
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

The Guarded Fragment of Conceptual Graphs

Franz Baader Ralf Molitor Stephan Tobies

LTCS-Report 98-10

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

The Guarded Fragment of Conceptual Graphs

�

Franz Baader

y

Ralf Molitor

y

Stephan Tobies

y

December 30, 1998

Abstract

Conceptual graphs (CGs) are an expressive and intuitive formalism,

which plays an important role in the area of knowledge representation. Due

to their expressiveness, most interesting problems for CGs are inherently

undecidable. We identify the syntactically de�ned guarded fragment of

CGs, for which both subsumption and validity is decidable in deterministic

exponential time.

1 Outline

We start by giving a formal de�nition of conceptual graphs. Based on this

de�nition, we de�ne the operator �, which maps CGs into the �rst order pred-

icate calculus with equality. Our de�nition of � uses the same ideas already

presented in [Sow84], but we correct some minor mistakes which were already

pointed out in [Wer95a].

We show that the full set of CGs corresponds to the set of all �rst order formulae,

by showing that for each formula ' there is an (e�ectively computable) CG G

'

such that �(G

'

) � '.

Starting from the de�nition of the guarded fragment of �rst order logic, we iden-

tify a corresponding fragment of conceptual graphs, which can be de�ned solely

by syntactic means. We cite some results on the decidability of the guarded

fragment which induce the decidability of both validity and subsumption for

the guarded fragment of CGs. The (relatively e�cient) decidability of theses

problems makes it possible to use guarded graphs in fully automatic graph

provers.

2 Basic de�nitions

Firstly we will give the formal de�nition of conceptual graphs, which we will

use in the remainder of this report. Starting point for the de�nition is the

�

Part of this work was supported by the DFG

y

Research Group for Theoretical Computer Science, University of Technology Aachen.

1

support, which is used to code basic ontological knowledge. We use the standard

de�nition, which, for example, is also presented in [CMS98].

De�nition 1 (Support)

A support is a tuple S = hT

C

;T

R

; N

I

i where

� T

C

= (N

C

;�

C

) is the concept type hierarchy of S. N

C

is a set of names

of concept types which contains a distinguished type >

C

, and �

C

is a

partial order on N

C

with greatest element >

C

.

� T

R

= h(N

1

R

; N

2

R

; : : :);�

R

i is the relation type hierarchy of S. N

i

R

contains

the relation symbols of arity i. We require N

i

R

\ N

j

R

= ; if i 6= j. We

de�ne N

R

=

S

i2IN

N

i

R

. �

R

is a partial order on N

R

for which relation

types of di�erent arity must be incomparable.

� The set of individual markers or constants is denoted by N

I

; the generic

marker is denoted by �. For convenience reasons we also de�ne a partial

order �

I

on N

I

[f�g by requiring � to be the greatest element of �

I

and

all other elements to be pairwise incomparable.

Throughout this report, we consider examples over the support shown in Fig. 1,

where all relation types are assumed to have arity 2.

N

C

Male Female

CSCourseHuman

Student

>

C

hasChild

N

R

Mary

likes

hasO�spring

attends

Peter KR101

N

I

�

Figure 1: An example support

Based on this de�nition we now de�ne simple graphs, which form the basic

building blocks of CGs.

De�nition 2 (Simple Graph)

Let S be a support. A simple graph (SG) is a tuple g = hC;R;E; `i, where

� hC;R;Ei is an undirected bipartite graph with node sets C and R and

edge relation E � C�R. The sets C and R are called the sets of concept

nodes and relation nodes of g respectively.

� The function ` labels (C;R;E) in the following way:

` : R! N

R

C ! N

C

� I

E ! 2

IN

n f;g

2

` must satisfy: 8r 2 R : `(r) 2 N

n

R

) f`(c; r) j (c; r) 2 Eg is a disjoint

partition of f1; : : : ; ng.

For a concept node c with `(c) = (type(c); ref(c)), type(c) and ref(c) are

called the type and referent of c respectively.

With SG(S) we denote the set of all simple graphs over S.

The condition on ` states that if a relation node r is labeled with a relation

type `(r) of arity n, then each element of f1; : : : ; ng appears exactly once in the

labels of the edges attached to r. This enables us to de�ne the jth neighbour of

a relation node r to be the concept node c such that (c; r) 2 E and j 2 `(c; r).

For short we denote this concept node by r(j).

Simple graphs have a straightforward graphical representation, by just drawing

the graph and attaching the labels to the di�erent parts of the graph. We

choose the convention that concept nodes are drawn using a rectangular box

and relation nodes are depicted by ovals both containing the labeling. Edges

are drawn undirected and are labeled with their set of numbers.

Examples of simple graphs are the graphs inside the boxes of Fig.

SGs can be combined into more complex structures called graph propositions.

De�nition 3 (Graph Proposition)

Let S be a support. A graph proposition over S is either a negated graph propo-

sition or a box which contains a SG (which may be empty) and �nitely many

graph propositions. These boxes are also called the contexts of the proposi-

tions. We require that all simple graphs appearing in a graph proposition have

disjoint node sets. In a linear notation one can think of graph propositions as

of the expressions generated by the EBNF grammar

p ::=

�

g p

�

�

j :p :

where g stands for a SG over S.

A subproposition of p is a box p

0

which is directly contained in p.

We say that a context p (strictly) dominates a context q i� q is (strictly) con-

tained in p.

The set of concept nodes C(p) (relation nodes R(p), edges E(p)) of a graph

proposition p is the union of all concept nodes (relation nodes, edges) appearing

in the simple graphs of the graph proposition p.

For each SG g in p there is exactly one context p

0

which contains g at top level.

This context is called the context of g, and we say that p

0

contains all nodes of

g.

For a graph proposition of the form p =

�

g p

1

: : : p

n

�

where g is the empty

simple graph, we also write

�

; p

1

: : : p

n

�

.

De�nition 4 (Conceptual Graph with coreference links)

Let S be a support. A conceptual graph over S is a pair G = hp; coref i, where

3

1. p is a graph proposition over S, and

2. coref is a binary symmetric relation over C(p) such that for each c

1

; c

2

2

C(p): (c

1

; c

2

) 2 coref implies that for the contexts p

1

; p

2

which contain

c

1

and c

2

respectively, either p

1

dominates p

2

or p

2

dominates p

1

. coref

is called the set of coreference links.

A subgraph G

0

of G is a conceptual graph G

0

= hp

0

; coref

0

i, where p

0

is a

subproposition of p and coref

0

is the restriction of coref to C(p

0

).

By CG(S) we denote the set of all conceptual graphs over S.

A path c

1

; c

2

; : : : ; c

n

such that (c

j

; c

j+1

) 2 coref for all 1 � i < n is called a

line of identity.

Note that the condition we impose on coref is also satis�ed if c

1

and c

2

are

contained in the same context, since each context dominates itself.

If (c

1

; c

2

) 2 coref and the context of c

1

(strictly) dominates the context of c

2

we say that also c

1

(strictly) dominates c

2

.

An example of a CG built over the support from Fig. 1 is shown in Fig. 2 using

the usual graphical elements. It asserts that each parent and child there is

another parent of that child who likes the �rst parent. The extra markers p

i

and c

i

will be used in a latter section of this paper to refer to the di�erent parts

of the CG.

hasChild

2

1

likes

hasChild

Human : �
>

C

: �

p

3

c

6

p

1

p

2

p

>

C

: �

>

C

: �
Human : �

c

1

c

2

c

5

c

4

Human : � c

3

1

2

1

2

Figure 2: An example CG

The coreference links in CGs destroy their inductive structure and make them

extremely di�cult to handle in inductive proofs. Thus we introduce an syntactic

variant of CGs with coreference links, in which variables are used to express

the identity of concept nodes. Similar ideas can be found in [Sow84, KS97].

De�nition 5 (Conceptual Graph with Variables)

Let S be a support and V be a set of variables. We de�ne V

I

= V [N

I

. We

use the letters s; t possibly with subscript to range over the elements of V

I

.

A conceptual graph with variables over S and V is a tuple G = hp; id; linksi

such that

1. p is a graph proposition over S,

4

2. id : C(p)! V

I

such that

id(c) =

(

ref(c); i� ref(c) 6= �

x 2 V; i� ref(c) = �

and there are no two concepts c

1

; c

2

such that id(c

1

) = id(c

2

) = x 2 V.

3. links : C(p)! P(V

I

), such that if x 2 links(c)\V for a concept c there is

a concept c

0

which dominates c and id(c

0

) = x.

With varlinks(c) we denote the set links(c) \ V.

With CG(S;V) we denote the set of all conceptual graphs with variables over

S and V.

We use the following graphical representation for a concept node in a conceptual

graph with variables: It is depicted by a labeled box. Inside the box we write

the type and the referent of the node. On the left side under the box we write

the value of id while on the right side we write the value of links. An example

is given in Fig. 3.

A : �

x fx

1

; x

2

g

B : i

i ;

>

C

: �

y fx; ig

Figure 3: Examples of annotated concept nodes

Conceptual graphs with coreference links can be translated to conceptual graphs

with variables using the algorithm in Assumption 4.2.6 in [Sow84].

Let G = hp; coref i be the conceptual graph with coreference links. Proceed as

follows:

� Fix an arbitrary mapping id which satis�es Property 2 of Def. 5.

� De�ne links(c) = fid(c

0

) j c

0

dominates cg .

Coreference links are expressed using the mapping links. Note that Property

2 of Def. 4 guarantees that Property 3 of the previous de�nition is satis�ed by

this construction of links.

The translation of the graph G from Figure 2 into a conceptual graph with

variables can be found in Figure 4.

We can reverse this translation as follows: Let G = hp; id; linksi be a conceptual

graph with variables. We de�ne coref by

coref = f(c; c

0

) j id(c

0

) 2 links(c)g [f(c

0

; c) j id(c

0

) 2 links(c)g

For the reverse direction, Property 3 of the above de�nition ensures that the

resulting relation coref satis�es Property 2 of Def. 4.

We call these translations the canonical translation from conceptual graphs

with coreference links to conceptual graphs with variables and vice versa.

5

hasChild

2

1

likes

Human : �

>

C

: �

>

C

: �
Human : �

1

2

1

2

x

4

x

6

;

fx

1

gx

3

x

5

>

C

: �

hasChild

Human : �

x

1

;

;x

2

fx

2

g

fx

4

; x

5

g

Figure 4: A conceptual graph with variables

3 A FO semantics for conceptual graphs

In his book [Sow84], Sowa gives a de�nition of the FO semantics of concep-

tual graphs by de�ning the � operator. Subsequently, Wermelinger [Wer95a]

corrected some minor mistakes in Sowa's de�nition, but the de�nition he also

takes into account higher order features of CGs which we are not interested in.

After stripping o� the higher order features and adapting his de�nition to our

slightly more formal de�nition of CGs, one gets the following de�nition for the

operator �:

De�nition 6 (The operator �)

Let S be a support, V the set of variables, and �

S

the �rst order signature

which corresponds to S (�

S

= N

C

[N

R

[N

I

). The operator �, which maps

CG(S;V) to FO(�

S

) is de�ned by the following rules.

Let G = hp; id; linksi be the graph to be translated.

1. We de�ne the translation of the conceptual graph inductively over the

structure of the underlying graph proposition. Basic building block is the

function � which maps a simple graph to an FO formula.

Let g = hC;R;E; `i be a simple graph which occurs as a label in G. We

de�ne

�(g) =

^

c2C

�(c) ^

^

r2R

�(r)

For a concept node c we de�ne

�(c) =

^

s2links(c)

id(c)

:

= s ^

(

id(c)

:

= id(c) if type(c) = >

C

P (id(c)) if type(c) = P

For a relation node r with `(r) = R 2 N

j

R

we de�ne

�(r) = R(id(r(1)); : : : ; id(r(j)))

6

The quanti�er pre�x �

p

(g) is de�ned by

�

b

(g) = 9x

1

: : : 9x

n

where fx

1

; : : : ; x

n

g = fid(c) j c 2 Cg \ V.

2. Now we are able to de�ne the translation function for a conceptual graph.

Hence we de�ne � inductively over syntactic structure of p:

� �

�

g p

1

: : : p

m

�

:= �

p

(g):

�

�(g) ^

^

j=1;:::;m

�(p

j

)

�

� �

�

:p

�

:= :�

�

p

�

We use the convention that an empty conjunction of formulae is de�ned as true.

For the example graph

b

G from Figure 4, the operator � yields

�(

b

G) = :(9x

1

x

2

:(Human(x

1

) ^ Human(x

2

) ^ hasChild(x

2

; x

1

)

:(9x

3

x

4

x

5

:(x

3

:

= x

1

^ x

5

:

= x

2

^ Human(x

4

) ^

hasChild(x

4

; x

3

) ^ likes(x

4

; x

5

) ^

:(9x

6

:(x

6

:

= x

4

^ x

6

:

= x

5

))))

where unnecessary subformulae of the form x

i

:

= x

i

have been eliminated. Note

that the subformula :(9x

6

:(x

6

:

= x

4

^ x

6

:

= x

5

)) only expresses the inequality

of x

4

and x

5

.

For a conceptual graph G which conforms to Def. 5 the resulting formula will

have no free variables. This is due to Property 3 of this de�nition which ensures

that for each variable x which occurs in the set links(c) for a concept c there is

a concept c

0

for which id(c

0

) = x and the position of this concept in the graph

ensures that x will only occur in the range of the quanti�er which belongs to

the concept c

0

.

Of course we can extend the domain of the operator � to the set of CGs with

coreference links using the canonical translation: Let G 2 CG(S) be a CG with

coreference links and let

b

G be its corresponding CG with variable such that

^

G is

the canonical translation of G. We de�ne �(G) := �(

b

G). Note that the choice

of the labeling id in the canonical translation has no impact on �(G) since it is

a closed formula.

In the case of simple graphs, this translation is compatible to the de�nitions of

a FO semantics given both in [Sow84] and [CMS98].

4 Graph Representation of FO Formulae

Once we have established a FO semantics for CGs, it is interesting to �nd

out, which fragment of FO can be expressed with CGs. It turns out that the

CGs exhaust the entire set of FO formulae and that it is possible to de�ne an

7

e�ciently computable function 	 which has the property that �((�)) � � for

each FO formula �.

To facilitate inductive proofs over the structure of FO formulae, we have to

deal with free variables. The class of conceptual graphs, which is appropriate

for these formulae, is called conceptual graphs with free variables, is obtained

by weakening Property 3 of Def. 5 as follows:

3'. links : C(p) ! P(V), such that if x 2 varlinks(c) for a concept c in the

context p and there is a concept c

0

in context p

0

with id(c

0

) = x then p

0

dominates p.

If the function 	 is applied to a formula � with free variables the result will

be a CG with free variables, while the result of the function � applied to a

conceptual graph with free variables is a formula � with free variables.

Conceptual graphs with free variables now have the desired inductive structure

we will need in the subsequent proofs. While a subgraph of a conceptual graph

with variables might not be a such a graph itself (because it may violated

Property 3), this is not the case for conceptual graphs with free variables. This

is stated by the following lemma, the proof of which immediately follows from

the de�nition of CGs with free variables.

Lemma 7

Let G 2 CG(S;V) be a conceptual graph with free variables and let G

0

be a

sub-graph of G. Then G

0

is a conceptual graph with free variables.

We will now de�ne the function 	, which maps FO formulae to CGs with free

variables:

De�nition 8

Let S be a support and �

S

the corresponding �rst order signature. The graph

representation 	,

	 : FO(�

S

)! CG(S;V)

is de�ned as follows:

We consider the formula � to be in a normal form which is built using only

9;^, and :, also we assume each variable to be bound exactly once. Any closed

formula can easily be transformed into this normal form by renaming variables

and applying simple syntactic transformations. We de�ne 	(�) recursively over

the structure of �:

� 	(9x:�) =

�

g

>

	(�)

�

where g

>

is the simple graph which looks as follows:

g

>

:

>

C

: �

x ;

� 	(�

1

^ �

2

) =

�

; 	(�

1

) 	(�

2

)

�

.

8

� 	(:�) = :	(�).

� 	(Px) =

�

g

P

�

, where g

P

is a simple graph containing only a single concept

node:

g

A

:

P : �

z fxg

z is a fresh variable which does not occur anywhere in the formula nor

somewhere else in the conceptual graph.

� 	(Pi) =

�

g

P

�

, where g

P

is a simple graph containing only a single concept

node:

g

A

:

P : i

i ;

� 	(x

:

= y) =

�

g

>

�

, with

g

>

:

>

C

: �

z fx; yg

z is a fresh variable which does not occur anywhere in the formula nor

somewhere else in the conceptual graph.

� 	(x

:

= i) =

�

g

�

, with

g :

>

C

: i

i fxg

� 	(i

1

:

= i

2

) =

�

g

�

, with

g :

>

C

: i

1

i

1

fi

2

g

>

C

: i

2

i

2

fi

1

g

� 	(Rs

1

: : : s

n

) =

�

g

R

�

, where g

R

has the following structure:

1 2 3 n

c

1

c

2

c

3

c

n

R

g

R

:

The structure of the concept nodes c

j

depends on whether s

j

is a variable

or an identi�er. If s

j

is the variable x, then it looks as follows:

c

j

:

>

C

: �

z

j

x

9

If s

j

is the identi�er i, then c

j

has a di�erent structure:

c

j

:

>

C

: i

i ;

The variables z

j

are fresh variables which do not occur anywhere in the

formula nor somewhere in else in the conceptual graph.

Please note that for a closed formula � the resulting graph structure 	(�) is

indeed a proper conceptual graph with variables. The assumptions made about

� being in a certain normal form, guarantee that Properties 2 and 3 of Def. 5

are satis�ed.

The following theorem justi�es the name graph representation for the function

	:

Theorem 9

Let S be a support and �

S

the corresponding �rst order signature. For each

formula � 2 FO(�

S

) (possibly with free variables)

�((�)) � �:

Proof: Due to our de�nition of conceptual graphs with free variables we can

show this theorem inductively over the structure of FO formulae. These are the

bases cases of the induction. They all follow easily from the de�nition of the

function � which maps simple graphs to FO formulae and the de�nition of 	

for the atomic formulae.

� �((Px)) = 9z:z

:

= x ^ Pz � Px.

� �((Pi)) = Pi.

� �((x

:

= y)) = 9z:z

:

= x ^ z

:

= y ^ z

:

= z � x

:

= y.

� �((x

:

= i)) = i

:

= x ^ i

:

= i � x

:

= i.

� �((i

1

:

= i

2

)) = i

1

:

= i

2

^ i

1

:

= i

1

^ i

2

:

= i

1

^ i

2

:

= i

2

� i

1

:

= i

2

.

� �((Rs

1

: : : s

n

) � Rs

1

: : : s

n

similar to the case for Pi and Px.

In all three cases the induction step follows very easily from the de�nitions of

� and 	 and by using the induction hypothesis:

� �((9x:�)) � 9x:x

:

= x ^ �((�)) � 9x:�

� �((:�)) = �

�

:	(�)

�

= :�((�)) � �

� �((�

1

^�

2

)) = �

�

; 	(�

1

) 	(�

2

)

�

= true^�((�

1

))^�((�

2

)) � �

1

^�

2

10

5 The Guarded Fragment of Conceptual Graphs

De�nition 10 (The Guarded Fragment)

Let � be a FO signature. The guarded fragment GF(�) of �rst-order logic is

de�ned inductively as follows:

1. Every atomic formula over � belongs to GF(�).

2. GF(�) is closed under the connectives :;^;_;!, and $.

3. If x;y are tuples of variables, �(x;y) is atomic and �(x;y) is a formula

in GF(�), such that free(�) � free(�) = fx;yg, then the formulae

9x:(�(x;y) ^ �(x;y))

8x:(�(x;y) ! �(x;y))

belong to GF(�).

The loosely guarded fragment LGF(�) is de�ned similarly to GF(�) but we

weaken the quanti�er rule as follows:

3'. If x;y are tuples of variables, �(x;y) is in LGF(�), and �

1

^ � � � ^ �

m

is

a conjunction of atoms, then

9x:((�

1

^ � � � ^ �

m

) ^ �(x;y))

8x:((�

1

^ � � � ^ �

m

)! �(x;y))

belong to LGF(�), provided that for every variable x

i

and every variable

z 2 fx;yg there is an atom �

j

such that x

i

and z occur in �

j

.

LGF(�) (and hence GF(�)) is decidable. There is also an exact result for the

complexity of the decision problem:

Fact 11 ([Gr�a98])

The satis�ability problem both for GF and LGF is 2-ExpTime complete.

If we restrict the signature � we get a considerably lower complexity:

Fact 12 ([Gr�a98])

Let � be a signature with a bound on the maximum arity on the relation symbols

which appear in �. Then the satis�ability problem both for GF(�) and LGF(�)

is ExpTime complete. This is particularly the case if � is �nite.

The de�nition of the (loosely) guarded fragment of FO gives rise to the de�nition

of a corresponding fragment of CGs; we will call this fragment the (loosely)

guarded fragment of CGs. The restrictions de�ning this fragment guarantee

11

that all quanti�ers in the FO translation of a guarded graph can either be

eliminated, or are loosely guarded in the sense of Def. 10. The same must

apply to any variable appearing free at any place in the FO translation of a

guarded graph. To state the restrictions on the graphs, we have to identify the

nodes representing free and bound variables in the contexts of a graph. These

will be the new and external nodes from the next de�nition.

De�nition 13

Let G = hp; coref i be a CG over S. A concept node c 2 C(p) which is contained

in a context q of p is called external i� it is has a coreference link to a strictly

dominating concept. It is called old i� it satis�es one of the following:

� c is an external or an individual concept node.

� c is linked by a coreference link to another old node in q.

Nodes which are not old are called new.

In our example CG from Fig. 2 c

3

; c

5

; c

6

are external nodes while c

1

; c

2

; c

4

are

new nodes. Note that c

4

is a new node even though linked by a chain of

coreference links to the old node c

5

. This is desired because coreference links

inside a context express equality of concept node, while the coreference links

from c

4

and c

5

to c

6

are used to express inequality of c

4

and c

5

.

De�nition 14 (The Guarded Fragment of Conceptual Graphs)

A CG G = hp; coref i 2 CG(S) is called guarded i� it satis�es the following:

1. For any two concept nodes c

1

; c

2

contained in the contexts p

1

; p

2

: If

(c

1

; c

2

) 2 coref and p

1

strictly dominates p

2

, then for each context q

such that q lies between p

1

and p

2

(i.e. p

1

strictly dominates q and q

strictly dominates p

2

) it holds that q is labeled by a simple graph g which

contains no new nodes.

2. For each simple graph g = hC;R;E; `i labeling a context of G either g

contains no new nodes or g satis�es the following: If C = fcg , then

type(c) 6= >

C

or there is an r 2 R such that (c; r) 2 E. If C contains

more then one node, then there is an r 2 R such that C = fc j (c; r) 2 Eg.

In this case g is called guarding.

The CG G is called loosely guarded, if it satis�es Property (1) for gCGs and

instead of (2) it satis�es:

2' For each simple graph g = hC;R;E; `i labeling a context of G either g

contains no new nodes or g satis�es the following: If C = fcg , then

type(c) 6= >

C

or there is an r 2 R such that (c; r) 2 E. If C contains

more then one node, the for each pair c; d 2 C where c 6= d and c is

new and d is not an individual concept node, there is an r 2 R such that

f(c; r); (d; r)g � E. In this case g is called loosely guarding.

12

With gCG(S) (lgCG(S)) we denote the set of all (loosely) guarded conceptual

graphs over S.

Both restrictions made in the above de�nition are necessary for the resulting

fragment to correspond to the loosely guarded fragment of FO. An important

example for an assertion which can not be expressed by a loosely guarded

formula is transitivity of a binary relation symbol [Gr�a98]. Figure 5 shows

two graphs that assert the transitivity of the binary relation hasO�spring. The

upper graph is not loosely guarded because it violates Property (2), since c

1

and c

3

are both new nodes and are not adjacent to the same relation node. The

lower graph is not loosely guarded because it violates Property 1, since c

4

and

c

5

are linked by a coreference link which spans the context which contains the

new node c

5

. The two graphs correspond to the FO formulae

'

1

= :(9x9y9z:((hasO�spring(x; y) ^ hasO�spring(y; z)) ^ :hasO�spring(x; z)))

'

2

= :(9x9y:(hasO�spring(x; y) ^ (9z:(hasO�spring(y; z) ^ :hasO�spring(x; z))))) :

Note that even though the de�nition of (l)gCGs looks quite complex at �rst

sight, it is a purely syntactical de�nition using easily testable properties of

graphs.is a purely syntactic de�nition in the sense that it makes only use of

properties of G as a graph. Indeed it is possible to decide in polynomial time

whether a given CG is a gCG or a lgCG.

>

C

: �

>

C

: �

>

C

: �

>

C

: �

>

C

: �

>

C

: �

1

2

hasO�s.

>

C

: �

>

C

: �

>

C

: �

hasO�s.

>

C

: �

1

2

2

1

1

2

1

2

hasO�s.

hasO�s.

hasO�s.

hasO�s.

c

1

c

2

c

3

c

4

>

C

: �

>

C

: �

1

2

c

5

c

6

Figure 5: Two graphs that are not loosely guarded.

For the subsequent proofs we will need the fragment of conceptual graphs with

(free) variables which corresponds to the guarded fragment of conceptual graphs

with coreference links:

De�nition 15

Let G = hp; id; linksi 2 CG(S;V) be a CG with free variables. We de�ne

 := f(c

1

; c

2

) j id(c

2

) 2 links(c

1

)g [f(c

1

; c

2

) j id(c

1

) 2 links(c

2

)g

A concept node c 2 C(p) which is contained in a context q of p is called external,

if there is an s 2 links(c) such that for all concepts c

0

in the same context q it

holds that id(c

0

) 6= s. It is called old i� it satis�es one of the following:

13

� c is an external or an individual concept node.

� There is an old node c

0

in the context q such that c
 c

0

.

Nodes which are not old are called new.

De�nition 16

For a CG G = hp; id; linksi 2 CG(S;V) we de�ne.

 := f(c

1

; c

2

) j id(c

2

) 2 links(c

1

)g [f(c

1

; c

2

) j id(c

1

) 2 links(c

2

)g

The graph G is called guarded i� it satis�es the following:

1. For any two concept nodes c

1

; c

2

contained in the contexts p

1

; p

2

: If c

1

c

2

and p

1

strictly dominates p

2

, then for each context q such that q lies

between p

1

and p

2

(i.e. p

1

strictly dominates q and q strictly dominates

p

2

) it holds that q is labeled by a simple graph g which contains no new

nodes.

2. For each simple graph g = hC;R;E; `i labeling a context of G either g

contains no new nodes or g satis�es the following: If C = fcg , then

type(c) 6= >

C

or there is an r 2 R such that (c; r) 2 E. If C contains

more then one node, then there is an r 2 R such that C = fc j (c; r) 2 Eg.

In this case g is called guarding.

3. If y 2 links(c) for a concept c in context q and there is no concept c

0

2 C(p)

with id(c

0

) = y, then there is no context q

0

which strictly dominates q and

is labeled by a simple graph which contains a new node.

The CG G is called loosely guarded, if it satis�es Property (1) and (3) for gCGs

and instead of (2) it satis�es:

2' For each simple graph g = hC;R;E; `i labeling a context of G either g

contains no new nodes or g satis�es the following: If C = fcg , then

type(c) 6= >

C

or there is an r 2 R such that (c; r) 2 E. If C contains

more then one node, the for each pair c; d 2 C where c 6= d and c is

new and d is not an individual concept node, there is an r 2 R such that

f(c; r); (d; r)g � E. In this case g is called loosely guarding.

With gCG(S;V) (lgCG(S;V)) we denote the set of all (loosely) guarded con-

ceptual graphs with variables over S.

Def. 14 and Def. 16 are very similar. Indeed, they express the same thing in

the following sense:

Lemma 17

Let G = hp; coref i be a conceptual graph with coreference links and let

b

G =

hp; id; linksi be an conceptual graph with variables such that

b

G is the canonical

translation of G. Then G is (loosely) guarded in the sense of Def. 14, i�

b

G is

(loosely) guarded in the sense of Def. 16.

14

Proof: Since

b

G is the canonical translation of G, it follows that
 = coref .

Hence c is an individual concept node in G i� it is an individual concept node

in

b

G. c is new (external) in G i� it is new (external) in

b

G.

Also the Properties 1 and 2 of Def. 14 directly correspond to the Properties 1

and 2 of Def. 16. The only problem is Property 3 of Def. 16, but this property

is trivially satis�ed by any conceptual graph with variables (but without free

variables) due to Property 3 of Def. 5.

The set of (loosely) guarded annotated graphs with free variables has the in-

ductive structure we need for inductive proofs:

Lemma 18

Let G = hp; id; linksi; G

0

= hp

0

; id

0

; links

0

i be a conceptual graph with free vari-

ables such that G

0

is a subgraph of G. If G is (loosely) guarded, then so is

G

0

.

Proof: If c 2 C(p

0

) is new in G

0

then it is new in G. Also if c is external in

G

0

then it is external in G. Hence the Properties 1 and 2 of Def. 16 must be

satis�ed for G

0

, otherwise they would also be violated in G.

Now assume Property 3 to be violated inG

0

. This implies that there is a concept

node c in context q strictly dominated by context q

0

such that y 2 varlinks(c),

id(c

0

) 6= y for all c

0

2 C(p) and q

0

is labeled by a simple graph which contains

a new node. This implies that in G there can not be a concept node c

0

in the

outermost context such that y = id(c

0

), because otherwise Property 1 of Def. 16

would be violated. This implies that also y 62 fid(c

0

) j c

0

2 C(p)g and hence

Property 3 is also violated by G which is a contradiction.

The next theorem justi�es the name guarded fragment of conceptual graphs:

Theorem 19

Let G 2 (l)gCG(S;V) and ' = �(G). Then there is a formula '

0

2 (L)GF(�

S

)

such that '

0

� '. Furthermore '

0

is computable from ' in polynomial time.

Proof: We will show this theorem for conceptual graphs with free variables to

facilitate induction. We will use induction over the depth of p.

To simplify the induction base we assume that for each context q in G which

is a leaf in p it holds that q is labeled by an empty simple graph. For this

we replace all subpropositions of p of the form

�

g

�

by

�

g

�

;

��

. This does not

change the semantics of the graph. Also the guardedness of G is not a�ected

by this transformation, because an empty simple graph does not contain any

new nodes.

For the base case of the induction we can now assume p to be of the form

�

;

�

.

By the de�nition of � we get ' = �(G) = true because the quanti�er pre�x is

empty as well as the conjunctions. This can of course be expressed by a guarded

formula: Let P be an arbitrary concept type and set '

0

= 8x:Px! Px. '

0

is

15

(loosely) guarded and '

0

� true holds. This concludes the proof of the basis

case for the induction.

We now show the induction step: There are two possibilities for p. If p is of

the form :q, we are done, because �

�

:q

�

= :�

�

q

�

which is guarded due to the

induction hypothesis. Now assume p to be of the form p =

�

g p

1

: : : p

n

�

with

g = hC;R;E; `i. By the de�nition of � we have

�

�

g p

1

: : : p

n

�

= �

p

(g):

�

�(g) ^

^

j=1;:::;n

�(p

j

)

�

Lemma 18 yields, that all sub-graphs of G are (loosely) guarded. Hence by

the induction hypothesis, there exist (loosely) guarded formulae '

0

j

such that

'

0

j

� �

�

p

j

�

, so there is a (loosely) guarded formula such that

 �

^

j=1;:::;n

�(p

j

)

due to the closure properties of the (loosely) guarded fragment. We de�ne:

� = �

p

(g):(�(g) ^)

Obviously � � ' holds. The formula � is of the form

� = 9x

1

: : : 9x

m

9z

1

: : : 9z

l

: (x

1

; : : : ; x

m

; z

1

; : : : ; z

l

; y

1

; : : : ; y

n

)

where the variables are partitioned as follows:

X := fx

1

; : : : ; x

m

g = fid(c) j c is new in gg \ V

Z := fz

1

; : : : ; z

l

g = fid(c) j c is not new in gg \ V

Y := fy

1

; : : : ; y

n

g = fy j y is free in �g

Claim 1: If y is a free variable from , then 9y appears in the quanti�er pre�x

�

p

(g).

Proof of Claim 1: A free variable y in stems from a node c in a sub-graph

G

0

of G for which y 2 links(c) but id(c

0

) 6= y for each concept node in G

0

. Hence

there must be a node c

0

in C such that y = id(c

0

), because g contains a new

node and otherwise Property 3 of Def. 16 would be violated. Hence y appears

in the quanti�er pre�x �

p

(g) which proves Claim 2. 2

The reexive transitive closure of the restriction of
 to nodes from C induces

a equivalence relation � on the set

V

I

= Y [Z [N

I

by setting

c

1

; c

2

2 C are old and (c

1

; c

2

) 2 (
 j

C

)

�

)8s 2 links(c

2

):id(c

1

) � s ^ id(c

1

) � id(c

1

):

It is easy to see that � is an equivalence relation. Hence it partitions V

I

into

classes [s]

�

= ft 2 V

I

j s � tg.

Claim 2:

16

1. For each variable y 2 Y, the class [y]

�

contains an element from Z [N

I

.

2. For each variable z 2 Z, the class [z]

�

contains an element from Y [N

I

.

Proof of Claim 2:

1. From Claim 1 it follows that any free variable in � cannot stem from ,

hence there must be a node c 2 C which causes y to occur in � with

y 2 links(c). For this c, it can not be the case that id(c) 2 X , because c

is not a new node. Thus id(c) is an element of Z or N

I

.

2. Let c 2 C be the concept node with id(c) = z. We proof this claim by

induction on the length of a path from c to an external or individual

concept node. The claim holds obviously for the identi�er of any external

node and individual concept node. A node which is not an external or

individual concept node, there exists an old node c

0

with c
 c

0

and c

0

is

old. Since c

0

is one step closer to an external or individual concept node,

we can use the induction hypothesis which yields an s 2 Y [N

I

such that

s 2 [id(c

0

)]

�

. Since c
 c

0

we have s 2 [z]

�

= [id(c

0

)]

�

. 2

For each class which contains an element from Y [Z we arbitrarily select one

element as its representative, if possible an element from N

I

. For each variable

x 2 Y [Z we denote the chosen representative of its class [x]

�

by x̂. By

construction of �, s � t implies j= s

:

= t and hence the formula

�

0

:=

^

y

j

�y

k

y

j

:

= y

k

^ 9x

1

: : : 9x

m

 (x

1

; : : : ; x

m

; ẑ

1

; : : : ; ẑ

l

; ŷ

1

; : : : ; ŷ

n

)

is equivalent to �. We denote (x

1

; : : : ; x

m

; ẑ

1

; : : : ; ẑ

l

; ŷ

1

; : : : ; ŷ

n

) by

0

. Note

that all quanti�ers for elements of Z could be eliminated, because these variables

do no longer occur in the formula

0

due to Claim 2.1. Also note that all

equalities between elements of Y appear outside the scope of the quanti�er

pre�x. Hence it is su�cient if we show that 9x

1

: : : 9x

m

0

is a (loosely) guarded

formula.

If g contains no new nodes, then we are �nished at this stage, because X = ; and

hence we have eliminated all new quanti�ers. This implies that �

0

is guarded,

because the substitution of variables does not e�ect the guardedness of .

If g contains new nodes, then we have to show that the remaining quanti�ers

for variables from X are (loosely) guarded in the sense of Def. 10. We �nish

the proof of the induction step by showing that

0

is (loosely) guarded. The

�rst alternative is similar in both the loosely guarded and the guarded case.

Assume C = fcg with type(c) = A 6= >

C

. There are two possibilities for c:

� c is an external node. Then the quanti�er for id(c) has been eliminated

in the step from � to �

0

. Since �

p

(g) consists only of this quanti�er,

0

does not contain any quanti�ers apart from those which appear in and

hence are (loosely) guarded. Hence

0

is (loosely) guarded.

17

� If c is not external, then the only sources for free variables in

0

can be

free variables from . Claim 1 says that there is no free variable in

which is not quanti�ed by �

p

(g). Hence there are no free variables from

Z in

0

. This implies that the only free variable in

0

might be id(c)

which is properly guarded in

0

by the guarding expression A(id(c)).

The second alternative has to be handled di�erently for the guarded and the

loosely guarded case. Firstly we will consider the guarded case. C contains

more than one node. Then there must be an r 2 R such that

C = fc j (c; r) 2 Eg:

We claim that then quanti�er pre�x is guarded in

0

by the atom � which cor-

responds the the conjunct �(r) in the original formula after the substitution

step. Assume � does not guard the quanti�ers. This can have two reasons:

� There is a bound variable x

j

which occurs in the quanti�er pre�x but

does not occur in �. Since x

j

is still present in

0

it must be the identi�er

of a new node in C and hence x

j

occurs in �(r) as well as in � which is

a contradiction to the assumption.

� There is a free variable y which occurs in

0

but does not occur in �.

Since y still occurs in

0

it must be the chosen representative of its class

[y]

�

. But construction [y]

�

can not contain a elements i 2 N

I

, because

otherwise we would have chosen i to be the representative of [y]

�

. Thus

[y]

�

contains the identi�er z of an external node c that is adjacent to r.

This implies that z appears in �(r) and thus y appears in �, because we

have replaced z by y.

Both cases lead to contradictions and hence we have proved that � is a guard

for the quanti�ers in

0

.

Secondly we deal with the loosely guarded case: Since G is loosely guarded, for

each c; d 2 C with c 6= d, c is new, and d is not an individual concept node,

there is an r 2 R with

f(c; r); (d; r)g � E:

Let R

guard

be the set of these relation nodes and let �

1

^� � �^�

�

be the conjuncts

which correspond to the formulae �(r) for r 2 R

guard

after the substitution.

We claim that the quanti�er pre�x in �

0

is loosely guarded by these conjuncts.

Assume there is a x

j

in the pre�x which is not properly guarded by these

conjuncts. Since x

j

has not been eliminated in the substitution step, it must

belong to a new node c. There are two possibilities, why x

j

is not properly

guarded.

� There is another variable x bound by the quanti�er pre�x, which does not

coexists with x

j

in any of these guards. Since x is still in the quanti�er

pre�x, it must also belong to a new node d 2 C. For the pair c; d there

18

must be an r 2 R such that f(c; r); (d; r)g � E hence r 2 R

guard

by the

de�nition of R

guard

. This implies that x

j

and x coexists in �(r) after the

substitution (since no variables which identify new nodes are e�ected)

which we de�ned to be the guards of the quanti�ers.

� There is a variable y occuring free in

0

which does not coexists with x

j

in

any of these guards. As in the guarded case this implies the the existence

of an external node d 2 C such that y 2 links(d). d 2 C implies the

existence of relation node r 2 R

guard

such that x

j

and y coexists in the

guard which corresponds to the formula �(r) after the substitution.

In either case we have shown that the assumption, that x

j

is not properly

guarded, leads to a contradiction and hence x

j

must be properly guarded.

In Def. 16 there is an alternative way for g to be a loosely guarding simple graph.

If C contains only a single node and there is an r 2 R such that (c; r) 2 E.

But this implies that g is a guarding simple graph, because C = fcg = fc 2 C j

(c; r) 2 Eg.

This �nishes the proof of the base case since we have shown that �

0

is indeed

(loosely) guarded and we can set '

0

:= �

0

.

Also this formula is e�ectively computable, because all steps, especially the

substitution step from � to �

0

is e�ective.

We now de�ne a slight modi�cation of 	 which will map (loosely) guarded

formulae to (loosely) guarded graphs:

De�nition 20

Let S be a support and �

S

be the corresponding �rst order signature. The graph

representation 	

0

which maps close (loosely) guarded formulae to (loosely)

guarded conceptual graphs with free variables is de�ned as follows:

We assume the formula ' to be in a normal form, which is built using only 9;^

and :, also we assume each variable to be bound exactly once. This normal

form can easily be generated by applying well known transformations. We de�ne

	

0

(') inductively over the structure of '. We will use the same functions to

manipulate conceptual graphs as we have done in Def. 8.

Apart from the quanti�er case, 	

0

is de�ned exactly as 	.

For a loosely guarded quanti�er we de�ne

	

0

(9x:((�

1

^ � � � ^ �

n

) ^ �(x;y))) :=

�

g

guard

	

0

(�

0

)

�

where �

0

= �(x; z) and z = z

y

1

; : : : ; z

y

m

contains a new variable for each com-

ponent of y = y

1

; : : : ; y

m

. g

guard

= hC;R;E; `i is de�ned as follows:

If the guard consist of only an unary atomic expression of the from Px, then

g

guard

is de�ned as

g

guard

:

P : �

x ;

19

If the guard consist of more then one atom or of an atom which is of higher

arity, we de�ne g

guard

as follows:

For each variable x which appears in x, C contains a concept node c

x

of the

form

c

x

:

>

C

: �

x ;

:

For each y which appears in y, C contains a concept node c

y

of the form

c

y

:

>

C

: �

z

y

fyg

:

For each constant i which appears in �

1

; : : : ; �

n

, C contains a concept node c

i

of the form

c

i

:

>

C

: i

i ;

For each guarding expression � = Ss

1

; : : : ; s

l

, R contains a node r

j

. For each

j 2 f1; : : : ; lg E contains the edges (c

s

j

; r) and the label of this edge `(c

s

j

; r)

contains j.

More formally we de�ne:

� C := fc

x

j x 2 xg [fc

y

j y 2 yg [fc

i

j i appears in the guardg, `(c

s

) is

de�ned as in the pictures above.

� R := fr

1

; : : : ; r

n

g, `(r

j

) := S, where S is the relation symbol of �

j

.

� E :=

S

j=1;:::;n

f(c

s

; r

j

) j s appears in �

j

g

� `(c

s

; r

j

) := fl j s appears at the l-th position of �

j

g

The values of the functions id and links are de�ned as in the pictures above.

For a guarded quanti�er we de�ne 	

0

(9x:� ^ (x;y)) exactly as above as a

special case of a loosely guarded quanti�er.

The reader may validate the following fact:

Lemma 21

If ' 2 (L)GF(�

S

) is in the normal form assumed in De�nition 20, then 	

0

(')

is an conceptual graph with variables according to Def. 5.

At �rst we will have to show that the result of the translation of a (loosely)

guarded formula is a (loosely) guarded conceptual graph with variables:

20

Lemma 22

If ' 2 (L)GF(�

S

) is in the normal form required by Def. 20, then 	

0

(') is a

(loosely) guarded conceptual graph with free variables. Moreover, if ' is closed

then 	

0

(') is a (loosely) guarded conceptual graph (without free) variables.

Proof: We show this proof by induction over the structure of '. All the base

cases are trivially guarded, because the result of the translation is a conceptual

graph with only a single context which contains no new nodes.

For the induction step we only have to consider the translation of a quanti�er,

because the constructions in the translation of ^ and : trivially preserve the

guardedness. The �rst two properties are the same for the guarded and the

loosely guarded case, while the third one has to be proved separately. We will

only show the most interesting case in this proof. Assume ' to be a formula

with a loosely guarded quanti�er, where the guard consists of more then one

atom. All other cases are similar but simpler.

Let ' = 9x:�^�(x;y) where �(x;y) is guarded and free(�) � free(�) = fx;yg.

By the induction hypothesis, G

0

= 	

0

(�

0

) is guarded. Assume G = 	

0

(') is

not guarded. This implies that one of the Properties 1, 2 or 3 of Def. 16 is not

satis�ed by G.

1. Assume Property 1 is violated by by a concept node c in G. c can not

be in the outermost context of G, because no node on this level can

violated Property 1. It can also not be a node in an context in G

0

lying

below a context which contains a new node, because then Property 1

would already be violated by G

0

which is a contradiction to the induction

hypothesis. Hence c lies in a context q of G

0

such that between q and the

outermost context of G there is no context which contains a new node.

This implies (by the de�nition of 	

0

) that c corresponds to the translation

of a free variable z of �

0

. Since each free variable of � must occur in the

guard expression, there are two possibilities for a free variable of �

0

:

� z = x

j

is a component of x. Then g

guard

contains a node c

x

j

with

id(c

x

j

) = x

j

, this implies that Property 1 is not violated.

� z = z

y

j

is a component of z. Then y

j

is a free variable of both � and

'. This implies that y

j

must occur in the guarding expression and

hence g

guard

contains the node c

y

j

with id(c

y

j

) = z

y

j

which again

implies that Property 1 is not violated.

In either case we get a contradiction to the initial assumption that G

violates Property 1.

2. Property 2 can not be violated by G. This follows from the fact that

G and all its subgraphs satisfy Property 1: Assume G would violated

Property 2. The induction hypothesis implies that G

0

= 	

0

(�

0

) is (loosely)

guarded and hence it satis�es both Property 1 and Property 2. If G

violates Property 2, there must be nodes c

1

; c

2

in context p

1

; p

2

such that

y = id(c

1

) 2 varlinks(c

2

), p

1

strictly dominates p

2

and there is a context q

21

which lies between p

1

and p

2

such that q contains a new node. p

1

must be

the outermost context of G because otherwise G

0

would already violate

Property 2. Since q lies between p

1

and p

2

it is also a context of G

0

. This

implies that Property 1 is violated by c

2

in G

0

as follows: y 2 varlinks(c

2

)

and there is no node c

0

in G

0

such that id(c

0

) = y, because in G there

might be at most one concept node with identi�er y and this is c

1

. Since

q strictly dominates p

2

and q contains a new node, G

0

violates Property

1, which is a contradiction.

3. Since g

guard

= hC;R;E; `i contains new nodes, we must show that C has

Property 2 (2') of Def. 16. The only interesting case is Property 2' for

loosely guarded graphs:

Assume there is a new node c with id(c) = x and another node d such that

c is new, d is not an individual concept node and there is no r 2 R such

that f(c; r); (d; r)g � E. If d is new, then it is the result of the translation

of a variable z which appears in the quanti�er pre�x. Hence there is an

atom �

j

such that x and z coexists in �

j

. This implies that both c and d

are adjacent to the node r

j

, which is a contradiction. If d is not new, then

it must be external. It may not be an individual concept node, because

then Property 2' would not be violated. This implies, that d is the result

of the translation of a free variable y which appears in y. Each such y

must coexists with x in at least one guarding expression and hence there

is a node r 2 R such that both c and d are adjacent to r, which again is

a contradiction to the assumption that no such r would exist.

We have thus shown that none of the conditions 1,2 or 3 is violated by G and

hence G is (loosely) guarded.

If ' contains no free variables, then we have to show that for each variable z

which appears in varlinks(c) for a concept node c 2 C(p), there is a node c

0

in

a dominating context such that id(c

0

) = z. Such a z may either stem from the

translation of a variable in ' for which there is a quanti�er which binds z and

hence there is also a node c

0

which corresponds to the translation the quanti�er

and for this node id(c

0

) = z holds. z may also stem from the translation of

a guard expression which guards a free variable y . Then the simple graph

which corresponds to the guard expression contains a then node c

y

for which

id(c

y

) = z holds.

The next lemma is the guarded version of Theorem 9 and justi�es the name

graph representation for 	

0

:

Lemma 23

Let S be a support and �

S

the corresponding �rst order signature. For each

formula ' 2 (L)GF(�

S

) (possibly with free variables)

�(

0

(')) � ':

22

Proof: We show this lemma by induction over the structure of '. Since 	

0

is

nearly de�ned as 	, we can use most of the arguments of Theorem 9. Since 	

0

agrees with 	 in all the base cases, the base of the induction is shown.

For the induction step we only have to show the quanti�er case, because 	

0

agrees with 	 in all other cases. Hence we assume that ' is of the form

' = 9x:((�

1

(x;y) ^ � � � ^ �

n

(x;y)) ^ �(x;y))

where not all variables from x;y need to occur in each of the guards. For such

a formula, 	

0

(') is de�ned by

	

0

(') =

�

g

guard

	

0

(�

0

)

�

Where �

0

= �(x; z) and z = z

y

1

; : : : ; z

y

n

contains a new variable for every

component of y = y

1

; : : : ; y

n

. By the De�nition of � we get

�(

0

(')) = �

p

(g

guard

): (x;y; z)

with

 (x;y; z) = �(g

guard

) ^�(

0

(�

0

))

From the induction hypothesis we immediately get, that �(

0

(�

0

)) � �

0

.

For each guard expression �(x;y) = Ss

1

; : : : ; s

m

, g

guard

contain a relation node

r such that `(r) = S, (c

s

j

; r) 2 E and j 2 `(c

s

j

; r). From the de�nition of � it

follows, that

�(r) = �(x; z)

For each variable x which appears in x, g

guard

contains a node c

x

and hence

�

p

(g

guard

) contains the quanti�er 9x and �(g

guard

) contains the conjunct x

:

= x

which is trivially satis�ed and can be omitted. For each variable y in y, g

guard

contains a node c

y

and hence �

p

(g

guard

) contains the quanti�er 9z

y

and �(g

guard

)

contains the conjunct z

y

:

= y. Thus for each y in y it holds that

 j= z

y

:

= y

as before we substitute each z

y

by in by y and thus get formula '

0

:

'

0

:= �

p

(g

guard

): (x;y;y) � �

p

(g

guard

): (x;y; z)

Since no z from z occurs in (x;y), we can remove all quanti�ers for these

variables from the quanti�er pre�x and �nally get the formula

'

00

:= 9x: (x;y;y) � '

0

A further inspection of '

00

shows that

'

00

� 9x:((�

1

(x;y) ^ � � � ^ �

n

(x;y)) ^ �(x;y)) = '

23

As a corollary we get the following theorem, which states, that 	

0

is a seman-

tically correct translation from (L)GF(�

S

) to (l)gCG(S;V):

Theorem 24

For each formula ' 2 (L)GF(�

S

) it holds that

�((')) � �(

0

('))

Proof: From Theorem 19 we get that

�(

0

(') � '

and from Theorem 9 we get that

' � �(('))

We have established the correspondence between (L)GF(�

S

) and (l)gCG(S;V).

Together with Lemma 22 this induces the same correspondence between closed

formulae from (L)GF(�

S

) and graphs in (l)gCG(S).

6 Applications

Note that, even though the de�nition of lgCGs may look quite complex at �rst

sight, it is a purely syntactic de�nition using easily testable properties of graphs.

Indeed, it is easy to show that membership of a given CG over S in (l)gCG(S)

can be tested in polynomial time:

Lemma 25

There is an algorithm is-guarded which runs in cubic time in the size of the

input, such that, given a graph G 2 CG(S)

is-guarded(C) =

8

>

<

>

:

guarded; if G is guarded

loosely guarded; if G is loosely guarded

unguarded; otherwise

Proof: If we assume an appropriate coding of the input graph G, it is possible

to decide in constant time, whether a node c is an individual concept node.

To test whether a node is external takes linear time, because all other nodes

in its simple graph have to be visited to examine their label id. Hence it is

possible to mark all nodes in all simple graphs as old or new in quadratic time,

by calculating the connected components of the simple graphs and by marking

the nodes in a component as old, if the component does contain any individual

24

or external nodes. Otherwise the nodes in the component are marked as new.

Also we mark all simple graphs which contain new nodes.

The algorithm will now assign the labels guarding and loosely guarding to the

simple graphs in G. If it �nds a violation of one of the properties from Def. 14,

it will immediately answer unguarded and will exit. Otherwise it will answer

based on the labels assigned to the simple graphs.

Based on markings of the nodes, it is tested, whether G satis�es the Properties

1 and 2 of Def. 14.

1. For each coreference links (c

1

; c

2

) linking concepts in the contexts p

1

; p

2

test whether there is a context between p

1

and p

2

which contains a new

node. If such a context exists, then it answers unguarded and exit. Each

such test can be carried out in linear time.

2. For each simple graph g = hC;R;E; `i which contains a new node, test

the following:

� Test, if Property 2 is satis�ed. If C = fcg, test whether c 6= >

C

. If

this is the case, then mark g as guarding. This is possible in constant

time. If this is not the case, test whether there is an r 2 R such that

C = fc 2 C j (c; r) 2 Eg. This can be done by iterating through R

and takes at most quadratic time. If there is such an r then mark g

as guarding.

� If g is not already marked as guarding, then test, whether Property

2' is satis�ed. For each new node c and each other node d which is

not an individual concept node, test, whether there is an r 2 R such

that both c and d are adjacent to r. This can be done in quadratic

time. If Property 2' is satis�ed, then mark g as loosely guarding,

otherwise answer unguarded and exit.

Once all simple graphs have been marked as (loosely) guarding and the

algorithm has not exited with unguarded, then answer guarded, if all

graphs are marked as guarding, otherwise answer loosely guarded.

All tests and markings this algorithm performs can be carried out in at most

quadratic time and hence this lemma is proved.

Validity of conceptual graphs has always been an important topic. Sowa [Sow84]

proposes a set of rules which can be used to derive valid graphs. Later Wer-

melinger [Wer95a] made slight modi�cations to these rules and proves them to

be sound and complete for his de�nition of CGs with higher order features in

[Wer95b]. A di�erent approach was used in [KS97], where a tableaux system

is used to proof the validity of a CG. Since CGs are able to express full �rst

order logic (as, for example, has been shown in, Theorem 9) it is not possible

to give a decision algorithm for validity, because this would imply a decision

algorithm for validity of �rst order logic. For the (loosely) guarded fragment of

25

conceptual graphs validity is decidable, which makes is feasible to use them in

fully automatic reasoners.

Since we want to use the �rst order semantics of guarded graphs to decide their

validity, we will need to code the support by a guarded FO formula as well.

Thus we de�ne:

De�nition 26

Let S = hT

C

;T

R

; N

I

i be a support. We de�ne �(S) by:

�(S) :=

^

P�

C

Q

8x:Qx! Px ^

^

S

1

�

R

S

2

8x:S

2

x! S

1

x

This is the standard translation, which, for example, is also used in [CMS98].

Note that �(S) is a guarded formula.

We de�ne validity of graphs with respect to their FO semantics.

De�nition 27

A graph G 2 CG(S) is called valid, i�

�(S)! �(G) � true:

Theorem 28

Let S be a �nite support (i.e., all components of S are �nite). The set Valid

with

Valid := fG 2 lgCG(S) j G is validg

is decidable. Furthermore Valid 2 ExpTime holds.

Proof: Let G 2 lgCG(S). To decide, whether G is valid, proceed as follows:

Compute

b

G, the canonical translation of G into a CG with variables. Apply

� to

b

G and use Theorem 19 to get a '

0

2 LGF(�

S

) such that '

0

� �(G). By

Fact 11, it is decidable, if :(�(S) ^ '

0

) is satis�able. It holds that

�(S) ^ :'

0

is not satis�able i� G is valid

and hence we have shown the set Valid to be decidable.

Since all steps in this algorithm except the last on can be computed in polyno-

mial time and Fact 12 states, that satis�ability for the loosely guarded fragment

is decidable in exponential time if only a �nite signature is used, we also get

that that Valid 2 ExpTime holds.

Another important problem for conceptual graphs is the problem of subsump-

tion. Subsumption between two simple graphs is usually de�ned for in terms of

the existence of a certain homomorphism between the to graphs. In [CMS98]

it is shown, that there is an equivalent de�nition of subsumption using the FO

semantics of simple graphs. This de�nition can be generalized to full CGs:

26

De�nition 29

Let S be a support and G;H 2 CG(S) be two conceptual graphs with corefer-

ence links. H subsumes G (G � H), i�

�(S);�(G)! �(H) � true

While subsumption for simple graphs is decidable inNP, it is undecidable for all

CGs, because such a decision procedure would imply the existence of a decision

procedure for entailment in FO. Yet, for loosely guarded graphs, subsumption

is decidable.

Theorem 30

Let S be a �nite support and let Subsumption be de�ned by

Subsumption := f(G;H) j G;H 2 lgCG(S); G � Hg:

Subsumption is decidable and Subsumption 2 ExpTime holds.

Proof: We use the same translation as in Theorem 28 to get two guarded

formulae '

G

� �(G) and '

H

� �(H).

G � H i� (�(S) ^ '

G

^ :'

H

) is not satis�able

The latter can be decided because of Fact 11 and we can use the same complexity

arguments as in the proof of Theorem 28 to get that Subsumption 2 ExpTime

holds.

References

[CMS98] M. Chein, M. L. Mugnier, and G. Simonet. Nested Graphs: a Graph-

based Knowledge Representation Model with FOL Semantics. In

A.G. Cohn, L.Schubert, and S.C. Shapiro, editors, Proceedings of the

6th International Conference on Knowledge Representation (KR'98),

pages 524{534, Trento, Italy, June 1998. Morgan Kaufman Publishers

Inc.

[Gr�a98] E. Gr�adel. On the restraining power of guards. Journal of Symbolic

Logic, 1998. to appear.

[KS97] G. Kerdiles and E. Salvat. A sound and complete CG proof proce-

dure combining projections with analytic tableaux. In D. Lukose,

H. Delugach, M. Keeler, L. Searle, and J. Sowa, editors, Proceed-

ings of the 5th Internation Conceference on Conceptual Structures,

ICCS'97, volume 1257 of LNCS, pages 371{385. Springer, 1997.

[Sow84] John F. Sowa. Conceptual Structures. Addison-Wesley, Reading, MA,

1984.

27

[Wer95a] M. Wermelinger. Conceptual graphs and �rst-order logic. Lecture

Notes in Computer Science, 954:323{??, 1995.

[Wer95b] M. Wermelinger. Teoria b�asica das estruturas conceptuais. Master's

thesis, Universidade Nova de Lisboa, 1995.

28

