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Abstract

Formal Methods are becoming more an more important for the de-

velopment of hardware and software systems. Verification tools support

the employment of Formal Methods. This paper gives an overview of the

design and implementation of the verification tool Truth. We define and

explain requirements for verification tools. Furthermore, we discuss several

semantic models, specification languages and logics and their visualisation

from a tool builder’s perspective and show how these requirements were

adopted in Truth.
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1 Introduction

Formal Methods are becoming more and more popular for the specification and

verification of hardware and software systems. Several case studies showed that

these techniques can help to find errors during the design process (see [CW96] for

an overview). They are also gaining commercial success, e.g., companies such as

Intel, National Semiconductor or Texas Instruments are establishing new depart-

ments for formal methods (see for example the job adverts in the concurrency

mailing list [CML]).

Under the term Formal Methods one usually understands the application of

mathematical methods for specifying and verifying complex hardware and soft-

ware systems. The formal specification of a system helps to understand the

system under development. Furthermore, a common and formal basis for the

discussion about the system is given.

The verification of the specified system is a further step. Its aim is to guarantee

the correctness of the functionality.1 In practice, verification is more important for

debugging the design instead of showing that the design is correct. This means,

verification usually is a loop of finding errors and correcting the specification until

no further errors can be detected. Two approaches for the verification of systems

can be distinguished: model checking and theorem proving. Several case studies

showed that especially model checking can help to find errors during the design

process ([CW96]). In this paper we focus on model checking.

The application of formal methods requires the availability of supporting tools

because formal methods are only suitable for the design of large systems where

an ad hoc or conventional software engineering approach is not adequate. Gen-

erally speaking, large systems consist of distributed processes working together

concurrently. While the distribution of the processes usually does not involve

any conceptual problems, the concurrent behaviour makes the system difficult to

understand. Therefore, we put our emphasis on analysing concurrent systems.

In the last years several prototypes of model checking tools have been developed,

e.g., CWB [Mol92], NCSU-CWB [CS96], SMV [McM92], SPIN and [GHP97].

The aim of this paper is to give an overview of the tool Truth which is

1Note that in this paper we concentrate on the design of a system. We do not consider the

problem of assuring that the concrete realization of a system is according to its specification.
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developed by the modelling concurrent systems group at the University of Tech-

nology Aachen. Its aim is to serve as a prototype of a verification tool where es-

pecially new concepts for specification, modelling concurrency, logics and model

checking algorithms can easily be tested. Therefore, its architecture is quite

modular and easy to understand. Furthermore, Truth shall be “easy to use”

and explaining, i.e., it should assist users not familar with verification tools. In

this way it persue developers to apply formal methods. First, we describe the

requirements for a verification tool and its general design. This summarises the

experience we gained by the analysis of several existing tools. Then, we explain

the design and implementation issues of Truth and show how these reflect the

general ideas mentioned before.

In Section 2 we describe the fundamental concepts for the verification of finite

state systems. Section 3 gives a brief overview of Truth. Several models for

concurrency and their impacts for verification are discussed in Section 4. Specific-

ation languages are discussed in Section 5. It is explained why the situation from

the tool builder’s perspective is not too bad although there are lots of different

specification languages. Section 6 describes several specification logics and cor-

responding model checking algorithms. We conclude by describing using Truth

for a larger example in Section 7. Every chapter is augmented with details about

the implementation of Truth in these different areas.

2 Fundamental Concepts of the Verification of

Finite State Systems

The general idea of the model checking approach is shown in Figure 1. The

system under consideration is described in a specification language, usually a

kind of process algebra. The specification is transformed into a representation,

the semantic model, according to the semantic domain of the underlying process

algebra. Properties to check are given by formulas of the specification logic, a

logic like LTL, CTL or the µ-calculus. Model checking is testing whether the

model satisfies the formula and in this way whether the underlying system fulfils

the formulated property. Let us give a small example:

Example 2.1 Suppose we want to specify a two element buffer. As a specific-
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Semantic Domain for
interpretation of specifiication
and formulas, e.g.
• Transition Systems
• Petri Nets
• Traces
•  ...

Description of Properties
in a logic like
• LTL
• CTL
• µ-Calculus
• LTrL
• ...

Abstraction/Specification of 
the Distributed System in a
formal language like
• CCS
• ACP
• Lotos
• ...

Model Checking

in

in

τ
out

out

B1= in.out.B1

B2= (B1[out/i]||B1[in/i])\i
(〈.〉 tt) ∧ 
(〈in〉 tt →     〈out〉 tt)

Figure 1: The idea of model checking systems

ation language we use CCS [Mil89]. First we describe a one element buffer B1

by

B1 = in.out.B1

which means that first the buffer makes an input action, then an output action

and after that is in his originating state. Now we define the two element buffer

by the parallel product of two buffers with capacity one.

B2 = (B1[out/i] |B1[in/i])\{i}

Note that we substitute out by i and in by i (resp.) and restrict the communic-

ation over i to denote that this is an internal communication between the two

buffers.

The system is easier to understand when we look at its semantic model. We

choose a transition system model. Its graphical representation is
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in

out out

A question is whether the buffer never deadlocks, i.e., is there always a possible

next state? To specify this property we employ LTL. The corresponding formula

is

2(3tt)

meaning that always there is a next state such that true holds, i.e., that there is

a next state. This question now can be answered by a model checking algorithm.

Therefore, the important parameters of a model checking tool are concerned

with the underlying notion of a distributed state or concurrency, the specification

language and the specification logic. When we look at real systems we have the

following side restriction which is known as “Lichtenstein-Pnueli” thesis [OA85].

The underlying system is large while the logical properties are small. Hence,

when building a tool one needs to optimise the parameters according to the size

of the system rather than to the size of the formula.

However, a model checking tool has to reach more goals than just accepting

the specification of the system and giving an answer of yes or no whether a

formula is satisfied or not: It has to explain the specification given by the user

in a (visual) way to give feed back. Furthermore, concerning the verification of

formulae, the tool has to argue why a formula is satisfied or not. This allows the

user to correct errors in the design. A simple no is not very helpful. So from the

tool builder’s perspective, the parameters

• models for the concurrent system

• specification language

• specification logic

have to be discussed besides their use for model checking also wrt. the adequate

visualisation. This is done in the next three sections.
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3 An Overview of the Implementation of Truth

The verification tool Truth is developed by the modelling concurrent systems

group at the University of Technology Aachen. Its aim is to serve as a prototype

of a verification tool especially for testing new concepts for specification, mod-

elling concurrency, logics and model checking algorithms. The main system is

implemented using the functional programming language Haskell [Tho96] due to

its declarative and easy to understand nature.

In this way, the maintenance of the tool will become much easier. The name

Truth was chosen because the main characteristic of a verification tool is that

it tells the truth about the system.

3.1 The design of Truth

The architecture of Truth reflects the partition which was already shown in

Figure 1. Is is partitioned into three separate major parts which deal with the

different viewpoints of system verification. The overall structure of Truth is

shown in Figure 2.

We will now give a brief overview of the architecture and functionality of

Truth. Further details will be given in the later section of this article.

Truth is a tool for the verification of concurrent systems. Such systems

can be specified in a process algebra, while properties for such systems can be

expressed using a very expressive modal logic. The main task of Truth is

answering questions of the form: Does specification Spec satisfy property Φ.

We use Milner’s CCS as process algebra for the specification of concurrent

systems. This gives access to a big number of real-life examples the system can

be tested with. Also a lot of other verification tools support CCS specifications,

hence we can compare the performance of Truth with tah of other systems.

While CCS is a very popular choice it not necessary an optimal one for all ap-

plication areas. This means that it is necessary to be able to replace CCS by a

more appropriate choice depending on type of the system to be verified. Special

care has been taken to minimise the influence of the choice of CCS on the rest of

the implementation. Section 5 deals with this area in more detail.

As we will argue in Section 4 the most crucial issue when building a verification
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Misc. Analyses

µ-calculus Deadlocks
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Specification Language

Semantic Domain

LTS Data Structure

Model Checker
Tableau

Graph. Output

Logic and Model Checking

Annotations

Figure 2: Architecture of Truth

tool, is the choice of the semantic domain. This choice has an overwhelming

influence on the performance and usability of the tool. Currently we use labelled

transition systems as the semantic domain. While these are well understood and

are used in most tools, their use imposes a major limitation on the size of the

system to be verified.

To avoid the state space explosion, sharing of common data is performed via

hashing. Also, the model is generated only on demand, for example, during the

work of the model checking algorithm. In this way, errors of systems which are

too large to be kept in memory can be detected as long as the error occurs in

the first part of the system. While this doesn’t help to show that a system is

correct it supports the user to improve the system. At the moment, BDDs are

not used. It is planned to integrate a standard implementation for BDDs2 via

the Greencard interface of the Glasgow Haskell Compiler in a future release.

2for example, the one at http://www.cs.cmu.edu/~modelcheck/bdd.html
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To visualise the specified system, the graph visualisation tool daVinci [FW94]

is employed. The labelled transition system according to the specification given

by the user is apparently a graph. Hence, the internal representation of the trans-

ition system is easily converted into a textual graph representation according to

the syntax of the input language for daVinci. This string is send to daVinci which

displays the corresponding graph using (on demand) a layout which minimises

the number of edge crossings.

Kozen’s µ-calculus is used as modal logic to express desired properties of the

specified system. The expressiveness of the µ-calculus makes it ideal for such a

task. Yet using the µ-calculus quickly leads to highly unscrutinizable formulae

we add some syntactic sugar to make the use of the µ-calculus more convenient.

Model checking is performed using the tableau based algorithm which was intro-

duced by Cleaveland in [Cle90]. We currently work on the implementation of a

game based model checking algorithm which we expect to perform much better

then the one currently implemented. The implementation of the model checking

algorithm is described in more detail in Section 6.

In addition to these major components we have implemented a number of

additional features which allow to examine the behaviour of the specified system.

The most useful of these features probably is the graphical simulation of CCS

processes. By separating a CCS process into a number of independently watched

agents we are able to simulate a specified system in a much more structured

and comprehandable way then this has been done by already existing tools. The

simulation component will be especially useful to display model checking games.

The implementation of Truth is described in full detail in [Tob98].

3.2 Implementation issues

Most of Truth is implemented in Haskell, are purely functional non-strict

programming language [PH+96]. The declarative nature of this programming

language as well as the total absence of side effects lead to an implementation,

which is very well suited for extensions and change. This is one of the most

fundamental requirements, the implementation had to meet. Some additional

features make Haskell the ideal choice for our implementation.
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3.2.1 Type system

Haskell is a strongly type language, i. e. every expression always can be assigned

its type. At compile time a type checker checks the program for type consistency.

This allows for the early detection of programming errors which speeds up the

development process. It also makes the program more reliable.

In addition Haskell has so called type classes, an elegant way to express

overloading and integrate polymorphic functions into the program. Also a basic

form of object oriented programming style is possible using these type classes.

3.2.2 Algebraic data types and pattern matching

Haskell supports the definition of algebraic data types. These are especially well

suited to represent term structures, which we encounter at various places when

implementing a verification tool. Together with pattern matching, we are able to

express a number of algorithms in a very natural and hence very comprehandable

way. We also use algebraic data types to implement abstract data types, which

strengthens the modularity of our implementation.

3.2.3 Monadic IO

Until recently purely functional programming languages had trouble expressing

input and output operations, which are side effects and hence can not easily be

introduced into the languages. Monadic IO is a very elegant method to integrate

input and output operations into purely functional languages [Wad97]. Haskell

uses this concept and supplies versatile IO libraries which include exception hand-

ling and file manipulation.

3.3 The Glasgow Haskell compiler

The Glasgow Haskell compiler (GHC) is a highly optimising compiler for Haskell

which can create binary executables for a number of hardware platforms [JHH+93].

Unlike many other implementations of functional languages which translate pro-

grams into an interpreted byte code, the GHC translates into native machine

code. This leads to very good run time performance of the compiled programs.
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Compilation into machine code is performed using GNU C as an intermediate

language which allows the use of all optimisations the GNU C compiler applies

to its input.

In addition to the normal Haskell libraries, the GHC supplies a number of

additional features which are very useful to get an efficient implementation.

3.3.1 State monads

While purely functional programming languages are capable of expressing some

algorithms very briefly and efficiently, they have problems with expressing certain

other algorithms. Especially graph algorithms which make use of the explicit

sharing of substructures cannot be implement in purely functional languages in

an efficient way. The same applies to hash tables which have to be updated

several times during the runtime of a program.

State monads [LJ94] are a way of expressing destructive updates of data

structures in a safe, i. e. referentially transparent way. To do this computations

are build up like scripts which are then applied to a state space.

We use state monads to implement efficient hash tables and to store and

process transition systems.

3.3.2 Additional libraries

The GHC supplies several high quality implementations of common data struc-

tures. We only want to mention the fast implementation of sets and of finite map-

pings, which are used almost throughout the whole implementation of Truth.

Also the implementation of a Posix compliant library to access the UNIX oper-

ating system has proven to be very useful for implementing a usable system.

3.3.3 Additional features

There is a number of features of the GHC Haskell system which have not be

used in the current implementation of Truth but which will be useful when

extending the system. Especially the Greencard system which allows the calling

of arbitrary C functions from within Haskell will be used to implement efficient
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BDD based storage of transition systems. Parallel Haskell might be used for a

high level implementation of distributed model checking algorithms and so on.

3.4 Java

There are several libraries to implement graphical user interfaces with Haskell.

Yet these libraries can only be considered to be alpha versions and they have not

proven to be usable when we tried to implement the graphical simulation of CCS

processes.

As an alternative we chose Java, which has a powerful library for the devel-

opment of graphical user interfaces. It also allows easy porting of our system to

different platforms because programs are not compiled into native machine code

but into abstract byte code. The interpretation of this code is done by abstract

machines which are available for nearly every hardware platform. Since our user

interface has neither high speed nor high memory demands, this approach is

suitable for Truth.

4 Models for Concurrency

The most important question is to choose the adequate model for concurrency.

Several proposals have been given and were analysed during the last 20 years. To

name a few: Transition systems, Petri nets, Mazurkiewics traces, event structures.

In [SNW96] several models are compared on a formal basis. In this section, we

pick up the proposed taxonomy and discuss the consequences for model checking

tools.

The common idea of all models is that they are based on atomic units which

are indivisible and constitute the steps out of which computations are built.

They differ in the level of abstraction from the underlying system. For example,

so called interleaving models reduce concurrency to interleaving. In this way they

abstract from true concurrency and postulate that the concurrent execution of

two actions a and b are equivalent to the execution of a and then b or b and then

a. The full classification according to [SNW96] is as follows:
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deterministic transitions systems
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deterministic
transition systems

with independence
transition systems

deterministic labelled
event structures

Behaviour

System

Linear

Branching

Hoare languages

synchronisation trees labelled event structures

transition systems

Noninterleaving
Interleaving

Figure 3: Examples of models for concurrency

behaviour model – system model

linear time model – branching time model

interleaving model – noninterleaving model

Note that the parameters are orthogonal so that there are eight categories of

models. Furthermore, for each category a well known theory of concurrency can

be given. As an example we refer to the cube shown in Figure 3.

4.1 Behaviour versus System Model

The first classification is according to whether the model describes the underly-

ing system or it concentrates on its behaviour. In the context of verification of

concurrent systems, the user specifies the system with the help of a specification

language. This usually has a natural system model. For example, CCS terms

have an easy to understand transition system semantics. Concerning the visual-

isation of the specification, a system model is more appropriate because it reflects

the user’s view.

For model checking, as we will see in Section 6.1, the behaviour of the system

is considered. For example, for transition systems, either the set of all runs of the

system or one tree in which every path represents a run, is analysed depending

on the applied logic (LTL or CTL). However, in general the behaviour of the
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system is an infinite object (every run is usually infinite). Hence, from the tool

builder’s perspective, the internal representation of the specification needs to be a

system model, or in the case of infinite state systems3 ([Bur97]), even only a finite

description of the system model. Model checking algorithms have to analyse the

system model wrt. its behaviour.

4.2 Linear Time versus Branching Time Model

When we restrict to system models, in linear time models the next state of a

system is determined by the current state and an atomic event. Branching time

system models, on the contrary, have several possible next states. They are more

natural for describing systems as the complexity of specifying large systems is

reduced if nondeterministic constructs in the design notion are supported.

However, the situation is different when we look at the behaviour of the

system. For model checking, often the linear behaviour of the system is important.

Which kind of sequences can an observer of our system recognise? As linear

time versus branching time is only relevant for model checking, we postpone the

discussion to Section 6.1.

4.3 Interleaving versus Noninterleaving Model

The most important question regarding modelling concurrent systems is whether

an interleaving or noninterleaving model should be preferred. In an interleaving

model, the concurrent occurrence of two events is modelled via their nondetermin-

istic interleaving. Hence, the analysis of concurrent systems is reduced to the

analysis of nondeterministic sequential systems. This reduction was important

for the success of formal methods because well known theories, e.g., the theory

of nondeterministic finite automata, could be applied for verification tools.

However, interleaving models have a big disadvantage, the huge state space.

The problem can easily be understood looking at the following example. Let a and

b be two actions of our system which are independent on an intuitive basis. This

usually leads to a specification stating that a and b can be executed concurrently

because the user wants to abstract whether a and b are executed in a precise

3where already the system model is infinite
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order. In the interleaving model, the independence of the two actions is ignored.

Instead, the system consists of states representing all possible interleavings, a

number which is exponential in the number of the concurrent independent actions.

As the systems under consideration are usually large this model is not adequate.

Furthermore, the visualisation of an interleaving model is less intuitive for the

user because usually he describes the underlying system by defining local parts

of the system and their interaction. Hence, he expects this view of the system to

be visualised with the help of his tool.

On the contrary, most current model checking tools employ interleaving mod-

els ([Pri96]). But much effort is spent for developing the theory of noninterleaving

models (such as Mazurkiewics traces [DR95]) and corresponding logics and model

checking algorithms. However, for the development of model checking tools for

todays industrial usage an interleaving model should be preferred due to its well

understood theory.

Moreover, several techniques have been developed to improve the benefit of

interleaving models, that means, to avoid the state space explosion problem. The

most important is known as Symbolic Model Checking ([McM93]). The basic idea

is to describe the underlying (transition) system by a boolean function which can

be coded efficiently via binary decision diagrams (BDDs, [Bry85]). The boolean

function is represented as a graph in which common subgraphs are shared. Espe-

cially for modelling hardware and hardware-like systems the average state space

is reduced dramatically. The use of symbolic model checking techniques proved

that model checking can be used for real systems and not just for toy examples.

For the rest of the paper, we concentrate on finite state labelled transition

systems as a model for concurrency.

4.4 Implementation issues

As argued in the previous subsection, Truth only supports labelled transitions

systems as the semantic domain (at this time). Special care has to be taken in

order to get an efficient implementation, especially when using a purely functional

implementation language like Haskell.

The Labelled Transitions System (LTS) component component of Truth

supplies a very limited functionality on which further analysis steps like model

14



checking are built. A further constraint is added, because we want to use a

local model checking algorithm. To exploit the advantages of a local method the

LTS has to be built in a demand driven manner. This way only the part of the

transition system which is relevant for a given formula has to be built up. This

can lead to enormous speed ups of the model checking process.

Since we want to support not only model checking but several other (graph

based) analyses of the transition system, we must aim for a very generic imple-

mentation. Since all these analyses (including model checking) work by traversing

the LTS while annotating it, we give special support for this behaviour.

By using mutable data structures we are able to update the transition system

in constant time. This is a necessary property of the data structure if we want

to get an efficient implementation, because building and analysing the LTS is the

core functionality of any modelchecker.

To detect cycles during the generation of the transition system we use a hash

table to map process terms to the vertices of the LTS. We cannot use the terms as

states of the LTS since our implementation relies on a array structure to express

sharing within the LTS. Terms cannot be ordered in a way that would make them

suitable to act as indices for an array.

All these functions are encapsulated in a monad to make the LTS functionality

as easy to use as possible. Using this monad very concise implementations of

different analyses are possible.

Here is an example. The following fragment of Haskell code inspects a LTS

for deadlock states, i. e. states which do not have an outgoing transition.

1 findDls::ProcEnv->[Action]->LTSState->LTS_M s Bool [Derivative]

2 findDls penv accu st

3 = ifLTS ( getAddLabelLTS st )

4 ( returnLTS [] )

5 ( expandLTSState penv st ‘thenLTS‘ \ succs ->

6 case succs of

7 [] -> getLabelLTS st ‘thenLTS‘ \ proc ->

8 returnLTS [(reverse accu,proc)]

9 somesuccs ->

10 let

11 next_step (act,states)
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12 = mapConcatLTS (findDls penv (act:accu)) states

13 in

14 mapConcatLTS next_step somesuccs

15 )

The function exspects several parameters: A process environment which is

used to expand states of the LTS, a list of actions which label the path to the

considered vertex and the vertex to be considered. It returns a list of deadlocked

states and pathes to these states.

Line 3 checks if the considered vertex has been visited before. If this is the case

(line 4) we return an empty list since no new deadlocks have been found. If the

vertex has not been visited before we have to generate its successors. This is done

by the call to expandLTSState in line 5. This function expands the transition

system for this vertex and returns a list of all the successors of the vertex st.

If st has no successors (line 7) we have found a deadlock, so we add the path

and the process term which labels st to the result list (line 7,8). Otherwise we

recursively call findDls for all successors of st and combine the results into a

single list (line 12,14).

As we desribed above, labelled transition systems are not an optimal choice

for modelling the behaviour of a concurrent systems. We aim to replace them

in the future by a semantic model which can model concurrency on a higher

level and hence will not have the state explosion problem. Still the existing

implementation can serve as the basis for this more advanced implementation,

because (nearly) all semantic models have a graph-like structure. The states may

have a more strucutred content and the edges may be labelled not by actions

but by sequences of actions — still we are dealing with a graph-like structure

which will have to be stored. For this the existing data strucures are an ideal

foundation.

5 Specification Languages

The situation for specification languages is much more difficult than for models

for concurrency. There is a large number of different specification languages, new

languages occur and existing change rapidly.

16



If one looks for a taxonomy of specification languages further problems arise.

Some attributes for specification languages are for example:

• time

• mobility

• data values

• probability

• ...

But, neither the list is complete nor the items characterise the language in

a binary way. For example, for time, one can distinguish between no time, real

time, discrete time, urgent time, time deadlocks and possible other notions of

time. Similar problems arise for the other attributes, for example, no values,

finite values, infinite values, . . .

However, from the tool builder’s perspective, the situation for specification

languages is not such sobering: The first step in the design of a verification tool

is to select the favourite notion of concurrency as described in the last section.

This limits the number of specification languages because it is obvious that the

specification language’s semantics has to be according to the semantic model. In

some sense also the converse is true:

If the specification language’s semantics is according to the semantic model

and if its semantics can be described by a finite number of rules it is easy to adopt

the specification language for the underlying verification tool.

Let us explain the last sentence by an example. Let us consider finite trans-

ition systems as our intended model. Many specification languages have a trans-

ition system based semantics, for example CCS ([Mil89]), CSP ([Hoa85]), LOTOS

([BB89]) or the π-calculus ([MPW93]). Note that LOTOS includes the specific-

ation of values and the π-calculus supports specifying mobility of processes. As

model checking works on the semantics of the specified system rather than on the

specification one can abstract for model checking from the underlying process al-

gebra as long as a semantic function can be provided yielding the semantic model

in some internal representation. Concerning visualisation, usually the specified

model (transition system) is shown rather than the specification. Hence, from
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the tool builder’s perspective, a modification of the underlying process algebra

means changing the parser and some kind of semantic function.

Moreover, in a wide range of cases the semantics of the specification language

can be described in a uniform way. For example, the languages mentioned above

have in common that their semantics can be denoted by SOS-rules [Plo81]. This

opens the possibility to develop more generic verification tools. Instead of de-

veloping a parser and a corresponding semantic function one develops a process

algebra compiler reading a process algebra description consisting of a specification

of the syntax of the process algebra and its semantics denoted via SOS-rules. The

process algebra compiler generates a front end for the verification tool consisting

of a parser and a corresponding semantic function according to the SOS-rules.

These functions are linked to the rest of the verification tool and that’s it. This

approach was studied in [CMS95] where details of the design can be found. It was

shown that applying this technique even efficient tools can be generated. Figure

4 gives a schematic overview of a process algebra compiler.

Currently, we are extending this approach to a wider class of specification

languages by mentioning a uniform operational semantics for concurrent systems

covering more cases than these where SOS-rules are applicable. This approach

will be implemented for the verification tool Truth.

When we concentrate on transition system based semantics we conclude by

emphasising that from the tool builder’s perspective already today the adoption

of new specification languages or the modification of languages can be handled in

more or less inexpensive way by developing generic tools. Hence, usually you will

develop a generic tool with a some specification language and will modify your

language during the employment of the tool due to the needs of the user and the

underlying system to be specified.
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5.1 State of the implementation

As a first choice we implemented CCS support for Truth. This choice was mo-

tivated mainly by the number of existing CCS specifications which are available.

By supporting CCS specifications in Truth we were able to access a big number

of test specifications and to compare the performance of Truth to that of other

existing tools.

There are three major constraints on the implementation of the CCS com-

ponent our implementation had to meet:

1. The influence of the choice of CCS as specification language has to be

minimised.

2. To get an efficient tool, the calculation of the successor relation of process

terms had to be as fast as possible.

3. The size of the term representation has to be as small as possible.

In the remaining part of this section we desribe the measures we undertook

to meet these three goals.

5.1.1 Minimising the influence

As the choice of the specification language is highly dependent on the problem

domain and the system to be specified, number 1 has the highest priority. For-

tunately 1 is also easy to meet since most specification languages use the same

abstractions. System states are desribed by terms in some specification formal-

ism. These terms fully describe the global state of the system. From this state

susccessor states can be generated which again are described by terms.

Using this abstraction it is easy to derive a general interface which most spe-

cification formalism can easily be fitted into. We only require the implementation

of the specific specification formalism to supply basic types Process and Action

together with two storage types (ProcEnv, ActEnv) which capture the definitions

read from an input file.

Except from some functions for parsing and printing of definitions as well as

for reading and writing the storage types the implementation only has to provide
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a single function (transitions) which maps as Process two its successors ac-

cording to the transition function of the specification formalism.

This interface seems simple enough that it can be filled by an automatically

generated module which could be provided by a process algebra compiler.

5.1.2 Towards an efficient implementation

To meet goal number 2, transitions does not simply have the type

transitions::ProcEnv -> Process -> [(Action,[Process])]

but a type which is slightly more complicated:

transitions:: ProcEnv -> Process -> ProcSuccsHT s -> SST s ProcSuccs

We add a hash table to the arguments of the function. This hash table is used

to store computations of successors of process terms which have been performed

at an earlier time. To use an efficient implementation of a hash table we have to

embed the comutation into a state monad, hence the strange return type SST s

ProcSuccs.

Yet the additional complexity of adding the hash table proves to make the

calculation of the successor relation much more efficient as is shown by the fig-

ures in the following table show. They state the time Truth took to generate

the whole transition systems induced by various examples. We considered the

following examples:

Knuth An solution of the mutual exclusion problem by Knuth.

802 A part of the implementation of the data link control layer according

to the IEEE 802.2 standard.

Mailer A specification of an email system which has been used at the Edin-

burgh university.

ATM A specification of the connect phase of two ATM switches.

3LN Three instances of the alternating bit protocol forming a single chan-

nel.

We tested five different generation algorithms/tools:
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Naiv Hash H/F NCSU CWB

Knuth 0.28 s 0.27 s 0.28 s 0.33 s 0.80 s

802 0.58 s 0.47 s 0.43 s 0.63 s 2.20 s

Mailer 3.31 s 3.35 s 1.60 s 3.48 s 4.24 s

ATM 4.84 s 13.15 s 1.41 s 3.54 s 2.50 s

3LN 131.43 s 94.21 s 52.22 s 59.07 s 74.50 s

Table 1: Runtime of LTS geneation

Naiv A simple implementation without the use of hash tables to store

precalculated successors.

Hash The algorithm with hashing.

H/F The algorithm with hashing and tree flattening, an additional optim-

isation which will be described later on.

NCSU The NCSU concurrency workbench.

CWB The Edinburgh concurrency workbench, version 7.1β.

The test were run on an Ultra Sparc station running Solaris 2.5 with 512 MB

of main memory.

Tree flattening was introduced into the algorithm after we noted that in cer-

tain cases hashing actually slowed down the generation of transition systems

down. An inspection of the runnig program with a profiler showed, that Truth

spent most of its time comparing process terms to solve clashes of the hash func-

tion. This was especially slow in the presence of big relabelings and restrictions.

Tree flattening allows to speed up this task significantly and leads to the good

runtimes shown in the column labelled H/F.

5.1.3 Space issues

Also memory consuption of the algorithms are an important property. We tested

the memory consumption of Truth with the same examples. The results are

shown in the following table. Unfortunately it was not possible to get exact

values for the memory consumption of the concurrency workbenches since the

ML runtime system (both were implemented using ML) does not allow for an

easy extraction of those values. The figures shown for Truth are the maximum
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Naiv Hash NCSU CWB

Knuth 0.5 MB 1.12 MB - -

802 0.56 MB 1.34 MB - -

Mailer 1.16 MB 3.14 MB - -

ATM 1.47 MB 2.25 MB - -

3LN 15.04 MB 30.78 MB 47.8 MB 148.5 MB

Table 2: Memory consumption of LTS generation.

heap resedency, i. e. the largest sice of the heap after a garbage collection. The

figures for NCSU and CWB are the maximum size of the UNIX process.

As can easily be seen, hashing about doubles the memory consumption of the

algorithm. This is due to the large memory consumption of the hash table itself.

Still our implementation performs very well when compared to the concurrency

workbenches. Tree flattening does not significantly change the memory demand

of the algorithm hence it is not shown sperately in the table.

6 Specification Logics

Recall from Section 2 that in the model checking approach for verification the

properties to be checked are expressed as logical formulas. Typical properties are

safety, liveness and fairness properties [Eme96].

A safety property denotes that some “good” property ϕ always holds. Safety

properties are important for critical systems.

Liveness formulas describe that some property ϕ will always have the possib-

ility to hold sometime. For example, regardless which state a server reaches it

should always have the possible to reach a state where it accepts a new request.

Fairness properties describe that the behaviour of the system is fair wrt.

resources or processes. There are several notions of fairness, e.g., some property

ϕ holds infinitely often for every execution which is also called unconditional

fairness.

Properties are usually expressed using temporal logics [Sti96]. It is clear, that

the semantics of the logic has to be in some sense according to the semantic
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model. Hence, there are several logics depending on the (system) model.

Furthermore, logical formulas usually describe the behaviour of the system.

Hence, given the system model one has the freedom to define what he understands

by its behaviour. For example, in the case of transition systems, the behaviour

of the system can be understood by a set of all possible runs of the system or

by a tree in which every path denotes a run of the system depending on whether

you prefer a linear behaviour model or a branching behaviour model.

Moreover, similar to the case of specification languages, there are several logics

which are interpreted over the same class of models differing in expressiveness and

complexity of the model checking problem.

For transitions systems, the most important logics are LTL ([OA85]), CTL

and CTL* ([ES88]) and the µ-calculus ([Koz83],[Eme97]).

Linear Time temporal Logic (LTL) is interpreted over the linear behaviour

model generated by the underlying transition system. Hence, a formula describes

a property of a single run of the system. To determine a property of the system,

one usually identifies the system with all possible runs of the system and looks

for a run not satisfying the property. The system fulfils the property whether

or not such a run could be found. Errors in the design can easily be visualised

because if a property is not valid a run must exist which violates the property.

Presenting this run, the user can understand the wrong behaviour of the system.

Safety properties can easily be expressed in LTL. For liveness and fairness the

situation is more difficult. Suppose that a system can evolve in some state q and

then can but needn’t reach a state q′. This means that a corresponding safety

property is satisfied. However, if one looks at every sequential run of the system

one can observe runs where q is followed by q′ and runs where q is not followed

by q′. As in linear time models one only speaks about all or no runs this property

can’t be expressed in LTL. Also, some notions of fairness can’t be expressed for

the same reasons.

Computation Tree Logic (CTL) and CTL*, an extension of CTL, are inter-

preted over the branching behaviour model generated by the system. Hence, a

formula describes a property of the whole tree of computations of the system.

However, via the modalities of the logic several paths can be selected. The visu-

alisation of errors is more complicated because an error identifies a subtree of

the tree of all executions violating a certain property, but neither a tree nor its
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Figure 5: Expressiveness of logics

contained runs are easy to visualise. However, visualisation is possible in an in-

teractive way if a certain model checking technique is used. This is described in

the next subsection. It is easy to express safety and liveness formulas in CTL.

However, CTL is relatively simple, e.g., unconditional fairness is not expressible

but it is expressible in CTL*.

The µ-calculus, however, is interpreted directly over the transition system

(the system model). It is a fixpoint logic describing sets of states with a certain

property. Usually one considers a property ϕ to be satisfied by the system iff

the initial state of the system has the property ϕ, hence, iff the initial state

is a member of the set of states satisfying ϕ. To define sets of states, least

fixpoints and greatest fixpoint modal quantifiers can be used. The µ-calculus is

a very expressive logic and several sub logics, denoted by Lµk depending on the

alternation depth of fixed points k, are studied. Intuitively, the alternation depth

refers to the depth of nesting of alternating least and greatest fixpoint quantifiers.

It can be shown that formulas of LTL and CTL can be transformed into formulas

of Lµ1 exponential and linear (respectively) in the size of the original formula.

CTL* formulas can be transformed into Lµ2 formulas. In [Bra96] it was shown,

that the hierarchy Lµk for k ∈ IN is strict for infinite models, i.e., at least for

infinite models, more alternation leads to more expressive power.

Figure 5 summarises the expressiveness results mentioned above. However,
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logic complexity class time complexity of known algorithms

LTL PSPACE complete O(|M| · exp(|ϕ|))

CTL P complete O(|M| · |ϕ|)

CTL* PSPACE complete O(|M| · exp(|ϕ|))

Lµk NP ∩ co-NP (|M| · |ϕ|)O(k)

Table 3: Complexity of logics

expressiveness can’t be considered isolated from the complexity of the model

checking problem. Intuitively, it is clear that more expressiveness leads to a higher

complexity. Table 3 (taken from [Eme96]) gives an overview of the complexity

for the model checking problem for the logics described above. The underlying

transition system is denoted by M and the property by ϕ. We see that known

model checking procedures for the full µ-calculus are exponential in the size of

the alternation depth. Hence, the expressive power is paid by a high complexity.

While this is true also for CTL*, experience shows that typical4 CTL and CTL*

formulas are usually shorter than equivalent µ-calculus formulas. However, we

think that in a verification tool the implementation of two algorithms would

be the best idea, a fast algorithm for CTL formulas and one for the µ-calculus

since most typical formulas are expressible in CTL and CTL* formulas can be

translated to formulas of the µ-calculus. In this way nearly every logic is easily

supported.

6.1 Model Checking

Model checking answers the question whether a given formula is satisfied by the

specified model. A simple answer whether a formula is valid or not is enough in

theory. However, from the tool builder’s perspective, the way of determining the

answer needs to be considered, too. Two important attributes for model checking

algorithms can be discussed, global or local model checking and its underlying

mathematical theory.

4in the context of verification
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6.1.1 Global versus Local Model Checking

The general question for model checking is whether some kind of initial state

of a system satisfies a given formula ϕ. Of course, the answer depends on the

specified system (at least if we restrict to interesting formulas). Hence, one way

to answer the question is:

1. read specification

2. generate model (e.g., a transition system)

3. determine semantics of formula and check whether it is satisfied or not

This approach is called global model checking because the model checking

algorithm works on the total system. But for the verification of large systems

this has a big drawback, the whole system has to be kept in memory. Often,

formulas speak only of parts of the system, such as if the system reaches some

state q than later on it will reach a state q′. Hence, if a system can evolve in q

only states which are reachable from q must be considered.

In the local model checking approach the underlying system is constructed on

demand. While in the worst case also the total system has to be generated and

to be kept in memory, in the average case parts of the system suffice. In this

way, even systems to large to be kept in memory can be analysed and (partly)

debugged.

Hence, local model checking algorithms should be preferred for verification

tools. For the logics mentioned above 6 local model checking algorithms exist

[GPVW95, BC96, SW91, Sti95, Sti97].

6.1.2 Theoretical basis of model checking algorithms

Three approaches for model checking algorithms can be distinguished

• automata based

• tableau based

• game based
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Automata based The underlying system M is transformed into a correspond-

ing automaton AM accepting all behaviours of the system. The property ϕ is

negated and an automaton A¬ϕ is constructed accepting all satisfying models of

¬ϕ. Next, the intersection automaton AM∩¬ϕ of AM and A¬ϕ is constructed. If

the language accepted by AM∩¬ϕ is not empty there is a behaviour of the sys-

tem satisfying ¬ϕ, hence, violating ϕ. In this way, model checking is reduced to

automata theory.

For interleaving system models, if the intended behaviour model is a linear

model, the corresponding automaton is a (Büchi) automaton over words and if

the intended model is a branching behaviour model the corresponding automaton

will be a tree automaton.

The advantage of the automata based approach is that the automata AM∩¬ϕ,

AM and A¬ϕ can usually be constructed on demand while testing the emptiness

of the language of AM∩¬ϕ. Hence, the arising algorithms are local.

Furthermore, if the behaviour model is linear and the formula is not satisfied

every word in the language of AM∩¬ϕ is a counterexample and can be shown

to the user. While an analogon is also true for branching models it is much

more difficult to visualise a tree. Note that this method is only applicable iff the

satisfiability problem for the logic is decidable because a formula ϕ is satisfiable

iff the language of Aϕ is not empty. Automata based model checking algorithms

are described in [Var96] (for LTL) and in [VBW94] (for CTL).

Tableau based Tableaus are usually used to show the satisfiability of formulas.

One tries to construct a tree with good leafs corresponding to a given formula

according to the tableau rules. If such a tree exists, the formula is satisfiable

[Fit93].

For model checking the tableau rules are modified to take the corresponding

system under consideration. In this way, a good tableau is constructed iff the

formula is satisfied by the specified model.

Tableau based model checking algorithms are usually local model checking

algorithms because the root of the tree is formed by the formula and the initial

state of the system. While constructing the tree further states of the system are

generated. Furthermore, as the tree is build in a depth first manner only one

path has to be kept in memory at a time.
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For the visualisation, similar restrictions as in the case of automata hold, since

it is not clear how describe that there is no good tree. A tableau based model

checking algorithm for CTL is described in [Eme96], one for the µ-calculus is

described in [Cle90].

Game based In the game based approach, the board of the game is build upon

the formula and the system and is played by two players, Player I and Player II.

Player I tries to show that the formula is not valid while Player II tries to show

the contrary. One of the two players has a winning strategy, that means he can

win the game regardless of how the other plays. Of course, Player I has a winning

strategy if and only if the formula is satisfied by the transition system. Hence,

the job of a model checking algorithm based on games is to check which player

has a winning strategy.

Usually the game based approach yields a local algorithm since the game

starts in a state corresponding to the formula and the initial state of the system.

While trying different moves the system is generated.

The game based approach has some advantages. First we think that it is easier

to understand than the other approaches. Furthermore, regardless whether the

formula is satisfied or not, a winning strategy is found and can be used to explain

why a formula is valid or not. If the user doesn’t believe the tool he can analyse

the specified system wrt. the formula while playing against the tool. Although if

he will loose he will understand why.

The game based approach and a model checking algorithm for the µ-calculus

are described in [Sti97] and are implemented in the current version of the CWB.

6.2 State of the implementation

At the moment we are working on the implementation of a game based model

checking algorithm and to implement this algorithm in Truth along with the

possibility to play games against Truth in a graphical way. Until this is finished,

Truth is using a tableau based model checking algorithm derived from the al-

gorithm described in [Cle90]. It is a local algorithm which brings the advantages

described earlier in this section.

We have run several test to compare our implementation to several existing
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Truth NCSU CWB

Φ1 73.16 s 34.78 MB 64.99 s 147.49 MB 75.54 s 153.30 MB

Φ2 0.11 s 0.48 MB 67.91 s 148.87 MB 0.13 s -

Φ3 598.52 s 133.55 MB 73.66 s 151.12 MB 99.37 s 196.82 MB

Φ4 187.82 s 92.50 MB 78.23 s 148.43 MB 87.76 s 180.13 MB

Φ5 0.14 s 0.47 MB 85.72 s 155.62 MB 0.12 s -

Φ6 out of mem. - n.a. n.a. 0.16 s -

Table 4: Runtimes of the model checker

tools. Some results of these test are shown below. Several formulae were tested

over the 3LN transitions system. Φ6 lies outside the fragment of the µ-calculus

the NCSU concurrency workbench can handle hence we could not test the per-

formance in this case.

It is clear to see that local algorithms sometimes have a much smaller runtime

then the global one of the NCSU concurrency workbench. This is especially obvi-

ous in the case Φ5 where both Truth and CWB only take fragments of a second

to come up with an answer while the NCSU concurrency workbench takes more

then a minute. It is also obvious that the game based model checking algorithm

CWB uses is inferior to the tableau based algorithm currently implemented in

Truth. This is reason we are working on an implementation of a game based

model checking algorithm in Truth.

7 An example: The alternating bit protocol

This last section will give an example of the application of Truth to a small

specifiaction. It will give you a quick start to use Truth as a verification system.

Network protocols are typical examples for concurrent systems. A whole

class of protocols deals with tranmission of data using unreliable channels. An

unreliable channel may loose message, duplicate or corrupt them.

In our example we consider channels which guarantee a single transmission of

any message, yet they may corrupt the message during the transmission. Things

are even more complicated by the fact that also the chanell use to send acknow-

ledgements may corrupt these messages.
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A well-known example for transmission over such channels is the alternating

bit protocol [Mil89], short ABP. It uses a single bit to control transmission in a

way that initiates a retransmisson of the last message in case of an error.

The two channels are modelled using CCS in the following manner:

K = sendreq0.(send0.K + send⊥.K) + sendreq1.(send1.K + send⊥.K)

L = ackreq0.(ack0.L + ack⊥.L) + ackreq1.(ack1.L + ack⊥.L)

After receiving a sendreqi message, K can either transmit this message and

perform a sendi action. It may also corrupt the message and transmit a send⊥.

L is modelled analogously.

This example nicely shows how we abstract from the original system. Neither

the content of the messages is modelled nor the error detection mechanism. This

has no influence on the protocol and hence is not taken into account.

Sender and receiver use this single bit to ensure correct transmission even

in case of errors. The specification of the sender and the receiver is a bit more

complicated. It is shown in Figure 7 using the Truth syntax for CCS. A schem-

atic view of the system can be found in Figure 6. Sender and receiver use the

actions input and output to communicate with the world to accept messages for

transmission and to signal the correct transmission of a message.

In addition to the specification we want to define some properties the system

should satisfy. These must be stated as formulae of the µ-calculus for Truth.

A usual requirement for a concurrent system is, that it will never reach a

deadlock state, i. e. a state in which the system cannot perform any more

actions. A formula which states that there is no reachable state in which outgoing

transitions exist, is for example:

NoDeadlock := AG(〈−〉tt) ≡ νX.〈−〉tt ∧ [−]X

The ABP will contain a livelock situation if there is a reachable state of the

system from which there exists an infinite path which is labelled only with τ

actions. A formula stating that no such state exists is for example

NoLivelock := AG(¬νX.〈τ〉X)

The ABP can accept messages for transmission if it can perform an input

step or if there is a finite sequence of τ steps which lead to a state in which an
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Figure 6: A schematic view of the ABP

input step is possible.

CanInput := µX.〈input〉tt ∨ 〈τ〉X

Analogously we can express that the system can output a message.

CanOutput := µX.〈output〉tt ∨ 〈τ〉X

The system is working if at any time one of the above formulae holds.

Operating := AG(CanInput ∨ CanOutput)

Another important property is, that no message is output twice.

NoRepeat := AG([input]¬CanInput ∧ [output]¬CanOutput)

In Truth the according formulae have the following syntax:

prop AG(P) = max X.P && [-]X

prop NoDeadlock = AG(<->tt)
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def ABP = (Sender | K | L | Receiver) \ Internal

def Sender = S_0

def S_0 = ’input.S_0’

def S_1 = ’input.S_1’

def S_0’ = sendreq_0.S_0’’

def S_1’ = sendreq_1.S_1’’

def S_0’’ = ’ack_0.S_1 + ’ack_1.S_0’ + ’ack_bottom.S_0’

def S_1’’ = ’ack_1.S_0 + ’ack_0.S_1’ + ’ack_bottom.S_1’

def Receiver = R_0

def R_0 = ’send_0.output.ackreq_0.R_1

+ ’send_1.ackreq_1.R_0

+ ’send_bottom.ackreq_1.R_0

def R_1 = ’send_1.output.ackreq_1.R_0

+ ’send_0.ackreq_0.R_1

+ ’send_bottom.ackreq_0.R_1

def K = ’sendreq_0.(send_0.K + send_bottom.K)

+ ’sendreq_1.(send_1.K + send_bottom.K)

def L = ’ackreq_0.(ack_0.L + ack_bottom.L)

+ ’ackreq_1.(ack_1.L + ack_bottom.L)

def Internal = { sendreq_0, sendreq_1, send_0, send_1, send_bottom,

ackreq_0, ackreq_1, ack_0, ack_1, ack_bottom }

Figure 7: The specification of the ABP
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prop NoLivelock = AG(max X.<tau>X)

prop CanInput = min Y.<’input>tt || <tau>Y

prop CanOutput = min Y.<output>tt || <tau>Y

prop Operating = AG (CanInput() || CanOutput())

prop NoRepeat = AG ([’input](~CanInput()) || [output](~CanOutput()))

Consider these definitions in a file ”abp”. The following is an example session

with Truth.

________________
/ / Lehrstuhl II fuer Informatik ___ ___

And /_____ _____/ RWTH Aachen / / / /
/ / ____ __ __ _______ / / / /

nothing / / / _ \ / / / / /__ __/ / /____/ /
/ / / |_| | / / / / / / / /

but / / / _ _/ / / / / / / / _____ /
/ / / / | | / / / / / / / / / /

the / / / / | | / \__/ / / / / / / /
/____/ /_/ |_| \______/ /_/ /__/ /__/ 0.9

Martin Lange, Martin Leucker, Stephan Tobies

(Version 0.9 --- February 1998) - ENJOY!

truth> file abp

Truth comes up with a status message and prompts for an input. By typing

”file abp” the file with the definitions is loaded into the system.

truth> size ABP

The process ABP has 23 states and 28 transitions.

The command size gives a first idea of the size of the specified system. With 23

states we are dealing with a very small system.

truth> plot Sender

truth> plot K

truth> plot ABP

The command plot creates an output of the transition systems which are induced

by the different process terms. Transition systems are displayed using the daVinci

graph visualization tool. An example of these outputs can be found in Figure 8

and 9.

The tableau based model checker is initiated with the command tab. Testing

the various formulae yields the follwing output.
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Figure 8: Output of transition systems with daVinci

truth> tab ABP NoDeadlock

TRUE, the process satisfies the formula

truth> tab ABP NoLivelock

FALSE, the process does not satisfy the formula

truth> tab ABP Operating

TRUE, the process satisfies the formula

truth> tab ABP NoRepeat

TRUE, the process satisfies the formula

The model checker states that NoLivelock is not satisfied by ABP . A quick

examination with the graphical simulation confirms this. Before starting the

simulation we divide ABP into sperately watched agents using ”#” as a a parallel

composition operator which indicates the units of this decomposition.

truth> def SimABP = (Sender # K # L # Receiver) \ Internal
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ci
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tau

tau

tau

’input

(S_0 | K | L | R_0)\Internal

tau

(S_1’’ | (send_1.K + send_bottom.K) | L | R_0)\Internal

tau

(S_1’ | K | L | R_0)\Internal

tau

(S_1’’ | K | (ack_1.L + ack_bottom.L) | R_0)\Internal

tau

(S_1’’ | K | L | ackreq_1.R_0)\Internal

output

(S_1’’ | K | L | output.ackreq_1.R_0)\Internal

tau

(S_1’’ | K | (ack_0.L + ack_bottom.L) | R_1)\Internal

tau

(S_1’’ | K | L | ackreq_0.R_1)\Internal

tau

(S_1’’ | (send_1.K + send_bottom.K) | L | R_1)\Internal

tau

(S_1’ | K | L | R_1)\Internal

’input

(S_1 | K | L | R_1)\Internal

tau

(S_0’’ | (send_0.K + send_bottom.K) | L | R_1)\Internal

tau

(S_0’ | K | L | R_1)\Internal

tau

(S_0’’ | K | (ack_0.L + ack_bottom.L) | R_1)\Internal

tau

(S_0’’ | K | L | ackreq_0.R_1)\Internal

output

(S_0’’ | K | L | output.ackreq_0.R_1)\Internal

tau

tautau

(S_0’’ | (send_0.K + send_bottom.K) | L | R_0)\Internal

tau

(S_0’ | K | L | R_0)\Internal

tau

(S_0’’ | K | (ack_1.L + ack_bottom.L) | R_0)\Internal

tau

(S_0’’ | K | L | ackreq_1.R_0)\Internal

tau

(S_0’’ | (send_0.K + send_bottom.K) | L | Receiver)\Internal

tau

(S_0’ | K | L | Receiver)\Internal

’input

ABP

Figure 9: The ABP transition system
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truth> sim SimABP

Figure 10: Simulation of the ABP

If a channel always corrupt the transmitted message this will lead to a τ cycle.

Figure 7 shows this cycle. In the bottom row the system has the same state as

in row 2. The system now may perform this cycle infinitely often.
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Some additional commands which are very helpful are:

clear Reset Truth

deadlocks name Find deadlocks in system name

help Display all commands.

ls name Show binding for identifier name.

lsa Show all bindings.

output filename Redirect all output to a file named filename. Ctrl-D will

finish the redirection.

quit Exit Truth

save filename Save all binding to a file named filename.

timing Toggles the timing of the execution of commands.

8 Conclusion and Future Work

The aim of this paper was to give an overview of the design and implementation

of the verification tool Truth. We described the general concept for verification

based on model checking. We pointed out that there are three main fundamental

parameters for verification tools, the model, the specification language and the

logic.

It was explained that the current model for concurrency which is usually

employed (transition system) lacks fundamental requirements to improve verific-

ation techniques, that is, memory efficient description and adequate visualisation

of the system. Hence, we encourage the research towards noninterleaving system

models, corresponding specification languages and logics. However, we pointed

out, why Truth uses this classical model and how we tried to overcome these

deficitioncies.

We gave a brief overview about the specification language employed in Truth

and how its implementation is captured by single module. As there are many

specification languages we proposed to build generic verification tools which can

easily be modified to support changes in the specification formalism. This is

(partly) achieved by the modular design of Truth it will be easy to ingerate

different specification languages. Currently, a specification language compiler

is under development, generating from a specification language description the

adaequate Haskell module substituting the CCS module. As soon as this compiler

37



is available, we will achieve an enormous flexibilyty wrt. to the specification

language.

We presented some techniques we used to get a very flexible yet quite efficient

implementation which can compete with existing implementations of verification

tools. However, currently we are replacing the purely Haskell based implement-

ation by an implementation which will use BDDs to store transition systems in a

much less memory intensive manner. The Greencard foreign language interface

enables us to access an existing, very effient BDD implementation in C.

Finally we discussed several logics suitable for transition system based se-

mantics which are well known for the formulation of interesting properties wrt.

concurrent systems. Furthermore, we gave an outline of several approaches for

model checking and explained that the game based approach should be preferred

due to its teaching capabilities. At the moment, we are working on a game based

algorithm which will be implemented in the near future.

We conclude by emphasing that Truth is far from being complete. However,

as described above, much work is done to enlarge its features and to make it an

easy to use and valuable tool for verification.
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