example 8 continued) Figure 4 shows the description graphs G

C

and

G

D

corresponding to the concept descriptions C;D given in Example 8. The label ; at the

root of G

C

expresses that no primitive concept occurs in the top-level conjunction of C.

The edge labeled S from the root to a node labeled Q says that there is a value restriction

8S:C

0

in the top-level conjunction of C such that Q is the only primitive concept occurring

in the top-level conjunction of C

0

, etc.

4.3 Structural subsumption for FL

0

Before we can decide whether C is subsumed by D based on a structural comparison of

the description graphs, the graph for the subsumee C must be normalized by merging

successor nodes reached by edges labeled by the same role name. This corresponds to

applying the rewrite rule 8R:A u 8R:B ! 8R:(A u B) to the descriptions. Formally, we

apply the normalization rule shown in Figure 5 as long as possible to an FL

0

-description

graph G

C

. Notice that each iterated application of the rule in Figure 5 terminates since

jGj > jG

0

j if G

0

is obtained from G by one application of the rule. Furthermore, it is not

14



Let G = (V;E; v

0

; l) be an FL

0

-description graph. G

0

= (V

0

; E

0

; v

0

; l

0

) is obtained

from G by:

Let v 2 V with n > 1 R-successors v

1

; : : : ; v

n

and v

0

a new node not occuring in

V . Then G

0

is de�ned by merging v

1

; : : : ; v

n

to one R-successor v

0

of v:

� V

0

:= V n fv

1

; : : : ; v

n

g [ fv

0

g,

� E

0

:= E[v

i

=v

0

j i = 1 : : : n] (each v

i

is replaced by v

0

),

� l

0

(v

0

) :=

S

i=1:::n

l(v

i

) and l

0

(w) := l(w), w 2 V

0

n fv

0

g.

Figure 5: The normalization rule for FL

0

-description graphs

S

bv

2

: P

S

R

bv

3

: Q

bv

1

: P;Q

bv

0

: ;

b

G

C

:

Figure 6: The canonical description graph corresponding to C.

hard to see that the normalization rule is sound, i.e., if G

0

is obtained from G, then it is

G

I

= G

0

I

for all interpretations I.

De�nition 19 (Canonical FL

0

-description graphs) Let C be an FL

0

-concept de-

scription and G

C

the description graph of C. The canonical description graph of G

C

is

de�ned as the description graph

b

G

C

that is obtained from G

C

by applying the normaliza-

tion rule in Figure 5 to G

C

as long as possible.

Notice that the canonical description graph

b

G

C

= (

b

V ;

b

E;

b

v

0

;

b

l) of G

C

is a deterministic

tree, i.e., each node v 2

b

V has at most one R-successor in

b

G

C

for each R 2 �. Since

jG

C

j is linear in the size of C and j

b

G

C

j � jG

C

j the size of the canonical description graph

corresponding to an FL

0

-concept description C is linear in the size of C. As an example

consider the canonical description graph

b

G

C

of G

C

from Example 18 depicted in Figure 6.

In order to formalize the structural comparison of description graphs we need the

notion of more speci�c paths [6, 13].

De�nition 20 (More speci�c paths) Let G = (E; V; v

0

; l) and G

0

= (V

0

; E

0

; v

0

0

; l

0

) be

FL

0

-description graphs.

A node v 2 V is more speci�c than a node v

0

2 V

0

i� l

0

(v

0

) � l(v). A rooted path p =

v

0

R

1

v

1

: : : v

n�1

R

n

v

n

in G is more speci�c than the rooted path p

0

= v

0

0

R

0

1

v

0

1

: : : v

0

m�1

R

0

m

v

0

m

in G

0

i�

1. m � n,

2. R

i

= R

0

i

for 1 � i � m, and

15



3. for all 0 � i � m it is v

i

more speci�c than v

0

i

.

Now we are equipped to characterize subsumption of FL

0

-concept descriptions by a

structural comparison of description graphs. C is subsumed by D i� the conditions toW -

successors of instances of D are subsets of the conditions toW -successors of instances of C

for each W 2 �

�

. Intuitively speaking, these conditions to W -successors are represented

by the labels of W -successor nodes in the corresponding description graphs

b

G

C

and G

D

,

respectively. If the label of a W -successor node of the root contains the primitive concept

P , then for each instance x of C all W -successors of x must be in the extension of P .

Therefore, we can decide C v D by testing wether the label of each W -successor node in

G

D

is a subset of the label of the W -successor node in

b

G

C

3

for each W 2 �

�

. Formally,

we can prove

Theorem 21 (Structural subsumption for FL

0

) Let C;D be FL

0

-concept descrip-

tions,

b

G

C

the canonical description graph of C and G

D

the description graph of D. Then

C v D i� for each rooted path p in G

D

there exists a more speci�c rooted path

b

p in

b

G

C

.

Proof. See [13].

Example 22 (Example 18 continued) Consider the FL

0

-concept descriptions C and

D from Example 18, G

D

in Figure 4 and

b

G

C

in Figure 6. The path with label RS in

b

G

C

is more speci�c than the path with label RS in G

D

. However, for the path with label

RSR in G

D

there does not exist a more speci�c path in

b

G

C

. Consequently, the structural

subsumption test recognizes that C is not subsumed by D.

An algorithm deciding C v D by Theorem 21 considers the (canonical) description

graphs

b

G

C

and G

D

and tests wether there exists a more speci�c rooted path

b

p in

b

G

C

for each

rooted path p in G

D

. In other words, for eachW -successor node v of v

0

in G

D

= (V;E; v

0

; l)

we test (1) wether there exists a W -successor node

b

v of

b

v

0

in

b

G

C

= (

b

V ;

b

E;

b

v

0

;

b

l) or not and

(2) if

b

v is the W -successor of

b

v

0

in

b

G

C

, wether l(v) �

b

l(

b

v). If (1) or (2) does not hold,

then C 6v D; otherwise C v D. A more formal algorithm can be found in [13].

5 Comparing the approaches for FL

0

We �rst illustrate the tight relation between both approaches by Example 8. If we compare

Figure 1 with Figure 4, then we see that the description graphs G

C

and G

D

essentially

agree with the semi-automata A

T

C

and A

T

D

. The only di�erence is that in the semi-

automata there is only one state for every atomic concept and the primitive concepts P

and Q are only reached from de�ned concepts, e.g. A

1

, by "-transitions. In general, there

exists an \isomorphism" between the semi-automaton A

T

C

and the description graph G

C

corresponding to C. Roughly speaking, we can de�ne a bijective mapping ' from the set

3

Notice that since

b

G

C

is canonical, there is at most one W -successor node of the root in

b

G

C

.
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of nodes in G

C

to the set of de�ned concepts in A

T

C

such that the label of a node v is the

same as the set of all primitive concepts reached from '(v) by "-transitions.

Another obvious similarity between the automata-theoretic and the structural ap-

proach is that in both cases the automaton/graph for the subsumee C must be modi�ed.

A closer look at Figure 2 and Figure 6 reveals, that the powerset automaton P(A

T

C

) and

the canonical description graph

b

G

C

are also essentially identical. To be more precise,

b

G

C

can be obtained from P(A

T

C

) by (1) removing the names of de�ned concepts from the

states, and (2) by removing the sink state ; and the edges leading to this sink.

First, we consider the relationship between G

C

and A

T

C

.

Lemma 23 Let C be an FL

0

-concept description, G

C

= (V;E; v

0

; l) the description graph

of C, A

T

C

= (�; Q;�) the semi-automaton of C and D

T

C

the set of de�ned atomic

concepts in A

T

C

.

Then there exists a bijective mapping ' : V �! D

T

C

such that

1. l(v) = "-closure('(v)) n f'(v)g for all v 2 V and

2. ('(v); R; '(w)) 2 � i� vRw 2 E for all R 2 �.

Proof. By induction on the role depth of C.

depth(C) = 0: Then we have C = P

1

u : : :uP

n

. Furthermore, it is G

C

= (fv

0

g; ;; v

0

; l)

with l(v

0

) = fP

1

; : : : ; P

n

g and A

T

C

= (;; fA; P

1

; : : : ; P

n

g;�) with � = f(A; "; P

i

) j 1 �

i � ng andD

T

C

= fAg. We de�ne ' : fv

0

g �! fAg with '(v

0

) := A. By construction it is

"-closure(A) = fA; P

1

; : : : ; P

n

g and hence l(v

0

) = "-closure('(v

0

)) n f'(v

0

g. So, ' satis�es

the �rst condition of Lemma 23. The second condition is satis�ed trivially because there

is no R-successors of v

0

in G

C

or of A in A

T

C

.

depth(C) > 0: Then we have C = P

1

u : : :uP

n

u8R

1

:C

1

u : : :u8R

m

:C

m

. By the algorithm

in Figure 3 we have

� the description graph of C, G

C

= (V;E; v

0

; l),

� the recursively de�ned description graphs of C

i

, G

C

i

= (V

i

; E

i

; v

0i

; l

i

), 1 � i � m.

For G

C

and G

C

i

it holds that

� V

i

; V

j

are pairwise disjoint,

� V = fv

0

g [ V

1

[ : : : [ V

m

, and

� E = fv

0

R

i

v

0i

j 1 � i � mg [ E

1

[ : : : [ E

m

.

By De�nition 6 and De�nition 7 we have

� the recursively de�ned terminologies of C and C

i

, 1 � i � m, T

C

and T

C

i

with

D

T

C

= fAg [ D

T

C

1

[ : : : [ D

T

C

m

,
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� the de�ned concept names A and A

i

of C and C

i

, 1 � i � m, and

� the recursively de�ned semi-automata of C and C

i

, A

T

C

= (�; Q;�) and A

T

C

i

=

(�

i

; Q

i

;�

i

).

It is depth(C

i

) < depth(C) for 1 � i � m. By induction there exist bijective mappings

'

i

: V

i

�! D

T

C

i

such that '

i

satis�es 1 and 2 of Lemma 23 for G

C

i

and A

T

C

i

.

We de�ne ' : V �! D

T

C

by

'(v

0

) := A and '(v) := '

i

(v) for v 2 V

i

:

Since by construction the V

i

as well as the D

T

C

i

are pairwise disjoint and each '

i

is

bijective, ' is a bijective mapping from V = fv

0

g [ V

1

[ : : : [ V

m

to D

T

C

= fAg [

D

T

C

1

[ : : : [ D

T

C

m

. Because of E = fv

0

R

i

v

0i

j 1 � i � mg [ E

1

[ : : : [ E

m

and � :=

f(A; "; P

i

) j 1 � i � ng [ f(A;R

i

; A

i

) j 1 � i � mg [ �

1

[ : : : [ �

m

and the induction

hypothesis it is ('(v); R; '(w)) 2 � i� vRw 2 E for all R 2 �. As an easy consequence

of the construction we have l(v

0

) = "-closure(A) n fAg and by the induction hypothesis

it is l(v) = "-closure('(v)) n f'(v)g for all v 2 V

1

[ : : : [ V

m

. So, ' satis�es 1 and 2 of

Lemma 23.

Example 24 (Example 8 and Example 18 continued) Consider the description graph

G

C

= (V;E; v

0

; l) in Figure 4 and the semi-automaton A

T

C

in Figure 1 of the concept de-

scription C from Example 8. The mapping ' : V �! D

T

C

is given by

v 2 V v

0

v

1

v

2

v

3

v

4

v

5

'(v) 2 D

T

C

A A

1

A

2

A

3

A

31

A

4

In the next step, we formalize the relation between the canonical description graph

b

G

C

of C and the power set automaton P(A

T

C

) of C. As already mentioned, there is no

node in the canonical description graph of a concept description C corresponding to the

sink state ; in the powerset automaton of C. The automaton directly corresponding to

the canonical description graph of C can be obtained from the powerset automaton by

eliminating the sink and all edges leading to the sink. In the sequel, this deterministic

automaton of C is denoted by B

T

C

. Analogous to De�nition 11, B

T

C

can be de�ned by

B

T

C

:= (�; Q

0

; �

0

) with

� Q

0

:= fF � Q j F 6= ;; next

A

T

C

("-closure(A);W ) = F for a word W 2 �

�

g and

� for I 2 Q

0

, R 2 �

�

0

(I; R) :=

(

next

A

T

C

(I; R) 2 Q

0

; next

A

T

C

(I; R) 6= ;

unde�ned ; otherwise:

The relation between the canonical description graph of C and the deterministic au-

tomaton becomes obvious, if we compare the normalization rule in Figure 5 and the

de�nition of the transition function �

0

of B

T

C

.
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Let G

C

= (V;E; v

0

; l) be the description graph of C, A

T

C

= (�; Q;�) the semi-

automaton of C, and A the de�ned concept of C. Let further fv

1

; : : : ; v

n

g � V be the

non-empty set of all R-successors of v

0

in G

C

. The application of the normalization rule to

v

0

and R in G

C

yields a description graph G

0

= (V

0

; E

0

; v

0

; l

0

) where v

1

; : : : ; v

n

are merged

to one new R-successor v

new

of v

0

.

On the other hand, de�ning the R-successor �

0

("-closure(A); R) of "-closure(A) in B

T

C

means merging all states that can be reached from a state in "-closure(A) by a path labeled

with R to one new state in B

T

C

. By Lemma 23 we know that the set f'(v

1

); : : : ; '(v

n

)g

is the set of all R-successors of A in A

T

C

. By de�nition of A

T

C

, primitive concepts are

only reached from de�ned concepts by "-transitions and there are no edges leaving from

primitive concepts in A

T

C

. It follows next

A

T

C

("-closure(A); R) = next

A

T

C

(fAg; R) =

S

1�i�n

"-closure('(v

i

)). This shows that merging all R-successors of v

0

in G

C

to one new

R-successor is the same as de�ning �

0

("-closure(A); R). As a consequence of Lemma 23,

property 1 we get

l

0

(v

new

) =

[

1�i�n

l(v

i

)

=

[

1�i�n

"-closure('(v

i

)) n f'(v

i

)g

=

[

1�i�n

"-closure('(v

i

)) n f'(v

1

); : : : ; '(v

n

)g

=

[

1�i�n

"-closure('(v

i

)) n D

T

C

= �

0

("-closure(A); R) n D

T

C

:

More general, let G

0

C

be the description graph obtained from G

C

by applying the

normalization rule to each non-empty set of R-successors of v

0

, R 2 �, and let v be an

R-successor of v

0

in G

0

C

. Generating G

0

C

is the same as de�ning the transition function

�

0

for "-closure(A) and each R 2 � such that there is at least one R-successor of A in

A

T

C

. Furthermore, applying the normalization rule recursively to the subgraph G

0

C

j

v

is the same as de�ning �

0

for each RW -successor set of "-closure(A), W 2 �

�

. Thus,

generating the canonical description graph

b

G

C

of C recursively is the same as de�ning the

deterministic automaton B

T

C

of C recursively.

As a consequence of the above observations we can recursively de�ne a bijective map-

ping

b

' from the set of nodes

b

V of the canonical description graph

b

G

C

= (

b

V ;

b

E; v

0

;

b

l) of C

to the set of states Q

0

of the deterministic automaton B

T

C

of C, such that

�

b

'(v

0

) = "-closure(A),

�

b

'(v) = �

0

("-closure(A);W ) if v is a W -successor of v

0

in

b

G

C

,

�

b

l(v) =

b

'(v) n D

T

C

for all v 2

b

V , and

� vRw 2

b

E i� �

0

(

b

'(v); R) =

b

'(w) for all R 2 �.
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So far, we have pointed out the tight relation between both approaches on the level of

the data structures they are working on. In the sequel, we will argue that due to the sim-

ilarity between the automata and description graphs structural subsumption algorithms

can be seen as a special implementation of the language inclusion tests required by the

automata theoretic characterization of subsumption of concept descriptions.

To make this more precise, let C;D be concept descriptions,

b

G

C

and G

D

the corre-

sponding (canonical) description graphs, A

T

D

the automaton of D with de�ned concept B

ofD, and P(A

T

C

) the powerset automaton of C with de�ned concept A of C. Assume that

C 6v D. By Theorem 21, the structural subsumption algorithm detects non-subsumption

by �nding a rooted path p in G

D

with label W such that there does not exist a more

speci�c rooted path

b

p in

b

G

C

. There are two possible reasons why this more speci�c path

does not exist in

b

G

C

:

(1) There is no path with label W in

b

G

C

. Without loss of generality we may assume

that the path p in G

D

ends in a node with non-empty label set. Otherwise, the path could

be extended appropriately because each leaf node in a description graph corresponding to

an FL

0

-concept description has a non-empty label set. Obviously, such an extended path

has still no more speci�c path in

b

G

C

. Now assume that the primitive concept P is contained

in the label set of the last node in p. Then we have W 2 L

A

T

D

(B;P ) \ L

A

T

C

(A; P ). In

fact, W 2 L

A

T

D

(B;P ) because the path p in G

D

to a node containing P yields a path in

A

T

D

from B to P . The fact that there is no (rooted) path with label W in

b

G

C

implies

that the path with label W in P(A

T

C

) leads from the initial state to the sink state ;.

Since ; does not contain P , it is a �nal state for the automaton accepting L

A

T

C

(A; P ).

(2) For p and the (unique) path

b

p with labelW in

b

G

C

, the inclusion condition between

the labels is violated by some primitive concept P , i.e., P belongs to the label of a node

in p, but not to the label of the corresponding node in

b

p. Again, we may assume that p

ends in the node v for which the inclusion condition is violated. (Obviously, the pre�x of

p that ends in v has also no more speci�c path in

b

G

C

.) An argument similar to the one

employed in the �rst case can be used to show that W 2 L

A

T

D

(B;P ) \ L

A

T

C

(A; P ).

To sum up, we have shown that the existence of a rooted path in G

D

without a more

speci�c path in

b

G

C

implies that there is a primitive concept P such that L

A

T

D

(B;P ) 6�

L

A

T

C

(A; P ). The converse of this implication can be shown analogously.

6 Subsumption for ALN

ALN is an extension of FL

0

which additionally provides us with primitive negation and

number restrictions, i.e., atomic concepts of the form :P , (� n R), and (� n R) where

P is a primitive concept, n a nonnegative integer, and R a role name.

In both approaches, number restrictions and negated primitive concepts are treated

like new primitive concepts. In the description graphs, they may also occur in node labels.

In the automata-theoretic approach, they give rise to new states in the semi-automaton of

C, and to additional inclusion conditions. Notice that the automaton A

T

C

corresponding

to anALN -concept description C also has a weak tree structure (see De�nition 13). Thus,
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even for ALN -concept descriptions C there is no exponential blow up in constructing the

powerset automaton corresponding to the acyclic ALN -terminology T

C

of C.

However, since both primitive negation and number restrictions may cause inconsis-

tencies, this straightforward extension is not su�cient to obtain a complete subsumption

algorithm.

Example 25 Consider theALN -concept description C

0

:= 8S:Qu8R:(PuQu8S:8S:(Qu

:Q) u 8S:(� 1 S)). This description can be represented by the de�ned concept A

0

in the

ALN -terminology

T

C

0

: A

0

= 8S:A

0

1

u 8R:A

0

2

A

0

1

= Q

A

0

2

= P uQ u 8S:A

0

21

u 8S:A

0

22

A

0

21

= 8S:A

0

211

A

0

211

= Q u :Q

A

0

22

= (� 1 S):

The semi-automaton of C

0

is depicted in Figure 7.

"

:Q
A

0

211

R

S

A

T

C

0

:

A

0

A

0

1

A

0

2

A

0

21

A

0

22

S

S

"

Q

P

"

"

"

"

(� 1 S)

S

Figure 7: The semi-automaton of C

0

.

The powerset automaton of C

0

and the description graph of C

0

are shown in Figure 8.

R

S

v

0

1

: P;Q

v

0

4

: Q

v

0

2

: (� 1S)

S

S

fA

0

21

; A

0

22

; (� 1S)g

S

fA

0

211

;Q;:Qg

v

0

3

: Q;:Q

S

;

R; S

fA

0

g

R; S R;S

P(A

T

C

0

) :

v

0

0

: ;

G

C

0 :

fA

0

2

; P;Qg

R

S

fA

0

1

; Qg

R

R

Figure 8: The powerset automaton and FL

0

-canonical description graph of C

0

.

Now consider the concept description C from Example 8. We have C

0

v C, even

though RS 2 L

A

T

C

(A; P ) \ L

P(A

T

C

0

)

(A

0

; P ) and the path with label RS in G

C

does not

have a corresponding more speci�c path in G

C

0

.
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In the next two sections, we describe in detail the extensions that are made in both

approaches to obtain a sound and complete subsumption algorithm. Thereafter, we extend

our comparison from Section 5 to ALN and illustrate the 1-1-correspondence between

these extensions.

6.1 The automata theoretic approach for ALN

In [12], subsumption has been characterized for cyclic ALN -terminologies both for de-

scriptive and �xed-point semantics. As for FL

0

, we restrict our attention to acyclic

ALN -terminologies. Thus, we do not have to distinguish di�erent semantics.

In Section 3.2, we have seen that for an FL

0

-terminology T the languages L

A

T

(A; P )

represent exactly those value restrictions for P subsuming A, i.e., A v

T

8W .P i� W 2

L

A

T

(A; P ). Since inconsistencies are expressible in ALN , this equivalence does not hold

for ALN -terminologies. There may be words such that A v

T

8W .? (RS in Example 25).

These words are called A-excluding words; let E(A) denote the set of these words. A-

excluding words imply value restrictions that are not explicitly represented in L

A

T

(A; P ),

i.e., even if the A-excluding word W is not contained in L

A

T

(A; P ) it obviously follows

A v

T

8W .P . Thus, in order to represent the value restrictions that are satis�ed by A,

beside L

A

T

(A; P ), additionally, A-excluding words have to be taken into account. Since

we are interested in an automata theoretic characterization of subsumption, it is necessary

to characterize A-excluding words based on A

T

.

Proposition 26 (Exclusion) Let T denote an acyclic ALN -terminology, and let S de-

note the minimal subset of �

�

such that the following conditions hold:

1. If there is a primitive concept P or con
icting number restriction (� l R) and

(� r R), l > r, such that W 2 L

A

T

(A; P ) \ L

A

T

(A;:P ) or W 2 L

A

T

(A; (� l R)) \

L

A

T

(A; (� r R)), then W 2 S.

2. If WR 2 �

�

, W 2 �

�

, R 2 �, and W 2 L

A

T

(A; (� 0 R)), then WR 2 S.

3. If WR 2 S, W 2 �

�

, R 2 �, and W 2 L

A

T

(A; (� l R)), l � 1, then W 2 S.

4. If W 2 S and V 2 �

�

, then WV 2 S.

Then S = E(A).

Proof. Consequence of Lemma 35 in [11]. Since the proof is lengthy and technical it is

omitted here.

In order to simplify the comparison of structural subsumption and the automata the-

oretic approach, the characterization stated in Proposition 26 di�ers from the de�nition

of E(A) in [12, 11]. However, it can easily be veri�ed that these descriptions of E(A) are

equivalent.

To illustrate Proposition 26 we consider the concept C

0

from Example 25. Obviously,

RSS 2 E(A

0

) since RSS 2 L

A

T

C

0

(A

0

; Q) \ L

A

T

C

0

(A

0

;:Q), i.e., any RSS-successor of an
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individual in A

0

must belong both to Q and :Q, which is impossible. Furthermore, by

Proposition 26, 3. RS 2 L

A

T

C

0

(A

0

; (� 1 S)) implies RS 2 E(A

0

). This is motivated by

the following fact: Every RS-successor of an individual in A

0

also has an RSS-successor.

Since RSS 2 E(A

0

) means that individuals in A

0

cannot have RSS-successors, this implies

that they cannot have RS-successors. Finally, since RS 2 E(A

0

) we know by Proposition

26, 4 that RSW 2 E(A

0

) for all W 2 �

�

. These words must be contained in E(A

0

) since

A

0

v

T

C

0

8RS.? implies A

0

v

T

C

0

8RSW .?. Now, it is not hard to see that E(A

0

) = RS�

�

.

It can be shown that L

A

T

(A; P ) [ E(A) contains exactly those words W such that

A v

T

8W .P . Intuitively, L

A

T

(A; P ) [ E(A) represents all value restrictions for P that

are satis�ed by A. For primitive negation :P there is an analogous set.

For number restrictions, beside excluding words, another phenomenon comes into the

picture. IfW 2 L

A

T

(A; (� l R)), then not onlyA v

T

8W .(� r R) but alsoA v

T

8W .(� l R)

holds for all l � r. Therefore, the value restrictions for (� l R) that are satis�ed for A in-

clude all words in

S

r�l

L

A

T

(A; (� r R)). In fact, it can be shown that

S

r�l

L

A

T

(A; (� r R))[

E(A) contains all value restrictions for (� l R), l > 0, that are satis�ed by A.

For �-restrictions

S

r�l

L

A

T

(A; (� r R)) [E(A) is not su�cient for (� l R). If WR 2

E(A), then it follows A v

T

8WR.?, Consequently, it holds A v

T

8W .(� 0 R). More

generally, it can be observed that W 2 E(A)R

�1

implies A v

T

8W .(� l R) for all l � 0.

4

Now, it can be shown that

S

r�l

L

A

T

(A; (� r R))[E(A)R

�1

represents exactly those value

restrictions for (� l R) that are satis�ed by A.

Intuitively, A is subsumed by B if the set of value restrictions that has to be satis�ed

by B are contained in those which are satis�ed by A, i.e., A satis�es at least those value

restrictions that must hold for individuals in B.

Theorem 27 (Characterizing subsumption for ALN) Let T

A

and T

B

be acyclicALN -

terminologies de�ned over the same set of primitive concepts and roles. Furthermore, let

A be de�ned in T

A

and B in T

B

. Then A v

T

A

;T

B

B i�

1. for all primitive concepts P it holds that

L

A

T

B

(B;P ) � L

A

T

A

(A; P ) [ E(A),

2. for all primitive negation :P it holds that

L

A

T

B

(B;:P ) � L

A

T

A

(A;:P ) [ E(A),

3. for all �-restrictions (� l R), l > 0, it holds that

L

A

T

B

(B; (� l R)) �

S

r�l

L

A

T

A

(A; (� r R)) [ E(A), and

4. for all �-restrictions (� l R) it holds that

L

A

T

B

(B; (� l R)) �

S

r�l

L

A

T

A

(A; (� r R)) [ E(A)R

�1

.

Proof. See [11].

In our example we have L

A

T

C

(A; P ) = fR;RSg � L

A

T

C

0

(A

0

; P )[E(A

0

) = fRg[RS�

�

as well as L

A

T

C

(A;Q) = fR; Sg � L

A

T

C

0

(A

0

; Q) [ E(A

0

) = fS;Rg [ RS�

�

. The other

languages for A are empty. Thus by Theorem 27, C

0

is subsumed by C.

4

For L � �

�

and R 2 � we de�ne LR

�1

:= fW j WR 2 Lg.
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Note that although we only consider acyclic terminologies the set of excluding words

are either empty or in�nite. Thus, in order to use Theorem 27 for deciding subsumption

inclusions of in�nite languages have to be tested. This is achieved by applying automata

theoretic techniques. First we have to show that the set of excluding words is regular. In

fact, it turns out [12] that for an ALN -terminology T the set E(A) of A-excluding words

is accepted by a certain extension of the powerset automaton of A

T

. To see this, we need

the following

De�nition 28 (Exclusion set) Let T be an ALN -terminology and A

T

= (�; Q;�) the

corresponding semi-automaton. The set F

0

� Q is called exclusion set w.r.t. A

T

if there

is a non-negative integer n, a word R

1

� � �R

n

2 �

�

, con
icting number-restrictions (� l R)

and (� r R), l > r, or a primitive concept P , and for all 1 � i � n there are integers

m

i

� 1 such that for F

i

:= next

"

(F

i�1

; R

i

), 1 � i � n, it holds that (� m

i

R

i

) 2 F

i�1

for

all 1 � i � n and (� l R), (� r R) 2 F

n

or P;:P 2 F

n

.

Now, an automata theoretic characterization of exclusion can be shown [12]:

Lemma 29 Let T be an ALN -terminology, A

T

the corresponding semi-automaton, and

A an atomic concept in T . Then

E(A) = fW 2 �

�

j there is a pre�x V of W such that

next

A

T

(fAg; V ) is an exclusion set or there

is a pre�x V R of W , V 2 �

�

, R 2 � such

that (� 0 R) 2 next

A

T

(fAg; V )g.

Using this Lemma, we can construct a �nite automaton accepting E(A):

De�nition 30 Let P(A

T

) = (�;

b

Q;

b

�) denote the powerset automaton of A

T

= (�; Q;�)

with initial state "-closure(A). We extend P(A

T

) to B

�

T

= (�; Q

�

; "-closure(A);�

�

; fqg)

by a new state q which is the �nal state of B

�

T

. For every exclusion set F � Q we add

a transition (F; "; q) in B

�

T

and for every state F � Q in B

�

T

and every �-restriction

(� 0 R) 2 F we add the transition (F;R; q). Finally, we add (q; R; q) for every R 2 �.

If, furthermore, every F � Q that contains P is a �nal state in B

�

T

then this automaton

accepts the language L

A

T

(A; P ) [ E(A). Analogously, one can de�ne �nal states in B

�

T

C

such that the languages on the right-hand side of the inclusions in Theorem 27 for primitive

negation, �-restrictions, and �-restrictions are accepted. Note, that for �-restrictions

some transitions must be added as well, since we are faced with E(A)R

�1

instead of E(A).

This extension can easily be achieved. Now, one can test the inclusions in Theorem 27 as

pointed out in Section 3.3 using A

T

D

and B

�

T

C

.

6.2 Structural subsumption for ALN

In this section we extend our notion of description graphs to ALN by allowing for negated

primitive concepts and number restrictions in the labels of nodes, i.e., anALN -description

graph G = (V;E; v

0

; l) over a set C of primitive concepts and a set � of role names is a

�nite tree with root v

0

such that
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� E � V � �� V and

� for all v 2 V l(v) is a �nite subset of

C [ f:P j P 2 Cg [ f(� n R) j n 2 IN; R 2 �g [ f(� n R) j n 2 IN; R 2 �g.

The semantics of ALN -description graphs is de�ned in

De�nition 31 (Extension of ALN -description graphs) Let I be an interpretation

of C and �, G = (V;E; v

0

; l) an ALN -description graph over C and �.

The extension of a node v 2 V is recursively de�ned by x 2 v

I

i�

� x 2 P

I

for all P 2 l(v) and

� x 62 P

I

for all :P 2 l(v) and

� jfy j (x; y) 2 R

I

gj � n for all (� n R) 2 l(v) and

� jfy j (x; y) 2 R

I

gj � n for all (� n R) 2 l(v) and

� for all vRv

0

2 E and y 2 dom(I) with (x; y) 2 R

I

it holds that y 2 v

0

I

.

The extension of G is de�ned by G

I

:= v

I

0

.

The recursive algorithm in Figure 3 for translating FL

0

-concept descriptions into FL

0

-

description graphs can be easily extended to ALN . We are concerned with ALN -concept

descriptions of the form

C = P

1

u : : : u P

n

u :Q

1

u : : : u :Q

k

u

(� �

1

S

1

) u : : : u (� �

l

S

l

) u (� �

1

T

1

) u : : : u (� �

r

T

r

)u

8R

1

:C

1

u : : : u 8R

m

:C

m

:

We replace the de�nition of the label of v

0

in Figure 3 by

l(v

0

) := fP

1

; : : : ; P

n

;:Q

1

: : : ;:Q

k

; (� �

1

S

1

); : : : ; (� �

l

S

l

); (� �

1

T

1

); : : : ; (� �

r

T

r

)g:

The algorithm obtained by this modi�cation yields the ALN -description graph G

C

of an

ALN -concept description C. Analogously to FL

0

, the translation is sound.

Lemma 32 (Equivalence of concepts and description graphs for ALN ) Let C be

an arbitrary ALN -concept description and G

C

the description graph of C. Then for all

interpretations I it holds that C

I

= G

I

C

.

Proof. See [13].

Example 25 shows that Theorem 21 does not hold for ALN -concept descriptions C

and D. Notice that the description graph G

C

0

of C

0

depicted in Figure 8 is already

deterministic, i.e., the normalization rule in Figure 5 is not applicable to G

C

0

. We will
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Let G = (V;E; v

0

; l) be a description graph. G

0

= (V

0

; E

0

; v

0

; l

0

) denotes the description graph

that is obtained from G by applying one of the following rules.

1. Let v 2 V with n > 1 R-successors v

1

; : : : ; v

n

in E and v

0

a new node not occuring in

V . Then G

0

is de�ned by

� V

0

:= V n fv

1

; : : : ; v

n

g [ fv

0

g and

E

0

:= E[v

i

=v

0

j i = 1 : : : n] (each v

i

is replaced by v

0

in E),

� l(v

0

) :=

S

i=1:::n

l(v

i

) and l(w) := l(w), w 2 V

0

n fv

0

g.

2. Let v; w 2 V with vRw 2 E and fP;:Pg � l(w). Then G

0

is de�ned by

� V

0

:= V n (fwg [ fw

0

j exists a path from v to w

0

g) and

E

0

:= E \ V

0

���V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

n fvg and l

0

(v) := l(v) [ f(� 0 R)g.

3. Let v; w 2 V with vRw 2 E, f(� n S); (� m S)g � l(w), and m > n. Then G

0

is de�ned

by

� V

0

:= V n (fwg [ fw

0

j exists a path from w to w

0

g) and

E

0

:= E \ V

0

���V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

n fvg and l

0

(v) := l(v) [ f(� 0 R)g.

4. Let v 2 V with (� 0 R) 2 l(v) and vRw 2 E. Then G

0

is de�ned by

� V

0

:= V n (fwg [ fw

0

j exists a path from w to w

0

g) and

E

0

:= E \ V

0

���V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

.

5. Let v 2 V with k > 1 number restrictions f(� n

1

R); : : : ; (� n

k

R)g � l(v). Then G

0

is

de�ned by

� V

0

:= V and E

0

:= E,

� l(v) := l(v) n f(� n

1

R); : : : ; (� n

k

R)g [

f(� minfn

1

; : : : ; n

k

g R)g,

l(w) := l(w), w 2 V

0

n fvg.

6. Let v 2 V with k > 1 number restrictions f(� n

1

R); : : : ; (� n

k

R)g � l(v). Then G

0

is

de�ned by

� V

0

:= V and E

0

:= E,

� l(v) := l(v) n f(� n

1

R); : : : ; (� n

k

R)g [

f(� maxfn

1

; : : : ; n

k

g R)g,

l(w) := l(w), w 2 V

0

n fvg.

7. If fP;:Pg � l(v

0

) or f(� n R); (� m R)g � l(v

0

), m > n, then G

0

is de�ned by

� V

0

:= fv

0

g and E

0

:= ; and

� l

0

(v

0

) := ?.

Figure 9: Normalization rules for ALN -description graphs
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R

S

b

G

C

0 :

bv

0

0

: ;

bv

0

1

: P;Q; (� 0 S)

bv

0

2

Q

Figure 10: The ALN -canonical description graph of C

0

.

deal with the problems caused by inconsistencies by applying additional normalization

rules when computing the canonical description graph [5, 6, 13] (see Figure 9).

As for FL

0

-description graphs we �rst obtain a deterministic graph by merging all

R-successor nodes of a node v to one new R-successor of v (Rule 1).

The rules 2, 3, and 4 cope with nodes labeled by inconsistent sets, i.e., nodes v with

fP;:Pg � l(v) or f(� l S); (� r S)g � l(v), l > r. Nodes labeled by inconsistent sets and

the edges leading to these nodes are removed. In addition, if there was an edge labeled R

from node v to the inconsistent node, the label of v is extended by (� 0 R) (rules 2, 3).

This is due to the equivalence 8R:? � (� 0 R). For the same reason, we have to remove

each subgraph with root v if the label of the R-predecessor of v contains (� 0 R) (rule 4).

If the root v

0

is labeled by an inconsistent set, then the whole concept is inconsistent.

In this case, we remove all nodes except the root and all edges and label v

0

by ? (rule 7).

The rules 5 and 6 deal with number restrictions. Using (� n R) v (� m R) i� n � m

and (� n R) v (� m R) i� n � m, we can reduce all �-restrictions and all �-restrictions

for an R 2 � to one �-restriction and one �-restriction, respectively, in the label of a

node v.

Example 33 (Example 24 continued)

Consider the description graph G

C

0

= (V

0

; E

0

; v

0

0

; l

0

) ofC

0

in Figure 8. Because of fQ;:Qg �

l

0

(v

0

3

), the node v

0

3

and the edge v

0

2

Sv

0

3

are removed, and (� 0 S) is added to the label

of v

0

2

. Now, v

0

2

is labeled with f(� 1 S); (� 0 S)g, which is again inconsistent. Conse-

quently, it is removed, and (� 0 S) is added to the label of the S-predecessor node v

0

1

.

The description graph obtained this way is depicted in Figure 10.

As for FL

0

each iterated application of the normalization rules terminates since jGj >

jG

0

j if G

0

is obtained from G by applying one of the rules in Figure 9. As mentioned above,

each rule is based on an equivalence between concept descriptions, e.g., 8R:C u 8R:D �

8R:(C u D). Thus, it is not hard to see, that the rules are sound, i.e., if G

0

is obtained

from G, then it is G

I

= G

0

I

for all interpretations I.

In order to distinguish the two normal forms used in the structural approach for FL

0

and ALN , respectively, we refer to the description graph G

0

C

that is obtained from G

C

by

applying only the �rst normalization rule in Figure 9 as the FL

0

-canonical description

graph. The description graph

b

G

C

that is obtained from G

C

by applying all normalization

rules in Figure 9 as long as possible is called ALN -canonical description graph.

De�nition 34 (ALN -canonical description graphs) Let C be an ALN -concept de-

scription and G

C

the description graph of C. The ALN -canonical description graph of G

C

27



is de�ned as the description graph

b

G

C

that is obtained from G

C

by an iterated application

of the normalization rules in Figure 9 such that no more rule is applicable to

b

G

C

.

Notice that the size of the description graph G

C

as well as the size of the ALN -

canonical description graph

b

G

C

of an ALN -concept description is linear in the size of

C.

Before we can formalize structural subsumption for ALN -concept descriptions, we

have to generalize the notion of more speci�c paths [6, 13].

De�nition 35 (More speci�c nodes and paths)

Let G = (E; V; v

0

; l) and G

0

= (V

0

; E

0

; v

0

0

; l

0

) be ALN -description graphs.

A node v 2 V is more speci�c than a node v

0

2 V

0

i�

� for each primitive concept P 2 l

0

(v

0

) it is P 2 l(v),

� for each negated primitive concept :P 2 l

0

(v

0

) it is :P 2 l(v),

� for each (� �

0

R) 2 l

0

(v

0

), there exists (� � R) 2 l(v) with � � �

0

, and

� for each (� �

0

R) 2 l

0

(v

0

) there exists (� � R) 2 l(v) with � � �

0

.

A rooted path p = v

0

R

1

v

1

: : : v

n�1

R

n

v

n

in G is more speci�c than a rooted path p

0

=

v

0

0

R

0

1

v

0

1

: : : v

0

m�1

R

0

m

v

0

m

in G

0

i�

� R

i

= R

0

i

for 1 � i � min(m;n),

� for all 0 � i � min(m;n) it is v

i

more speci�c than v

0

i

, and

� if n < m, then (� 0 R

0

n+1

) 2 l(v

n

).

The conditions on more speci�c nodes v and v

0

ensure that the conditions given by

atomic concepts in the label of v

0

are satis�ed by each instance of v. As an example con-

sider the node

b

v

0

1

in Figure 10 and a node v labeled with l(v) = fP; (� 1 S)g. Obviously,

b

v

0

1

is more speci�c than v and it holds that

u

C2

b

l

0

(bv

0

1

)

C = P uQ u (� 0 S) v P u (� 1 S) = u

C2l(v)

C:

More generally, the conjunction of all atomic concepts in l

0

(v

0

) subsumes the conjunction

of all atomic concepts in l(v) if v is more speci�c than v

0

.

Due to number restrictions of the form (� 0 R), a path, which is more speci�c than

a path p

0

, can be shorter than p

0

. To be more precise, let G = (V;E; v

0

; l) and G

0

=

(V

0

; E

0

; v

0

0

; l

0

) be description graphs. If v is the W -successor node of the root v

0

and

(� 0 R) 2 l(v), then each instance x of v

0

has no WR-successor. Thus, all conditions on

WR-successors v

0

of v

0

0

in G

0

are satis�ed trivially and the rooted path with label W in G

is more speci�c than a rooted path p

0

in G

0

with label WRW

0

, W

0

2 �

�

.
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In order to obtain a complete structural subsumption test using ALN -canonical de-

scription graphs and the extended notion of more speci�c paths we have to make an

assumption on the subsumer D [13]. Since > is expressible in ALN by (� 0 R), concepts

equivalent to >, e.g., 8S:(� 0 R), must be taken into account.

It is easy to see, that D is equivalent to > i� each atomic concept D

0

in the labels of

the nodes in G

D

is of the form (� 0 R). Intuitively, if there is an atomic concept D

0

in G

D

not of the form (� 0 R), then there is at most one non-trivial restriction to an instance

of D and therefore, D is not equivalent to >. It is not hard to see [13], that D � >

can be decided in time polynomial in the size of D. In order to simplify the structural

characterization of subsumption as well as the presentation of our structural subsumption

algorithm, we assume that no subconcept of the form (� 0 R) occurs in the subsumer

D. Thus, w.l.o.g. we reduce our attention to subsumers that are not equivalent to >.

Notice that this assumption is stated explicitly in the automata theoretic approach by

the condition \l > 0" in Theorem 27, 3.

Theorem 36 (Structural subsumption for ALN ) Let C;D be ALN -concept descrip-

tions,

b

G

C

= (

b

V ;

b

E;

b

v

0

;

b

l) the canonical description graph of C and G

D

= (V;E; v

0

; l) the

description graph of D. Then C v D i� C is equivalent to ?, i.e.,

b

l(

b

v

0

) = ?, or if for

each rooted path p in G

D

there exists a more speci�c rooted path

b

p in

b

G

C

.

Proof. See [13].

An algorithm deciding subsumption of two ALN -concept descriptions C and D based

on Theorem 36 can be described as follows: Consider the (canonical) description graphs

b

G

C

= (

b

V ;

b

E;

b

v

0

;

b

l) and G

D

= (V;E; v

0

; l). For each W 2 �

�

and W -successor v of v

0

in G

D

we test

1. if there exists a proper pre�x W

0

of W and a W

0

-successor node

b

v of

b

v

0

in

b

G

C

such

that

(a) W =W

0

RW

00

, R 2 � and W

00

2 �

�

,

(b) each node v

0

on the path labeled with W

0

in

b

G

C

is more speci�c than the

corresponding node in G

D

, and

(c) (� 0 R) 2

b

l(

b

v) or

2. if

b

v is the W -successor node of

b

v

0

in

b

G

C

, wether

b

v is more speci�c than v or not.

If (1) and (2) are not satis�ed, than C 6v D; otherwise C v D (see [13] for a formal

algorithm).

7 Extending the comparison to ALN

In this section we show that there is a 1-1 correspondence between the extended nor-

malization steps for canonical description graphs and the de�nition of A-excluding words
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and exclusion sets in the automata theoretic approach. More precisely, we will point

out that adding the set E(A) to the right-hand side of the inclusion statements in the

automata-theoretic characterization corresponds to the additional normalization done in

the structural approach.

First notice that Lemma 23 still holds for ALN -concept descriptions, since negated

primitive concepts and number restrictions are treated like primitive concepts. Further-

more, we obtain an extension to ALN of the mapping

b

' from FL

0

-canonical description

graphs to deterministic automata de�ned on page 19. More precisely, computing the FL

0

-

canonical description graph directly corresponds to de�ning the transition function �

0

of

the deterministic automaton B

T

C

= (�; Q

0

; �

0

) and we get a recursively de�ned bijective

mapping

b

' : V

0

�! Q

0

from the FL

0

-canonical description graph G

0

C

= (V

0

; E

0

; v

0

; l

0

) to

the deterministic automaton B

T

C

of C such that

�

b

'(v

0

) := "-closure(A),

5

�

b

'(v) := �

0

("-closure(A);W ) if v is a W -successor of v

0

in G

0

C

,

� l(v) =

b

'(v) n D

T

C

for all v 2 V , and

� vRw 2 E i� �

0

(

b

'(v); R) =

b

'(w) for all R 2 �.

We are now interested in the relation between the additional normalization rules in

Figure 9 on the one hand and the notions of A-excluding words and exclusion sets on

the other hand. Let G

0

C

= (V

0

; E

0

; v

0

; l

0

) be the FL

0

-canonical description graph of C,

B

T

C

= (�; Q

0

; �

0

) the deterministic automaton of C with de�ned concept A of C.

Now assume that one of the normalization rules 2 or 3 is applicable to G

0

C

, i.e., there

exists a node v 2 V

0

n fv

0

g with fP;:Pg � l

0

(v) or f(� l S); (� r S)g � l

0

(v), l > r.

Then, fP;:Pg �

b

'(v) nD

T

C

or f(� l S); (� r S)g �

b

'(v) nD

T

C

, respectively. Obviously,

if v is the W -successor node of v

0

in G

0

C

, then W is an A-excluding word, i.e., W 2 E(A).

Furthermore, by De�nition 28

b

'(v) is an exclusion set in B

T

C

.

Applying rule 2 or 3 means removing the subgraph with root v from G

0

C

and adding

(� 0 R) to the label of the R-predecessor

6

v

0

of v. If this new number restriction reveals

an inconsistency in v

0

, i.e., there exists (� n R) 2 l

0

(v

0

), n > 0, then rule 3 is applicable

again. Since (� n R) 2

b

'(v

0

) n D

T

C

, W

0

is also an A-excluding word (see Proposition 26,

3.), and

b

'(v

0

) is an exclusion set (see De�nition 28).

If the normalization rule 7 is applicable to G

0

C

, then C is equivalent to the empty

concept ? and

b

'(v

0

) = "-closure(A) is an exclusion set.

By induction on the number of applications of the normalization rules in Figure 9 we

can prove

Lemma 37 Let C be an ALN -concept description, G

0

C

= (V

0

; E

0

; v

0

; l

0

) the FL

0

-canonical

description graph of C, B

T

C

= (�; Q

0

; �

0

) the deterministic automaton with de�ned concept

A of C, and

b

' : V

0

�! Q

0

the bijection from G

0

C

to B

T

C

. For each iterated application of

the normalization rules in Figure 9 to G

0

C

, it holds that

5

Let A be the de�ned concept of C in T

C

.

6

R and v

0

are uniquely determined since G

0

C

is a deterministic tree.
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� if (� 0 R) is added to the label of v, then the R-successor �

0

(

b

'(v); R) of

b

'(v) in B

T

C

is an exclusion set, and

� if the normalization rule 7 becomes applicable, then C is inconsistent and

b

'(v

0

) =

"-closure(A) is an exclusion set.

In order to complete our comparison we have to investigate the relation between the

generalized conditions on more speci�c paths and adding the set E(A) of A-excluding

words to the right hand side of the set inclusion tests required by the automata theoretic

characterization.

Therefore, we consider Theorem 36 and the following proposition. Roughly speaking,

we characterize A �

t

A

;T

B

B by means of the extended powerset automaton B

�

T

A

(see

De�nition 30). This description can easily be veri�ed.

Proposition 38 With the denotations of Theorem 27 let B

�

T

A

be de�ned as in De�ni-

tion 30 for the terminology T

A

. Then for all W 2 �

�

it holds:

1. W 2 L

A

T

B

(B;P ) \ L

A

T

A

(A; P ) [ E(A) i�

(a) there is a path from B to P in A

T

B

, and

(b) P =2 next

A

T

A

(A;W ), and

(c) there is no path in B from "-closure(A) to q labeled with W .

2. W 2 L

A

T

B

(B;:P ) \ L

A

T

A

(A;:P ) [ E(A) i�

(a) there is a path from B to :P in A

T

B

, and

(b) :P =2 next

A

T

A

(A;W ), and

(c) there is no path in B from "-closure(A) to q labeled with W .

3. W 2 L

A

T

B

(B; (� l R)) \

S

r�l

L

A

T

A

(A; (� r R)) [ E(A), l > 0, i�

(a) there is a path from B to (� l R) in A

T

B

, and

(b)

S

r�l

f(� r R)g \ next

A

T

A

(A;W ) = ;, and

(c) there is no path in B from "-closure(A) to q labeled with W .

4. W 2 L

A

T

B

(B; (� l R)) \

S

r�l

L

A

T

A

(A; (� r R)) [ E(A)R

�1

i�

(a) there is a path from B to (� l R) in A

T

B

, and

(b)

S

r�l

f(� r R)g \ next

A

T

A

(A;W ) = ;, and

(c) there is no path B from "-closure(A) to q labeled with WR.

Now, assume that C 6v D. On the one hand, we know that there exists a W 2 �

�

such that W satis�es the conditions (a){(c) of one of the points 1.{4. in Proposition 38.

On the other hand, by Theorem 36 there exists a rooted path p in G

D

with labelW

0

2 �

�

such that there exists no more speci�c path

b

p in

b

G

C

. We point out the correspondence

between both characterizations by
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Lemma 39 Let C;D be ALN -concept descriptions such that C 6v D. There exists a

rooted path p in G

D

with label W such that

� there exists no more speci�c rooted path

b

p in

b

G

C

and

� W satis�es the three conditions (a); : : : ; (c) of at least one of the four points 1:{4:

in Proposition 38.

Proof.

By Theorem 36, there exists a rooted path p in G

D

such that there exists no more

speci�c rooted path in

b

G

C

. We have to consider several cases.

1.

b

v

0

is not more speci�c than v

0

. By De�nition 35, one of the following cases holds.

(a) There exists a primitive concept P such that P 2 l(v

0

) and P 62

b

l(

b

v

0

). Then

it is " 2 L

A

T

D

(B;P ) and P 62 "-closure(A) in B

�

T

C

. Since C 6� ?, "-closure(A)

is not an exclusion set, and hence there exists no transition ("-closure(A); "; q)

in B

�

T

C

. So, W satis�es the conditions (a){(c) of Proposition 38, 1.

(b) There exists a primitive concept P such that :P 2 l(v

0

) and :P 62

b

l(

b

v

0

).

Analogous to (a), the three conditions in Proposition 38, 2. are satis�ed by W .

(c) There exists (� �

0

S) 2 l(v

0

), and there exists no (� � S) 2

b

l(

b

v

0

) with � � �

0

.

By our assumption on D, it is �

0

> 0. Then it is

S

r�l

f(� l R)g\"-closure(A) =

;, thus the conditions in Proposition 38, 3. are satis�ed.

(d) There exists (� �

0

S) 2 l(v

0

) and there exists no (� � S) 2

b

l(

b

v

0

) with � � �

0

.

Analogous to (c), the conditions in Proposition 38, 4. are satis�ed.

2. Let 0 � m < n be the maximal index such that there exists

b

p =

b

v

0

R

1

b

v

1

: : :

b

v

m�1

R

m

b

v

m

in

b

G

C

whereby each

b

v

i

is more speci�c than v

i

, 0 � i � m. The path

b

p is uniquely

determined by R

1

: : : R

m

, because

b

G

C

is deterministic. Since

b

p is not more speci�c

than p, it is (� 0 R

m+1

) 62

b

l(

b

v

m

) (see De�nition 35).

(a) There exists an R

m+1

-successor

b

v

m+1

of

b

v

m

in

b

G

C

such that

b

v

m+1

is not more

speci�c than v

m+1

. It follows l(v

m+1

) 6= ;. Similar to case 1. we can show

that the conditions (a) and (b) of one of the points 1.{4. in Proposition 38 are

satis�ed by W = R

1

: : : R

m+1

. Since

b

G

C

is canonical, it is (� 0 R

i+1

) 62

b

l(

b

v

i

)

for 0 � i < m. (� 0 R

i+1

) 62

b

l(

b

v

i

) for 0 � i � m implies that there is no path

with label R

1

: : : R

m

from "-closure(A) to the accepting sink state q in B

�

T

C

. So,

W satis�es (a){(c) for one of the points 1.{4. in Proposition 38.

(b) There exists no R

m+1

-successor

b

v of

b

v

m

in

b

G

C

. Without loss of generality, we

may assume that the last node v in p has a non-empty label set (otherwise, p can

be extended appropriately; see Section 5). Consequently, R

1

: : : R

n

satis�es the

conditions (a) and (b) of at least one of the four points 1. {4. of Proposition 38.

As before, there exists no path with label R

1

: : : R

m

form "-closure(A) to the

accepting sink state q in B

�

T

C

. Because of

b

v

m

R

m+1

b

v 2

b

E i� �

0

(

b

'(

b

v

m

); R

m

) =
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b

'(

b

v), there exists no R

m+1

-successor of

b

'(

b

v

m

) in the deterministic automaton

B

T

C

of C. By construction, it follows that the rejecting sink state ; is the

unique state reached by R

1

: : : R

n

in B

�

T

C

. In particular, there exists no path

with label R

1

: : : R

n

from "-closure(A) to q in B

�

T

C

. Thus, R

1

: : : R

n

satis�es the

conditions (a){(c) for at least one of the points 1. {4. in Proposition 38.

We summarize the results of the comparison.

� There exists an isomorphism between the automaton A

T

C

and the description graph

G

C

of an ALN -concept description C.

� We have de�ned a bijective mapping from the FL

0

-canonical description graph G

0

C

to the deterministic automaton B

T

C

.

� There is a 1-1-correspondence between the additional normalization rules for com-

puting ALN -canonical description graphs and the characterization of A-excluding

words by terms of the automaton B

�

T

C

.

� We have shown that looking for a rooted path in G

D

without a more speci�c rooted

path in

b

G

C

corresponds to testing the set inclusions for all atomic concepts occuring

in C and D in parallel.

As a consequence of these results structural subsumption algorithms based on description

graphs can be seen as a special implementation of the inclusion tests required by the

automata theoretic characterization of subsumption for ALN -concept descriptions.

8 Conclusion and future work

We have shown that structural subsumption algorithms are special implementations of

the language inclusion tests required by the automata-theoretic characterization of sub-

sumption. This provides a more abstract understanding of how structural subsumption

algorithms work.

More precisely, we have pointed out that there exists an isomorphic relation between

the description graph G

C

of a concept description C and the automaton A

T

C

representing

the acyclic terminology T

C

of C. Furthermore, we introduced a bijective mapping from

the canonical description graph

b

G

C

of C to the deterministic automaton B

T

C

.

We have seen that the canonical description graph

b

G

C

of C and the description graph

of D is linear in the size of C and D, respectively. Hence, wether D subsumes C can be

decided in time polynomial in the size of C and D.

The size of the automaton A

T

C

corresponding to a concept description C is also linear

in the size of C. Due to the weak tree structure of A

T

C

, the powerset automaton of C

is also linear in the size of C. The inclusion of regular languages can be decided in time

polynomial in the size of the automata de�ning these languages. Consequently, one can
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decide subsumption of concept descriptions within the automata theoretic approach in

time polynomial in the size of the concept descriptions.

In future work, we will extend the comparison to cyclic terminologies, by comparing

the automata-theoretic characterization of subsumption with the structural subsumption

algorithm for cyclic terminologies realized in K-Rep [7].

The comparison between the structural and the automata-theoretic approach can also

be extended to other inference tasks such as computing the least common subsumer

(lcs) of ALN -concept descriptions. Again, the algorithm for computing the lcs based on

description graphs [6] can be seen as a special implementation of the automata theoretic

characterization of the lcs [3, 4]. An advantage of the automata-theoretic approach is that

it easily carries over to computing the lcs for concepts de�ned by cyclic terminologies [3, 4].
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