
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

Matching Concept Descriptions with Existential

Restrictions

Franz Baader and Ralf K�usters

LTCS-Report 99-07

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

Matching Concept Descriptions with Existential

Restrictions

Franz Baader and Ralf K�usters

LuFg Theoretical Computer Science, RWTH Aachen

email: fbaader,kuestersg@informatik.rwth-aachen.de

Abstract

Matching of concepts with variables (concept patterns) is a relatively

new operation that has been introduced in the context of description log-

ics, originally to help �lter out unimportant aspects of large concepts

appearing in industrial-strength knowledge bases. Previous work has con-

centrated on (sub-)languages of CLASSIC, which in particular do not

allow for existential restrictions. In this work, we present sound and com-

plete decision algorithms for the solvability of matching problems and for

computing sets of matchers for matching problems in description logics

with existential restrictions.

1 Introduction

Knowledge representation systems based on Description Logic (DL systems) can

be used to represent the terminological knowledge of an application domain in

a structured and formally well-understood way. In such systems, the important

notions of the domain can be described by concept descriptions , i.e., expres-

sions that are built from atomic concepts (unary predicates) and atomic roles

(binary predicates) using the concept constructors provided by the Description

Logic language (DL language) of the system. The atomic concepts and the con-

cept descriptions represent sets of individuals, whereas roles represent binary

relations between individuals. For example, using the atomic concept Woman

and the atomic role child, the concept of all women having only daughters (i.e.,

women such that all their children are again women) can be represented by the

concept description

Woman u 8child:Woman:

DL systems provide their users with various inference capabilities that allow

them to deduce implicit knowledge from the explicitly represented knowledge.

For instance, the subsumption algorithm allows one to determine subconcept-

superconcept relationships: C is subsumed by D (C v D) if and only if all

instances of C are also instances of D, i.e., the �rst description is always inter-

preted as a subset of the second description. For example, the concept descrip-

1

2

tionWoman obviously subsumes the concept descriptionWomanu8child:Woman.

With the help of the subsumption algorithm, a newly introduced concept de-

scription can automatically be placed at the correct position in the hierarchy

of the already existing concept descriptions. Two concept descriptions C;D are

equivalent (C � D) if and only if they subsume each other, i.e., if and only if

they always represent the same set of individuals. For example, the descriptions

Woman u 8child:Woman and (8child:Woman) uWoman are equivalent since u is

interpreted as set intersection, which is commutative.

The traditional inference problems for DL systems (like subsumption) are

now well-investigated, which means that algorithms are available for solving the

subsumption problem and related inference problems in a great variety of DL

languages of di�ering expressive power.

It has turned out, however, that building and maintaining large DL knowl-

edge bases requires additional support in the form of inferences that have not

been considered in the DL literature until very recently. The present paper is

concerned with one such new inference service, namely, matching of concept

descriptions.

Matching of Description Logics concepts has been introduced in [6, 10] as a

declarative approach for selective viewing of components of complex concept and

object descriptions. In projects based on the DL system CLASSIC [7], where

such pruning of descritptions was required (e.g., for explaining results provided

by the more traditioinal inference services [11, 10]), the resulting description

was approximately an order of magnitude smaller than the unpruned one. In

small applications such as [12], this actually saved 3-5 pages of printout; in

larger applications such as [14, 13] it might save up to 30 pages.

Given a concept pattern D (i.e., a concept description containing variables)

and a concept description C without variables, a matching problem modulo

subsumption, C v

?

D, asks for a substitution � (of the variables by concept

descriptions) such that C v �(D). More precisely, one is interested in a matcher

� such that the instance �(D) of D is as small as possible, i.e., � should satisfy

the property that there does not exist a substitution � such that C v �(D) <

�(D). In other words, one is interested in a minimal matcher with respect two

the following ordering on matchers: For two matchers �, � of the matching

problem C v

?

D, we say that � i-subsumes � (� v

i

� , instance subsumes) i�

�(D) v �(D). A minimal matcher w.r.t. v

i

is called i-minimal. For example,

the i-minimal matcher of the pattern

D := 8research-interests:X

against the description

C := 8pets:Cat u 8research-interests:AI u 8hobbies:Gardening

assigns AI to the variable X , and thus �nds the scienti�c interests (in this

case Arti�cial Intelligence) described in the concept. (The concept pattern can

be thought of as a \format statement", describing what information is to be

3

displayed (or explained), if the pattern matches successfully against a speci�c

concept. If there is no match, nothing is displayed.)

Another motivation for matching comes from an application in chemical pro-

cess engineering [4]. In this application, the DL system is used to support the

design of a large terminology of concepts describing parts of chemical plants as

well as processes that take place in these plants. Since several knowledge engi-

neers are involved in de�ning new concepts, and since this knowledge acquisition

process takes rather long (several years), it happens that the same (intuitive)

concept is introduced several times, often with slightly di�erent descriptions.

Our goal was to use the reasoning capabilities of the DL system (in particu-

lar, testing for equivalence of concept terms) to support avoiding this kind of

redundancy. However, testing for equivalence of concepts is not always su�-

cient to �nd out whether, for a given concept description, there already exists

another concept description in the knowledge base describing the same notion.

For example, assume that one knowledge engineer wants to de�ned a device

that has two parts, namely, a thermounit and a reactor with Cooling-Jacket, by

the concept description

D := Device u 9has-part:TU u 9has-part:(Reactor-with-CJ):

A second engineer might have already de�ned this notion in a somewhat

more �ne-grained way as

C := Device u 9has-part:Thermounitu

9has-part:(Reactor u 9connected-to:Cooling-Jacket):

Since C and D are not equivalent, the �rst knowledge engineer would not

realize that D was already de�ned by simply employing an equivalence test.

However, by declaring the concept names Reactor-with-CJ and TU as concept

variables, the engineer could now ask for a matcher of the matching problem

C �

?

D. This problem is called matching modulo equivalence and, analo-

gously to matching modulo subsumption, a matcher � of this problem must

satisfy C � �(D). In our example, the engineer would obtain two possilbe

matchers: one matcher maps TU onto Thermounit and Reactor-with-CJ onto

Reactoru9connected-to:Cooling-Jacket and the other one maps TU onto Reactoru

9connected-to:Cooling-Jacket and Reactor-with-CJ onto Thermounit. The �rst

matcher then indicates that C and D intuitively describe the same notion.

Note that since � is a matcher of C v

?

D i� it is one of C �

?

CuD, matching

modulo subsumption is a special case of matching modulo equivalence.

A polynomial-time algorithm for computing an i-minimal matcher of a match-

ing problem modulo subsumption for a rather expressive DL (extending ALN

by existential restrictions and some other operators, where ALN allows for the

top-concept (>), bottom-concept (?), conjunction (u), atomic negation (:A for

concept names A), and value restriction (8r:C)) was introduced in [6]. The main

drawback of this algorithm is that it requires the concept pattern to be in struc-

tural normal form, and thus it cannot handle arbitrary matching problems. In

4

addition, due to an incomplete treatment of the top- and the bottom-concepts,

it does not always �nd a matcher, even if one exists.

For the DL ALN , a polynomial-time matching algorithm that applies to

arbitrary matching problems and always computes an i-minimal matcher (if

the problem is solvable at all) was presented in [1]. To be more precise, this

algorithm solves matching problems modulo equivalence, and moreover, the

matcher � computed by the algorithm is the least matcher w.r.t. so called s-

subsumption v

s

of substitutions, where � v

s

� i� �(X) v �(X) for all variables

X . Note that the least matcher is also i-minimal since � v

s

� implies �(D) v

�(D).

The purpose of this work is to transfer these results to DLs allowing for

existential restrictions (9R:C), which are needed in many applications, e.g.,

process engineering. In order to get a feel for the new problems caused by

existential restrictions, we start with the small DL EL, which allows for the

constructors top-concept, conjunction, and existential restriction. The results

obtained for EL are then extended to the DL ALE , which additionally allows for

the constructors bottom-concept, atomic negation, and value restriction.

In contrast to the case for ALN , solvable EL-matching problems and ALE-

matching problems need not have a unique s-minimal (i.e., minimal w.r.t. v

s

)

or i-minimal matcher, as illustrated by the following example: the EL-matching

problem 9R:A u 9R:B v

?

9R:X has two (s-incomparable) s-minimal solutions

� := fX 7! Ag and � := fX 7! Bg leading to two (i-incomparable) instances

�(9R:X) = 9R:A and �(9R:X) = 9R:B of the pattern. (Note that fX 7! AuBg

is not a solution of the matching problem.) The example presented above for

the chemical process engineering application shows that for matching modulo

equivalence there might exist more than one s-minimal matcher as well.

The matching algorithm proposed in this work computes a �nite s-complete

set of matchers, i.e., a set C of solutions of the given matching problem such

that, for every matcher � of the problem, there exists � 2 C with � v

s

� .

Such a set contains all s-minimal and i-minimal matchers, which|given such a

set|can be found using the subsumption algorithms for EL and ALE .

In the following section, we will formally introduce the notions needed in this

work. In particular, we will de�ne matching and state fundamental properties.

As already mentioned, we then present the matching algorithm and complexity

results for EL, which are extended to ALE in the subsequent section. Finally,

we highlite the di�erences between matching in ALN and matching in ALE and

comment on future work.

2 Preliminaries

In this section, we introduce the basic notions used in this work and state some

fundamental properties for matching in ALE which have already been presented

in [1] for the language ALN . In addition, we will argue that to describe the

solutions of a matching problem we need the notion of a so-called complete set

of matchers.

5

Construct name Syntax Semantics

primitive concept P 2 N

C

P P

I

� �

top-concept > �

conjunction C uD C

I

\D

I

existential restr. for r 2 N

R

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restr. for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation, P 2 N

C

:P � n P

I

bottom-concept ? ;

Table 1: Syntax and semantics of concept descriptions.

The Language ALE and Sublanguages

Concept descriptions are inductively de�ned with the help of a set of construc-

tors, starting with a set N

C

of concept names and a set N

R

of role names.

The constructors determine the expressive power of the DL. In this work, we

consider concept descriptions built from the constructors shown in Table 1. In

the description logic EL, concept descriptions are formed using the constructors

top-concept (>), conjunction (C u D) and existential restriction (9r:C). The

description logic ALE allows for all the constructors shown in Table 1. In the

following, we refer to concept descriptions in the languages EL or ALE by EL-

and ALE-concept descriptions, respectively.

The semantics of a concept description is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation function �

I

maps each concept name P 2 N

C

to a set P

I

� �

and each role name r 2 N

R

to a binary relation r

I

� ���. The extension of

�

I

to arbitrary concept descriptions is inductively de�ned, as shown in the third

column of Table 1.

Subsumption, Equivalence, and Least Common Subsumer

One of the most important traditional inference services provided by DL systems

is computing the subsumption hierarchy.

De�nition 1 Let C;D be concept descriptions.

� D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I .

� C is equivalent toD (for short C � D) i� C v D andD v C, i.e., C

I

= D

I

for all interpretations I .

� D strictly subsumes C (for short C < D) i� C v D and C 6� D.

As shown in [8], deciding subsumption of ALE-concept descriptions is NP-

complete. In EL subsumption can be decided in time polynomial in the size of

the concept descriptions [3, 2].

6

As it turns out, in order to solve a matching problem we need to be able to

compute the least common subsumer (lcs) of concept descriptions.

De�nition 2 Let C

1

; : : : ; C

n

and C be concept descriptions in a DL L. The

concept description C is a least common subsumer (lcs) of C

1

; : : : ; C

n

(for short

C = lcs(C

1

; : : : ; C

n

)) i�

1. C

i

v C for all 1 � i � n, and

2. C is the least concept description with this property, i.e., if C

0

is a concept

description satisfying C

i

v C

0

for all 1 � i � n, then C v C

0

.

Matching | Introduction and Fundamental Properties

We �rst present the di�erent notions needed for matching. Then we argue that

for ALE , unlike ALN , a set of \interesting" matchers has to be computed in

contrast to only one matcher.

In order to de�ne matching of concept descriptions, we must introduce the

notion of a concept pattern and of substitutions operating on patterns. For this

purpose, we introduce an additional set of symbols X (concept variables), which

is disjoint from N

C

[N

R

.

De�nition 3 The set of allALE-concept patterns overN

C

, N

R

, X is inductively

de�ned as follows:

� Every concept variable X 2 X is a pattern.

� Every ALE-concept description over N

C

, N

R

is a pattern.

� If C and D are concept patterns, then C uD is a concept pattern.

� If C is a concept pattern and R is a role name, then 8R:C and 9R:C are

concept patterns.

Concept patterns for sublanguages of ALE are de�ned analogously. Later on,

we will need a certain normalform of concept patterns. We therefore have to

de�ne equivalence of concept patterns: Two concept patterns C, D are called

equivalent (C � D for short) if and only if C and D are equivalent concept

descriptions where variables are considered to be concept names.

The following notions can be restricted to sublanguages of ALE as well. A

substitution � is a mapping from X into the set of all ALE-concept descriptions.

This mapping is extended to concept patterns in the obvious way, i.e.,

� �(E) := E for all E 2 N

C

,

� �(>) := > and �(?) := ?,

� �(C uD) := �(C) u �(D),

� �(8R:C) := 8R:�(C) and �(9R:C) := 9R:�(C), R 2 N

R

.

7

For example, applying the substitution � := fX 7! E u 8R:E; Y 7! Fg to the

pattern X u Y u 8R:X yields the description E u (8R:E)u F u8R:(E u 8R:E).

Obviously, the result of applying a substitution to an ALE-concept pattern

is an ALE-concept description.

For ALE , and more generally, as already mentioned in [1], for any descrip-

tion language in which variables in patterns may only occur in the scope of

\monotonic" opertors, one can easily show

Lemma 4 Let D be a ALE-concept pattern and let �, � be two substitutions

such that �(X) v �(X) for all variables X occurring in D. Then, �(D) v �(D).

De�nition 5 An ALE-matching problem is of the form C �

?

D where C is

an ALE -concept description and D is an ALE-concept pattern. A solution or

matcher of this problem is a substitution � such that C � �(D). A matching

problem is said to be solvable if there exists a solution.

Instead of a single matching problem, we may also consider a �nite system

fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g of such problems. The substitution � is a solution

of this system if and only if it is a solution of all the matching problems C

i

�

?

D

i

contained in the system. However, as already stated in [1] for the languageALN ,

solving systems of matching problems can be reduced (in linear time) to solving

a single matching problem. The proof of this result can be extended to ALE

where instead of value-restrictions one can also use existential restrictions to

simulate a set of matching problems.

Lemma 6 Let R

1

; : : : ; R

m

be distinct atomic roles. Then � solves the system

fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g if and only if it solves the single matching problem

8R

1

:C

1

u � � � u 8R

m

:C

m

�

?

8R

1

:D

1

u � � � u 8R

m

:D

m

:

Consequently, we may (without loss of generality) restrict our attention to

single matching problems.

In [6, 10, 1] a di�erent type of matching problems has been considered. We

will refer to those problems as matching problems modulo subsumption in order

to distinguish them from the matching problems modulo equivalence introduced

above.

De�nition 7 A matching problem modulo subsumption is of the form C v

?

D

where C is a concept description and D is a pattern. A solution of this problem

is a substitution � satisfying C v �(D).

For any description language allowing conjunction of concepts, matching

modulo subsumption can be reduced (in linear time) to matching modulo equiv-

alence:

Lemma 8 The substitution � solves the matching problem C v

?

D if and only

if it solves C �

?

C uD.

8

For ALE , and, as mentioned in [1], more generally for any description lan-

guage in which variables in patterns may only occur in the scope of \monotonic"

operators, solvability of matching problems modulo subsumption can be reduced

to subsumption:

Lemma 9 Let C v

?

D be a matching problem modulo subsumption in ALE ,

and let �

>

be the substitution that replaces each variable by >. Then C v

?

D

has a solution if and only if C v �

>

(D).

Thus, solvability of matching problems modulo subsumption in ALE is not

an interesting new problem. However, this changes if one is not interested in an

arbitrary solution of the matching problem C v

?

D, but rather in computing

\minimal" solutions.

The notion \minimal" depends on the ordering chosen for solutions. In this

work, we consider two di�erent quasi-orderings, i.e., orderings that are reexive

and transitiv.

In uni�cation theory (see e.g., [5]), the same situation occurs: one is inter-

ested in a set of minimal uni�ers for a given uni�cation problem. The orderings

on uni�ers used in uni�cation theory are quasi-orderings as well. It has turned

out that so-called minimal complete sets exactly represent the set of minimal

solutions we are interested in.

Before returning to matching, we �rst present the abstract notions used for

describing sets of solutions introduced in uni�cations theory (for details see,

e.g., [5]).

In the following let v

q

be a quasi-ordering on a set S (of solutions). Let �

q

be the equivalence relation induced by v

q

, i.e., for all x; y 2 S, x �

q

y if and

only if x v

q

y and y v

q

x. The strict ordering <

q

of v

q

is de�ned as usual:

x < y if and only if x v

q

y and x 6�

q

y.

De�nition 10 An element s 2 S is called q-minimal if and only if for all s

0

2 S,

s

0

v

q

s implies s

0

�

q

s.

A minimal complete set of solutions, mentioned above, is now de�ned as

follows:

De�nition 11 A subset C � S of S is called q-complete if and only if for all

elements s 2 S there exists an element s

0

2 C such that s

0

v

q

s. Furthermore,

C is called miminal q-complete if and only if C is complete and any two distinct

elements in C are incomparable, i.e., for all s; s

0

2 C, s v

q

s

0

implies s = s

0

.

Later on we will need the following lemma in order to compare two quasi-

orderings.

Lemma 12 If v

q

and v

p

are two quasi-orderings over S, then v

q

� v

p

implies

that every q-complete set is also p-complete.

Proof. Let C be a q-complete set and let s 2 S. Thus, there exists an element

s

0

2 C such that s

0

v

q

s. We know that then s

0

v

p

s which shows that C is

p-complete.

9

In order to obtain a characterization of minimal q-complete sets, we now

consider q-equivalence classes over S. For an element s 2 S, its q-equivalence

class is de�ned as usual as [s]

q

:= fs

0

2 S j s �

q

s

0

g. Then, S := f[s]

q

j s 2 Sg

denotes the set of q-equivalence classes of S. The ordering v

q

can be extended

to S as follows: [s]

q

�

q

[s

0

]

q

i� s v

q

s

0

. Now, �

q

is a partial ordering over S.

The notions �

q

-minimal, �

q

-complete, and minimal �

q

-complete are de�ned

analogously to De�nition 10 and De�nition 11. As shown in [5], a minimal

�

q

-complete set can equivalently be de�ned as a complete set which is minimal

among all complete sets with respect to set inclusion.

The following lemma describes the connection between minimal �

q

-complete

sets and the set of all �

q

-minimal elements in S [5].

Lemma 13 Let M be the set of �

q

-minimal elements of S. Then:

1. If C � S is a minimal �

q

-complete set, then C =M .

2. If M is �

q

-complete, then it is minimal �

q

-complete.

This means that if an minimal �

q

-complete set exists then this set is exactly

the set of �

q

-minimal elements. And on the other hand, if the set of �

q

-minimal

elements is not complete then there is no minimal �

q

-complete set.

An easy consequence of this lemma is the following theorem [5]:

Theorem 14 Let M be the set of all �

q

-minimal elements of S. If C is a

minimial q-complete set over S, then M = f[s]

q

j s 2 Cg. Conversely, if M is

�

q

-complete, then any set of representatives of M is a minimal q-complete set

over S.

From this theorem one can conclude that there exists a minimal q-complete

set over S if and only ifM is�

q

-complete. Furthermore, the minimal q-complete

sets in S are unique up to q-equivalence.

We now can apply the results stated above to matching. If, for a given

matching problem, S is the set of matchers of this problem and v

q

is a quasi-

ordering on these matchers, then Theorem 14 shows that a minimal q-complete

set de�ned in De�nition 11 exactly represents the q-minimal solutions of the

matching problem.

In the remainder of this section we proceed as follows: We introduce the two

di�erent quasi-orderings, mentioned above, for solutions of a matching problem

C v

?

D. Then we will argue that for both orderings a minimal complete set of

solutions might contain more than one (minimal) solution. Along the way we

will compare the two orderings de�ned for solutions and single out the one that

is most suitable to describe all \interesting" solutions.

Roughly speaking, solutions can be compared according to the instances

�(D) which they induce or by the substitutions themselves. In the following

de�nition we formally de�ne these orderings.

De�nition 15 Let C v

?

D be a matching problem. And let � and � be

solutions of this problem. Then we de�ne

10

1. � is s-subsumed (\s" for \substitution") by � (� v

s

�) if and only if

�(X) v �(X) for all variables X 2 X where X is the set of variables in

D.

1

2. � is i-subsumed (\i" for \instance") by � (� v

i

�) if and only if �(D) v

�(D).

The notions s-equivalence, s-minimal, and (minimal) s-complete for v

s

as

well as i-equivalence, i-minimal, and (minimal) i-complete for v

i

are de�ned as

for the quasi-ordering v

q

.

Some examples of matching problems shall now illustrate the relationship

between the di�erent orderings.

The �rst example shows that an s-minimal solution is not necessarily i-

minimal.

Example 16 For the matching problem

9R:A u 9R:B v

?

9R:X u 9R:Y

the matcher � := fX 7! A; Y 7! Ag is s-minimal, but not i-minimal since

with � := fX 7! A; Y 7! Bg it is � <

i

�.

In addition, i-minimality does not imply s-minimality as shown in the next

example.

Example 17 For the matching problem

9R:A v

?

9R:A u 9R:X

the matcher � := fX 7! >g is i-minimal, but not s-minimal since � := fX 7!

Ag is a solution of this problem as well, and moreover, � < �.

As already mentioned in the introduction, for the orderings of choice there

might be di�erent, i.e., uncomparable, minimal solutions for a matching problem

which implies that minimal complete sets might contain more than one solution.

In Example 16, the matcher � := fX 7! A; Y 7! Bg and � := fX 7!

B; Y 7! Ag are both s-minimal, but they are not s-equivalent and therefore

uncomparable.

Furthermore, although � := fX 7! Ag and � := fX 7! Bg are i-minimal

solutions for the matching problem 9R:A u 9R:B v

?

9R:X , they are not i-

equivalent.

We have seen that neither an s-minimal solution is i-minimal nor vice versa.

As for complete sets however, an s-complete set is always i-complete: By Lemma 4,

we can conclude v

s

� v

i

. Then, Lemma 12 ensures that every s-complete set

1

For a given set X of variables this ordering can be extended to arbitrary substitutions.

11

is also i-complete. The converse direction does in general not hold: for the

matching problem of Example 16 the solutions � := fX 7! A; Y 7! Bg and

� := fX 7! B; Y 7! Ag form an i-complete set. However, this set is not s-

complete since for the solution � := fX 7! A; Y 7! Ag we have � 6v

s

� and

� 6v

s

�.

According to Theorem 14 and the above observation a (minimal) s-complete

set contains the minimal solutions with respect to both orderings, i.e., s- and

i-minimal solutions. On the other hand, an i-complete set does not necessarily

contain all solutions one might expect. For the matching problem in Example 16,

the singleton set only consisting of the solution fX 7! A; Y 7! Bg is i-complete.

However, one would also expect fX 7! B; Y 7! Ag to be an element of the

complete set.

To sum up, among the orderings of choice (minimal) s-complete sets seem to

be most suitable to represent all minimal solutions. In the following sections, we

will specify an algorithm computing an s-complete set for a matching problem.

To be more precise, our algorithm solves a more general problem. It computes

an s-complete set of matchers for matching modulo equivalence, i.e., a problem

of the form C �

?

D where s-completeness is de�ned analogously to matching

problems modulo subsumption. By Lemma 8, the set of matchers for C v

?

D

coincides with the set of matchers for C �

?

C u D. Therefore, an s-complete

for C �

?

C uD is also s-complete for C v

?

D. A minimal s-complete set can

then be obtained by iteratively eliminating all matchers � of the s-complete set

such that there is a matcher � , � 6= �, in the set with � v

s

�. In the same way,

one can derive a (minimal) i-complete set from an s-complete set since every

s-complete set is i-complete as well.

In the next section, we present the matching algorithm for the language EL.

We then extend the algorithm to ALE in the subsequent section. The reason

for presenting the results for the sublanguage EL of ALE is chiey to illustrate

the main idea behind the matching algorithm, since ALE requires more details.

However, decidability results for matching in one language do not necessarily

carry over to sublanguages, which distinguishes non-standard inferences, like

matching, from standard inferences like subsumption and consistency.

3 Matching in EL

As our matching algorithm is mainly based on the characterization of subsump-

tion in terms of homomorphisms between so-called description trees and on the

results for lcs presented in [3], we �rst shall briey sum up those notions and

results. In [3], only concept descriptions were considered. We need to extend

some of the notions to concept patterns as well.

3.1 EL-description trees

EL-description trees are used to represent EL-concept descriptions and patterns.

12

De�nition 18 An EL-description tree is a tree of the form G = (V;E; v

0

; `)

with root v

0

where

� the edges vrw 2 E (called 9-edges) are labeled with primitive roles r from

N

R

, and

� the nodes v 2 V are labeled with sets `(v) of concept names and concept

variables, i.e., subsets of N

C

[X .

The empty label corresponds to the top-concept.

In the sequel, G(v), where v is a node in G, denotes the subtree of G with

root v.

Intuitively, an EL-description tree is merely a graphical representation of

the syntax of the concept description/pattern. In order to translate concept

descriptions/patterns into description trees, we need the following notion. The

role depth of an (EL-, ALE-) concept description/pattern C (for short depth(C))

is inductively de�ned by

� depth(?) = depth(>) = depth(P) = depth(:P) = depth(X) := 0;

� depth(C uD) := max(depth(C); depth(D));

� depth(8r:C) = depth(9r:C) := depth(C) + 1.

Every EL-concept description/pattern C can be written (modulo equiva-

lence) as C � P

1

u : : : u P

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

with P

i

2 N

C

[X [f>g.

Such a concept description can now be translated into an EL-description tree

G

C

= (V;E; v

0

; `) by induction on the role depth of C as follows.

If depth(C) = 0 then V := fv

0

g, E := ;, and `(v

0

) := fP

1

; : : : ; P

n

g n f>g.

If depth(C) > 0 then for 1 � i � m, let G

i

= (V

i

; E

i

; v

0i

; `

i

) be the inductively

de�ned description tree corresponding to C

i

where, w.l.o.g., the V

i

are

pairwise disjoint. Then

� V := fv

0

g [

S

1�i�m

V

i

,

� E := fv

0

r

i

v

0i

j 1 � i � mg [

S

1�i�m

E

i

,

� `(v) :=

(

fP

1

; : : : ; P

n

g n f>g; v = v

0

`

i

(v); v 2 V

i

; 1 � i � m

Example 19 The EL-concept description

C := P u 9r:(9r:(P uQ) u 9s:Q) u 9r:(P u 9s:P)

yields the tree G

C

depicted in Figure 1, a).

13

r

s

r

r

v

0

4

:fPg

v

0

2

:fPg v

0

3

:fQg

v

0

0

:;

v

0

1

:;

G:
v

0

:fPg

r

s

v

1

:;

v

3

:fQg

s

v

5

:fPg

r

r

v

4

:fPg

G

C

:

v

2

:fP;Qg

Figure 1: EL-description trees.

Conversely, every EL-description tree G = (V;E; v

0

; `) without variables in

its labels can be translated into an EL-concept description C

G

by induction on

the depth of G.

2

If depth(G) = 0 then V = fv

0

g, E = ;. If `(v

0

) = ;, then C

G

:= >; otherwise,

we have `(v

0

) = fP

1

; : : : ; P

n

g, n � 1 and de�ne C

G

:= P

1

u : : : u P

n

.

If depth(G) > 0 then let `(v

0

) = fP

1

; : : : ; P

n

g, n � 0, and let fv

1

; : : : ; v

m

g be

the set of all successors of v

0

with v

0

r

i

v

i

2 E for some r

i

2 N

R

, 1 �

i � m. Further, let C

1

; : : : ; C

m

denote the inductively de�ned EL-concept

descriptions corresponding to the subtrees of G with root v

i

, 1 � i � m.

We de�ne C

G

:= P

1

u : : : u P

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

.

Note that only for a leaf v 2 V the empty label is translated into the top-

concept. For a node v 2 V with `(v) = ; that is not a leaf, the empty set is

not translated into the top-concept: the concept description corresponding to

the subtree with root v only consists of existential restrictions induced by the

direct successors of v.

Example 20 The EL-description tree G in Figure 1, b) yields the EL-concept

description

C

G

= 9r:(9r:P u 9s:Q) u 9r:P:

The semantics of an EL-description tree G without variables in its labels is

given by the semantics of the corresponding EL-concept description, i.e., for an

interpretation I = (�; �

I

) we de�ne G

I

:= C

I

G

.

The translations of EL-concept descriptions and EL-description trees into one

another preserve semantics in the sense that C � C

G

C

.

3.2 Homomorphisms, Subsumption, and lcs in EL

In [3], homomorphisms between description trees have been employed to char-

acterize subsumption between concept descriptions. Moreover, such character-

izations have been used to describe the lcs of concept descriptions as product

2

The depth of a description tree G is de�ned as the length of the longest path in G. Since it

directly corresponds to the depth of the corresponding concept description, it is also denoted

by depth(G).

14

of descriptions trees. In the next section, we will see that homomorphisms are

also crucial for the matching algorithm we propose.

De�nition 21

Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be EL-description trees. A

mapping ' : V

H

�! V

G

is a homomorphism from H into G i� the following

conditions are satis�ed:

1. '(w

0

) = v

0

,

2. (`

H

(v) n X) � `

G

('(v)) for all v 2 V

H

, and

3. '(v)r'(w) 2 E

G

for all vrw 2 E

H

.

Now, subsumption between EL-concept descriptions can be characterized in

terms of homomorphisms between their corresponding EL-description trees [3]:

Theorem 22 Let C;D be EL-concept descriptions and G

C

;G

D

the correspond-

ing description trees. Then C v D i� there exists a homomorphism from G

D

into G

C

.

Example 23 (Example 19 continued)

Consider the EL-description trees depicted in Figure 1. We have C v C

G

,

because mapping v

0

i

onto v

i

for 0 � i � 4 yields a homomorphism from G to G

C

.

Empolying Theorem 22, one can show that the lcs of concept descriptions

C and D corresponds to the product of the descriptions trees G

C

and G

D

. For

specifying our matching algorithm we need the following results, which can

easily be derived from results in [3]:

Proposition 24 The size of the lcs of a sequence C

1

; : : : ; C

n

of EL-concept

descriptions may grow exponential in the size of the sequence. The lcs of a

sequence of concept descriptions can be computed in time exponential in the

size of the sequence.

3.3 The EL-Matching Algorithm

As motivated in Section 2, we are interested in an s-complete set of matchers for

a matching problem of the form C �

?

D where C is an EL-concept description

and D is an EL-concept pattern.

The matching algorithm described in Fig. 2 �rst tries to construct substi-

tutions � such that C v �(D), i.e., there is a homomorphism from G

�(D)

into

G

C

. In a second step, it checks which of the computed substitutions really solve

the matching problem, i.e., also satis�es C w �(D). (Obviously, for a matching

problem modulo subsumption, this second step can be dispensed with.) The

�rst step is achieved by �rst computing all homomorphisms from G

D

into G

C

.

The remaining problem is that a variable X may occur more than once in D.

Thus, we cannot simply de�ne �(X) as C

G

C

('(w))

where w is such that X occurs

15

Input: EL-matching problem C �

?

D

Output: s-complete set C of matchers for C �

?

D

Compute G

C

and G

D

= (V;E;w

0

; `)

C := ;

For all homomorphisms ' from G

D

into G

C

De�ne � by �(X) := lcs(C

G

C

('(w))

j X 2 `(w))

for all variables X in D

If C w �(D) then C := C [f�g

Figure 2: The EL-matching algorithm.

in the label of w. Since there may exist several nodes w with this property, we

take the lcs of the corresponding subconcepts of C. The reason for taking the

least common subsumer is that we want to compute substitutions that are as

small as possible w.r.t. v

s

. An algorithm for computing the lcs of EL-concepts

has been described in [3].

Before proving the soundness of our matching algorithm, we illustrate the

algorithm by the following example.

Example 25 Let the concept description C and the concept pattern D be

de�ned as follows:

C := P u 9r:(P u 9r:P u 9r:Q) u 9s:(P uQ u 9r:P)

D := P u 9r:(X u 9r:Y) u 9s:(X u Y)

The corresponding description trees are depicted in Figure 3. There are

exactly two homomorphisms from G

D

into G

C

. Both homomorphisms must

map w

i

onto v

i

for i = 0; 1; 2. Only w

3

can be mapped onto two di�erent

nodes, namely, v

3

or v

4

; let '

1

be the homomorphism which maps w

3

on v

3

,

i.e, '

1

(w

3

) = v

3

, and let '

2

be the one with '

2

(w

3

) = v

4

. Thus, the algorithm

depicted in Figure 2 computes two substitutions, namely, one with respect to '

1

and the other one for '

2

. More precisely, for '

1

the substitution �

1

is computed

as follows:

�

1

(X) = lcs(P u 9r:P u 9r:Q; P uQ u 9r:P)

� 9r:P u P

�

1

(Y) = lcs(P uQ u 9r:P; P)

� P

The subsequent subsumption test C

sqsupseteq�

1

(D) in the matching algorithm fails such that �

1

is not added to

C. For '

2

the algorithms yields

16

v

0

: P

v

1

: P

v

3

: P v

4

: Q v

5

: P

v

2

: P;Q

w

0

: P

w

1

: X w

2

: X;Y

w

3

: Y

s r s

r r r

r

G

C

: G

D

:

r

Figure 3: EL-description trees.

�

2

(X) = lcs(P u 9r:P u 9r:Q; P uQ u 9r:P)

� 9r:P u P

�

2

(Y) = lcs(P uQ u 9r:P;Q)

� Q

In this case, the subsumption test C � �

2

(D) succeeds and C = f�

2

g is the

output of the matching algorithm.

3.4 Soundness of the EL-Matching Algorithm

For the set C computed by the matching algorithm (Figure 2) we have to verify

two properties. First, we have to show that the substitutions in C are matchers

for the given matching problem. Second, we hav to prove that C is s-complete,

i.e., for every matcher �

0

of C �

?

D we have to verify that there is a matcher

� 2 C such that � v

s

�

0

. We break the proof down in two lemmas. The

�rst lemma will also be useful to specify an optimized algorithm for matching

problems modulo subsumption. It says that for every substitution � computed

by the algorithm it is C v �(D).

Lemma 26 Let ' be a homomorphism from G

D

= (V;E; r; `) into G

C

=

(V

0

; E

0

; r

0

; `

0

) and let � be the corresponding substitution as speci�ed by the

matching algorithm in Figure 2. Then, C v �(D).

Proof. Let X be a variable in D. Then for every w 2 V with X 2 `(w)

there exists a node v 2 V

0

with '(w) = v. By the de�nition of � it follows

C

G

C

(v)

v �(X). Using that C

G

C

(v)

� G

C

(v), according to Theorem 22 there

exists a homomorphism from G

�(X)

into G

C

(v).

Obviously, one obtains the description tree G

�(D)

by extending G

D

for every

node w and every variable X in the label of w by (a new instance of) G

�(X)

where the root of G

�(X)

and the node w are identi�ed. To the label of w the

17

concept names in the label of the root of G

�(X)

are added. Furthermore, X is

deleted from the label of w. Note that the new label of w is still a subset of the

label of v. For this reason, ' can be extended to an homomorphism from G

�(D)

into G

C

. By Theorem 22, this shows C v �(D).

In the sequel, we will refer to the process, described in the above proof,

of replacing the variables X in a description tree G

D

by instances of G

�(X)

as

instantiating G

D

by G

�(X)

for all variables X in D.

Now, let �

0

be a matcher for C �

?

D. This implies C v �

0

(D). By Theo-

rem 22, there is a homomorphism '

0

from G

�(D

0

)

into G

C

. When deleting the

variables in G

D

then G

D

is a subtree of G

�

0

(D)

. Thus, restricting '

0

to the nodes

of G

D

yields a homomorphism ' from G

D

into G

C

. For all variables X in D

let �(X) := lcs(C

G

C

('(w))

j X 2 `(w)) be de�ned as speci�ed by the matching

algorithm in Figure 2.

Lemma 27 It is � v

s

�

0

.

Proof. We have to verify �(X) v �

0

(X) for every variable X in D. Let X

be a variable in D, G

D

= (V;E; r; `), and w 2 V such that X 2 `(w) and

'(w) = v. Restricting '

0

to the description tree G

�

0

(D)

(w) provides us with a

homomorphism from G

�

0

(D)

(w) into G

C

(v). Since X 2 `(w), G

�

0

(D)

(w) contains

a subtree corresponding to �

0

(X). Consequently, there is a homomorphism

from G

�

0

(X)

into G

C

(v) which shows C

G

C

(v)

v �

0

(X). Since this is true for all

v 2 V (';X), we can conclude �(X) v �

0

(X). Thus, � v

s

�

0

.

With these two lemm at hand the soundness of the matching algorithm can

be derived as follows: If � 2 C is a substitution computed by the matching

algorithm then by Lemma 26 we know C v �(D). But then, the subsumption

test C w �(D) in the matching algorithm ensures C � �(D) which shows that

� is a matcher of the matching problem C �

?

D.

Now, let �

0

be some matcher for C �

?

D and let � be de�ned as speci�ed

above Lemma 27. From Lemma 27 we know � v

s

�

0

. Thus, by Lemma 4 we

can conclude �(D) v �

0

(D). According to the de�nition, � is computed by the

matching algorithm in Figure 2. But then, Lemma 26 implies C v �(D). Thus,

we have �(D) v �

0

(D) � C v �(D) which means C � �(D). Hence, � belongs

to the set C computed by the matching algorithm. Furthmore, the fact that

� v

s

�

0

shows that C is s-complete.

3.5 Complexity of Matching in EL

We �rst show, by means of an example, that an s-complete set of matchers

might grow exponential in the size of the matching problem.

Example 28 Let

9r:A u 9r:B �

?

9r:X

1

u � � � u 9r:X

n

18

be a EL-matching problems whereA, B are concept names andX

i

, 1 � i � n,

are concept variables.

For a word w = a

1

� � � a

n

2 fA;Bg

n

we de�ne �

w

(X

i

) := a

i

for every

1 � i � n. Obviously, for a word w that contains both A and B, �

w

is a matcher

of the above matching problem. Now, let C be an s-complete set of this matching

problem. Then, there exists a � 2 C such that � v

s

�

w

. Using Theorem 22,

it is not hard to see � �

s

�

w

. Furthermore, for w 6= w

0

, w;w

0

2 fA;Bg

n

, it is

easy to verify that �

w

6v

s

�

w

0

and �

w

0

6v

s

�

w

. Now observe that the number

of words in fA;Bg

n

with at least one A and one B is exponential in n. As a

result, C must be exponential in n.

As an immediate consequence of the example we obtain

Proposition 29 The cardinality of a (minimal) s-complete set of matchers

might grow exponentially in the size of the corresponding EL-matching problem.

On the other hand, using the matching algorithm we can state an upper

bound for the size of an s-complete set. The size of such a set is de�ned as

follows: Since a concept pattern D contains only a �nite number of variables, a

matcher can be represented as a �nite set of tuples where the �rst component

of a tuple contains a variable and the second component contains the concept

description which is assigned to this variable by means of the matcher. Then,

the size of a matcher can be de�ned in terms of the sum of the size of the tuples.

In addition, the size of a set of matchers is de�ned by the sum of the size of the

matcher in the set.

Now, note that the number of mappings from a description tree G

D

into G

C

is exponential in the size of the description trees. Since the size of these trees

is linear in the size of the matching problem C �

?

D we can conclude that

an s-complete set of matcher computed by our matching algorithm is at most

exponential. Furthermore, by Proposition 24 the lcs of a sequence of EL-concept

descriptions can be computed in time exponential in the size of the sequence.

Thus, the size of every substitution computed by the matching algorithm is at

most exponential in the size of the matching problem. Finally, as mentioned

in Section 2, from an s-complete set one can obtain a minimal s-complete (i-

complete) set by iteratively eliminating certain solutions from the s-complete

set. These results can be summarized as follows:

Corollary 30 For every EL-matching problem there exists a (minimal) s-complete

(i-complete) set with size at most exponential in the size of the matching prob-

lem.

Subsumption of EL-concept descriptions can be decided in time polynomial

in the size of the given concept descriptions [3]. As already mentioned, the size

of a substitution � computed by our matching algorithm is at most exponential

in the size of the matching problem. Thus, C w �(D) can be decided in time

exponential in the size of the matching problem C �

?

D. Now, using Proposi-

tion 24, it is easy to see that the loop body of the algorithm in Figure 2 runs

19

in exponential time. As already mentioned, there exists only an exponential

number of mappings from G

D

into G

C

. For these mappings it can be decided

in time polynomial in the size of the matching problem if they are homomor-

phisms. Consequently, our matching algorithm runs in time exponential in the

size of the matchng problem. Moreover, for a given s-complete set one can ob-

tain a minimal s-complete (i-complete) set in time polynomial in the size of the

s-complete set using the method mentioned in Section 2.

Corollary 31 A (minimal) s-complete set of matchers for an EL-matching

problem can be computed in time exponential in the size of the matching prob-

lem.

Because of Lemma 8, Corollary 31 also holds true for matching modulo sub-

sumption. However, in case of matching modulo subsumption we can dispense

with the test C w �(D) but rather add � to C right away. On the other hand,

this has no impact on the complexity of computing an s-complete set for a

matching problem modulo subsumption, which is still exponential.

Deciding Solvability of Matching in EL

Lemma 9 ensures that the solvability of an EL-matching problem modulo sub-

sumption can be decided in time polynomial in the size of the matching problem.

Since an s-complete set of matchers of a matching problem is empty if and

only if the matching problem has no solution the matching algorithm shown in

Figure 2 can be employed to decide the solvability of a matching problem mod-

ulo equivalence. This provides us with an exponential-time decision algorithm.

However, we strongly conjecture that there is also an NP algorithm. We now

show that the problem is NP-hard.

We show NP-hardness by reducing SAT [9] to deciding the matching problem

modulo equivalence.

Let � = p

1

^ � � � ^ p

m

be a propositional formulae in conjunctive normal

form and let fx

1

; : : : ; x

n

g be the propositional variables of this problem. For

these variables, we introduce the concept variables fX

1

; : : : ; X

n

; X

1

; : : : ; X

n

g.

Furthermore, we need concept namesA and B as well as the role names r; r

0

; s; s

0

.

We �rst show that one can specify a matching problem such that either X

i

must

be substituted by A (corresponding to true) and X

i

by B or vice versa. This

corresponds to assigning true or false to x

i

. Such a matching problem can be

written in terms of the following concept descriptions/patterns:

C

0

:= >

C

k+1

:= 9r

0

:A u 9r

0

:B u 9r:C

k

D

0

:= >

D

k+1

:= 9r

0

:X

k+1

u 9r

0

:X

k+1

u 9r:D

k

20

Now, the matching problem can be stated as C

n

�

?

D

n

. It is easy to see

that the matcher of that problem must substitute either X

i

by A and X

i

by B

or vice versa.

In order to decode � we translate a conjunct p

i

, 1 � i � m, into a concept

pattern D

p

i

as follows. For example, if p

i

= x

1

_ x

2

_ x

3

_ x

4

then D

p

i

:=

X

1

uX

2

uX

3

uX

4

u B. We now have to decode the evaluation of a formulae:

C

0

0

:= >

C

0

k+1

:= 9s

0

:(A u B) u 9s:C

0

k

D

0

0

:= >

D

0

k+1

:= 9s

0

:D

p

k+1

u 9s:D

0

k

The matching problem C

0

m

�

?

D

0

m

ensures that among the variables in

D

p

i

there must be at least one variable substituted by A. This corresponds to

the fact that within one conjunct p

i

there must be at least one propositional

variable that evaluates to true. Note that we need the concept B in D

p

i

because

otherwise if all variables in D

p

i

were substituted by A then C

0

m

and D

0

m

would

not be equivalent.

We combine the two parts of the reduction in the �nal matching problem as

follows:

C

�

:= C

n

u C

0

m

D

�

:= D

n

uD

0

m

It is easy to verify that � is satis�able if and only if the matching problem

C

�

�

?

D

�

is solvable since a truth assignment can be directly translated into a

substitution and vice versa. This proves

Lemma 32 Deciding the solvability of an EL-matching problem modulo equiv-

alence is NP-hard and can be decided in time exponential in the size of the

matching problem.

4 Extending the results to ALE

The main idea of the matching algorithm for ALE is the same as for EL, i.e.,

governed by homomorphisms from the description tree of the concept pattern

D into the description tree of the concept description C one de�nes certain

substitutions and, in case of matching modulo equivalence, checks if these sub-

stitutions are solutions of the matching problem. However, as it is illustrated

by the following example, we now need to compute complete sets for a set of

so-called >-patterns of the original pattern D, which are obtained from D by

replacing certain variables by >.

21

r

8s

v

3

: Q

8r

v

4

: P w

2

: X w

3

: Y

r

r

8s8r

v

0

: ;

v

2

: ;v

1

: ;

w

0

: ;

w

1

: ;

Figure 4: The description trees for C and D.

Example 33 Let

C := (9r:8r:Q) u (9r:8s:P) v

?

9r:(8r:X u 8s:Y) =: D

be anALE-matching problem. The description trees for C andD are depicted

in Figure 4 where, in addition to 9-edge, 8-edges are introduced to represent

value-restrictions. Obviously, � := fX 7! Q; Y 7! >g and � := fX 7! >; Y 7!

Pg are solutions for the given matching problem. However, there is no homo-

morphism from the tree for D into the one for C: The node w

1

can be mapped

either on v

1

or v

2

. In the former case, w

2

can be mapped on v

3

, but then there

is no way to map w

3

. In the latter case, w

3

must be mapped on v

4

, but then

there is no node w

2

can be mapped on.

The example shows that there need not to be a homomorphism between a

description tree corresponding to a pattern and a description tree for a concept

description, although the matching problem is solvable. On the other hand,

as shown in [3], subsumption of ALE-concept descriptions can be characterized

in terms of homomorphisms. Still, this requires the normalization of both the

subsumee and the subsumer. For characterizing the subsumption of concept

descriptions in terms of homomorphisms, it is necessary to apply the following

normalization rule to the subsumer:

3

8r:> �! >

But as far as matching is concerned, a normalization of the concept pattern

(subsumer) would depend on the substitutions for the variables, which we do

not no in advance. So there is no unique way to normalize a concept pattern.

We illustrate this problem by Example 33.

Both instances �(D), �(D) of D are not normalized according to the nor-

malization rule since they contain the subconcepts 8s:> and 8r:>, respectively.

3

For the subsumee additional normalization rules are necessary, which we will present in

Section 4.1.

22

The description tree for the normalized concept description �(D) would not

include the node w

3

and the 8s-edge leading to it. In this case, there is a homo-

morphism from this description tree into the one for C. Analogously, for �(D),

w

2

would be deleted, which again allows to de�ne a homomorphism.

As a result, in order to compute matchers using homormophisms one has

to consider a set of so-called >-patterns of D. These patterns are obtained by

replacing a subset of variables in D by >. Furthermore, before turning such

a >-pattern into a description tree one has to normalize the pattern using the

normalization rule stated above. Referring to the example, we get the following

normalized >-patterns for D: D, 9r:(8r:X), 9r:(8s:Y), and 9r:>. Matching

these patterns against C our matching algorithm computes the following sets

of solutions: ;, f�g, f�g, and ffX 7! >; Y 7! >gg. The union of these sets

provides us with an s-complete set of solutions for C v

?

D.

Another way to overcome the problem shown in Example 33, is to introduce

partial homomorphisms instead of total homomorphism. The idea is that these

partial homomorphisms allow to leave the image of certain nodes of a description

tree for D unde�ned if there is no corresponding node in C. In Example 33, this

means that the image of w

2

and w

3

might be unde�ned. We will not pursue

this approach in the sequel, however.

In the following sections, we shall extend the notion of homomorphism, the

characterization of subsumption, and the results for lcs to ALE as they have

been proved in [3]. Then we will exploit the ideas presented in this section to

specify a matching algorithm for ALE .

4.1 Subsumption and Lcs in ALE

First, we have to de�ne the notion of ALE-description trees formally.

De�nition 34 An ALE -description tree is a tree of the form G = (V;E; v

0

; `)

with root v

0

where

� the edges in E are labeled with primitive roles r from N

R

(9-edges) or

with 8r for some r 2 N

R

(8-edges), and

� the nodes v 2 V are labeled with sets `(v) = fP

1

; : : : ; P

n

g where each P

i

,

1 � i � n, is of one of the following forms: P

i

2 N

C

[X , P

i

= :P for

some P 2 N

C

, or P

i

= ?.

The empty label corresponds to the top-concept.

Just as for EL, an ALE-concept description/pattern C can be tranlated into

an ALE-description tree G(C) (see [3] for details). As an example, consider the

ALE-concept description

C := 8r:(9s:Q u 8s::Q) u 9s:(P u 9r:Q):

The corresponding description tree G(C) is depicted in Figure 5.

23

8r

r

v

1

: ;

v

3

: Q v

4

: :Q v

5

: Q

v

2

: P

v

0

: ;

8ss

s 8r

r

s

w

0

: ;

w

1

: ; w

2

: ;

r r

w

3

: P w

4

: :P w

5

: Q

G :G(C) :

Figure 5: The description trees for G(C) and G.

On the other hand, every ALE-description tree G without variables in its

labels can be translated into an ALE-concept description C

G

([3] contains a

formal translation). The description graph G in Figure 5 yields the ALE -concept

description

D := C

G

= (8r:(9r:P u 9r::P)) u (9s:9r:Q)

Just as for EL, the semantics ofALE-description trees G without variables in their

labels is de�ned by the semantics of their corresponding concept descriptions C

G

,

i.e., G

I

:= C

I

G

for an interpretation I . Again, it is easy to see that the translation

of concept descriptions and description trees in one another preserves semantics,

i.e., C � C

G

C

.

As shown in [3], in order to characterize subsumption of ALE-concept de-

scriptions in terms of homomorphisms between the corresponding description

trees, the concept descriptions need to be normalized before translating them

into description trees.

De�nition 35 Let E;F be two ALE-concept descriptions and r 2 N

R

a primi-

tive role. The ALE-normalization rules are de�ned as follows

8r:E u 8r:F �! 8r:(E u F)

8r:E u 9r:F �! 8r:E u 9r:(E u F)

8r:> �! >

E u > �! E

P u :P �! ?, for each P 2 N

C

9r:? �! ?

E u ? �! ?

A concept descripton C is called normalized if none of the above normaliza-

tion rules can be applied to some subconcept of C. The rules should be read

modulo commutativity of conjunction; e.g., 9r:E u 8r:F is also normalized to

9r:(E u F) u 8r:F . An unnormalized concept description C can be normalized

24

by exhaustively applying the normalization rules to subconcepts of C. The re-

sulting (normalized) concept description is called normal form of C. Since each

normalization rule preserves equivalence, the normal form of C is equivalent to

C. We refer to G

C

as the description tree corresponding to the normal form of

C.

If only the rule 8r:> �! > is exhaustively applied to a concept description

C then the resulting concept description is called >-normal form of C. We refer

to G

>

C

as the description tree corresponding to the >-normal form of C.

Obviously, a homomorphism between ALE-description trees must take 8-

edges into account, which are dealt with like 9-edges. In addition, homomor-

phisms as introduced for EL-description trees are extended by allowing them to

map a node and all nodes in its subtree onto an inconsistent node, i.e., a node

labeled f?g. Formally, a homomorphism is de�ned as follows:

De�nition 36 A mapping ' : V

H

�! V

G

from an ALE-description tree H =

(V

H

; E

H

; w

0

; `

H

) to an ALE-description tree G = (V

G

; E

G

; v

0

; `

G

) is called ho-

momorphism if and only if the following conditions are satis�ed:

1. '(w

0

) = v

0

,

2. for all v 2 V

H

we have (`

H

(v) n X) � `

G

('(v)) or `

G

('(v)) = f?g,

3. for all vrw 2 E

H

, either '(v)r'(w) 2 E

G

, or '(v) = '(w) and `

G

('(v)) =

f?g, and

4. for all v8rw 2 E

H

, either '(v)8r'(w) 2 E

G

, or '(v) = '(w) and

`

G

('(v)) = f?g.

Now, subsumption can be characterized in terms of homomorphisms [3]:

Theorem 37 Let C;D be ALE-concept descriptions. Then C v D i� there

exists a homomorphism from G

>

D

to G

C

.

It should be noted that the theorem stated in [3] requires a homomorphism

from G

D

instead of G

>

D

. However, the proof reveals that >-normalization of

the subsumer is su�cient. Furthermore, we can conclude from the proof of

Theorem 37:

Remark 38 The existence of a homomorphism from a description tree G into

H implies H v G, i.e., for all interpretations I it is H

I

� G

I

. This means that

the if-direction of Theorem 37 does not require normalization.

We illustrate the theorem by means of the concept description C and D

introduced above. The normal form of C is 8r:?u 9s:(P u 9r:Q); D is already

in >-normal form. A homomorphism from G

>

D

into G

C

is depicted in Figure 6.

By Theorem 37 we can conclude C v D. Observe, however, that there is no

homomorphism from G(D) into G(C). This shows that the only-if direction

of Theorem 37 requires normalizing the concept descriptions before translating

them into description trees.

25

v

1

: f?g v

4

: P

v

0

: �

8r 9s

v

5

: Q

9r

w

3

: :Pw

2

: P

8r

9r 9r

G

D

: w

0

: �

w

1

: Q w

4

: �

9s

9r

w

5

: Q

G

C

:

'

Figure 6: Subsumption for ALE .

Just as for EL, the lcs of ALE-concept descriptions can be represented by

the product of their description trees. In [3], the following complexity results

regarding the lcs have been shown:

4

Proposition 39 The size of the lcs of a sequence C

1

; : : : ; C

n

of ALE -concept

descriptions may grow exponential in the size of the sequence. The lcs of a

sequence of concept descriptions can be computed in time exponential in the

size of the sequence.

4.2 The ALE-Matching Algorithm

As mentioned above, the idea of the matching algorithm for ALE is to consider

a set of \>-pattern" D

0

for D and computing sets of solutions for C �

?

D

0

. We

shall show that the union of these sets provides us with an s-complete set of

solutions for C �

?

D.

De�nition 40 A concept pattern D

0

is called >-pattern of D if D

0

is obtained

from D by substituting a subset of variables in D by >.

Using this notion the ALE -matching algorithm can be speci�ed as depicted

in Figure 7. We already illustrated the algorithm by the example discussed

above.

4.3 Soundness of the ALE-Matching Algorithm

The proof will proceed similarly to the one for EL in Section 3.4 and just as for

EL, it is based on two lemmata.

The �rst lemma says that for all substitutions � computed by the algorithm

in Figure 7, it is C v �(D). This will also have a major impact on the complexity

of matching problems modulo subsumption.

4

Actually, only complexity results for the lcs of two concept descriptions are contained in

that paper. However, the proofs allow us to simply extend the results to sequences of concept

descriptions.

26

Input: ALE-matching problem C �

?

D

Output: s-complete set C of matchers for C �

?

D

C := ;

For all >-pattern D

0

of D do

For all homomorphisms ' from G

>

D

0

into G

C

De�ne � by

�(X) := lcs(C

G

C

('(w))

j X 2 `(w)) for all variables X in D

0

and

�(X) := > for all variables X in D not in D

0

If C w �(D

0

) then C := C [f�g

Figure 7: The ALE-matching algorithm.

Lemma 41 Let D

0

be a >-pattern of D, ' be a homomorphism from G

>

D

0

into

G

C

, and let � be a substitution computed by the matching algorithm in Figure 7

w.r.t. D

0

and '. Then, C v �(D).

Proof. We �rst show that C v �(D

0

). Let X be a variable in D

0

. Then

for every node w in D

0

with X in its label `(w) there exists a node v in G

C

with '(w) = v. By the de�nition of � it follows C

G

C

(v)

v �(X). Using that

C

G

C

(v)

� G

C

(v), according to Theorem 37 there exists a homomorphism from

G

>

�(X)

into G

C

(v).

For this reason, analogously to Lemma 26, one can extend ' to a homomor-

phism from G into G

C

where G is de�ned as the instantiation of G

>

D

0

by G

>

�(X)

for all variables X in D

0

(see Section 3.4 for instantiation). It is easy to see that

G � �(D

0

). Therefore, by Remark 38 we can conclude C v �(D

0

).

Now, from the de�nition of a >-pattern and since �(Y) = > for all variables

in D that are not in D

0

we know �(D) � �(D

0

). This shows C v �(D) and

completes the proof of the lemma.

Analogously to Lemma 27 we now show

Lemma 42 If �

0

is a matcher for C �

?

D, then there exists a matcher � in the

set S of matchers computed by the matching algorithm given in Figure 7 with

� v

s

�

0

.

Proof. We know C v �

0

(D). Let T := fX j �

0

(X) � >g be a subset of

variables in D. Furthermore, let D

0

be the >-pattern of D where the variables

in T are substituted by >. We can conclude �

0

(D) � �

0

(D

0

). Thus, C v �

0

(D

0

).

Theorem 37 implies that there exists a homomorphism '

0

from G

>

�

0

(D

0

)

into G

C

.

Now, let G be the instantiation of G

>

D

0

by G

>

�(X)

for variables X in D

0

where

the notion of instantiation is de�ned as in Section 3.4. We claim that G is

isomorphic to G

>

�

0

(D

0

)

, i.e., equal up to renaming of nodes:

27

Computing G

>

E

for some concept pattern E corresponds to iteratively delet-

ing the nodes (and edges) in G(E) which are connected with their direct pre-

decessors by means of an 8-edge, which labels are empty, and which have no

outgoing edges (8- or 9-edges).

Now, obviously, the description tree G(�

0

(D

0

)) is the instantiation of G(D

0

)

by G(�

0

(X)). By de�nition of D

0

, we know that �

0

(X) 6� > for all variables X

in D

0

. Thus, the nodes in the subtree G(D

0

) of G(�

0

(D

0

)) containing variables

are not deleted when >-normalizing G(�

0

(D

0

)). For this reason, one can obtain

G

>

�

0

(D

0

)

by �rst >-normalizing G(D

0

), which yields G

>

D

0

, and then instantiating

G

>

D

0

by G

>

�

0

(X)

. This shows that G is isomophic to G

>

�

0

(D

0

)

.

But then, G

>

D

0

is a subtree of G

>

�

0

(D

0

)

. Therefore, restricting '

0

to G

>

D

0

,

provides us with a homomorphism ' from G

>

D

0

into G

C

.

Let � be the substitution computed by the matching algorithm in Figure 7

w.r.t. D

0

and '. It remains to show � v

s

�

0

:

If X is a variable in D but not in D

0

then we know �

0

(X) � >. Thus,

�(X) = > v �

0

(X).

Now, let X be a variable in D

0

. There exists a node w in D

0

such that X

is in the label `(w) of w and '(w) = v. When restricting '

0

to G

>

�

0

(D

0

)

(w),

one gets an homomorphism from G

>

�

0

(D

0

)

(w) into G

C

(v). Since G is isomorphic

to G

>

�

0

(D

0

)

, we can conclude from the de�nition of G that G

>

�

0

(X)

is a subtree of

G

>

�

0

(D

0

)

(w). Therefore, there exists a homomorphism from G

>

�

0

(X)

into G

C

(v). By

Theorem 37, this yields C

G

C

(v)

v �

0

(X). Hence, �(X) v �

0

(X). This completes

the proof of the lemma.

Note that the proof of this lemma makes heavy use of the fact that for the

concept patternD (or the >-patternsD

0

) only a \minor" normalization, namely,

>-normalization, is necessary, as opposed to the full normalization which is

needed for C. As we will see in the next section, this has a major impact on

complexity issues as well.

With Lemma 41 and Lemma 42 at hand, analogously to EL (Section 3.4),

it can be shown that all substitutions in the set C computed by the matching

algorithm are matchers of the given matching problem and that C is s-complete.

4.4 Complexity of Matching in ALE

Just as for EL, Example 28 shows

Proposition 43 The cardinality of a (minimal) s-complete set of matchers

might grow exponential in the size of the corresponding ALE-matching prob-

lem.

Again, as in Section 3.5, the matching algorithm can be used to show that

there always exists an s-complete set of matchers of size at most expontial in

the size of the matching problem. Since the size of G

>

D

0

for some >-pattern

D

0

of D is linear in D and since G

C

is at most exponential in C the number

28

of mappings from G

>

D

0

into G

C

is exponentially bounded. Furthermore, the

number of >-patterns of D is exponentially bounded by the size of D. As

shown in [3], lcs(C

G

C

(varphi(w))

j X 2 `(w)) corresponds to the product of the

description trees G

C

('(w)). Due to the fact that the number of nodes w in G

top

D

0

is linear in the size of the matching problem and the size of G

C

('(w)) is at most

exponential in C the lcs can be computed in time exponential in the size of the

matching problem C �

?

D. Thus, the size of every substitution computed by the

matching algorithm is at most exponential in the size of the matching problem.

As mentioned in Section 2, one can derive a minimal s-complete (i-complete)

set from a given s-complete set. To sum up,

Corollary 44 For every ALE-matching problem there exists a (minimal) s-

complete (i-complte) set with size at most exponential in the size of the matching

problem.

We now consider the complexity of the matching algorithm itself. As shown

in [8], subsumption of ALE-concept descriptions is NP-complete. Since a sub-

stitution � computed by the matching algorithm is of size at most exponential

in the size of the matching problem C �

?

D it follows that C �

?

�(D) can be

decided in non-deterministic exponential time in the size of the matching prob-

lem. Thus, it can be decided in space exponential in the size of the matching

algorithm. Recalling that the number of >-patterns D

0

of D and the number

of mappings from G

>

D

0

into G

C

is at most exponential in the size of D and that

the lcs speci�ed in the matching algorithm can be computed in time exponen-

tial in the size of the matching problem, our matching algorithms runs in space

exponential in the size of the matching problem. Finally, one can obtain a

minimal s-complete (i-complete) set from the computed s-complete set in time

exponential in the size of the s-complete set.

The matching algorithm can also be used to decide the solvability of a match-

ing problem since an s-complete set of matchers of a matching problem is empty

if and only if the matching problem has no solution. In addition, it is easy to

see that Lemma 32 is valid for ALE-matching problems as well. For ALE , NP-

hardness follows also immediately from the fact that deciding equivalence of

ALE-concept descriptions is NP-complete [8] and that matching modulo equiv-

alence corresponds to testing equivalence in case D is a concept description.

To sum up, we obtain the following complexity results for matching modulo

equivalence in ALE :

Corollary 45 A (minimal) s-complete (i-complete) set of matchers for an ALE-

matching problem modulo equivalence can be computed in space exponential

in the size of the matching problem. Furthermore, the solvability of an ALE-

matching problem is NP-hard and can be decided in non-deterministic expo-

nential time in the size of the matching problem.

Note that if in the matching algorithm mappings from G

D

0

(instead of G

>

D

0

)

had to be considered then the matching algorithm would have been more com-

plex since in this case the number of homomorphisms might be double exponen-

tial in the size of the given matching problem. Furthermore, computing the lcs

29

could be double exponential as well. Thus, as mentioned earlier, the fact that

we only need to consider a \minor" normalization of the concept pattern has a

great impact on the complexity of the matching algorithm.

It turns out that the two problems of computing an s-complete set of match-

ers and deciding solvability of matching modulo subsumption are less complex

than those for matching modulo equivalence. The reason is that we can dis-

pense with the subsumption test C w �(D

0

) when it comes to matching modulo

subsumption. Furthermore, deciding matching modulo subsumption can be re-

duced to subsumption (cf. Lemma 9), which is NP-complete for ALE -concept

descriptions [8], and subsumption can be reduced two matching. As a result,

we obtain

Corollary 46 For an ALE-matching problem C v

?

D a (minimal) s-complete

(i-minimal) set of matchers can be computed in time exponential in the size

of the matching problem. Deciding the solvability of such a problem is NP-

complete.

5 Matching Value Restrictions vs. Matching Ex-

istential Restrictions

In this section, we point out the di�erences between matching in description

logics with existential restrictions and those without existential restrictions.

In [1], the language ALN has been considered which allows for concept con-

junction, primitive negation, number restrictions and value restrictions. In par-

ticular, this language does not allow for existential restrictions. For this lan-

guage, it has been shown that for matching there is always a least solution

w.r.t. the ordering v

s

in case the problem is solvable at all. In other words,

there is always an s-complete set of matcher with at most one element. On the

other hand, Example 28 shows that for the languages considered in this work

which allow for existential restrictions one matcher might not be su�cient. The

number of elements in an s-complete set of matcher might even grow exponential

in the size of the matching problem.

Furthermore, there are signi�cant di�erences regarding the complexity of

computing solutions for matching problems and deciding the solvability of a

matching problem. In ALN an s-complete set, i.e., the least solution, can be

computed in time polynomial in the size of the matching problem. We have

seen that computing s-complete sets for languages with existential restrictions

might take time exponential in the size of the matching problem. Moreover,

matching in ALN can be decided in time polynomial in the size of the matching

problem, whereas, as proved in this work, deciding matching modulo equivalence

is NP-hard even for the small language EL.

30

6 Conclusion and Future Work

In this work, we have seen that when adding existential restrictions to a de-

scription logics there might exist more than one minimal matcher of a matching

problem. We therefore have introduced the notion of complete sets, known from

uni�cation theory, that contain all minimal solutions of a problem. In addition,

compared to languages, like ALN , which do not allow for existential restric-

tions the complexity of computing matchers and of deciding the solvability of a

matching problem increases.

Still, both for EL and ALE , the complexity of our matching algorithm is

not optimal w.r.t. the known lower bounds. Thus, our short-term goal is to

obtain tighter complexity bounds for matching in these DLs. We will also try

to extend the results to DLs allowing for number restrictions, and|in the long

run|to DLs allowing for full negation. We conjecture, however, that DLs with

full negation will require techniques quite di�erent from the ones used in this

work.

References

[1] F. Baader, R. K�usters, A. Borgida, and D.L. McGuinness. Matching in

description logics. Journal of Logic and Computation, 9, 1999.

[2] F. Baader, R. K�usters, and R. Molitor. Computing least common sub-

sumer in description logics with existential restrictions. LTCS-Report 98-

09, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 1998.

See http://www-lti.informatik.rwth-aachen.de/Forschung/Papers.html.

[3] F. Baader, R. K�usters, and R. Molitor. Computing least common subsumer

in description logics with existential restrictions. In Proceedings of the 16th

International Joint Conference on Arti�cial Intelligence (IJCAI'99), 1999.

To appear.

[4] F. Baader and U. Sattler. Knowledge representation in process engineer-

ing. In Proceedings of the International Workshop on Description Logics,

Cambridge (Boston), MA, U.S.A., 1996. AAAI Press/The MIT Press.

[5] F. Baader and W. Snyder. Uni�cation theory. In J.A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science

Publishers, 1999. To appear.

[6] A. Borgida and D. L. McGuinness. Asking queries about frames. In Proceed-

ings of the Fifth International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR'96), pages 340{349, San Francisco, Calif.,

1996. Morgan Kaufmann.

[7] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick,

and A. Borgida. Living with classic: When and how to use a kl-one-like

31

language. In J. Sowa, editor, Principles of Semantic Networks, pages 401{

456. Morgan Kaufmann, San Mateo, Calif., 1991.

[8] F.M. Donini, B. Hollunder, M. Lenzerini, A. Marchetti, D. Nardi, and

W. Nutt. The complexity of existential quanti�cation in concept languages.

Arti�cial Intelligence, 2{3:309{327, 1992.

[9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco, 1979.

[10] D.L. McGuinness. Explaining Reasoning in Description Logics. PhD thesis,

Department of Computer Science, Rutgers University, October, 1996. Also

available as a Rutgers Technical Report LCSR-TR-277.

[11] D.L. McGuinness and Alex Borgida. Explaining subsumption in descrip-

tion logics. In Proceedings of the 14th International Joint Conference on

Arti�cial Intelligence, IJCAI'95, August 1995.

[12] D.L. McGuinness, L. Alperin Resnick, and C. Isbell. Description logic in

practice: A classic application. In Proceedings of the 14th International

Joint Conference on Arti�cial Intelligence, IJCAI'95, pages 2045{2046,

August 1995. Video Presentation.

[13] D.L. McGuinness and J.R. Wright. An industrial strength description logic-

based con�gurator platform. IEEE Intelligent Systems, 13(4):66{77, 1998.

[14] J.R. Wright, E.S. Weixelbaum, G.T. Vesonder, K. Brown, S.R. Palmer,

J.I. Berman, and H.H. Moore. A knowledge-based con�gurator that sup-

ports sales, engineering, and manufacturing at at&t network systems. AI

Magazine, 14(3):69{80, 1993.

