
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

On the Relation between Conceptual Graphs

and Description Logics

Franz Baader and Ralf Molitor and Stefan Tobies

LTCS-Report 98-11

Technical report to the article \Tractable and Decidable Frag-

ments of Conceptual Graphs" presented at ICCS'99

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

On the Relation between Conceptual Graphs and

Description Logics

Franz Baader and Ralf Molitor and Stefan Tobies

LuFg Theoretische Informatik, RWTH Aachen

email: fbaader,molitor,tobiesg@informatik.rwth-aachen.de

1 Introduction

Conceptual graphs (CGs) are an expressive formalism for representing knowl-

edge about an application domain in a graphical way. Since CGs can express all

of �rst-order predicate logic (FO), they can also be seen as a graphical notation

for FO formulae.

In knowledge representation, one is usually not only interested in represent-

ing knowledge, one also wants to reason about the represented knowledge. For

CGs, one is, for example, interested in validity of a given graph, and in the

question whether one graph subsumes another one. Because of the expressive-

ness of the CG formalism, these reasoning problems are undecidable for general

CGs. In the literature [Sow84, Wer95, KS97] one can �nd complete calculi for

validity of CGs, but implementations of these calculi have the same problems as

theorem provers for FO: they may not terminate for formulae that are not valid,

and they are very ine�cient. To overcome this problem, one can either employ

incomplete reasoners, or try to �nd decidable (or even tractable) fragments of

the formalism. This paper investigates the second alternative.

The most prominent decidable fragment of CGs is the class of simple con-

ceptual graphs (SGs), which corresponds to the conjunctive, positive, and ex-

istential fragment of FO (i.e., existentially quanti�ed conjunctions of atoms).

Even for this simple fragment, however, subsumption is still an NP-complete

problem [CM92]. SGs that are trees provide for a tractable fragment of SGs,

i.e., a class of simple conceptual graphs for which subsumption can be decided

in polynomial time [MC93]. In this report, we will identify a tractable fragment

of SGs that is larger than the class of trees.

Instead of trying to prove new decidability or tractability results for CGs

from scratch, our idea was to transfer decidability results from description logics

[DLNN97, DLNS96] to CGs. The goal was to obtain a \natural" sub-class of

the class of all CGs in the sense that, on the one hand, this sub-class is de�ned

directly by syntactic restrictions on the graphs, and not by conditions on the

�rst-order formulae obtained by translating CGs into FO, and, on the other

hand, is in some sense equivalent to a more or less expressive description logic.

1

2

Although description logics (DLs) and CGs are employed in very similar ap-

plications (e.g., for representing the semantics of natural language sentences),

it turned out that these two formalisms are quite di�erent for several reasons:

(1) conceptual graphs are interpreted as closed FO formulae, whereas DL con-

cept descriptions are interpreted by formulae with one free variable; (2) DLs do

not allow for relations of arity > 2; (3) SGs are interpreted by existential sen-

tences, whereas almost all DLs considered in the literature allow for universal

quanti�cation; (4) because DLs use a variable-free syntax, certain identi�ca-

tions of variables expressed by cycles in SGs and by co-reference links in CGs

cannot be expressed in DLs. As a consequence of these di�erences, we could not

identify a natural fragment of CGs corresponding to an expressive DL whose

decidability was already shown in the literature. We could, however, obtain

a new tractability result for a DL corresponding to SGs that are trees. This

correspondence result strictly extends the one in [CF98]. In addition, we have

extended the tractability result from SGs that are trees to SGs that can be

transformed into trees using a certain \cycle-cutting" operation.

The report is structured as follows. We �rst introduce the description logic

for which we will identify a subclass of equivalent SGs. In Section 3, we recall

basic de�nitions and results on SGs. Thereafter, we introduce a syntactical

variant of SGs which allows for directly encoding the support into the graphs

(Section 4.1). In order to formalize the equivalence between DLs and SGs, we

have to consider SGs with one distinguished node called root (Section 4.2). In

Section 5, we �nally identify a class of SGs corresponding to a DL that is a

strict extension of the DL considered in [CF98].

2 Description Logics

We �rst introduce syntax and semantics of description logics (DLs) with exis-

tential restrictions as well as the inference problem of subsumption. In DLs,

knowledge from an application domain is represented by so-called concept de-

scriptions. Concept and role descriptions are inductively de�ned with the help

of a set of constructors, starting with a set N

I

of constants, a set N

C

of primitive

concepts (unary predicates), and a set N

R

of primitive roles (binary predicates).

The semantics of a concept description is also inductively de�ned whereby prim-

itive concepts are interpreted as subsets of a domain � and role names are

interpreted as binary relations on ���.

De�nition 1 Let N

C

be a set of primitive concepts, N

R

a set of primitive roles,

and N

I

a set of constants. Concept descriptions and role terms are inductively

de�ned as follows.

� Each primitive concept P is a concept description.

� For each a 2 N

I

, ONE-OF(a) is a concept description. In the sequel, we

will use fag as an abbreviation for ONE-OF(a).

� Let C;D be concept descriptions and r a role term. Then

3

Construct name Syntax Semantics

top-concept > x = x

primitive concept P 2 N

C

P P (x)

conjunction C uD 	

C

(x) ^	

D

(x) EL

existential restriction 9r:C 9y:	

r

(x; y) ^	

C

(y)

constant a 2 N

I

fag x = a O

1

primitive role r 2 N

R

r r(x; y)

inverse role for r 2 N

R

r

�

r(y; x) I

role conjunction r

1

u r

2

	

r

1

(x; y) ^	

r

2

(x; y) R

Table 1: Syntax and semantics of ELIRO

1

-concept descriptions.

{ C uD (conjunction),

{ 8r:C (value restriction),

{ 9r:C (existential restriction)

are concept descriptions as well.

� For each primitive role r, r as well as the inverse role r

�

is a role term.

� Let r

1

; r

2

be role terms. Then the conjunction r

1

u r

2

is also a role term.

An interpretation I = (�; �

I

) exists of a set of individuals � and a function

�

I

that maps each constant a 2 N

I

to an element a

I

2 �, each primitive concept

P 2 N

C

to a subset P

I

� �, and each primitive role r 2 N

R

to a subset

r

I

� ���. The extension of �

I

to arbitrary concept descriptions and role terms

is inductively de�ned as shown in Table 1. The constructor > describes the

entire domain.

The set of concept descriptions de�ned by the set of constructors introduced

in De�nition 1 is denoted by ELIRO

1

, whereby EL denotes a language only

allowing for existential restrictions and conjunction. The su�x IRO

1

indicates

an extension by inverse roles, conjunction of roles, and constants. Note that

O in general indicates that the language allows for concept descriptions of the

form ONE-OF(a

1

; : : : ; a

n

). Since we are only interested in representing referents

of simple graphs, we only need unary ONE-OF-descriptions.

Example 2 Throughout the paper, we will use the following signature for ex-

amples of concept descriptions as well as simple graphs:

N

C

:=fHuman;Male;Female; Student;CScourseg

N

R

:=fattends; has-child; likesg

N

I

:=fMary;Peter;KR101g

The concept description

D = Female u 9likes:Male u 9has-child:(Student u 9attends:CScourse)

4

Construct name Description FO formula

top-concept > x = x

primitive concept P 2 N

C

P P (x)

conjunction C uD 	

C

(x) ^	

D

(x)

existential restriction 9r:C 9y:	

r

(x; y) ^	

C

(y)

constant a 2 N

I

fag x = a

primitive role r 2 N

R

r r(x; y)

inverse role for r 2 N

R

r

�

r(y; x)

role conjunction r

1

u r

2

	

r

1

(x; y) ^	

r

2

(x; y)

Table 2: Translating concept descriptions and role terms into FO formulae.

describes all women who like a man and have a child that is a student attending

a computer science course (CScourse).

In order to obtain a structured representation of the knowledge about the

application domain one is interested in the subsumption hierarchy formed by

the concept descriptions.

De�nition 3 (Subsumption) Let C;D be concept descriptions.

D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent to D (for short C � D) i� C v D and D v C, i.e., C

I

= D

I

for all interpretations I.

In order to formalize the equivalence between ELIRO

1

and simple graphs, we

translate concept descriptions into �rst order formulae [Bor96]. Each concept

description C yields a FO formula 	

C

(x) with one free variable x and each role

term r is translated into a formula 	

r

(x; y) with two free variables x; y. An

inductive de�nition of 	

C

is shown in Table 2.

The semantics of C can now be described by C

I

= f� 2 � j I j= 	

C

(�)g

whereby I = (�; �

I

) is an interpretation of the signature � = N

C

[N

R

[

N

I

. Further, subsumption between concept descriptions can be characterized

w.r.t. the corresponding FO formulae by C v D i� 	

C

(x

0

) j= 	

D

(x

0

), i.e.,

8x

0

:	

C

(x

0

)! 	

D

(x

0

) is valid.

Example 4 (Example 2 continued) The semantics of the concept descrip-

tion D introduced in Example 2 is given by the following FO formula:

	

D

(x

0

) = Female(x

0

) ^ 9x:(likes(x

0

; x) ^Male(x)) ^

9y:(has-child(x

0

; y) ^ Student(y) ^ 9z:(attends(y; z) ^ CScourse(z))):

The concept description

C := Female u 9has-child

�

:fPeterg u 9(likes u has-child):

(Male u Student u 9attends:(CScourse u fKR101g) u 9likes:fPeterg).

5

Mary
Peter KR101

N

I

�

N

C

Male Female

CSCourseHuman

Student

>

C

hasChild

N

R

attends likes

Figure 1: An example of a support.

describes all daughters of Peter who have a dear son, where this guy attends

the computer science course number KR101 and likes Peter.

It is not hard to see that C yields a specialization of the situation described

by D given in Example 2, i.e., C v D.

3 Simple Graphs

Conceptual graphs have �rst been introduced by Sowa in [Sow84]. In this paper,

we consider the class of simple graphs (see [Sow84] 3.1.2, page 73, and [CM92,

CMS98]). For the readers convenience, we �rst recall the basic de�nitions.

De�nition 5 (Support) A support is a tuple S = hT

C

; T

R

; T

I

i where

� T

C

= (N

C

; <

C

) is the concept type hierarchy of S. N

C

is a set of names

of concept types which contains a distinguished type >, and <

C

is a partial

ordering on N

C

which has > as its greatest element.

� T

R

= h(N

1

R

; N

2

R

; : : :); <

R

i is the relation type hierarchy of S. N

i

R

contains

the relation symbols of arity i. We require N

i

R

\ N

j

R

= ; if i 6= j. We

de�ne N

R

=

S

i2IN

N

i

R

. <

R

is a partial ordering on N

R

for which relation

types of di�erent arity must be incomparable.

� T

I

= hN

I

[f�g; <

I

i where N

I

is the set of individual markers and � is a

distinguished marker called the generic marker. The partial ordering <

I

on N

I

[f�g is de�ned by requiring � to be the greatest element w.r.t. <

I

and all other elements to be pairwise incomparable.

As an example consider the signature (N

C

;N

R

;N

I

) introduced in Exam-

ple 2. An intuitive ordering of the concept types is depicted in Figure 1. The

binary relations are unordered and the constants are ordered as described in

De�nition 5.

De�nition 6 (Simple graphs) Let S be a support. A simple graph is a tuple

g = (C;R;E; `), where

6

� (C;R;E) is an undirected bipartite graph with vertex sets C and R and

edge relation E � C �R. The set C and R are called the sets of concept

nodes and relation nodes of g respectively.

� ` labels (C;R;E) in the following way:

` :

8

<

:

R ! N

R

C ! N

C

�N

I

E ! 2

IN

n f;g

` must satisfy: 8r 2 R : `(r) 2 N

i

R

) f`(c; r) j (c; r) 2 Eg is a disjoint

partition of f1; : : : ; ig.

For a concept node c if `(c) = (type(c); ref(c)), type(c) and ref(c) are

called the type and referent of c respectively.

We de�ne SG(S) to be the set of all simple graphs over S.

In description logics, we are only concerned with unary and binary relations.

Since we are interested in a comparison between simple graphs and description

logics, we reduce our attention to unary and binary predicates, i.e., in the sup-

port S, we only allow for concept types and binary relations. In this special

case, the notion of a simple graph can be simpli�ed as follows. We discard from

the set of relation nodes R, the set of edges E, and labeling R and E. Instead,

for each relation node in g we introduce labeled edges directed from the �rst

neighbour to the second. Thus, we obtain a set E � C � N

R

� C of labeled

edges and reduce the labeling function to ` : C ! N

C

�N

I

.

A second restrictions results from the following observation. An existen-

tial restriction 9r:C describes individuals having an r-successor that ful�lls the

restrictions given by C. Nested existential restrictions describe connected struc-

tures. Thus, we only have to consider connected SGs.

To sum up, we assume in the sequel that the support is of the form S =

hT

C

; T

R

; Ii whereby T

R

= hN

2

R

; <

R

i, i.e., we only allow for binary relations.

Additionally, we restrict our attention to connected simple graphs over S. This

kind of SGs will be denoted by g = (V;E; `).

Simple graphs have a straightforward graphical representation by just draw-

ing the graph and attaching the labels to the di�erent parts of the graph.

Thereby, an edge v

1

rv

2

is represented by an arrow from v

1

to v

2

labeled with r.

Concept nodes are represented by rectangular boxes containing the labeling.

The fundamental reasoning service on simple graphs is computing structural

subsumption relations. The subsumption relation is induced by homomorphisms

between SGs. Simple graphs are provided with a �rst order semantics denoted

by � [Sow84, CMS98]. The characterization of subsumption has been proven to

be sound and complete w.r.t. � for SGs in normal form [CMS98, CM92, Sow84].

A SG g = (C;R;E; `) is said to be in normal form if each individual a 2 N

I

appears at most once as the referent of a concept node.

A formal de�nition of � can be found in [Sow84] and [CMS98]. For a given

support S = hT

C

; T

R

; T

I

i, �(S) is a FO formula corresponding to the interpre-

tation of the partial orderings of T

C

and T

R

, i.e., t

1

<

C

t

2

yields the formula

7

8x:(t

1

(x) ! t

2

(x)) and t

1

<

R

t

2

yields the formula 8x8y:(t

1

(x; y) ! t

2

(x; y)).

Then, �(S) is de�ned as the conjunction of all formulae induced by T

C

and

T

R

. The semantics �(g) of a SG g = (V;E; `) is de�ned as follows. Each con-

cept node v 2 V with label `(v) = (P; a) corresponds to an atomic formula P (x)

whereby x is a variable if a = � and x = a, if a 2 N

I

. Two distinct generic nodes

receive distinct variables. Each edge v

1

rv

2

2 E yields an atomic formula of the

form r(x

1

; x

2

) where x

i

is the term corresponding to v

i

, i = 1; 2. Finally, �(g) is

de�ned as the existentially closed conjunction of all atoms induced by concept

nodes and edges in g. Throughout the paper, for a given SG g = (V;E; `) we

use id(v) to refer to the term corresponding to v 2 V in �(g).

We consider the subsumption relation on SG based on the projection op-

eration [Sow84]. In [CMS98], projection is de�ned as a graph homomorphism

between simple graphs. Since this characterization will be used in the compari-

son within the next section, we recall the formal de�nition of a homomorphism

between two SGs g and h w.r.t. a support S.

De�nition 7 (Homomorphism on Simple Graphs w.r.t. S)

Let g = (V

G

; E

G

; `

G

) and h = (V

H

; E

H

; `

H

) be two simple graphs over support

S. A mapping ' : V

H

�! V

G

is a homomorphism from h to g w.r.t. S i� the

following conditions are satis�ed:

� for all v 2 V

H

let `

H

(v) = (P; a) and `

G

('(v)) = (P

0

; a

0

); then P

0

�

C

P

and a

0

�

I

a, and

� for all vrw 2 E

H

, there exists r

0

such that r

0

�

R

r and '(v)r'(w) 2 E

G

.

Subsumption between SGs over support S is de�ned by h subsumes g (for

short g v h) i� there exists a homomorphism from h to g.

Subsumption is sound and complete w.r.t. the FO semantics, i.e., given two

SGs g; h, then if g v h then �(S)^�(g) ! �(h) is valid [Sow84]; conversely, if g

is in normal form and �(S)^�(g)! �(h) is valid, then h subsumes g [CM92].

Note that one can not always obtain a simple graph in normal form equivalent

to g if g is not in normal form. For example, consider a SG g over the support

S (as given in Figure 1) with two nodes v

1

; v

2

labeled with (Male;Peter) and

(Student;Peter), respectively. Then there exists no SG in normal form equivalent

to g, because either the information that Peter is a man or that Peter is a student

cannot be expressed in a SG over S in normal form.

Example 8 Consider the SGs depicted in Figure 2. They are de�ned over

the support S given in Figure 1. The SG g depicted on the left hand side

describes all daughters of Peter who have a child that is a student and that

likes his mother. The SG h describes a parent whose child is liked by another

human. The SG h subsumes g, because mapping w

i

to v

i

for 0 � i � 2 yields a

homomorphism w.r.t. S from h to g.

8

has-childlikes

h:g:

has-child

Human : �Human : �

Human : �

Male : Peter Student : �

Female : �

w

2

w

0

w

1

v

1

v

0

v

2

likeshas-child

Figure 2: Subsumption of simple graphs w.r.t. S.

4 Expanded Simple Graphs and Rooted Simple

Graphs

In order to formalize the correspondence between simple graphs and concept

descriptions, we introduce syntactical variants of SGs.

1. We �rst eliminate the support S and de�ne the class of so-called ex-

panded simple graphs. More precisely, we allow for node labels of the

form (fP

1

; : : : ; P

n

g; x), i.e., the type of a concept node may now be a set

of concept types. Such a type is interpreted as the conjunction of its el-

ements and it directly corresponds to conjunctions of primitive concepts

in a concept description. The referent is still an individual marker a 2 N

I

or the generic marker �.

2. Then, we introduce so-called rooted simple graphs. A rooted SG is an

expanded SG with exactly one distinguished node called the root.

The semantics of expanded and rooted SGs is obtained from appropriate ex-

tensions of �. Since we can encode a support S into expanded SGs, there is

a one-to-one correspondence between subsumption of expanded SGs and sub-

sumption of SGs w.r.t. S. Subsumption of rooted SGs yields a re�nement of

the subsumption relation on expanded SGs, because we obtain an additional

condition on roots.

4.1 Expanded Simple Graphs

As already mentioned, we reconsider the notion of a SG in order to cope with

conjunctions of primitive concepts. But actually this extension is interesting

by itself since it allows for representing objects that are connected to several

di�erent concept types. In SGs over a support S one can only assign one type

to a concept node and has to discard from additional types unless they occur

as more general types in S. In expanded SGs, one can assign a set of concept

types to a concept node independently from a possible specialization relation

between them.

De�nition 9 (Expanded Simple Graphs) A SG G = (V;E; `) is called ex-

panded simple graph over (N

C

;N

R

;N

I

) if E � V �N

R

� V and for all v 2 V

9

it is `(v) = (typ(v); ref(v)) with typ(v) � N

C

, and ref(v) 2 N

I

[f�g. The

distinguished concept type >

C

corresponds to the empty set.

Note that the signature (N

C

;N

R

;N

I

) of the class of expanded SGs is not

ordered by a relation, i.e., expanded SGs are not de�ned over a support S.

However, we will see below that expanded SGs are as expressive as SGs over a

support S.

The FO semantics � of SGs extends to expanded SGs in a natural way. In

order to cope with types of the form typ(v) = fP

1

; : : : ; P

n

g, n � 1, P

i

2 N

C

,

we introduce the conjunction

V

1�i�n

P

i

(id(v)) instead of an atomic formula

P (id(v)). As before, an edge v

1

rv

2

2 E is translated into an atomic formula

r(x

1

; x

2

). Finally, the FO semantics �

e

(G) of an expanded SG G = (V;E; `)

is de�ned as the existentially closed conjunction of all atomic formulae corre-

sponding to the concept nodes and edges of G.

Remark 10 At this point we should remark something about the normal form

of SGs and expanded SGs. In [CMS98], the authors introduce the normal form

of a SG g as the SG obtained from g by identifying all concept nodes having the

same individual referent. In order to obtain an equivalent SG, the types of the

identi�ed nodes must be equal, or at least, they must possess a greatest lower

bound in (N

C

; <

C

).

On the other hand, we can obtain an equivalent expanded simple graph in

normal form from any expanded SG G by modifying the above transformation as

follows: identify all concept nodes having the same individual marker and de�ne

the type of the resulting node as the union of the types of the identi�ed nodes.

The resulting graph G

0

is again an expanded SG. Further, the generic concept

nodes in G are kept unchanged in G

0

. Consequently, there exists a bijection �

between the variables in �

e

(G) and �

e

(G

0

), respectively, and the set of atomic

formulae occuring in �

e

(G) is equal to the set corresponding to �

e

(G

0

) w.r.t. �.

So, G is equivalent to G

0

, i.e., �

e

(G) � �

e

(G

0

)

1

.

Just as for SGs, subsumption between expanded SGs is based on graph

homomorphisms. Thereby, we have to adjust the conditions on node labels.

De�nition 11 (Homomorphisms between Expanded Simple Graphs)

Let G = (V

G

; E

G

; `

G

) and H = (V

H

; E

H

; `

H

) be two expanded SGs over (N

C

;N

R

;N

I

).

A mapping ' : V

H

�! V

G

is a homomorphism from H to G i� the following

conditions are satis�ed:

� for all v 2 V

H

let `(v) = (fP

1

; : : : ; P

n

g; a) and `

G

('(v)) = (fQ

1

; : : : ; Q

m

g; a

0

);

then

{ fP

1

; : : : ; P

n

g � fQ

1

; : : : ; Q

m

g and

{ a

0

= a or (a

0

2 N

I

and a = �).

� for all vrw 2 E

H

it is '(v)r'(w) 2 E

G

.

1

We call two FO formulae �

1

;�

2

without free variables equivalent if �

1

$ �

2

is valid.

10

fFemaleg : �

; : Peter fMale, Studentg : �

fCScourseg : KR101

fFemaleg : �

fStudentg : �

fCScourseg : �

fMaleg : �

attends attends

has-childlikes

G

2

:G

1

:

has-child has-child likes

likes

v

3

w

2

w

3

w

1

v

1

v

0

w

0

v

2

Figure 3: Subsumption of expanded simple graphs.

Note that the condition on the referents in node labels is equivalent to the

condition a

0

�

I

a in De�nition 7.

Example 12 Consider the expanded SGs depicted in Figure 3. They are de-

�ned over the signature (N

C

;N

R

;N

I

) given in Example 2. The expanded SG

G

1

describes all women that are a daughter of Peter, and have a dear son that

likes Peter and is a student attending the CScourse number KR101.

The expanded SG G

2

depicted on the right hand side subsumes G

1

because

mapping w

0

onto v

0

, w

1

and w

3

onto v

2

, and w

2

onto v

3

yields a homomorphism

from G

2

to G

1

.

In the sequel, we will show that expanded simple graphs over a signature

(N

C

;N

R

;N

I

) are not more expressive than simple graphs over a support S.

More precisely, we will show that there exist translations � and � such that the

following holds:

1. Let G = (V

G

; E

G

; `

G

) be an expanded SG in normal form and H =

(V

H

; E

H

; `

H

) an expanded SG over the signature (N

C

;N

R

;N

I

). There

exist SGs �(G) = (V

G

; E

0

G

; `

0

G

) and �(H) = (V

H

; E

0

H

; `

0

H

) de�ned over a

support S in such a way that

' : V

H

�! V

G

is a homomorphism from H to G

i� �

e

(G) j= �

e

(H)

2

i� �(S) ^ �(�(G)) j= �(�(H))

i� ' is a homomorphism from �(H) to �(G) w.r.t. S.

2. Let g = (V

G

; E

G

; `

G

) be a SG over support S in normal form and h =

(V

H

; E

H

; `

H

) be a SG over support S. Let (N

C

;N

R

;N

I

) denote the

signature of S. There exist expanded SGs �(g) = (V

G

; E

0

G

; `

0

G

) and

�(h) = (V

H

; E

0

H

; `

0

H

) over the (N

C

;N

R

;N

I

) such that

' : V

H

�! V

G

is a homomorphism from h to g w.r.t. S

i� �(S) ^ �(g) j= �(h)

i� �

e

(�(g)) j= �

e

(�(h))

i� ' is a homomorphism from �(h) to �(g).

11

Due to 1: we get that expanded SGs are not more expressive than SGs

w.r.t. S. By 2: we get that the support can be encoded into expanded SGs, i.e.,

w.l.o.g. we can abstain from the support S.

Translating Simple Graphs into Expanded Simple Graphs

The idea behind the translation � of SGs over a support S into expanded SGs

over (N

C

;N

R

;N

I

) is as follows. The support S provides us with a partial order-

ing of concept types and binary relations. Intuitively, S represents specialization

hierarchies on N

C

and N

R

, respectively, e.g., if P <

C

Q, then P is a specializa-

tion of Q. Thus, whenever a concept node v is labeled with type P and P <

C

Q,

then v also represents an instance of Q. Since the subsumption relation yields

a specialization hierarchy on SG(S), <

C

and <

R

have to be taken into account

within the de�nition of homomorphisms between SGs.

Within the class of expanded SGs, we discard from the support S, i.e.,

the information that is implicit encoded in the partial orderings is explicitly

represented in the labels of concept nodes and the set of edges. Formally, let

g = (V;E; `) be a simple graph over S. We de�ne �(g) := (V;E

0

; `

0

) by

� E

0

:= fv

1

sv

2

j exists v

1

rv

2

2 E and r �

R

sg,

� `

0

(v) := (typ

0

(v); ref

0

(v)) with

{ typ

0

(v) := fQ j typ(v) = P and P �

C

Qg,

{ ref

0

(v) := ref(v).

�

C

and �

R

denote the reexive closure of <

C

and <

R

, respectively. Ob-

viously, it is P �

C

Q i� fP

0

j P �

C

P

0

g � fQ

0

j Q �

C

Q

0

g. Further, it is

r �

R

s i� fv

1

r

0

v

2

j r �

R

r

0

g � fv

1

s

0

v

2

j s �

R

s

0

g. Using these observations it

is not hard to prove that ' is a homomorphism from h to g w.r.t. S i� ' is a

homomorphism from �(h) to �(g).

In order to prove all equivalences proposed in item 2 on page 10 we need the

following theorem.

Theorem 13 Let G = (V

G

; E

G

; `

G

) be an expanded SG in normal form and

H = (V

H

; E

H

; `

H

) an expanded SG. There exists a homomorphism ' : V

H

�!

V

G

from H to G i� �

e

(G) j= �

e

(H).

Proof: A proof of Theorem 13 can be obtained from the proof of Theorem 1

in [CMS98], pages 527f , by just neglecting the formula �(S).

Translating Expanded Simple Graphs into Simple Graphs

In order to complete the proof of the equivalences proposed in the items 1 and 2

on page 10, we have to de�ne an appropriate translation � from expanded SGs

over (N

C

;N

R

;N

I

) to SGs over a support S.

In the �rst step, we de�ne the support S := (T

C

; T

R

; T

I

) by

12

� T

C

:= (N

0

C

; <

C

) where

{ N

0

C

:= f0; 1g

n

= f(b

1

; : : : ; b

n

) j b

i

2 f0; 1g; 1 � i � ng, n = jN

C

j,

and

{ for b;b

0

2 N

0

C

it is b �

C

b

0

i� b

i

� b

0

i

for all 1 � i � n,

� T

R

= (N

R

; ;), and

� T

I

= (N

I

[f�g; <

I

) where <

I

is de�ned as in De�nition 5.

The idea behind the de�nition of T

C

is as follows. Let N

C

= fP

1

; : : : ; P

n

g. Then

T

C

yields a binary encoding of the partial ordering (P(N

C

);�) of all subsets

of N

C

. More precisely, there is a one-to-one correspondence between subsets

Q � N

C

and concept types t 2 N

0

C

:

� For Q = fP

i

1

; : : : ; P

i

m

g it is t

Q

:= (b

1

; : : : ; b

n

) with b

i

= 1 i� i 2

fi

1

; : : : ; i

m

g.

� For t = (b

1

; : : : ; b

n

) it is Q

t

:= fP

j

j b

j

= 1g.

It is not hard to see that Q � Q

0

i� t

Q

�

C

t

Q

0

.

We are now equipped to de�ne the translation � of expanded SGs G over

(N

C

;N

R

;N

I

) into SGs �(G) over S. Let G = (V;E; `). Then �(G) := (V;E; `

0

)

where `

0

(v) := ((b

1

; : : : ; b

n

); ref(v)) with b

i

= 1 i� P

i

2 typ(v), 1 � i � n.

Just as for the translation � from SGs to expanded SGs, it is easy to see

that ' is a homomorphism from H to G i� ' is a homomorphism from �(H)

to �(G) w.r.t. S. Consequently we have proven the equivalences proposed in

item 1 on page 10.

4.2 Rooted Simple Graphs

In order to formalize the correspondence between subsumption of SGs and con-

cept descriptions, respectively, we have to extend the notion of an expanded SG

to so-called rooted simple graphs.

De�nition 14 (Rooted Simple Graphs) A graph G = (V;E; v

0

; `) is called

rooted simple graph over (N

C

;N

R

;N

I

) if (V;E`) is an expanded SG over (N

C

;N

R

;N

I

)

and v

0

2 V is a distinguished node in G called the root of G.

Given an interpretation I = (�; �

I

) of (N

C

;N

R

;N

I

), the semantics of a

rooted SG G = (V;E; v

0

; `) is given by f� 2 � j I j= �

r

(G)g, where �

r

is an

extension of �

e

to rooted SGs. To be more precise, the FO formula �

r

(G)(x

0

)

with one free variable x

0

is obtained from G as follows. We distinguish two cases,

namely (1) ref(v

0

) 2 N

I

and (2) ref(v

0

) = �. In the �rst case, we extend �

e

(G)

by a conjunct x

0

= ref(v

0

), where x

0

is a new variable. In the second case, we

assume w.l.o.g. x

0

to be the variable corresponding to v

0

. Then, �

r

(G)(x

0

) is

obtained from �

e

(G) by eliminating the existential quanti�er binding x

0

.

13

Example 15 (Example 12 continued) Consider the expanded SG G

1

de-

picted on the left hand side in Figure 3. Considering G

1

as a rooted SG with

root v

0

, we obtain the following FO formula �

r

(G

1

)(x

0

) with one free variable

x

0

:

�

r

(G

1

)(x

0

) = 9x

1

. Female(x

0

) ^ has-child(Peter; x

0

)

^has-child(x

0

; x

1

) ^ likes(x

0

; x

1

)

^Male(x

1

) ^ Student(x

1

)

^attends(x

1

;KR101) ^ CScourse(KR101).

Remark 16 Just as for SGs, a rooted simple graph G is said to be in normal

form, if each constant a 2 N

I

occurs at most once as a referent of a node in G.

We can obtain a rooted SG in normal form from any rooted SG G = (V;E; v

0

; `)

by identifying all nodes having the same individual marker a 2 N

I

as their

referent. The type of the resulting node is the union of the types of the identi�ed

nodes, and its referent is a. If v

0

has to be identi�ed with other nodes, then the

resulting node is again named v

0

.

The resulting rooted SG G

0

= (V

0

; E

0

; v

0

; `

0

) is equivalent to G. This equiva-

lence can be shown analogous to the equivalence result for expanded SGs proposed

in Remark 10.

Subsumption of rooted SGs can be seen as a special case of subsumption

of expanded SGs. Given two rooted SGs G and H, the root of H must be

mapped onto the root of G. In other words, the roots of both graphs represent

the same object. In the corresponding FO formulae, this object is represented

by the variable x

0

occuring as the unique free variable in �

r

(G) and �

r

(H).

Formally, a homomorphism from a rooted SG H to a rooted SG G is a mapping

' : V

H

�! V

G

that (1) ful�lls the conditions on a homomorphism between

expanded SGs (De�nition 11) and (2) maps the root of H onto the root of G,

i.e., '(v

0H

) = v

0G

. As before, we say that the rooted SG H subsumes the rooted

SG G i� there exists a homomorphism from H to G.

Remark 17 Subsumption of rooted SGs can be seen as a special case of sub-

sumption between expanded SGs, because whenever there exists a homomorphism

' from H = (V

H

; E

H

; w

0

; `

H

) to G = (V

G

; E

G

; v

0

; `

G

), then ' also yields a ho-

momorphism from (V

H

; E

H

; `

H

) to (V

G

; E

G

; `

G

). Consequently, subsumption

between expanded SGs can be reduced to subsumption between rooted SGs as fol-

lows: H = (V

H

; E

H

; `

H

) subsumes G = (V

G

; E

G

; `

G

) i� for an arbitrary w 2 V

H

,

there exists v 2 V

G

such that (V

H

; E

H

; w; `

H

) subsumes (V

G

; E

G

; v; `

G

).

Conversely, not every homomorphism ' from (V

H

; E

H

; `

H

) to (V

G

; E

G

; `

G

)

yields a homomorphism from the rooted SG (V

H

; E

H

; w

0

; `

H

) to the rooted SG

(V

G

; E

G

; v

0

; `

G

). For example, consider the rooted SGs depicted in Figure 4.

Obviously, mapping w

0

to v

1

and w

1

to v

0

yields a homomorphism from the

expanded SG H to the expanded SG G. But if we assume v

0

to be the root of G

and w

0

to be the root of H, then there exists no homomorphism from H to G.

Subsumption between rooted SGs is sound and complete w.r.t. the FO for-

mulae induced by �

r

.

14

likes likes

fHumang : Mary

fHumang : Peter

G:

likes likes

fHumang : Peter

fHumang : Mary

H:

v

0

v

1

w

1

w

0

Figure 4: Homomorphisms between expanded and rooted simple graphs.

Theorem 18 Let G be a rooted SG in normal form and H be a rooted SG. There

exists a homomorphism from H to G, i� �

r

(G) j= �

r

(H), i.e., 8x

0

:�

r

(G)(x

0

)!

�

r

(H)(x

0

) is valid.

Proof: We �rst show that �

r

(G)(x

0

) j= �

r

(H)(x

0

) =) G v H. The idea

behind the proof is as follows. We treat the free variable x

0

as a new constant

c

0

. Introducing c

0

as the referent of the roots in G and H, respectively, we

obtain two expanded simple graphs G

0

and H

0

such that �

e

(G

0

) j= �

e

(H

0

). By

Theorem 13, we obtain a homomorphism ' from H

0

to G

0

. In the last step, we

will show that ' also yields a homomorphism from H to G.

Let G = (V

G

; E

G

; v

0

; `

G

) be a rooted SG in normal form andH = (V

H

; E

H

; w

0

; `

H

)

a rooted SG over (N

C

;N

R

;N

I

). Further, let c

0

be a new constant, i.e., c

0

62 N

I

.

�

r

(G)(x

0

) j= �

r

(H)(x

0

) implies �

r

(G)(c

0

) j= �

r

(H)(c

0

).

We de�ne G

0

:= (V

G

; E

G

; `

G0

) by `

G0

(v) := `

G

(v) for all v 2 V

G

n fv

0

g

and `

G0

(v

0

) := (typ

G

(v

0

); c

0

). Let H

0

:= (V

H

; E

H

; `

H0

) be de�ned in the same

way. G

0

and H

0

are expanded SGs over (N

C

;N

R

;N

I

[fc

0

g). We want to

show that �

r

(G)(c

0

) � �

e

(G

0

). We distinguish two cases: (1) ref

G

(v

0

) = �

and (2) ref

G

(v

0

) = a 2 N

I

. In both cases there exists a bijection � be-

tween the generic nodes in G

0

and all generic nodes except v

0

in G. Ob-

viously, � yields a bijection between the sets of existentially quanti�ed vari-

ables fz

1

; : : : ; z

n

g in �

e

(G

0

) and fy

1

; : : : ; y

n

g in �

r

(G)(c

0

), respectively. In

the �rst case, it is �

e

(G

0

)[z

1

=�(z

1

); : : : ; z

n

=�(z

n

)] = �

r

(G)(c

0

). In the second

case we get �

r

(G)(x

0

) = (x

0

= a) ^ �

e

(V

G

; E

G

; `

G

). It is �

r

(G)(c

0

) = (c

0

=

a) ^ �

e

(V

G

; E

G

; `

G

) � �

e

(V

G

; E

G

; `

G

)[a=c

0

] � �

e

(G

0

).

We now have shown that �

e

(G

0

) � �

r

(G)(c

0

) and �

e

(H

0

) � �

r

(H)(c

0

). By

the premise, it follows �

e

(G

0

) j= �

e

(H

0

).

By Theorem 13, there exists a homomorphism ' from H

0

to G

0

. In order

to prove G v H, we show that ' also yields a homomorphism from H to G.

Therefore, it remains to show that (1) '(w

0

) = v

0

and (2) `

G

(v

0

) is more

speci�c than `

H

(w

0

), i.e., typ

G

(v

0

) � typ

H

(w

0

) and ref

G

(v

0

) = ref

H

(w

0

) or

(ref

H

(w

0

) 2 N

I

and ref

G

(v

0

) = �).

1. It is ref

H0

(w

0

) = c

0

. Since ' is a homomorphism, it is ref

G0

('(w

0

)) = c

0

.

v

0

is the only node with referent c

0

in G

0

. So, '(w

0

) = v

0

.

2. Since ' is a homomorphism, it is typ

H

(w

0

) � typ

G

(v

0

). In order to prove

ref

G

(v

0

) = ref

H

(w

0

) or (ref

H

(w

0

) 2 N

I

and ref

G

(v

0

) = �) we have to

15

distinguish two cases.

(a) ref

H

(w

0

) = �. Due to the second disjunct in the condition, nothing

has to be shown.

(b) ref

H

(w

0

) = a 2 N

I

. Assume ref

G

(v

0

) 6= a.

First case: ref

G

(v

0

) = �. Then �

r

(G)(x

0

) contains no conjunct of

the form (x

0

= b), b 2 N

I

. We derive a contradiction to �

r

(G)(x

0

) j=

�

r

(H)(x

0

) as follows. Let (I; �) be a model of �

r

(G)(x

0

), i.e., I =

(�; �

I

) is an interpretation of (N

C

;N

R

;N

I

) and � is an I-allocation

such that (I; �) j= �

r

(G)(x

0

). Let � := �(x

0

). We extend (I; �) to

I

0

; �

0

) by adding a clone �

0

62 � of �, i.e.,

� �

0

:= � [f�

0

g,

� P

I

0

:= P

I

[f�

0

g, if � 2 P

I

, and P

I

0

:= P

I

, otherwise,

� r

I

0

:= r

I

[f�

0

; �) j (�; �) 2 r

I

g [f(�; �

0

) j (�; �) 2 r

I

g,

� b

I

0

:= b

I

for all b 2 N

I

, and

� �

0

(x

0

) := �

0

.

Then it is (I

0

; �

0

) j= �

r

(G)(x

0

), but since �

0

(x

0

) 6= a

I

0

, it is (I

0

; �

0

) 6j=

�

r

(H)(x

0

).

Second case: ref

G

(v

0

) = b 6= a, b 2 N

I

. As in the �rst case, we

derive a contradiction by extending a model (I; �) to (I

0

; �

0

). Let

a

I

= � and �

0

62 �. We de�ne I

0

as above except of

� b

0I

0

:= b

0

I

for all b

0

2 N

I

n fag and a

I

0

:= �

0

, and

� �

0

(x

0

) := b

I

.

As before, it is (I

0

; �

0

) j= �

r

(G)(x

0

), but since �

0

(x

0

) 6= a

I

0

, it is

(I

0

; �

0

) 6j= �

r

(H)(x

0

).

Consequently, the assumption ref

G

(v

0

) 6= a leads to a contradiction.

Hence, ref

G

(v

0

) = a.

Overall, it follows that ' is a homomorphism from H to G.

In the second part of the proof we have to show that G v H =) �

r

(G)(x

0

) j=

�

r

(H)(x

0

)

3

.

Let fy

1

; : : : ; y

m

g and fx

1

; : : : ; x

n

g be the existentially quanti�ed variables in

�

r

(H)(x

0

) and �

r

(G)(x

0

), respectively. Let �

r

(G)(x

0

) = 9x

1

: : : : 9x

n

:�

G

(x

0

; x

1

; : : : ; x

n

)

and �

r

(H)(x

0

) = 9y

1

: : : : 9y

m

:�

H

(x

0

; y

1

; : : : ; y

m

).

Let (I; �) be a model of �

r

(G)(x

0

). We have to show (I; �) j= �

r

(H)(x

0

).

(I; �) j= �

r

(G)(x

0

) implies that there exist �

1

; : : : ; �

n

2 � such that (I; �

G

) j=

�

G

(x

0

; x

1

; : : : ; x

n

), whereby �

G

(x

0

) := �(x

0

) and �

G

(x

i

) := �

i

for 1 � i � n.

We de�ne an allocation �

H

such that (I; �

H

) j= �

H

(x

0

; y

1

; : : : ; y

m

) and

�

H

j

fx

0

g

= �. This implies (I; �) j= �

r

(H)(x

0

) and hence �

r

(G)(x

0

) j= �

r

(H)(x

0

).

�

H

is de�ned as follows:

3

For two FO formulae �

1

;�

2

both having x

0

as their only free variable, �

1

(x

0

) j= �

2

(x

0

)

means 8x

0

:�

1

(x

0

)! �

2

(x

0

) is valid.

16

�

H

(x

0

) := �(x

0

) and

�

H

(y

i

) :=

�

�

j

; if id(w) = y

i

and id('(w)) = x

j

;

a

I

; if id(w) = y

i

and id('(w)) = a 2 N

I

:

�

H

is well-de�ned and by de�nition, �

H

j

fx

0

g

= �. Further, let P (t) and r(t

1

; t

2

)

be atomic formulae in �

H

. We have to show (1) (I; �

H

) j= P (t) and (2)

(I; �

H

) j= r(t

1

; t

2

).

1. Let t = id(w). Since ' is a homomorphism, it is typ

H

(w) � typ

G

('(w)).

Hence, P (id('(w)) occurs in �

G

. By the premise (I; �

G

) j= �

G

and by the

de�nition of �

H

we get (I; �

H

) j= P (t).

2. Let t

i

= id(w

i

), i = 1; 2. Since ' is a homomorphism, it is ('(w

1

); '(w

2

)) 2

E

G

. Hence, r(id('(w

1

)); id('(w

2

))) occurs in �

G

. By the premise (I; �

G

) j=

�

G

and by the de�nition of �

H

we get (I; �

H

) j= r(t

1

; t

2

).

The items (1) and (2) imply (I; �

H

) j= �

H

(x

0

; y

1

; : : : ; y

m

) and hence, (I; �) j=

�

r

(H)(x

0

).

This completes the proof of Theorem 18.

Deciding Subsumption of Rooted Simple Graphs

For SGs over a support S, subsumption is known to be an NP-complete problem.

The known algorithms deciding g v h w.r.t. S are based on the characterization

of subsumption by homomorphisms, and thus require the subsumee g to be in

normal form. In order to obtain a subsumption algorithm for rooted SGs, we

must simply adjust the conditions tested for concept nodes and edges according

to the modi�ed conditions on homomorphisms between rooted SGs. Conversely,

subsumption of SGs w.r.t. S can be reduced to subsumption of rooted SGs (see

item 2 on page 10 and Remark 17). This shows that subsumption for rooted

SGs is also an NP-complete problem.

In [MC93], a polynomial-time algorithm is introduced that can decide g v t

w.r.t. a support S provided that t is a tree and g is a SG in normal form. In

this context, a SG t is called a tree i� t contains no cycles of length greater

than 2. The notion of a tree can be adapted to rooted SGs T by viewing T as

an undirected graph.

Note that in a rooted SG T that is a tree each concept node v 2 V nfv

0

g has

a unique predecessor, though there may be more than one edge between them.

For example, the node v

1

in the rooted SG G in Figure 4 has the root v

0

as its

unique predecessor and the two edges between them yield a cycle of length 2 in

G.

A simple modi�cation of the algorithm in [MC93] yields a polynomial time

algorithm deciding G v T for a rooted SG T that is a tree and a rooted SG G

in normal form. A formal description is given in Figure 5.

Complexity of the algorithm

The algorithm answers in time polynomial in the size of G and T .

17

Input: A rooted SG T that is a tree and a rooted SG G in normal

form.

Output: \yes", if there exists a homomorphism from T to G, \no",

otherwise.

Let T = (V

T

; E

T

; v

0T

; `

T

) and G = (V

G

; E

G

; v

0G

; `

G

). Further, let

fv

1

; : : : ; v

n

g be a post-order sequence of V

T

, whereby v

1

is a leaf and

v

n

= v

0T

. De�ne a labeling � : V

G

�! P(V

T

) as follows.

Initialize � by �(w) := ; for all w 2 V

G

.

For 1 � i � n do

For all w 2 V

G

do

If typ

T

(v

i

) � typ

G

(w) and

ref

G

(w) �

I

ref

T

(v

i

) and

for all v

i

rv 2 E

T

there is w

0

2 V

G

such that

v 2 �(w

0

) and wrw

0

2 E

G

Then �(w) := �(w) [fv

i

g

od

od

If v

0T

2 �(v

0G

), then return \yes", else return \no".

Figure 5: Homomorphisms from trees to rooted simple graphs.

In order to de�ne � (see Figure 5), we have to consider all nodes of G for

each node in T , i.e., we have to test the condition in the inner loop jV

T

j � jV

G

j

times. Testing the condition takes time polynomial in the size of G and T .

Soundness and completeness of the algorithm

We have to show that there exists a homomorphism from T to G i� the algorithm

depicted in Figure 5 applied on T and G answers \yes".

Completeness: Assume that there exists a homomorphism ' from T to G.

We have to show that the algorithm depicted in Figure 5 answers \yes".

Therefore, we prove by induction for all m 2 f1; : : : ; ng the following

Claim: Let ' be a homomorphism from T = (V

T

; E

T

; v

0T

; `

T

) to G = (V;E; v

0G

; `).

Further, let fv

1

; : : : ; v

n

g be a post-order sequence of V

T

. For all v

m

, it is

v

m

2 �('(v

m

)).

Basis step: m = 1

Let w = '(v

1

) 2 V

G

. Since ' is a homomorphism, it is ref

G

(w) �

I

ref

T

(v

1

)

and typ

T

(v

1

) � typ

G

(w). Furthermore, v

1

has no successors (because v

1

is a

leaf in T). Thus, all conditions in the if-statement of the algorithm are satis�ed

and hence, �(w) is set to �(w) [fv

1

g.

Induction step: m� 1 �! m

By the induction hypothesis we have v

i

2 �('(v

i

)) for all 1 � i < m. If m > n,

18

nothing has to be shown. Assume m � n. Let w = '(v

m

). Since ' is a homo-

morphism, it is ref

G

(w) �

I

ref

T

(v

m

) and typ

T

(v

m

) � typ

G

(w). Let v

i

2 V

T

and v

m

rv

i

2 E

T

. This implies wr'(v

i

) 2 E

G

. It is i < m, because fv

1

; : : : ; v

n

g

is a post-order sequence. By induction, it is v

i

2 �('(v

i

)). Since v

m

rv

i

2 E

T

has been chosen arbitrarily, all conditions in the if-statement of the algorithm

are satis�ed and hence, �(w) is set to �(w) [fv

m

g.

It is v

n

= v

0T

. The claim implies v

0T

2 �('(v

0T

)) = �(v

0G

). So, the algo-

rithm answers \yes".

Soundness: Assume that the algorithm answers \yes". We have to show that

there exists a homomorphism from T = (V

T

; E

T

; v

0T

; `

T

) to G = (V

G

; E

G

; v

0G

; `

G

).

Let fv

1

; : : : ; v

n

g be the post-order sequence used by the algorithm to de�ne

�. We prove the claim by de�ning '(v

i

) top down, i.e., starting with the root

v

0T

= v

n

and ending with the leaf v

1

. In each iteration step we maintain

v

i

2 �('(v

i

)). Using this invariant, it is easy to see that ' is a homomorphism

from T to G.

We start with '(v

n

) = '(v

0T

) := v

0G

. Since the algorithm answered \yes",

it is v

0T

2 �('(v

0G

)). Now assume that '(v

n

); : : : ; '(v

i+1

), n > i � 1 are

already de�ned. We have to de�ne '(v

i

). Since T is a tree, there exists a

unique predecessor v

j

of v

i

. Since fv

1

; : : : ; v

n

g is a post-order sequence, it is

i < j � n. Thus, '(v

j

) is already de�ned. Let w = '(v

j

). By the invariant, we

have v

j

2 �('(v

j

)). It follows that there exists w

0

2 E

G

such that wrw

0

2 E

G

and v

i

2 �(w

0

). De�ne '(v

i

) := w

0

. By de�nition, we get v

i

2 �('(v

i

)).

This completes the proof of soundness and completeness of the algorithm.

In the next section, we will show that the polynomial-time algorithm can

also be applied to decide subsumption of ELIRO

1

-concept descriptions.

5 The Relation between Simple Graphs and De-

scription Logics

In this section, we extend the results on the correspondence between conceptual

graphs and description logics presented in [CF98]. In [CF98], an equivalence

result is only obtained for a small fragment of simple graphs and a weak de-

scription logic.

On the one hand, Faron and Coupey only consider trees, i.e., connected

simple graphs consisting of concept nodes and binary relations that are trees.

Further, they do not allow for individual markers in the label of concept nodes.

On the other hand, the authors only allow for concept descriptions built

from primitive concepts, existential restrictions, primitive roles, inverse roles,

and a restricted form of conjunction (see [CF98], Section 4.1 for details). Thus,

the resulting description logic is a fragment of the description logic ELI allowing

19

for conjunction, existential restrictions, and inverse roles.

We are now concerned with the class of rooted SGs and the description logic

ELIRO

1

. We will prove a one-to-one correspondence between ELIRO

1

-concept

descriptions of a certain form and the class of rooted SGs that are trees. Thus,

we extend the results of Faron and Coupey in the following sense: On the one

hand, we allow for individual concept nodes

4

in the SGs. On the other hand, we

cope with full conjunction in concept descriptions by considering sets of concept

types in the labels of concept nodes. However, we only allow for ELIRO

1

-concept

descriptions in which each conjunction contains at most one constant. This is

due to the fact that referents of individual concept nodes in rooted SGs are

single constants a 2 N

I

.

Remark 19 A conjunction of at least two ONE-OF-concept descriptions fa

1

gu

: : :ufa

n

g occuring in a concept description C implies a

I

1

= : : : = a

I

n

for all mod-

els I of C. Though equality of individual markers cannot be expressed in (rooted)

SGs, we can extend the results on subsumption of ELIRO

1

-concept descriptions

of the restricted form given below to arbitrary ELIRO

1

-concept descriptions by

extending the notion of rooted SGs to graphs which allow for set of constants as

referents of concept nodes. In this work, however, we concentrate on the corre-

spondence between SGs and DLs and therefore refrain from such an extension.

5.1 Translating Concept Descriptions into Rooted Simple

Graphs

The main idea underlying the translation is to represent a concept description

C as a tree T

C

. Intuitively, C is represented by a tree with root v

0

where all

atomic concepts and constants occuring in the top-level conjunction of C yield

the label of v

0

, and each existential restriction 9r:C

0

in this conjunction yields

an r-successor that is the root of the tree corresponding to C

0

.

Formally, T

C

= (V

C

; E

C

; v

0

; `

C

) is recursively de�ned as follows: Let C =

P

1

u : : : u P

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

. where P

i

2 N

I

[N

C

, 1 � i � n, with at

most one P

j

2 N

I

.

If depth(C) = 0 then

� V

C

:= fv

0

g,

� E

C

:= ;, and

� `

C

(v

0

) := P

1

; : : : ; P

n

.

If depth(C) > 0 then for 1 � i � m, let G

i

= (V

i

; E

i

; v

0i

; `

i

) be the recur-

sively de�ned trees corresponding to C

i

where w.l.o.g. the V

i

are pairwise

disjoint. De�ne

4

A concept node v is called individual concept node if ref(v) 2 N

I

; otherwise, v is called

generic concept node.

20

fFemaleg : �

fMale, Studentg : �

fCScourseg : KR101; : Peter

; : Peter

attends

has-childlikes

likes

has-child

v

4

: Peter v

3

: CScourse,KR101

v

2

: Male, Studentv

1

: Peter

v

0

: Female

attendslikes

has-child

�

likes u has-child

G

C

:

v

4

v

3

v

2

v

1

v

0

T

C

:

Figure 6: Translating ELIRO

1

-concept descriptions into rooted simple graphs.

� V

C

:= fv

0

g [

S

1�i�m

V

i

,

� E

C

:= fv

0

r

i

v

0i

j 1 � i � mg [

S

1�i�m

E

i

,

� `

C

(v

0

) := P

1

; : : : ; P

n

and for v 2 V

i

, de�ne `

C

(v) := `

i

(v).

Example 20 The concept description C below yields the tree T

C

depicted on

the left hand side in Figure 6:

C := Female u 9has-child

�

:fPeterg u 9(likes u has-child):

(Male u Student u 9attends:(CScourse u fKR101g) u 9likes:fPeterg).

Now, we can de�ne the rooted SG G

C

= (V;E; v

0

; `) corresponding to C as

follows. The nodes in T

C

yield the set of concept nodes V of G

C

. The label

`(v) of a concept node v 2 V is determined by the label `

T

(v) of v in T

C

, i.e.,

typ(v) is the set of all atomic concepts occurring in `

T

(v) and, if there is a

constant a 2 `

T

(v), then ref(v) := a; otherwise ref(v) := �. Note that ref(v)

is well-de�ned because we have restricted ELIRO

1

-concept descriptions to those

containing at most one constant in each conjunction. Finally, the set of edges

of G

C

is obtained from the edges in T

C

: conjunctions of roles are decomposed

(v(r

1

u : : :ur

n

)w yields n edges vr

1

d; : : : ; vr

n

w) and inverse roles are redirected

(vr

�

w yields the edge wrv).

Example 21 (Example 20 continued) For the ELIRO

1

-concept description

C from Example 20 we obtain the rooted SG G

C

depicted on the right hand

side in Figure 6, which is a tree with root v

0

.

Using the recursive de�nition of T

C

it can be shown that C is equivalent to

its corresponding rooted SG G

C

.

Proposition 22 Let C be an ELIRO

1

-concept description (of the restricted

form) and G

C

its corresponding rooted SG. Then C is equivalent to G

C

, i.e.,

8x

0

: (C)(x

0

)$ �

r

(G

C

)(x

0

) is a valid formula.

21

Proof: In order to simplify the proof, we �rst introduce a slight modi�cation

of the FO formula �

r

(G)(x

0

) corresponding to a rooted SG G = (V;E; v

0

; `).

Intuitively, we introduce a new variable x for each node v 2 V

1

independent

of the referent of v. If ref

1

(v) = a 2 N

I

, then we just introduce the literal

x

:

= a.

Formally, we de�ne �

0

r

(G)(x

0

) as follows. We assign distinct variables to

all nodes v 2 V referred to by var(v). W.l.o.g. let var(v

0

) = x

0

. Then, each

node v with var(v) = x and label `(v) = (fP

1

; : : : ; P

n

g; a) yields a formula

V

1�i�n

P

i

(x) if a = �; otherwise

V

1�i�n

P

i

(x) ^ (x

:

= a). Each edge vrw 2

E yields an atomic formula r(var(v); var(w)). Finally, �

r

(G)(x

0

) is de�ned

as the conjunction of all formulae corresponding to concept nodes and edges,

respectively, whereby all variables except x

0

are existentially quanti�ed. Hence,

x

0

is the unique free variable in �

0

r

(G)(x

0

).

Based on the equivalence P

1

(x) ^ : : : ^ P

n

(x) ^ x

:

= a � P

1

(a) ^ : : : ^ P

n

(a),

it is not hard to see that �

r

(G)(x

0

) � �

0

r

(G)(x

0

). Thus, in order to prove

Proposition 22, it is su�cient to show that 	

C

(x

0

) � �

0

r

(G)(x

0

).

In order to prove this claim, we �rst assume that w.l.o.g. all existentially

quanti�ed variables in 	

C

(x

0

) are distinct. Now, we can show by induction on

depth(C) that there exists a bijection � from the set of variables in 	

C

(x

0

) to

the set of variables in �

0

r

(G)(x

0

) such that

� �(x

0

) = x

0

, and

� �(C(

C

(x

0

))) = C(�

0

r

(G

C

)(x

0

)), i.e., the set of atomic formulae occuring

in 	

C

(x

0

) is equal to the set of atomic formulae occuring in �

0

r

(G

C

)(x

0

)

except for renaming variables.

Due to the assumption on distinct variables in 	

C

(x

0

) this implies

	

C

(x

0

)

� 9x

1

: : : 9x

t

:

V

P (x

i

)2C(

C

(x

0

))

P (x

i

)

^

V

r(x

i

;x

j

)2C(

C

(x

0

))

r(x

i

; x

j

)

^

V

x

i

:

=a2C(

C

(x

0

))

x

i

:

= a

� 9�(x

1

) : : : 9�(x

t

):

V

P (�(x

i

))2C(

C

(x

0

))

P (�(x

i

))

^

V

r(�(x

i

);�(x

j

))2C(

C

(x

0

))

r(�(x

i

); �(x

j

))

^

V

�(x

i

)

:

=a2C(

C

(x

0

))

�(x

i

)

:

= a

� �

0

r

(G)(x

0

)

depth(C) = 0: Then C = P

1

u : : :uP

n

. Obviously, � = fx

0

7! x

0

g is a bijection

and it is C(

C

(x

0

)) = C(�

r

(G

C

)(x

0

)).

depth(C) > 0: Then C = P

1

u : : : u P

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

. We have to

distinguish two cases, namely (1) P

i

2 N

C

for all 1 � i � n and (2)

P

j

2 N

I

for some j 2 f1; : : : ; ng.

In the second case, the claim follows from (1) by just considering the

conjunct x

0

:

= P

j

instead of P

j

(x

0

). Hence, we reduce our attention to

the �rst case.

22

It is 	

C

(x

0

) = P

1

(x

0

) ^ : : : ^ P

n

(x

0

) ^ 9x

1

:(

r

1

(x

0

; x

1

) ^ 	

C

1

(x

1

)) ^

9x

m

:(

r

m

(x

0

; x

m

) ^	

C

m

(x

1

)).

By de�nition of T

C

andG

C

, there exist v

1

; : : : ; v

m

2 V such that

� the subtree G

C

(v

i

) with root v

i

of G

C

is the recursively de�ned tree

corresponding to C

i

, and

� the set of edges between v

0

and v

i

corresponds to the role term r

i

,

i.e., r

i

= u

v

0

sv

i

2E

s u u

v

i

sv

0

2E

s

�

.

The induction hypothesis yields a bijection �

i

from the set of variables in

	

C

i

(x

i

) to the set of variables in �

0

r

(G

C

(v

i

))(x

i

) for each 1 � i � m such

that �

i

(x

i

) = x

i

and �(C(

C

i

(x

i

))) = C(�

0

r

(G

C

(v

i

))(x

i

)).

Note that we assume w.l.o.g. that x

i

is the free variable in �

r

(G

C

(v

i

)(x

i

)

and also the variable corresponding to v

i

in G

C

. Thereby, the resulting

bijection is the identic mapping id, i.e., id(x) = x for all variables x. In

general, however, one may introduce di�erent variables in the formulae

corresponding to subconcepts C

i

in C and corresponding subtrees G

C

i

in

G

C

.

We de�ne � := fx

0

7! x

0

g [

S

1�i�m

�

i

.

It remains to show that the set of atomic formulae in which the variable

x

0

occurs coincides for 	

C

(x

0

) and �

0

r

(G

C

)(x

0

) w.r.t. �.

For each conjunct s in r

i

, it is s(x

0

; x

i

) an atomic formula in 	

r

i

(x

0

; x

i

),

and, by de�nition of G

C

, v

0

sv

i

2 E and hence s(x

0

; x

i

) is an atomic

formula in �

0

r

(G

C

)(x

0

). Analogously, s(x

i

; x

0

) occurs in 	

r

i

(x

0

; x

i

) i�

s(x

0

; x

i

) occurs in �

0

r

(G

C

)(x

0

) for all 1 � i � m.

Further, it is `(v

0

) = (fP

1

; : : : ; P

n

g; �) and thus, P

i

(x

0

) occurs in �

0

r

(G

C

)(x

0

)

for all 1 � i � n.

So, �(C(

C

(x

0

))) = C(�

0

r

(G

C

)(x

0

)). 2

It is not hard to see that we can translate a rooted SG G = (V;E; v

0

; `)

whose edges yield a tree with root v

0

into an equivalent concept description C

G

by just considering G as the tree of C

G

. Formally, C

G

is recursively de�ned as

follows.

jV j = 1: Then it is V = fv

0

g and E = ;. Let `(v

0

) = (fP

1

; : : : ; P

n

g; a). C

G

is

de�ned by

C

G

:=

�

a u P

1

u : : : u P

n

, if a 2 N

I

;

P

1

u : : : u P

n

, if a = �:

jV j > 1): Let `(v

0

) = (fP

1

; : : : ; P

n

g; a). Let fv

1

; : : : ; v

n

g be the set of all suc-

cessors of v

0

. We de�ne the set of all role terms labeling edges between

v

0

and v

i

by R

i

:= fr 2 N

R

j v

0

rv

i

2 Eg [fr

�

j r 2 N

R

; v

i

rv

0

2 Eg.

23

Further, let G

i

be the subtree with root v

i

of G and C

i

the recursively

de�ned ELIRO

1

-concept description of G

i

. Then, C

G

is de�ned by

C

G

:=

8

<

:

a u P

1

u : : : u P

n

u u

1�i�n

9(u

r2R

i

r):C

i

, if a 2 N

I

;

P

1

u : : : u P

n

u u

1�i�n

9(u

r2R

i

r):C

i

, if a = �:

The above translations yield a one-to-one correspondence between ELIRO

1

-

concept descriptions and rooted SGs that are trees. Because of this correspon-

dence, we can reduce subsumption in ELIRO

1

to subsumption between rooted

SGs.

5.2 Deciding Subsumption in ELIRO

1

Using the translation introduced in the previous section, we can reduce sub-

sumption of ELIRO

1

-concept descriptions to subsumption between rooted simple

graphs. Thereby the rooted SG corresponding to the subsumer is a tree and the

one of the subsumee can be transformed into an equivalent rooted SG in normal

form. Thus, we can apply the polynomial-time algorithm and hence obtain the

following complexity result for subsumption of ELIRO

1

-concept descriptions.

Theorem 23 Subsumption C v D of ELIRO

1

-concept descriptions can be de-

cided in time polynomial in the size of C and D.

Proof: As already mentioned, we restricted ourselves to ELIRO

1

-concept de-

scriptions where each conjunction contains at most one constant. Therefore, at

�rst sight, the following argument only holds for this fragment of ELIRO

1

. But

as already mentioned in Remark 19, one can easily extend the result to arbi-

trary ELIRO

1

-concept descriptions by allowing for sets of constants as referents

of concept nodes. We leave this extension as an exercise to the interested reader.

The proof of the tractability result for ELIRO

1

-concept descriptions of the

restricted form yields the rewards of our labour since we only have to gather up

the results of the previous sections.

Given two ELIRO

1

-concept descriptions C;D, we �rst determine the rooted

SGs G

C

and G

D

corresponding to C and D in polynomial time. G

C

can then

be tranformed (in polynomial time) into an equivalent rooted SG G

0

C

in normal

form. Now we can apply the polynomial-time algorithm depicted in Figure 5

on G

D

and G

0

C

. If it answers \yes", then \C v D"; otherwise, \C 6v D".

Obviously, we just described a polynomial-time algorithm. Furthermore, the

following equivalences imply that this algorithm decides subsumption C v D of

two ELIRO

1

-concept descriptions (of the restricted form).

C v D (Section 2)

i� 	

C

(x

0

) j= 	

D

(x

0

) (Proposition 22, Remark 16)

i� �(G

0

C

)(x

0

) j= �(G

D

)(x

0

) (Theorem 18)

i� exists a homomorphism ' from G

D

to G

0

C

i� G

0

C

v G

D

.

2

24

5.3 Extending the Tractability Result

As a by-product of the above tractability result for ELIRO

1

, we will now extend

the tractability result from (rooted) SGs that are trees to (rooted) SGs that can

be transformed into equivalent trees by \cutting cycles" of length greater than

2. For a given rooted SG G, we can eliminate an (undirected) cycle w

0

; : : : ; w

n

where w

0

= w

n

in G by applying the split-operation on concept nodes as in-

troduced for SGs in [CM92]. To be more precise, we (1) arbitrarily choose a

node w

i

2 fw

1

; : : : ; w

n

g, (2) introduce a new node v labeled like w

i

, and (3)

replace all edges between w

i�1

and w

i

by edges between w

i�1

and w. We then

say that the cycle is cut in w

i

. Obviously, any cyclic SG G can be transformed

into an acyclic SG G

�

by applying this operation a polynomial number of times.

In general, however, the resulting SG G

�

need not be equivalent to G.

Example 24 (Example 15 continued) Consider the rooted SG G

1

in Fig-

ure 3. On the one hand, we can eliminate the cycle v

1

; v

0

; v

2

; v

1

by introducing

a new node v

4

with label (;;Peter) and replacing the edge v

2

likesv

1

by v

2

likesv

4

.

The resulting tree coincides with the tree G

C

in Figure 6, and it is equivalent

to G

1

because G

1

is a normal form of G

C

. On the other hand, if we introduce

a new node v labeled (fFemaleg; �) and replace v

1

has-childv

0

by v

1

has-childv,

then the resulting tree is not equivalent to G

1

because the student's mother and

Peter's child need no longer to be the same person.

The following proposition introduces a condition on rooted SGs that ensures

that rooted SGs satisfying this condition can be transformed into equivalent

trees by applying the split operation to individual concept nodes.

Proposition 25 If each cycle of length greater than 2 in the rooted SG G con-

tains at least one individual concept node v, then G can be transformed into an

equivalent tree G

�

in time polynomial in the size of G.

Proof: In order to prove the proposition, we �rst formalize the cutting operation

described above for the special case of cycles containing at least one individual

node. The resulting transformation rule is de�ned in Figure 7.

Now, let G = (V;E; v

0

; `) be a rooted SG. Each iterated application of the

transformation rule depicted in Figure 7 terminates, because each application

G �! G

0

decreases the number of cycles containing at least one individual node.

Since the number of these cycles can be bounded by the number of edges leading

to or from individual concept nodes, each iterated application terminates.

The termination argument also yields a polynomial upper bound on the size

of G

�

. A cycle in G containing at least one individual node is eliminated by

introducing a new node. The number of edges leading to or from an individual

node (and hence the number of new nodes) is polynomial in the size of G. So,

G

�

is obtained in time polynomial in the size of G.

Finally, the resulting tree G

�

is equivalent to G because G is a normal form

of G

�

. 2

Consequently, G v H can be decided in polynomial time if G is a rooted SG

in normal form and H satis�es the premise of Proposition 25. It is easy to see

25

Transformation Rule: G �! G

0

.

Let G = (V;E; v

0

; `) be a rooted SG and (w

0

; w

1

; : : : ; w

n

), n > 1, a cycle

of length greater 2 in G.

Let w

i

, i 2 f1; : : : ; ng be an individual concept node on the cycle and

let v be a new node, i.e., v 62 V . Then derive G

0

= (V

0

; E

0

; v

0

; `

0

) from

G by

� V

0

:= V [fvg,

� E

0

:=

�

E n (fw

i�1

rw

i

j r 2 N

R

g [fw

i

rw

i�1

j r 2 N

R

g)

�

[fvrw

i

j

w

i�1

rw

i

2 Eg [fw

i

rv j w

i

rw

i�1

2 Eg, and

� `

0

(w) := `(w) for all w 2 V and `

0

(v) := `(w

i

).

Figure 7: Eliminating cycles in rooted simple graphs.

that this tractability result also applies to (non-rooted) SGs over a support S.

More precisely, given a SG g over S in normal form and a SG h over S such

that each cycle of length greater 2 in h contains at least one individual concept

node, then (1) h can be transformed into an equivalent SG over S by an iterated

application of the transformation rule given in Figure 7 (in polynomial time),

and (2) g v h w.r.t. S can be decided in polynomial time applying the algorithm

introduced in [MC93].

6 Conclusion

We have used a tractability result from SGs to identify a DL for which subsump-

tion is tractable. Thereby, we have introduced the class of so-called expanded

SGs and rooted SGs.

Within expanded SGs we consider sets of arbitrary concept types as the

types of concept nodes. This allows for encoding a support explicitely in the

graphs, but since sets of concept types can be encoded into a support, expanded

SGs are not more expressive than SGs de�ned over a support S.

Subsumption of expanded and rooted SGs has been characterized by homo-

morphisms from the subsumer to the subsumee.

As a by-product of the translation of concept descriptions into rooted SGs,

we extended the tractability result from trees to SGs that can be transformed

into equivalent trees by cutting cycles.

In further work, we will use the characterization of subsumption by homo-

morphisms between trees as a basis for new results on non-standard inferences

in DLs [BK98, BKM98].

26

References

[BK98] F. Baader and R. K�usters. Computing the least common subsumer

and the most speci�c concept in the presence of cyclic ALN -concept

descriptions. In O. Herzog and A. G�unter, editors, Proceedings of the

22nd Annual German Conference on Arti�cial Intelligence (KI'98),

volume 1504 of Lecture Notes in Computer Science, pages 129{140,

Bremen, Germany, 1998. Springer{Verlag.

[BKM98] F. Baader, R. K�usters, and R. Molitor. Computing least com-

mon subsumer in description logics with existential restrictions.

LTCS-Report 98-09, LuFG Theoretical Computer Science, RWTH

Aachen, Germany, 1998. See http://www-lti.informatik.rwth-

aachen.de/Forschung/Papers.html.

[Bor96] A. Borgida. On the relative expressiveness of description logics and

predicate logics. In Arti�cial Intelligence, An International Journal,

volume 82, pages 353{367. 1996.

[CF98] P. Coupey and C. Faron. Towards correspondences between con-

ceptual graphs and description logics. In Proceedings of the sixth

International Conference on Conceptual Structures (ICCS'98), num-

ber 1453 in Lecture Notes in Arti�cial Intelligence, pages 165{178,

Montpellier, France, August 1998. Springer Verlag.

[CM92] M. Chein and M.L. Mugnier. Conceptual graphs: Fundamental no-

tions. Revue d'Intelligence Arti�cielle, 6(4):365{406, 1992.

[CMS98] M. Chein, M. L. Mugnier, and G. Simonet. Nested graphs: A

graph-based knowledge representation model with fol semantics. In

A.G. Cohn, L.Schubert, and S.C. Shapiro, editors, Proceedings of the

6th International Conference on Knowledge Representation (KR'98),

pages 524{534, Trento, Italy, June 1998. Morgan Kaufman Publish-

ers Inc.

[DLNN97] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity

of concept languages. Information and Computation, 134(1):1{58,

1997.

[DLNS96] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in

description logics. In G. Brewka, editor, Foundation of Knowledge

Representation, pages 191{236. CSLI-Publications, 1996.

[KS97] G. Kerdiles and E. Salvat. A sound and complete CG proof proce-

dure combining projections with analytic tableaux. In D. Lukose,

H. Delugach, M. Keeler, L. Searle, and J. Sowa, editors, Proceed-

ings of the 5th Internation Conceference on Conceptual Structures

(ICCS'97), volume 1257 of Lecture Notes in Computer Science,

pages 371{385. Springer, 1997.

27

[MC93] M.L. Mugnier and M. Chein. Polynomial algorithms for projection

and matching. Lecture Notes in Computer Science, 754:239{251,

1993.

[Sow84] J.F. Sowa. Conceptual Structures { Information, Processing in Mind

and Machine. Addison Wesley, 1984.

[Wer95] M. Wermelinger. Conceptual graphs and �rst-order logic. In G. El-

lis, R. Levinson, W. Rich, and J. Sowa, editors, Proceedings of the

third International Conference on Conceptual Structures, (ICCS'95),

number 954 in Lecture Notes in Arti�cial Intelligence, pages 323{337.

Springer-Verlag, 1995.

