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A Description Logic

with

Transitive and Converse Roles and Role

Hierarchies

Ian Horrocks and Ulrike Sattler

1 Motivation

As widely argued

[

Horrocks&Gough,1997; Sattler,1996

]

, transitive roles play

an important rôle in the adequate representation of aggregated objects: they

allow these objects to be described by referring to their parts without speci-

fying a level of decomposition. In

[

Horrocks&Gough,1997

]

, the Description

Logic (DL) ALCH

R

+

is presented, which extends ALC with transitive roles

and a role hierarchy. It is argued in

[

Sattler,1998

]

thatALCH

R

+

is well-suited

to the representation of aggregated objects in applications that require var-

ious part-whole relations to be distinguished, some of which are transitive.

However, ALCH

R

+

allows neither the description of parts by means of the

whole to which they belong, or vice versa. To overcome this limitation, we

present the DL ALCHI

R

+

which allows the use of, for example, has part

as well as is part of. To achieve this, ALCH

R

+

was extended with inverse

roles.

It could be argued that, instead of de�ning yet another DL, one could

make use of the results presented in

[

De Giacomo&Lenzerini,1996

]

and use

ALC extended with role expressions which include transitive closure and in-

verse operators. The reason for not proceeding like this is the fact that tran-

sitive roles can be implemented more e�ciently than the transitive closure

of roles (see

[

Horrocks&Gough,1997

]

), although they lead to the same com-

plexity class (ExpTime-hard) when added, together with role hierarchies, to

ALC. Furthermore, it is still an open question whether the transitive closure
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of roles together with inverse roles necessitates the use of the cut rule

[

De

Giacomo&Massacci,1998

]

, and this rule leads to an algorithm with very bad

behaviour. We will present an algorithm for ALCHI

R

+

without such a rule.

1

2 A Tableaux Algorithm for ALCI

R

+

In this section a tableaux algorithm for testing the satis�ability of ALCI

R

+

concept expressions will be described and a proof of its soundness and com-

pleteness presented. The algorithm and proof are extensions of those de-

scribed for ALC

R

+

[

Sattler,1996

]

.

2.1 Syntax and Semantics

ALCI

R

+

is the Description Logic (DL) obtained by augmenting the well-

known DL ALC

[

Schmidt-Schau�&Smolka,1988

]

with transitively closed

roles and inverse (converse) roles. The set of transitive role names R

+

is a

subset of the set of role names R. Interpretations map role names to binary

relations on the interpretation domain, and transitive role names to transi-

tive relations. In addition, for any role R 2 R, the role R

�

is interpreted as

the inverse of R.

De�nition 1 Let N

C

be a set of concept names and let R be a set of role

names with both transitive and normal role names R

+

[ R

P

= R, where

R

P

\ R

+

= ;. The set of ALCI

R

+

-roles is R [ fR

�

j R 2 Rg. The set of

ALCI

R

+

-concepts is the smallest set such that

1. every concept name C 2 N

C

is a concept and

2. if C and D are concepts and R is an ALCI

R

+

-role, then (C u D),

(C tD), (:C), (8R:C), and (9R:C) are concepts.

An interpretation I = (�

I

; �

I

) consists of a set �

I

, called the domain of

I, and a function �

I

which maps every concept to a subset of �

I

and every

role to a subset of �

I

��

I

such that

(C uD)

I

= C

I

\D

I

;

1

Many details, and the proofs of the various lemmata, have been omitted in the interests

of brevity.
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(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

n C

I

;

(9R:C)

I

= fx 2 �

I

j There exists some y 2 �

I

with hx; yi 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j For all y 2 �

I

, if hx; yi 2 R

I

, then y 2 C

I

g;

and, for P 2 R and R 2 R

+

,

hx; yi 2 P

I

i� hy; xi 2 P

�

I

;

if hx; yi 2 R

I

and hy; zi 2 R

I

, then hx; zi 2 R

I

:

A concept C is called satis�able i� there is some interpretation I such

that C

I

6= ;. Such an interpretation is called a model of C. A concept

D subsumes a concept C (written C v D) i� C

I

� D

I

holds for each

interpretation I. Two concepts C;D are equivalent (written C � D) i�

they are mutually subsuming. For an interpretation I, an individual x 2 �

I

is called an instance of a concept C i� x 2 C

I

.

In order to make the following considerations easier, we introduce two

functions on roles:

1. The inverse relation on roles is symmetric, and to avoid considering

roles such as R

��

, we de�ne a function Inv which returns the inverse

of a role, more precisely

Inv(R) :=

�

R

�

if R is a role name,

S if R = S

�

for a role name S.

2. Obviously, a role R is transitive if and only if Inv(R) is transitive.

However, either R or Inv(R) is in R

+

. In order to avoid this case

distinction, the function Trans returns true i� R is a transitive role|

regardless whether it is a role name or the inverse of a role name.

Trans(R) :=

�

true if R 2 R

+

or Inv(R) 2 R

+

,

false otherwise.

2.2 An ALCI

R

+

Tableau

Like other tableaux algorithms, the ALCI

R

+

algorithm tries to prove the

satis�ability of a concept expression D by constructing a model of D. The
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model is represented by a so-called completion tree, a tree some of whose

nodes correspond to individuals in the model, each node being labelled with

a set of ALCI

R

+

-concepts. When testing the satis�ability of an ALCI

R

+

-

concept D, these sets are restricted to subsets of sub(D), where sub(D) is

the set of subconcepts of D.

For ease of construction, we assume all concepts to be in negation normal

form (NNF), that is, negation occurs only in front of concept names. Any

ALCI

R

+

-concept can easily be extended to an equivalent one in NNF by

pushing negations inwards using a combination of DeMorgan's laws and the

following equivalences:

:(C tD) � :C u :D

:(C uD) � :C t :D

:(9R:C) � (8R::C)

:(8R:C) � (9R::C)

The soundness and completeness of the algorithm will be proved by show-

ing that it creates a tableau for D:

De�nition 2 If D is an ALCI

R

+

-concept in NNF and R

D

is the set of roles

occurring in D, together with their inverses, a tableau T for D is de�ned to

be a triple (S;L;E) such that: S is a set of individuals, L : S! 2

sub(D)

maps

each individual to a set of concepts which is a subset of sub(D), E : R

D

!

2

S�S

maps each role in R

D

to a set of pairs of individuals, and there is some

individual s 2 S such that D 2 L(s). For all s 2 S, C;C

1

; C

2

2 sub(D), and

R 2 R

D

, it holds that:

1. if C 2 L(s), then :C =2 L(s),

2. if C

1

u C

2

2 L(s), then C

1

2 L(s) and C

2

2 L(s),

3. if C

1

t C

2

2 L(s), then C

1

2 L(s) or C

2

2 L(s),

4. if 8R:C 2 L(s) and hs; ti 2 E(R), then C 2 L(t),

5. if 9R:C 2 L(s), then there is some t 2 S such that hs; ti 2 E(R) and

C 2 L(t),

6. if 8R:C 2 L(s), hs; ti 2 E(R) and Trans(R), then 8R:C 2 L(t), and
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7. hx; yi 2 E(R) i� hy; xi 2 E(Inv(R)).

Lemma 1 An ALCI

R

+

-concept D is satis�able i� there exists a tableau for

D.

Proof: For the if direction, if T = (S;L;E) is a tableau for D with

D 2 L(s

0

), a model I = (�

I

; �

I

) of D can be de�ned as:

�

I

= S

CN

I

= fs j CN 2 L(s)g for all concept names CN in sub(D)

R

I

=

�

E(R)

+

if Trans(R)

E(R) otherwise

where E(R)

+

denotes the transitive closure of E(R). D

I

6= ; because s

0

2 D

I

.

Transitive roles are obviously interpreted as transitive relations. By induction

on the structure of concepts, we show that, if E 2 L(s), then s 2 E

I

. Let

E 2 L(s) with E 2 sub(D).

1. If E is a concept name, then s 2 E

I

by de�nition.

2. If E = :C, then C =2 L(s) (due to property 1 in De�nition 2), so

s 2 �

I

n C

I

= E

I

.

3. If E = (C

1

u C

2

), then C

1

2 L(s) and C

2

2 L(s), so by induction

s 2 C

I

1

and C

I

2

. Hence s 2 (C

1

u C

2

)

I

.

4. If E = (C

1

tC

2

), then C

1

2 L(s) or C

2

2 L(s), so by induction s 2 C

I

1

or s 2 C

I

2

. Hence s 2 (C

1

t C

2

)

I

.

5. If E = (9S:C), then there is some t 2 S such that hs; ti 2 E(S) and

C 2 L(t). By de�nition, hs; ti 2 S

I

and by induction t 2 C

I

. Hence

S 2 (9S:C)

I

.

6. If E = (8S:C) and hs; ti 2 S

I

, then either

(a) hs; ti 2 E(S) and C 2 L(t), or

(b) hs; ti 62 E(S), then there exists a path of length n � 1 such that

hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(S). Due to property 6 in De�ni-

tion 2, 8S:C 2 L(s

i

) for all 1 � i � n, and we have C 2 L(t).

In both cases, we have by induction t 2 C

I

, hence s 2 (8S:C)

I

.
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For the converse, if I = (�

I

; �

I

) is a model of D, then a tableau T =

(S;L;E) for D can be de�ned as:

S = �

I

E(R) = R

I

L(s) = fC 2 sub(D) j s 2 C

I

g

It only remains to demonstrate that T is a tableau for D:

1. T satis�es properties 1{5 in De�nition 2 as a direct consequence of

the semantics of the :C, C

1

u C

2

, C

1

t C

2

, 8R:C and 9R:C concept

expressions.

2. If d 2 (8R:C)

I

, hd; ei 2 R

I

and Trans(R), then e 2 (8R:C)

I

unless

there is some f such that he; fi 2 R

I

and f =2 C

I

. However, if hd; ei 2

R

I

, he; fi 2 R

I

and R 2 R

+

, then hd; fi 2 R

I

and d =2 (8R:C)

I

. T

therefore satis�es property 6 in De�nition 2.

3. T satis�es property 7 in De�nition 2 as a direct consequence of the

semantics of inverse relations.

2.3 Constructing an ALCI

R

+

Tableau

From Lemma 1, an algorithm which constructs a tableau for an ALCI

R

+

-

concept D can be used as a decision procedure for the satis�ability of D.

Such an algorithm will now be described in detail.

The tableaux algorithm works on completion trees. This is a tree where

each node x of the tree is labelled with a set L(x) � sub(D) and each edge

hx; yi is labelled L(hx; yi) = R for some (possibly inverse) role R occurring

in sub(D). Edges are added when expanding 9R:C and 9R

�

:C terms; they

correspond to relationships between pairs of individuals and are always di-

rected from the root node to the leaf nodes. The algorithm expands the tree

either by extending L(x) for some node x or by adding new leaf nodes.

For a node x, L(x) is said to contain a clash if, for some concept C,

fC;:Cg � L(x).

If nodes x and y are connected by an edge hx; yi, then y is called a

successor of x and x is called a predecessor of y; ancestor is the transitive

closure of predecessor.
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u-rule: if 1. C

1

u C

2

2 L(x), x is not indirectly blocked, and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x), x is not indirectly blocked, and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some C 2 fC

1

; C

2

g

9-rule: if 1. 9S:C 2 L(x), x is not blocked, and

2. x has no S-neighbour y with C 2 L(y):

then create a new node y with L(hx; yi) = S and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and

2. there is an S-neighbour y of x with C =2 L(y) :

then L(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), Trans(S), x is not indirectly blocked, and

2. there is an S-neighbour y of x with 8S:C =2 L(y)

then L(y) �! L(y) [ f8S:Cg

Figure 1: Tableaux expansion rules for ALCI

R

+

A node y is called an R-neighbour of a node x if either y is a successor

of x and L(hx; yi) = R or y is a predecessor of x and L(hy; xi) = Inv(R).

A node x is blocked if for some ancestor y, y is blocked or L(x) = L(y).

A blocked node x is indirectly blocked if its predecessor is blocked, otherwise

it is directly blocked. If x is directly blocked it has a unique ancestor y such

that L(x) = L(y): if there existed another ancestor z such that L(x) = L(z)

then either y or z must be blocked. If x is directly blocked, and y is the

unique ancestor such that L(x) = L(y), we will say that y blocks x.

The algorithm initialises a tree T to contain a single node x

0

, called

the root node, with L(x

0

) = fDg, where D is the concept to be tested

for satis�ability. T is then expanded by repeatedly applying the rules from

Figure 1.

The completion tree is complete when for some node x, L(x) contains a

clash, or when none of the rules is applicable. If, for an input concept D,

7



the expansion rules can be applied in such a way that they yield a complete,

clash-free completion tree, then the algorithm returns \D is satis�able", and

\D is unsatis�able" otherwise.

2.4 Soundness and Completeness

The soundness and completeness of the algorithm will be demonstrated by

proving that, for an ALCI

R

+

-concept D, it always terminates and that it

returns satis�able if and only if D is satis�able.

Lemma 2 For each ALCI

R

+

-concept D, the tableaux algorithm terminates.

Proof: Let m = jsub(D)j. Obviously, m is linear in the length of D.

Termination is a consequence of the following properties of the expansion

rules:

1. The expansion rules never remove nodes from the tree or concepts from

node labels.

2. Successors are only generated for existential value restrictions (concepts

of the form 9R:C), and for any node each of these restrictions triggers

the generation of at most one successor. Since sub(D) cannot contain

more than m existential value restrictions, the out-degree of the tree is

bounded by m.

3. Nodes are labelled with nonempty subsets of sub(D). If a path p is of

length at least 2

m

, then there are 2 nodes x; y on p, with L(x) = L(y),

and blocking occurs. Since a path on which nodes are blocked cannot

become longer, paths are of length at most 2

m

.

Together with Lemma 1, the following lemma implies soundness of the

tableaux algorithm.

Lemma 3 If the expansion rules can be applied to an ALCI

R

+

-concept D

such that they yield a complete and clash-free completion tree, then D has a

tableau.

Proof: Let T be the complete and clash-free tree constructed by the

tableaux algorithm for D. A tableau T = (S;L;E) can be de�ned with:

S = fx j x is a node in T and x is not blockedg;
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E(R) = fhx; yi 2 S� S j 1: y is an R-neighbour of x or

2: L(hx; zi) = R and y blocks z or

3: L(hy; zi) = Inv(R) and x blocks zg;

and it can be shown that T is a tableau for D:

1. D 2 L(x

0

) for the root x

0

of T, and as x

0

has no predecessors it cannot

be blocked. Hence D 2 L(s) for some s 2 S.

2. Property 1 of De�nition 2 is satis�ed because T is clash free.

3. Properties 2 and 3 of De�nition 2 are satis�ed because neither the

u-rule nor the t-rule apply to any x 2 S.

4. Property 4 in De�nition 2 is satis�ed because for all x 2 S, if 8R:C 2

L(x) and hx; yi 2 E(R) then either:

(a) x is an R-neighbour of y,

(b) L(hx; zi) = R, y blocks z, from the 8-rule C 2 L(z), L(y) = L(z),

or

(c) L(hy; zi) = Inv(R), x blocks z, L(x) = L(z), so from the 8-rule

C 2 L(y).

In all 3 cases, the 8-rule ensures that C 2 L(y).

5. Property 5 in De�nition 2 is satis�ed because for all x 2 S, if 9R:C 2

L(x) then the 9-rule ensures that there is either:

(a) a predecessor y such that L(hy; xi) = Inv(R) and C 2 L(y). Be-

cause y is a predecessor of x it cannot be blocked, so y 2 S and

hy; xi 2 E(R).

(b) a successor y such that L(hx; yi) = R and C 2 L(y). If y is not

blocked, then y 2 S and hx; yi 2 E(R). Otherwise, y is blocked

by some z with L(z) = L(y). Hence C 2 L(z), z 2 S and

hx; zi 2 E(R).

6. Property 6 in De�nition 2 is satis�ed because for all x 2 S, if 8R:C 2

L(x), hx; yi 2 E(R) and Trans(R) then either:

(a) x is an R-neighbour of y,
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(b) L(hx; zi) = R, y blocks z, and L(y) = L(z), or

(c) L(hy; zi) = Inv(R), x blocks z, hence L(x) = L(z) and 8R:C 2

L(z).

In all 3 cases, the 8

+

-rule ensures that 8R:C 2 L(y).

7. Property 7 in De�nition 2 is satis�ed because for each hx; yi 2 E(R),

either:

(a) x is an R-neighbour of y, so y is an Inv(R)-neighbour of x and

hy; xi 2 E(Inv(R)).

(b) L(hx; zi) = R and y blocks z, so L(hx; zi) = Inv(Inv(R)) and

hy; xi 2 E(Inv(R)).

(c) L(hy; zi) = Inv(R) and x blocks z, so hy; xi 2 E(Inv(R)).

Lemma 4 If D has a tableau, then the expansion rules can be applied in such

a way that the tableaux algorithm yields a complete and clash-free completion

tree for D.

Proof: Let T = (S;L;E) be a tableau for D. Using T , we trigger the

application of the expansion rules such that they yield a completion tree T

that is both complete and clash-free. We start with T consisting of a single

node x

0

, the root, with L(x

0

) = fDg.

T is a tableau, hence there is some s

0

2 S with D 2 L(s

0

). When

applying the expansion rules to T, the application of the non-deterministic

t-rule is driven by the labelling in the tableau T . To this purpose, we de�ne

a mapping � which maps the nodes of T to elements of S, and we steer the

application of the t-rule such that L(x) � L(�(x)) holds for all nodes x of

the completion tree.

More precisely, we de�ne � inductively as follows:

� �(x

0

) = s

0

.

� If �(x

i

) = s

i

is already de�ned, and a successor y of x

i

was generated

for 9R:C 2 L(x

i

), then �(y) = t for some t 2 S with C 2 L(t) and

hs

i

; ti 2 E(R).
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To make sure that we have L(x

i

) � L(�(x

i

)), we use the t

0

-rule instead of

the t-rule, where

t

0

-rule: if 1. C

1

t C

2

2 L(x), x is not indirectly blocked, and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fDg for some D 2 fC

1

; C

2

g \ L(�(x)),

The expansion rules given in Figure 1 with the t-rule replaced by the

t

0

-rule are called modi�ed expansion rules in the following.

It is easy to see that, if a tree T was generated using the modi�ed ex-

pansion rules, then the expansion rules can be applied in such a way that

they yield T. Hence Lemma 3 and Lemma 2 still apply, and thus using the

t

0

-rule instead of the t-rule preserves soundness and termination.

We will now show by induction that, if L(x) � L(�(x)) holds for all

nodes x in T, then the application of an expansion rule preserves this subset-

relation. To start with, we clearly have fDg = L(x

0

) � L(s

0

).

If the u-rule can be applied to x in T with C = C

1

u C

2

2 L(x), then

C

1

; C

2

are added to L(x). Since T is a tableau, fC

1

; C

2

g � L(�(x)), and

hence the u-rule preserves the subset-relation between L(x) and L(�(x)).

If the t

0

-rule can be applied to x in T with C = C

1

t C

2

2 L(x), then

D 2 fC

1

; C

2

g is in L(�(x)), and D is added to L(x) by the t

0

-rule. Hence

the t

0

-rule preserves the subset-relation between L(x) and L(�(x)).

If the 9-rule can be applied to x in T with C = 9R:C

1

2 L(x), then

C 2 L(�(x)) and there is some t 2 S with h�(x); ti 2 E(R) and C

1

2 L(t).

The 9-rule creates a new successor y of x for which �(y) = t for some t with

C

1

2 L(t). Hence we have L(y) = fC

1

g � L(�(y)).

If the 8-rule can be applied to x in T with C = 8R:C

1

2 L(x) and y is

an R-neighbour of x, then h�(x); �(y)i 2 E(R), and thus C

1

2 L(�(y)). The

8-rule adds C

1

to L(y) and thus preserves the subset-relation between L(x)

and L(�(x)).

If the 8

+

-rule can be applied to x in T with C = 8R:C

1

2 L(x), Trans(R)

and y being an R-neighbour of x, then h�(x); �(y)i 2 E(R), and thus 8R:C

1

2

L(�(y)). The 8

+

-rule adds C

1

to L(y) and thus preserves the subset-relation

between L(y) and L(�(y)).

Summing up, the tableau-construction triggered by T terminates with a

complete tree, and since L(x) � L(�(x)) holds for all nodes x in T, T is

clash-free due to Property 1 of De�nition 2.

Theorem 1 The tableaux algorithm is a decision procedure for the satis�a-

bility and subsumption of ALCI

R

+

-concepts.
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Theorem 1 is an immediate consequence of the Lemmata 1, 2, 3, and 4.

Moreover, since ALCI

R

+

is closed under negation, subsumption C v D can

be reduced to unsatis�ability of C u :D.

3 Extending ALCI

R

+
by Role Hierarchies

We will now extend the tableaux algorithm presented in Section 2.3 to deal

with role hierarchies in a similar way to the algorithm for ALCH

R

+

presented

in

[

Horrocks&Gough,1997

]

. ALCHI

R

+

extends ALCI

R

+

by allowing, addi-

tionally, for inclusion axioms on roles. These axioms can involve transitive as

well as non-transitive roles, and inverse roles as well as role names. For ex-

ample, to express that a role R is symmetric, we add the two axioms R v R

�

and R

�

v R.

De�nition 3 A role inclusion axiom is of the form

R v S;

for two (possibly inverse) roles R and S. For a set of role inclusion axiomsR,

R

+

:= (R [ fInv(R) v Inv(S) j R v S 2 Rg; v* ) is called a role hierarchy,

where v* is the transitive-re
exive closure of v over R [ fInv(R) v Inv(S) j

R v S 2 Rg.

De�nition 4 ALCHI

R

+

is the extension of ALCI

R

+

obtained by allowing,

additionally, for a role hierarchy R

+

.

As well as being correct for ALCI

R

+

concepts, an ALCHI

R

+

interpreta-

tion has to satisfy the additional condition,

hx; yi 2 R

I

implies hx; yi 2 S

I

for all rolesR; S with R v* S:

The tableaux algorithm given in the preceding section can easily be mod-

i�ed to decide satis�ability of ALCHI

R

+

-concepts by extending the de�ni-

tions of both R-neighbours and the 8

+

-rule to include the notion of role

hierarchies. To prove the soundness and correctness of the extended algo-

rithm, the de�nition of a tableau is also extended.

De�nition 5 As well as satisfying De�nition 2 (i.e. being a valid ALCI

R

+

tableau), a tableau T = (S;L;E) for an ALCHI

R

+

-concept D must also

satisfy:

12



8

0

+

-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and

2. there is some R with Trans(R) and R v* S,

3. there is an R-neighbour y of x with 8R:C =2 L(y)

then L(y) �! L(y) [ f8R:Cg

Figure 2: The new 8

+

-rule for ALCHI

R

+

.

6

0

. if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then

8R:C 2 L(t),

8. if hx; yi 2 E(R) and R v* S, then hx; yi 2 E(S),

where property 6

0

extends and supersedes property 6 from De�nition 2.

For the ALCHI

R

+

algorithm, the 8

+

-rule is replaced with the 8

0

+

-rule

(see Figure 2), and the de�nition of R-neighbours extended as follows:

De�nition 6 Given a completion tree, a node y is called an R-neighbour of

a node x if either y is a successor of x and L(hx; yi) = S or y is a predecessor

of x and L(hy; xi) = Inv(S) for some S with S v* R.

In the following, the tableaux algorithm resulting from these modi�ca-

tions will be called the modi�ed tableaux algorithm.

To prove that the modi�ed tableaux algorithm is indeed a decision pro-

cedure for the satis�ability of ALCHI

R

+

-concepts, all 4 technical lemmata

used in Section 2 to prove this fact for the ALCI

R

+

tableaux algorithm have

to be re-proven for ALCHI

R

+

. In the following, we will restrict our attention

to cases that di�er from those already considered for ALCI

R

+

.

Lemma 5 An ALCHI

R

+

-concept D is satis�able i� there exists a tableau

for D.

Proof: For the if direction, the construction of a model of D from a

tableau for D is similar to the one presented in the proof of Lemma 1. If

T = (S;L;E) is a tableau for D with D 2 L(s

0

), a model I = (�

I

; �

I

) of D

can be de�ned as follows:

�

I

= S

CN

I

= fs j CN 2 L(s)g for all concept names CN in sub(D)

13



R

I

=

(

E(R)

+

if Trans(R)

E(R) [

S

P v* R;P 6=R

P

I

otherwise

The interpretation of non-transitive roles is recursive in order to correctly

interpret those non-transitive roles that have a transitive sub-role. From the

de�nition of R

I

and property 8 of a tableau it follows that if hx; yi 2 S

I

, then

either hx; yi 2 E(S) or there exists a path hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R)

for some R with Trans(R) and R v* S.

Property 8 of a tableau ensures that R

I

� S

I

holds for all roles with

R v* S, including those cases where R is a transitive role. Again, it can be

shown by induction on the structure of concepts that I is a correct interpre-

tation. We restrict our attention to the only case that is di�erent from the

ones in the proof of Lemma 1. Let E 2 sub(D) with E 2 L(s).

6

0

. If E = (8S:C) and hs; ti 2 S

I

, then either

(a) hs; ti 2 E(S) and C 2 L(t), or

(b) hs; ti 62 E(S), then there exists a path of length n � 1 such that

hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R) for some R with Trans(R) and

R v* S. Due to Property 6', 8R:C 2 L(s

i

) for all 1 � i � n, and

we have C 2 L(t).

In both cases, we have t 2 C

I

.

For the converse, if I = (�

I

; �

I

) is a model of D, then a tableau T =

(S;L;E) for D can be de�ned as:

S = �

I

E(R) = R

I

L(s) = fC 2 sub(D) j s 2 C

I

g

It remains to demonstrate that T is a tableau for D:

1. T satis�es properties 1{5 in De�nition 2 as a direct consequence of the

semantics of ALCHI

R

+

-concepts.

2. If d 2 (8S:C)

I

and hd; ei 2 R

I

for R with Trans(R) and R v* S, then

e 2 (8R:C)

I

unless there is some f such that he; fi 2 R

I

and f =2 C

I

.

In this case, if hd; ei 2 R

I

, he; fi 2 R

I

and Trans(R), then hd; fi 2

R

I

. Hence hd; fi 2 S

I

and d =2 (8S:C)

I

|in contradiction of the

assumption. T therefore satis�es Property 6

0

in De�nition 5.
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3. Since I is a model of D, hx; yi 2 R

I

implies hx; yi 2 S

I

for all roles

R; S with R v* S. Hence T satis�es Property 8 in De�nition 5.

Lemma 6 For each ALCHI

R

+

-concept D, the modi�ed tableaux algorithm

terminates.

The proof is identical to the one given for Lemma 2.

Lemma 7 If the expansion rules can be applied to an ALCHI

R

+

-concept D

such that they yield a complete and clash-free completion tree, then D has a

tableau.

Proof: The de�nition of a tableau from a complete and clash-free com-

pletion tree, as presented in the proof of Lemma 3, has to be slightly modi�ed.

A tableau T = (S;L;E) is now de�ned with:

S = fx j x is a node in T and x is not blockedg

E(S) = fhx; yi 2 S� S j 1: y is an S-neighbour of x or

2: There exists a role R with R v* S and

a: L(hx; zi) = R and y blocks z or

b: L(hy; zi) = Inv(R) and x blocks zg

and, again, it can be shown that T is a tableau for D:

1. Since the expansion rules were started with L(x

0

) = fDg, D 2 L(x

0

)

for some x

0

2 S.

2. Properties 1-3 are identical to the proof of Lemma 3.

3. Property 4 in De�nition 2 is satis�ed because for all x 2 S, if 8S:C 2

L(x) and hx; yi 2 E(S) then either:

(a) x is an S-neighbour of y,

(b) for some role with R v* S, either

i. L(hx; zi) = R, y blocks z, hence from the 8-rule C 2 L(z),

and L(y) = L(z), or

ii. L(hy; zi) = Inv(R), x blocks z, hence L(x) = L(z) and there-

for 8S:C 2 L(z).

In all three cases, the 8-rule ensures C 2 L(y).
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4. Property 5 in De�nition 2 is satis�ed for the same reasons as in the

proof of Lemma 3

5. Property 6' in De�nition 5 is satis�ed because for all x 2 S, if 8S:C 2

L(x), hx; yi 2 E(R) for some R with Trans(R) and R v* S, then either:

(a) y is an R-neighbor of x, or

(b) there is some role R

0

with R

0

v R and

i. L(hx; zi) = R

0

, y blocks z and L(y) = L(z), or

ii. L(hy; zi) = Inv(R), x blocks z and L(x) = L(z), hence 8S:C 2

L(z).

In all three cases, 8R:C 2 L(y) follows from the 8

0

+

-rule.

6. Property 8 in De�nition 5 follows immediately from the de�nition of

E.

Lemma 8 If ALCHI

R

+

-concept D has a tableau, then the expansion rules

can be applied in such a way that the tableaux algorithm yields a complete

and clash-free completion tree for D.

The proof of Lemma 8 is identical to the one presented for Lemma 4.

Again, summing up, we have the following theorem.

Theorem 2 The tableaux algorithm is a decision procedure for the satis�a-

bility and subsumption of ALCHI

R

+

-concepts.

3.1 General Concept Inclusion Axioms

In

[

Baader,1991; Schild,1991; Baader et al.,1993

]

, the internalisation of ter-

minological axioms is introduced. This technique is used to reduce reasoning

with respect to a (possibly cyclic) terminology to satis�ability of concepts. In

[

Horrocks&Gough,1997

]

, we saw how role hierarchies can be used to reduce

satis�ability and subsumption with respect to a terminology to concept sat-

is�ability and subsumption. In the presence of inverse roles, this reduction

must be slightly modi�ed.
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De�nition 7 A terminology T is a �nite set of general concept inclusion

axioms,

T = fC

1

v D

1

; : : : ; C

n

v D

n

g;

where C

i

; D

i

are arbitrary ALCHI

R

+

-concepts. An interpretation I is

said to be a model of T i� C

I

i

� D

I

i

holds for all C

i

v D

i

2 T . C is

satis�able with respect to T i� there is a model I of T with C

I

6= ;. Finally,

D subsumes C with respect to T (C v

T

D) i� for each model I of T we

have C

I

� D

I

.

The following lemma shows how general concept inclusion axioms can be

internalised using a \universal" role U . This role U is a transitive super-role

of all relevant roles and their respective inverses. Hence, for each interpreta-

tion I, each individual t reachable via some role path from another individual

s is an U

I

-successor of s. All general concept inclusion axioms C

i

v D

i

in T

are propagated along all role paths using the value restriction 8U::C tD.

Lemma 9 Let T be terminology and C;D be ALCHI

R

+

-concepts and let

C

T

:= u

C

i

vD

i

2T

:C

i

tD

i

:

Let U be a transitive role with R v U , Inv(R) v U for each role R that occurs

in T ; C, or D.

Then C is satis�able with respect to T i�

C u C

T

u 8U:C

T

is satis�able. D subsumes C with respect to T (C v

T

D) i�

C u :D u C

T

u 8U:C

T

is unsatis�able.

Remark: Instead of de�ning U as a transitive super-role of all roles and their

respective inverses, one could have de�ned U as a transitive super-role of all

roles and, additionally, a symmetric role by adding U v U

�

and U

�

v U .

The proof of Lemma 9 is similar to the ones that can be found in

[

Schild,1991; Baader,1990

]

. One point to show is that, if an ALCHI

R

+

-

concept C is satis�able with respect to a terminology T , then C; T have

a connected model, namely one whose individuals are all related to each

17



other by some role path. This follows from the de�nition of the semantics of

ALCHI

R

+

-concepts. The other point to proof is that, if y is reachable from

x via a role path (possibly involving inverse roles), then hx; yi 2 U

I

, which

is an easy consequence of the de�nition of U .

Decidability of satis�ability and subsumption with respect to a terminol-

ogy is an immediate consequence of Lemma 9 and Theorem 2.

Theorem 3 The modi�ed tableaux algorithm is a decision procedure for sat-

is�ability and subsumption of ALCHI

R

+

-concepts with respect to terminolo-

gies.
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