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Abstract

In a previous work, we describe a method to combine decision procedures

for the word problem for theories sharing constructors. One of the require-

ments of our combination method is that constructors be collapse-free. This

paper removes that requirement by modifying the method so that it applies to

non-collapse-free constructors as well. This broadens the scope of our combi-

nation results considerably, for example in the direction of equational theories

corresponding to modal logics.
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1 Introduction

In [BT99] we provided modular decidability results for the word problem in the case

of unions of equational theories with possibly non-disjoint signatures, subsuming

previous well-known results on the decidability of the word problem for the union

of equational theories with disjoint signatures [Pig74]. Our results were achieved

by assuming that the function symbols shared by the component theories were con-

structors in a appropriate sense.

The notion of constructors presented in [BT99], which was obtained as a re�ne-

ment of one �rst introduced in [TR98] and generalized that in [DKR94], was build

around the observation that some equational theories E are such that the reducts

of their free models to a subset � of their signature are themselves free. We would

call constructors the symbols in �. The actual de�nition of constructors in [BT99],

however, incorporated the restriction that the equational theory of the constructors

had to be collapse-free

1

. This restriction was essentially technical, as it was used to

provide a syntactic characterizations of the generators of the free �-reducts in terms

of a certain set G of terms, which was then utilized in various proofs in the paper.

In the present report, by using a more general way of de�ning the set G above,

we remove the collapse-freeness restriction and show that all the combination results

given in [BT99] continue to hold without it.

In [BT99] we used a rule-based procedure for combining in a modular way a pro-

cedure deciding the word problem for a theory E

1

and a procedure deciding the word

problem for a theory E

2

into a procedure deciding the word problem for the theory

E

1

[ E

2

. As mentioned, the main requirement was that the symbols shared by E

1

and E

2

were constructors for each of them. In this report, we obtain the generalized

combination results by using a proper modi�cation of the procedure, which does not

rely anymore on the assumption that the constructor theory is collapse-free.

The net e�ect of lifting the collapse-freeness restriction is to expand considerably

the scope of our combination results. A lot more equational theories obtained as a

conservative extension of a core �-theory are now such that � is a set of constructors

for them. Which means, potentially, that a lot more theories built as a conservative

extension of a same �-theory can be combined with out method.

2

One particularly interesting class of such theories includes the equational axiom-

atizations of some (propositional) modal logics, on which we give more details in

Section 3.2. A fair amount of research has been done on the combination of modal

logics. We believe that our results for the word problems can now be used to con-

tribute to this research by recasting the combination of two modal logics as the union

1

In other words, no term over the constructor symbols could be equivalent in E to one of its

variables.

2

The quali�cation \potentially" is mandatory, of course, because we still need to impose some

additional computability requirements on the theories to be combined.
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of their corresponding equational theories. However, we have not yet had the time to

explore these possibilities in more depth. We are working on this in a joint project

with modal logicians.

For now, we present and discuss our generalized notion of constructors, and

provide some examples of theories admitting constructors in the new sense but not

in the old one, including an equational theory corresponding to a modal logic. Then,

we describe the modi�ed version of the combination procedure, prove its correctness,

and show how that leads to exactly the same results given in [BT99], but of course

with the wider scope provided by the new de�nition of constructors.

2 Formal Preliminaries

A (functional) signature is a set of function symbols with an associated arity. Through-

out the report we will consider only countable signatures. We will denote by V a

�xed countably in�nite set of variables and for any signature �, we will denote by

T (�; V ) the set of �-terms over V . We will use the symbols r; s; t to denote terms,

and the symbols x; y; u; v; w; z to denote variables. With a common abuse of notation

we will also use x; y; u; v; w; z as the actual variables in our examples.

If t is a term, Var(t) will denote the set of all variables occurring in t. Similarly,

if ' is a formula, Var(') will denote the set of free variables of '.

Where �v is a tuple of variables without repetition, we will write t(�v) to mean

that �v lists all the variables of t. When convenient, we will treat a tuple

�

t of terms

as the set of its elements.

For any functional signature �, a quanti�er-free formula is a Boolean combination

of �-equations, i.e., of formulae of the form s � t, where � denotes the equality

predicate and s; t are terms in T (�; V ). We use the abbreviation s 6� t to denote

the disequation :(s � t).

An equational theory E with signature � is a set of universally quanti�ed equa-

tions between �-terms. As customary, we will omit the universal quanti�ers; for

example, we will denote the equational theory C axiomatizing the commutativ-

ity of the binary function symbol f by C := ff(x; y) � f(y; x)g instead of C :=

f8x; y:f(x; y) � f(y; x)g.

As usual, we say that a formula ' is valid in E and write E j= ' i� ' holds in

all models of E, i.e., i� for all �-algebras A that satisfy E (are a model of E) and

all valuations � of the free variables of ' by elements of A we have A; � j= '. Since

a formula is valid in E i� its negation is unsatis�able in E, we can turn the validity

problem for E into an equivalent satis�ability problem: we know that a formula '

is not valid in E i� there exist a �-model A of E and a valuation � such that

A; � j= :'.

Given a function symbol f 2 � and a �-algebra A, we denote by f

A

the inter-
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pretation of f in A. This notation can be extended to terms in the obvious way: if

s is a �-term containing n distinct variables, then we denote by s

A

the n-ary term

function induced by the term s in A. Given a �-term s, a �-algebra A, and a valua-

tion � (of the variables in s by elements of A), we denote by [[s]]

A

�

the interpretation

of the term s in A under the valuation �. Using the term function induced by s,

this interpretation of s can also be written as [[s]]

A

�

= s

A

(�a), where �a is the tuple of

values which � assigns to the variables in s.

For an equational theory E, the word problem is concerned with the validity in

E of quanti�er-free formulae of the form s � t. Equivalently, the word problem asks

for the (un)satis�ability of the disequation s 6� t in E. As usual, we often write

\s =

E

t" to express that the formula s � t is valid in E.

An equational theory E is non-trivial if it admits models of cardinality greater

than 1; it is collapse-free i� x 6=

E

t for all variables x and non-variable terms t. It is

easy to see that when E is non-trivial, x =

E

t only if x is a variable of t.

The equational theory E over the signature � de�nes a �-variety , i.e., the class

of all the models of E. When E is non-trivial this variety contains free algebras for

any set of generators. We will call these algebras E-free algebras. More precisely, if

A is a free algebra in E's �-variety with a set X of free generators we will say that

A is free in E over X, or also, that A is a free model of E over X.

The following is a well-known characterization of free algebras (see, e.g., [Hod93]):

Proposition 2.1 Let E be an equational theory over �, A a �-algebra, and X a

subset of A's carrier. Then, A is free in E over X i� the following holds:

1. A is a model of E;

2. X generates A;

3. for all s; t 2 T (�; V ), if A; � j= s � t for some injection � of Var(s � t) into

X, then s =

E

t.

We will use another well known properties of free algebras.

Proposition 2.2 Let B

1

;B

2

be two algebras free in the same �-variety over respec-

tive sets Y

1

; Y

2

of the same cardinality. Then, any bijection of Y

1

onto Y

2

extends to

an isomorphism of B

1

onto B

2

.

In this report, we are interested in combined equational theories, that is, equa-

tional theories E of the form E := E

1

[E

2

, where E

1

and E

2

are equational theories

over two (not necessarily disjoint) functional signatures �

1

and �

2

. The elements of

�

1

\ �

2

are called shared symbols. For any term t let t(�) denote the top symbol of

t. A term t 2 T (�

1

[ �

2

; V ) is an i-term i� t(�) 2 V [ �

i

, i.e., if it is a variable or
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has the form t = f(t

1

; :::; t

n

) for some �

i

-symbol f (i = 1; 2). Notice that variables

and terms t with t(�) 2 �

1

\ �

2

are both 1- and 2-terms.

A subterm s of a 1-term t is an alien subterm of t i� it is not a 1-term and

every proper superterm of s in t is a 1-term. Alien subterms of 2-terms are de�ned

analogously. For i = 1; 2, an i-term s is pure i� it is a �

i

-term. An equation s � t is

pure i� there is an i such that both s and t are pure i-terms.

For some proofs, it will be important to know the number of \signature changes"

that occur in a (�

1

[ �

2

)-term. This is formalized by the concept of rank.

De�nition 2.3 (Rank) Let t be a term in T (�

1

[ �

2

; V ) and Aln(t) the set of all

alien subterms of t. The rank of t (w.r.t. �

1

and �

2

) is de�ned as follows.

rank(t) :=

�

0 if t is pure,

1 + maxfrank(r) j r 2 Aln(t)g otherwise.

3 Combining Non-Disjoint Equational Theories

Since the union of equational theories with decidable word problem need not have

a decidable word problem, one needs appropriate restrictions on the theories to be

combined. In this section we introduce such restrictions, and establish some useful

properties of theories satisfying them. In particular, Proposition 3.4 will play a

crucial rôle in the proof of completeness of the combination procedure.

In the following, given an 
-algebra A and a subset � of 
, we will denote by

A

�

the reduct of A to the subsignature �.

De�nition 3.1 (Fusion) A (�

1

[�

2

)-algebra F is a fusion of a �

1

-algebra A

1

and

a �

2

-algebra A

2

i� F

�

1

is �

1

-isomorphic to A

1

and F

�

2

is �

2

-isomorphic to A

2

.

In essence, a fusion of A

1

and A

2

, if it exists, is an algebra that is identical to A

1

when seen as a �

1

-algebra, and identical to A

2

when seen as a �

2

-algebra. Clearly,

two algebras A

1

and A

2

do not necessarily admit a fusion. In [BT99], it is shown

that they do exactly when their reducts to their common signature � := �

1

\�

2

are

isomorphic. More precisely, [BT99] shows that every (�-)isomorphism of A

1

�

onto

A

2

�

induces a canonical fusion of A

1

and A

2

.

Proposition 3.2 Let A be a �

1

-algebra, B a �

2

-algebra, and � := �

1

\ �

2

. For

every isomorphism h of A

1

�

onto A

2

�

, there is a fusion F

h

of A

1

and A

2

such that

� the identity function of A

2

is a �

2

-isomorphism of A

2

onto F

h

�

2

,

� h is a �

1

-isomorphism of A

1

onto F

h

�

1

.
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Fusions of algebras have a close link with unions of theories, which we will exploit

later.

Lemma 3.3 If E

1

; E

2

are two equational theories of signature �

1

;�

2

, respectively,

and F is a fusion of a model of E

1

and a model of E

2

, then F is a model of E

1

[E

2

.

A proof of this lemma can be found in [BT99]. The same work also proves that,

in the presence of certain conditions, the test for satis�ability in a fusion of two

algebras can be reduced to a \local" satis�ability test in each of the algebras.

Proposition 3.4 Let A

1

be a �

1

-algebra, A

2

be a �

2

-algebra, and � := �

1

\�

2

such

that the reducts A

1

�

;A

2

�

are both free in the same �-variety over respective sets of

generators Y

1

; Y

2

having the same cardinality. Let '

1

; '

2

be two arbitrary �rst-order

formulae of signature �

1

;�

2

, respectively. If '

i

is satis�able in A

i

with the variables

in Var('

1

)\Var('

2

) taking distinct values over Y

i

for i = 1; 2, then there is a fusion

of A

1

and A

2

in which '

1

^ '

2

is satis�able.

Notice that the proposition does not require that the whole algebras be free but

just their reducts to the common signature. In the following, however, we will be

interested in countably generated free �

i

-algebras (i = 1; 2) whose reducts to the

common signature �

1

\ �

2

are also free, in the same variety, and over a countably

in�nite set of generators.

In [BT99] we used the notion of constructors mentioned earlier to identify certain

theories whose free algebras behaved as above. We generalize this notion in the next

subsection.

3.1 Theories Admitting Constructors

We are interested in free models whose reducts to some shared subsignature are

themselves free. In general, the property of being a free algebra is not preserved under

signature reduction. The problem is that the reduct of an algebra may need more

generators than the algebra itself and these generators need not be free. Nonetheless,

there are free algebras admitting reducts that are also free, although over a possibly

larger set of generators. These algebras are models of equational theories that admit

constructors in the sense de�ned below.

In the following, 
 will be an at most countably in�nite functional signature, and

� a subset of 
. We will �x a non-trivial equational theory E over 
 and de�ne the

�-restriction of E as E

�

:= fs � t j s; t 2 T (�; V ) and s =

E

tg:

De�nition 3.5 (Constructors) The subsignature � of 
 is a set of constructors

for E if for every 
-algebra A free in E over a countably in�nite set X, A

�

is free

in E

�

over a set Y including X.
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This de�nition is a proper generalization of the de�nition of constructors given

in [BT99], which in addition requires E

�

to be collapse-free. Contrary to the one

above, that de�nition does not require the generators of A

�

to include those of A;

but this is always the case when E

�

is collapse-free.

It is immediate that the whole signature 
 is a set of constructor for the theory

E. Similarly, the empty signature is a set of constructor for E, as any model of E

is free over its whole carrier in E

;

, which is fv � v j v 2 V g. Also, the constant

symbols of 
 are easily shown to be a set of constructors for E.

If E is axiomatized by the union of two theories E

1

; E

2

of respective, disjoint

signatures, �

1

;�

2

, then �

i

(i = 1; 2) is a set of constructors for E. This is not

immediate but can be shown as a consequence of some results in [BS98].

At any rate, De�nition 3.5 is a rather abstract formulation which may make it

di�cult to say for a given theory E and signature � whether is a set of constructors

for E. A more concrete, syntactic characterization of theories admitting constructors

is described below. But �rst, some more notation will be needed.

Given a subset G of T (
; V ), we denote by T (�; G) the set of terms over the

\variables" G. More precisely, every member t of T (�; G) is obtained from a term

s 2 T (�; V ) by replacing the variables of s with terms from G. We will denote

such a term t by s(�r) where �r is the tuple made, without repetitions, of the terms

of G that replace the variables of s. We will refer to these terms as the G-variables

of t. Notice that this notation is consistent with the fact that G � T (�; G). In

fact, every r 2 G can be represented as s(r) where s is a variable of V . Also notice

that T (�; V ) � T (�; G) whenever V � G. In this case, every s 2 T (�; V ) can be

trivially represented as s(�v) where �v are the variables of s.

De�nition 3.6 (�-base) A subset G of T (
; V ) is a �-base of E i� the following

holds:

1. V � G.

2. For all t 2 T (
; V ), there is an s(�r) 2 T (�; G) such that

t =

E

s(�r):

3. For all s

1

(�r

1

); s

2

(�r

2

) 2 T (�; G),

s

1

(�r

1

) =

E

s

2

(�r

2

) i� s

1

(�v

1

) =

E

s

2

(�v

2

);

where �v

1

; �v

2

are fresh variables abstracting �r

1

; �r

2

so that two terms in �r

1

; �r

2

are

abstracted by the same variable i� they are equivalent in E.

We will say that E admits a �-base if some subset G of T (
; V ) is a �-base of

E.

8



Theorem 3.7 (Characterization of constructors) The signature � is a set of

constructors for E i� E admits a �-base.

Proof. Let A be an 
-algebra free in E over some countably in�nite set X, and �

any bijective valuation of V onto X.

3

(() Where G is any �-base of E, let

Y := f[[r]]

A

�

j r 2 Gg:

Since V � G by de�nition of �-base, it is immediate that X � Y . We show that

A

�

is free in E

�

over Y .

Let us start by observing that, since A is a model of E, its reduct A

�

is a model

of E

�

. Next, we show that A

�

is generated by Y . In fact, let a be an element of

A|which is also the carrier of A

�

. We know that, as an 
-algebra, A is generated

by X; thus there exists a term t 2 T (
; V ) such that a = [[t]]

A

�

. By condition (2) of

De�nition 3.6, the term t 2 T (
; V ) is equivalent in E to a term s(�r) 2 T (�; G).

Since A is a model of E, this implies that a = [[t]]

A

�

= [[s(�r)]]

A

�

, from which it easily

follows by de�nition of Y that a is �-generated by Y .

The above entails that A

�

satis�es the �rst two conditions of Proposition 2.1.

To show that it is free in E

�

then it is enough to show that it also satis�es the third

condition of the same proposition.

Thus, let s

1

(�v

1

); s

2

(�v

2

) 2 T (�; V ) and assume that A

�

; �

0

j= s

1

(�v

1

) � s

2

(�v

2

) for

some injection �

0

of V

0

:= Var(s

1

(�v

1

) � s

2

(�v

2

)) into Y . By de�nition of Y we know

that, for all v 2 V

0

, there is a term r

v

2 G such that �

0

(v) = [[r

v

]]

A

�

. Using these

terms we can construct two tuples �r

1

and �r

2

of terms in G such that, for i = 1; 2, the

term s

i

(�r

i

) is obtained from s

i

(�v

i

) by replacing each variable v in Var(s

i

(�v

i

)) by the

term r

v

, and A; � j= s

1

(�r

1

) � s

2

(�r

2

). Since A is free in E over X and � is injective

as well we can conclude by Proposition 2.1(3) that s

1

(�r

1

) =

E

s

2

(�r

2

).

Because of the assumption that �

0

is injective, we know that r

u

6=

E

r

v

for distinct

variables u; v 2 V

0

. Thus, considered the other way around, the equation s

1

(�v

1

) �

s

2

(�v

2

) can be obtained from s

1

(�r

1

) � s

2

(�r

2

) by abstracting the terms �r

1

; �r

2

so that

two terms are abstracted by the same variable i� they are equivalent in E. By

De�nition 3.6(3) then we obtain that s

1

(�v

1

) =

E

s

2

(�v

2

). Since the terms s

1

(�v

1

); s

2

(�v

2

)

are �-terms, this is the same as saying that s

1

(�v

1

) =

E

�
s

2

(�v

2

).

()) Now assume that � is a set of constructors for E, which implies that A

�

is

free in E

�

over some set Y such that X � Y . First notice that, since A is generated

by X, for every element y of Y there is a term r in T (
; V ) such that y = [[r]]

A

�

.

Then let

G := fr 2 T (
; V ) j [[r]]

A

�

2 Y g:

3

Such a valuation � exists since V is assumed to be countably in�nite.
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We show that G is a �-base of E.

Since X � Y , it is immediate that every v 2 V is in G, which means that G

satis�es the �rst condition in De�nition 3.6. The second condition easily follows

from the fact that A

�

is �-generated by Y . Similarly, the third condition follows

from Proposition 2.1(3). ut

We will use sets such as the set Y de�ned in the proof above often enough to

justify the following notation. If T is a subset of T (
; V ), A an 
-algebra free in

E over a countably-in�nite set X, and � a bijective valuation of V onto X we will

denote by [[T ]]

A

�

the set f[[t]]

A

�

j t 2 Tg.

Corollary 3.8 Let G be a �-base of E, A an 
-algebra free in E over a countably

in�nite set X, and � a bijective valuation of V onto X. Then, A

�

is free in E

�

over

the set Y := [[G]]

A

�

, and X � Y .

An interesting question is whether the condition that X � Y in the de�nition

of constructors is really needed. Does this condition always hold whenever the �-

reduct of any algebra A free in E over the countably in�nite set X is itself free? It

can be easily shown that A

�

can be free in E

�

only over a set Y that is countably

in�nite. The questions is: can Y always be chosen so that it includes X? When

E

�

is collapse-free, Y is unique and it does include X [BT99]. When E

�

is not

collapse-free, however, A

�

may be free in it over more than one set of generators,

not all of which include X.

For instance, consider the 
-theory E

1

:= fg(g(x)) = xg and let � := 
. Let A

be an 
-algebra free in E

1

over some set X and � a bijective valuation of V onto

X. It is easy to see that A, which is free in E

1

�

over X of course, is also free over

the set f[[g(v)]]

A

�

j v 2 V g, disjoint from X. Now, this example causes no problems

because one can always choose Y := X in this case. For the general case, however,

the question remains open.

Going back to the notion of �-base, it should be clear that a theory E with

constructors � usually admits many �-bases. For instance, if G is a �-base of E,

any set G

0

equal to G modulo equivalence in E is also a �-base of E. In fact, we can

say even more.

Proposition 3.9 Let G be a �-base of E. Then, the following holds.

� For all bijective renamings � of V onto itself, the set G

0

:= f�(r) j r 2 Gg is

also a �-base of E.

� For all sets G

0

such that G � G

0

� T (
; V ), the set G

0

is a �-base of E i� G

0

coincides with G modulo equivalence in E.

10



Notice that all the �-bases G

0

in the above result are really syntactical variants

of G. In fact, let A be a free model of E over a countably in�nite set X and � a

bijection of V onto X. Then, for every G

0

above there is a bijection �

0

of V onto X

such that [[G

0

]]

A

�

0

coincides with [[G]]

A

�

, the set of free generators for the �-reduct of

A. If G is closed under bijective renaming or is equal to G

0

modulo E, one such �

0

is � itself; otherwise, if G

0

= f�(r) j r 2 Gg with � as above, one �

0

is � � �

�1

.

Now, although an equational theory E with constructors � may have free models

with �-reducts admitting distinct sets of free generators (as for instance the theory

E

1

in the previous example), it is not clear whether it can have substantially di�erent

�-bases, i.e., �-bases yielding distinct sets of free generators.

4

For now, we only know

that this is impossible if E

�

is collapse-free. The reason is that then the �-reduct of

the in�nitely generated free model of E has exactly one set of free generators, and

so all �-bases of E, if any, denote that unique set [BT99].

As it turns out, when E

�

is collapse-free, E has a �-base G

E

(�; V ) that is closed

under bijective renaming and equivalence in E, and as such includes all the �-bases

of E. In [BT99], where the de�nition of constructors included the collapse-freeness

requirement on E

�

, this maximal �-base was de�ned as follows:

G

E

(�; V ) := fr 2 T (
; V ) j r 6=

E

t for all t 2 T (
; V ) with t(�) 2 �g: (1)

Modulo equivalence in E, G

E

(�; V ) is made of 
-terms whose top symbol is not

in �, from which it is immediate that G

E

(�; V ) is closed under bijective renaming

and under equivalence in E. In [BT99], it is shown that G

E

(�; V ) is a �-base of E

exactly when � is a set of (collapse-free) constructors.

To summarize, the following holds for G

E

(�; V ).

Proposition 3.10 Let G

E

(�; V ) be the set de�ned in (1). Whenever E

�

is collapse-

free,

� every �-base of E, if any, is included in G

E

(�; V );

� � is a set of constructors for E i� G

E

(�; V ) is a �-base of E.

Normal Forms

According to De�nition 3.6, if a set G is a �-base of an 
-theory E, every 
-term

t is equivalent in E to a term s(�r) 2 T (�; G). We will call s(�r) a G-normal form

of t in E.

5

We will say that a term t is in G-normal form if it is already of the

4

The theory E

1

in the previous example does have two sets, V and fg(v) j v 2 V g, that yield

distinct sets of free generators for the reduct. However, only the former is a �-base of E

1

; the latter

is not because it does not satisfy Condition 1 of De�nition 3.6.

5

Notice that in general a term may have more than one G-normal form.
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form t = s(�r) 2 T (�; G). Because V � G, it is immediate that �-terms are in

G-normal form, as are terms in G. We will speak just of normal forms instead of

G-normal forms whenever the speci�c �-base G in question is clear from context or

not relevant.

We will make use of normal forms in the combination procedure given later. In

particular, we will consider normal forms that are computable in the following sense.

De�nition 3.11 (Computable Normal Forms) Let � be a set of constructors

for the equational theory E over the signature 
. For any �-base G of E we say that

G-normal forms are computable for � and E if there is a computable function

NF

�

E

: T (
; V ) �! T (�; G)

such that NF

�

E

(t) is a G-normal form of t, i.e., NF

�

E

(t) =

E

t.

Note that, unless E

�

is collapse-free, the terms of G may as well start with a

�-symbol themselves. This means that, for any given term t in G-normal form, it

may not be possible to e�ectively identify its G-variables, i.e., those terms �r of G

such that t = s(�r) for some �-term s. Now, in the combination procedure shown in

Section 4, sometimes we will need to �rst compute the normal form of a term and

then decompose this normal form into its components s and �r. To be able to do this

it will be enough to assume (in addition to the computability of normal forms) that

G is a recursive set, thanks to the proposition below.

Proposition 3.12 Where � is a set of constructors for the equational theory E over

the signature 
, let G be a �-base of E and t 2 T (�; G). If G is recursive, there is

an e�ective way of identifying a term s(�v) 2 T (�; V ) and a sequence �r of terms in

G such that t = s(�r).

Proof. Let t 2 T (�; G). Another consequence of the fact that the terms in G may

start with a � symbol is that, in general, there may be more than one term s(�v) and

tuple �r such that t = s(�r). This proof by structural induction shows just one way to

identify s(�v) and �r.

(Base Case) If t 2 V the claim is trivially true because t 2 G by de�nition of G.

(Inductive Step) Let t be the term f(t

1

; : : : ; t

n

) with f 2 
. If t is in G, which

we can e�ectively check because G is recursive, we can choose any s 2 V and let

�r be made of just t itself. If t is in not in G, then f must be a �-symbol since

t 2 T (�; G) by assumption. For j 2 f1; : : : ; ng, let s

j

(�r

j

) be the decomposition

of the term t

j

, which is computable by induction. Let f(s

1

; : : : ; s

n

)(�v) be the term

obtained from t by replacing with fresh variables �v all the occurrences in t of the

terms in �r

1

; : : : ; �r

n

so that identical occurrences are replaced by the same variable.

Where �r consists, in order, of the terms of G abstracted by �v, it is immediate that

s(�v) = f(s

1

; : : : ; s

n

)(�v) 2 T (�; V ) and t = s(�r). ut

12



Examples

We provide below some examples of equational theories admitting constructors in the

sense of De�nition 3.5. But �rst, let us consider some immediate counter-examples:

� The signature � := fsg is not a set of constructors for the theory E axiomatized

by fx � p(s(x)); x � s(p(x))g. It is possible to show that, in constrast with the

de�nition of constructors, the �-reduct of any free model of E over a countably

in�nite set is not itself free, because it does not admit a non-redundant

6

set of

generators, a necessary condition for an algebra to be free.

� The signature � := ffg is not a set of constructors for the theory E axiomatized

by fg(x) � f(g(x))g. In fact, since E

�

is clearly collapse-free we know that

any �-base of E, if any, is included in the set G

E

(�; V ) de�ned earlier. But

G

E

(�; V ) is simply V in this case, and it is immediate that no subset of V

satis�es condition 2 of De�nition 3.6.

� Finally, the signature � := ffg is not a set of constructors for theory E axioma-

tized by ff(g(x)) � f(f(g(x)))g. Again, E

�

is clearly collapse-free. Moreover,

G

E

(�; V ) = V [ fg(t) j t 2 T (
; V )g. It is easy to see that conditions (1) and

(2) of De�nition 3.6 hold for G

E

(�; V ). However, condition (3) does not since

f(g(x)) =

E

f(f(g(x))), although f(y) 6=

E

f(f(y)).

Example 3.13 In [BT99] it is shown that:

� the signature � := f0; sg is a set of constructors for the theory E

1

axiomatized

by the equations:

x + (y + z) � (x + y) + z;

x + y � y + x;

x+ s(y) � s(x + y);

x + 0 � x;

� the signature � := f0; sg is a set of constructors for the theory E

2

axiomatized

by the equations:

mod2(0) � 0;

mod2(s(0)) � s(0);

mod2(s(s(x))) � mod2(x);

mod2(mod2(x)) � mod2(x);

6

A set of generators for an algebra A is redundant if one of its proper subsets also generates A.
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� the signature � := f0; 1; �g is a set of constructors for the theory E

3

axiomatized

by the equations:

x � (y � z) � (x � y) � z;

rev(0) � 0;

rev(1) � 1;

rev(x � y) � rev(y) � rev(x);

rev(rev(x)) � x:

In the example above, the restriction of each theory to the constructor symbols

is collapse-free. That is not the case for the theory in the next example.

Example 3.14 Consider the signature 
 := f0; p; s;�g and the equational theory

E axiomatized by the equations:

s(p(x)) � x

p(s(x)) � x

�0 � 0;

�s(x) � p(�x);

�p(x) � s(�x):

The signature � := f0; p; sg is a set of constructors for E. To prove it we show that

the set G := V [ f�v j v 2 V g is a �-base of E.

Clearly, V � G. To show the remaining two conditions of De�nition 3.6, note that

orienting the axioms above from left to right produces a con
uent and terminating

rewrite system R. Thus, two terms are equal modulo E i� their R-normal forms are

syntactically identical.

Now, Condition 2 of De�nition 3.6 is satis�ed since, given an 
-term, itsR-normal

form is in T (�; G). This is an immediate consequence of the fact that (because of

the last three rules of R) any term containing the minus symbol in front of 0, p,

or s is R-reducible. Therefore, in R-normal forms, minus can only occur in front of

variables.

All we need to show then is that Condition 3 of De�nition 3.6 is also satis�ed.

Thus, let s

1

(�r

1

); s

2

(�r

2

) be terms in T (�; G) such that s

1

(�r

1

) =

E

s

2

(�r

2

). Since R is

con
uent and terminating, there exists a term t such that s

1

(�r

1

)

�

!

R

t and s

2

(�r

2

)

�

!

R

t. Since in the terms s

1

(�r

1

); s

2

(�r

2

) (as well as in any term occurring in the reduction

chains) the minus symbol can only occur in front of variables, the reduction chains

make use of the �rst two rules of R only. Consequently, s

1

(�r

1

) and s

2

(�r

2

) are equal

modulo the �rst two axioms of E. Given that these axioms do not contain the minus

symbol, it is easy to see that this implies that s

1

(�v

1

) =

E

s

2

(�v

2

). Since the other

direction of the bi-implication of Condition 3 is trivial, this completes the proof that

G := V [ f�v j v 2 V g is a �-base of E.
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Many more examples of theories with constructors can be found in the usual

axiomatizations of abstract data types. In the following subsection, however, we

would like to point out another, perhaps less obvious, class of examples for which

our combination approach could provide fresh insights and results.

3.2 Constructors and Modal Logics

For all normal modal logics, equivalence of formulae is a congruence relation on

formulae that is closed under substitution (see [Gol76] or Chapter 4 in [Kra99]). For

example, consider the basic modal logic K [Fit93]. Here, the signature �

K

contains

the Boolean operators (^, _, :), the Boolean constant > (for truth), and the unary

(modal) operator 2.

7

Equivalence of formulae in K can be axiomatized [Lem66]

by the equational theory E

K

, which consists of the equational axioms for Boolean

algebras, and the two additional equational axioms

2(x ^ y) � 2(x) ^ 2(y) and 2(>) � >:

It is easy to see that satis�ability (and validity) of formulae in K is decidable i�

the word problem for E

K

is decidable. For example, � is valid i� � =

E

K

>. Since

satis�ability in K is indeed decidable

8

the word problem for E

K

is also decidable.

The problem of combining modal logics has been thoroughly investigated (see,

e.g., [Hem94, KW97]). In particular, there are very general results on how decid-

ability of the component logics transfers to their combination (called fusion or join

in the literature). We are interested in the question of whether these combination

results can also be obtained within our framework for combining decision procedures

for the word problem. This line of research appears to be promising for the following

two reasons.

First, it can be shown that equivalence in the fusion of two modal logics is ax-

iomatized by the union of the equational theories axiomatizing equivalence in the

component logics. In this union, the shared symbols are the Boolean symbols, i.e.,

^, _, :, and >. Since the axioms for Boolean algebras contain collapse axioms (e.g.,

x^ x � x), it is clear that we will really need the generalized version of constructors

introduced in this paper.

Second, the requirement that the reduct of the free algebra to the shared symbols

be free is always satis�ed in the modal logic context. For example, let � be the

subsignature of �

K

that consists of ^, _, :, and >. It is easy to see that the �-

reduct A

K

�

of the E

K

-free algebra A

K

over countably in�nitely many generators is

a countably in�nite atomless Boolean algebra. Since the free Boolean algebra over

countably in�nitely many generators is also a countably in�nite atomless Boolean

7

We do not explicitly introduce the diamond operator since it can be expressed using 2 and :.

8

In fact, it is a well-known PSPACE-complete problem.
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algebra, and since all countably in�nite atomless Boolean algebras are known to be

isomorphic [Kop88], we can deduce that the reduct A

K

�

is in fact free. For our

combination method to apply, however, this is not su�cient. We need additional

conditions; e.g., that normal forms are computable. Unfortunately, it is not even

clear how a �-base could look like in this case. This would depend on an appropriate

characterization of the generators of A

K

�

, which appears to be a non-trivial (and to

the best of our knowledge, not yet solved) problem.

For this reason, we restrict our attention in the example below to a certain

sublanguage of K. Such a sublanguage, which is not Boolean closed, is particularly

interesting because the current combination results in modal logic are restricted to

Boolean closed languages.

Example 3.15 Let us consider just the conjunctive fragment of K. In equational

terms, this amounts to restricting the signature �

K

to the subsignature �

0

K

:=

f^;>;2g and consider only terms (i.e., modal formulae) built over this signature.

It is not hard to show [BN98]

9

that equivalence of such formulae is axiomatized

by the theory E

0

K

, which consists of the axioms

x ^ (y ^ z) � (x ^ y) ^ z; x ^ y � y ^ x; x ^ x � x; x ^ > � x

2(x ^ y) � 2(x) ^ 2(y); 2(>) � >:

We claim that �

0

:= f^;>g is a set of constructors in our sense. In fact, the set

G := f2

n

(v) j n � 0 and v 2 V g

can be shown to be a �

0

-base of E

0

K

. This is an easy consequence of the notion of

concept-based normal form introduced in [BN98] and the characterization of equiv-

alence

10

proved in the same paper. The concept-based normal form of a formula is

obtained by exhaustively applying the rewrite rules

2(x ^ y)! 2(x) ^ 2(y); 2(>)! >; x ^ > ! x; > ^ x! x:

It is easy to see that this normal form can be computed in polynomial time, and that

any formula in normal form is either > or a conjunction of elements of G. Thus, the

concept-based normal form is also a G-normal form. Since the set G is obviously

recursive this shows that all prerequisites for our combination approach to apply to

E

0

K

are satis�ed.

Interestingly, if we consider the conjunctive fragment of the modal logic S

4

[Fit93]

in place of K, we obtain a quite di�erent behavior. This is surprising as, in the

Boolean closed case, S

4

behaves like K in the sense that the reduct of the corre-

sponding free algebra is still free (for the same reasons as for K).

9

Note that [BN98] employs description logic syntax rather than modal logic syntax for formulae.

10

This characterization also shows that the word problem for E

0

K

is decidable in polynomial time.
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Example 3.16 As an easy consequence of the usual axiomatization of S

4

we can

show that equivalence in the conjunctive fragment of S

4

is axiomatized by the equa-

tional theory

E

0

S

4

:= E

0

K

[ f2(x) ^ x � 2(x); 2(2(x)) � 2(x)g:

We can show thatE

0

S

4

does not have a �

0

-base. Intuitively, the reason is the following.

Assume that G is a �

0

-base. For any v 2 V , both v and 2(v) (more precisely, at

least one element of their E

0

S

4

-equivalence class) must belong to G. In fact, any term

equivalent to v must contain v in its top level conjunction, and any term equivalent

to 2(v) must contain a term of the form 2

n

(v) for n � 1 in its top level conjunction.

However, because of the axiom 2(x) ^ x � 2(x), no set containing both v and 2(v)

can satisfy the third condition in the de�nition of �-base.

3.3 Combination of Theories Sharing Constructors

To conclude this section, we go back to the problem of combining theories and

consider two non-trivial equational theories E

1

, E

2

with respective signatures �

1

, �

2

such that

� � := �

1

\ �

2

is a set of constructors for E

1

and for E

2

, and

� E

1

�

= E

2

�

.

For i = 1; 2, let A

i

be a �

i

-algebra free in E

i

over some countably in�nite set X

i

,

and Y

i

:= [[G

i

]]

A

i

�

i

where G

i

is any �-base of E

i

and �

i

is any bijective valuation of V

onto X

i

.

Proposition 3.17 Let '

1

; '

2

be two �rst-order formulae of respective signatures �

1

and �

2

. If '

i

is satis�able in A

i

with the elements of Var('

1

) \ Var('

2

) taking

distinct values over Y

i

for i = 1; 2, then '

1

^ '

2

is satis�able in E

1

[ E

2

.

Proof. Let E

0

:= E

1

�

(= E

2

�

). By Corollary 3.8, A

i

�

is free in E

0

over Y

i

for i = 1; 2.

Moreover, Y

1

and Y

2

have the same cardinality because, for i = 1; 2, X

i

� Y

i

� A

i

by construction of Y

i

, and X

i

and A

i

are countably in�nite by assumption. By

Proposition 3.4 then '

1

^'

2

is satis�able in a fusion of A

1

and A

2

, which is a model

of E

1

[ E

2

by Lemma 3.3. ut

An immediate consequence of this result is that the theory E

1

[ E

2

above is

non-trivial. To see that, since '

1

and '

2

in the proposition are arbitrary formulae,

it is enough to take both of them to be the disequation x 6� y between two distinct

variables.
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In the next two sections, we will see that under the above assumptions on E

1

and

E

2

, the combined theory E

1

[ E

2

in fact has much stronger properties. Section 4

shows that, whenever normal forms are computable for � and E

i

(i = 1; 2) with

respect to a recursive �-base closed under renaming, the decidability of the word

problem is a modular property. Section 5 shows that the property of being a set of

constructors is itself modular.

4 A Combination Procedure for the Word Prob-

lem

In the following, we present a decision procedure for the word problem in an equa-

tional theory of the form E

1

[ E

2

where each E

i

is a non-trivial equational theory

with decidable word problem. Such a procedure will be obtained as a modular com-

bination of the procedures deciding the word problem for E

1

and for E

2

.

We will restrict our attention to equational theories E

1

; E

2

that satisfy the fol-

lowing conditions for i = 1; 2:

� E

i

is a non-trivial equational theory over the (countable) signature �

i

;

� � := �

1

\ �

2

is a set of constructors for E

i

;

� the word problem for E

i

is decidable;

� E

i

admits a �-base G

i

closed under bijective renaming of V ;

� G

i

is recursive and G

i

-normal forms are computable for � and E

i

.

Later we will also assume that E

1

�

= E

2

�

. Such a restriction is not required

to show the termination and soundness properties of the combination procedure. It

will be used only to prove the procedure's completeness.

To decide the word problem for E := E

1

[ E

2

, we consider the satis�ability

problem for quanti�er-free formulae of the form s

0

6� t

0

, where s

0

and t

0

are terms

in the signature of E. The �rst step of our procedure transforms a formula of this

form into a conjunction of pure formulae by means of variable abstraction. To de�ne

the puri�cation process in more detail, we need to introduce a little more notation

and some new concepts.

4.1 Abstraction Systems

We will often use �nite sets of formulae in place of conjunctions of such formulae,

that is, we will treat a �nite set S of formulae as the formula

V

'2S

'. We will then
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say that S is satis�able in a theory i� the conjunction of its elements is satis�able

in that theory.

We can de�ne a procedure which, given a disequation s

0

6� t

0

with s

0

; t

0

2 T (�

1

[

�

2

; V ), produces a set AS (s

0

6� t

0

) consisting of pure equations and disequations such

that s

0

6� t

0

and AS (s

0

6� t

0

) are \equivalent" in a sense to be made more precise

below.

The puri�cation procedure starts with the set S

0

:= fx 6� y; x � s

0

; y � t

0

g,

where x; y are distinct variables not occurring in s

0

; t

0

, if s

0

and t

0

are not variables.

If s

0

(t

0

) is a variable, the procedure uses s

0

in place of x (t

0

in place of y), and

omits the corresponding (trivial) equation. Assume that a �nite set S

i

consisting of

x 6� y and equations of the form u � s (where u 2 V and s 2 T (�

1

[ �

2

; V ) nV )

has already been constructed. If S

i

contains an equation u � s such that s has an

alien subterm t at position p, then S

i+1

is obtained from S

i

by replacing u � s by

the equations u � s

0

and v � t, where v is a variable not occurring in S

i

, and s

0

is

obtained from s by replacing t at position p by v. Otherwise, if all terms occurring

in S

i

are pure, the procedure stops and returns S

i

.

It is easy to see that this process terminates and yields a set AS (s

0

6� t

0

) which is

satis�able in E i� s

0

6� t

0

is satis�able in E. The set AS (s

0

6� t

0

) satis�es additional

properties (see Proposition 4.3 below), whose importance will become clear later on.

De�nition 4.1 Let T be a set of equations of the form v � t where v 2 V and t 2

T (�

1

[�

2

; V ) nV . The relation � on T is de�ned as follows for all u � s; v � t 2 T :

(u � s) � (v � t) i� v 2 Var(s):

By �

+

we denote the transitive and by �

�

the re
exive-transitive closure of �. The

relation � is acyclic if there is no equation v � t in T such that (v � t) �

+

(v � t).

Notice that, when � is acyclic, �

�

is a partial order, and �

+

is the corresponding

strict partial order.

De�nition 4.2 (Abstraction System) The set fx 6� yg [ T is an abstraction

system with disequation x 6� y i� x; y 2 V and the following holds:

1. T is a �nite set of equations of the form v � t

where v 2 V and t 2 (T (�

1

; V ) [ T (�

2

; V )) nV ;

2. the relation � on T is acyclic;

3. for all (u � s); (v � t) 2 T ,

(a) if u = v then s = t;
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(b) if (u � s) � (v � t) and s 2 T (�

i

; V ) with i 2 f1; 2g

then t 62 T (�

i

; V ).

Condition (1) above states that T consists of equations between variables and

pure non-variable terms; Condition (2) implies that for all (u � s); (v � t) 2 T , if

(u � s) �

�

(v � t) then u 62 Var(t); Condition (3a) implies that a variable cannot

occur as the left-hand side of more than one equation of T ; Condition (3b) implies,

together with Condition (1), that the elements of every �-chain of T have strictly

alternating signatures (: : : ;�

1

;�

2

;�

1

;�

2

; : : : ). In particular, when �

1

and �

2

have

a non-empty intersection �, Condition (3b) entails that if (u � s) � (v � t) neither

s nor t can be a �-term: one of the two must contain symbols from �

1

n� and the

other must contain symbols from �

2

n�.

We will call the variables occurring in an abstraction system S as the left-hand

side of an equation the left-hand side variables of S. Similarly, we will call the

terms occurring in an abstraction system S as the right-hand side of an equation the

right-hand side terms of S.

The following proposition is an easy consequence of the de�nition of the puri�-

cation procedure.

Proposition 4.3 The set S := AS (s

0

6� t

0

) obtained by applying the puri�cation

procedure to the disequation s

0

6� t

0

is an abstraction system. Furthermore, 9�v:S $

(s

0

6� t

0

) is logically valid, where �v are all the left-hand side variables of S.

In particular, the second part of the proposition implies that a disequation s

0

6�

t

0

is satis�able in E i� AS (s

0

6� t

0

) is satis�able in E. Note, however, that the

statement in the proposition is considerably stronger: if A is a (�

1

[ �

2

)-algebra

and � a valuation that satis�es s

0

6� t

0

in A, then there exists a valuation �

0

that

coincides with � on Var(s

0

6� t

0

) and satis�es AS (s

0

6� t

0

), and vice versa. In

fact, the left-hand side variables in AS (s

0

6� t

0

) are fresh variables that do not

occur in s

0

6� t

0

, and all the newly introduced variables are left-hand side variables.

Thus, the variables in Var(s

0

6� t

0

) are the free variables of both s

0

6� t

0

and 9�v:S,

which means that they are (implicitly) universally quanti�ed on the outside in the

equivalence 9�v:S $ (s

0

6� t

0

). We will appeal to this stronger statement in Section 5.

Abstraction Systems as Directed Acyclic Graphs

Any abstraction system fx 6= yg [ T induces a graph G whose set of nodes is T

and whose set of edges consists of all the pairs (a

1

; a

2

) 2 T � T such that a

1

� a

2

.

According to De�nition 4.2, G is in fact a directed acyclic graph (or dag).

11

For

11

Observe that G need not be a tree or even be connected.
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notational convenience, we will sometimes identify an abstraction system with the

graph induced by it.

Assuming the standard de�nition of path between two nodes and of length of a

path in a dag, we de�ne below a notion of height of a node, which measures the

longest possible path from a \root" of the graph to the node. This notion will be

used in the de�nition of our combination procedure, and it will be important for the

termination proof.

De�nition 4.4 (Node Height) Let G := (N;E) be a dag with �nite sets of nodes

and edges. A node a 2 N is a root of G i� there is no a

0

2 N such that (a

0

; a) 2 E.

12

The function h : N �! N is de�ned as follows. For all a 2 N,

� h(a) = 0, if a is a root of G;

� h(a) equals the maximum of the lengths of all the paths from the roots of G to

a, otherwise.

13

Later, we will appeal to the following easily provable facts about the height

function introduced above.

Lemma 4.5 The following holds for every �nite dag G and associated height func-

tion h.

1. For all nodes a; b of G, if there is a non-empty path from a to b then h(a) < h(b).

2. Adding an edge from a node of G to another of greater height does not change

the height of any node of G.

3. Removing an edge in G does not increase the height of any node of G (although

it may decrease the height of some).

4. Removing a node and relative edges from G does not increase the height of the

remaining nodes (although it may decrease the height of some).

We say that an equation of an abstraction system is reducible i� its right-hand

side is neither in G

1

nor in G

2

(the respective �-bases of E

1

and E

2

).

De�nition 4.6 (Node Reducibility) Let (T;�) be the dag induced by the abstrac-

tion system fx 6= yg [ T and let a 2 T . We say that the reducibility of a is 1, and

write r

A

(a) = 1, if a is reducible; we say that it is 0, and write r

A

(a) = 0, otherwise.

12

Because of the acyclicity condition, any �nite dag has at least one root.

13

This maximum exists because G is �nite and acyclic.
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Input: (s

0

; t

0

) 2 T (�

1

[ �

2

; V )� T (�

1

[ �

2

; V ):

1. Let S := AS (s

0

6� t

0

).

2. Repeatedly apply (in any order) Coll1, Coll2, Ident, Simpl, Shar1, Shar2

to S until none of them is applicable.

3. Succeed if S has the form fv 6� vg [ T and fail otherwise.

Figure 1: The Combination Procedure.

4.2 The Combination Procedure

In Section 3.1, we would have represented the normal form of a term in T (�

i

; V )

(i = 1; 2) as s(�q) where s was a term in T (�; V ) and �q a tuple of terms in G

i

.

Considering that G

i

contains V , we will now use a more descriptive notation. We

will distinguish the variables in �q from the non-variable terms and write s(�y; �r)

instead, where �y collects the elements of �q that are in V and �r those that are in

G

i

nV .

Figure 1 describes a procedure that decides the word problem for the theory

E := E

1

[ E

2

by deciding, as we will show, the satis�ability in E of disequations of

the form s

0

6� t

0

where s

0

; t

0

are (�

1

[ �

2

)-terms. The procedure applies a number

of transformation rules to a certain abstraction system until no more rules apply.

The main idea of the procedure is to see whether the disequation between the

two input terms is satis�able in E by turning the disequation into an abstraction

system, and then propagating some of the equations between variables that are valid

in one of the single theories. The transformations the initial system goes through

will eventually produce an abstraction system whose initial formula has the form

v 6� v i� the initial disequation s

0

6� t

0

is unsatis�able in E (that is, i� s

0

=

E

t

0

).

During the execution of the procedure, the abstraction system S on which the

procedure works is repeatedly modi�ed by the application of one of the derivation

rules de�ned in Figure 2 and Figure 3. We describe these rules in the style of a

sequent calculus. The premise of each rule lists all the formulae in S before the

application of the rule, where T stands for all the formulae not explicitly listed. The

conclusion of the rule lists all the formulae in S after the application of the rule.

It is understood that any two formulae explicitly listed in the premise of a rule are

distinct.

The transformations applied by the procedure to the set S above boil down to

one of two operations:

14

14

The formal description of the individual transformations is actually somewhat more complex,
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Coll1

T u 6� v x � t[y] y � r

T [x=r] (u 6� v)[x=y] y � r

if t 2 T (�

i

; V ) and y =

E

i

t for i = 1 or i = 2.

Coll2

T x � t[y]

T [x=y]

if t 2 T (�

i

; V ) and y =

E

i

t for i = 1 or i = 2,

and

there is no (y � r) 2 T .

Ident

T x � s y � t

T [x=y] y � t

if s; t 2 T (�

i

; V ) and s =

E

i

t for i = 1 or i = 2,

and

x 6= y and h(x � s) � h(y � t).

Simpl

T x � t

T

if x 62 Var(T ).

Figure 2: The Derivation Rules.

� replace a variable in S by another one in S;

� replace a variable in S by a shared term.

This kind of replacement implements a form of constraint propagation between the

decision procedures for the word problem in the component theories E

1

and E

2

. The

main part of the correctness proof for the combination procedure will be to show

that such a restricted form of constraint propagation is enough for our purposes.

Coming to the single derivation rules, Coll1 and Coll2 basically remove from S

collapse equations that are valid in E

1

or E

2

, while Ident identi�es any two variables

but for technical reasons.
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Shar1

T u 6� v x � t �y

1

� �r

1

T [x=s(�y; �z)[�y

1

=�r

1

]] �z � �r u 6� v x � s(�y; �r) �y

1

� �r

1

if (a) x 2 Var(T ),

(b) t 2 T (�

i

; V ) nG

i

for i = 1 or i = 2,

(c) NF

�

E

i

(t) = s(�y; �r) 2 T (�; G

i

) nV ,

(d) ; ( �r � G

i

nT (�; V ),

(e) �z fresh variables with no repetitions,

(f) �y

1

� Var(s(�y; �r)) and

(x � s(�y; �r)) � (y � r) for no (y � r) 2 T .

Shar2

T u 6� v x � t[�y

1

] �y

1

� �r

1

T [x=s[�y

1

=�r

1

]] u 6� v x � s[�y

1

=�r

1

] �y

1

� �r

1

if (a) x 2 Var(T ),

(b) t 2 T (�

i

; V ) nG

i

for i = 1 or i = 2,

(c) NF

�

E

i

(t) = s 2 T (�; V ) nV ,

(d) �y

1

� Var(s),

(e) �r

1

� G

�

with � 2 f1; 2g n fig, and

(x � s) � (y � r) for no (y � r) 2 T .

Figure 3: More Derivation Rules.

equated to equivalent �

i

-terms and then discards one of the corresponding equations.

The ordering restriction in the precondition of Ident is on the heights that the two

equations involved have in the dag associated to S. It is there to prevent the creation

of cycles in the relation � over S.

We have used the notation t[y] to express that the variable y occurs in the term

t, and the notation T [x=t] to denote the set of formulae obtained by substituting

every occurrence of the variable x by the term t in the set T .

15

Simpl eliminates those equations that have become unreachable along a �-path

from the initial disequation because of the application of previous rules. As we will

see, this rule is not essential but it reduces clutter in S by eliminating equations that

do not contribute to the solution of the problem anymore. It can be used to obtain

15

Notice that other authors, especially in programming languages theory, would denote the same

substitution by T [t=x] instead. We prefer our convention because we �nd it more intuitive, especially

in the case of composed substitutions.
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optimized, complete implementations of the combination procedure.

The derivation rules Shar1 and Shar2 are shown separately because they apply

only if �

1

and �

2

are non-disjoint. They are used to propagate the constraint

information represented by shared terms. In both, the main idea is to push shared

function symbols towards lower positions of the �-chains they belong to so that

they can be processed by other rules. To do that, the rules replace the right-hand

side t of an equation x � t by its normal form, and then plug the \shared part"

of the normal form into all equations whose right-hand sides contain x. The exact

formulation of the rules is somewhat more complex since we must ensure that the

rules do not apply repeatedly to the same equation and the resulting system is

again an abstraction system. In particular, the rules must preserve the \alternating

signature" condition (3b) of De�nition 4.2.

In the description of the rules, an expression like �z � �r denotes the set fz

1

�

r

1

; : : : ; z

n

� r

n

g where �z = (z

1

; : : : ; z

n

) and �r = (r

1

; : : : ; r

n

), and s(�y; �z) denotes

the term obtained from s(�y; �r) by replacing the subterm r

j

with z

j

for each j 2

f1; : : : ; ng. Observe that this notation also accounts for the possibility that t reduces

to a non-variable term of G

i

. In that case, s will be a variable, �y will be empty, and

�r will be a tuple of length 1. Substitution expressions containing tuples are to

be interpreted accordingly; e.g., [�z=�r] replaces the variable z

j

by r

j

for each j 2

f1; : : : ; ng.

We make one assumption on Shar1 and Shar2 which is not explicitly listed in

their preconditions. We assume that NF

�

E

i

(i = 1; 2) is such that, whenever the set

V

0

:= Var(NF

�

E

i

(t)) n Var(t) is not empty,

16

each variable in V

0

is fresh with respect

to the current set S. Such an assumption can be made without loss of generality. In

fact, since each G

i

is closed under renaming by assumption, applying any injective

renaming of Var(NF

�

E

i

(t)) to NF

�

E

i

(t) yields a term still in T (�; G

i

). In particular,

we can choose a renaming that �xes the variables in Var(t) and moves those in V

0

to fresh variables. This process is clearly e�ective and yields a term also equivalent

to t in E

i

.

In both Shar rules it is required that the normal form of t be a non-variable

term. The reason for this restriction is that the rules Coll1 and Coll2 already take

care of the case in which a �

i

-term is equivalent in E

i

to a variable. By requiring

that �r be non-empty, Shar1 excludes the possibility that the normal form of the

term t is a shared term. It is Shar2 that deals with this case. The reason for a

separate case is that we want to preserve the property that every �-chain is made

of equations with alternating signatures (cf. De�nition 4.2(3b)). When the equation

x � t has immediate �-successors, the replacement of t by the �-term s may destroy

the alternating signatures property because x � s, which is both a �

1

- and a �

2

-

16

This might happen because De�nition 3.11 does not necessarily entail that all the variables of

NF

�

E

i

(t) occur in t.
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equation, may inherit some of these successors from x � t.

17

Shar2 restores this

property by merging into x � s all of its immediate successors|which are collected,

if any, in the set �y

1

� �r

1

thanks to Condition (e) in the rule. The replacement of

�y

1

by �r

1

in Shar1 is done for similar reasons. In Shar2, the restriction that all the

terms in �r

1

be elements of G

i

is necessary to ensure termination, as is the condition

x 2 Var(T ) in both rules, as we will see.

We prove below that the combination procedure decides the word problem for

E = E

1

[ E

2

by showing that it terminates on all inputs, is sound and, whenever

E

1

�

= E

2

�

, is also complete.

4.3 The Correctness Proof

In this subsection, we will consider a countable family S := fS

j

j j � 0g such that S

0

is an abstraction system and for all j > 0, S

j

is either identical to S

j�1

or is derived

from S

j�1

by an application of the rule Coll1, Coll2, Simpl, Ident, Shar1, or

Shar2.

In particular, S may correspond to the family generated by one execution of the

combination procedure, where S

0

is the abstraction system AS (s

0

6� t

0

) obtained by

applying the puri�cation procedure to the input disequation, and S

j

:= S

n

for all

j > n if Step 2 of the combination procedure is executed only n times. In general,

however, the �rst element of S may be an arbitrary abstraction system.

For all j > 0, we will denote by �

j

the relation � on the equational part of S

j

(cf. De�nition 4.1).

We start by showing that all the elements of S are in fact abstraction systems.

The proof of acyclicity (Condition 2 in De�nition 4.2) will be facilitated by the

following lemma, whose simple proof is omitted.

Lemma 4.7 Let < be a binary relation on a �nite set A, and a; b 2 A be such that

b 6<

�

a. We denote the restriction of < to A n fag by <

a

,

18

and consider the relations

<

1

:= <

a

[ fhd; ei j d < a; b < eg

<

2

:= <

a

[ fhd; bi j d < ag:

If < is acyclic, then <

1

and <

2

are acyclic as well.

Lemma 4.8 S

j

is an abstraction system for all j � 0.

17

As explained above, we assume that the variables in Var(s) n Var(t) do not occur in the ab-

straction system. Thus, the equations in �y

1

� �r

1

are in fact successors of x � t.

18

That is, <

a

:=< \ (A n fag)

2

.
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Proof. We prove the claim by induction on j. The induction base (j = 0) is

immediate by assumption. Thus, assuming that j > 0 and that S

j�1

is an abstraction

system, consider the following cases, labeled by the derivation rule applied to S

j�1

to obtain S

j

.

Coll1. By the rule's de�nition, S

j�1

and S

j

must have the following form:

S

j�1

= fu 6� vg [ fx � t[y]g [ fy � rg [ T

S

j

= fu 6� vg[x=y] [ fy � rg [ T [x=r]

Let u

0

6� v

0

:= (u 6� v)[x=y]. We show that S

j

is an abstraction system with

disequation u

0

6� v

0

.

If we take �

j�1

to be the relation < of Lemma 4.7, x � t to be a, and y � r to

be b, it is easy to see that a < b and �

j

coincides with <

1

(as de�ned in the lemma).

Now, < is acyclic by induction and b 6<

�

a because a < b. By Lemma 4.7 then, �

j

is acyclic. This shows that condition (2) of De�nition 4.2 holds.

Since applying the substitution [x=r] does not change the left-hand sides of equa-

tions in T , it is immediate that condition (3a) of De�nition 4.2 holds as well.

Finally, observe that x can appear in T only in an equation of the form z � s[x]

and that (z � s) �

j�1

(x � t) �

j�1

(y � r): By induction, we know that there

is an i 2 f1; 2g such that s and r are both in T (�

i

; V ) nT (�; V ); therefore, the

replacement of x by r in T occurs only inside terms in T (�

i

; V ) nT (�; V ) and

produces terms still in T (�

i

; V ) nT (�; V ). It follows that S

j

satis�es both conditions

(1) and (3b) of De�nition 4.2.

Coll2. The proof is essentially a special case of the one above, with r replaced

by y. The proof of condition (2) of De�nition 4.2 is, however, easier in this case. If

we take x � t to be a and �

j�1

to be the relation <, then �

j

coincides with <

a

as

de�ned in Lemma 4.7. If < is acyclic, then its subrelation <

a

is acyclic as well.

Ident. By the rule's de�nition, S

j�1

and S

j

must have the following form:

S

j�1

= T [ fu 6� vg [ fx � sg [ fy � tg

S

j

= (T [ fu 6� vg)[x=y] [ fy � tg;

Moreover, it is not the case that (y � t) �

+

j�1

(x � s), otherwise we would have

that h(y � t) < h(x � s). It is not di�cult to see that this time �

j

is derivable from

�

j�1

in the same way <

2

is derivable from < in Lemma 4.7, where x � s is a and

y � t is b. Again, the preconditions of the lemma are satis�ed, and it follows that

�

j

satis�es condition (2) of De�nition 4.2. By induction, we know that x appears

as the left-hand side of no equations in T , and so it is immediate that S

j

satis�es

condition (3a). It is also immediate that S

j

satis�es condition (1).

Finally, to see that S

j

also satis�es condition (3b), notice that T is unchanged

if the height of y � t in S

j�1

is zero. The reason is that, in this case, the height of

x � s is also zero, which means that x does not occur in T . If h(y � t) > 0 and x
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occurs in T , both s and t are elements of T (�

i

; V ) nT (�; V ). But then we can argue

that condition (3b) holds for S

j

exactly as we did in the case of Coll1. It follows

that S

j

is an abstraction system with disequation (u 6� v)[x=y].

Simpl. Immediate consequence of the easily provable fact that, if fu 6� vg [ T

0

is an abstraction system, then fu 6� vg [ T is also an abstraction system for every

T � T

0

.

Shar1. We know that S

j�1

and S

j

have the following form:

S

j�1

= T [ fu 6� vg [ fx � tg [ f�y

1

� �r

1

g

S

j

= T [x=s(�y; �z)[�y

1

=�r

1

]] [ f�z � �rg [ fu 6� vg [ fx � s(�y; �r)g [ f�y

1

� �r

1

g

To see that S

j

satis�es Condition (1) of De�nition 4.2, �rst notice that s(�y; �r) is

not a variable by precondition (c) of the rule, and that the terms in �r are also non-

variable terms. Because S

j�1

is assumed to be an abstraction system, it satis�es

the alternating signature assumption, and thus the terms in �r

1

are �

�

-terms with

� 2 f1; 2g n fig. Since s(�y; �z) is a �-term, we know that s(�y; �z)[�y

1

=�r

1

] is also a �

�

-

term. The alternating signature assumption for S

j�1

also implies that any term in

T containing x is a �

�

-term, and so the replacement of x by s(�y; �z)[�y

1

=�r

1

] does not

generate mixed terms.

Condition (3a) is satis�ed because �z consists of fresh variables with no repetitions.

Condition (3b) is satis�ed because

� every right-hand side t

0

[x] of T , which is a term in T (�

�

; V ) nT (�; V ) by

induction hypothesis (cf. observation after De�nition 4.2), is replaced by the

term t

0

[x=s(�y; �z)[�y

1

=�r

1

]], which is also in T (�

�

; V ) nT (�; V ) by the above;

� the elements of �r are not �-terms, have the same signature as t, and every

immediate �-predecessor of an equation in �z � �r has the signature of the

immediate predecessors of x � t in S

j�1

;

� all the immediate successors of x � s(�y; �r) are inherited from x � t be-

cause, by our assumptions on the variables of normal forms, the variables in

Var(s(�y; �r)) n Var(t) do not occur in S

j�1

(and without loss of generality also

not in �z);

� s(�y; �r) is not a �-term because the tuple �r is non-empty and made of non-�-

terms;

� if an equation x

0

� t

0

[x] in T is replaced by x

0

� t

0

[s(�y; �z)[�y

1

=�r

1

]], then any

new successor of such an equation is an equation in �z � �r or a successor of an

equation in �y

1

� �r

1

.

To show that Condition (2) is satis�ed, we �rst prove that T

j

:= S

j

n f�z � �rg gives

rise to an acyclic graph. This graph has essentially the same nodes (i.e., equations) as
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S

j�1

, although the right-hand sides of the equations may have changed. Even if there

are possibly new edges, it is easy to see that there are no new connections between

nodes, since any connection achieved by such a new edge in T

j

can be achieved by a

path in S

j�1

. Since S

j�1

induces an acyclic graph by assumption, this implies that

the graph corresponding to T

j

is acyclic as well. The additional nodes in S

j

(i.e.,

the equations in �z � �r) cannot cause a cycle either since any path through one of

these nodes comes from a predecessor of x � t[�y] in S

j�1

and goes to a successor of

x � t[�y] in S

j�1

. Thus, the cycle would have already been present in S

j�1

.

Shar2. We know that S

j�1

and S

j

have the following form:

S

j�1

= T [ fu 6� vg [ fx � t[�y

1

]g [ f�y

1

� �r

1

g

S

j

= T [x=s[�y

1

=�r

1

]] [ fu 6� vg [ fx � s[�y

1

=�r

1

]g [ f�y

1

� �r

1

g

We can show that S

j

satis�es Conditions (1), (2), (3a), and (3b) of De�nition 4.2

essentially in the same way as in the Shar1 case. For Condition (3b), additionally

observe that we cannot use x � s in S

j

because s is a shared term. By using

x � s[�y

1

=�r

1

] instead, where the terms of �r

1

are non-shared by induction, we make

sure that any successors of this equation is a successor of an equation in �y

1

� �r

1

.

Since every equation in �y

1

� �r

1

is a successor of x � t in S

j�1

,

19

and S

j�1

satis�es

Condition (3b) by induction, all the equations in �y

1

� �r

1

have the same signature,

which is also the signature of x � s[�y

1

=�r

1

]. Thus, Condition (3b) for x � s[�y

1

=�r

1

]

and its successors in S

j

is satis�ed since it is satis�ed for the equations in �y

1

� �r

1

and their successors in S

j�1

. If the tuple �y

1

is empty, then s[�y

1

=�r

1

] = s is a shared

term, but this is not a problem since in this case the equation x � s does not have

any predecessors or successors in S

j

. ut

The next result we prove about the combination procedure is that it halts on

all inputs. For that we will make use of a well-founded ordering

20

on abstraction

systems, de�ned in the following.

Let >

l

denote the lexicographic ordering over the set P := N � f0; 1g obtained

from the standard strict ordering over N and its restriction to f0; 1g. Where M(P )

denotes the set of all �nite multisets of elements of P , we will denote by A the

multiset ordering induced by >

l

. Intuitively, this ordering says that a multiset M is

reduced by removing one or more elements from M , and replacing them by a �nite

number of >

l

-smaller elements. It is possible to show that A is a well-founded total

ordering on M(P ) (see [DM79] for more details). As customary, we will denote by

w the re
exive closure of A.

Now, let h

j

and r

j

be the height and reducibility functions on the nodes of the

dag induced by the abstraction system S

j

, for j � 0. These functions can be used to

19

Recall again that the variables in Var(s) n Var(t) do not occur in S

j�1

.

20

A strict ordering > is well-founded if there are no in�nitely decreasing chains a

1

> a

2

> a

3

>

� � � .
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associate a �nite multiset to S

j

: the multisetM

j

consisting of the pairs (h

j

(a); r

j

(a))

for every equation a in S

j

. Notice that M

j

is indeed a multiset: if S

j

contains

m irreducible nodes with height n, M

j

contains m occurrences of the pair (n; 0).

Similarly, if S

j

contains m reducible nodes with height n,M

j

contains m occurrences

of the pair (n; 1).

The next lemma shows that each application of a derivation rule decreases the

multiset associated to the current abstraction system with respect to the ordering

A.

Lemma 4.9 For all j � 0, M

j

A M

j+1

whenever S

j+1

is generated from S

j

by an

application of Coll1, Coll2, Simpl, Ident, Shar1, or Shar2.

Proof. We consider only the application of Coll1, Ident, Shar1, and Shar2. The

proof for Coll2 is very similar to that for Coll1, and the proof for Simpl is trivial.

Coll1. We can think of S

j+1

as being derived from S

j

by applying the interme-

diate steps below.

S

j

= T [ fu 6� vg [ fv

1

� s

1

[v

2

]g [ fv

2

� s

2

g

S = T [v

1

=s

2

] [ fu 6� vg[v

1

=v

2

] [ fv

1

� s

1

[v

2

]g [ fv

2

� s

2

g

S

j+1

= T [v

1

=s

2

] [ fu 6� vg[v

1

=v

2

] [ fv

2

� s

2

g

As in the proof of Lemma 4.8 we can easily show that S is an abstraction systems as

well. Then, whereM is the multisets associated to S, we show thatM

j

wM AM

j+1

:

(M

j

w M) If v

1

does not occur in T then M

j

= M , as S

j

and S coincide. If

v

1

occurs in T , since S

j

is an abstraction system, it will necessarily occur in the

right-hand side of some equations of T . Let v

0

� s

0

be any such equation. Since

(v

0

� s

0

[v

1

]) � (v

1

� s

1

[v

2

]) � (v

2

� s

2

) (2)

we know from Lemma 4.5(1) that every v � t in S such that (v

2

� s

2

) � (v � t)

has a higher height in S

j

than v

0

� s

0

. The replacement of v

1

by s

2

adds an edge

from v

0

� s

0

only to nodes v � t like the one above. This means that, going from

S

j

to S, the only new edges are from a node of S

j

to one that is already higher. By

Lemma 4.5(2) then no node in S

j

moves to a greater height in S because of such

edge additions. Now, v

0

� s

0

[v

1

] above becomes v

0

� s

0

[v

1

=s

2

] in S, hence it may

become reducible even if it was irreducible before. If n is the height of v

0

� s

0

in S,

then a pair of the form (n; 0) may be replaced by the larger pair (n; 1) when going

from M

j

to M . This, however, is not a problem because at least one greater pair,

(n + 1; r(v

1

� s

1

)), is replaced by a smaller one as well. To see this observe that,

since v

1

does not occur in S n fv

1

� s

1

g, the height of v

1

� s

1

in S is 0. However,

because of (v

0

� s

0

) � (v

1

� s

1

) it was greater than 0 in S

j

. By de�nition of A, we

can conclude that S

j

wM .
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(M A M

j+1

) As S

j+1

is obtained from S by removing the node v

1

� s

1

, we can

use Lemma 4.5(4) to conclude that the pairs corresponding to the remaining nodes

do not increase. Since one pair (the one corresponding to v

1

� s

1

) is removed, we

have that M A M

j+1

.

Ident. We have that S

j

= T [ fx � s; y � tg and S

j+1

= T [x=y] [ fy � tg,

where h(x � s) � h(y � t) in S

j

.

The graph induced by S

j+1

can be obtained from the one induced by S

j

as follows.

First, add edges from the immediate predecessors in S

j

of x � s to y � t. Since the

height of y � t is at least the height of x � s, and thus larger than the height of

these predecessors, Lemma 4.5(2) shows that this does not change the height of any

node. Second, remove the edges that go from the immediate predecessors in S

j

of

x � s to x � s. By Lemma 4.5(3), this does not increase the height of any node.

Third, remove the node x � s. By Lemma 4.5(4), this does not increase the height

of any of the remaining nodes.

By applying the substitution [x=y] to the equations in T , the reducibility of a

node containing x may change from 0 to 1. However, these nodes have a height that

is smaller than the height of x � s. Thus, an increase in the pair associated to such

a node in the multiset is compensated by the fact that the pair associated to x � s

is removed. This shows that M

j

AM

j+1

.

Shar1. We know that S

j

and S

j+1

have the following form:

S

j

= T [ fu 6� vg [ fx � tg [ f�y

1

� �r

1

g

S

j+1

= T [x=s(�y; �z)[�y

1

=�r

1

]] [ f�z � �rg [ fu 6� vg [ fx � s(�y; �r)g [ f�y

1

� �r

1

g

Observe that there may be more nodes in S

j+1

than in S

j

: those corresponding to

the equations in �z � �r. Let n be the height of x � t in S

j

, which is at least 1 as x

occurs in T by assumption. We start by showing that the height of the new nodes

in S

j+1

cannot be greater than n.

Going from S

j

to S

j+1

, the new equations �z � �r are introduced while each

occurrence of x in the right-hand side of an equation is replaced by s(�y; �z)[�y

1

=�r

1

].

Consider any equation z � r in �z � �r. Observing that z occurs in the tuple �z, we

then obtain

'[x=s(�y; �z)[�y

1

=�r

1

]] �

j+1

(z � r)

for all equations ' (and only those) such that

' �

j

(x � t):

Using the fact that �

j

is acyclic, it is easy to see that no such equation ' changes its

height when going from S

j

to S

j+1

. As a consequence, z � r has in S

j+1

the height

that x � t had in S

j

, namely, n.
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The new node z � r may also have outgoing edges. Since the variables in

Var(s(�y; �r)) n Var(t) do not occur in S

j

, however, these edges will go only into old

nodes  such that x � t �

j

 . In other words, all the edges out of z � r will end in

nodes whose height was already > n in S

j

.

Similarly, the replacement of x by s(�y; �z)[�y

1

=�r

1

] in T may introduce new edges

in S

j+1

between old nodes,

21

but it is again easy to see that each of these edges will

go from a node to one with already greater height. Finally, and again because the

variables in Var(s(�y; �r)) n Var(t) do not occur in S

j

, the replacement of t by s(�y; �r)

in the node x � t will possibly remove some edges from S

j+1

, but will not introduce

new ones.

By Points 1 and 3 of Lemma 4.5 then some old nodes may move to a lower height

in S

j+1

but none will move to a higher height because of the mentioned replacements.

In conclusion, we can say that the number of nodes at heights > n will not increase

from S

j

to S

j+1

. In addition, the reducibility value of these nodes will not change

(since their right-hand sides are not modi�ed).

Now, if some node with height > n in S

j

moves to a smaller height in S

j+1

, we

can already conclude that M

j

A M

j+1

. If, on the other hand, all the nodes at height

> n keep the same height, to prove that M

j

A M

j+1

we argue that the number of

reducible nodes at height n decreases. To see that it is enough to make the following

three observations. First, it is possible that the replacement of x by s(�y; �z) alters

the reducibility of some nodes to 1, but as shown above this will happen only at

heights < n. Second, when no old node at height > n moves to a smaller height, the

number of nodes at height n increases only because of the presence of the new nodes

in �z � �r, whose reducibility is 0, as each r 2 �r is in G

i

. Third, the node x � t of S

j

,

which by assumption had height n > 0 and was reducible, is replaced by the node

x � s(�y; �r) whose height in S

j+1

is 0.

Shar2. We know that S

j

and S

j+1

have the following form:

S

j

= T [ fu 6� vg [ fx � t[�y

1

]g [ f�y

1

� �r

1

g

S

j+1

= T [x=s[�y

1

=�r

1

]] [ fu 6� vg [ fx � s[�y

1

=�r

1

]g [ f�y

1

� �r

1

g

Let n be the height of x � t in S

j

. As in the Shar1 case we can show that the

number of nodes at height > n does not increase going from S

j

to S

j+1

, and the

reducibility value of these nodes does not change. It is enough to show then that the

number of reducible nodes at height n decreases by one. But this is an immediate

consequence of the fact that the node x � t in S

j

, which by assumption had height

n > 1 and was reducible, is replaced by the node x � s(�y; �r) whose height in S

j+1

is

0. ut

Proposition 4.10 (Termination) The combination procedure halts on all inputs.

21

Speci�cally, between a node of the form x

0

� t

0

[x] and a successor node of one of the equations

in �y

1

� �r

1

.
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Proof. First we need to make sure that every step of the procedure is executable in

�nite time. This is immediate for Step 3 and true for Step 1 because the puri�cation

procedure used to produce AS (s

0

� t

0

) always terminates.

It is true for each iteration of Step 2 if the preconditions of the derivation rules can

be tested in �nite time. Given that the word problem in E

1

and in E

2

is decidable,

this is immediate for all the rules in Fig. 2. For Shar1, it should be clear that the test

on the preconditions (a), (e) and (f) is e�ective. The test on conditions (b) and (d)

is e�ective because G

i

is recursive by assumption. The computation of the normal

form of t in (c) is e�ective because G

i

-normal forms are computable for i = 1; 2 by

assumption; its decompositions into the terms s; �r is e�ective by Proposition 3.12

because G

i

is recursive. A similar argument applies to the preconditions of Shar2.

To conclude the proof all we need to show is that the procedure applies the various

rules only �nitely many times. But this is an immediate consequence of Lemma 4.9

and the well-foundedness of A. ut

The next two lemmas show that the derivation rules preserve satis�ability.

Lemma 4.11 Let �v

j�1

be a sequence consisting of the left-hand side variables of

S

j�1

and �v

j

be a sequence consisting of the left-hand side variables of S

j

. Then,

9�v

j�1

:S

j�1

$ 9�v

j

:S

j

is valid in E.

Proof. We can index all the possible cases by the derivation rule applied to S

j�1

to

obtain S

j

.

22

Let A be any model of E.

First assume that S

j

has been produced by an application of Coll1. We know

that S

j�1

and S

j

have the form

S

j�1

= fu 6� vg [ fx � t[y]g [ fy � rg [ T

S

j

= fu 6� vg[x=y] [ fy � rg [ T [x=r]

and that y =

E

i

t for i = 1 or i = 2.

Let � be a valuation of V satisfying S

j�1

in A. It is enough to show that there

exists a valuation �

0

that satis�es S

j

in A and coincides with � on the free variables

of 9�v

j�1

:S

j�1

$ 9�v

j

:S

j

.

Since y � t is valid in E, for being valid in E

i

, � must assign both x and y with

[[t]]

A

�

, i.e., the interpretation of the term t in A under the valuation �. In addition,

since � satis�es S

j�1

, we know that �(y) = [[r]]

A

�

. It follows immediately that �

satis�es S

j

in A. Thus, we can take �

0

:= �.

Now, assume that the valuation � satis�es S

j

in the model A of E. Again, we

must show that there exists a valuation �

0

that satis�es S

j�1

in A and coincides with

� on the free variables of 9�v

j�1

:S

j�1

$ 9�v

j

:S

j

.

22

Ignoring the trivial case in which S

j

coincides with S

j�1

.
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Observe that, since S

j�1

is an abstraction system, x does not occur in y � r,

and as a consequence it does not occur in S

j

at all. Let �

0

be the valuation de�ned

by �

0

(z) := �(z) for all z 6= x and �

0

(x) := �(y). It is immediate that �

0

satis�es

the set T

1

:= T [ fx � rg [ fu 6� vg [ fx � yg [ fy � rg in A. Since A is a

model of E and the equation y � t is valid in E, it is also immediate that �

0

satis�es

the set T

2

:= fx � tg in A. It follows that �

0

satis�es S

j�1

, which is a subset of

T

1

[ T

2

. Since � and �

0

di�er only w.r.t. the value they assign to x, and x is a

left-hand side variable in S

j�1

and does not occur in S

j

, this completes the proof

that 9�v

j�1

:S

j�1

$ 9�v

j

:S

j

is valid in E.

The proof for Coll2 can be derived as a special case of the one for Coll1 with r

replaced by y. Ident can be treated similarly.

When S

j

is generated by an application of Simpl, S

j�1

and S

j

have the form

S

j�1

= T [ fx � tg

S

j

= T

with x 62 Var(T ). It immediate that if S

j�1

is satis�ed by a valuation � in A, so

is S

j

. Conversely, assume that S

j

is satis�ed in A by some valuation �. Let �

0

be a valuation coinciding with � on all variables except x. For the variable x, let

�

0

(x) := [[t]]

A

�

. From the assumptions and the fact that S

j�1

is an abstraction system,

we know that x is not in Var(t)[Var(T ). This, together with the de�nition of �

0

(x),

implies that �

0

satis�es S

j�1

. In addition, � and �

0

coincide on the free variables of

9�v

j�1

:S

j�1

$ 9�v

j

:S

j

since x is a left-hand side variable in S

j�1

and does not occur

in S

j

.

When S

j

is generated by an application of Shar1, S

j�1

and S

j

have the form

S

j�1

= T [ fu 6� vg [ fx � tg [ f�y

1

� �r

1

g

S

j

= T [x=s(�y; �z)[�y

1

=�r

1

]] [ f�z � �rg [ fu 6� vg [ fx � s(�y; �r)g [ f�y

1

� �r

1

g

Let A be any model of E. First, assume that some valuation � of V satis�es S

j

in A. Since S

j

contains the equation x � s(�y; �r) and t =

E

s(�y; �r), we know that

�(x) = [[t]]

A

�

. In addition, since S

j

also contains the equations �y

1

� �r

1

and �z � �r, we

also know that �(x) = [[s(�y; �z)[�y

1

=�r

1

]]]

A

�

. Obviously, this implies that � satis�es S

j�1

in A.

Conversely, assume that some valuation � satis�es S

j�1

in A. Let �

0

be a val-

uation coinciding with � on all variables except those in �z. For each component

z

i

� r

i

of �z � �r we de�ne �

0

(z

i

) := [[r

i

]]

A

�

. As above, it is easy to show that

�

0

(x) = �(x) = [[s(�y; �r)]]

A

�

0

and �

0

(x) = [[s(�y; �z)[�y

1

=�r

1

]]]

A

�

0

. This implies that �

0

sat-

is�es S

j

in A. Since the variables in �z are left-hand side variables of S

j

, which

do not occur in S

j�1

, the valuations � and �

0

coincide on the free variables of

9�v

j�1

:S

j�1

$ 9�v

j

:S

j

.

The proof for Shar2 is almost identical to the one for Shar1. ut

34



The lemma above immediately entails the following weaker lemma (see the com-

ment following Proposition 4.3).

Lemma 4.12 For all j > 0, the abstraction system S

j

is satis�able in E i� S

j�1

is

satis�able in E.

It is now easy to show that the combination procedure is sound.

Proposition 4.13 (Soundness) If the combination procedure succeeds on an input

(s

0

; t

0

), then s

0

=

E

t

0

.

Proof. Let S be the sequence of abstraction systems generated by the procedure on

input (s

0

; t

0

). By the procedure's de�nition, we know that, if the procedure succeeds,

there is an n > 0 such that S

n

= fv 6� vg [ T . Since S

n

is clearly unsatis�able in E,

we can conclude by a repeated application of Lemma 4.12 that S

0

= AS (s

0

6� t

0

) is

also unsatis�able in E. By Proposition 4.3, it follows that s

0

6� t

0

is unsatis�able in

E, which means that s

0

=

E

t

0

. ut

The completeness proof will be simpli�ed by appealing to the following lemma.

Lemma 4.14 The �nal abstraction system S generated by a failed execution of the

combination procedure can be partitioned into the sets

D := fx 6� yg T

1

:= fu

j

� r

j

g

j2J

T

2

:= fv

k

� t

k

g

k2K

where

1. x and y are distinct, and J and K are �nite;

2. each r

j

2 T (�

1

; V ) nV and each t

k

2 T (�

2

; V ) nV ;

3. each u

j

occurs only once in T

1

and each v

k

occurs only once in T

2

;

4. for all v 2 Var(T

1

) \ Var(T

2

),

(a) if v = u

j

for some j 2 J then v 2 Var(t

k

) for some k 2 K,

if v = v

k

for some k 2 K then v 2 Var(r

j

) for some j 2 J ,

(b) if v = u

j

for some j 2 J then r

j

2 G

1

,

if v = v

k

for some k 2 K then t

k

2 G

2

.

35



Proof. Since the procedure has failed, we know that x 6= y, and thus point 1 is trivial.

Points 2, 3, 4a are an immediate consequence of the fact that S is an abstraction

system.

To prove (4b), let v = u

j

for some j 2 J and notice that v occurs in S n fx 6�

y; u

j

� r

j

g. Assume by contradiction that r

j

is not an element of G

1

. Then we can

also assume with no loss of generality, since � is acyclic and S is �nite, that there

are no equations v

k

� t

k

in S such that (u

j

� r

j

) � (v

k

� t

k

) and t

k

62 G

2

.

23

But

then, it is not di�cult to see that one of Coll1, Coll2, Shar1, Shar2 applies to

u

j

� r

j

, against the assumption that S is the �nal abstraction system. If v = v

k

the

argument is analogous. ut

To prove that the procedure is complete for the word problem in E := E

1

[ E

2

we make the additional assumption that

E

1

�

= E

2

�

:

In this case, we have the following.

Proposition 4.15 (Completeness) The combination procedure succeeds on input

(s

0

; t

0

) if s

0

=

E

t

0

.

Proof. By Lemma 4.10, the procedure either succeeds or fails; therefore, we can

prove the claim by proving that whenever the procedure fails on input (s

0

; t

0

), the

formula s

0

6� t

0

is satis�able in E. Thus, assume that the procedure fails and let S

n

be the abstraction system generated by the last rule application. Given Lemma 4.12

and the construction of S

0

, it is enough to show that S

n

is satis�able in E.

From Lemma 4.14 we know that S

n

is an abstraction system with an initial

formula of the form x 6� y, where x and y are distinct. Furthermore, S

n

n fx 6� yg

can be partitioned into the sets

T

1

:= fu

j

� r

j

g

j2J

and T

2

:= fv

k

� t

k

g

k2K

;

where T

1

and T

2

satisfy Lemma 4.14(1{4b). For i = 1; 2, let A

i

be a �

i

-algebra free

in E

i

over a countably in�nite set X

i

and �

i

a bijective valuation of V onto X

i

. From

Corollary 3.8 we know that A

i

�

is free in E

i

�

over Y

i

:= [[G

i

]]

A

i

�

i

and X

i

� Y

i

.

Now, for i = 1; 2, we will construct a valuation �

i

of Var(T

i

) into A

i

that as-

signs with a distinct element of Y

i

each variable shared by fx 6� yg [ T

1

and T

2

.

Furthermore, �

1

and �

2

will be such that

A

1

; �

1

j= fx 6� yg [ T

1

and A

2

; �

2

j= T

2

:

23

Otherwise, we can consider �rst the case in which v = v

k

since v

k

is also a shared variable.
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By Proposition 3.17 then, this will entail that fx 6� yg [ T

1

[ T

2

(that is, S

n

) is

satis�able in E. We can restrict our attention to the case in which i = 1, as the

other case (which is even simpler) can be treated analogously.

Let �

1

be the valuation of Var(T

1

) de�ned as follows:

�

1

(v) :=

�

�

1

(v) for all v 2

S

j

Var(r

j

)

[[r

j

]]

A

1

�

1

for all v 2

S

j

fu

j

g

Such a valuation is well-de�ned because all the variables u

j

are distinct and none of

them belongs to V

1

:=

S

j

Var(r

j

), as shown in Lemma 4.14. By construction, �

1

satis�es T

1

in A

1

. We prove below that �

1

is injective.

Let u; v 2 Var(T

1

), u 6= v. If both u and v are in V

1

, then �

1

(u) 6= �

1

(v) by

construction of �

1

. Hence, let u = u

j

for some j 2 J and assume by contradiction

that �

1

(u

j

) = �

1

(v).

If v = u

`

for some ` 2 J , then A

1

; �

1

j= r

j

� r

`

by construction of �

1

. As �

1

evaluates the variables in the equation r

i

� r

j

by distinct generators of A

1

, and

A

1

is E

1

-free, we obtain that r

j

=

E

1

r

`

by Proposition 2.1; but then, since either

h(u

`

� r

`

) � h(u

j

� r

j

) or h(u

j

� r

j

) � h(u

`

� r

`

), Ident applies to S

n

against the

assumption that S

n

is the �nal abstraction system.

If v 2 V

1

, similarly to the previous case, we can show that v =

E

1

r

j

and (since E

1

is non-trivial) that v occurs in r

j

. Therefore, either Coll1 or Coll2 applies, again

against the assumption that S

n

is the �nal abstraction system. In conclusion, �

1

is

injective.

We now show that �

1

(v) 2 Y

1

for every variable v that T

1

shares with T

2

. Let

v 2 Var(T

1

) \ Var(T

2

). If v 2 V

1

, then �

1

(v) = �

1

(v) 2 X

1

� Y

1

by construction. If

v = u

j

for some j 2 J , we know from Lemma 4.14(4b) that r

j

2 G

1

. Observing that

�

1

assigns the variables of r

j

with elements of X

1

and recalling the de�nition of Y

1

,

we can conclude that �

1

(v), which is the same as [[r

j

]]

A

1

�

1

, is an element of Y

1

.

To complete the proof we �nally need to make sure that �

1

is properly de�ned

for x and y as well. If both x and y occur in T

1

, we know by the above that �

1

is

already de�ned for them and that �

1

(x) 6= �

1

(y), as x and y are distinct. If x occurs

in T

2

as well, we also know that �

1

(x) 2 Y

1

(similarly for y). If x or y (or both)

does not occur in T

1

, let Z := fx; yg n Var(T

1

). Since Y

1

is in�nite, we can extend

�

1

arbitrarily to Var(T

1

)[Z so that, for all z 2 Z, �

1

(z) 2 Y

1

and �

1

(z) 6= �

1

(v) for

all v 2 Var(T

1

) [ Z n fzg.

In conclusion, we have constructed a valuation �

1

of Var(T

1

)[fx; yg that satis�es

fx 6� yg[T

1

in A

1

and maps the variables shared by fx � yg[T

1

and T

2

to distinct

elements of Y

1

. ut

As in [BT99], nowhere in the proof of Proposition 4.15 did we use the fact that the

rule Simpl could no longer be applied. This means that the combination procedure
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obtained by removing Simpl is also complete. Obviously, this modi�ed procedure is

still sound and terminating.

Combining the results of this section, we obtain the following modularity result

for the decidability of the word problem.

Theorem 4.16 Let E

1

; E

2

be two non-trivial equational theories of signature �

1

;�

2

,

respectively, such that � := �

1

\�

2

is a set of constructors for both E

1

and E

2

, and

E

1

�

= E

2

�

. Let G

1

; G

2

be �-bases of E

1

; E

2

, respectively. If for i = 1; 2,

� G

i

is closed under bijective renaming of V and recursive,

� G

i

-normal forms are computable for � and E

i

, and

� the word problem in E

i

is decidable,

then the word problem in E

1

[ E

2

is also decidable.

We would like to point out that the corresponding result in [BT99] is indeed a

corollary of the above. The di�erence there is that we have the additional restriction

that E

i

�

is collapse-free and we use the largest �-base of E

i

, namely G

E

i

(�; V ),

instead of an arbitrary one. In [BT99], we do not explicitly assume that G

E

i

(�; V )

is closed under renaming. But this is always the case, as we mentioned earlier. Also,

we do not postulate that G

E

i

(�; V ) is recursive because, as shown in the same paper,

that is always the case whenever G

E

i

(�; V )-normal forms are computable for � and

E

i

.

Similarly to [BT99], the decidability result of Theorem 4.16 is actually extensible

to the union of any (�nite) number of theories, all (pairwise) sharing the same

signature � and satisfying the same properties as E

1

and E

2

above. The reason

is that, again, all needed properties are modular with respect to theory union, as we

show in the next section.

5 Modularity of Constructors

In this section, we show that the property of being a set of constructors is preserved

by the union of theories. We also show that normal forms are computable in a

union theory whenever they are computable in its component theories and the word

problem is decidable for those theories.

For this purpose, let us �x two non-trivial equational theories E

1

, E

2

with re-

spective signatures �

1

;�

2

such that, for i = 1; 2

� � := �

1

\ �

2

is a set of constructors for E

i

;

� E

1

�

= E

2

�

;
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� E

i

admits a �-base G

i

closed under bijective renaming of V ;

� G

i

is recursive and G

i

-normal forms are computable for � and E

i

.

� the word problem for E

i

is decidable.

To simplify the proofs we will also assume, without loss of generality, that if

s(�r) 2 T (�; G

i

) is the normal form NF

�

E

i

(t) of a �

i

-term t (i = 1; 2), no non-variable

term in �r is equivalent in E

i

to a variable. To see that there is no loss of generality

�rst notice that the only variables a �

i

-term that can collapse to in E

i

are its own

variables|otherwise E

i

would be trivial. Since the word problem for E

i

is decidable,

it is decidable whether a term is equivalent in E

i

to one of its variables. But then, we

can e�ectively build a function that given a �

i

-term t, �rst computes s(�r) = NF

�

E

i

(t)

and then replaces each collapsing term in �r by the variable it collapses to. If �r

0

is the

tuple obtained after all such replacements, it is clear that s(�r

0

) is also a G-normal

form of t.

Now, let

E := E

1

[ E

2

:

We will show below that E

�

= E

1

�

= E

2

�

and � is a set of constructors for E.

Moreover, E admits a �-base G such that G is recursive and closed under bijective

renamings, and G-normal forms are computable for � and E.

We will use a particular model of E, obtained as a fusion of the free models of

E

1

and E

2

. More precisely, for i = 1; 2, let us �x a �

i

-algebra A

i

free in E

i

over

a countably in�nite set X

i

. Let us also �x an arbitrary bijective valuation �

i

of V

onto X

i

, and consider the set

Y

i

:= [[G

i

]]

A

i

�

i

:

We know from Corollary 3.8 that X

i

� Y

i

and A

i

�

is free in E

i

�

over Y

i

. Observe

that A

i

is countably in�nite, given our assumption that X

i

is countably in�nite and

�

i

is countable. As a consequence, Y

i

is countably in�nite as well.

Now let Z

i;2

:= Y

i

nX

i

for i = 1; 2, and let fZ

1;1

; Z

1

g be a partition of X

1

such

that Z

1

is countably in�nite and Card(Z

1;1

) = Card(Z

2;2

).

24

Similarly, let fZ

2;1

; Z

2

g

be a partition of X

2

such that Card(Z

2;1

) = Card(Z

1;2

) and Z

2

is countably in�nite.

Then consider 3 arbitrary bijections

h

1

: Z

1;2

�! Z

2;1

; h

2

: Z

1

�! Z

2

; h

3

: Z

1;1

�! Z

2;2

;

as shown in Figure 4. Observing that fZ

i;1

; Z

i

; Z

i;2

g is a partition of Y

i

for each i, it

is immediate that h

1

[ h

2

[ h

3

is a well-de�ned bijection of Y

1

onto Y

2

.

24

This is possible because Z

2;2

is countable (possibly �nite).
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X1

Y11A

X2

Y2 2A

h3

2h

h1

1

1,2Z

Z

Z1,1

2Z

Z

Z

2,1

2,2

= A

Figure 4: The Fusion A of A

1

and A

2

.

Since E

1

�

= E

2

�

and both Y

1

and Y

2

are countably in�nite,A

1

�

andA

2

�

are both

free in the same �-variety over sets with the same cardinality. It follows by Propo-

sition 2.2 then, that the bijection h

1

[ h

2

[ h

3

can be extended to a �-isomorphism

h of A

1

�

onto A

2

�

.

Lemma 5.1 The �-isomorphism h induces a fusion A of A

1

and A

2

such that the

following holds:

1. A

�

1

is free in E

1

over X

0

1

:= Z

2;2

[ Z

2

;

2. A

�

2

is free in E

2

over X

2

= Z

2;1

[ Z

2

;

3. A

�

is free in E

1

�

= E

2

�

over Y

2

= Z

2;1

[ Z

2

[ Z

2;2

.

4. Y

2

= [[G

2

]]

A

�

2

�

2

= [[G

1

]]

A

�

1

�

1

, with �

1

:= h � �

1

.

Proof. By Proposition 3.2, there is a fusion A of A

1

and A

2

such that the identity

on the carrier of A

2

is a �

2

-isomorphism of A

2

onto A

�

2

, and h is a �

1

-isomorphism

of A

1

onto A

�

1

. The �rst three points then are an immediate consequence of the

construction of h and the choice of A. By de�nition, Y

2

= [[G

2

]]

A

�

2

�

2

. Let Y

0

1

:=

[[G

1

]]

A

�

1

�

1

. We prove the last point by showing that Y

0

1

is included in Y

2

and vice

versa.

(Y

0

1

� Y

2

) Let y be an element of Y

0

1

. By de�nition of Y

0

1

then, there is a term r

in G

1

such that y = [[r]]

A

�

1

�

1

. It r is a variable v, then y = [[r]]

A

�

1

�

1

= �

1

(v) = h(�

1

(v)):

Since �

1

(v) is in X

1

by de�nition of �

1

, we have that h(�

1

(v)) is in X

0

1

� Y

2

by

construction of h.
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It r is a not variable, let v

1

; : : : ; v

n

be r's variables. Then,

y = [[r]]

A

�

1

�

1

= r

A

�

1

(�

1

(v

1

); : : : ; �

1

(v

n

)) (by def. of [[]])

= r

A

�

1

(h(�

1

(v

1

)); : : : ; h(�

1

(v

n

))) (by def. of �

1

)

= h(r

A

1

(�

1

(v

1

); : : : ; �

1

(v

n

))) (h �

1

-isomorph.)

= h([[r]]

A

1

�

1

) (by def. of [[]])

Since r 2 G

1

, the element [[r]]

A

1

�

1

is in Y

1

by de�nition of Y

1

. It follows by construction

of h that y = h([[r]]

A

1

�

1

) is in Y

2

.

(Y

2

� Y

0

1

) Let y be an element of Y

2

. By construction of h, h

�1

(y) is an element

of Y

1

, which means that there is a term r in G

1

such that h

�1

(y) = [[r]]

A

1

�

1

. If r is not

a variable, let v

1

; : : : ; v

n

be the variables of r. Then,

y = h(h

�1

(y)) = h([[r]]

A

1

�

1

)

= h(r

A

1

(�

1

(v

1

); : : : ; �

1

(v

n

)) (by def. of [[]])

= r

A

�

1

(h(�

1

(v

1

)); : : : ; h(�

1

(v

n

))) (h �

1

-isomorph.)

= r

A

�

1

(�

1

(v

1

); : : : ; �

1

(v

n

)) (by def. of �

1

)

= [[r]]

A

�

1

�

1

(by def. of [[]])

If r is a variable, then y = h(h

�1

(y)) = h([[r]]

A

1

�

1

) = h(�

1

(r)) = �

1

(r) = [[r]]

A

�

1

�

1

: In

either case, it follows by de�nition of Y

0

1

that y is in Y

0

1

. ut

The �rst interesting property of E := E

1

[E

2

is that it is a conservative extension

of both E

1

and E

2

.

Proposition 5.2 For all j 2 f1; 2g and t

1

; t

2

2 T (�

j

; V )

t

1

=

E

j

t

2

i� t

1

=

E

t

2

:

Proof. The implication from left to right is immediate since E

j

� E. For the

converse, assume that j = 2 (the proof for j = 1 follows by symmetry), and let

t

1

; t

2

2 T (�

2

; V ) such that t

1

=

E

t

2

.

Consider then the fusion A of A

1

and A

2

constructed above, and recall that

A

�

2

is free in E

2

over X

2

. Since t

1

=

E

t

2

and A is a model of E, we have that

A; � j= t

1

� t

2

for any valuation � of Var(t

1

� t

2

) into A. In particular, we can

choose � to be an injection into X

2

. Observing that t

1

; t

2

are �

2

-terms we then have

that A

�

2

; � j= t

1

� t

2

. It follows by Proposition 2.1 that t

1

=

E

2

t

2

. ut

The following is an immediate consequence of the above result.

Corollary 5.3 E

�

= E

1

�

= E

2

�

.
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Input: Abstraction system S.

1. Repeatedly apply (in any order) Coll1, Coll2, Ident,

Shar1, Shar2 to S until none of them is applicable.

2. Succeed if S has the form fv 6� vg [ T and fail otherwise.

Figure 5: A variant of the combination procedure

To show that � is a set of constructors for E, we will show that the set of

(�

1

[ �

2

)-terms de�ned below is a �-base of E.

In the following, if r is a (�

1

[�

2

)-term we will denote by br the pure term obtained

from r by abstracting its alien subterms as done by the puri�cation procedure in

Section 2.

De�nition 5.4 The set G

�

is inductively de�ned as follows:

1. Every variable is an element of G

�

, that is, V � G

�

.

2. Assume that r(�v) 2 G

i

nV for i 2 f1; 2g and �r is a tuple of elements of G

�

such that the following holds:

(a) r(�v) 6=

E

v for all variables v 2 V ;

(b) br

k

62 T (�

i

; V ) for all non-variable components r

k

of �r;

(c) the tuples �v and �r have the same length;

(d) r

k

6=

E

r

`

if r

k

; r

`

occur at di�erent positions in the tuple �r.

Then r(�r) 2 G

�

.

Notice that every non-collapsing term of G

i

is in G

�

for i = 1; 2 because the

components of �r in the de�nition above can also be variables. The elements of G

�

have a strati�ed recursive structure. A term in G

�

\ V has just one layer. A term

r(�r) in G

�

nV has at least two layers. Layer 1, the top layer, is made of the term r

only; layer 2 is made of all the terms that are at layer 1 in an element of �r; and so

on. Furthermore, terms in the same layer all belong to G

1

or to G

2

, and if the terms

in one layer are in G

i

then the terms in the next layer are not in G

i

. We will say

that a term such as r(�r) above starts with the term r.

Also notice that, like each G

i

, G

�

is closed under variable renaming. We show

below that it is recursive as well.
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Proposition 5.5 It is decidable whether a (�

1

[ �

2

)-term is in G

�

or not.

Proof. Since V � G

�

by construction, it is enough to consider only non-variable

terms. Let t 2 T (�

1

[�

2

; V ) nV . We prove the claim by induction on the rank of t

(cf. De�nition 2.3).

(Base case) Assume that rank of t is zero, which means that t is a �

i

-term for

i = 1 or i = 2. From De�nition 5.4 then it is easy to see that t is in G

�

i� it is in

G

i

and t is not equivalent in E to a variable. But this is decidable because each G

i

is recursive by assumption, E is non-trivial as seen in Subsection 3.3, and the word

problem in E is decidable by Theorem 4.16.

(Induction Step) If the rank of t is greater than zero, it is clearly e�ectively

possible to decompose t into terms r(�v) and �r such that

� �v and �r have the same length and each of them has no repeated elements;

� r(�v) 2 T (�

i

; V ) nV for i = 1 or i = 2;

� br

k

62 T (�

i

; V ) for all non-variable components r

k

of �r;

� t = r(�r).

Notice that although in general such a decomposition is not unique,

25

there are

only �nitely many of them.

26

Now, for each of these decompositions we can decide

whether r(�v) is in G

i

and (by induction) whether the elements of �r are in G

�

. To

conclude that t is in G

�

then, we simply needs to check that r(�v) is not equivalent

in E to a variable and that no two distinct elements in �r are equivalent in E. But

this is possible because E is non-trivial and the word problem in E is decidable. ut

We now show that every (�

1

[ �

2

)-term can be e�ectively reduced to an E-

equivalent term in T (�; G

�

). To do that we will appeal to the correctness of a slight

modi�cation of the combination procedure of Section 4. The only signi�cant change

in the new procedure, shown in Figure 5, is that its input is an abstraction system

instead of a pair of terms. Essentially in the same way as in Section 4.3, one can

show that the new procedure is correct in the following sense:

Proposition 5.6 The procedure in Figure 5 terminates for all inputs S and succeeds

i� S is unsatis�able in E.

The following property of the procedure is also an immediate consequence of the

results proved in Section 4.3.

25

Unless � = �

1

\ �

2

is empty, in which case �r consists of the distinct alien subterms of t and

r(�v) is obtained from

b

t by identifying any two variables of

b

t that abstract identical alien subterms.

26

The di�erent decompositions are generated by the fact that each �-symbol can be seen as either

a �

1

- or a �

2

-symbol.
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Lemma 5.7 The �nal set S

n

generated by the procedure on some input S

0

is an

abstraction system. Furthermore,

E j= 9�v

0

:S

0

$ 9�v

n

:S

n

where �v

j

is a sequence consisting of the left-hand side variables of S

j

, for j 2 f0; ng.

We have seen that, from every disequation s 6� t with s; t 2 T (�

1

[ �

2

; V ), it is

possible to produce an equivalent abstraction system. Speci�cally, one can use the

puri�cation procedure described in Subsection 4.1 to produce a system S such that

E j= (s 6� t)$ 9�y:S; (3)

where �y are the left-hand side variables of S. An inverse sort of process is also

possible: given an abstraction system S, one can produce a disequation s 6� t such

that (3) above holds.

In fact, if S = fx 6� yg [ T is an abstraction system, the relation � on T is

acyclic. This means that its transitive closure �

+

is a strict partial ordering on the

�nite set T , and so it can be extended to a strict total ordering < on T . Let

v

1

� t

1

< v

2

� t

2

< � � � < v

k

� t

k

be the enumeration of T along this total ordering. We de�ne �

S

to be the substitution

obtained by the composition

27

[v

1

=t

1

][v

2

=t

2

] � � � [v

k

=t

k

]:

In the following, we will call �

S

the substitution induced by S.

Lemma 5.8 Let S be the abstraction system above and �v a sequence consisting of

the left-hand side variables of S. Then, E j= (x�

S

6� y�

S

)$ 9�v:S.

Proof. Recall that �

S

:= [v

1

=t

1

][v

2

=t

2

] � � � [v

k

=t

k

] where v

i

does not occur in t

j

for all

i 2 f1; : : : ; kg and j � i. Then the claim is an easy consequence of the fact that

E j= (9v:(' ^ v � t))$ '[v=t]

for every formula ', term t, and variable v not occurring in t. ut

It is useful to notice that, for all v

i

� t

i

2 S, the term t

i

�

S

is obtained essentially

by \plugging in" into t

i

all the terms t

j

�

S

such that v

j

� t

j

2 S and v

i

� t

i

� v

j

� t

j

.

27

Note that �

S

does not depend on which total extension of �

+

we take.
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Lemma 5.9 Let S

n

be the �nal abstraction system generated by the procedure in

Figure 5 on some input S. Where �

S

n

is the substitution induced by S

n

, let

S

0

n

:= fv � t�

S

n

j v � t 2 S

n

g:

Then, the following holds for all i = 1; 2 and u � r�

S

n

; v � t�

S

n

2 S

0

n

such that

u � r; v � t 2 S

n

and r; t 2 T (�

i

; V ).

1. r�

S

n

6=

E

v for all v 2 V ;

2. if the height of u � r in S

n

is > 0, then r�

S

n

2 G

�

;

3. if u 6= v, then r�

S

n

6=

E

t�

S

n

.

Proof. Let i 2 f1; 2g, u � t; v � t 2 S

n

such that r; t 2 T (�

i

; V ) and u 6= v. We

prove the claims simultaneously by induction on the ranks of r�

S

n

and t�

S

n

.

(Base case) Assume that r�

S

n

and t�

S

n

have both rank 0. It is easy to see that

then r�

S

n

= r and t�

S

n

= t. To see that Point 1 holds, it is enough to observe that

the only variables r can be equivalent to in E are its own. But if that were the case,

either Coll1 or Coll2 would apply to S

n

, against the assumption that S

n

is a �nal

abstraction system.

Now, if the height of u � r in S

n

is > 0, u must occur in a right-hand side term

of S

n

. But then we can argue as in Lemma 4.14 that r is in G

i

. Since we already

know that r is not equivalent in E to any variable, that proves Point 2.

To prove Point 3 simply observe that, since both r and t are �

i

-terms and E is a

conservative extension of E

i

(by Proposition 5.2), r =

E

t would imply r =

E

i

t. But

this is impossible because otherwise the Ident rule would apply to S

n

, again against

the assumption that S

n

is a �nal abstraction system.

(Induction Step) Assume that r�

S

n

has rank greater than 0. Where �v is the

tuple consisting of the variables of r and �r := �v�

S

n

, it is immediate that r�

S

n

has

the form r(�r) where �r contains no repetitions. Moreover, each non-variable term

r

k

in �r is a right-hand side of S

0

n

of the form r

k

= t

0

�

S

n

with t

0

2 (T (�

1

; V ) [

T (�

2

; V )) nT (�

i

; V ); which means that br

k

62 T (�

i

; V ). Also note that the corre-

sponding equation v

0

� t

0

in S

n

has height > 0 since (u � r) � (v

0

� t

0

). Thus,

by induction hypothesis, the terms in �r are elements of G

�

. Moreover, they are all

pairwise inequivalent in E. In fact, a variable and a non-variable term of �r are in-

equivalent by Point 1, pairs of non-variable terms are inequivalent by Point 3, and

pairs of variable terms are inequivalent because E is non-trivial. As in the base case,

we can show that, if the height of u � r in S

n

is > 0, r is an element of G

i

nV and

is not equivalent in E to any variable. It follows then by De�nition 5.4 that r(�r) is

an element of G

�

, which proves Point 2.

To prove Point 3 let r

0

:= r�

S

n

, t

0

:= t�

S

n

, and notice that r

0

= u�

S

n

and t

0

= v�

S

n

by construction of �

S

n

. Then consider the abstraction system T obtained from S

n
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by replacing its disequation by u 6� v. Since the equational part of T coincides with

the one of S

n

, we have that �

T

= �

S

n

, and so r

0

= u�

T

and t

0

= v�

T

. By Lemma 5.8

then, r

0

6� t

0

is satis�able in E i� T is satis�able in E. We know that no derivation

rules apply to T , otherwise they would apply to S

n

, which is impossible. Since u and

v are distinct by assumption, we can then conclude that the procedure in Figure 5

fails on input T . By Proposition 5.6 then, T , and so r

0

6� t

0

, is satis�able in E, which

then entails that r

0

6=

E

t

0

.

Point 1 can be proven similarly to Point 3 by considering, for any variable v of

r�

S

n

, the abstraction system obtained from S

n

by replacing its disequation by u 6� v.

Again, the argument is based on the fact that v is distinct from u, which this time

is a consequence of the fact that � is acyclic over S

n

. Also note that the acyclicity

of S

n

and the de�nition of �

S

n

imply that v�

S

n

= v for all variables v occurring in

r�

S

n

. ut

We can now show that, given any term in T (�

1

[�

2

; V ), it is possible to �nd an

equivalent term in T (�; G

�

).

Proposition 5.10 For every term t 2 T (�

1

[�

2

; V ), there is a term t

0

2 T (�; G

�

),

e�ectively computable from t, such that t =

E

t

0

.

Proof. Since V � G

�

by construction, it is enough to consider the case in which t is

non-variable. Hence, assume that t 2 T (�

1

[ �

2

; V ) nV .

Let v be a variable not in Var(t), and S

n

the �nal abstraction system generated

by the procedure in Fig. 5 on input S

0

:= AS (v 6� t). Then, let t

n

:= y�

S

n

, where

x 6� y is the disequation of S

n

and �

S

n

the substitution induced by S

n

. We �rst show

that t =

E

t

n

.

By construction, S

0

has the form fv 6� ug [ T with v not occurring in T . From

the de�nition of the derivation rules used by the procedure it is easy to see that v is

never replaced by other variables, which means that the disequation of S

n

is in fact

v 6� y and that v�

S

n

= v. Then, by Proposition 4.3, Lemma 5.7, and Lemma 5.8

above it follows that the formulae:

(v 6� t)$ 9�v

0

:S

0

; 9�v

0

:S

0

$ 9�v

n

:S

n

; 9�v

n

:S

n

$ (v 6� t

n

);

where �v

j

are the left-hand side variables of S

j

for j 2 f0; ng, are all valid in E. This

entails that E j= (v � t)$ (v � t

n

), from which it follows that t =

E

t

n

.

Now notice that S

n

has the form fv 6= y; y � rg[R where r 2 T (�

i

; V ) for i = 1

or i = 2, and that t

n

= r�

S

n

.

Let s(�r) = NF

�

E

i

(r) and t

0

:= s(�r)�

S

n

. Because of our assumption on NF

�

E

i

,

we know that no non-variable term in �r is equivalent in E

i

, and so in E, to a

variable. Now, since r =

E

i

s(�r), it is immediate that t

n

= r�

S

n

=

E

s(�r)�

S

n

= t

0

and

thus t =

E

t

0

. It is also immediate that t

0

is e�ectively computable from t

n

, which
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was in turn computed from t. To prove the claim then it is enough to show that

t

0

2 T (�; G

�

).

By an application of Lemma 5.9 we can show that v�

S

n

2 G

�

for all v 2 Var(r).

Recalling that s(�r) 2 T (�; G

i

) and assuming as usual that the variables of s(�r) not

occurring in t are all fresh, we can then show that r

0

�

S

n

is in G

�

for every element r

0

of �r. That is immediate if r

0

is a variable. If r

0

is not a variable, let �v

0

be its variables

and �r

0

:= �v

0

�

S

n

. Using Lemma 5.9 again, it is not di�cult to see that r

0

(�v

0

) and �r

0

satisfy all the conditions in De�nition 5.4, which means that r

0

(�r

0

) = r

0

�

S

n

is in G

�

.

It follows that t

0

= s(�r�

S

n

) is an element of T (�; G

�

). ut

From what we have seen so far, G

�

satis�es the �rst two requirements in De�ni-

tion 3.6 for G

�

to be a �-base of E. To show that it satis�es the third, we will use

the following result about the model A of E constructed earlier as a fusion of the

countably in�nitely generated E

i

-free algebras A

i

(i = 1; 2).

Lemma 5.11 Where A is the algebra given in Lemma 5.1, let � be an arbitrary

bijective valuation of V onto Z

2

. Then, for all i = 1; 2 and all r; t 2 G

�

nV with

br;

b

t 2 T (�

i

; V ),

1. [[r]]

A

�

2 Z

2;i

2. r =

E

t if [[r]]

A

�

= [[t]]

A

�

.

Proof. We prove both claims simultaneously by induction on the rank of the terms.

(Base case) To prove Point 1 above, �rst assume that r 2 G

2

\ (G

�

nV ). We

start by showing that [[r]]

A

�

2 Y

2

. Since � is a bijective valuation of V onto Z

2

, �

2

is

a bijective valuation of V onto X

2

, and Z

2

� X

2

, there is a term r

0

obtained by a

bijective renaming of the variables in r such that [[r]]

A

�

= [[r

0

]]

A

2

�

2

. Since G

2

is closed

under renaming, we have that r

0

2 G

2

, and thus [[r

0

]]

A

2

�

2

2 Y

2

by de�nition of Y

2

.

Now we prove by contradiction that [[r]]

A

�

62 X

2

. In fact, if [[r]]

A

�

2 X

2

, it is easy

to show that there is a v 2 V and an injective valuation 
 of Var(v � r) into X

2

such that A; 
 j= v � r. Recalling that A

�

2

is free in E

2

over X

2

we then obtain

by Proposition 2.1 that v =

E

2

r, against the fact that v 6=

E

r by construction of G

�

(see De�nition 5.4(2a)). It follows that [[r]]

A

�

2 Z

2;2

= Y

2

nX

2

.

Now assume that r(�v) 2 G

1

\ (G

�

nV ). Again, �rst we show that [[r]]

A

�

2 Y

2

. Let

�

1

:= h � �

1

, as in Lemma 5.1. Since � is a bijective valuation of V onto Z

2

, �

1

is

a bijective valuation of V onto X

0

1

, and Z

2

� X

0

1

, there is a term r

0

obtained by a

bijective renaming of the variables in r such that [[r]]

A

�

= [[r

0

]]

A

1

�

1

. Again, r

0

2 G

1

as

G

1

is closed under renaming, and thus [[r

0

]]

A

1

�

1

2 Y

2

by Lemma 5.1. As in the previous

case, using the fact that A

�

1

is free in E

1

over X

0

1

, we can prove [[r]]

A

�

62 X

0

1

. It

follows that [[r]]

A

�

2 Z

2;1

= Y

2

nX

0

1

.
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To prove Point 2, let i 2 f1; 2g and consider the terms r; t 2 G

i

\ (G

�

nV ) such

that [[r]]

A

�

= [[t]]

A

�

. Since both r; t are �

i

-terms, this means that A

�

i

; � j= r � t.

Now, observe that Z

2

is included in the set of generators of the free model A

�

i

of

E

i

and that by construction � is an injection of Var(r � t) into Z

2

. It follows by

Proposition 2.1 that r =

E

i

t, and so r =

E

t.

(Induction step) Let i; � 2 f1; 2g with i 6= �, and consider two terms t

1

; t

2

in G

�

,

but not in G

1

[G

2

; such that br;

b

t 2 T (�

i

; V ). We know that, for j = 1; 2, t

j

has the

form

r

j

(�v

j

; �r

j

)

where r

j

2 G

i

nV , �v

j

� V , �r

j

� G

�

nV , �r

j

is nonempty, and

b

r

0

2 T (�

�

; V ) for all

r

0

2 �r

j

. Let

�

b

j

be the tuple of values that � assigns, in order, to the variables in �v

j

,

and �c

j

the tuple consisting, in order, of all the elements [[r

0

]]

A

�

with r

0

2 �r

j

.

To prove Point 1, �rst notice that

�

b

j

� Z

2

by de�nition of � and �c

j

� Z

2;�

by

induction hypothesis. It is immediate that

�

b

j

contains no repetitions and has no

elements in common with �c

j

. We claim that �c

j

contains no repetitions either. In

fact, if [[r

0

]]

A

�

= [[r

00

]]

A

�

for two distinct r

0

; r

00

2 �r

j

, we know by induction hypothesis

that r

0

=

E

r

00

. But this contradicts the fact that the tuple �r

j

must satisfy De�ni-

tion 5.4(2d). Given these facts, noticing that A

�

i

is free in E

i

over Z

2;�

[ Z

2

, it is

easy to show (similarly to the base case) that [[r

j

(�v

j

; �r

j

)]]

A

�

= r

A

�

i

j

(

�

b

j

; �c

j

) 2 Z

2;i

:

To prove Point 2, assume that [[t

1

]]

A

�

= [[t

2

]]

A

�

, which is to say that,

A; � j= r

1

(�v

1

; �r

1

) � r

2

(�v

2

; �r

2

):

Let �u

1

; �u

2

be tuples of variables abstracting �r

1

; �r

2

in the equation above so that E-

equivalent terms are abstracted by the same variable. From the proof of Point 1

above, it is easy to see that there is an injective valuation � into Z

2;�

[Z

2

such that

A; � j= r

1

(�v

1

; �u

1

) � r

2

(�v

2

; �u

2

):

Since r

1

(�v

1

; �u

1

); r

2

(�v

2

; �u

2

) are both �

i

-terms and A

�

i

is free in E

i

over Z

2;�

[ Z

2

, we

can conclude that r

1

(�v

1

; �u

1

) =

E

i

r

2

(�v

2

; �u

2

), and so r

1

(�v

1

; �u

1

) =

E

r

2

(�v

2

; �u

2

). From this

it is immediate that

t

1

= r

1

(�v

1

; �r

1

) =

E

r

2

(�v

2

; �r

2

) = t

2

as well. ut

We are now ready to prove that � is a set of constructors for E as well.

Proposition 5.12 G

�

is a �-base of E.

48



Proof. We show that G

�

, E, and � satisfy De�nition 3.6.

Now, De�nition 3.6(1) is a consequence of the de�nition of G

�

, whereas De�ni-

tion 3.6(2) holds by Proposition 5.10. To prove De�nition 3.6(3) consider again the

fusion A de�ned earlier and a bijection � of V onto Z

2

.

Let s

1

(�r

1

); s

2

(�r

2

) be terms in T (�; G

�

) and s

1

(�v

1

); s

2

(�v

2

) the terms obtained from

them by abstracting E-equivalent terms in �r

1

; �r

2

with the same variable. Clearly

s

1

(�v

1

) =

E

s

2

(�v

2

) implies s

1

(�r

1

) =

E

s

2

(�r

2

). Therefore, suppose that s

1

(�r

1

) =

E

s

2

(�r

2

).

Since A is a model of E, s

1

(�r

1

) =

E

s

2

(�r

2

) entails that

A; � j= s

1

(�r

1

) � s

2

(�r

2

):

Recall that A

�

is free in E

�

over Y

2

= Z

2;1

[Z

2

[Z

2;2

and notice that, by Lemma 5.11,

[[r]]

F

�

2 Y

2

for all r 2 G

�

. From this it is again easy to see that there is an injective

valuation � of the variables of �v

1

; �v

2

into the generators of A

�

such that A

�

; � j=

s

1

(�v

1

) � s

2

(�v

2

). It follows by Proposition 2.1 that s

1

(�v

1

) =

E

� s

2

(�v

2

), which implies

immediately that s

1

(�v

1

) =

E

s

2

(�v

2

). ut

To sum up, we have obtained the following nice modularity result:

Theorem 5.13 Let E

1

, E

2

be two non-trivial equational theories with respective

signatures �

1

;�

2

such that, for i = 1; 2

� � := �

1

\ �

2

is a set of constructors for E

i

;

� E

1

�

= E

2

�

;

� E

i

admits a �-base G

i

closed under bijective renaming of V ;

� G

i

is recursive and G

i

-normal forms are computable for � and E

i

;

� the word problem for E

i

is decidable.

Then the following holds:

1. � is a set of constructors for E := E

1

[ E

2

.

2. E

�

= E

1

�

= E

2

�

.

3. E admits a �-base G

�

closed under bijective renaming of V ;

4. G

�

is recursive and G

�

-normal forms are computable for � and E;

5. The word problem for E is decidable.
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Proof. Point 1 holds by Proposition 5.12 and Theorem 3.7; Point 2 holds by Corol-

lary 5.3; Point 3 holds by Proposition 5.12 and the de�nition of G

�

; given Point 3,

Point 4 holds by Proposition 5.5 and Proposition 5.10; �nally, Point 5 holds by The-

orem 4.16; ut

Because of its complete modularity, the above result extends immediately by

iteration to the combination of more than two theories, all pairwise sharing the same

set of constructors � and having the same �-restriction.

6 Conclusion and Open Questions

In this report, we have shown that the collapse-freeness requirement imposed on the

de�nition of constructors given in [BT99] is not necessary for the modularity of the

results given there on the combination of decision procedures for the word problem.

To do this we have described and proved correct a variant of the combination pro-

cedure in [BT99], which can be used to combine decision procedures for the word

problems for equational theories sharing non-collapse-free constructors. This broad-

ens considerably the scope of our combination method and makes it in principle a

viable tool for the study of combination results for modal logics as well.

Even with their already broader scope, the results presented here are preliminary

in two respects. First, they themselves depend on two new technical restrictions

for which we do not yet know whether they are necessary. One is the restriction in

the de�nition of constructors that X � Y , and the other is the restriction in the

combination procedure that the �-bases employed there be closed under renaming.

In all the cases we have considered so far, the two restrictions are either immediately

satis�ed or can be assumed to be satis�ed with no loss of generality. We are trying

to �nd out whether they can then be removed altogether, or whether there is a

fundamental (non-technical) reason for them.

Second, it is still unclear to what extent our combination procedure can help in

the combination of modal logics. We intend to investigate more thoroughly its ap-

plicability to the combination of decision procedures for modal logics. This probably

depends on a deep understanding of the structure of the free algebras corresponding

to the particular modal logics in question.
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