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Description Logics with Aggregates and

Concrete Domains, Part II (extended)

Franz Baader Ulrike Sattler

Abstract

We extend di�erent Description Logics by concrete domains (such

as integers and reals) and by aggregation functions over these domains

(such as min;max; count; sum), which are usually available in database

systems. We present decision procedures for the inference problems

satis�ability for these Logics|provided that the concrete domain is

not too expressive. An example of such a concrete domain is the set

of (nonnegative) integers with comparisons (=, �, �

n

, ...) and the

aggregation functions min;max; count.

1 Motivation

Unlike many other expressive representation formalisms, such as database

schema and query languages, basic Description Logic formalisms (e.g., ALC

[

Schmidt-Schau�&Smolka,1991; Donini et al.,1991

]

) do not allow for built-in

predicates (like comparisons of numbers) and for aggregation functions (like

sum, min, max, average, count). The �rst de�cit was overcome in

[

Baader&

Hanschke,1991

]

, where a generic extension of ALC by a concrete domain D

was proposed. In this extended DL, called ALC(D), abstract individuals

(which are described using ALC) can be related to values in the concrete

domainD (e.g., the integers, strings, ...) via so-called features, i.e., functional

roles. This allows one to describe, for example, managers that spend more

money than they earn by

Manager u (less(income; expenses)):

1



1 MOTIVATION 2

In our extension of ALC(D), aggregation is viewed as a means to de�ne new

features. Figure 1 describes a situation where the income and expenses of

a person, Josie, are given per month. In some months, she spends more

money than she earns, and in others less. If we want to know the di�erence

between income and expenses over a whole year, we must be able to build

the sum over all months. Then we can state that, or ask whether, Josie is

an instance of

Human u (9year:less( sum(month�income);

sum(month�expenses)));

where the complex feature sum(month � income) relates an individual to the

sum over all values reachable over month followed by income. This new,

complex feature is built using the aggregation function sum, the role name

month, and the feature income.

Year97

Josie

sum( expensesmonth )

7.500 12.000 10.400

expenses expenses expenses

Year96138.000

year

oincome )monthsum(

year

o

month
month month

Jan96 Feb96 Dec96...income

income

income

8.000

10.500

9.800

149.000

Concrete Domain: Integers Abstract domain

Figure 1: Example for aggregation

In this paper, we present a generic extension of ALC(D) by aggregation that

is based on this idea of introducing new \aggregated features". Unfortu-

nately, it turned out that, given a concrete domain together with aggrega-

tion functions satisfying some rather weak conditions, this extension has an

undecidable satis�ability and subsumption problem

[

Baader&Sattler,1997

]

.
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Moreover, this result can even be tightened: extending FL

0

, a very weak

Description Logic allowing for conjunction and universal value restrictions

only, by aggregation already causes undecidability.

This high complexity of the relevant inference problems is due to the inter-

action between universal value restrictions and aggregation functions. To

obtain decidable Description Logics with aggregation, CQ(D

agg

), a restric-

tion of ALC(D

agg

) obtained by disallowing universal value restriction and

restricting negation to concept names, is de�ned. In this paper, we present

a tableau-based algorithm that decides satis�ability of CQ(D

agg

)-concepts,

provided that satis�ability of �nite conjunctions of concrete predicates in-

volving aggregations on multiset variables in the concrete domain D can

be decided. For example, the (nonnegative) integers, rational or real num-

bers with comparisons >;�; : : :, possibly involving constants, together with

the aggregation function min;max; count belong to the concrete domains for

which the satis�ability of these conjunctions can be decided.

2 The basic Description Logic ALC(D)

In this section, ALC(D), the Description Logic underlying this investigation,

is presented. ALC(D) is an extension of the well-known Description Logic

ALC (see

[

Schmidt-Schau�&Smolka,1991; Hollunder et al.,1990; Donini et

al.,1991; 1995

]

) by so-called concrete domains. First, we formally specify a

concrete domain.

De�nition 1 (Concrete Domains)

A concrete domain D = (dom(D); pred(D)) consists of

� a set dom(D) (the domain), and

� a set of predicate symbols pred(D).

Each predicate symbol P 2 pred(D) is associated with an arity n and an

n-ary relation P

D

� dom(D)

n

.
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In

[

Baader&Hanschke,1991

]

, concrete domains are restricted to so-called

admissible concrete domains in order to keep the inference problems of this

extension decidable. We recall that, roughly spoken, a concrete domain D is

called admissible i� (1) pred(D) is closed under negation and contains a unary

predicate name >

D

for dom(D), and (2) satis�ability of �nite conjunctions

over pred(D) is decidable.

The syntax of ALC(D)-concepts is de�ned as follows (see

[

Baader&Han-

schke,1991

]

):

De�nition 2 Let N

C

, N

R

, and N

F

be disjoint sets of concept, role, and

feature names. The set of ALC(D)-concepts is the smallest set such that

1. every concept name is a concept and

2. if C, D are concepts, R is a role or a feature name, P 2 pred(D) is an

n-ary predicate name, and u

1

; : : : ; u

n

are feature chains,

1

then (CuD),

(C tD), (:C), (8R:C), (9R:C), and P (u

1

; : : : ; u

n

) are concepts.

Concepts of the form P (u

1

; : : : ; u

n

) are called predicate restrictions, and con-

cepts of the form (8R:C) (resp. (9R:C)) are called universal (resp. existen-

tial) value restrictions. In order to �x the exact meaning of these concepts,

their semantics is de�ned in the usual model-theoretic way.

De�nition 3 An interpretation I = (�

I

; �

I

) consists of a set �

I

disjoint

from dom(D), called the domain of I, and a function �

I

which maps every

concept to a subset of �

I

, every role to a subset of �

I

��

I

, and every feature

name f 2 N

F

to a partial function f

I

: �

I

! �

I

[ dom(D). Furthermore,

I has to satisfy the following properties

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

:C

I

= �

I

n C

I

(9R:C)

I

= fd 2 �

I

j Exists e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g

(8R:C)

I

= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g

P (u

1

; : : : ; u

n

)

I

= fa 2 �

I

j (u

I

1

(a); : : : ; u

I

n

(a)) 2 P

D

g

1

A feature chain u = f

1

�: : :�f

m

is a sequence of features f

i

.
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where (f

1

� : : :�f

m

)

I

(a) = f

I

m

(f

I

m�1

(: : : (f

I

1

(a) : : :). A concept C is called

satis�able i� there is some interpretation I such that C

I

6= ;. Such an

interpretation is called a model of C. A concept D subsumes a concept C

(written C v D) i� C

I

� D

I

holds for each interpretation I.

For an interpretation I, an individual a 2 �

I

is called an instance of a

concept C i� a 2 C

I

. An individual b 2 �

I

is said to be an R-successor of

a 2 �

I

i� (a; b) 2 R

I

. Similar, ` 2 �

I

[ dom(D) is an f

1

: : : f

n

-successor of

a 2 �

I

i� f

I

n

(f

I

n�1

(: : : (f

I

1

(a) : : :) = `.

As a consequence of this de�nition, an instance of a concept P (u

1

; : : : ; u

n

)

has necessarily an u

i

-successor in dom(D) for each 1 � i � n. Furthermore,

if x 2 >

D

(f)

I

, then f

I

(x) 2 dom(D). As ALC(D) allows for negation and

conjunction of concepts, all boolean operators can be expressed. Another

consequence of the presence of these two operators is that subsumption and

(un)satis�ability can be reduced to each other:

� C v D i� C u :D is unsatis�able,

� C is unsatis�able i� C v A u :A (for some concept name A).

From the results presented in

[

Baader&Hanschke,1991

]

it follows immedi-

ately that subsumption and satis�ability are decidable forALC(D) concepts|

given that D is admissible. The authors present a tableau-based procedure

that decides these and other inference problems.

3 Extension of ALC(D) by aggregation

In order to de�ne aggregation appropriately, �rst, we will introduce the no-

tion of multisets: In contrast to simple sets, in a multiset an individual can

occur more than once; for example, the multiset ff1gg is di�erent from the

multiset ff1; 1gg. Multisets are needed to ensure, e.g., that Josie's income

is calculated correctly in the case she earns the same amount of money in

more than one month.
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De�nition 4 (Multisets) Let S be a set. A multiset M over S is a

mappingM : S ! IN, where M(s) denotes the number of occurrences of s in

M . The set of all multisets of S is denoted by MS(S). We write s 2 M for

M(s) � 1, andM �M

0

forM(s) �M

0

(s) for all s 2 S. A multisetM is said

to be �nite i� fs jM(s) 6= 0g is a �nite set. To enumerate the members a

i

of

a �nite multiset, we use the notation ffa

1

; : : : ; a

n

gg to distinguish multisets

from sets.

As the aggregation functions strongly depend on the speci�c concrete do-

mains, the notion of a concrete domain is extended accordingly. Furthermore,

the notion of concrete features is introduced. Those are (possibly complex)

features which can be built using aggregation over roles followed by features.

Then ALC(D

agg

)-concepts are de�ned.

De�nition 5 The notion of a concrete domain D as introduced in De�-

nition 1 is extended by a set of aggregation functions agg(D), where each

�

2 agg(D) is associated with a partial function

�

D

from the set of multisets

of dom(D) into dom(D).

Let f; f

1

; f

2

: : : 2 N

F

, R 2 N

R

, and

�

2 agg(D). The set of concrete features

is de�ned as follows:

� A feature chain f

1

: : : f

n

is a concrete feature, and

� an aggregated feature f

1

: : : f

n

�

�

(R�f) is a concrete feature.

Finally, ALC(D

agg

)-concepts are obtained from ALC(D)-concepts by allow-

ing, additionally, the use of concrete features u

i

in a predicate restrictions

P (u

1

; : : : ; u

n

) (recall that in ALC(D) only feature chains were allowed).

It remains to extend the semantics of ALC(D) to the new feature forming

operator:

De�nition 6 (Extended Semantics) An ALC(D

agg

)-interpretation I is

an ALC(D)-interpretation which, additionally, satis�es the following condi-

tions. To de�ne the semantics of aggregated features, we introduce the map-

ping M

(R�f)

I

a

: dom(D)! IN [ f1g:

M

(R�f)

I

a

(z) := #fb 2 �

I

j (a; b) 2 R

I

and f

I

(b) = zg:



4 DECIDABILITY RESULTS FOR ALC(D

AGG

) 7

Thus, M

(R�f)

I

a

is a multiset i� M

(R�f)

I

a

(z) 2 IN for all z 2 dom(D), i.e., the

cardinalities of the considered sets are always �nite. Finally, the semantics

of aggregated features is de�ned as follows:

(f

1

: : :f

n

�

�

(R�f))

I

(a) :=

�

�

D

(M

(R�f)

I

a

0

) if (f

1

: : : f

n

)

I

(a) = a

0

2 �

I

and M

(R�f)

I

a

0

is a multiset

unde�ned otherwise,

and

�

D

(M

(R�f)

I

a

0

) is called the (f

1

: : : f

n

�

�

(R�f))-successor of a, provided

that it is de�ned.

We point out two consequences of this de�nition, which might not be obvious

at �rst sight:

(a) If (R�f)

I

(a) contains individuals in �

I

, then these individuals have no

inuence onM

(R�f)

I

a

: it is de�ned in such a way that it takes only into account

(R�f)

I

-successors of a in the concrete domain dom(D).

(b) There are two reasons for (

�

(R�f))

I

(a) to be not de�ned. On the one

hand, M

(R�f)

I

a

need not be a multiset due to the existence of in�nitely many

R-successors of a that coincide on their f -successors. On the other hand,

the aggregation function

�

may be unde�ned on M

(R�f)

I

a

. For example, the

sum of in�nitely many positive integers and the minimum of an in�nitely

descending chain of integers are not de�ned.

4 Decidability results for ALC(D

agg

)

In this section, we will give a �rst, generic decidability result. It is the only

one for ALC(D

agg

), and it is obtained by restricting the set of aggregation

functions to min and max. However, the result is rather general with respect

to the remainder of the concrete domain|besides being admissible, we only

require that the (partial) ordering with respect to which min;max are de�ned

is available as a predicate symbol in pred(D).
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Theorem 7 If

� D is admissible,

� pred(D) contains a binary relation symbol P

=

for equality in D, and a

binary relation symbol P

�

for a partial ordering on dom(D), and

� agg(D) = fmin;maxg,

then satis�ability and subsumption of ALC(D

agg

)-concepts is decidable.

Remark: We suppose that min, max have the standard semantics, that is,

for multisets X � dom(D) we have

min(X) =

�

x if x 2 X such that; for all y 2 X; x �

D

y;

unde�ned otherwise:

max(X) =

�

x if x 2 X such that; for all y 2 X; y �

D

x;

unde�ned otherwise:

Proof: In the following, a concrete domain as described in the preconditions

of Theorem 7 is called D

max

min

.

Using the same technique to get rid of aggregated features as in Section 5.1,

we could modify the tableau based algorithm in

[

Baader&Hanschke,1991

]

to

proof Theorem 7.

Fortunately, there is a shorter way to prove Theorem 7, namely by a reduc-

tion to ALCFP(D)

[

Hanschke,1992

]

. More precisely, each ALC(D

max

min

)-concept

D can be translated into an ALCFP(D)-concept �(D) such that D is satis-

�able i� �(D) is satis�able. In

[

Hanschke,1992

]

, satis�ability of ALCFP(D)-

concepts was shown to be decidable, hence satis�ability ofALC(D

max

min

)-concepts

is also decidable. Morever, ALC(D

max

min

) is closed under negation, hence sub-

sumption C v D can be reduced to unsatis�ability of C u :D.

We start by introducing ALCP(D), the fragment of ALCFP(D) which is re-

quired for the translation �.
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De�nition 8 A chain u = R

1

: : : R

m

is called role/feature chain if each R

i

is either a role or a feature name. For a role/feature chain u and x; y 2

�

I

[ dom(D), we have (x; y) 2 u

I

i� there are x

1

; : : : ; x

m�1

with

(x; x

1

) 2 R

I

1

; (x

m�1

; y) 2 R

I

m

; and (x

i

; x

i+1

) 2 R

I

i+1

for all 1 � i � m� 2;

where, for a feature name f , we use (w; z) 2 f

I

for f

I

(w) = z.

ALCP(D) is obtained from ALC(D) by allowing, additionally, for concepts of

the form

8u

1

; : : : ; u

n

:P (generalised value restriction);

9u

1

; : : : ; u

n

:P (generalised exists-in restriction):

where P is a concrete predicate of arity n and u

1

; : : : ; u

n

are role/feature

chains.

An ALCP(D) interpretation must satisfy, additionally,

(8u

1

; : : : ; u

n

:P )

I

= fx 2 �

I

j For all y

1

; : : : ; y

n

with (x; y

i

) 2 u

I

i

for all

1 � i � n we have (y

1

; : : : ; y

n

) 2 P

D

g

(9u

1

; : : : ; u

n

:P )

I

= fx 2 �

I

j There are y

1

; : : : ; y

n

with (x; y

i

) 2 u

I

i

for all 1 � i � n and (y

1

; : : : ; y

n

) 2 P

D

g

For pure feature chains u

1

; : : : ; u

n

, the concept 9u

1

; : : : ; u

n

:P is, by de�nition,

equivalent to P (u

1

; : : : ; u

n

).

The idea of the translation is to introduce new feature names f

min(R�f)

and

f

max(R�f)

and to use the new generalised restrictions to make sure that f

min(R�f)

(x)

coincides with the minimum of x's R�f -�llers.

The translation � from ALC(D

max

min

) to ALCP(D) is de�ned inductively on the

structure on concepts and trivial for all concept forming operators; the only

changes it makes are for aggregated features: Whenever features of the form

f

1

: : : f

k

min(R�f) (resp. f

1

: : : f

k

max(R�f)) occur, new feature names f

min(R�f)

(resp. f

max(R�f)

) are introduced. Then these aggregated features are replaced

by feature chains of the form f

1

: : : f

k

f

min(R�f)

(resp. f

1

: : : f

k

f

max(R�f)

). Fi-

nally, we make sure that the f

1

: : : f

k

f

min(R�f)

-�ller is the minimum of all

f

1

: : : f

k

Rf -�llers. For this, we add concepts of the form

9f

1

: : : f

k

Rf; f

1

: : : f

k

f

min(R�f)

:P

=

u 8f

1

: : : f

k

f

min(R�f)

; f

1

: : : f

k

Rf:P

�

:
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The �rst conjunct makes sure that the f

1

: : : f

k

f

min(R�f)

-�ller (exists and) co-

incides with one of the f

1

: : : f

k

Rf -�llers. The second conjunct ensures that

the f

1

: : : f

k

f

min(R�f)

-�ller is smaller or equal than each f

1

: : : f

k

Rf -�ller. For

max, we add similar concepts. More precisely, � is de�ned as follows:

�(C uD) = �C u �(D); �(C tD) = �C t �(D)

�(9R:C) = 9R:�(C); �(8R:C) = 8R:�(C)

�(P (u

1

; : : : ; u

n

)) = 9�(u

1

); : : : ; �(u

n

):P u u

1�i�n

 (u

i

);

where, for a concrete feature u and

P

2 fmin;maxg

�(u) =

�

u if u is a feature chain

f

1

: : : f

k

f

P

(R�f)

if u = f

1

: : : f

k

P

(R�f)

 (u) =

8

>

>

>

>

>

<

>

>

>

>

>

:

> if u is a feature chain

9f

1

: : : f

k

Rf; f

1

: : : f

k

f

max(R�f)

:P

=

u

8f

1

: : : f

k

Rf; f

1

: : : f

k

f

max(R�f)

:P

�

if u = f

1

: : : f

k

max(R�f)

9f

1

: : : f

k

Rf; f

1

: : : f

k

f

min(R�f)

:P

=

u

8f

1

: : : f

k

f

min(R�f)

; f

1

: : : f

k

Rf:P

�

if u = f

1

: : : f

k

min(R�f)

By construction, each model of an ALC(D

max

min

)-concept D can be transformed

into a model of �(D) by setting f

I

P

(R�f)

(x) :=

P

(R�f)

I

(x) for

P

2 fmin;maxg.

Vice versa, each model I of �(D) is also a model of D.

Intuitively, the reason for decidability of ALC(D

max

min

) can be seen in the fact

that min;max only depend on the \boundaries" of a multiset and not on its

\inside"|in contrast to all other standard aggregation functions such as sum

or count.

5 Decidability results for CQ(D

agg

)

In this Section, generic decidability results are presented for concrete do-

mains with aggregation functions di�erent from fmin;maxg. In

[

Baader&

Sattler,1997

]

, it is shown that satis�ability and subsumption of ALC(D

agg

)-

concepts is undecidable for a concrete domain which contains the nonnega-

tive integers, provides predicates testing for (binary) equality and for (unary)
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equality with 1, and where agg(D) = fmin;max; sumg. The undecidability

has two sources: The universal value restriction in interaction with aggrega-

tion functions and the aggregation function sum. In this section, two decid-

ability results are given. In order to proof these results, we disallow universal

value restrictions and restrict the use of negation to concept names. It can

then be shown that decidability of the satis�ability problem only depends on

the decidability of �nite conjunctions of concrete predicates which possibly

involve aggregated multiset variables. The second result is more general than

the �rst one, but for the �rst one (where aggregation functions are restricted

to so-called multiple-invariant ones), more e�cient reason techniques can be

applied.

5.1 A completion algorithm for CQ(D

agg

)

In this Section, generic decidable extensions by aggregation CQ(D

agg

) will be

presented. In order to yield decidability, the use of universal value restriction

is disallowed. As universal value restrictions would come in as negation

of existential value restrictions, the use of negation is restricted to concept

names.

De�nition 9 (Syntax) CQ(D

agg

) denotes the Description Logic that is

obtained from ALC(D

agg

) by disallowing universal value restrictions (8R:C)

and by restricting the use of negation to concept names.

We �rst present the decision procedure for satis�ability of CQ(D

agg

)-concepts

where D is restricted to those aggregation functions that do not depend on

the multiplicity of elements in the input multiset, so-called multiple-invariant

aggregation functions. This makes the decision algorithm easier to under-

stand and allows for a more e�cient treatment of existential value restriction.

In the next section, we will present a more general decision algorithm that

can also handle aggregation functions which are not multiple-invariant, such

as count.

De�nition 10 An aggregation function � 2 agg(D) is multiple-invariant

i�

�

(M) only depends on the elements occurring in M and not on their

multiplicity. That is,

�

is multiple-invariant i� �(M) = �(M

0

) holds for
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all multisets M;M

0

2 MS(dom(D)) where, for all z 2 dom(D), we have

M(z) � 1 i� M

0

(z) � 1.

Satis�ability of CQ(D

agg

)-concepts can be decided by a tableau-based algo-

rithm which tries to construct, for an input concept C

0

, a model. To this

purpose, it breaks down C

0

into subconcepts, hereby making explicit all con-

straints on individuals in this model. The attempt to construct this model

either fails with obvious inconsistencies|in which case C

0

is unsatis�able|or

it succeeds and ends with a precise description of a model of C

0

.

In contrast to the algorithm in

[

Baader&Hanschke,1991

]

for ALC(D), con-

straints will now also involve variables for multisets over the concrete domain|

besides individual variables for elements in the concrete domain. To capture

the relation between individual and multiset variables, new constraints will

be introduced to make explicit the fact that an individual variable stands

for an element of a multiset. Finally, besides concrete individual variables,

aggregated multiset variables can occur in predicate restrictions.

De�nition 11 (Constraint Systems) Let � = �

A

[ �

D

= fa; b; c; : : :g [

fx; y; z; : : :g be an in�nite set of abstract and concrete individual variables,

and let � = fX; Y; Z; : : :g be an in�nite set of multiset variables. The set of

aggregated variables, f

�

(X) j

�

2 agg(D) and X 2 �g, will be denoted by

agg(�). Constraints are of the form:

a :C for a 2 �

A

; C an CQ(D

agg

)-concept;

(a; b) :R for a; b 2 �

A

; R 2 N

R

;

(a; `) : f for a 2 �

A

; ` 2 �; f 2 N

F

;

(a; Y ) :(R�f) for a 2 �

A

; R 2 N

R

; f 2 N

F

; Y 2 �;

P (�

1

; : : : ; �

n

) for �

i

2 �

D

[ agg(�); and

x :Y for x 2 �

D

; Y 2 �:

Constraints of the form P (�

1

; : : : ; �

n

) or x :Y are called D-constraints. A

constraint system is a set of constraints. A variable ` is said to be an R-

successor (resp. an f

1

: : : f

n

-successor) of a in a constraint system S i�

(a; `) :R 2 S (resp. (a; y

1

) : f

1

; (y

1

; y

2

) : f

2

; : : : ; (y

n�1

; `) : f

n

2 S). An ag-

gregated variable

�

(Y ) is said to be an f

1

: : : f

n

�

�

(R�f)-successor of a in S

i� there is an f

1

: : : f

n

-successor b of a in S and (b; Y ) :(R�f) 2 S.

The semantics for CQ(D

agg

)-concepts is extended to constraints as follows.
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De�nition 12 (Semantics of constraints) We consider interpretations

I that additionally map individual variables to individuals of the concrete

or the abstract domain, and multiset variables to multisets over the concrete

domain, i.e.,

a

I

2 �

I

for a 2 �

A

;

x

I

2 dom(D) for x 2 �

D

;

X

I

2 MS(dom(D)) for X 2 �:

An interpretation I satis�es a constraint of the form

a :C i� x

I

2 C

I

;

(a; b) :R i� (a

I

; b

I

) 2 R

I

;

(a; `) : f i� f

I

(a

I

) = `

I

;

(a; Y ) :(R�f) i� M

(R�f)

I

a

I

= Y

I

;

P (�

1

; : : : ; �

n

) i� P

D

(�

I

1

; : : : ; �

I

n

);

x :Y i� x

I

2 Y

I

;

where for �

i

=

�

(X) we have

�

(X)

I

:=

�

D

(X

I

).

A constraint system S is satis�able i� there exists an interpretation satisfy-

ing all constraints in S. Such an interpretation is called a model of S. A

constraint system S is D-consistent i� the conjunction S

D

is satis�able in D,

where

S

D

:=

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y occurs in S

ffx

i

j x

i

:Y 2 Sgg � Y;

x 2 �

D

are variables for elements in dom(D), Y 2 � are variables for multisets

over dom(D), and inclusion is interpreted as multiset inclusion. A constraint

system S contains a clash i�

� fa :C; a ::Cg � S for some concept C, or

� f(a; x) : f; (a; b) : fg � S for a concrete variable x 2 �

D

and an abstract

variable b 2 �

A

.

A constraint system S contains a fork i� for a 2 �

A

and a feature name

f 2 N

F

we have
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� f(a; `) : f; (a; `

0

) : fg 2 S for two distinct variables `; `

0

2 �

A

or `; `

0

2 �

D

,

or

� f(a; Y ) :(R�f); (a; Z) :(R�f)g 2 S for two distinct variables Y; Z 2 �.

If a constraint system S contains a fork f(x; `) : f; (x; `

0

) : fg (resp. f(a; Y ) :(R�

f); (a; Z) :(R�f)g), then we say that S

0

is obtained by fork elimination from

S if S

0

is obtained from S by replacing each occurrence of ` by `

0

(resp. Y

by Z).

The tableau-based completion algorithm for deciding satis�ability of CQ(D

agg

)-

concepts applies the completion rules introduced in Figure 2 to constraint

systems. The completion algorithm works on a tree where each node is la-

belled with a constraint system. It starts with the tree consisting of a single

leaf, the root, labelled with S = fx

0

:C

0

g, where C

0

is the CQ(D

agg

)-concept

to be tested for satis�ability. A rule can only be applied to a leaf labelled

with a clash-free constraint system. Applying a rule S ! S

i

, for 1 � i � n,

to such a leaf leads to the creation of n new successors of this node, each

labelled with one of the constraint systems S

i

. The algorithm terminates if

none of the rules can be applied to any of the leaves.

A constraint system S is complete if none of the completion rules can be

applied to S. The completion algorithm answers \C is satis�able" i� after

its termination one of the leaves is labelled with a complete, clash-free, and

D-consistent constraint system.

Lemma 13 Let C

0

be a CQ(D

agg

)-concept involving only multiple-invariant

aggregation functions, and let S be a constraint system obtained by applying

the completion rules to fx

0

:C

0

g. Then

1. for each completion rule R that can be applied to S, and for each

interpretation I, (i) and (ii) are equivalent.

(i) I is a model of S.

(ii) I is a model of one of the systems S

i

obtained by applying R.

2. if S is a complete, D-consistent, and clash-free constraint system, then

S has a model.
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1. Conjunction: If a :(C

1

u C

2

) 2 S and a :C

1

62 S or

a :C

2

62 S, then

S ! S [ fa :C

1

; a :C

2

g.

2. Disjunction: if a :(C

1

t C

2

) 2 S and a :C

1

62 S and

a :C

2

62 S, then

S ! S

1

= S [ fa :C

1

g;

S ! S

2

= S [ fa :C

2

g:

3. Existential restriction: If a :(9R:C) 2 S for a role or feature

name R and if there is no R-successor b of a with b : C 2 S, then

S ! S [ f(a; b) :R; b : Cg;

for a new variable b 2 �

A

.

If forks were created, then eliminate these forks.

4. Concrete predicates: If a :P (u

1

; : : : ; u

n

) 2 S and a

does not have u

i

-successors �

i

with P (�

1

; : : : ; �

n

) 2 S, then, for each u

i

let

S

i

:=

8

>

>

>

<

>

>

>

:

f(a; b

i1

) : f

i1

; (b

i1

; b

i2

) : f

i2

; : : : ; (b

im

i

�1

; y

im

i

) : f

im

i

g

if u

i

= f

i1

f

i2

: : : f

im

i

f(a; b

i1

) : f

i1

; (b

i1

; b

i2

) : f

i2

; : : : ; (b

im

i

�1

; b

im

i

) : f

im

i

;

(b

im

i

; Y

i

) :(R

i

�f

i

)g

if u

i

= f

i1

f

i2

: : : f

im

i

�

�

i

(R

i

�f

i

)

for new variables b

ij

2 �

A

; y

im

i

2 �

D

, Y

i

2 �. Let �

i

be the u

i

-successor

of a in S

i

. Then

S ! S [ fP (�

1

; : : : ; �

n

)g [

S

1�i�n

S

i

:

If forks were created, then eliminate these forks.

5. Element assertions: If f(a; b) :R; (b; z) : f;

(a; Y ) :(R�f)g � S for z 2 �

D

and z :Y 62 S then

S ! S [ fz :Y g:

Figure 2: The completion rules for CQ(D

agg

).

3. if S contains a clash or is not D-consistent, then S does not have a

model.

4. the completion algorithm terminates when applied to fx

0

:C

0

g.
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Proof of Lemma 13.1: (ii))(i) is obvious because each S

i

obtained by apply-

ing the completion rules to S is a superset of S where variables were possibly

renamed due to fork elimination.

(i))(ii): We only consider Rules 4 and 5 because Rules 1,2, and 3 are obvious

and similar to those used in other tableau-based algorithms.

Let I be a model of S as de�ned in the precondition of Rule 4, and let S

0

be

obtained by applying Rule 4 to S. Then a :P (u

1

; : : : ; u

n

) 2 S and for each

u

i

with 1 � i � n, if

� u

i

is a feature chain f

i1

f

i2

: : : f

im

i

, then a

I

has f

i1

: : : f

ij

-successors c

ij

2

�

I

for 1 � j � m

i

� 1, and an f

i1

f

i2

: : : f

im

i

-successor z

im

i

2 dom(D).

If we de�ne b

I

ij

= c

ij

and y

I

im

i

= z

im

i

, then I satis�es S

i

as de�ned in

Rule 4.

� u

i

is an aggregated feature f

i1

f

i2

: : : f

im

i

�

P

i

(R

i

� f

i

), then a

I

has

f

i1

: : : f

ij

-successors c

ij

2 �

I

for 1 � j � m

i

. If we de�ne b

I

ij

= c

ij

and Y

I

= M

(R

i

�f

i

)

I

c

im

i

, then Y

I

is by de�nition the appropriate multiset,

and I satis�es S

i

as de�ned in Rule 4.

Given I as extended above to the new variables introduced and �

i

as de�ned

in Rule 4, we have that �

i

is indeed interpreted as the u

i

-successor of a,

namely u

I

i

(a

I

) = �

I

i

for all 1 � i � n. Since I satis�es a :P (u

1

; : : : ; u

n

), we

thus have that I satis�es P (�

1

; : : : ; �

n

).

Let I be a model of S, and let S

0

be obtained by applying Rule 5 to S.

Then f(a; b) :R; (b; z) : f; (a; Y ) :(R �f)g � S and z 2 �

D

. Thus z

I

is an

R�f -successor of a

I

in dom(D). By de�nition, z

I

2 M

(R�f)

I

a

I

, and since I is

a model of S, Y

I

= M

(R�f)

I

a

I

. Summing up, z

I

2 Y

I

, and thus I satis�es

S [ fz :Y g = S

0

.

Proof of Lemma 13.2: Let S be a complete, D-consistent, and clash-free con-

straint system involving concrete and multiset variables fx

1

; : : : ; x

m

; X

1

; : : : ;

X

n

g, and let ffx̂

1

; : : : ; x̂

m

;

^

X

1

; : : : ;

^

X

n

gg be a solution for the conjunction

S

D

. Hence we have ffx̂

j

j x

j

:X

i

2 Sgg �

^

X

i

for all multiset variables X

i
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occurring in S. We de�ne I

0

as follows:

�

I

0

:= �

A

;

a

I

0

:= a for abstract variables a 2 �

A

;

x

I

0

:= x̂ for concrete variables x 2 �

D

;

X

I

0

:=

^

X for multiset variables X 2 �;

A

I

0

:= fb 2 �

I

0

j b :A 2 Sg for concept names A 2 N

C

;

R

I

0

:= f(a; b) 2 �

I

0

��

I

0

j (a; b) :R 2 Sg for role names R 2 N

R

;

f

I

0

(c) :=

8

<

:

b if (c; b) : f 2 S for b 2 �

A

;

x̂ if (c; x) : f 2 S for x 2 �

D

;

unde�ned else:

for feature names f 2 N

F

:

Feature names f are well-de�ned because S is clash-free. The only reason why

I

0

might not be a model of S is the following: An abstract individual a may

have less R-successors having an f -successor in dom(D) than required by the

solution for the corresponding multiset variable X

i

, that is, for constraints

(a;X

i

) :(R�f) 2 S we might have M

(R�f)

I

0

a

I

0

(

^

X

i

. Due to the absence of

universal value restrictions, a model I can be obtained from I

0

by simply

addingR-successors d

Rfj

a

and the lackingR�f -successors ŷ

Rfj

a

. More precisely,

for a multiset variable X

i

with (a;X

i

) :(R�f) 2 S, let

^

X

i

nM

(R�f)

I

0

a

:= ffŷ

Rf1

a

; : : : ; ŷ

Rfm

i

a

gg:

Then

�

I

:= �

I

0

]

S

1�i�n

(a;X

i

) :(R�f)2S

fd

Rf1

a

; : : : ; d

Rfm

i

a

g;

A

I

:= A

I

0

;

R

I

:= R

I

0

[

S

1�i�n

(a;X

i

) :(R�f)2S

f(a; d

Rfj

a

) 2 �

I

��

I

j 1 � j � m

i

g

for role names R 2 N

R

;

f

I

(c) :=

8

>

>

<

>

>

:

b if (c; b) : f 2 S;

x̂ if (c; x) : f 2 S;

ŷ

Rfj

a

if c = d

Rfj

a

unde�ned else:

for feature names f 2 N

F

Obviously,

^

X

i

= M

(R�f)

I

a

I

for all multiset variables with (a;X

i

) :(R�f) 2 S.

Furthermore, fx̂

1

; : : : ; x̂

m

;

^

X

1

; : : : ;

^

X

n

g being a solution for S

D

implies that
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I satis�es all D-constraints in S. By induction on the structure of concepts,

it can be easily shown that I satis�es all constraints in S.

By de�nition, I satis�es all constraints of the form b :A for concept names

A. Since S is clash-free, I satis�es all constraints of the form b ::A. By

induction and because S is complete, I satis�es all constraints of the form

a :(C

1

u C

2

) and a :(C

1

t C

2

). The same arguments imply that I satis�es

constraints of the form a :(9R:C) for role or feature names R.

Remark: This extension of I

0

to a model I of a complete and clash-free

constraint system was only possible because we disallowed the use of universal

value restriction: This enables us to add lacking R�f -successors without the

necessity to check again whether the new, intermediate R-successors satisfy

the universal value restrictions.

Proof of Lemma 13.3: If S contains a clash, then S is obviously unsatis�able.

A model I of S satis�es all D-constraints, hence I yields a solution for

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y occurs in S

fx

i

j x

i

:Y 2 Sg � Y

where inclusion is interpreted as set inclusion. This is so because I satis�es

all predicate restrictions and all constraints of the form x

i

:Y . Hence ffx

I

i

j

x

i

:Y 2 Sgg(x) � 1 implies Y

I

(x) � 1 for all x 2 dom(D), and the only

reason why I might not satisfy S

D

is ffx

I

i

j x

i

:Y 2 Sgg 6� Y

I

, which can

happen only because there are some elements in Y

I

who occur less often in

Y

I

than in ffx

I

i

j x

i

:Y 2 Sgg, namely Y

I

(x) < ffx

I

i

j x

i

:Y 2 Sgg(x) for

some x 2 dom(D). Since all aggregation functions are multiple-invariant,

the multiplicity of these elements in Y

I

can be increased such that Y

I

(x) �

ffx

I

i

j x

i

:Y 2 Sgg(x), which yields a solution of S

D

. Hence each model of S

yields of solution for S

D

. By contraposition, a constraint system that is not

D-consistent cannot have a model.

Proof of Lemma 13.4: Termination is an immediate consequence of the

following arguments. (a) All concepts of constraints added by the completion

rules are subconcepts of the concept C

0

. It is not di�cult to see that the

number of subconcepts of a concept C is linear in the length of C. (b) If a

rule R can be applied to a constraint system S, then this is because of the
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presence of a particular constraint a :C in S, and the application of R adds

constraints whose concepts are strictly shorter than C. (c) The introduction

of role- or feature successors is always triggered by a constraint of the form

x : 9R;C or a :P (u

1

; : : : ; u

n

), hence each variable has only �nitely many role

successors. (d) Once a variable is introduced, it is present in all subsequent

constraint systems, and constraints are never removed (these two properties

prevent the algorithm from looping).

5.2 Extension to arbitrary aggregation functions

The proof of soundness and completeness of the completion algorithm in the

previous section was only possible because all aggregation functions were

supposed to be multiple-invariant. Without this property, the completion

algorithm presented in the previous section would be incomplete. For exam-

ple, the concept C below is obviously satis�able, and each instance of C has

exactly one R-successor.

C := (9R:�

2

(f)) u (9R:=

2

(f)) u �

1

(count(R�f))

C involves the aggregation function count which is not multiple-invariant.

This causes incompleteness of the completion algorithm presented in the

previous section: Although C is satis�able, it would not generate a complete,

clash-free and D-consistent constraint system for C, but would end up with

a non-D-consistent constraint system: It would generate two R-successors

and two R�f -successors, say x; y, which yields a constraint system that is

not D-consistent because �

1

(count(Y )) ^ ffx; ygg � Y is contradictory. To

identify these two R-successors (and hereby the two R�f -successors) is not a

good idea because they might have to satisfy contradicting constraints. For

example, the concept C

0

below is unsatis�able: It requires 2 R-successors

which cannot be interpreted by the same abstract individual because they

have contradicting restrictions on their g-successors, and it has at most 1

R-successor:

C

0

:= (9R:�

2

(f) u =

3

(g)) u (9R:=

2

(f) u =

7

(g)) u �

1

(count(R�f)):

To design a completion algorithm which is also complete for concepts in-

volving not multiple-invariant aggregation functions, Rule 3 in Figure 2 is
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replaced by Rules 3.a, 3.b in Figure 3. These rules are designed such that the

proof does not depend on multiple-invariance. To this purpose, all possibili-

ties to generate as few R-successors as possible are tested. This is realized by

trying to reuse, for each a :(9R:C) constraint, already existing R-successors

of a. For the case that this is not possible, a new R-successor is also intro-

duced. As a consequence, we can restrict our attention to those models that

interprete di�erent R-successors as di�erent individuals.

De�nition 14 An m-model I of a CQ(D

agg

)-constraint system S is a model

that satis�es, additionally, b

I

6= c

I

for all b; c 2 �

A

with f(a; b) :R; (a; b) :Rg �

S for some a 2 �

A

and R 2 N

R

.

Like in the previous section, we will present a technical lemma that im-

plies that decidability of satis�ability of CQ(D

agg

)-concepts only depends on

the decidability of D-consistency. Examples for decidable concrete domains

which have min, max and count as aggregation functions will be presented

below.

Theorem 15 IfD is a concrete domain such thatD-consistency is decidable,

then satis�ability of CQ(D

agg

)-concepts is decidable.

Lemma 16 Let C

0

be an CQ(D

agg

)-concept, and let S be a constraint system

obtained by applying the modi�ed completion rules to fx

0

:C

0

g. Then

1. if C

0

is satis�able, then fx

0

:C

0

g has an m-model.

2. For each completion rule R that can be applied to S, and for each

interpretation I , (i) and (ii) are equivalent.

(i) I is an m-model of S.

(ii) I is an m-model of one of the systems S

i

obtained by applying R.

3. If S is a complete, D-consistent, and clash-free constraint system, then

S has an m-model.

4. If S contains a clash or is not D-consistent, then S does not have an

m-model.
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3.a. Existential restriction on features: If a :(9f:C) 2 S for a

feature name f and if there is an f -successor b of a with b : C 62 S, then

S ! S [ fb : Cg

otherwise, if a has no f -successor, then

S ! S [ f(a; b) : f; b : Cg.

for a new variable b 2 �

A

.

3.b. Existential restriction on roles: If a :(9R:C) 2 S for a role

name R, fb

1

; : : : ; b

n

g are all R-successors of a, and b

i

: C 62 S for all b

i

,

then

S

i

! S [ fb

i

: Cg

S

n+1

! S [ f(a; b) :R; b : Cg

for a new variable b 2 �

A

.

Figure 3: The modi�ed completion rule for existential restrictions.

5. The completion algorithm terminates when applied to fx

0

:C

0

g.

In the following, we will only proof those parts of this lemma that are not

identical to the proof of Lemma 13.

Proof of Lemma 16.1 Each model of a constraint system fx

0

:C

0

g is obvi-

ously an m-model.

Proof of Lemma 16.2:(ii))(i) Rules 3.a and 3.b:

Let S be as speci�ed in the precondition of Rule 3.a with a :(9f:C), and

let I be an m-model of S with f

I

(a

I

) = c and c 2 C

I

. Hence c 2 �

I

.

If there exists a variable b 2 �

A

with (a; b) : f 2 S, then we have b

I

= c

because I is a model of S and I satis�es S [ fb :Cg. Otherwise, I satis�es

S [ f(a; b) : f; b :Cg for a new variable b if we de�ne b

I

= c. In both cases, I

is still an m-model.

Let S be as speci�ed in the precondition of Rule 3.b with a :(9R:C), and

let I be an m-model of S with b

I

i

= c

i

for all R-successors b

i

of a. If, for

an R-successor b

i

of a, we have b

I

i

2 C

I

then I is obviously an m-model of

S [ fb

i

:Cg. Otherwise, there is some c 2 �

I

with (a

I

; c) 2 R

I

, c 2 C

I
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and c 6= b

I

i

for all R-successors b

i

of a. In this case, I is an m-model of

S [ f(a; b) :R; b :Cg.

Proof of Lemma 16.3 is identical to the proof of Lemma 13.2 because the

model constructed in this proof for a complete, clash-free and D-consistent

constraint system is an m-model.

Proof of Lemma 16.4 Similar to the proof of Lemma 13.3, an m-model I of

S yields a solution for

^

P (�

1

;:::;�

n

)2S

P (�

1

; : : : ; �

n

) ^

^

Y occurs in S

fx

i

j x

i

:Y 2 Sg � Y

where inclusion is interpreted as set inclusion. Now, I is an m-model of S,

hence for each variable a, for each pair of R-successors b

i

; b

j

of a in S, we have

b

I

i

6= b

I

j

. By de�nition of the semantics of constraints, we have X

I

=M

(R�f)

I

a

I

for multiset variables X with (a;X) :(R�f) 2 S. As a consequence, ffx

I

i

j

x

i

:Y 2 Sgg � Y

I

, thus I yields a solution for S

D

, and S is D-consistent.

5.3 Examples for decidable concrete domains

In the following, we will give examples for concrete domains D for which

D-consistency can be decided.

Lemma 17 For a concrete domain D where

� dom(D) is the set of nonnegative integers, integers, rational numbers

or reals with the natural order <,

� pred(d) = f<;�; >;�;=; g [

S

n2dom(D)

f�

n

;�

n

; >

n

; <

n

;=

n

g (where >

is the inverse of <, �;� are, respectively, the reexive closures of <;>,

and f=

n

;�

n

;�

n

; >

n

; <

n

g are unary predicates testing for equality with

n (resp. for being less or equal, greater or equal, greater, and less than

n).

� agg(D) = fmin;maxg with the obvious meaning,
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D-consistency of CQ(D

agg

)-constraint systems is decidable.

Proof of Lemma 17: Let S be a constraint system, let D be de�ned as in

the precondition of Lemma 17, and let S

N

be the set of D-constraints in S.

D-consistency of S is decided by transforming S

N

into a setD

S

of (in)equalities

without aggregation functions that is satis�able i� S is D-consistent. Sat-

is�ability of D

S

can then be easily decided using, for example, graph-based

techniqes. To this purpose, for each term max(Y ) (resp. min(Y )) occurring

in S

N

, a new variable y

max

(resp. y

min

) is introduced in an intermediate set

of constraints D

0

S

. More precisely, D

0

S

is obtained from S

N

by replacing each

occurrence of max(Y ) (resp. min(Y )) by y

max

(resp. y

min

), i.e.,

D

0

S

:= S

N

[max(Y )=y

max

for Y 2 �][min(Y )=y

min

for Y 2 �]:

Then D

S

is obtained from D

0

S

by replacing constraints by appropri-

ate (in)equalities and adding axioms to capture the interaction between

min(Y );max(Y ) and z :Y , i.e.,

D

S

:= fy

min

� y

max

j y

min

or y

max

occurs in D

0

S

g [

fy

min

� z j y

min

occurs in D

0

S

and (z :Y ) 2 S

N

g [

fy

max

� z j y

min

occurs in D

0

S

and (z :Y ) 2 S

N

g [

fxP y j P 2 f�;�; >;<;=g and P (x; y) 2 D

0

S

g [

fxP n j P

n

2 f�

n

;�

n

; >

n

; <

n

;=

n

g and P

n

(x) 2 D

0

S

g

Lemma 18 D

S

is satis�able i� S is D-consistent.

Proof: (a) the only constraints involved on min(Y );max(Y ) are that min(Y )

is less and max(Y ) is greater than each element in Y , and (b) the only

elements that are required to be in Y are x

i

with x

i

:Y 2 S, the minimum,

and the maximum of Y . Each solution of S

D

is clearly also a solution of D

S

.

Now suppose we have a solution of D

S

where x̂ 2 dom(�

I

) is the value for

each variable x in D

S

. Then we can de�ne a solution for S

D

by

^

Y := ffx̂ j x :Y 2 Sgg [ ffŷ

min

; ŷ

max

gg:

Since min;max are multiple-invariant and we started from a solution of D

S

,

this solution satis�es all predicate restrictions in S. Furthermore, the solution

satis�es max(

^

Y ) = ŷ

max

and min(

^

Y ) = ŷ

min

. By de�nition, this solution also

satis�es the multiset inclusion conjuncts in S

D

.
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It remains to show that satis�ability of a set D

S

of (in)equalities for D-

constraints in constraint systems S is decidable. Since all (in)equalities inD

S

are linear, each set D

S

of (in)equalities is satis�able over the real numbers

i� it is decidable over the rational numbers. Furthermore, the following

transformation obviously preserve satis�ability:

1. Remove equations of the form x = x from D

S

.

2. Replace x by y if x = y 2 D

S

for two variables x; y.

3. Replace x by n if x = n 2 D

S

for a variable x and a constant n 2

dom(D).

4. If the concrete domain is the set of nonnegative integers, add inequali-

ties x � 0 for all variables.

Without loss of generality, we thus restrict our attention to sets D

S

without

equalities, and to solutions in the integers or in the rationals. Finally, we

may orient all inequalities such that only < and � occur in D

S

.

We construct a graph G

S

for D

S

as follows: G

S

's nodes are the constants

and variables in D

S

. The edges are labelled with < or �: Two nodes x; y

are related via a <-edge (resp. �) i� the corresponding constraint x � y

(resp. x < y) is in D

N

, and they are related via a <-edge if both nodes are

constants in dom(D) with x < y.

Lemma 19 D

S

is unsatis�able over the

1. rational numbers i� G

S

has a cycle with at least one <-edge.

2. integers i� G

S

has a cycle with at least one <-edge or if a path from a

constant c

1

to a constant c

2

> c

1

involve at more than c

2

� c

1

<-edges.

Proof: The if direction is obvious. Now let G

S

be a graph without cycles

involving <-egdes (and where paths between constants don't involve too

much <-edges). To obtain a solution for D

S

, we identify all �-cycles and

perform topological sorting on the remainder. In the case we are looking for

a solution in the integers, we have to take care that the smallest integers
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associated to variables not having a lower bound are really small enough. A

save starting point could be the smalles constant in G

S

minus the number

of variables occuring in G

S

. To choose rational numbers for variables bound

between c

1

and C

2

, we choose c

1

+ 1=2(c

2

� c

1

) for the smallest one, say x

1

,

and x

1

+ 1=2(c

2

� x

1

) for the next one, etc.

Lemma 20 For a concrete domain D where

� dom(D) is the set of nonnegative integers, integers, real or rational

numbers,

� pred(d) = f<;�; >;�;=; g [

S

n2dom(D)

f�

n

;�

n

; >

n

; <

n

;=

n

g (where >

is the inverse of < and f=

n

;�

n

;�

n

; >

n

; <

n

g are unary predicates test-

ing for equality with n (resp. for being less or equal, greater or equal,

greater, and less than n).

� agg(D) = fmin;max; countg with the obvious meaning,

D-consistency of CQ(D

agg

)-constraint systems is decidable.

Proof of Lemma 20: The decision procedure is similar to the one given in

the proof of Lemma 17, with the only di�erence that, in addition, aggregated

multiset variables involving count are also replaced by appropriate individual

variables y

count

, and that the behaviour of count has to be axiomatised. More

precisely, given a constraint system S for CQ(D

agg

)-concepts for a concrete

domainD

agg

as described in Lemma 20, the setsD

S

; D

0

S

are de�ned as follows:

D

0

S

:= S

N

[max(Y )=y

max

for Y 2 �][min(Y )=y

min

for Y 2 �]

[count(Y )=y

count

for Y 2 �]

D

S

:= fD

y

count

j y

count

occurs in D

0

S

g [

fy

min

� y

max

j y

min

or y

max

occurs in D

0

S

g [

fy

min

� z j y

min

occurs in D

0

S

and (z :Y ) 2 S

N

g [

fy

max

� z j y

min

occurs in D

0

S

and (z :Y ) 2 S

N

g [

fxP y j P 2 f�;�; >;<;=g and P (x; y) 2 D

0

S

g [

fxP n j P

n

2 f�

n

;�

n

; >

n

; <

n

;=

n

g and P

n

(x) 2 D

0

S

g
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where the formula D

y

count

is de�ned as follows. For a better readability, we

use x

Y

:= fx 2 �

D

j x :Y 2 Sg as a shorthand for those concrete variables

belonging to Y .

D

y

count

:=

�

�

#x

Y

= y

count

^

W

x2x

Y

x = y

min

^

W

x2x

Y

x = y

max

�

_

�

#x

Y

= y

count

+ 1 ^

W

x2x

Y

(x = y

min

_ x = y

max

)

�

_

(#x

Y

� y

count

+ 2)

�

^

y

count

2 Z ^ y

count

� 0

The disjunction is necessary because we have to distinguish between the case

where some of the concrete variables known to belong to a multiset coincide

with its minimum and/or maximum (in which case the cardinality can be

equal to #x

Y

, reps. #x

Y

+ 1), and the case where both the minimum and

the maximum are distinct from values for concrete variables in x

Y

. This

distinction is necessary because constraints such as

fx :Y;=

4

(x);�

6

(max(Y );�

2

(min(Y ))g

impose a cardinality less or equal to #x

Y

+ 2, where #x

Y

= 1.

Disjunctions can be removed by transforming D

y

count

into disjunctive normal

form, and testing satis�ability of D

S

separately for each disjunct together

with the other (in)equalities. Thus we assume that we still have to decide

satis�ability of a set of (in)equalities. Similar to the proof of Lemma 20, this

problem can be reduced to satis�ability of inequalities in the integers or the

rational numbers|with the only di�erence that variables y

count

stand always

for integers. In the following, let D

S

stand for such a set of inequalities

involving constants and both variables for integers and rationals.

Again, satis�ability of these inequalities can decided by constructing the

graph G

S

for D

S

in the same way we constructed a graph for D

S

, and testing

this graph for cycles involving < and paths between 2 nodes representing

constants. Due to the presence of y

count

, each node is now either associated

with a constant, an integer variable (either because this node stands for y

count

or we are looking for a solution in the (nonnegative) integers), or a rational

variable (if we are looking for a solution in the rational or real numbers).

This mixture makes the description of a path between two constants that

involves too many di�erent integers rather complicated, and we will need the

following de�nitions for its formulation.
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Let c be a constant in dom(D). Then bcc denotes the largest integer less or

equal c and dce denotes the smallest integer greater or equal c. For an integer

variable x, we de�ne the possibly smallest value lower(c; x) above c for x by

lower(c; x) :=

�

c if c 2 Z and no path from c to x involves a <-edge

bc+ 1c otherwise.

Similar, the possibly largest value up(c; x) is de�ned as follows:

up(c; x) :=

�

c if c 2 Z and no path from x to c involves a <-edge

dc� 1e otherwise.

The last condition in the following Lemma describes the situation where, be-

tween two constants c

1

; c

2

, there is not enough space for a chain of ascending

integers.

Lemma 21 D

S

is unsatis�able over a mixture of integers and rational num-

bers i� G

S

� has a cycle with at least one <-edge or

� there are constants c

2

> c

1

, a path from c

1

to c

2

involving integer

variables x

1

; : : : ; x

m

, where

{ there is a path involving a <-edge from each x

i

to x

i+1

, and

{ m > up(c

2

; x

m

)� lower(c

1

; x

1

) + 1.

As a consequence of the observations made in this section, we have the fol-

lowing decidability result.

Corollary 1 If D is a concrete domain such that

� dom(D) is the set of nonnegative integers, integers, real or rational

numbers,

� pred(d) = f<;�; >;�;=; g [

S

n2dom(D)

f�

n

;�

n

; >

n

; <

n

;=

n

g (where >

is the inverse of < and f=

n

;�

n

;�

n

; >

n

; <

n

g are unary predicates test-

ing for equality with n (resp. for being less or equal, greater or equal,

greater, and less than n).

� agg(D) = fmin;max; countg with the obvious meaning,

then satis�ability of CQ(D

agg

)-concepts is decidable.
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6 Related and future work

We have presented an expressive Description Logic that can also express

properties involving aggregated data. The results of this paper are thus not

only of interest for knowledge representation, but also for database research,

for example, in the context of intensional reasoning in the presence of ag-

gregation, as considered in

[

Ross et al.,1998; Gupta et al.,1995; Mumick&

Shmueli,1995; Levy&Mumick,1996; Srivastava et al.,1996

]

. The undecid-

ability results are orthogonal to those presented in

[

Mumick&Shmueli,1995

]

since our prerequisites are weaker and no recursion mechanisms are used.

Neither are they implied by the undecidability results in

[

Ross et al.,1998

]

:

the results presented there concern aggregation constraints involving addi-

tion as well as rather complex aggregation functions like average and count.

The decidability results are also orthogonal to the decidability results

[

Nutt

et al.,

]

for containment of conjunctive queries with aggregation in the query

head: we have fewer aggregation functions, but allow to use them in a more

complex way. The exact connection between our decidable DL CQ(D

agg

) and

conjunctive queries with aggregation is a topic for future research.

The decision procedure for CQ(D

agg

) is parameterised by a decision proce-

dure for D-consistency of the concrete domain with aggregation. Thus, it is

important to �nd additional concrete domains with aggregation for which D-

consistency is decidable. For example, what happens if the aggregation func-

tion count in Lemma 17 is replaced by sum? It should be noted that adding

sum to the concrete domain considered in the lemma makes D-consistency

undecidable. This is as an easy consequence of one of the undecidability

result in

[

Ross et al.,1998

]

.
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