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Abstract

This work introduces the concept language ALC

F

M

which is an exten-

sion of ALC to many-valued logics. ALC

F

M

allows to express vague con-

cepts, e.g. more or less enlarged or very small. To realize this extension

to many-valued logics, the classical notions of satis�ability and subsump-

tion had to be modi�ed appropriately. For example, ALC

F

M

-concepts

are no longer either satis�able or unsatis�able, but they are satis�able

to a certain degree. The main contribution of this paper is a sound and

complete method for computing the degree of subsumption between two

ALC

F

M

-concepts.

1 Introduction

This work takes its motivation from the occurrence of vague concept descrip-

tions in di�erent application areas. Often, application{inherent information is

characterized by a very high degree of vagueness. Appropriate information sys-

tems must be able to process this kind of data. So far, there are no systems

that really solve the corresponding problems due to the lack of powerful basic

methods.

A comfortable base of an information system can be obtained by a termino-

logical knowledge representation system (TKRS), originated by Brachman and

Schmolze in [2]. The underlying knowledge representation formalism provides

the user with a concept language to formulate and to solve application{relevant

problems. Especially the advantage of symbolic representation allows the trans-

parent acquisition and processing of information. But TKRS mostly lack the

possibility to represent vague concept de�nitions in an appropriate manner.

Current approaches like [8, 7, 6] most often incorporate uncertainty calculus

into the formalism of the TKRS. Uncertainty calculi deal with assumptions

based on previous observations. These assumptions lack the feature of de�nitive

evidence and thus they must not be complete. The appearance of vagueness

addresses a di�erent problem (see [3]). Though the information is complete

vagueness arises from the existence of knowledge areas with concepts that have

no clear demarcation among others. The borderline between the de�nitions of

these concepts is rather hazy. For example, a medical statement that connects
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a patient's temperature with some linguistic category like high or medium is

based on concrete (and therefore complete) measured values. Questions are to

determine the membership degree of values (like 37:9

o

C) to categories/sets and

especially to infer knowledge from vague concepts.

Therefore, it seems pro�table, to provide TKRS with methods from the disci-

pline of many-valued logics to open a gateway for vague information processing.

This article is structured as follows. Normally, concept languages are based

on fragments of �rst order predicate calculus. The underlying �rst order logic

is extended to a many-valued logic �rst. Using these extensions, syntax and

semantics of the concept language are de�ned. Then, an appropriate subsump-

tion algorithm for the new language is introduced and its main properties are

proved. The work concludes with some notes on further extensions.

2 Logical Basis

A signature � is de�ned as usual with a sort symbol s, a set FS of constant

symbols and a set PS of predicate symbols.

Let JM be a �xed set of connectors f^

min

;_

max

;M

1

; : : : ;M

n

g, where all M

i

are unary connectors. The negation : corresponds to some unary connector

M

i

. Let further QM be a �xed set of quanti�ers f9

Sup

;8

Inf

; g. An expression

is de�ned as follows:

Let V denote an in�nite set of (individual) variables. Terms (constant and

variable symbols) and expressions are introduced as usual, where all connectors

from JM are allowed to form expressions. First order predicate logic quanti�ers

8 and 9 are replaced by 8

Inf

and 9

Sup

. A weighted expression is an expression

C together with a truth value from the unit interval, written [C; t].

De�nition 1 (Interpretation) A tuple A = [�;�;�; �] is called interpreta-

tion of �, if and only if it satis�es the following conditions:

1. The sort symbol s is interpreted as a non-empty set of individuals �.

Single individuals are denoted as �.

2. � is a mapping that maps each constant c in FS to a �

c

2 �.

3. � is a mapping that maps each n-ary predicate symbol P 2 PS to a total

function �

P

: �

n

! [0::1].

De�nition 2 (Allocation of variables) 1. An A-allocation � is a map-

ping � : V ! � of variables in V to elements in �.

2. EL(T;A; �) is the element of �, connected to the term T by A under A-

allocation �. Therefore, it is EL(x;A; �) = �(x), if x 2 V and EL(c;A; �) =

�

c

, if c 2 FS.

3. For a given A-allocation � and a �xed variable x

i

2 V and a �xed in-

dividual �

i

in �, �hx

i

:= �

i

i denotes the A-allocation �

0

, de�ned for an
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arbitrary x 2 V as

�

0

(x) =

�

�(x) for x 6= x

i

�

i

for x = x

i

The realization of a connector J

i

from JM is a mapping j

i

: [0::1]

n

! [0::1].

As an example, ^

min

is realized by the function min (minimum of two values).

The realization of a quanti�er Q

i

is a mapping q

i

: P([0::1]) ! [0::1] (where

P([0::1]) is the set of all subsets of [0::1]). For example, 8

inf

is realized by the

In�mum of a set of truth values. As stated above, : is one of the connectors

M

i

. They are called manipulators. Their possible realizations (e.g. the function

m

i

(t) = 1�t forM

i

= :, t 2 [0::1]) are formally de�ned within the next section.

De�nition 3 (Satis�ability of Weighted Expressions)

1. �;A j=

t

0

PT

1

: : : T

n

i�

t

0

= �

P

(EL(T

1

;A; �); : : : ; EL(T

n

;A; �)),

2. �;A j=

t

0

J

i

(C

1

; : : : ; C

n

) i� exist t

1

; : : : ; t

n

2 [0::1] such that �;A j=

t

j

C

j

, 1 � j � n, and t

0

= j

i

(t

1

; : : : ; t

n

),

3. �;A j=

t

0

Q

i

x

i

: D i�

t

0

= q

i

ft j Exists �

i

2 � such that �hx

i

:= �

i

i;A j=

t

Dg.

In the sequel, the notion �;A j= [C; t] will be used instead of �;A j=

t

C.

For values t

C

1

; : : : ; t

C

n

2 [0::1] the set f[C

1

; t

C

1

]; : : : ; [C

n

; t

C

n

]g is satis�able

if and only if there exists an A-allocation � such that �;A j= [C

i

; t

C

i

] for all

1 � i � n.

For a �xed signature �, the notion of semantic consequence is important:

De�nition 4 (Consequence)

C entails D to degree t

D

(C j= [D; t

D

]) i�

t

D

= Infft

0

jA interpretation of �; �A-allocation with

�;A j=

1

C and �;A j=

t

0

Dg:

As a precondition the truth degree of the premise C has to be 1 since it seems

reasonable to infer vague knowledge from valid premises (ful�lled to the degree

1). If C is not satis�able to degree 1, D is entailed to degree 1 analogous to the

consequence relation in classic �rst order logic. Therefore, let Inf(;) := 1.

3 The Description Language

Within the language, it is intended to built up concepts inductively by using

concept forming operators, called constructors. Concept names are denoted by

C and D. Atomic concepts, corresponding to unary predicate symbols, will
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Constructor Syntax Logical correspondent

Conjunction C uD C(x) ^

min

D(x)

Disjunction C tD C(x) _

max

D(x)

Manipulator M

i

C M

i

C(x)

Value restr. 8r:C 8

Inf

y : :r(x; y) _

max

C(y)

Existential restr. 9r:C 9

Sup

y : r(x; y) ^

min

C(y)

Table 1: The language ALC

F

M

.

serve as a starting point to form more complex concepts. Further, role names

are denoted by R and correspond to binary predicate symbols.

A crucial property of vague terminology is the use of modi�cations applied

on verbs and nouns like \mostly", \more or less" or \very". The research area

of fuzzy logic encompasses so-called linguistic hedges (see [12]) which are math-

ematical descriptions of modi�cations. In this paper, a subtype of the general

notion is introduced, called (membership) manipulator. The manipulator is a

triangular function from [0::1] to [0::1].

The supported language is called ALC

F

M

and consists of the constructors

seen in table 1. The meaning of the index F

M

is that the language deals with

in�nitely many truth-values (Fuzzy) and a set of manipulators.

De�nition 5 (Membership Manipulator) A (membership) manipulator is

a surjective and continuous function m : [0::1] ! [0::1] such that there exist

exactly one x

0

2 [0::1] and exactly one x

1

2 [0::1] as well as c

1

> 0, and c

2

< 0

with

1. m(x

0

) = 0 and m(x

1

) = 1,

2. if x

1

> 0, then m

0

(x) = c

1

for all x 2 [0 : : : x

1

]

1

,

3. if x

1

< 1, then m

0

(x) = c

2

for all x 2 [x

1

: : : 1].

Note, that in general the reverse relation yields a relation instead of a func-

tion. Nevertheless, the structure of the manipulator allows the decomposition

of the reverse relation in at most two functions m

�1

1

;m

�1

2

, since m can be de-

composed into two functions m

1

;m

2

with

m(x) =

�

m

1

(x) for x 2 [0::x

1

]

m

2

(x) for x 2 [x

1

::1]

The domain ofm

�1

1

is [m(0)::m(x

1

)] and the domain ofm

�1

2

is [m(1)::m(x

1

)].

Figure 1 shows a realization of the manipulator more or less. Since a

membership degree of 1 does not completely match the semantics of this ma-

nipulator (if something is totally enlarged, it is not really completely more or

less enlarged), the corresponding truth value is 0:8.

1

The function m

0

denotes the derivative �m=�x of m.
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0

0                     0.8      1
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Figure 1: The membership manipulator more or less

For two ALC

F

M

-concepts C and D it is interesting to know to which degree

one concept is a special case of the other one. The procedure that computes

the degree is called subsumption algorithm. As an example, consider the �eld

of medicine where vague notions are nothing unusual. It might be interesting

to know, to which degree the concept

hepatit liver:=liver u : : :u

9sub organ:more or less(enlarged)

is a special case of the concept

enlarged liver:=liver u : : :u

9sub organ:enlarged.

The degree of subsumption between two ALC

F

M

-concepts is de�ned by

C v

t

D

D if and only if C

0

j= [D

0

; t

D

] where C

0

; D

0

denote the logical corre-

sponding expressions for C;D inductively de�ned by Table 1. The next section

introduces an appropriate subsumption algorithm.

4 The Reasoning Algorithm and its Properties

The algorithm to compute the degree of subsumption between two concepts

works on some special data structure which is introduced in the following.

Therefore, let V be a set of in�nite many variables x

i

. Let C be an arbitrary

ALC

F

M

-concept and R an arbitrary role name.

Let T be the set of truth value designators satisfying the form t

x

i

:C

resp.

t

x

i

1

x

i

2

:R

. Let further be t

>

in T . A mapping � from T to [0::1] such that

�(t

>

) = 1 is called evaluation.

Let variables x

1

; x

2

2 V , a role name R and an ALC

F

M

-concept C. [x

1

:

C; t

x

1

:C

] and [x

1

x

2

: r; t

x

1

x

2

:r

] are called weighted assertions. An inequation

is of the form op

1

(t

1

)Rop

2

(t

2

) or op

1

(t

1

)Rf(op

2

(t

2

);op

3

(t

3

)) with t

i

2 T ,

R 2 f=;�;�g, op

j

2 fid;m

i

g, and f 2 fmin;maxg. The operator id is de�ned

as id(t) = t for all t 2 T and m

i

denotes a manipulator.

De�nition 6 (Extended ABox, Model and Consistency)

5



1. An extended ABox E is a pair (A;S), where A is a �nite set of weighted

assertions and S is a �nite set of inequations.

2. A pair (A; � ) is called model of an extended ABox E, if and only if A is an

interpretation and � is an evaluation, such that the following conditions

are satis�ed:

(a) Exists an A-allocation � such that for each [x : C; t

x:C

] 2 A :

�;A j= [C(x); � (t

x:C

)] and for each [x

1

x

2

: r; t

x

1

x

2

:r

] 2 A : �;A j=

[r(x

1

; x

2

); � (t

x

1

x

2

:r

)].

(b) Let VAR(S) be the set of occurring variables in S.

� : VAR(S) ! [0::1] is a solution of S, i.e. if each variable t in S is

mapped to �(t) 2 [0::1], all inequations in S are satis�ed.

3. An extended ABox E is called � (S)-consistent, if there exists a model (A; � )

of E.

The subsumption algorithm 10 computes the degree of subsumption that

corresponds to the notion of semantic consequence (see De�nition 4). The idea

behind is as follows: The problem of subsumption is reduced to the problem

of determining an adequate evaluation � for an extended ABox that yields a

solution for the system of inequations S . The degree of subsumption is then

determined as the minimum of all values obtained for some speci�c variable.

To guarantee the soundness of the reduction step, it has to be shown that for

all possible A-evaluations � of an arbitrary interpretation A that entails C to

degree 1 and D to some arbitrary degree, a counterpart in form of a model of

an extended ABox E can be found. This is done by the following lemma.

Lemma 7 (Satis�ability and Consistency)

For all values t

D

2 [0::1], the set f[C; 1]; [D; t

D

]g is satis�able i� the ex-

tended ABox E

0

= ff[x

0

: C; t

x

0

:C

]; [x

0

: D; t

x

0

:D

]g; ft

x

0

:C

= t

>

gg is � (S

0

)-

consistent with � (t

>

) = 1 and �(t

x

0

:D

) = t

D

.

Proof: Let � be an A-allocation with �;A j= [C; 1] and �;A j= [D; t

D

].

De�ne � as follows: � (t

x

0

:C

) = 1; �(t

x

0

:D

) = t

D

. Since t

x

0

:C

= t

>

is the only

inequation in S

0

and � (t

x

0

:C

) = 1 = � (t

>

) is a solution of this inequation,

obviously all inequations in S

0

are satis�ed. Then, (A; �) is a model of E

0

=

ff[x

0

: C; t

x

0

:C

]; [x

0

: D; t

x

0

:D

]g; ft

x

0

:C

= t

>

gg and E

0

is � (S

0

)-consistent.

Conversely, let f[x

0

: C; t

x

0

:C

]; [x

0

: D; t

x

0

:D

]g be � (S

0

)-consistent. Because

of De�nition 6, there exists a model (A; � ) with A-allocation � such that �;A j=

[C; � (t

x

0

:C

)] and �;A j= [D; � (t

x

0

:D

)] with � (t

x

0

:C

) = � (t

>

) = 1 and �(t

x

0

:D

) =

t

D

. Then, �;A j= [C; 1] and �;A j= [D; t

D

].

6



We are now ready to prove the main theorem of the paper.

Theorem 8 (Computation of the subsumption degree)

For two given ALC

F

M

-concepts C;D the degree of subsumption C v

t

D

D is com-

putable.

Theorem 8 is proved by introducing an algorithm that computes the degree

of subsumption between two ALC

F

M

-concepts C;D. The algorithm is similar to

the classic tableau method and hence based on the following completion rules.

De�nition 9 (Completion Rules)

1. Conjunction: (A;S) �!

u

(A

0

;S

0

)

if the following preconditions are satis�ed:

[x : C

1

u C

2

; t

x:C

1

uC

2

] 2 A and

t

x:C

1

uC

2

= min(t

x:C

1

; t

x:C

2

) not in S

then propagate:

A

0

= A[ f[x : C

1

; t

x:C

1

]; [x : C

2

; t

x:C

2

]g and

S

0

= S [ ft

x:C

1

uC

2

= min(t

x:C

1

; t

x:C

2

)g.

2. Disjunction: (A;S) �!

t

(A

0

;S

0

)

if the following preconditions are satis�ed:

[x : C

1

t C

2

; t

x:C

1

tC

2

] 2 A and

t

x:C

1

tC

2

= max(t

x:C

1

; t

x:C

2

) not in S

then propagate:

A

0

= A[ f[x : C

1

; t

x:C

1

]; [x : C

2

; t

x:C

2

]g and

S

0

= S [ ft

x:C

1

tC

2

= max(t

x:C

1

; t

x:C

2

)g.

3. Manipulator: (A;S) �!

M

(A

0

;S

0

); (A

00

;S

00

)

if the following preconditions are satis�ed:

[x :M(C); t

x:M(C)

] 2 A and

t

x:C

= m

�1

1

(t

x:M(C)

) 62 S and also

t

x:C

= m

�1

2

(t

x:M(C)

) 62 S

then propagate:

A

0

= A

00

= A [ f[x : C; t

x:C

]g and

S

0

= S [ ft

x:C

= m

�1

1

(t

x:M(C)

); t

x:C

� x

1

g and

S

00

= S [ ft

x:C

= m

�1

2

(t

x:M(C)

); t

x:C

� x

1

g.

4. Existential Restriction: (A;S) �!

9

1

(A

0

;S

0

)

if the following preconditions are satis�ed:

[x : 9r:C; t

x:9r:C

] 2 A and there exists no y for which

t

x:9r:C

= min(t

xy:r

; t

y:C

) is in S

then propagate for a new variable y:

A

0

= A[ f[xy : r; t

xy:r

]; [y : C; t

y:C

]g and

S

0

= S [ ft

x:9r:C

= min(t

xy:r

; t

y:C

)g.

7



5. Supremum Restriction: (A;S) �!

9

2

(A

0

;S

0

)

if the following preconditions are satis�ed:

f[x : 9r:C; t

x:9r:C

]; [xy : r; t

xy:r

]g � A and for y

ft

x:9r:C

= min(t

xy:r

; t

y:C

);

t

x:9r:C

� min(t

xy:r

; t

y:C

)g is not in S then propagate:

A

0

= A[ f[y : C; t

y:C

]g and

S

0

= S [ ft

x:9r:C

� min(t

xy:r

; t

y:C

)g.

6. Value Restriction: (A;S) �!

8

1

(A

0

;S

0

)

if the following preconditions are satis�ed:

[x : 8r:C; t

x:8r:C

] 2 A and there exists no y for which

t

x:8r:C

= max(1� t

xy:r

; t

y:C

) is in S

then propagate for a new variable y:

A

0

= A[ f[xy : r; t

xy:r

]; [y : C; t

y:C

]g and

S

0

= S [ ft

x:8r:C

= max(1� t

xy:r

; t

y:C

)g.

7. In�mum Restriction: (A;S) �!

8

2

(A

0

;S

0

)

if the following preconditions are satis�ed:

f[x : 8r:C; t

x:8r:C

]; [xy : r; t

xy:r

]g � A and for y

f�(t

x:8r:C

) = max(1� t

xy:r

; t

y:C

);

t

x:8r:C

� max(1� t

xy:r

; t

y:C

)g is not in S then propagate:

A

0

= A[ f[y : C; t

y:C

]g and

S

0

= S [ ft

x:8r:C

� max(1� t

xy:r

; t

y:C

)g.

To formulate the algorithm and some of its properties that are required to

prove Theorem 8 the following notions will be needed.

An extended ABox E contains a clash if and only if there is no solution for

the system of inequations S. Otherwise, E is called clash-free.

An extended ABox E is called complete if and only if there is no further rule

applicable to E .

Algorithm 10 (t

D

-minimal consistency algorithm for ALC

F

M

)

The subsumption algorithm gets as inputs two ALC

F

M

-concepts C;D and com-

putes the degree of subsumption C v

t

D

D. It works on a tree where each node

is labeled with an extended ABox. It starts with the tree only consisting of the

root labeled with E

0

= fA

0

;S

0

g where A

0

= f[x

0

: C; t

x

0

:C

]; [x

0

: D; t

x

0

:D

]g

and S

0

= ft

x

0

:C

= t

>

g. Apply the completion rules of De�nition 9 to leaves

until all leaves are labeled with complete extended ABoxes. Applying a rule

E ! E

i

; 1 � i � 2, to such a leaf leads to the creation of at most two new suc-

cessors of this node, each labeled with one of the extended ABoxes E

i

. Then, an

optimization method is applied to all complete extended ABoxes to solve their

systems of inequations. If all systems of inequations are not solvable, the algo-

rithm answers \1". Otherwise, it answers with the minimum of all computed

values � (t

x

0

:D

). �
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Remark 11 ALC (originated in [10]) is { roughly spoken { the crisp base for

the language ALC

F

M

without manipulators and arbitrary truth values in [0::1]

for concepts. A tableau algorithm for ALC usually encompasses only a single

rule for 9 and a single one for 8. Since 9 in ALC

F

M

is based on the Supremum

and 8 on the In�mum, it has to be guaranteed that these values will be obtained

from �xed variables x; y where y is a so-called role successor of x, i.e. exists R

such that [xy : r; t

xy:r

] 2 A (Existential and Value Restriction rules). Further,

it is imperative that all values that are obtained from other role successors of x

are smaller than the Supremum resp. larger than the In�mum (Supremum and

In�mum Restriction rules).

Each complete extended ABox encompasses a system of inequations S . For

each S , the lowest possible value � (t

x

0

:D

) is determined. To obtain these min-

imal values for all complete extended ABoxes, an appropriate procedure from

the domain of optimizing methods was selected (for more details, see the proof

of Lemma 14).

Another important notion is the extension of an evaluation:

De�nition 12 (Extension) Given two systems of inequations S ;S

0

with S �

S

0

. The evaluation �

0

: VAR(S

0

) ! [0::1] is called extension of the evaluation

� : VAR(S)! [0::1] i� 8t

x

2 VAR(S) : �

0

(t

x

) = � (t

x

).

Lemma 13 1. Each completion rule �! that can be applied to E satis�es:

E is � (S)-consistent if and only if there is an E

0

with E �! E

0

and E

0

is

�

0

(S

0

)-consistent where �

0

is an expansion of � .

2. A clash-free and complete extended ABox E is � (S)-consistent.

3. An extended ABox E that contains a clash is not �(S)-consistent for an

arbitrary � .

4. The t

D

-minimal consistency algorithm terminates.

Proof: We prove (1) by considering each completion rule.

1. Conjunction: Because of A � A

0

and S � S

0

each model of E

0

is also a

model of E .

Conversely, let (A; � ) be a model of E and �!

u

has been applied on [x :

C

1

uC

2

; t

x:C

1

uC

2

]. We de�ne an extension �

0

of � such that (A; �

0

) yields a

model of E

0

= (A

0

;S

0

) where A

0

= A [ f[x : C

1

; t

x:C

1

]; [x : C

2

; t

x:C

2

]g and

S

0

= S [ft

x:C

1

uC

2

= min(t

x:C

1

; t

x:C

2

)g. Since (A; �) is a model of E , there

exists an A-allocation � such that �;A j= [C

1

(x) ^ C

2

(x); � (t

x:C

1

uC

2

)]

and because of De�nition 3, there are values t

C

1

; t

C

2

2 [0::1] such that

�;A j= [C

1

(x); t

C

1

] and �;A j= [C

2

(x); t

C

2

] and further, �(t

x:C

1

uC

2

) =

min(t

C

1

; t

C

2

). Then, a solution of S

0

is obtained by extending � to �

0

by

�

0

(t

x:C

1

) = t

C

1

; �

0

(t

x:C

2

) = t

C

2

. Hence, E

0

is �

0

(S

0

)-consistent.
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2. Disjunction: Because of A � A

0

and S � S

0

each model of E

0

is also a

model of E .

Conversely, let (A; � ) be a model of E and �!

t

has been applied on

[x : C

1

t C

2

; t

x:C

1

tC

2

]. We de�ne an extension �

0

of � such that (A; �

0

)

yields a model of E

0

= (A

0

;S

0

) where A

0

= A [ f[x : C

1

; t

x:C

1

]; [x :

C

2

; t

x:C

2

]g and S

0

= S [ ft

x:C

1

tC

2

= max(t

x:C

1

; t

x:C

2

)g. Since (A; � ) is

a model of E , there exists an A-allocation � such that �;A j= [C

1

(x) _

C

2

(x); � (t

x:C

1

tC

2

)]. By De�nition 3, we get values t

C

1

; t

C

2

2 [0::1] such

that �;A j= [C

1

(x); t

C

1

]; �;A j= [C

2

(x); t

C

2

] and � (t

x:C

1

tC

2

) = max(t

C

1

; t

C

2

).

Then, a solution of S

0

is obtained by extending � to �

0

by �

0

(t

x:C

1

) =

t

C

1

; �

0

(t

x:C

2

) = t

C

2

. Hence, E

0

is �

0

(S

0

)-consistent.

3. Manipulator: Because of A � A

0

and S � S

0

as well as S � S

00

, each

model of E

0

and E

00

, respectively, is also a model of E .

Conversely, let (A; � ) be a model of E and �!

M

has been applied on

[x :M(C);

t

x:M(C)

]. We show that there exists an extension �

0

of � such that (A; � )

is a model of E

0

or E

00

.

Since (A; �) is a model of E , there exists an A-allocation � such that

�;A j= [M(C(x)); � (t

x:M(C)

)]. By De�nition 3, we get t

C

2 [0::1] such

that �;A j= [C(x); t

C

] and m(t

C

) = � (t

x:M(C)

). According to De�ni-

tion 5, for each manipulator m, there exists a unique value x

1

2 [0::1]

with m(x

1

) = 1. Further, at least one of the following two cases holds:

(1) t

C

2 [0 : : : x

1

] and m(t

c

) = m

1

(t

C

), or

(2) t

C

2 [x

1

: : : 1] and m(t

C

) = m

2

(t

C

).

De�ne the extension �

0

of � by �

0

(t

x:C

:= t

C

. If case (1) is satis�ed, then

(A; �

0

) is a model of E

0

. Otherwise, (A; �

0

) is a model of E

00

. Hence, E

0

is

� (S

0

)-consistent or E

00

is �

0

(S

00

)-consistent.

4. Existential Restriction: Because of A � A

0

and S � S

0

, each model of

E

0

is also model of E .

Conversely, let (A; � ) be a model of E and �!

9

1

has been applied on

[x : 9r:C;

t

x:9r:C

]. We show that there exists an extension �

0

of � such that (A; �

0

)

yields a model of E

0

= (A

0

;S

0

) where y is the new variable in E

0

, and A

0

=

A[f[xy : r; t

xy:r

]; [y : C; t

y:C

]g and S

0

= S [ft

x:9r:C

) = min(t

xy:r

; t

y:C

)gg.

Since (A; �) is model of E , the expression [x : 9r:C] is valid to the degree

� (t

x:9r:C

). Thus, there exists an A-allocation � and an individual � 2 �

such that, for the new variable y, we have �hy := �i j= [r(x; y); t

r

] and

�hy := �i j= [C(y); t

C

] and min(t

r

; t

C

) = �(t

x:9r:C

).

Let �

0

:= �hy := �i and extend � to �

0

by �

0

(t

xy:r

) := t

r

and �

0

(t

y:C

) := t

C

.

Since �

0

;A j= [r(x; y)^

min

C(y); � (t

x:9r:C

)] and �

0

(t

x:9r:C

) = min(�

0

(t

xy:r

); �

0

(t

y:C

)),

we get that (A; �

0

) is a model of E

0

and E

0

is �

0

(S

0

)-consistent.
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5. Supremum Restriction: Because of A � A

0

and S � S

0

, each model of

E

0

is also model of E .

Conversely, let (A; � ) be a model of E and �!

9

2

has been applied on

f[x : 9r:C; t

x:9r:C

]; [xy : r; t

xy:r

]g. We de�ne an extension �

0

of � such that

(A; �

0

) is a model of E

0

= (A

0

;S

0

) where A

0

= A [ f[y : C; t

xy:C

]g and

S

0

= S [ ft

x:9r:C

) � min(t

xy:r

; t

y:C

)gg.

Since (A; �) is model of E , there exists an A-allocation � such that �;A j=

[x : 9r:C; � (t

x:9r:C

). By the semantics of ALC

F

M

(see Table 1) we get

�;A j= [9

Sup

z:r(x; z) ^

min

C(z); � (t

x:9r:C

], i.e., for each r-successor � of

�(x) in A we have �(t

x:9r:C

) � min(t

1

; t

2

) where t

1

; t

2

are determined by

�hz := �i;A j= [r(x; z); t

1

] and �hz := �i; � j= [C(z); t

2

]. Since (A; � ) is

a model of E , [xy : r; t

xy:r

] 2 A implies that �(y) is an r-successor of

�(x) in A. It follows �(t

x:9r:C

) � min(t

r

; t

C

) where �;A j= [r(x; y); t

r

] and

�;A j= [C(y); t

C

].

De�ne the extension �

0

of � by �

0

(t

y:C

:= t

C

. Then, (A; �

0

) yields a model

of E

0

and E

0

is � (S

0

)-consistent.

6. Value Restriction: Because of A � A

0

and S � S

0

, each model of E

0

is

also model of E .

Conversely, let (A; �) be a model of E and rall has been applied on [x :

8r:C; t

x:9r:C

]. We show that there exists an extension �

0

of � such that

(A; �

0

) yields a model of E

0

= (A

0

;S

0

) where y is the new variable in

E

0

, and A

0

= A [ f[xy : r; t

xy:r

]; [y : C; t

y:C

]g and S

0

= S [ ft

x:8r:C

) =

max(1� t

xy:r

; t

y:C

)gg.

Since (A; �) is model of E , the expression [x : 8r:C] is valid to the degree

� (t

x:8r:C

). Thus, there exists an A-allocation � and an individual � 2 �

such that, for the new variable y, we have �hy := �i j= [r(x; y); t

r

], i.e.,

�hy := �i j= [:r(x; y); 1 � t

r

], and �hy := �i j= [C(y); t

C

] and max(1 �

t

r

; t

C

) = �(t

x:8r:C

).

Let �

0

:= �hy := �i and extend � to �

0

by �

0

(t

xy:r

) := t

r

and �

0

(t

y:C

) := t

C

.

Since �

0

;A j= [:r(x; y) _

max

C(y); � (t

x:9r:C

)] and �

0

(t

x:8r:C

) = max(1 �

�

0

(t

xy:r

); �

0

(t

y:C

)), we get that (A; �

0

) is a model of E

0

and E

0

is �

0

(S

0

)-

consistent.

7. In�mum Restriction: Because of A � A

0

and S � S

0

, each model of E

0

is also model of E .

Conversely, let (A; �) be a model of E and ralli has been applied on f[x :

8r:C; t

x:8r:C

]; [xy : r; t

xy:r

]g. We de�ne an extension �

0

of � such that

(A; �

0

) is a model of E

0

= (A

0

;S

0

) where A

0

= A [ f[y : C; t

xy:C

]g and

S

0

= S [ ft

x:8r:C

) � max(1� t

xy:r

; t

y:C

)gg.

Since (A; �) is model of E , there exists an A-allocation � such that �;A j=

[x : 8r:C; � (t

x:8r:C

). By the semantics of ALC

F

M

(see Table 1) we get

�;A j= [8

Inf

z:r(x; z) _

max

C(z); � (t

x:8r:C

], i.e., for each r-successor � of

�(x) in A we have � (t

x:8r:C

) � max(1� t

1

; t

2

) where t

1

; t

2

are determined
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by �hz := �i;A j= [r(x; z); t

1

] and �hz := �i; � j= [C(z); t

2

]. Since (A; �) is

a model of E , [xy : r; t

xy:r

] 2 A implies that �(y) is an r-successor of �(x)

in A. It follows � (t

x:8r:C

) � max(1� t

r

; t

C

) where �;A j= [r(x; y); t

r

] and

�;A j= [C(y); t

C

].

De�ne the extension �

0

of � by �

0

(t

y:C

:= t

C

. Then, (A; �

0

) yields a model

of E

0

and E

0

is � (S

0

)-consistent.

(2) Since E is clash-free, there exists an evaluation � that is a solution of S .

De�ne an interpretation as follows:

� � is the set of variables in A.

� For all role names R �

R

is de�ned as

�

r

(x; y) :=

�

� (t

xy:r

) if [xy : r; t

xy:r

] 2 A

0 otherwise

� For all concept names A �

A

is de�ned as

�

A

(x) :=

�

� (t

x:A

) if [x : A; t

x:A

] 2 A

0 otherwise

Let � := id, i.e. �(x) := x. We show that (A; � ) is a model of the complete

extended ABox E , i.e. �;A satis�es each weighted assertion in A and � is a

solution for S. Proof by induction on the structure of concepts:

Base case:

For all weighted assertions of the form [xy : r; t

xy:r

] and [x : C; t

x:C

] the

claim follows by de�nition of �

R

and �

A

.

Induction Step:

1. Conjunction: [x : C

1

uC

2

; t

x:C

1

uC

2

] 2 A. Since E is complete, �!

u

is no

longer applicable. Thus, we have f[x : C

1

; t

x:C

1

]; [x : C

2

; t

x:C

2

]g � A and

t

x:C

1

uC

2

= min(t

x:C

1

; t

x:C

2

) 2 S. By induction, �;A j= [x : C

1

; � (t

x:C

1

)]

and �;A j= [x : C

2

; � (t

x:C

2

)]. Since � is a solution of S, we have t

x:C

1

uC

2

=

min(t

x:C

1

; t

x:C

2

) and hence, �; � j= [x : C

1

u C

2

; t

x:C

1

uC

2

].

2. Disjunction: [x : C

1

t C

2

; t

x:C

1

tC

2

] 2 A. Since E is complete, �!

t

is

no longer applicable and therefore f[x : C

1

; t

x:C

1

]; [x : C

2

; t

x:C

2

]g � A and

t

x:C

1

tC

2

= max(t

x:C

1

; t

x:C

2

) 2 S. By induction, �;A j= [x : C

1

; � (t

x:C

1

)]

and �;A j= [x : C

2

; � (t

x:C

2

)]. Since � is a solution of S, we have t

x:C

1

tC

2

=

max(t

x:C

1

; t

x:C

2

) and hence, �;A j= [x : C

1

t C

2

; t

x:C

1

tC

2

].

3. Manipulator: [x :M(C); t

x:M(C)

] 2 A. Since E is complete, �!

M

is no

longer applicable. Thus, one of the following two cases must hold:

(1) [x : C; t

x:C

] 2 A and ft

x:C

= m

�1

1

(t

x:M(C)

); t

x:C

� x

1

g � S, or

(2) [x : C; t

x:C

] 2 A and ft

x:C

= m

�1

2

(t

x:M(C)

); t

x:C

� x

1

g � S.
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By induction, �;A j= [x : C; � (t

x:C

)]. If the case (1) is true, then we have

0 � �(t

x:C

) � x

1

and hence m(� (t

x:C

)) = m

1

(� (t

x:C

)). So, � (t

x:C

) =

m

�1

1

(� (t

x:M(C)

)) implies that � (t

x:M(C)

) = m(� (t

x:C

)) and �;A j= [x :

M(C); � (t

x:M(C)

)].

If the case (2) is true, then we have x

1

� �(t

x:C

) � 1 and hencem(�(t

x:C

)) =

m

2

(� (t

x:C

)). So, � (t

x:C

) = m

�1

2

(� (t

x:M(C)

)) implies that �(t

x:M(C)

) =

m(� (t

x:C

)) and �;A j= [x :M(C); � (t

x:M(C)

)].

4. Existential Restriction: [x : 9r:C; t

x:9r:C

] 2 A. Since E is complete,

�!

9

1

is not applicable on E . Thus, there exists a variable y such that

f[xy : r; t

xy:r

]; [y : C; t

y:C

]g � A and t

x:9r:C

= min(t

xy:r

; t

y:C

) 2 S. By

induction, �;A j= [r(x; y); � (t

xy:r

)] and �;A j= [C(y); � (t

y:C

)]. Since � is a

solution of S, we have t

x:9r:C

= min(t

xy:r

; t

y:C

).

According to De�nition 3 it remains to show that � (t

9r:C

) = supft

0

j

exists � 2 � with �hy := �i;A j= [9y:r(x; y) ^

min

C(y); t

0

]g. For the

given interpretation A and A-allocation �, we must show that, for all

r-successors z of x in A, �(t

x:9r:C

) � min(� (t

xz:r

; �(t

z:C

)).

Since E is complete, �!

9

2

is not applicable on E . Thus, for an arbitrary

r-successor z of x in A, we have t

x:9r:C

� min(t

xz:r

; t

z:C

2 S. Since �

is a solution of S, we get � (t

x:9r:C

) � min(� (t

xz:r

; �(t

z:C

)), and hence

�;A j= [x : 9r:C; � (t

x:9r:C

)].

5. Value Restriction: [x : 8r:C; t

x:8r:C

] 2 A. Since E is complete, rall

is not applicable on E . Thus, there exists a variable y such that f[xy :

r; t

xy:r

]; [y : C; t

y:C

]g � A and t

x:8r:C

= max(1 � t

xy:r

; t

y:C

) 2 S . By

induction, �;A j= [r(x; y); � (t

xy:r

)] and �;A j= [C(y); � (t

y:C

)]. Since � is a

solution of S, we have t

x:8r:C

= max(1� t

xy:r

; t

y:C

).

According to De�nition 3 it remains to show that �(t

8r:C

) = infft

0

j

exists � 2 � with �hy := �i;A j= [9y::r(x; y) _

max

C(y); t

0

]g. For the

given interpretation A and A-allocation �, we must show that, for all

r-successors z of x in A, �(t

x:8r:C

) � max(1� �(t

xz:r

; � (t

z:C

)).

Since E is complete, ralli is not applicable on E . Thus, for an arbitrary

r-successor z of x in A, we have t

x:8r:C

� max(1� t

xz:r

; t

z:C

2 S. Since �

is a solution of S , we get � (t

x:8r:C

) � max(1� � (t

xz:r

; � (t

z:C

)), and hence

�;A j= [x : 8r:C; � (t

x:8r:C

)].

(3) Obvious.

(4) The termination proof is similar to the one for the tableau introduced in

[1]. The idea is as follows: De�ne a mapping � from extended ABoxes (A;S)

to tuples of �xed length of nonnegative integers such that for each completion

rule

(A;S) �! (A

0

;S

0

) =) �(A;S) � �(A

0

;S

0

)

is valid, where � denotes the lexicographic ordering on tuples. Since the lexi-

cographic ordering is well-founded, this implies termination of the algorithm.

13



In the following, only extended ABoxes (A;S) are considered that are ob-

tained by applying the completion rules to fx

0

: [C; t

x

0

:C

]; x

0

: [D; t

x

0

:D

]g. x

0

is

denoted as the root node of the extended ABox.

The and/or/manipulator-size jCj

u=t=M

of a concept C is de�ned as the num-

ber of occurrences of conjunction, disjunction and manipulator constructors in

C. Obviously, it is jC

1

uC

2

j

u=t=M

= jC

1

tC

2

j

u=t=M

= jC

1

j

u=t=M

+jC

2

j

u=t=M

+1

and jM(C)j

u=t=M

= jCj

u=t=M

+ 1.

The maximal role depth depth(C) of a concept C is de�ned as follows:

depth(A) := 0,

depth(M(C)) := depth(C),

depth(C

1

u C

2

) := depth(C

1

t C

2

) := maxfdepth(C

1

); depth(C

2

)g,

depth(8r:C) := depth(9r:C) := 1 + depth(C).

Let m

0

be the maximum of the role depth of C and D. The following

observations are a direct consequence of the de�nition of the completion rules.

Each variable x in an extended ABox (A;S) is accessed from x

0

by a unique

role chain [x

0

; x

1

: r

1

; t

x

0

;x

1

:r

1

]; : : : ; [x

n�1

; x : r

n

; t

x

n�1

;x:r

n

] in A. Consequently,

each variable x has a unique level level(x) in A. The level of x

0

is de�ned as

0. If x is accessible from x

0

in A by a role chain of length m, then for each

assertion [x : C; t

x:C

] in A, the maximal role depth of C is bounded by m

0

�m.

Therefore, level(x) is bounded by m

0

and the level of each variable in A is an

integer between 0 and m

0

.

Now, a mapping �(A;S) from an extended ABox (A;S) to a 3(m

0

+1)-tuples

of nonnegative integers is de�ned by

�(A;S) := (�

0

; : : : ; �

m

0

);

where �

l

:= (k

l1

; k

l2

; k

l3

) and

� k

l1

is the sum of the and/or/manipulator-sizes jCj

u=t=M

of all assertions

[x : C; t

x:C

] in A such that level(x) = l and the conjunction, disjunction

or manipulator rule is applicable to [x : C; t

x:C

] in (A;S).

� k

l2

is the sum of the number of all assertions [x : 9r:C; t

x:9r:C

] in A and

the number of all assertions [x : 8r:C; t

x:8r:C

] in A such that level(x) = l

and the existential restriction rule (value restriction rule) is applicable to

[x : 9r:C; t

x:9r:C

] ([x : 8r:C; t

x:8r:C

]) in (A;S).

� k

l3

is the sum of the number of all pairs of assertions [x : 9r:C; t

x:9r:C

];

[xy : r; t

xy:r

] and the number of all pairs of assertions [x : 8r:C; t

x:8r:C

];

[xy : r; t

xy:r

] in A such that level(x) = l and the supremum restriction rule

(in�mum restriction rule) is applicable to [x : 9r:C; t

x:9r:C

]; [xy : r; t

xy:r

]

([x : 8r:C; t

x:8r:C

]; [xy : r; t

xy:r

]) in (A;S).

In the last part of the termination proof, for each completion rule it has to be

shown that (A;S) �! (A

0

;S

0

) implies �(A;S) � �(A

0

;S

0

).

1. Conjunction: (A;S) �!

u

(A

0

;S

0

)

Assume that the rule is applied to the assertion [x : C

1

u C

2

; t

x:C

1

uC

2

]

14



in A. Let l := level(x) and �

l

; �

0

l

be the tuples associated with level l in

(A;S) and (A

0

;S

0

).

It is valid that k

l1

< k

0

l1

, because in k

0

l1

, jC

1

u C

2

j

u=t=M

is replaced by a

number that is less or equal to jC

1

j

u=t=M

+ jC

2

j

u=t=M

< jC

1

uC

2

j

u=t=M

.

Since tuples are compared with the lexicographic ordering, an increase in

the second or third component of �

0

l

and �

0

m

for m > l is irrelevant. In a

tuple �

0

m

with m < l, none of the three components is changed. Therefore,

�(A;S) � �(A

0

;S

0

).

2. Disjunction: (A;S) �!

t

(A

0

;S

0

)

3. Manipulator: (A;S) �!

M

(A

0

;S

0

)

Analogous to the conjunction rule.

4. Existential Restriction: (A;S) �!

9

1

(A

0

;S

0

)

Assume that the rule is applied to [x : 9r:C; t

x:9r:C

]. Let l := level(x)

and �

l

; �

0

l

be the tuples associated with level l in (A;S) and (A

0

;S

0

).

Let y be the new variable in A

0

introduced by the rule. Obviously, it is

level(y) = level(x) + 1.

The �rst component of �

0

l

remains unchanged. The second component

decreases, because the existential restriction rule is not applicable to [x :

9r:C; t

x:9r:C

] in (A

0

;S

0

) any more. Therefore, an increase in the third

component of �

0

l

and in �

0

m

for m > l need not be considered. Since all

components of �

0

m

withm < l remain unchanged, it is �(A;S) � �(A

0

;S

0

).

5. Supremum Restriction: (A;S) �!

9

2

(A

0

;S

0

)

Assume that the rule is applied to the assertions [x : 9r:C; t

x:9r:C

]; [xy :

r; t

xy:r

]. Let l := level(x) and �

l

; �

0

l

be the tuples associated with level l in

(A;S) and (A

0

;S

0

).

The �rst two components in �

0

l

are not changed and the third component

decreases, because the pair [x : 9r:C; t

x:9r:C

]; [xy : r; t

xy:r

] is no longer

counted. Therefore, an increase in tuples �

0

m

with m > l (especially

in �

0

l+1

) is irrelevant. Since all components of �

0

m

with m < l remain

unchanged, it is �(A;S) � �(A

0

;S

0

).

6. Value Restriction: (A;S) �!

8

1

(A

0

;S

0

)

Analogous to the existential restriction rule.

7. In�mum Restriction: (A;S) �!

8

2

(A

0

;S

0

)

Analogous to the supremum restriction rule.

Lemma 14 If some E = (A;S) is complete, the applied optimization method

determines the minimal possible value � (t

x

0

:D

) that is a solution for S in E.

Proof: The completion rules generate systems of inequations based on values in

[0::1]. After some further treatment of the appearing m

�1

i

;min;max operators,
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methods from the domain of linear programming, e.g. the simplex method (see

[9]), are able to solve those inequations and to determine the smallest value

that is a solution for � (t

x

0

:D

). There are di�erent methods to remove min=max-

equations. The simplest one is to split S into two sets S

0

;S

00

for each occurring

min or max. In the case of min, the equation t = min(t

1

; t

2

) is substituted

by ft = t

1

; t � t

2

g in S

0

and ft = t

2

; t � t

1

g in S

00

. max is treated in the

same manner. A more elegant way is to directly express one operator by two

equations and only to split S into two sets for the remaining one. The single

m

�1

i

, divided into m

�1

i

1

;m

�1

i

2

, are treated by handing over their de�nition to the

optimization method. Since only linear functions appear, their inverse function

equation is easy to compute.

Theorem 8 can now be proved by using the three lemmata.

Proof of Theorem 8:

Due to Lemma (13.4), the algorithm terminates. If C is not satis�able to degree

1 (e.g. in the case C = P u :P ), then there exists no solution of S

0

, and hence

the output is 1 according to De�nition 4.

Otherwise, let t 2 [0::1] be the output. We have to show that t is the degree

t

D

to which D is entailed by C.

By Lemma (13.2), there exists a model (I

0

; �

0

) with �

0

(t

x

0

:D

) = t, i.e., t

D

� t.

Assume that there exists a model (I

0

; �

0

) of E

0

with �

0

(t

x

0

:D

) < t. By Lemma

(13.1), we obtain a complete extended ABox E such that there exists an expan-

sion �

00

of �

0

, i.e., �

00

(t

x

0

:D

) = �

0

(t

x

0

:D

). Then, the optimization method yields

a solution �

�

with �

�

(t

x

0

:D

) � �

0

(t

x

0

:D

) < t. Thus, we obtain a contradiction

because we assumed t to be the output of Algorithm 10. We get t

D

� t and

hence t

D

= t.

5 Summary

This article presented the �rst steps into reasoning with vague information, or

more precisely with concepts that are not characterized by crisp boundaries. The

major feature is the incorporation of membership manipulators that catch the

semantics of adjectives which have a major impact on some disciplines. There

are di�erent sensible applications imaginable that are based on the presented

reasoning method. A concrete application from the medical domain combines

medical terminology processing within a tutoring system for teaching �ndings in

radiology. In this context, the main problem addresses the comparison between

vague concept descriptions, i.e. the similarity between �ndings from students

and those from experts. In a preprocessing step, the single statements from

the �ndings are translated into concept de�nitions. The number and length

of de�ned concepts is small but very strongly intermixed with manipulators.

Therefore, ALC

F

M

is a good tool for comparing them by capturing the inherent

semantics of the underlying medical problem. Details of this work { especially

about the used natural language preprocessing method { can be found in [11].
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Open at this time remains the question of how to incorporate concrete fuzzy

sets. For example, in the application above, it is sensible to compare statements

like enlarged with approximately 14 cm, where both are de�ned by fuzzy sets.

Thus, atomic concepts must be attachable to these fuzzy sets.

There are many other works in the area of reasoning with vagueness in

medicine like [4, 5]. They only deal with concrete cases and data extensions

by applying most often some heuristics. In contrast, the method presented in

this paper is based on a logical foundation that guarantees sound and complete

intensional inferences.

Extending this work, other inference tasks for ALC

F

M

, e.g. consistency of

arbitrary ALC

F

M

-ABoxes, will be investigated. The proposed method is sound

and complete but not really equipped to work on very large knowledge bases.

Consequently, the question of complexity has to be studied in further work.
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