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1 Introduction

Description logics (DLs) and corresponding DL systems can be used to represent the termino-

logical knowledge of a problem domain in a structured and well-de�ned way. Relevant concepts

of the domain are described by concept descriptions, which are formed from atomic concepts

(unary predicates) and roles (binary predicates) using concept forming operators provided by

the DL. One of the most important inference services of a DL system is to arrange the repre-

sented concepts of the domain in a superconcept/subconcept hierarchy. This reasoning task is

based on the subsumption relation between concept descriptions. Intuitively, a concept D sub-

sumes a concept C if the set of individuals represented by D is a superset of the one represented

by C.

In the literature several approaches to subsumption have been investigated (see [DLNS96]

for an overview). In order to decide subsumption for very expressive languages we can em-

ploy tableaux-based algorithms [BBH94, BS96]. The automata theoretic approach has been

proposed in order to gain a more profound understanding of the semantics as well as the sub-

sumption relation in cyclic terminologies for rather small languages [Neb90, Baa96, K�us98]. On

the other hand, structural subsumption algorithms are e�cient methods for deciding subsump-

tion of concept descriptions that do not use full negation, disjunction or existential restrictions.

The structural subsumption algorithm employed by the system classic [BP94, CH94] is

based on a speci�c data structure for representing concept descriptions, called description

graphs. The idea behind is as follows: given two concepts C and D, we translate the concepts

into equivalent description graphs G

C

and G

D

. A normalization of G

C

yields the canonical

description graph

b

G

C

of C. Thereafter, one can decide C v D by a structural comparison of

b

G

C

and G

D

.

In this paper, we reuse the representation formalism `description graph' in order to charac-

terize subsumption of ALN -concepts. The description logic ALN allows for conjunction, value

restrictions, number restrictions, and primitive negation. Since Classic allows for more con-

structors than ALN , e.g., equality restrictions an attribute chains by the constructor SAME-AS,

we can con�ne the notion of description graphs from [BP94]. On the other hand, ALN explic-

itly allows for primitive negation which yields another possibility { besides conicting number

restrictions { to express inconsistency. Thus, we have to modify the notion of canonical de-

scription graphs in order to cope with inconsistent concepts in the structural characterization

of subsumption.
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It turns out that the description graphs obtained from ALN -concepts are in fact trees. A

canonical graph is a deterministic tree. The conditions required by the structural characteri-

zation of subsumption on these trees can be tested by an e�cient algorithm, i.e., we obtain an

algorithm deciding subsumption of C and D in time polynomial in the size of C and D.

The report is structured as follows. In the preliminaries, we de�ne syntax and semantics

of the description logic ALN as well as the inference problem of subsumption. In Section 3,

we introduce description graphs, the data structure our structural subsumption algorithm is

working on. Besides syntax and semantics also an algorithm for translating ALN -concepts

into description graphs is given. Thereafter, we present the main result of this report in

Section 6, a characterization of subsumption of ALN -concepts by a structural comparison of

corresponding description graphs. Furthermore, a structural subsumption algorithm can be

found in Section 6.2. In the last section we summarize our results and give an outlook to further

applications of structural subsumption in terminological knowledge representation systems.

2 Preliminaries

We �rst introduce syntax and semantics of the description logic ALN as well as the inference

problem of subsumption. Concept descriptions are inductively de�ned by means of a set C

of primitive concepts (unary predicates), a set R of role names (binary predicates), and a set

of constructors. The semantics of a concept description is also inductively de�ned whereby

primitive concepts are interpreted as subsets of a domain � and role names are interpreted as

binary relations on ���.

De�nition 1 (Syntax and Semantics).

Let C be a set of concept names and R a set of role names. ALN -concepts are inductively

de�ned as follows.

� P and :P are concepts for each P 2 C.

� Let C;D be concepts, R 2 R a role name and n 2 IN. Then

{ C uD (conjunction),

{ 8R:C (value restriction),

{ (� nR) and (�nR) (number restrictions)

are concepts as well.

Concepts of the form P or :P , P 2 C, are called literals. Literals and number restrictions are

called atomic concepts.

An interpretation I = (�; �

I

) exists of a set of individuals � and a function �

I

that maps

each concept name P 2 C to a subset P

I

� � and each role name R 2 R to a subset R

I

� ���.

The extension of �

I

to arbitrary ALN -concepts is inductively de�ned as shown in Table 1. The

constructor > describes the entire domain whereas ? represents the empty set. 3
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Syntax Semantics

> �

? ;

P P

I

� �

:P � n P

I

C uD C

I

\D

I

8R:C fx 2 � j 8y : (x; y) 2 R �! y 2 C

I

g

(�nR) fx 2 � j jfy j (x; y) 2 R

I

gj � ng

� nR fx 2 � j jfy j (x; y) 2 R

I

gj � ng

Table 1: Semantics of ALN -concepts

Notice that both constructors > and ? are expressible in ALN because of > � (� 0R) and

? � (P u :P ). W.l.o.g. we will use them only as abbriviations in some considerations and do

not allow for these constructors in ALN -concepts explicitly.

One of the most important inference tasks in description logics is computing the subsump-

tion relation between concepts, i.e., deciding the question if one concept is more speci�c than

another.

De�nition 2 (Subsumption for ALN ).

Let C;D be ALN -concepts.

D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent toD (for short C � D) i�C v D andD v C, i.e., C

I

= D

I

for all interpretations

I. 3

3 Syntax and semantics of description graphs

Description graphs were introduced in [BP94, CH94] for deciding subsumption of concepts

in the terminological knowledge representation system Classic. Classic allows for more

constructors than ALN , e.g., equality restrictions on attribute chains by the constructor SAME-

AS. Therefore, we con�ne the notion of description graphs presented in [CH94]. It will turn

out, that the description graph G

C

of an ALN -concept C is in fact a tree. But since we are

concerned with a sublanguage of Classic, we will reuse most of the notations from [BP94] and

[CH94].

Cohen and Hirsh introduce a labeling function l

E

for edges in a description graph. The

label l

E

(v; w;R) of an edge form v to w by the role name R is used to represent number

restrictions and individuals given by a FILLS-concept on a role R. Intuitively, the concept

(FILLS R A

1

: : : A

k

) denotes the set of all individuals x 2 � such that there exist k R-successors

y

1

; : : : ; y

k

of x with y

i

2 A

I

i

, 1 � i � k. For example, the set of all individuals who are employees

at IBM can be described by the Classic-concept (FILLS employer IBM).

ALN only allows for number restrictions on role names. Motivated by the alternative

approach to characterize subsumption forALN presented in [Baa96, K�us98] and the comparison

between both approaches [BKM98], we dispense with labeled edges. Instead, we allow for

number restrictions in the labels of nodes.
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De�nition 3 (Description Graph).

Let C be a set of concept names and R a set of role names. A description graph over C and R

is a tuple G = (V;E; v

0

; l) where V = fv

0

; : : : ; v

n

g is a set of nodes, E � V �R�V is a set of

edges and v

0

2 V is the root of G such that

� there exists no edge vRv

0

in E,

� for each v 2 V n fv

0

g exists exactly one v

0

2 V and exactly one R 2 R with v

0

Rv 2 E,

� each v 2 V is reachable from v

0

, i.e., it exists a path v

0

R

1

v

1

: : : v

n�1

R

n

v in E, and

� the label l(v) of a node v 2 V is a �nite set of atomic concepts, i.e., a �nite subset of the

set

C [ f:P j P 2 Cg [ f(�nR) j n 2 IN; R 2 Rg [ f(�nR) j n 2 IN; R 2 Rg:

3

In the sequel, we will use the following notions referring to paths and subgraphs.

Lit(v) := fP 2 C j P 2 l(v)g [ f:P j P 2 C;:B 2 l(v)g denotes the set of all literals in the

label of the node v 2 V . p = w

0

R

1

w

1

: : : w

n�1

R

n

w

n

is called path from w

0

to w

n

with label

W = R

1

: : : R

n

in G i� w

i�1

R

i

w

i

2 E for all 1 � i � n. p is called rooted path, if w

0

= v

0

, i.e., p

starts at the root of G. Gj

v

denotes the subgraph of G with root v 2 V , i.e., Gj

v

= (V

0

; E

0

; v; l

0

)

with V

0

:= fw 2 V j exists path from v to w in Gg, E

0

:= E\ (V

0

�R�V

0

), and l

0

(w) := l(w)

for w 2 V

0

. The size of a description graph G

C

= (V;E; v

0

; l) is de�ned as the sum of the

number of nodes and edges and the sum of the size of all labels, i.e.,

jG

C

j := jV j+ jEj+

X

v2V

jl(v)j:

After introducing the syntax of description graphs and thus the data structure our structural

subsumption algorithm is working on, we now have to de�ne the semantics: which set of

individuals G

I

is determined by a description graph G and an interpretation I.

De�nition 4 (Extension of Description Graphs).

Let I = (�; �

I

) be an interpretation of C and R, G = (V;E; v

0

; l) a description graph over C

and R.

The extension of a node v 2 V is recursively de�ned by x 2 v

I

i�

� x 2 P

I

for all P 2 l(v),

� x 62 P

I

for all :P 2 l(v),

� jfy j (x; y) 2 R

I

gj � n for all (�nR) 2 l(v),

� jfy j (x; y) 2 R

I

gj � n for all (�nR) 2 l(v), and

� for all vRv

0

2 E, for all y 2 � with (x; y) 2 R

I

it is y 2 v

0

I

.

The extension of G is de�ned as G

I

:= v

I

0

. 3
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Remark 5.

It is not hard to see that the �ve conditions in De�nition 4 are equivalent to x 2 v

I

i�

� x 2

T

C2l(v)

C

I

and

� for all (x; y) 2 R

I

it is y 2

T

1�i�n

v

I

i

, where fv

1

; : : : ; v

n

g is the set of all R-successors of

v in G.

3

In order to prove completeness of our structural characterization of subsumption we will

need the alternative characterization of the semantics of description graphs given in the next

lemma. Intuitively, each instance x of G must satisfy all restrictions given by the labels of

the nodes in G, i.e., each W -successor of x satis�es each atomic concept in the label l(v) of a

W -successor node v of v

0

.

Lemma 6.

Let I be an interpretation and G a description graph. Then x

0

2 G

I

i� for each rooted path

v

0

R

1

v

1

: : : v

n�1

R

n

v

n

in G and each (R

1

�: : :�R

n

)

I

-successor x

n

of x

0

in I it is x

n

2

T

C2l(v

n

)

C

I

.

Proof.

\)" Assume that there exists a rooted path v

0

R

1

v

1

: : : v

n�1

R

n

v

n

in G and an (R

1

�: : :� R

n

)

I

-

successor x

n

of x

0

with x

n

62

T

C2l(v

n

)

C

I

. Let (x

i�1

; x

i

) 2 R

I

i

for 1 � i � n. By Remark 5

it is x

n

62 v

I

n

and since (x

n�1

; x

n

) 2 R

I

n

also x

n�1

62 v

I

n�1

. Analogously, it follows x

i

62 v

I

i

for

0 � i < n� 1 which is a contradiction to x

0

2 G

I

= v

I

0

.

\(" By induction on the maximal role depth depth(G) of G, i.e., the length of the longest

rooted path in G, depth(G) := maxfjW j j exists a rooted path p with label W in Gg.

depth(G) = 0: There are no R-successors of v

0

in G that yield to a restriction on an x in G

I

.

So, x

0

2

T

C2l(v

0

)

C

I

implies x

0

2 G

I

.

depth(G) > 0: We have to show x

0

2

T

C2l(v

0

)

C

I

and for each v

0

R

1

v

1

in E and each (x

0

; x

1

) 2

R

I

1

it is x

1

2 v

I

1

.

The preconditions of Lemma 6 imply x

0

2

T

C2l(v

0

)

C

I

for n = 0, i.e., for the path v

0

of

length 0 in G. Furthermore, it follows that for each rooted path v

1

R

2

v

2

: : : v

n�1

R

n

v

n

in

Gj

v

1

and each (R

2

�: : :� R

n

)-successor x

n

of x

1

it is x

n

2

T

C2l(v

n

)

C

I

. By induction it is

x

1

2 (Gj

v

1

)

I

= v

I

1

. So, x

0

2 G

I

= v

I

0

.

2

We have introduced syntax and semantics of description graphs. Our aim is to use this

representation formalism to characterize subsumption of ALN -concepts. Therefore, we �rst

have to translate ALN -concepts into (equivalent) description graphs.
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Input: An ALN -concept C = P

1

u : : :uP

n

u:Q

1

u : : :u:Q

k

u (� �

1

S

1

)u : : :u (� �

l

S

l

)u (� �

1

T

1

)u

: : : u (��

r

T

r

) u 8R

1

:C

1

u : : : u 8R

m

:C

m

�

Output: The corresponding description graph G

C

= (V;E; v

0

; l)

jCj

8

= 0 : G

C

:= (fv

0

g; ;; v

0

; l) where

l(v

0

) := fP

1

; : : : ; P

n

;:Q

1

: : : ;:Q

k

(� �

1

S

1

); : : : ; (� �

l

S

l

); (��

1

T

1

); : : : ; (��

r

T

r

)g.

jCj

8

> 0 : Let G

C

i

= (V

i

; E

i

; v

0i

; l

V

i

) be the recursively de�ned description graph for C

i

; 1 � i � k

where w.l.o.g. the V

i

are pairwise disjoint and v

0

62

S

1�i�k

V

i

. G

C

:= (V;E; v

0

; l) is de�ned

by

� V := fv

0

g [

S

1�i�k

V

i

,

� E := fv

0

R

i

v

0i

j 1 � i � kg [

S

1�i�k

E

i

,

� l(v) :=

8

>

<

>

:

fP

1

; : : : ; P

n

;:Q

1

: : : ;:Q

k

;

(� �

1

S

1

); : : : ; (� �

l

S

l

); (��

1

T

r

); : : : ; (��

k

T

r

)g ; v = v

0

l

V

i

(v) ; v 2

S

1�i�k

V

i

Figure 1: Translating concepts into description graphs

4 Translating ALN -Concepts to Description Graphs

The translation of ALN -concepts into description graphs is formalized by the algorithm in

Figure 1. In the sequel, G

C

denotes the description graph of C where C is an ALN -concept and

G

C

is obtained from C by the algorithm in Figure 1.

The description graph of C is inductively de�ned. If C has role depth 0, i.e., there exists no

value-restriction in C, G

C

only consists of a root node labeled with the set of all subconcepts

of C. Otherwise, the description graph G

C

i

of each concept C

i

occuring in a top-level value-

restriction 8R

i

:C

i

in C is de�ned recursively. Thereafter, each such subgraph G

C

i

is appended

to the root node by an edge labeled R

i

.

Example 7.

In the sequel, we will use the ALN -concepts C and D to illustrate some notions and algorithms.

C = 8R:(P uQ u 8S > ((� 1S) u 8S:(Q u :Q))) u

8S:Q u 8S:(� 3S)

D = 8R:(P u 8S:Q) u

8S:(Q u (� 1S))

The description graphs of C and D, respectively, are depicted in Figure 2. 3

The translation is correct in the sense that the semantics of a concept is equal to the

extension of its description graph for all interpretations. Formally, we prove

Lemma 8 (Equivalence of concepts and description graphs).

Let C be an arbitrary ALN -concept and G

C

the description graph of C. Then C

I

= G

I

C

for all

interpretations I.
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S

v

3

: Q;:Q

R

G

D

:

S

w

1

: P

w

3

: Q; (� 1 S)

w

0

: ;

S

w

2

: Q

G

C

:

v

0

: ;

S

v

2

: (� 1S)

R

v

1

: P;Q

v

4

: Q

S

v

5

: (� 3 S)

S

Figure 2: The ALN -description graphs of C and D.

Proof.

By induction on the number of all-quanti�ers in C.

jCj

8

= 0 : Let I be an interpretation, x 2 �, G

C

= (fv

0

g; ;; v

0

; l) and

C = P

1

u : : :uP

n

u:Q

1

u : : :u:Q

k

u (� �

1

S

1

)u : : :u (� �

l

S

l

)u (� �

1

T

1

)u : : :u (��

r

T

r

):

As an easy consequence of the de�nitions of C

I

, G

C

and the extension of description

graphs it follows x 2 C

I

i� x 2 v

I

0

. So, C

I

= G

I

C

.

jCj

8

> 0 : Let I be an interpretation, x 2 �, G

C

= (V;E; v

0

; l) and

C = P

1

u : : : u P

n

u :Q

1

u : : : u :Q

k

u

(� �

1

S

1

) u : : : u (� �

l

S

l

) u (��

1

T

1

) u : : : u (��

r

T

r

)u

8R

1

:C

1

u : : : u 8R

m

:C

m

:

We have to show x 2 C

I

i� x 2 v

I

0

.

Since l(v

0

) = fP

1

; : : : ; P

n

;:Q

1

: : : ;:Q

k

; (� �

1

S

1

); : : : ; (� �

l

S

l

); (��

1

T

1

); : : : ; (��

r

T

r

)g,

it is

x 2

T

1�i�n

P

I

i

\

T

1�i�k

(:Q

i

)

I

\

T

1�i�l

(� �

i

S

i

)

I

\

T

1�i�r

(��

i

T

i

)

I

i� x 2

T

C

0

2l(v

0

)

C

0

I

(�)

Let x 2 (8R

i

:C

i

)

I

, (x; y) 2 R

I

i

. By de�nition of G

C

it exists w 2 V such that v

0

Rw 2 E

and w is the root of the recursively de�ned description graph for C

i

. It is jCj

8

> jC

i

j

8

and y 2 C

I

i

. It follows by induction y 2 G

C

i

. By (�) and since 8R

i

:C

i

in C and y have

been chosen arbitrarily it follows x 2 C

I

=) x 2 v

I

0

.

Conversely, let x 2 v

I

0

, v

0

Rw 2 E and (x; y) 2 R

I

. By de�nition of G

C

it exists 8R

i

:C

i

in

C such that R

i

= R and w is the root of the recursively de�ned description graph for C

i

.

It is jCj

8

> jC

i

j

8

and y 2 w

I

= G

I

C

i

. It follows by induction y 2 C

I

i

. By (�) and since

v

0

Rw in E and y have been chosen arbitrarily, it follows x 2 v

I

0

=) x 2 C

I

.

2

Notice that the size of the description graph G

C

of an ALN -concept C is linear in the length

of C.
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v

2

: Q

S

G:

v

0

: P v

1

: (� 0 S)

R

v

0

: P v

1

: (� 0 S)

R

b

G obtained from rule 4.:

Figure 3: Normalizing number restrictions of the form (� 0R).

5 Canonical Description Graphs

The subsumption test forALN -concepts C andD introduced in Section 6 is based on syntactical

conditions on the corresponding description graphs. To obtain a complete subsumption test,

we will need some normal form for the graph corresponding to C in order to abstain from

di�erent descriptions of equivalent concepts, e.g., 8R:(P u :P ) � (� 0R). More precisely, we

apply some normalization rules as long as possible to the description graph G

C

of the subsumee

C. The graph obtained this way is called canonical description graph of C and is used in the

structural comparison with G

D

.

The normalization rules for ALN -description graphs are summarized in Figure 4. These

rules can be divided into three groups.

The �rst group consists only of rule 1 and is based on the equivalence 8R:C u 8R:D �

8R:(CuD). Its application merges several di�erent R-successors of a node v to one R-successor

of v. This leads to a deterministic description graph.

The second group of rules (the rules 2, 3, 4, and 5) copes with nodes labeled by inconsistent

sets, i.e., nodes v with fP;:Pg � l(v) or f(� l S); (� r S)g � l(v), l > r. Intuitively speaking,

nodes labeled by inconsistent sets and the edges leading to these nodes are removed. In addition,

if there was an edge labeled R from node v to the inconsistent node, the label of v is extended

by (� 0R). This is due to the equivalence 8R:? � (� 0R), i.e., if each R-successor must satisfy

the empty concept ?, there is at least no R-successor. For the same reason, we have to remove

each subgraph with root v if the label of the R-predecessor of v contains (� 0R).

For example, in the description graph of P u 8R:((� 0S) u 8S:Q), the RS-successor of the

root is removed because the R-successor node is labeled by f(� 0S)g (see Figure 3).

If the root v

0

is labeled by an inconsistent set, then the whole concept is inconsistent. In

this case, we remove all nodes except the root and all edges and label v

0

by ? (rule 5).

The last group of rules ensure that the canonical description graph of an ALN -concept is

unique. Therefore, we have to deal with number restrictions (rules 6 and 7) and with the

equivalences 8R:> � > and (� 0R) � >. The concept > corresponds to the empty label.

For example, the description graph G = (fv

0

; v

1

g; fv

0

Rv

1

g; v

0

; l) with l(v

0

) = l(v

1

) = ;

corresponds to 8R:>. Notice that though we do not allow for the constructor > explicitely, a

graph similar to G may occur after applying Rule 8.

By rules 8 and 9 we remove all concepts of the form (� 0R) and all leaves in the graph

labeled with ;. Furthermore, using (�nR) v (�mR) i� n � m and (�nR) v (�mR) i�

n � m, we can reduce all �-restrictions and all �-restrictions for an R 2 R to one �-restriction

and one �-restriction, respectively, in the label of a node v (rules 6 and 7).
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As an easy consequence of the preconditions of the normalization rules it follows that jGj >

jG

0

j if G

0

is obtained from G by one of the rules. Therefore, each iterated application of the rules

to an ALN -description graph terminates. Furthermore, since each normalization rule is based

on an equivalence between concept descriptions, e.g., (�mR)u (�nR) � (�maxfn;mgR), it

is not hard to see that the rules are sound. Formally, we can prove

Lemma 9.

1. The normalization rules in Figure 4 are sound, i.e., if G

0

is obtained from G by applying one

of the rules then G

0

I

= G

I

for all interpretations I.

2. Every iterated application of the rules to a given description graph G terminates. 2

Thus, the normalization rules lead to an equivalent, role based normal form for ALN -

concepts that will be used by the structural subsumption test.

De�nition 10 (Canonical description graphs).

Let C be an ALN -concept description and G

C

the description graph of C. The canonical

description graph of G

C

is de�ned as the description graph

b

G

C

that is obtained from G

C

by an

iterated application of the normalization rules in Figure 4 such that no rule is applicable to

b

G

C

.

3

Example 11 (continuous Example 7).

Consider the description graph G

C

= (V;E; v

0

; l) of C in Figure 2. First, G

C

is made determin-

istic by merging the two S-successors v

4

; v

5

to one S-successor of v

0

labeled with fQ; (� 3S)g.

Because of fQ;:Qg � l(v

3

), the node v

3

and the edge v

2

Sv

3

are removed, and (� 0S) is added

to the label of v

2

. Now, v

2

is labeled with f(� 1 S); (� 0 S)g, which is again inconsistent.

Consequently, it is removed, and (� 0S) is added to the label of the S-predecessor node v

1

.

The description graph obtained this way is depicted in Figure 5. 3

In the next section we give a characterization of subsumption of two ALN -concepts C and

D by means of a structural comparison of the corresponding description graphs. We introduced

canonical description graphs in order to cope with inconsistencies occuring in the subsumee C.

On the other hand, since > is expressible in ALN by (� 0R), concepts equivalent to >, e.g.,

8S:(� 0R), must be taken into account.

It is easy to see, that D is equivalent to > i� each atomic concept D

0

in the labels of the

nodes in G

D

is of the form (� 0R). Intuitively, if there is an atomic concept D

0

in G

D

not

of the form (� 0R), then there is at most one non-trivial restriction to an instance of D and

therefore, D is not equivalent to >.

In order to decide D � >, we can apply the normalization rules 8. and 9. from Figure 4 as

long as possible to the description graph G

D

. Let G

0

D

be the description graph obtained this

way. Now, it is D � > i� G

0

D

= (fv

0

g; ;; v

0

; l

0

) with l

0

(v

0

) = ;.

Consequently, D � > can be decided in time polynomial in the size of D. In order to

simplify the structural characterization of subsumption as well as the presentation of our struc-

tural subsumption algorithm, we assume that no subconcept of the form (� 0R) occurs in the

subsumer D. Thus, w.l.o.g. we reduce our attention to subsumers that are not equivalent to >.
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Let G = (V;E; v

0

; l) be a description graph. G

0

= (V

0

; E

0

; v

0

; l

0

) denotes the description graph that

is obtained from G by applying one of the following rules.

1. Let v 2 V with n > 1 R-successors v

1

; : : : ; v

n

in E and v

0

a new node not occuring in V .

Then G

0

is de�ned by

� V

0

:= V n fv

1

; : : : ; v

n

g [ fv

0

g and

E

0

:= E[v

i

=v

0

j i = 1 : : : n] (each v

i

is replaced by v

0

in E),

� l(v

0

) :=

S

i=1:::n

l(v

i

) and l(w) := l(w), w 2 V

0

n fv

0

g.

2. Let v; w 2 V with vRw 2 E and fP;:Pg � l(w). Then G

0

is de�ned by

� V

0

:= V n (fwg [ fw

0

j exists a path from v to w

0

g) and

E

0

:= E \ V

0

�R�V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

n fvg and l

0

(v) := l(v) [ f(� 0R)g.

3. Let v; w 2 V with vRw 2 E, f(�nS); (�mS)g � l(w), and m > n. Then G

0

is de�ned by

� V

0

:= V n (fwg [ fw

0

j exists a path from w to w

0

g) and

E

0

:= E \ V

0

�R�V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

n fvg and l

0

(v) := l(v) [ f(� 0R)g.

4. Let v 2 V with (� 0R) 2 l(v) and vRw 2 E. Then G

0

is de�ned by

� V

0

:= V n (fwg [ fw

0

j exists a path from w to w

0

g) and

E

0

:= E \ V

0

�R�V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

.

5. If fP;:Pg � l(v

0

) or f(�nR); (�mR)g � l(v

0

), m > n, then G

0

is de�ned by

� V

0

:= fv

0

g and E

0

:= ; and

� l

0

(v

0

) := ?.

6. Let v 2 V with k > 1 number restrictions f(�n

1

R); : : : ; (�n

k

R)g � l(v). Then G

0

is de�ned

by

� V

0

:= V and E

0

:= E,

� l

0

(v) := l(v) n f(�n

1

R); : : : ; (�n

k

R)g [ ef(�minfn

1

; : : : ; n

k

gR)g,

l

0

(w) := l(w), w 2 V

0

n fvg.

7. Let v 2 V with k > 1 number restrictions f(�n

1

R); : : : ; (�n

k

R)g � l(v). Then G

0

is de�ned

by

� V

0

:= V and E

0

:= E,

� l

0

(v) := l(v) n f(�n

1

R); : : : ; (�n

k

R)g [ f(�maxfn

1

; : : : ; n

k

gR)g,

l

0

(w) := l(w), w 2 V

0

n fvg.

8. Let v 2 V with (� 0R) 2 l(v). Then G

0

is de�ned by

� V

0

:= V and E

0

:= E,

� l

0

(v) := l(v) n f(� 0R)g and l

0

(w) := l(w), w 2 V

0

n fvg.

9. Let vRw 2 E, l(w) = ; and w a leaf in G. Then G

0

is de�ned by

� V

0

:= V n fwg and E

0

:= E \ V

0

�R� V

0

,

� l

0

(v

0

) := l(v

0

), v

0

2 V

0

.

Figure 4: Normalization rules for ALN -description graphs
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R

S

b

G

C

:

bv

1

: P;Q; (� 0 S)

bv

2

: Q; (� 3 S)

bv

0

: ;

Figure 5: The canonical ALN -description graph of C.

6 A Structural Subsumption Algorithm for ALN

Before we can characterize subsumption ofALN -concepts by some kind of structural comparison

of description graphs, we need the following notions [CH94].

De�nition 12 (More Speci�c Nodes, Paths, and Graphs).

Let G = (E; V; v

0

; l) and G

0

= (V

0

; E

0

; v

0

0

; l

0

) be description graphs.

A node v 2 V is more speci�c than a node v

0

2 V

0

i�

� Lit(v) � Lit(v

0

),

� for each (��

0

S) 2 l

0

(v

0

) exists (��S) 2 l(v) with � � �

0

, and

� for each (� �

0

S) 2 l

0

(v

0

) exists (� � S) 2 l(v) with � � �

0

.

A rooted path p = v

0

R

1

v

1

: : : v

n�1

R

n

v

n

in G is more speci�c than a rooted path

p

0

= v

0

0

R

0

1

v

0

1

: : : v

0

m�1

R

0

m

v

0

m

in G

0

i�

� R

i

= R

0

i

for 1 � i � min(m;n),

� for all 0 � i � min(m;n) it is v

i

more speci�c than v

0

i

, and

� if n < m, then (� 0R

0

n+1

) 2 l(v

n

).

The description graph G is more speci�c than the description graph G

0

i� G corresponds to ?,

i.e., l(v

0

) = ?, or if for each rooted path p

0

in G

0

there exists a more speci�c rooted path p in

G. 3

The conditions on more speci�c nodes v and v

0

ensure that the conditions given by atomic

concepts in the label of v

0

are satis�ed by each instance of v. As an example consider the node

bv

1

in

b

G

C

from Figure 5 and a node v labeled with l(v) = fP; (� 1S)g. Obviously, bv

1

is more

speci�c than v and it holds that

u

C2

b

l(bv

1

)

C = P uQ u (� 0S) v P u (� 1S) = u

C2l(v)

C:

More generally, it is not hard to show that the conjunction of all atomic concepts in l

0

(v

0

)

subsumes the conjunction of all atomic concepts in l(v) if v is more speci�c than v

0

.

Due to number restrictions of the form (� 0R), a path, which is more speci�c than a path

p

0

, can be shorter than p

0

. To be more precise, let G = (V;E; v

0

; l) and G

0

= (V

0

; E

0

; v

0

0

; l

0

) be

description graphs. If v is the W -successor node of the root v

0

and (� 0R) 2 l(v), then each

instance x of v

0

has no WR-successor. Thus, all conditions on WR-successors v

0

of v

0

0

in G

0

are
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satis�ed trivially and the rooted path with label W in G is more speci�c than a rooted path p

0

in G

0

with label WRW

0

, W

0

2 R

�

.

As an example, consider the rooted path p

0

= w

0

Rw

1

Sw

2

in G

D

from Figure 2. The rooted

path bv

0

Rbv

1

in

b

G

C

from Figure 5 is more speci�c than p

0

since (� 0S) 2

b

l(bv

1

), bv

0

is more speci�c

than w

0

, and bv

1

is more speci�c than w

1

.

For canonical description graphs the property of being more speci�c even holds for some

subgraphs. This property will be used later in an induction on the size of description graphs.

Lemma 13.

Let

b

G = (

b

V ;

b

E; bv

0

;

b

l) be a canonical description graph and G

0

= (V

0

; E

0

; v

0

0

; l

0

) a description

graph. Let further bv be the W -successor node of bv

0

in

b

G and v

0

a W -successor node in G

0

.

If

b

G is more speci�c than G

0

then

b

Gj

bv

is more speci�c than G

0

j

v

0

.

Proof.

We have to show that for each rooted path p

v

0

in G

0

j

v

0

there is a more speci�c rooted path bp

bv

in

b

Gj

bv

.

Let bv

0

R

1

bv

1

: : : bv

n�1

R

n

bv be the path with label W = R

1

: : : R

n

in

b

G, p

0

= v

0

0

R

1

v

0

1

: : : v

0

n�1

R

n

v

0

the path from v

0

0

to v

0

with label W in G

0

. Let further p

v

0

= v

0

S

0

1

v

0

1

: : : v

0

m�1

S

0

m

v

0

m

be a rooted

path in G

0

j

v

0

. Since p = v

0

0

R

1

v

0

1

: : : v

0

n�1

R

n

v

0

S

0

1

w

0

1

: : : w

0

m�1

S

0

m

w

0

m

is a rooted path in G

0

and

b

G is

more speci�c than G

0

, there exists a rooted path bp = bv

0

R

1

bv

0

1

: : : bv

0

n�1

R

n

bv

0

n

S

1

bv

0

n+1

: : : bv

m

0

�1

S

m

0

bv

m

0

,

m

0

� m, in

b

G such that bp is more speci�c than p. Since

b

G is canonical, it is bv

i

= bv

0

i

for 1 � i < n

and bv = bv

0

n

. Therefore, bp

bv

= bvS

1

bv

0

n+1

: : :bv

m

0

�1

S

m

0

bv

m

0

is a rooted path in

b

Gj

bv

. Now it is easy to

see, that bp

bv

is more speci�c than p

v

0

. 2

Now we are equipped to characterize subsumption of ALN -concepts by a structural com-

parison of description graphs. Let C be an ALN -concept and G

C

= (V;E; v

0

; l) the description

graph of C. Intuitively speaking, if the label of a W -successor node v of v

0

contains the atomic

concept C

0

, then for each instance x of C all W -successors of x must be in the extension of

C

0

. Thus, C is subsumed by 8W:C

01

. More generally, C is subsumed by D i� the conditions

to W -successors of instances of D are subsets of the conditions to W -successors of instances

of C for each label W 2 R

�

. Since these conditions to W -successors are represented by the

labels of W -successor nodes in the corresponding description graphs, we can decide C v D by

testing wether the label of each W -successor node in G

D

is a subset of the sum of the labels of

all W -successor nodes in G

C

or not for each W 2 R

�

. Notice that in the canonical description

graph

b

G

C

all restrictions to W -successors are already summarized in one W -successor node of

the root.

Theorem 14 (Structural subsumption for ALN ).

Let C;D be ALN -concepts,

b

G

C

= (

b

V ;

b

E; bv

0

;

b

l) the canonical description graph of C and G

D

=

(V;E; v

0

; l) the description graph of D. Then C v D i�

b

G

C

is more speci�c than G

D

, i.e.,

b

l(bv

0

) = ?, or for each rooted path p in G

D

there exists a more speci�c rooted path bp in

b

G

C

. 2

The proof of Theorem 14 is lengthy and technical. The \if"-direction can be proved by

induction on the size of description graphs. To prove the \only if"-direction, we will show that

b

G

C

is not more speci�c than G

D

implies C 6v D by construction of an interpretation I = (�; �

I

)

1

8W:C

0

is used as abbreviation for 8R

1

: : : :8R

n

:C

0

where W = R

1

: : : R

n

.
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such that x 2

b

G

I

C

and x 62 G

I

D

for some x 2 �. A formal proof of Theorem 14 is given in

Section 6.1. In Section 6.2, we will introduce a structural subsumption algorithm deciding

C v D by testing wether G

D

is more speci�c than

b

G

C

.

At this point, we should illustrate Theorem 14 by some examples.

Consider the canonical description graph

b

G

C

of C in Figure 5 and the description graph

G

D

in Figure 2. Obviously, the rooted path bv

0

Rbv

1

is more speci�c than the rooted paths with

label ", R, and RS in G

D

. Furthermore, the rooted path bv

0

Sbv

2

is more speci�c than w

0

Sw

3

.

Consequently,

b

G

C

is more speci�c than G

D

and hence, C v D.

The following example illustrates that the notion of more speci�c graphs must be modi�ed

if we allow for atomic concepts (� 0R) in the description graph of the subsumer D.

Example 15.

Let C

0

= 8R:P and D

0

= 8S:(� 0R). Obviously, it is D

0

� > and therefore, C

0

v D

0

. But

since there exists no rooted path with label S in the canonical description graph

b

G

C

0

of C

0

,

there is no more speci�c path for the rooted path with label S in the description graph G

D

0

of

D

0

. Thus, by De�nition 12

b

G

C

0

is not more speci�c than G

D

0

though C

0

v D

0

. 3

6.1 Proof of the Theorem 14

Proof of Theorem 14, \(":

Let I = (�; �

I

) be an interpretation of C and R. We have to show C

I

� D

I

.

b

l(bv

0

) = f?g implies

b

G

I

C

= C

I

= ; � D

I

. Otherwise, let

b

l(bv

0

) 6= f?g and x 2 C

I

=

b

G

I

C

. We

have to show x 2 G

I

D

= D

I

.

It is bv

0

more speci�c than v

0

. Since Lit(v

0

) � Lit(bv

0

), it is x 2 P

I

for P 2 l(v

0

) and x 62 Q

I

for :Q 2 l(v

0

).

Let (��

0

S) 2 l(v

0

), �

0

> 0. It exists (��S) 2

b

l(bv

0

) with � � �

0

. So, jfy j (x; y) 2 S

I

gj � � �

�

0

.

Let (� �

0

T ) 2 l(v

0

). It exists (� � T ) 2

b

l(bv

0

) with � � �

0

. So, jfy j (x; y) 2 T

I

gj � � � �

0

.

Now, let v

0

Rv

1

2 E. It exists a more speci�c rooted path in

b

G

C

.

Case 1: (� 0R) 2

b

l(bv

0

). There exists no y 2 � such that (x; y) 2 R

I

, because x 2 bv

I

0

.

Case 2: (� 0R) 62

b

l(bv

0

). Then there exists bv 2

b

V such that the rooted path bv0Rbv is more

speci�c than v

0

Rv

1

. By Lemma 13 it follows that

b

G

C

j

bv

is more speci�c than G

D

j

v

1

. By induction

on the size of the description graphs, it follows bv

I

0

� v

I

1

. This implies y 2 v

I

1

for x 2 bv

I

0

and

(x; y) 2 R

I

.

So, all conditions of De�nition 4 are satis�ed and it follows x 2 v

I

0

and hence C

I

=

b

G

I

C

�

G

I

D

= D

I

.

Proof of Theorem 14, \)":

If

b

l(bv

0

) = f?g, nothing has to be shown. Otherwise, it is

b

l(bv

0

) 6= f?g and

b

G

C

is not more

speci�c then G

D

. We show C

I

6� D

I

by construction of an interpretation I = (�; �

I

) such that

x 2

b

G

I

C

= C

I

and x 62 G

I

D

= D

I

for some x 2 �. In the sequel, assume that

b

l(bv

0

) 6= f?g.

First, we de�ne the canonical interpretation I = (�; �

I

) of

b

G

C

= (

b

V ;

b

E; bv

0

;

b

l) inductively by

� I

0

:= (�

0

; �

I

0

) where
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{ �

0

:= fx

0

g and

{ P

I

0

:= fx

0

g if P 2

b

l(bv

0

) and P

I

0

:= ; otherwise and

{ R

I

0

:= ; for all role names R in

b

G

C

.

� I

i+1

:= (�

i+1

; �

I

i+1

) is de�ned as follows: If there exists x 2 �

i

such that x is a W -

successor of x

0

, and bv

n

is the W -successor node of bv

0

in

b

G

C

with (� �R) 2

b

l(bv

n

) and

x 62 (��R)

I

i

, then let �

0

:= �� jfy j (x; y) 2 R

I

i

gj and de�ne

{ �

i+1

:= �

i

[ fy

1

; : : : ; y

�

0

g for new variables y

j

and

{ R

I

i+1

:= R

I

i

[ f(x; y

j

) j 1 � j � �

0

g and

{ P

I

i+1

:= fy 2 �

i

j P 2

b

l(v); bv the W -successor node of bv

0

in

b

G

C

, and y is a W -

successor of x

0

in I

i

g.

Else, I

i+1

:= I

i

.

The canonical interpretation I = (�; �

I

) of

b

G

C

is de�ned by � :=

S

i�0

�

i

, P

I

:=

S

i�0

P

I

i

and

R

I

:=

S

i�0

R

I

i

.

Remark 16.

The above de�nition of a canonical interpretation of a canonical description graph

b

G

C

leads to

a tree of variables. The depth of the tree is bounded by the maximal role depth of

b

G

C

plus

1.

2

For each (R

1

: : : R

n

)

I

-successor x of x

0

exists at most one path bv

0

R

1

bv

1

: : :bv

n�1

R

n

bv

n

in

b

G

C

and

b

l(bv

n

) contains only a �nite number of �-concepts. Therefore, each x in I has only a �nite

number of direct successors and the tree is �nite. Consequently, there exists an N such that

I

k

= I

N

for all k � N and I =

S

0�i�N

I

i

. 3

In the next step, we prove that the canonical interpretation is a model of

b

G

C

, i.e., x

0

2

b

G

I

C

.

The prove is based on the characterization of the extension of a description graph given in

Lemma 6.

Lemma 17.

Let

b

G be a canonical description graph with

b

l(bv

0

) 6= f?g and I its canonical interpretation. It

holds that x

0

2

b

G

I

.

Proof.

Let x

n

be an (R

1

: : : R

n

)

I

-successor of x

0

and bv

0

R

1

bv

1

: : :bv

n�1

R

n

bv

n

the unique rooted path with

label R

1

: : : R

n

in

b

G.

Case 1: n = 0: By construction it is x

0

2 P

I

for P 2

b

l(bv

0

), x

0

62 P

I

for :P 2

b

l(bv

0

) and for

each (��R) 2

b

l(bv

0

) exist � R

I

-successors of x

0

, so x

0

2 (��R)

I

. Further, x

0

2 (� � S)

I

for all (� � S) 2

b

l(bv

0

). Otherwise,

b

l(bv

0

) would contain conicting number restrictions and

hence,

b

G would not be canonical. So, x

0

2

T

C2

b

l(bv

0

)

C

I

.

2

An R

1

: : : R

n+1

-successor x of x

0

may occur in I if the label of a leaf v

n

of G contains a concept (��R

n+1

)

and if there already exists an (R

1

: : : R

n

)

I

-successor x

n

of x

0

in I.
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Case 2: n > 0: It exists i > 0 with x

n

2 �

i

n �

i�1

. By construction of I

j

it is x

n

2 P

I

j

for each P 2

b

l(bv

n

) and x

n

62 P

I

j

for each :P 2

b

l(v

n

) for j � i and for j > i it is

x

n

2 (��R)

I

j

for each (��R) 2

b

l(bv

n

). Analogous to Case 1, it follows x

n

2 (� � S)

I

j

for each (� � S) 2

b

l(bv

n

) and j � i. So, x

n

2

T

C2

b

l(bv

n

)

C

I

.

By Lemma 6 it follows x

0

2

b

G

I

. 2

Let I be the canonical interpretation of

b

G. x

0

62 G

I

D

implies C 6v D and nothing more has

to be shown. Otherwise, we have to de�ne an extension J

0

of the canonical interpretation I

such that x

0

2

b

G

J

0

C

and x

0

62 G

J

0

D

.

Assume that

b

l(bv

0

) 6= f?g and

b

G

C

is not more speci�c than G

D

. Thus, there is a rooted

path p = v

0

R

1

v

1

: : : v

n�1

R

n

v

n

in G

D

such that there exists no more speci�c rooted path bp in

b

G

C

. W.l.o.g. we can choose p such that l(v

n

) 6= ;. By our assumption from Section 5, there

occurs no atomic concept of the form (� 0R) in G

D

. Thus, l(v

n

) contains an atomic concept of

the form P , :P , (� � R), or (��R), � > 0.

We de�ne the extended canonical interpretation J = (�

J

; �

J

) of

b

G

C

and p such that � � �

J

,

P

J

\� = P

I

, R

J

\��� = R

I

, and x

0

2

b

G

J

C

.

Therefore, let bp = bv

0

R

1

bv

1

: : :bv

m�1

R

m

bv

m

, m � n, be the unique rooted path in

b

G

C

of maximal

length such that the label of bp is a pre�x of R

1

: : : R

n

. By assumption, bp is not more speci�c

than p and since

b

G

C

is canonical, it is (� 0R

k

) 62

b

l(bv

k�1

) for 1 � k � m.

To de�ne J , we consider two cases.

Case 1: There exists an index i such that 0 � i � m and bv

i

is not more speci�c then v

i

. Let

N be the minimal index with these properties.

Case 2: For each 0 � i � m, bv

i

is more speci�c than v

i

. Let N := n. It is m < n and

(� 0R

m+1

) 62

b

l(bv

m

). Otherwise, bp would be more speci�c than p.

Roughly speaking, we want to extend I by an R

1

: : : R

N

-successor x

N

such that

� x

N

satis�es each restriction on R

1

: : : R

N

- successors given by an R

1

: : : R

N

-successor node

in

b

G

C

and

� at least one atomic concept in the label l(v

N

) in G

D

is violated by x

N

.

If there exists an (R

1

: : : R

N

)

I

-successor x

N

of x

0

in I, then J := I. Otherwise, let 1 � j � N

be the maximal index such that there exists an (R

1

: : : R

j�1

)

I

-successor x

j�1

of x

0

in I. Extend

I to I

0

:= (�

0

; �

I

0

) by

� �

0

:= � [ fx

j

; : : : ; x

N

g for new variables x

j

; : : : ; x

N

and

� R

I

0

k

:= R

I

k

[ f(x

k�1

; x

k

)g for j � k � N .

Notice that no �-restriction of the form (� 0R) is violated by the new variables x

j

; : : : ; x

N

. As

already mentioned above, it is (� 0R

k

) 62

b

l(bv

k�1

) for 1 � k � m. Thus, if N � m nothing has

to be shown. Otherwise, Case 2 from above holds. It is m < N = n and (� 0R

m+1

) 62

b

l(bv

m

).

Since bp has been chosen by maximal length, there exists no R

1

: : : R

k

-successor node in

b

G

C

for
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m < k � n. Thus, there exist no restrictions (� 0R

k

) in

b

l(bv

k�1

), 1 � k � N , that would be

violated by x

j

; : : : ; x

N

.

The extended canonical interpretation J is inductively de�ned in the same way as the

canonical interpretation but starting with J

0

:= I

0

.

It is not hard to see, that the proof of Lemma 17 even holds if the induction is started with

an interpretation I

0

= (�

0

; �

I

0

) such that the following conditions are satis�ed:

1. �

0

is a �nite set of variables and the interpretation of the role names in

b

G under I

0

yield

a tree with root x

0

2 �

0

.

2. None of the atomic concepts in the labels of

b

G is hurt by I

0

, i.e., for each (R

1

: : : R

n

)

I

0

-

successor x

n

of x

0

and each rooted path bv

0

R

1

bv

1

: : :bv

n�1

R

n

bv

n

in

b

G it holds x

n

62 �

0

n C

I

0

for all C 2

b

l(bv

n

).

Since I

0

satis�es the conditions 1. and 2., it follows x

0

2

b

G

J

C

.

Now, we can complete the proof of Theorem 14. Let J be the extended canonical interpre-

tation of

b

G

C

and p. Let further p and N be determined as in the de�nition of J . If x

0

62 G

J

D

,

nothing more has to be shown. Otherwise, we de�ne an interpretation J

0

= (�

J

0

; �

J

0

) such that

J

0

is an extension of J and x

0

2

b

G

J

0

C

and x

0

62 G

J

0

D

.

By construction of J there exists an (R

1

: : : R

N

)

J

-successor x

N

of x

0

. We have to consider

the two cases from above.

Case 1: N � m and bv

N

is not more speci�c than v

N

. By Lemma 6, x

0

2 G

J

D

implies x

N

2

(��

0

R)

J

for each (��

0

R) 2 l(v

N

). As an easy consequence of the construction of J it

follows that for each (��

0

R) 2 l(v

N

) there exists (��R) 2

b

l(bv

N

) with � � �

0

. Since bv

N

is not more speci�c than v

N

, one of the cases 1.1 or 1.2 must hold.

Case 1.1: Lit(v

N

) 6� Lit(bv

N

). There exists no P 2 Lit(v

N

) n Lit(bv

N

). Otherwise, x

0

62 G

J

D

because of x

N

2 P

J

i� P 2

b

l(bv

N

) (see Lemma 6). So, there exists :P 2 Lit(v

N

) n

Lit(bv

N

). Because of x

0

2 G

J

D

it is x

N

62 P

J

and P 62

b

l(bv

n

). Extend J to J

0

by

P

J

0

:= P

J

[ fx

N

g. Consequently, x

0

62 G

J

0

D

but still x

0

2

b

G

J

0

C

.

Case 1.2: (� �

0

R) 2 l(v

N

) and there is no (� � R) 2

b

l(bv

N

) with � � �

0

. Extend J

to J

0

by �

J

0

:= �

J

[ fy

1

; : : : ; y

�

0

+1

g, R

J

0

:= R

J

[ f(x

N

; y

k

) j 1 � k � �

0

+ 1g

and satisfy all atomic concepts in

b

G

C

for the new variables y

1

; : : : y

�+1

inductively

as in the de�nition of the canonical interpretation of

b

G

C

. It follows x

0

2

b

G

J

0

C

and

obviously, it is x

0

62 G

J

0

D

.

Case 2: N = n > m. By assumption, there exists an atomic concept D

0

2 l(v

N

) not of the

form (� 0R). As an easy consequence of the construction of J there exist no successors of

x

N

in J because there is no R

1

: : : R

N

-successor bv

N

of bv

0

in

b

G

C

and hence no �-restriction

requiring successors of x

N

. Consequently, there exists no �-concept in l(v

N

) (otherwise,

x

0

62 G

J

D

). Analogous to Case 1.1 it follows that there is no P 2 l(v

N

). So, one of the

cases 2.1 or 2.2 must hold.

Case 2.1: :P 2 l(v

N

). Extend J to J

0

by P

J

0

:= P

J

[ fx

N

g. Consequently, x

0

62 G

J

0

D

but still x

0

2

b

G

J

0

C

because

b

G

C

yields no restrictions on (R

1

: : : R

N

)

J

- successors of x

0

.
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Case 2.2: (� �

0

R) 2 l(v

N

). Extend J to J

0

by �

J

0

:= �

J

[ fy

1

; : : : y

�

0

+1

g and R

J

0

:=

R

J

[ f(x

N

; y

k

) j 1 � k � �

0

+ 1g for new variables y

1

; : : : ; y

�

0

+1

. Analogous to Case

2.1 it follows x

0

2

b

G

J

0

C

and x

0

62 G

J

0

D

.

This completes the proof of Theorem 14.

6.2 The algorithm

An algorithm deciding C v D by Theorem 14 considers the (canonical) description graphs

b

G

C

and G

D

, respectively, and tests wether there exists a more speci�c rooted path bp in

b

G

C

for each

rooted path p in G

D

or not. In other words, for each W 2 R

�

and W -successor node v of v

0

in

G

D

= (V;E; v

0

; l) we test

1. if there exists a proper pre�x W

0

of W and a W

0

-successor node bv of bv

0

in

b

G

C

such that

(a) W =W

0

RW

00

, R 2 R and W

00

2 R

�

,

(b) each node v

0

on the path labeled withW

0

in

b

G

C

is more speci�c than the correspond-

ing node in G

D

, and

(c) (� 0R) 2

b

l(bv) or

2. if bv is the W -successor node of bv

0

in

b

G

C

, wether bv is more speci�c than v or not.

If (1) and (2) are not satis�ed, than C 6v D; otherwise C v D.

The conditions (1) and (2) are tested recursively by the procedure more� speci�c? shown in

Figure 6. Notice that these conditions do not yield a complete subsumption algorithm if we allow

for atomic concepts (� 0R) in G

D

. Consider Example 15. Obviously, more� speci�c?(

b

G

C

0

;G

D

0

)

returns false, because (� 0S) 62

b

l

0

(bv

0

0

) and bv

0

0

has no S-successor in

b

G

C

0

. Thus, a subsumption

algorithm based on the procedure more� speci�c? would be incomplete if we allow for arbitrary

ALN -concepts C;D as inputs.

An algorithm deciding C v D can be described as follows: Given two ALN -concepts C and

D, we compute the description graphs G

C

and G

D

, respectively, with the help of the translation

algorithm (see Figure 1). An iterated application of the normalization rules from Figure 4

yields the canonical description graph

b

G

C

of C. Now, it is C v D i� more� speci�c?(

b

G

C

;G

D

)

returns true.

Using Theorem 14 it is not hard to show that the structural subsumption algorithm is

sound and complete. The complexity of the algorithm is determined by the complexity of

de�ning the corresponding (canonical) description graphs and by the complexity of the pro-

cedure more� speci�c?. As already mentioned, G

C

as well as

b

G

C

are linear in the size of C,

and G

D

is linear in the size of D. Both

b

G

C

and G

D

can be computed in time polynomial in

maxfjCj; jDjg. Testing wether

b

G

C

is more speci�c than G

D

by the procedure more� speci�c?

from Figure 6 is polynomial in the size of G

D

. If C 6� ?, then each node v in G

D

is reached

at most once and since

b

G

C

is canonical, there exists at most one corresponding node bv in

b

G

C

for which \bv is more speci�c than v" must be tested. Obviously, this can be done in time

polynomial in the size of l(v). Thus, we can decide D v D using the structural subsumption

algorithm described above in time polynomial in the size of maxfjCj; jDjg.
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more� speci�c?(

b

G

C

;G

D

)

Input:

b

G

C

= (

b

V ;

b

E; bv

0

;

b

l), a canonical description graph

G

D

= (V;E; v

0

; l) , a description graph

Output: true , if

b

G

C

is more speci�c than G

D

false , otherwise

begin

if

b

l(bv

0

) = ?

then return true

else

if bv

0

is not more speci�c than v

0

then return false

else

for each R-successor v of v

0

if (� 0R) 62

b

l(bv

0

) and exists no R-successor of bv

0

then return false

else let bv be the R-successor of bv

0

if not more� speci�c?(

b

G

C

j

bv

;G

D

j

v

)

then return false

return true

end

Figure 6: More speci�c graphs.

7 Conclusion and related work

We presented a sound and complete structural subsumption algorithm for deciding subsumption

of ALN -concepts based on description graphs. Therefore, the notion of canonical description

graphs of Classic-concepts [BP94] was modi�ed in order to cope with conicting number

restrictions as well as primitive negation which both can occur in ALN -concepts.

Note that the algorithm for deciding subsumption of ALN -concepts described in Section 6.2

di�ers from the algorithm presented in [BP94]. The Classic-algorithm subsumes?(G; C) for

deciding C v D only computes the canonical description graph G of C and then tests syntactical

conditions on the concept D and the description graph G recursively. In [CH94], subsumption

of Classic-concepts is characterized using description graphs for both the subsumee C and

the subsumer D. This is due to the fact that Cohen and Hirsh also introduced an algorithm

for computing the least common subsumer of Classic-concepts (see also [CBH92]). The least

common subsumer of two Classic-concepts C

1

; C

2

is the most speci�c Classic-concept that

subsumes both C

1

and C

2

. It turned out that computing the LCS of C and D corresponds

to some kind of \merging" the canonical description graphs

b

G

C

and

b

G

D

. Thus, using the

structural characterization of subsumption of ALN -concepts from Theorem 14, it is easy to

adapt the LCS-algorithm for Classic to ALN and to prove its soundness and completeness.

Another, automata theoretic approach to subsumption as well as least common subsumers

w.r.t. cyclic ALN -terminologies has been proposed in the literature [Neb90, Baa96, K�us98,

BK98]. In the comparison of both approaches [BKM98], it turned out that in the case of
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ALN -concepts structural subsumption algorithms can be seen as special implementations of

the conditions required by the automata theoretic characterization.
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