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Abstract

Matching of concepts against patterns is a new inference task in De-

scription Logics, which was originally motivated by applications of the

Classic system. Consequently, the work on this problem was until now

mostly concerned with sublanguages of the Classic language, which does

not allow for existential restrictions.

Motivated by an application in chemical process engineering, which

requires a description language with existential restrictions, this paper

investigates the matching problem in Description Logics with existen-

tial restrictions. It turns out that existential restrictions make match-

ing more complex in two respects. First, whereas matching in sublan-

guages of Classic is polynomial, deciding the existence of matchers is an

NP-complete problem in the presence of existential restrictions. Second,

whereas in sublanguages of Classic solvable matching problems have a

unique least matcher, this is not the case for languages with existential

restrictions. Thus, it is not a priori clear which of the (possibly in�nitely

many) matchers should be returned by a matching algorithm.

After determining the complexity of the decision problem, the present

paper �rst investigates the question of what are \interesting" sets of

matchers, and then describes algorithms for computing these sets for the

languages EL (which allows for conjunction and existential restrictions)

and ALE (which additionally allows for value restrictions, primitive nega-

tion, and the bottom concept).
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1 Introduction

Matching concepts against patterns is a relatively new inference problem in

Description Logics (DLs), which has originally been introduced in [10, 14] to

help �lter out the unimportant aspects of large concepts appearing in knowledge

bases of the Classic DL system [11, 8]. More recently, matching (as well as the

more general problem of uni�cation) has been proposed as a tool for detecting

redundancies in knowledge bases [5] and to support the integration of knowledge

bases by prompting possible interschema assertions to the integrator [9].

All three applications have in common that one wants to search the knowl-

edge base for concepts having a certain (not completely speci�ed) form. This

\form" can be expressed with the help of so-called concept patterns, i.e., concept

descriptions containing variables (which stand for descriptions). For example,

assume that we want to �nd concepts that are concerned with individuals hav-

ing a son and a daughter sharing some characteristic. This can be expressed

by the pattern D := 9has-child:(Male uX) u 9has-child:(Female uX), where X

is a variable standing for the common characteristic. The concept description

C := 9has-child:(TalluMale)u9has-child:(TalluFemale) matches this pattern in

the sense that, if we replace the variable X by the description Tall, the pattern

becomes equivalent to the description. Thus, the substitution � := fX 7! Tallg

is a matcher modulo equivalence of the matching problem C �

?

D. Note that

not only the fact that there is a matcher is of interest, but also the matcher

itself, since it tells us what is the common characteristic of the son and the

daughter.

Looking for such an exact match (called matching modulo equivalence in the

following) is not always appropriate, though. In our example, using matching

modulo equivalence means that all the additional characteristics of the son and

daughter mentioned in the concept must be common to both. Thus, the descrip-

tion C

0

:= 9has-child:(TalluMaleuTalkative)u9has-child:(Tallu FemaleuQuiet)

does not match the pattern modulo equivalence. Matching modulo subsumption

only requires that, after the replacement, the pattern subsumes the description.

Thus, the substitution � from above is a matcher modulo subsumption of the

matching problem C

0

v

?

D.

Previous results on matching in DLs were mostly concerned with sublan-

guages of the Classic description language, which does not allow for existen-

tial restrictions of the kind used in our example. A polynomial-time algorithm

for computing matchers modulo subsumption for a rather expressive DL was

introduced in [10]. The main drawback of this algorithm is that it requires the

concept patterns to be in structural normal form, and thus it cannot handle

arbitrary matching problems. In addition, the algorithm is incomplete, i.e.,

it does not always �nd a matcher, even if one exists. For the DL ALN , a

polynomial-time algorithm for matching modulo subsumption and equivalence

was presented in [1]. This algorithm is complete and it applies to arbitrary

patterns.

The main purpose of this work is to investigate matching in DLs allow-

ing for existential restrictions. We will show that existential restrictions make
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matching more complex in two respects. First, whereas matching in the DLs

considered in [10, 1] is polynomial, even deciding the existence of matchers is

an NP-complete problem in the presence of existential restrictions. Second,

the algorithms described in [10, 1] always compute the least matcher (w.r.t.

subsumption of substitutions; see the de�nition of v

s

) of the given matching

problem. For languages with existential restrictions, such a unique least matcher

need not exist. However, the set of minimal matchers is �nite (though possi-

bly exponential in the size of the matching problem), and we will show how to

compute this set. It has turned out, however, that the minimal matchers are

not necessarily the most interesting ones since they may contain certain redun-

dancies. Thus, one also needs a kind of post-processing step that removes these

redundancies. Since giving an answer to the question of what are good sets of

matchers is not trivial, we will treat it separately.

This paper is structued as follows: In the two subsequent sections, we intro-

duce the basic notions. In Section 3 we �rst exploit the problem of matching

for the small language EL (which only allows for concept conjunction and ex-

istential restrictions) in order to present the main ideas underlying our results

and to avoid the rather involved technical details necessary for the extensions

of EL. In particular, we investigate the problem of deciding the solvability of

EL-matching problem. We then characterize the sets of \interesting" matchers,

which, as already mentioned, becomes in important issue and subsequently show

how to compute these sets. Finally, the de�nitions and results are extended to

the more expressive languages FLE and ALE .

2 Preliminaries

In this section, we introduce the basic notions used in this work and state some

fundamental properties for matching in ALE which have already been presented

in [1] for the language ALN .

The Language ALE and sublanguages

Concept descriptions are inductively de�ned with the help of a set of construc-

tors, starting with a set N

C

of concept names and a set N

R

of role names.

The constructors determine the expressive power of the DL. In this work, we

consider concept descriptions built from the constructors shown in Table 1. In

the description logic EL, concept descriptions are formed using the constructors

top-concept (>), conjunction (C u D) and existential restriction (9r:C); FLE

extends EL by value restrictions (8r:C); the description logic ALE allows for all

the constructors shown in Table 1. In the following, we refer to concept de-

scriptions in the languages EL, FLE , and ALE by EL-, FLE-, and ALE -concept

descriptions, respectively. The size of a concept description C is denoted by jCj

where simply all symbols in C are counted. Later on, we will also refer to the

role depth of a concept description.
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Construct name Syntax Semantics

primitive concept P 2 N

C

P P

I

� �

top-concept > �

conjunction C uD C

I

\D

I

existential restr. for r 2 N

R

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restr. for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation, P 2 N

C

:P � n P

I

bottom-concept ? ;

Table 1: Syntax and semantics of concept descriptions.

The role depth depth(C) of an ALE -concept description C is inductively

de�ned as follows:

� depth(>) := depth(?) := depth(P ) := depth(:P ) := 0;

� depth(C uD) := max(depth(C); depth(D));

� depth(8r:E) := depth(9r:E) := 1 + depth(E).

The semantics of a concept description is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation function �

I

maps each concept name P 2 N

C

to a set P

I

� �

and each role name r 2 N

R

to a binary relation r

I

� ���. The extension of

�

I

to arbitrary concept descriptions is inductively de�ned, as shown in the third

column of Table 1.

Subsumption, equivalence, and least common subsumer

One of the most important traditional inference services provided by DL systems

is computing the subsumption hierarchy.

De�nition 1 Let C;D be concept descriptions.

� D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I .

� C is equivalent toD (for short C � D) i� C v D andD v C, i.e., C

I

= D

I

for all interpretations I .

� D strictly subsumes C (for short C < D) i� C v D and C 6� D.

As shown in [12], deciding subsumption of ALE-concept descriptions is NP-

complete. In EL subsumption can be decided in time polynomial in the size of

the concept descriptions [3, 2].

As it turns out, in order to solve a matching problem we need to compute

the least common subsumer (lcs) of concept descriptions.
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De�nition 2 Let C

1

; : : : ; C

n

and C be concept descriptions in a DL L. The

concept description C is a least common subsumer (lcs) of C

1

; : : : ; C

n

(for short

C = lcs(C

1

; : : : ; C

n

)) i�

1. C

i

v C for all 1 � i � n, and

2. C is the least concept description with this property, i.e., if C

0

is a concept

description satisfying C

i

v C

0

for all 1 � i � n, then C v C

0

.

In [3], the following complexity results regarding the lcs have been shown:

1

Fact 3 The size of the lcs of a sequence C

1

; : : : ; C

n

of ALE-concept descriptions

may grow exponential in the size of the sequence. The lcs of a sequence of

concept descriptions can be computed in time exponential in the size of the

sequence.

This fact also carries over to sublanguages of ALE .

Matching

We now formally de�ne matching problems for ALE and its sublanguages. In

particular, we must introduce the notion of a concept pattern and of substitu-

tions operating on patterns. For this purpose, we need an additional set X of

symbols (concept variables) disjoint from N

C

[N

R

.

De�nition 4 The set of allALE-concept patterns overN

C

, N

R

, X is inductively

de�ned as follows:

� Every concept variable X 2 X is a pattern.

� Every ALE-concept description over N

C

, N

R

is a pattern.

� If C and D are concept patterns, then C uD is a concept pattern.

� If C is a concept pattern and r is a role name, then 8r:C and 9r:C are

concept patterns.

Concept patterns for sublanguages of ALE are de�ned analogously. Later on,

we will need a certain normalform of concept patterns. We therefore have to

de�ne equivalence of concept patterns: Two concept patterns C, D are called

equivalent (C � D for short) if and only if C and D are equivalent concept

descriptions where variables are considered to be concept names.

The following notions can be restricted to sublanguages of ALE as well. A

substitution � is a mapping from X into the set of all ALE-concept descriptions.

This mapping is extended to concept patterns in the obvious way, i.e.,

� �(P ) := P for all P 2 N

C

,

1

Actually, only complexity results for the lcs of two concept descriptions are contained in

that paper. However, the proofs allow us to simply extend the results to sequences of concept

descriptions.
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� �(>) := > and �(?) := ?,

� �(C uD) := �(C) u �(D),

� �(8r:C) := 8r:�(C) and �(9r:C) := 9r:�(C), r 2 N

R

.

For example, applying the substitution � := fX 7! E u 8r:E; Y 7! Fg to the

pattern X u Y u 8r:X yields the description E u (8r:E) u F u 8r:(E u 8r:E).

Obviously, the result of applying a substitution to an ALE-concept pattern

is an ALE-concept description.

For ALE , and more generally, as already mentioned in [1], for any descrip-

tion language in which variables in patterns may only occur in the scope of

\monotonic" opertors, one can easily show

Lemma 5 Let D be a ALE-concept pattern and let �, � be two substitutions

such that �(X) v �(X) for all variables X occurring in D. Then, �(D) v �(D).

De�nition 6 An ALE-matching problem is of the form C �

?

D where C is

an ALE -concept description and D is an ALE-concept pattern. A solution or

matcher of this problem is a substitution � such that C � �(D). A matching

problem is said to be solvable if there exists a solution.

Instead of a single matching problem, we may also consider a �nite system

fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g of such problems. The substitution � is a solution

of this system if and only if it is a solution of all the matching problems C

i

�

?

D

i

contained in the system. However, as already stated in [1] for the languageALN ,

solving systems of matching problems can be reduced (in linear time) to solving

a single matching problem. The proof of this result can be extended to ALE

where instead of value-restrictions one can also use existential restrictions to

simulate a set of matching problems.

Lemma 7 Let r

1

; : : : ; r

m

be distinct roles names. Then, � solves the system

fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g if and only if it solves the single matching problem

8r

1

:C

1

u � � � u 8r

m

:C

m

�

?

8r

1

:D

1

u � � � u 8r

m

:D

m

:

Consequently, we may (without loss of generality) restrict our attention to

single matching problems.

In [10, 14, 1] a di�erent type of matching problems has been considered. We

will refer to those problems as matching problems modulo subsumption in order

to distinguish them from the matching problems modulo equivalence introduced

above.

De�nition 8 A matching problem modulo subsumption is of the form C v

?

D

where C is a concept description and D is a pattern. A solution of this problem

is a substitution � satisfying C v �(D).

For any description language allowing conjunction of concepts, matching

modulo subsumption can be reduced (in linear time) to matching modulo equiv-

alence:
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Lemma 9 The substitution � solves the matching problem C v

?

D if and only

if it solves C �

?

C uD.

For ALE , and, as mentioned in [1], more generally for any description lan-

guage in which variables in patterns may only occur in the scope of \monotonic"

operators, solvability of matching problems modulo subsumption can be reduced

to subsumption:

Lemma 10 Let C v

?

D be a matching problem modulo subsumption in ALE ,

and let �

>

be the substitution that replaces each variable by >. Then, C v

?

D

has a solution if and only if C v �

>

(D).

3 Matching in EL

In this section, we investigate matching for the language EL. More precisely,

there are two algorithmic problems to consider. First, the complexity of de-

ciding the sovability of EL-matching problems is examined. Second, we present

algorithms to actually compute matchers. But before, motivated by examples,

we formally characterize the set of potentially interesting matchers.

The reason why �rst exploring matching problems for the small language EL

instead of looking at the more expressive languages FLE and ALE right away is

twofold: Theoretically, results for matching in one language do not necessarily

carry over to sublanguage. The main point, however, are didactical reasons

since FLE and ALE often require quite involved techniques and proofs.

In the two following subsections, we introduce the basic tools needed through-

out this paper.

3.1 Description trees, homomorphisms, and subsumption

in EL

EL-description trees are trees where the nodes are labeled with sets of concept

names and variables and where the edges are labeled with roles.

De�nition 11 An EL-description tree is a tree of the form G = (V;E; v

0

; `)

where

� V is a �nite set of nodes of G;

� E � V �N

R

�V is a �nite set of so-called 9-edges labeled with role names

r 2 N

R

;

� v

0

is the root of G; and

� ` is the labeling function mapping every node of V to a subset of N

R

[X .

The empty label corresponds to the top-concept.
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For v; w 2 V and r 2 N

R

we write 9-edges as vrw. For the sake of simplicity,

we occasionally write v 2 G instead of v 2 V ; vrw 2 G instead of vrw 2 E; and

G(v) instead of `(v).

A sequence w

0

r

1

w

1

� � � r

n

w

n

is a path in G from w

0

to w

n

(w

0

r

1

w

1

� � � r

n

w

n

2

G for short) i� w

i�1

r

i

w

i

2 G for all i = 1; : : : n. Such a path is called rooted in

case w

0

is the root of G.

For v 2 V , w is a direct successor of v in G if there exists a role r 2 N

R

with vrw 2 E; w is a successor of v if there exists a path from v to w. Since we

allow for empty paths, v is a successor of itself. Analogously, we de�ne (direct)

predecessors.

A subtree G

0

of G is a description tree consisting of a subset of nodes of G.

The labels of the nodes in G

0

are subsets of the corresponding ones in G; G

0

is

called rooted subtree in case the root of G

0

coincides with one for G.

For a node v 2 V , G

v

denotes the subtree of G consisting of all successors of

v in G. The root of G

v

is v and the labels of the nodes in G

v

coincide with the

corresponding ones in G.

With jGj we denote the size of the description tree G. By depth(G) we refer

to the maximal length of a rooted path in G.

For EL-description trees G and H (with disjoint sets of nodes) and a node

v 2 G, instantiating G at node v with H yields an extension G

0

= (V

0

; E

0

; v

0

; `

0

)

of G = (V;E; v

0

; `) de�ned as follows: First, the root of H is replaced by v,

which yields the tree H

0

= (V

00

; E

00

; v; `

00

). Then,

� V

0

:= V [ V

00

;

� E

0

:= E [ E

00

;

� `

0

(w) := `(w) for all w 2 V n fvg; `

0

(w) := `

00

(w) for all w 2 V

00

n fvg;

`

0

(v) := `(v) [ `(v

00

).

An EL-concept description/patternC can be tranlated into an EL-description

tree G(C) (see [3] for details). Intuitively, G(C) is the syntax tree for C.

Example 12 The EL-concept description

C := P u 9r:(9r:(P uQ) u 9s:Q) u 9r:(P u 9s:P )

yields the tree G(C) depicted on the left hand-side of Figure 1.

On the other hand, every EL-description tree G = (V;E; v

0

; `) can be trans-

lated into an EL-concept description C

G

.

Example 13 The EL-description tree G in Figure 1 yields the EL-concept de-

scription

C

G

= 9r:(9r:P u 9s:Q) u 9r:P:

The semantics of EL-description trees G without variables in their labels is

de�ned by the semantics of their corresponding concept descriptions C

G

, i.e.,
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r

s

r

r

v

0

4

:fPg

v

0

2

:fPg v

0

3

:fQg

v

0

0

:;

v

0

1

:;

G:
v

0

:fPg

r

s

v

1

:;

v

3

:fQg

s

v

5

:fPg

r

r

v

2

:fP;Qg

G(C):

v

4

:fPg

Figure 1: EL-description trees.

G

I

:= C

I

G

for an interpretation I . As shown in [3], the translation of con-

cept descriptions and description trees in one another preserves semantics, i.e.,

C � C

G

C

. With the formal semantics for description trees, the subsumption re-

lationship can be stated not only between concept descriptions but also between

description trees (G v H) or between concept descriptions and description trees

(C v G) in the obvious way.

In [3], homomorphisms between description trees have been employed to

characterize subsumption between concept descriptions. Moreover, such charac-

terizations have been used to describe the lcs of concept descriptions as product

of descriptions trees. We will see that homomorphisms are also crucial for the

matching algorithms we propose here.

De�nition 14 Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be EL-

description trees. A mapping ' : V

H

�! V

G

is a homomorphism from H

into G i� the following conditions are satis�ed:

1. '(w

0

) = v

0

,

2. (`

H

(v) n X ) � `

G

('(v)) for all v 2 V

H

, and

3. '(v)r'(w) 2 E

G

for all vrw 2 E

H

.

In order to characterize equivalence of concept descriptions we also need to

de�ne isomorphisms between description trees.

De�nition 15 Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be two EL-

description trees. The mapping ' from V

H

onto V

G

is called isomorphism from

H onto G i�

� ' is a bijection from V

H

onto V

G

;

� '(w

0

) = v

0

;

� for all v; w 2 V

H

and r 2 N

R

: vrw 2 E

H

i� '(v)r'(w) 2 E

G

;

� for all v 2 V

H

: `

H

(v) = `

G

('(v)).



11

Two description trees G and H are called isomorphic (G

�

=

H for short) if

there exists an isomorphism between them.

De�nition 16 Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be EL-

description trees, and let ' be an homomorphism from H into G. Finally,

let H

0

= (V

0

; E

0

; v

0

; `

0

) be a subtree of H. Then, the homomorphic image

'(H

0

) = (V;E; v; `) of ' w.r.t. H

0

is de�ned as follows:

� V := '(V

0

) := fw j there exists a w

0

2 V

0

with w = '(w

0

)g;

� E := E

G

\ (V �N

R

� V );

� v := '(v

0

);

� `(w) :=

 

S

w

0

2'

�1

(w)

`

0

(w)

!

for all w 2 V where '

�1

(w

0

) := fw

0

j '(w

0

) =

wg.

It is easy to see that

Lemma 17 1. '(H

0

) is a subtree of G; and

2. ' is an surjective homomorphism from H

0

onto '(H

0

).

De�nition 18 Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be EL-

description trees, and let  : V

H

�! V

G

be a homomorphism from H into

G. Finally, let G

0

= (V

0

; E

0

; v

0

; `

0

) be some subtree of G in case  is injective,

and a rooted subtree in case  is not injective. Then, the inverse image of G

0

w.r.t.  ,  

�1

(G

0

) = (V;E; v; `), is de�ned as follows:

� V :=  

�1

(V

0

) := fw 2 V

H

j  (w) 2 V

0

g; if V = ;, then let  

�1

(G

0

) be a

description tree containing only a root with empty label; otherwise

� E := E

H

\ (V �N

R

� V );

� v :=  

�1

(v

0

);

� `(w) := `

H

(w) \ `

0

( (w)) for all w 2 V .

We summarize some simple properties of the inverse homomorphism in case

V 6= ;.

Lemma 19 1.  

�1

(G

0

) is a subtree of H with root  

�1

(v

0

).

2.  ( 

�1

(G

0

)) is a rooted subtree of G

0

.

3. In case  is injective,  ( 

�1

(G

0

)) and  

�1

(G

0

) are isomorphic.

Subsumption between EL-concept descriptions can be characterized in terms

of homomorphisms between their corresponding EL-description trees [3]:
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Theorem 20 Let C;D be EL-concept descriptions and G(C);G(D) the corre-

sponding description trees. Then C v D i� there exists a homomorphism from

G(D) into G(C).

Example 21 (Example 12 continued)

Consider the EL-description trees depicted in Figure 1. We have C v C

G

,

because mapping v

0

i

onto v

i

for 0 � i � 4 yields a homomorphism from G to

G(C).

The following observation is an easy consequence of Theorem 20, where for

an EL-concept description C, prim(C) denotes the set of concept names on the

top-level of C. We write 9r:E 2 C to say that 9r:E is an existential restriction

on the top-level of C.

Observation 22 Let C;D be two EL-concept descriptions. Then, C v D i�

1. prim(D) � prim(C); and

2. for every existential restriction 9r:E 2 D, there exists an existential re-

striction 9r:F 2 C such that F v E.

3.2 Equivalence of EL-concept descriptions

In this section, we will show that for EL-concept descriptions there exist unique

minimal representations. In particular, equivalence of EL-concept descriptions

can be characterized in terms of isomorphisms between the description trees

of the minimal representations. This result is important in di�erent respects:

First, minimal representations will be used as basis to specify sets of matchers

that do not contain redundancies. Second, we will employ the characterization

in order to prove complexity results for deciding the solvability of matching

problems. Finally, this result is interesting on its own right in the context of

computing minimal rewritings [4].

Intuitively, minimal representations of concepts are those concept descrip-

tions that do not contain redundancies. Formally, such concepts are called

reduced. In order to de�ne reduced concept descriptions we need to de�ne

subdescriptions.

De�nition 23 For an EL-concept description C, the EL-concept description

b

C is a subdescription of C (

b

C �

d

C) i�

b

C is obtained from C by removing

some concept names or existential restrictions on the top-level of C, and for all

remaining existential restrictions 9r:E replacing E by a subdescription of E.

Clearly, if everthing is removed from C, then the resulting subdescription

is >. On the other hand, if nothing is removed, then

b

C = C. The concept

description

b

C is a strict subdescription of C if

b

C 6= C. Now, we are primed to

de�ne reduced concept descriptions.

De�nition 24 An EL-concept description C is reduced i� there exists no strict

subdescription of C which is equivalent to C.
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In fact, equivalent and reduced EL-concept description are equal up to com-

mutativity and assoziativity of concept conjunction.

Theorem 25 Let C;D be reduced EL-concept descriptions. Then, C � D i�

G(C)

�

=

G(D).

ForALE , a more general statement is proved in Section 5. We therefore postpone

the proof of Theorem 25.

With the help of the following proposition, we show that every EL-concept

description C can be turned into an equivalent reduced concept.

Proposition 26 Let C be an EL-concept description. Then, C is reduced i�

� every concept name on the top-level of C only occurs ones;

� for two distinct existential restrictions 9r:E; 9r:F 2 C it is E 6v F ; and

� for all existential restrictions 9r:E 2 C, E is reduced.

Thus, a concept C can be turned in polynomial time into an equivalent

reduced concept description, called C n> in the sequel, by recursively deleting i)

multiple occurrences of concept names and ii) redundant existential restrictions

using the (polynomial) subsumption algorithm for EL. Obviously, jC n>j � jCj.

More precisely, using Theorem 25, we can show that C n > is the minimal

representation of concepts equivalent to C (see the proof of Corollary 74 in the

more general case of ALE-concept descriptions).

Corollary 27 For every EL-concept description C one can compute (in polyno-

mial time) an equivalent EL-conept description C

0

, namely Cn>, with jC

0

j � jEj

for all E � C.

In the subsequent sections, we need a variant of Theorem 25 where only one

concept description is reduced.

Proposition 28 Let C and D be EL-concept descriptions with C reduced.

Let G(C) = (V;E; v

0

; `) and G(D) = (V

0

; E

0

; v

0

0

; `

0

) be the corresponding EL-

description trees. Then, C � D implies that every homomorphism  from G(C)

into G(D) is an injective homomorphism and for all v 2 V , G(C)

v

� G(D)

 (v)

.

Proof. Let r 2 N

R

, (v

0

; r; v

1

) 2 E, and  be a homomorphism from G(C)

into G(D). We know that G(C)

v

1

w G(D)

 (v

1

)

. Assume, that the subsump-

tion relation is strict. Since C � D, by Observation 22 there exists a node

v

2

2 V , (v

0

; r; v

2

) 2 E with G(D)

 (v

1

)

w G(C)

v

2

. Clearly, v

1

6= v

2

. But

then, G(C)

v

1

= G(C)

v

2

is a contradiction to the fact that C is reduced. Thus,

G(C)

v

1

� G(D)

 (v

1

)

. By induction this proves that for all v 2 V , G(C)

v

�

G(D)

 (v)

. Note that if C is reduced, then also C

v

for all v 2 V .

It remains to show that  is injective. Assume, there exist v

1

; v

2

2 V , v

1

6=

v

2

, (v

0

; r; v

1

); (v

0

; r; v

2

) 2 E with  (v

1

) =  (v

2

). Then, G(C)

v

1

� G(C)

v

2

�

G(D)

 (v

1

)

. Again, a contradiction to the fact that C is reduced.
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3.3 Deciding solvability of matching in EL

Lemma 10 shows that the solvability of an EL-matching problem modulo sub-

sumption can be decided in time polynomial in the size of the matching problem.

The aim of this section, is to show that deciding the solvability of EL-

matching problems modulo equivalence is NP-complete.

In order to prove that there is an NP algorithm, it is su�cient to show that

every solvable EL-matching problem has a matcher, which is i) polynomially

bounded in the size of the matching problem and ii) uses only concept names

and role names already contained in the matching problem. An NP algorithm

then guesses a matcher � polynomially bounded in the size of the matching

problem and checkes whether C is equivalent to �(D).

Theorem 29 If the EL-matching problem C �

?

D is solvable, then there exists

a matcher of size polynomial in the size of the matching problem which only

uses concept names and role names already contained in the matching problem.

In the following we construct a matcher � polynomially bounded in the size

of the matching problem (using only identi�ers in C) given a matcher �

0

for

C �

?

D.

Since C � �

0

(D) there exists a homomorphism  from G(C) into G(�

0

(D))

according to Theorem 20. By Proposition 28, we know that  is an injective

homomorphism.

Before constructing � we need some more notation. We refer to the subset of

all nodes in G(D) with variable X in their label by V

D

(X) := fw 2 G(D) j X 2

G(D)(w)g. The description tree G(�

0

(D)) is obtained by instantiating G(D) at

every node w 2 V

D

(X) and every variable X in D by (a copy of) G(�

0

(X)),

which we call G

�

0

(X);w

in the sequel. The root of G

�

0

(X);w

is w.

Now � is de�ned as follows:

�(X) := u

w2V

D

(X)

 

�1

(w) is de�ned

C

 

�1

(G

�

0

(X);w

)

for every variable X in D.

Note that by construction, �(X) is build up only from identi�ers in C.

Lemma 30 � w

s

�

0

.

Proof. Let w be a node in V

D

(X). By Lemma 17,  is a homomorphism

from  

�1

(G

�

0

(X);w

) onto  ( 

�1

(G

�

0

(X);w

)), which, according to Lemma 19, is a

rooted subtree of G

�

0

(X);w

. This shows that C

 

�1

(G

�

0

(X);w

)

w G

�

0

(X);w

� �

0

(X).

Hence, �(X) w �

0

(X).

By virtue of Lemma 5, we can conclude �(D) w �

0

(D).

Lemma 31 �(D) v C.
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Proof. We show that  is a homomorphism from G(C n >) into G(�(D)).

Let G be the description tree obtained by instantiating G(D) as follows: For

every variableX inD and node w 2 V

D

(X) instantiate G(D) by  ( 

�1

(G

�

0

(X);w

)).

It is easy to see that  is an homomorphism from G(C n >) into G (Section 6.2

contains a more detailed proof for FLE).

Now observe that for w 2 V

D

(X),  

�1

(G

�

0

(X);w

) is isomorphic to  ( 

�1

(G

�

0

(X);w

))

(see Lemma 19). Therefore, G is a subtree of G(�(D)). Thus,  is also a homo-

morphism from G(C n >) into G(�(D)), which implies C w �(D).

From Lemma 30 and 31 we can deduce that � is a matcher of the problem

C �

?

D. It remains to show that the size of � is polynomially bounded in the

size of the matching problem. This fact is a consequence of the following lemma.

Lemma 32 For every variable X in D, the size of �(X) is linearly bounded in

the size of C.

Proof. Let w 2 V

D

(X) and  

�1

(w) be de�ned. We know that  

�1

(G

�

0

(X);w

)

is a subtree of Cn>. Furthermore, for di�erent w's one obtains disjoint subtrees.

We now show NP-hardness by reducing SAT [13] to the problem of deciding

the solvability of an EL-matching problem modulo equivalence.

Let � = p

1

^ � � � ^ p

m

be a propositional formulae in conjunctive normal

form and let fx

1

; : : : ; x

n

g be the propositional variables of this problem. For

these variables, we introduce the concept variables fX

1

; : : : ; X

n

; X

1

; : : : ; X

n

g.

Furthermore, we need concept namesA and B as well as the role names r; r

0

; s; s

0

.

We �rst show that one can specify a matching problem such that either X

i

must

be substituted by a concept equivlanet to A (corresponding to true) and X

i

by

(a concept equivalent to) B or vice versa. This corresponds to assigning true or

false to x

i

. Such a matching problem can be written in terms of the following

concept descriptions/patterns:

C

0

:= >

C

k+1

:= 9r

0

:A u 9r

0

:B u 9r:C

k

D

0

:= >

D

k+1

:= 9r

0

:X

k+1

u 9r

0

:X

k+1

u 9r:D

k

Now, the matching problem can be stated as C

n

�

?

D

n

. It is easy to see that

a matcher of this problem must substitute either X

i

by (a concept equivalent

to) A and X

i

by (a concept equivalent to) B or vice versa.

In order to decode � we translate a conjunct p

i

, 1 � i � m, into a concept

pattern D

p

i

as follows. For example, if p

i

= x

1

_ x

2

_ x

3

_ x

4

, then D

p

i

:=

X

1

uX

2

uX

3

uX

4

u B. We now have to decode the evaluation of a formulae:
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C

0

0

:= >

C

0

k+1

:= 9s

0

:(A u B) u 9s:C

0

k

D

0

0

:= >

D

0

k+1

:= 9s

0

:D

p

k+1

u 9s:D

0

k

The matching problem C

0

m

�

?

D

0

m

ensures that among the variables in D

p

i

there must be at least one variable substituted by (a concept equivalent to) A.

This corresponds to the fact that within one conjunct p

i

there must be at least

one propositional variable that evaluates to true. Note that we need the concept

B in D

p

i

because otherwise if all variables in D

p

i

were substituted by A then

C

0

m

and D

0

m

would not be equivalent.

We combine the two parts of the reduction in the �nal matching problem as

follows:

C

�

:= C

n

u C

0

m

D

�

:= D

n

uD

0

m

It is easy to verify that � is satis�able if and only if the matching problem

C

�

�

?

D

�

is solvable since a truth assignment can be directly translated into a

substitution and vice versa. Together with the upper bound this proves:

Corollary 33 Deciding the solvability of an EL-matching problemmodulo equiv-

alence is NP-complete.

3.4 Solutions of EL-matching problems

We will use the EL-concept description C

ex

and the pattern D

ex

shown in Fig-

ure 2 together with their description trees in order to illustrate and to formally

characterize the potentially most interesting matchers of matching problems.

It is easy to see that the substitution �

>

, which maps all variables on the top-

concept, is a matcher of C

ex

v

?

D

ex

, and thus this matching problem modulo

subsumption is indeed solvable. However, the matcher �

>

is obviously not

an interesting one. We are interested in matchers that bring us as close as

possible to the description C

ex

. In this sense, the matcher �

1

:= fX 7! W u

9hc:W; Y 7! Wg is better than �

>

, but still not optimal. In fact, �

2

:= fX 7!

W u 9hc:W u 9hc:(W u P); Y 7! W u Dg is better than �

1

since it satis�es

C

ex

� �

2

(D

ex

) < �

1

(D

ex

).

We formalize this intuition with the help of the following precedence ordering

on matchers. For a given EL-matching problem C v

?

D and two matchers �, �

we de�ne

� v

i

� i� �(D) v �(D):

Here \i" stands for \instance". Observe that v

i

is a quasi-ordering, i.e., a

reexiv and transitiv ordering. Thus, v

i

induces an equivalence relation �

i

:
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v

0

:W

v

1

:W v

2

:W;D

v

3

:W;D v

4

:W;P v

5

:W;P

w

0

:W

w

1

:X w

2

:X;Y

w

3

:W; Y

hc

hc hc

hc

hc hc

hc hc

W: Woman

P: Professor

D: Doctor

hc: has-child

G

C

ex

: G

D

ex

:

C

ex

:= W u 9hc:(W u 9hc:(W u D) u 9hc:(W u P)) u 9hc:(W u D u 9hc:(W u P))

D

ex

:=W u 9hc:(X u 9hc:(W u Y )) u 9hc:(X u Y )

Figure 2: EL-concept description and pattern, and their EL-description trees.

two matchers �; � are i-equivalent (� �

i

�) i� � v

i

� and � v

i

�. A matcher �

is called i-minimal i�, for every matcher � , � v

i

� implies � �

i

�.

We are interested in computing i-minimal matchers ; more precisely, we want

to obtain at least one i-minimal matcher for each of the minimal i-equivalence

classes (i.e., i-equivalence classes of i-minimal matchers). Since an i-equivalence

class usually contains more than one matcher, the question is which ones to

prefer.

In [1], it is shown that a given ALN -matching problem

2

always has a unique

minimal i-equivalence class, and that this class is the class of the least matcher

w.r.t. the ordering

� v

s

� i� �(X) v �(X) for all X 2 X ;

where \s" stands for \substitution". The matcher � is a least matcher w.r.t. v

s

i� � v

s

� for all matchers � . The notions s-minimal, s-maximal, s-equivalent,

etc. are de�ned in the obvious way.

For EL, things are quite di�erent. As illustrated by the example 9r:A u

9r:B v

?

9r:X , a given matching problem may have several non-equivalent i-

minimal (s-minimal) matchers: the substitutions fX 7! Ag and fX 7! Bg

are both i- and s-minimal, and they are obviously neither i- nor s-equivalent.

In Section 3.5, we will show that the set of all s-minimal matchers (up to s-

equivalence) also contains all i-minimal matchers (up to i-equivalence). How-

ever, the s-minimal matchers are usually not the best representatives of their

i-equivalence class.

In our running example, �

2

is a least and therefore i-minimal matcher. Nev-

ertheless, it is not the one we really want to compute since it contains redun-

dancies, i.e., expressions that are not really necessary for obtaining the instance

�

2

(D

ex

) (modulo equivalence). In fact, �

2

contains two di�erent kinds of re-

dundancies. First, the concept description �

2

(X) is redundant since removing

9hc:W still yields a concept description equivalent to �

2

(X). In other words,

2

ALN allows for concept conjunction, primitive negation, value restrictions, and number

restrictions.
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�

2

(X) is not reduced. Second, W in �

2

(Y ) is redundant in that the substitu-

tion obtained by deleting W from �

2

(Y ) still yields the same instance of D

ex

(although the substitution obtained this way is no longer s-equivalent to �

2

).

In our example, the only i-minimal matcher (modulo associativity and com-

mutativity of concept conjunction) that is free of redundancies in this sense is

�

3

:= fX 7!W u 9hc:(W u P); Y 7! Dg.

We want to compute i-minimal matchers that are reduced, i.e., free of re-

dundancies. It remains to formalize the notion \reduced" more rigorously. For

this purpose, we extend the ordering �

d

on concept descriptions to matchers as

follows: For matchers �; � we de�ne

� �

d

� i� �(X) �

d

�(X) for all X 2 X :

Again, this speci�es a quasi-ordering and the notions d-minimal, d-equivalent,

etc. are de�ned in the obvious way. The matcher � of C v

?

D is called reduced

i� it is a d-minimal matcher (i.e., minimal w.r.t. �

d

). Note that, given a reduced

matcher, every concept description �(X) is reduced. However, as illustrated in

our running example (removal of W in �

2

(Y )), just replacing the descriptions

�(X) by equivalent reduced descriptions does not necessarily yield a reduced

matcher.

To sum up, given a matching problem C v

?

D, we want to compute match-

ers that are i-minimal and reduced. It should be noted that a given i-equivalence

class of matchers may contain di�erent reduced matchers. Since reduced and s-

equivalent matchers are equal up to associativity and commutativity of conjunc-

tion (Theorem 25), it is, however, su�cient to compute the reduced matchers

up to s-equivalence.

A second example to illustrate the di�erent kinds of matchers, is taken from

one of our applications in process engineering [6].

Example 34 The EL-concept description Reactor:

CompositeDeviceImplementation u

9hasPart:(

ReactingPhase u

9isCoupledTo:(

CompositeConnectionImplementation u 9isCoupledTo:(Film u : : :) u

9isCoupledTo:CoolingPhase

)

)

is matched against the EL-concept pattern NewReactor:
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CompositeDeviceImplementation u

9hasPart:(

9isCoupledTo:(

X

Wall

u

9isCoupledTo:CoolingPhase

)

).

where in NewReactor the de�nition of a Wall is left unspeci�ed, and therefore,

is replaced by a variable.

Again, the matching problem Reactor v

?

NewReactor has several solutions.

In particular, �

>

is one of them. As in the previous example, �

>

is not i-

minimal. Mapping X

Wall

onto

CompositeConnectionImplementation u 9isCoupledTo:(Film u : : :) u

9isCoupledTo:CoolingPhase,

however, yields an i-minimal matcher �

1

. It is plain that deleting the subdescrip-

tion 9isCoupledTo:CoolingPhase of �

1

(X

Wall

) still yields an i-minimal matcher.

Thus, �

1

is not reduced. In fact, the only reduced and i-minimal matcher (up

to s-equivalence) is the one mapping X

Wall

on

CompositeConnectionImplementation u 9isCoupledTo:(Film u : : :).

Our approach for computing i-minimal and reduced matchers of C v

?

D pro-

ceeds in two steps (which we consider in more detail in the next two sections):

1. Compute the set of all i-minimal matchers of C v

?

D up to i-equivalence

(i.e., one matcher for each i-equivalence class).

2. For each i-minimal matcher � computed in the �rst step, compute the d-

minimal matchers up to s-equivalence of the matching problem �(D) �

?

D.

Of course, if we are interested in matching modulo equivalence in the �rst place,

we just apply the second step to C �

?

D.

3.5 Computing i-minimal matchers in EL

In this section, we show how the �rst step of our approach to compute i-minimal

and reduced matchers can be performed, i.e., we present an algorithm that

computes the set of all i-minimal matchers up to i-equivalence.

It turns out that this task can be split in two subtasks: First, compute a

so-called s-complete set containing (at least) all s-minimal matchers up to s-

equivalence. Second, given an s-complete sets, �lter out the i-minimal matchers

(up to i-equivalence).

Before going into the details of the algorithms, we introduce the notion of

complete sets in a more general setting known from uni�cation theory.
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Complete sets

I-minimality and s-minimality are de�ned with respect to the quasi-orderings

v

i

and v

s

on matchers. Therefore, when computing sets of i-minimal (and

later on also s-maximal) matchers we are conceptually faced with a similar

problem as in uni�cation theory (see e.g., [7]). In uni�cation theory the problem

is to compute a set of minimal uni�ers for a given uni�cation problem. The

orderings on uni�ers are quasi-orderings as well. It has turned out that so-

called minimal complete sets, employed in uni�cation theory, exactly represent

the set of minimal/maximal solutions we are interested in.

Following [7], we introduce complete sets for the quasi-ordering v

q

on some

set S (\S" for solutions) before coming back to the orderings v

i

and v

s

. Let

�

q

be the equivalence relation induced by v

q

, i.e., for all x; y 2 S, x �

q

y if

and only if x v

q

y and y v

q

x. The strict ordering <

q

of v

q

is de�ned as usual:

x < y if and only if x v

q

y and x 6�

q

y. Also, q-minimal and q-maximal element

are de�ned as above.

Now, minimal complete sets of solutions are de�ned as follows:

De�nition 35 A subset C � S of S is called q-(co-)complete if and only if for

all elements s 2 S there exists an element s

0

2 C such that s

0

v

q

s (s

0

w

q

s).

Furthermore, C is calledmiminal q-(co-)complete if and only if C is (co-)complete

and any two distinct elements in C are incomparable, i.e., for all s; s

0

2 C, s v

q

s

0

implies s = s

0

.

In the sequel, we will only consider the relationship between minimal ele-

ments and complete sets. Analogous properties are true for maximal elements

and co-complete sets.

Later on we will need the following lemma in order to compare two quasi-

orderings.

Lemma 36 If v

q

and v

p

are two quasi-orderings over S, then v

q

� v

p

implies

that every q-complete set is also p-complete.

Proof. Let C be a q-complete set and let s 2 S. Thus, there exists an element

s

0

2 C such that s

0

v

q

s. We know that then s

0

v

p

s which shows that C is

p-complete.

3

In order to obtain a characterization of minimal q-complete sets, we now

consider q-equivalence classes over S. For an element s 2 S, its q-equivalence

class is de�ned as usual by [s]

q

:= fs

0

2 S j s �

q

s

0

g. Then, S := f[s]

q

j s 2 Sg

denotes the set of q-equivalence classes of S. The ordering v

q

can be extended

to S as follows: [s]

q

�

q

[s

0

]

q

i� s v

q

s

0

. Now, �

q

is a partial ordering over S.

The notions �

q

-minimal, �

q

-complete, and minimal �

q

-complete are de�ned

analogously to the ordering v

q

. As shown in [7], a minimal �

q

-complete set can

equivalently be de�ned as a complete set which is minimal among all complete

sets with respect to set inclusion.

3

We obtain the same result for q-co-complete and p-co-complete sets.
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The following lemma describes the connection between minimal �

q

-complete

sets and the set of all �

q

-minimal elements in S [7].

Lemma 37 Let M be the set of �

q

-minimal elements of S. Then:

1. If C � S is a minimal �

q

-complete set, then C =M .

2. If M is �

q

-complete, then it is minimal �

q

-complete.

This means that if an minimal �

q

-complete set exists, then this set is exactly

the set of �

q

-minimal elements. And on the other hand, if the set of �

q

-minimal

elements is not complete, then there is no minimal �

q

-complete set.

An easy consequence of this lemma is the following theorem [7]:

Theorem 38 Let M be the set of all �

q

-minimal elements of S. If C is a

minimial q-complete set over S, then M = f[s]

q

j s 2 Cg. Conversely, if M is

�

q

-complete, then any set of representatives of M is a minimal q-complete set

over S.

From this theorem one can conclude that there exists a minimal q-complete

set over S if and only ifM is�

q

-complete. Furthermore, the minimal q-complete

sets in S are unique up to q-equivalence. Theorem 38 also holds true when

considering the set of �

q

-maximal elements (as opposed to minimal elements)

and co-complete sets instead of complete sets.

We now apply the results stated above to matching. If, for a given matching

problem, S is the set of matchers of this problem and v

q

is a quasi-ordering on

these matchers, then Theorem 38 shows that a minimal q-(co-)complete set, as

de�ned in De�nition 35, exactly represents the q-minimal/maximal solutions of

the matching problem.

By Lemma 5, we can conclude v

s

� v

i

. Then, Lemma 36 ensures

Lemma 39 Every s-(co-)complete set is also i-(co-)complete.

The converse direction is not true in general: for the matching problem

9r:A u 9r:B v

?

9r:X u 9r:Y the solutions � := fX 7! A; Y 7! Bg and � :=

fX 7! B; Y 7! Ag form an i-complete set. However, this set is not s-complete

since for the solution � := fX 7! A; Y 7! Ag we have � 6v

s

� and � 6v

s

�.

Lemma 39 guarantees that it is su�cient to compute s-complete sets of

matchers. From these sets one can derive minimal i-complete sets which exactly

contain for every i-equivalence class of i-minimal matchers one representative.

Computing s-complete sets in EL

The matching algorithm presented in the following for computing s-complete

sets is an extension of the one computing s-complete sets for matching modulo

subsumption in that it computes the complete sets for matching modulo equiva-

lence. By Lemma 9 this is a more general problem. However, when deleting the

last line of the algorithm in Figure 3, one obtains the algorithm for matching

modulo subsumption. We shall come back to this point later on.
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Input: EL-matching problem C �

?

D

Output: s-complete set C of matchers for C �

?

D

Compute G(C) and G(D) = (V;E;w

0

; `)

C := ;

For all homomorphisms ' from G(D) into G(C)

De�ne � by �(X) := lcs(C

(G(C))

'(w)

j X 2 `(w))

for all variables X in D

If C w �(D) then C := C [ f�g

Figure 3: The EL-matching algorithm.

The matching algorithm described in Figure 3 �rst tries to construct sub-

stitutions � such that C v �(D), i.e., there is a homomorphism from G(�(D))

into G(C). In a second step, it checks which of the computed substitutions

really solve the matching problem, i.e., also satis�es C w �(D). (As already

mentioned, for a matching problem modulo subsumption, this second step can

be dispensed with.) The �rst step is achieved by �rst computing all homomor-

phisms from G(D) into G(C). The remaining problem is that a variable X may

occur more than once in D. Thus, we cannot simply de�ne �(X) as C

(G(C))

'(w)

where w is such that X occurs in the label of w. Since there may exist several

nodes w with this property, we take the lcs of the corresponding subconcepts

of C. The reason for taking the least common subsumer is that we want to

compute substitutions that are as small as possible w.r.t. v

s

. An algorithm for

computing the lcs of EL-concepts has been described in [3].

Before proving the soundness of our matching algorithm, we illustrate the

algorithm by the example depicted in Figure 2.

There are six homomorphisms from G(D

ex

) into G(C

ex

). We consider the

ones mapping w

i

onto v

i

for i = 0; 1; 2, and w

3

onto v

3

or w

3

onto v

4

, which we

denote by '

1

and '

2

, respectively. The homomorphism '

1

yields the substitu-

tion �

1

:

�

1

(X) := lcsfC

G(C

ex

)

v

1

; C

G(C

ex

)

v

2

g � W u 9hc:(W u P);

�

1

(Y ) := lcsfC

G(C

ex

)

v

2

; C

G(C

ex

)

v

3

g � W u D;

whereas '

2

yields the substitution �

2

:

�

2

(X) := lcsfC

G(C

ex

)

v

1

; C

G(C

ex

)

v

2

g � W u 9hc:(W u P);

�

2

(Y ) := lcsfC

G(C

ex

)

v

2

; C

G(C

ex

)

v

4

g � W:

For �

1

the test C w �

1

(D) is successful, but for �

2

the test fails. Therefore,

only �

1

belongs to the computed set C. In fact, the last test also fails for the

substitution computed for the remaining four homomorphisms.
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Soundness of the EL-matching algorithm

For the set C computed by the matching algorithm (Figure 3) we need to verify

two properties. First, we have to show that the substitutions in C are matchers

for the given matching problem. Second, we have to prove that C is s-complete,

i.e., for every matcher �

0

of C �

?

D there is a matcher � 2 C such that � v

s

�

0

.

We will break down the proof in two lemmas. The �rst lemma is also useful to

specify an optimized algorithm for matching problems modulo subsumption. It

says that for every substitution � computed by the algorithm we have C v �(D).

Lemma 40 Let ' be a homomorphism from G(D) = (V;E; r; `) into G(C) =

(V

0

; E

0

; r

0

; `

0

) and let � be the corresponding substitution as speci�ed by the

matching algorithm in Figure 3. Then, C v �(D).

Proof. Let X be a variable in D and let V

D

(X) be de�ned as in Section 3.3.

Then, for every w 2 V

D

(X) there exists a node v 2 V

0

with '(w) = v. By the

de�nition of � it follows C

G(C)

v

v �(X). According to Theorem 20 there exists

a homomorphism from G(�(X)) into G(C)

v

.

Obviously, one obtains G(�(D)) by instantiating G(D) for every variable X

and every node w 2 V

D

(X) by (a new copy of) G(�(X)). With that, it is easy

to see that ' can be extended to an homomorphism from G(�(D)) into G(C).

By Theorem 20, this shows C v �(D).

Now, let �

0

be a matcher for C �

?

D. This implies C v �

0

(D). By Theo-

rem 20, there is a homomorphism '

0

from G(�(D

0

)) into G(C). When deleting

the variables in G(D) then G(D) is a subtree of G(�

0

(D)). Thus, restricting '

0

to the nodes of G(D) yields a homomorphism ' from G(D) into G(C). For all

variables X in D let �(X) := lcs(C

G(C)

'(w)

j X 2 `(w)) be de�ned as speci�ed

by the matching algorithm in Figure 3.

Lemma 41 � v

s

�

0

.

Proof. We have to verify �(X) v �

0

(X) for every variable X in D. Let X be a

variable in D, V

D

(X) be the set of all nodes in G(D) with X in their labels (see

also Section 3.3), G(D) = (V;E; r; `), w 2 V

D

(X), and '(w) = v. Restricting

'

0

to the description tree G(�

0

(D))

w

provides us with a homomorphism from

G(�

0

(D))

w

into G(C)

v

. Since X 2 `(w), G(�

0

(D))

w

contains a subtree corre-

sponding to �

0

(X). Consequently, there is a homomorphism from G(�

0

(X)) into

G(C)

v

, which shows C

G(C)

v

v �

0

(X). Thus, �(X) v �

0

(X).

With these two lemmas at hand the soundness of the matching algorithm

can be derived as follows: If � 2 C is a substitution computed by the matching

algorithm, then by Lemma 40 we know C v �(D). But then, the subsumption

test C w �(D) in the matching algorithm ensures C � �(D) which shows that

� is a matcher of the matching problem C �

?

D.

Now, let �

0

be some matcher for C �

?

D and let � be de�ned as speci�ed

above Lemma 41. From Lemma 41 we know � v

s

�

0

. Thus, by Lemma 5 we

can conclude �(D) v �

0

(D). According to the de�nition, � is computed by the



24

matching algorithm in Figure 3. But then, Lemma 40 implies C v �(D). Thus,

we have �(D) v �

0

(D) � C v �(D) which means C � �(D). Hence, � belongs

to the set C computed by the matching algorithm. Furthmore, the fact � v

s

�

0

shows that C is s-complete. To sum up,

Theorem 42 For a matching problem modulo equivalence, the set C computed

by the algorithm depicted in Figure 3 is s-complete.

Furthermore, note that the Lemmas 40 and 41 do not make use of the fact that

the algorithm in Figure 3 checks C w �(D

0

). Also, Lemma 41 only uses the fact

that �

0

satis�es C v �

0

(D). As a result, we obtain

Theorem 43 For a matching problem modulo subsumption, the algorithm de-

picted in Figure 3 when deleting the last line computes an s-complete set C of

matchers.

Complexity of computing s-complete and i-complete sets

We now investigate both the size of (minimal) s-complete (i-complete) sets as

well as the complexity of the matching algorithm in Figure 3.

We start by considering the cardinality of s-complete and i-complete sets.

Example 44 Let C be the EL-concept description

n

u

i=1

9r:(

n

u

j=1

9r:(A

i

u B

j

)

and D be the EL-concept pattern

n

u

i=1

9r:9r:X

i

:

For the EL-matching problem C v

?

D and a wordw := a

1

� � �a

n

2 f1; : : : ; ng

n

of length n over the alphabet f1; : : : ; ng, the substitution �

w

(X

i

) := A

i

u B

j

for a

i

= j is obviously an i-minimal and s-minimal matcher. Furthermore, for

di�erent words one obtains i-incomparable and s-incomparable matchers. Also,

for the problem C �

?

C uD the �

w

's are s-incomparable, s-minimal matchers.

Since there are n

n

such words, the example shows

Corollary 45 1. For EL-matching problems modulo equivalence the cardi-

nality of a (minimal) s-complete set of matchers might grow exponentially

in the size of the matching problem.

2. For EL-matching problems modulo subsumption the cardinality of (mini-

mal) s-complete and i-complete sets of matchers might grow exponentially

in the size of the matching problem.

Note that, by de�nition, a minimal i-complete set for matching problems

modulo equivalence contains at most one matcher.

The next example shows that even the size of matchers in s-complete and

i-complete sets can grow exponentially in the size of the matching problem.
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Example 46 In [3], it has been shown that the size of the lcs of a sequence

C

1

; : : : ; C

n

of EL-concept descriptions can grow exponentially in the size of the

sequence. Let C be the EL-concept description

9r

1

:C

1

u � � � u 9r

n

:C

n

and D be the EL-concept pattern

9r

1

:X u � � � u 9r

n

:X

Clearly, for an i-minimal or s-minimal matcher � of the matching problem

C v

?

D, �(X) � lcs(C

1

; : : : ; C

n

). This still holds true for s-minimal matchers

of the problem C �

?

C uD. But then, the result in [3] shows

Corollary 47 1. For EL-matching problems modulo equivalence the size of

s-minimal matchers might grow exponentially in the size of the matching

problem.

2. For EL-matching problems modulo subsumption the size of s-minimal and

i-minimal matchers might grow exponentially in the size of the matching

problem.

Using the algorithm in Figure 3, we can prove matching upper bounds for

the size of s- and i-complete sets: The number of mappings from a description

tree G(D) into G(C) is exponential in the size of the description trees. Since

the size of these trees is linear in the size of the matching problem C �

?

D

(C v

?

D) we can conclude that the cardinality of an s-complete (i-complete)

set of matchers computed by our matching algorithm is at most exponential in

the size of the matching problem. Moreover, as shown in [3], the size of the

lcs of a sequence of EL-concept descriptions can exponentially be bounded in

the size of the sequence. Thus, the size of every substitution computed by the

matching algorithm is at most exponential in the size of the matching problem.

Finally, as shown in Section 3.4, every s-complete set is also i-complete. To sum

up, we obtain the following upper bounds for the size of s- and i-complete sets.

Corollary 48 1. For EL-matching problems modulo equivalence

(a) the cardinality of a (minimal) s-complete set of matchers can expo-

nentially be bounded in the size of the matching problem; and

(b) the size of s-minimal matchers can exponentially be bounded in the

size of the matching problem.

2. For EL-matching problems modulo subsumption

(a) the cardinality of (minimal) s-complete and i-complete sets of match-

ers can exponentially be bounded in the size of the matching problem;

and

(b) the size of s-minimal and i-minimal matchers can exponentially be

bounded in the size of the matching problem.
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Note that, by Theorem 29, the size of the matcher in a minimal i-complete

set for matching problems modulo equivalence can polynomially be bounded in

the size of the matching problem.

We now exploit the complexity of the algorithm in Figure 3 (and its variant

for matching modulo subsumption) itself. Subsumption of EL-concept descrip-

tions can be decided by a polynomial time algorithm [3]. As already mentioned,

the size of a substitution � computed by our matching algorithm is at most

exponential in the size of the matching problem. Thus, C w �(D) can be de-

cided in time exponential in the size of the matching problem C �

?

D. Since

the lcs of a sequence of EL-concept description can be computed in time ex-

ponential in the size of the sequence [3], it is easy to see that the loop body

of the algorithm in Figure 3 runs in exponential time. As mentioned above,

there exists only an exponential number of mappings from G(D) into G(C). For

these mappings it can be decided in time polynomial in the size of the matching

problem if they are homomorphisms. Consequently, our matching algorithm

runs in time exponential in the size of the matchng problem. Moreover, for an

s-complete set computed by the algorithm one can obtain a minimal s-complete

(i-complete) set in time exponential in the size of the matching problem using

the subsumption algorithm for EL-concept descriptions.

Corollary 49 A (minimal) s-complete and i-complete set of matchers for an

EL-matching problem (both modulo equivalence and modulo subsumption) can

be computed in time exponential in the size of the matching problem.

3.6 Computing d-minimal matchers in EL

In this section, we show how d-complete sets of EL-matching problems modulo

equivalence can be computed, where d-complete sets are those sets containing

(at least) all d-minimal matchers up to s-equivalence. A minimal d-complete

set contains exactly all d-minimal matchers up to s-equivalence. Note that the

notion of a complete set introduced here di�ers from the one used in Section 3.5

in that d-minimal matchers are not computed modulo d-equivalence. The reason

is that d-equivalent matchers syntactically coincide, but clearly we do not want

to distinguish matchers that are equal modulo commutativity and assoziativity

of concept conjunction. Therefore, s-equivalence is the appropriate ordering to

use.

In order to compute d-complete sets, we proceed as follows: First, we show

that reduced matchers can be characterized by means of s-maximal matchers.

Then, we propose an algorithm for computing s-maximal matchers. Finally, we

investigate the complexity of the algorithm.

S-maximal and reduced matchers

We prove the following theorem.
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Theorem 50 Let C �

?

D be an EL-matching problem. Then, a matcher � of

this problem is reduced if and only if � is s-maximal and �(X) is reduced for

all variables X in D.

The if direction of this theorem is pretty obvious. The main observation to

use is that for EL-concept descriptions E;F , E �

d

F implies F v E, which is

easy to verify by the de�nition of subdescription. Now, let � be an s-maximal

matcher with the images of the variables reduced. Assume that � is not reduced.

Then, there exists a matcher � �

d

�. By the observation, we know � w

s

�.

Furthermore, there exists a variable X such that �(X) �

d

�(X). Since �(X)

is reduced, by Theorem 25, we can conclude �(X) = �(X). Therefore, � =

s

�, which is a contradiction to the fact that � is an s-maximal matcher and

completes the proof of the if direction.

The only-if direction is more involved. Let � be a reduced matcher. Then,

by de�nition of reduced matchers the images of the variables are reduced. It

remains to show that � is s-maximal. We lead the assumption that �

0

is a

matcher with �

0

=

s

� to a contradiction.

The problem is that for EL-concept descriptions E;F , E v F does not

necessarily imply F �

d

E, e.g., E := 9r:(AuB) and F := 9r:Au9r:B.Otherwise

one could immediately lead the assume �

0

=

s

� to a contradiction.

From �

0

=

s

� it follows that there exists a variable X in D with �

0

(X) =

�(X). Let �

00

(X) := �

0

(X) and �

00

(Y ) := �(Y ) for all Y 6= X . Then, C �

�(D) v �

00

(D) v �

0

(D) � C. Thus, �

00

is a matcher with �

0

=

s

� as well.

Therefore, we may assume that � and �

0

coincide on all variables but X . The

core of the proof is to show that for �(X) and �

0

(X) the phenomenon shown

for E;F cannot occur. For that reason, we modify �

0

(X) in such a way that

eventually the di�erence of �(X) and �

0

(X) corresponds to the one for E and

F , which then leads to a contradiction.

Because of �

0

(X) = �(X) we know that prim(�(X)) � prim(�

0

(X)) (see

Section 3.2 for the de�nition of prim). We claim prim(�(X)) = prim(�

0

(X)).

If a concept name P is in prim(�(X)) but not in prim(�

0

(X)), then one could

delete P in �(X) which yields a substitution �

00

with C � �(D) v �

00

(D) v

�

0

(D) � C, i.e., �

00

is a matcher, and �

00

(X) �

d

�(X). A contradiction to the

fact that � is reduced.

Then, since �

0

(X) = �(X) it follows from Observation 22 that there exists an

existential restriction 9r:F 2 �(X) with �

0

(X) 6v 9r:F . By an argument similar

to the one above, we therefore may assume that �

0

(X) and �(X) coincide on all

existential restrictions but the ones for r. In the following, let 9r:F

0

1

; : : : ; 9r:F

0

m

be the existential restrictions for r on the top-level of �

0

(X) and 9r:F

1

; : : : ; 9r:F

n

the ones for �(X).

Since �

0

(X) = �(X), by Observation 22 there exists a mapping ' from

f1; : : : ;mg into f1; : : : ; ng such that for all i 2 f1; : : : ;mg, F

'(i)

v F

0

i

. We claim

that ' is surjective. If ' is not surjective, then there exists a j 2 f1; : : : ; ng

with j =2 image('). Let �

00

be the substitution obtained from � by deleting the

existential restrictions 9r:F

j

in �(X). Then, similar to the previous argument

for prim, one can conclude that �

00

is still a matcher of C �

?

D, which is a
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contradiction to the fact that � is reduced and �

00

�

d

�. Thus, ' must be

surjective.

Let k be the element in f1; : : : ; ng with F

k

= F . For i 2 f1; : : : ;mg and

'(i) = k it is F

k

< F

0

i

since �

0

(X) 6v 9r:F . Let '

�1

(k) =: fk

1

; : : : ; k

s

g be

the set of all elements in f1; : : : ;mg that are mapped on k by '. Since '

is surjective this set is not empty. Let �

00

by the substitution that coincides

with � except that in �

00

(X) the existential restriction 9r:F

k

is replaced by

9r:F

0

k

1

u � � � u 9r:F

0

k

s

. Then, since �(X) v �

00

(X) v �

0

(X) it follows that �

00

is a matcher. Furthermore, � =

s

�

00

. Therefore, we may assume �

0

to be �

00

.

Note that for �

0

thus obtained the relation between �

0

(X) and �(X) exactly

corresponds to the one between E and F described above. We will now show

that this contradicts to the fact that � is a matcher.

Since C � �

0

(D) there is an homomorphism  from G(C n>) into G(�

0

(D)).

Let V

D

(Y ) and G

�

0

(Y );w

be de�ned as in Section 3.3. As usual, G(�

0

(D)) is

considered to be the instantiation of G(D) by G

�

0

(Y );w

for every variable Y and

node w 2 V

D

(Y ).

The following lemma says that none of the existential restrictions 9r:F

0

k

j

can

be deleted from �

0

(X) in order to guarantee that  is a homomorphism from

G(C n >) into G(�

0

(D)). For w 2 V

D

(X) and X de�ned above, let w

1

; : : : ; w

s

be the direct successors of w in G(�

0

(D)) with C

(G

�

0

(X);w

)

w

j

= F

0

k

j

(modulo

commutativity and assoziativity of concept conjunction).

Lemma 51 There exists a node w 2 V

D

(X), j 2 f1; : : : ; sg, and v

0

2 G(C n>)

with  (v

0

) = w

j

.

Assume that there does not exist such a w. Let �

00

be the substitution

obtained by deleting the existential restrictions 9r:F

0

k

i

in �

0

(X). Then, �(X) v

�

00

(X). Furthermore,  is a homomorphism from G(C n >) into G(�

00

(D)), i.e.,

C w �

00

(D). Because of �

00

w

s

�, we have C � �(D) v �

00

(D). Thus, �

00

is a

matcher, which is a contradiction to the fact that � is reduced and �

00

�

d

�.

This completes the proof of the lemma.

If, for all w 2 V

D

(X), the subtrees with root w

i

in G(�

0

(D)) are deleted and

replaced by one direct r-successor w

0

with a subtree corresponding to F = F

k

,

then the resulting tree is the one for �(D). Since F

k

i

= F , the nodes v

0

in

G(C n>) mapped on some w

i

can now be mapped on w

0

and for successors of v

0

one can modify  in such a way that  is a homomorphism form G(C n>)

v

0

into

G(�(D))

w

0

. With that we have homomorphism from G(C n >) into G(�(D)).

However, for w; j; v

0

speci�ed in the lemma above and the r-successor w

0

we

know by construction that  (v

0

) = w

0

and G(C n>)

v

0

= G(�(D))

w

0

. Then, with

Proposition 28 we can conclude that C 6� �(D), a contradiction. This completes

the proof of Theorem 50.

By Theorem 50, the task of computing the set of reduced matchers up to s-

equivalence, can be split into two subtasks: i) Compute the set of all s-maximal

matchers up to s-equivalence; ii) reduce the images of the matchers computed

in the �rst step.
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As already mentioned, given an EL-concept description E the corresponding

reduced concept description E n > can be computed in polynomial time in the

size of E. Thus, reducing the images of the matchers can be done in time

polynomial in the size of the set computed by the �rst step.

Computing s-maximal matchers

According to Section 3.5, computing all s-maximal matchers up to s-equivalence

means to compute minimal s-co-complete sets. In this section, we present an

algorithm to compute s-co-complete sets. Given such a sets, a minimal s-co-

complete set can easily be computed using the subsumption algorithm for EL-

concept descriptions.

In Section 3.3, for a given matcher �

0

of C �

?

D a matcher � of size polyno-

mial in the size of the matching problem has been de�ned with �

0

v

s

�. Con-

sequently, the size of s-maximal matcher can polynomially be bounded. This

shows that in order to compute all s-maximal matchers (up to s-equivalence) it

is su�cient to compute all matchers of size polynomially bounded in the size of

the matching problem and �lter out the ones that do not solve the problem or

that are not s-maximal. This can be done by an exponential time algorithm.

Apparently, such an algorithm is not of practical use. For that reason, we

present an algorithm with a better average case complexity. Roughly speaking,

this algorithm for computing s-co-complete sets is the dual version of the one

in Figure 3 computing s-complete sets.

The duality occurs in di�erent steps of the algorithms.

� The algorithm in Figure 3 considers homomorphisms from G(D) into G(C),

whereas now we look at (partial) homomorphisms from G(C) into G(D);

� for computing s-complete sets, possible matchers � are constructed based

on the lcs of concepts; now, � is built from conjunctions of concepts;

4

� the algorithm in Figure 3 ensures that �(D) w C and needs to check

�(D) v C, whereas now the algorithm guarantees �(D) v C but checks

�(D) w C.

In the sequel, we specify the algorithm for computing s-co-complete sets in

detail. The idea behind the algorithm is as follows: As mentioned, we consider

certain partial homomorphisms ' from G(C) into G(D). The parts of G(C) not

mapped by ' are those which are substituted for the variables in D. In this

way, ' can be extended to a total homomorhism from G(C) into G(�(D)) where

� is the possible matcher constructed in this way. Thus, the construction will

guarantee �(D) v C. More precisely, ' and � will be constructed as follows. If a

node n in G(C) is mapped onto a node n

0

in G(D) where the label of n

0

contains

a variable X , then some subtree G of G(C)

n

need not be mapped by '. This

subtree is then part of one conjunct in the substitution for X . Other conjuncts

4

Note that in a lattice of concept descriptions induced by the subsumption relation the lcs

of concepts is the supremum and the conjunction of concepts the in�mum of concepts.
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may come from multiple occurrences of X in G(D). If n

0

contains more than

one variable, then only parts of G are substituted for one variable. One only

needs to make sure that the substitutions for the variables in n

0

\cover" G.

In order to formally de�ne the algorithm, we need to introduce partial ho-

momorphism from G(C) into G(D).

De�nition 52 Let G(C) = (V

C

; E

C

; r

C

; `

C

) and G(D) = (V

D

; E

D

; r

D

; `

D

) be

the descriptions trees corresponding to the EL-concept description C and the

EL-concept pattern D, respectively. Then, ' is a partial homomorphism from

G(C) into G(D) i�

� ' is a partial mapping from V

C

into V

D

;

� r

C

2 dom(') and '(r

C

) = r

D

;

� v 62 dom(') implies that for all successors w of v, w 62 dom(');

� If w 2 dom('), v 62 dom(') and wrv 2 E

C

for some role r, then `

D

('(w))

contains a variable;

� for all v; w 2 dom('), vrw 2 E

C

implies '(v)r'(w) 2 E

D

;

� If v 2 dom(') and v 62 V

'

, then `

C

(v) � `

D

('(v)) where V

'

:= fv 2

dom(') j `

D

('(v)) contains a variableg.

For the matching problem C

ex

�

?

D

ex

, ' := fv

0

7! w

0

; v

1

7! w

1

; v

2

7!

w

2

; v

3

7! w

3

g, where '(v

4

) and '(v

5

) are unde�ned, is an example of a partial

homomorphism from G(C) into G(D).

In order to specify the algorithm, we need some more notation. With the

notation introduced in the de�nition above, we de�ne for every v 2 V

'

the

subtree G

v

= (V

v

; E

v

; v; `

v

) of G(C) containing those parts of G(C)

v

that need

to be covered by the variables in '(v):

� V

v

:= fw j w is a successor

5

of v in G(C) with w =2 dom(')g [ fvg;

� E

v

:= E

C

\ (V

v

�N

R

� V

v

);

� `

v

(w) := `

C

(w) for all w 2 V

v

n fvg and `

v

(v) := `

C

(v) n `

D

('(v)).

Furthermore, for a variable X we need the subset V

X

'

:= fv 2 dom(') j X 2

`

D

('(v))g of V

'

.

We can now specify the algorithm computing s-co-complete sets in Figure 4.

Of course, the algorithm must compute every possible guess G

X

v

. Thus, in gen-

eral, for one partial homomorphism several possible matchers � are computed.

The assumption that C is reduced has been made for two reasons: First, it

simpli�es the soundness proof of the algorithm. Second, it reduces the number

of homomorphisms, and thus, the number of matchers in C.

Before proving the soundness of the algorithm in Figure 4, we illustrate the

algorithm by our example C

ex

�

?

D

ex

. Let ' be the partial homomorphism

5

See the de�nition in Section 3.1.
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Input: EL-matching problem C �

?

D with C reduced

(otherwise take C n >)

Output: s-co-complete set C of matchers for C �

?

D

Compute G(C) and G(D)

C := ;

For all partial homomorphisms ' from G(C) into G(D)

For all tuples (v;X), v 2 V

X

'

and X variable in D

guess subtrees G

X

v

of G

v

such that G

v

6w u

X

v2V

X

'

C

G

X

v

For all variables X de�ne �(X) := u

v2V

X

'

C

G

X

v

If �(D) w C, then C := C [ f�g.

Figure 4: An algorithm for computing s-co-complete sets.

already de�ned. Then, G

v

1

� W u 9hc:(W u P), G

v

2

� W u D u 9hc:(W u P),

and G

v

3

� D. Thus, the algorithm can choose the concept descriptions C

G

X

v

as follows: C

G

X

v

1

� C

G

X

v

2

� W u 9hc:(W u P), C

G

Y

v

2

� D, and C

G

Y

v

3

� D. It is

easy to check that G

v

1

� C

G

X

v

1

, G

v

2

� C

G

X

v

2

uC

G

Y

v

2

, and G

v

3

� C

G

Y

v

3

. Finally, the

subsitution � de�ned as speci�ed in the algorithm satis�es �(D) w C. Thus, �

is a matcher in the computed s-co-complete set.

Soundness of the algorithm. Let C �

?

D be an EL-matching problem

where C is reduced. We need to show (i) that every substitution � 2 C computed

by the algorithm solves C �

?

D, and (ii) that C is indeed s-co-complete, i.e., for

every matcher �

0

of C �

?

D there exists a matcher � 2 C with � w

s

�

0

.

In order to show (i), let � 2 C. By de�nition of the algorithm, we know

�(D) w C. Assume that � is constructed with respect to the partial homo-

morhism '. Now, the idea is to extend ' to a total homomorphism from G(C)

into a tree G with G(D) as subtree such that G w �(D). The tree G is de�ned

as follows: for every X and node v 2 V

X

'

instantiate '(v) in G(D) by G

X

v

.

Then, the condition G

v

w u

X

v2V

X

'

C

G

X

v

ensures that ' can be extended to G

v

for

every v 2 V

'

. But then, ' is a total homomorphism from G(C) into G. Thus,

G(C) w G. By construction of �, G w �(D), which yields C � G(C) w �(D).

To prove (ii), let �

0

be a matcher for C �

?

D. We prove that there exists a

run of the algorithm in Figure 4, such C contains a substitution � with � w �

0

.

Let the set V

D

(X) and the subtree G

�

0

(X);w

= (V

X;w

; E

X;w

; w; `

X;w

) of

G(�

0

(D)) for a variables X in D and w 2 V

D

(X) be de�ned as in Section 3.3.

Since C is reduced we know that there exists an injective homomorphism  

from G(C) = (V

C

; E

C

; r

C

; `

C

) into G(�

0

(D))(Theorem 20 and Proposition 28).

We de�ne a partial homomorphism ' from G(C) into G(D) as follows:
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� dom(') := V

C

n

0

B

@

S

X;w

w2V

D

(X)

 

�1

(V

X;w

n fwg)

1

C

A

;

� '(v) :=  (v) for all v 2 dom(').

It is easy to verify that ' is a partial homomorphism from G(C) into G(D).

Then, for v 2 V

X

'

we de�ne G

X

v

to be the description tree  

�1

(G

�

0

(X);'(v)

)

where we eliminate the atomic concepts from the label of the root v that are in

`

D

('(v)). We claim

G

v

� u

X

v2V

X

'

G

X

v

Proof of the claim: By de�nition of ', we know that G

v

is obtained by merging

the trees  

�1

(G

�

0

(X);'(v)

) for every X with v 2 V

X

v

where again in the label

of v the atomic concepts in `

D

('(v)) are eliminated. Thus, G

v

is obviously

equivalent to the conjunction as stated above.

Now, in the algorithm �(X) := u

v2V

X

'

G

X

v

. Let �(X) be the conjunction

de�ned above Lemma 30. By construction, �(X) w �(X). By Lemma 30,

�(X) w �

0

(X), and thus, �(X) w �

0

(X). In particular, �(D) w �

0

(D) � C.

This shows that � 2 C and � w

s

�

0

, which completes the proof of the soundness

of the algorithm in Figure 4.

Complexity of computing d-complete sets

Apparently, the algorithm depicted in Figure 4 runs, like the na��ve one, in

exponential time. Summing up the previous results, we obtain

Corollary 53 For an EL-matching problem modulo equivalence a (minimal)

d-complete set can be computed by an exponential time algorithm.

Furthermore, the example 9r:A

1

u� � �u9r:A

n

�

?

9r:X

1

u� � � 9r:X

n

shows that

(minimal) d-complete sets might grow exponentially in the size of the matching

problem.

4 Description trees, homomorphisms, and sub-

sumption in ALE

In this section, we extend the characterization of subsumption presented in

Section 3.1 to ALE -concept descriptions. All de�nitions and results for ALE

presented in this section analogously carry over to FLE . Originally the charac-

terization has been shown in [3] in order to compute least common subsumers

of ALE-concept descriptions. In our work, the characterization of subsumption

will be employed to compute sets of i-minimal matchers. Furthermore, just as

for EL, the characterization is also crucial in many proofs presented in this work.

In addition to the results already discussed in [3], we introduce the notion of an
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image resp. inverse image of a homomorphism and prove some simple properties

needed in the subsequent sections.

ALE-description trees

The notion of EL-description trees is extended to ALE in a straightforward man-

ner.

De�nition 54 An ALE -description tree is a tree of the form G = (V;E; v

0

; `)

where

� V is a �nite set of nodes of G;

� E � V � (N

R

[ 8N

R

)� V if a �nite set of edges labeled with roles names

r (9-edges) or with 8r (8-edges); 8N

R

:= f8r j r 2 N

R

g;

� v

0

is the root of G;

� ` is a labeling function mapping the nodes in V to �nite sets fP

1

; : : : ; P

n

g

where each P

i

, 1 � i � n, is of one of the following forms: P

i

2 N

C

[ X ,

P

i

= :P for some P 2 N

C

, or P

i

= ?.

The empty label corresponds to the top-concept.

For v; w 2 V and r 2 N

R

we write 9-edges from v to w labeled r as vrw and

8-edges as v8rw. For the sake of simplicity, we occasionally write v 2 G instead

of v 2 V ; vrw 2 G (v8w 2 G) instead of vrw 2 E (v8w 2 E); and G(v) instead

of `(v).

A sequence w

0

r

1

w

1

� � � r

n

w

n

is a path in G from w

0

to w

n

(w

0

r

1

w

1

� � � r

n

w

n

2

G for short) i� w

i�1

r

i

w

i

2 G or w

i�1

8r

i

w

i

2 G for all i = 1; : : : n. Such a path

is called rooted in case w

0

is the root of G. The path is called 9-path (8-path)

i� w

i�1

r

i

w

i

2 G (w

i�1

8r

i

w

i

2 G) for all i = 1; : : : ; n.

For v 2 V , w is a direct successor of v in G if there exists r 2 N

R

with

vrw 2 E or v8rw 2 E; w is a successor of v if there exists a path from v to

w. Since we allow for empty paths, v is a successor of itself. Analogously, we

de�ne (direct) predecessors.

A subtree G

0

of G is a description tree consisting of a subset of nodes of G.

The labels of the nodes in G

0

are subsets of the corresponding ones in G; G

0

is

called rooted subtree in case the root of G

0

coincides with one for G.

For a node v 2 V , G

v

denotes the subtree of G consisting of all successors of

v in G. The root of G

v

is v and the labels of the nodes in G

v

coincide with the

corresponding ones in G.

Similar to EL, jGj denotes the size of the description tree G. By depth(G) we

refer to the maximal length of a rooted path in G.

Also, for ALE-description trees G and H (with disjoint sets of nodes) and

a node v 2 G, instantiating G at node v with H yields an extension G

0

=

(V

0

; E

0

; v

0

; `

0

) of G = (V;E; v

0

; `) de�ned as follows: First, the root of H is

replaced by v, which yields the tree H

0

= (V

00

; E

00

; v; `

00

). Then,
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8r

r

v

1

: ;

v

3

: Q v

4

: :Q v

5

: Q

v

2

: P

v

0

: ;

8ss

s 8r

r

s

w

0

: ;

w

1

: ; w

2

: ;

r r

w

3

: P w

4

: :P w

5

: Q

G :G(C) :

Figure 5: The description trees for G(C) and G.

� V

0

:= V [ V

00

;

� E

0

:= E [ E

00

;

� `

0

(w) := `(w) for all w 2 V n fvg; `

0

(w) := `

00

(w) for all w 2 V

00

n fvg;

`

0

(v) := `(v) [ `(v

00

).

Just as for EL, an ALE-concept description/pattern C can be tranlated into

an ALE-description tree G(C) (see [3] for details). As an example, consider the

ALE-concept description

C := 8r:(9s:Q u 8s::Q) u 9s:(P u 9r:Q):

The corresponding description tree G(C) is depicted in Figure 5. On the

other hand, every ALE-description tree G without variables in the labels can be

translated into an ALE-concept description C

G

([3] contains a formal transla-

tion). The description graph G in Figure 5 yields the ALE -concept description

D := C

G

= 8r:(9r:P u 9r::P ) u (9s:9r:Q):

Just as for EL, the semantics ofALE-description trees G without variables in their

labels is de�ned by the semantics of their corresponding concept descriptions

C

G

, i.e., G

I

:= C

I

G

for an interpretation I . Again, it is easy to see that the

translation of concept descriptions and description trees in one another preserves

semantics, i.e., C � C

G

C

. With the formal semantics for description trees, the

subsumption relationship can be stated not only between concept description

but also between description trees (like G v H) or between concept description

and description trees (like C v G) in the obvious way.

Homomorphisms between ALE-description trees

Obviously, a homomorphism between ALE-description trees must take 8-edges

into account, which are dealt with like 9-edges. In addition, homomorphisms
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as introduced for EL-description trees are extended by allowing them to map a

node and all its successors onto an inconsistent node, i.e., a node containing ?.

Formally, a homomorphism is de�ned as follows:

De�nition 55 A mapping ' : V

H

�! V

G

from an ALE-description tree H =

(V

H

; E

H

; w

0

; `

H

) to an ALE-description tree G = (V

G

; E

G

; v

0

; `

G

) is called ho-

momorphism if and only if the following conditions are satis�ed:

1. '(w

0

) = v

0

,

2. for all v 2 V

H

we have (`

H

(v) n X ) � `

G

('(v)) or ? 2 `

G

('(v)),

3. for all vrw 2 E

H

, either '(v)r'(w) 2 E

G

, or '(v) = '(w) and ? 2

`

G

('(v)), and

4. for all v8rw 2 E

H

, either '(v)8r'(w) 2 E

G

, or '(v) = '(w) and ? 2

`

G

('(v)).

An isomorphism between description trees is de�ned in the obvious way as

follows:

De�nition 56 Let G = (V

G

; E

G

; v

0

; `

G

) andH(V

H

; E

H

; w

0

; `

H

) beALE-description

trees. The mapping ' from V

H

onto V

G

is called isomorphism from H onto G

i�

� ' is a bijection from V

H

onto V

G

;

� '(w

0

) = v

0

;

� for all v; w 2 V

H

and r 2 N

R

: vrw 2 E

H

(v8rw 2 E

H

) i� '(v)r'(w) 2 E

G

('(v)8r'(w) 2 E

G

);

� for all v 2 V : `

H

(v) = `

G

('(v)).

Two description trees G and H are called isomorphic (G

�

=

H for short) if

there exists an isomorphism between them.

Similar to EL, the notions of an image and the inverse image of an homo-

morphism are de�ned as follows:

De�nition 57 Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be ALE-

description trees, and let ' be an homomorphism from H into G. Finally, let

H

0

= (V

0

; E

0

; v

0

; `

0

) be a subtree of H. Then, the homomorphic image '(H

0

) =

(V;E; v; `) of ' w.r.t. H

0

is de�ned as follows:

� V := '(V

0

) := fw j there exists a w

0

2 V

0

with w = '(w

0

)g;

� E := E

G

\ (V � (N

R

[ 8N

R

)� V );

� v := '(v

0

);
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� `(w) :=

 

S

w

0

2'

�1

(w)

`

0

(w

0

)

!

\ `

G

(w) for all w 2 V where '

�1

(w) :=

fw

0

j '(w

0

) = wg.

It is easy to see that

Lemma 58 1. '(H

0

) is a subtree of G; and

2. ' is an surjective homomorphism from H

0

onto '(H

0

).

Note that in order to guarantee 1. for EL and FLE , we can dispensed with

`

G

(w) in the de�nition of `(w) (De�nition 57). Because of ? in ALE , however,

the �rst statement in Lemma 58 is only true when restricting the label `(w) of

w to `

G

(w).

De�nition 59 Let G = (V

G

; E

G

; v

0

; `

G

) and H = (V

H

; E

H

; w

0

; `

H

) be ALE-

description trees, and let  : V

H

�! V

G

be a homomorphism from H into G.

Finally, let G

0

= (V

0

; E

0

; v

0

; `

0

) be some subtree of G in case  is injective, and a

rooted subtree in case  is not injective. Then, the inverse image of G

0

w.r.t.  ,

 

�1

(G

0

) = (V;E; v; `), is de�ned as follows:

� V :=  

�1

(V

0

); if V = ;, then let  

�1

(G

0

) be a description tree containing

only the root with empty label; otherwise

� E := E

H

\ (V � (N

R

[ 8N

R

)� V );

� v :=  

�1

(v

0

);

� `(w) := `

H

(w) \ `

0

( (w)) for all w 2 V .

We summarize some simple properties of the inverse homomorphism in case

V 6= ;.

Lemma 60 1.  

�1

(G

0

) is a subtree of H with root  

�1

(v

0

).

2.  ( 

�1

(G

0

)) is a rooted subtree of G

0

.

3. In case  is injective,  ( 

�1

(G

0

)) and  

�1

(G

0

) are isomorphic.

Characterizing subsumption in ALE

As shown in [3], in order to characterize subsumption of ALE-concept descrip-

tions in terms of homomorphisms between the corresponding description trees,

the concept descriptions need to be normalized before translating them into

description trees.

De�nition 61 Let E;F be two ALE-concept descriptions and r 2 N

R

a primi-

tive role. The ALE-normalization rules are de�ned as follows
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8r:E u 8r:F �! 8r:(E u F )

8r:E u 9r:F �! 8r:E u 9r:(E u F )

8r:> �! >

E u > �! E

P u :P �! ?, for each P 2 N

C

9r:? �! ?

E u ? �! ?

A concept descripton C is called normalized if none of the above normaliza-

tion rules can be applied to some subdescription of C. The rules should be read

modulo commutativity of conjunction; e.g., 9r:E u 8r:F is also normalized to

9r:(E u F ) u 8r:F . An unnormalized concept description C can be normalized

by exhaustively applying the normalization rules to subconcepts of C. The re-

sulting (normalized) concept description is called normal form of C. Since each

normalization rule preserves equivalence, the normal form of C is equivalent to

C. We refer to G

C

as the description tree corresponding to the normal form of

C, i.e., if C

0

is the normal form of C then G

C

:= G(C

0

).

If only the rule 8r:> �! > is exhaustively applied to a concept description

C, then the resulting concept description is called >-normal form of C. We

refer to G

>

C

as the description tree corresponding to the >-normal form of C.

Now, subsumption can be characterized in terms of homomorphisms [3]:

Theorem 62 Let C;D be ALE -concept descriptions. Then, C v D i� there

exists a homomorphism from G

>

D

to G

C

.

It should be noted that the theorem stated in [3] requires a homomorphism

from G

D

instead of G

>

D

. However, the proof reveals that >-normalization of

the subsumer is su�cient. Furthermore, we can conclude from the proof of

Theorem 62:

Remark 63 The existence of a homomorphism from a description tree G into

H implies H v G, i.e., for all interpretations I it is H

I

� G

I

. This means that

the if-direction of Theorem 62 does not require normalization.

We illustrate the theorem by means of the concept description C and D

introduced above. The normal form of C is 8r:?u 9s:(P u 9r:Q); D is already

in >-normal form. A homomorphism from G

>

D

into G

C

is depicted in Figure 6.

By Theorem 62 we can conclude C v D. Observe, however, that there is no

homomorphism from G(D) into G(C). This shows that the only-if direction of

Theorem 62 requires to normalize the concept descriptions before translating

them into description trees.

As an easy consequence of Theorem 62, we can derive the following obser-

vation. First, we need to introduce the 8-normal form: A concept description

is in 8-normal form, if the 8-rule

8r:E u 8r:F �! 8r:(E u F )
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v

1

: f?g v

4

: P

v

0

: �

8r 9s

v

5

: Q

9r

w

3

: :Pw

2

: P

8r

9r 9r

G

D

: w

0

: �

w

1

: Q w

4

: �

9s

9r

w

5

: Q

G

C

:

'

Figure 6: Subsumption for ALE .

cannot be applied anymore. Certainly, every given ALE-concept description can

be turned into its 8-normal form in polynomial time. Note that if a concept

description C is in 8-normal form, then for every r 2 N

R

there exists at most one

value restriction 8r:E on top-level of C. We shall refer to E by C:r; C:r := >,

if C does not contain a value restriction for r. In the sequel, with 9r:E 2 C

means that 9r:E occurs on the top-level of C. Furthermore, let prim(C) be the

set of (negated) concept names on the top-level of C; in case ? occurs on the

top-level of C, then ? also belongs to prim(C).

Observation 64 Let C;D be two ALE-concept descriptions in 8-normal form.

Then, C v D i� i) C � ? or ii)

1. prim(C) � prim(D);

2. for every r 2 N

R

, C:r v D:r;

3. for every existential restriction 9r:E 2 D, there exists an existential re-

striction 9r:F 2 C such that C:r u F v D:r u E.

5 Equivalence of ALE-concept descriptions

In this section, we generalize the results on reduced EL-concept descriptions

(cf. Section 3.2) to ALE . Just as for EL, we will show that for ALE -concept

descriptions there exist unique minimal representations. In particular, equiva-

lence of ALE-concept descriptions can be characterized in terms of isomorphisms

between the description trees of the minimal representations. As before, this

result is important in di�erent respects: First, minimal representations will be

used to formalize sets of matchers that do not contain redundancies. Second,

we will employ the characterization in order to prove complexity results for de-

ciding the solvability of matching problems. Finally, this result is interesting

on its own right in the context of computing minimal rewritings [4]. All results

presented in this section, also carry over to FLE when adjusting the de�nitions

appropriately.
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Reduced ALE-concept descriptions

Just as for EL, intuitively, a concept description is called reduced if it does not

contain redundancies. We generalize the notion of subdescriptions introduced

in Section 3.2 to formally capture this idea.

De�nition 65 For an ALE-concept description C, the ALE-concept description

b

C is a subdescription of C (

b

C �

d

C) i�

1.

b

C = ?; or

2.

b

C is obtained from C by removing some (negated) concept names, value

restrictions, or existential restrictions on the top-level of C, and for all

remaining value/existential restrictions 8r:E/9r:E replacing E by a sub-

description of E.

If everthing in C is removed, then the resulting concept description is >.

On the other hand, if nothing is removed or replaced by ?, then the resulting

concept description is of course C. Clearly, if we are only interested in FLE-

concept description, then (1) is not allowed. Given an FLE- or ALE -concept

description C, an FLE-subdescription of C is a subdescription of C where (1)

has not been used to obtain this description.

The concept description

b

C is a strict (FLE-)subdescription of C if

b

C 6=

C. Now we are primed to de�ne reduced concept descriptions analogous to

De�nition 24.

De�nition 66 An ALE-concept description C is reduced i� there exists no strict

subdescription of C that is equivalent to C.

The following observation gives a �rst idea of how reduced concepts look

like:

1. 9r:C � 9r:C u 9r:D if C v D;

2. If 8r:C u 9r:D is minimal then D needs to be reduced w.r.t. C.

The �rst item shows that in reduced concept descriptions there must not be

subsumption relationships among existential restrictions. The second item im-

plies that one needs to de�ne reduced concepts with respect to given concepts.

For that purpose, we now de�ne what it means for a concept to be E-reduced,

i.e., reduced w.r.t. the concept description E. We use the notations prim(C),

C:r, 9r:D 2 C as introduced in Section 4.

De�nition 67 Let F and E be ALE-concept descriptions in 8-normal form.

Then, F called E-reduced i� the following conditions are satis�ed:

1. if E u F � ?, then F = ?;

2. prim(E)\ prim(F ) = ;; every concept name on the top-level of F occurs

exactly ones;



40

3. for all distinct existential restrictions 9r:F

1

; 9r:F

2

2 F : E:r u F:r u F

1

6v

E:r u F:r u F

2

;

4. for all existential restrictions 9r:F

0

2 F , 9r:E

0

2 E: E:r u F:r u E

0

6v F

0

;

5. for all r 2 N

R

, a) E:r 6v F:r or b) F:r = > and there is no value restriction

for r on the top-level of F ;

6. for all r 2 N

R

, F:r is E:r-reduced;

7. for all existential restrictions 9r:F

0

2 F , F

0

is (E:r u F:r)-reduced.

In order to show the main theorem of this section, we need two lemmas stat-

ing properties of E-reduced concepts. The �rst lemma, supports the intuition

that if a concept description is reduced with respect to some conept, then also

with respect to a more general one.

Lemma 68 Let F;E;H be ALE-concept description in 8-normal form. Then,

if F is E-reduced and E v H , then F is H-reduced.

Proof. Assume that F is E-reduced and E v H .

i) If E u F � ?, then F = ?. In this case, H u F � ? and F is H-reduced.

Now, assume E u F 6� ?, thus, H u F 6� ?.

ii) Then we know, prim(E) \ prim(F ) = ;. Since E � H 6� ?, we have

prim(H) � prim(E) by Observation 64. Hence, prim(H) \ prim(F ) = ;.

iii) Let r 2 N

R

. Then, by Observation 64, E:r v H:r. Assume that there

exist distinct existential restrictions 9r:F

1

; 9r:F

2

2 F with H:r u F:r u F

1

v

H:ruF:ruF

2

. Consequently, E:ruH:ruF:ruF

1

v E:ruH:ruF:ruF

2

. Now,

since E

0

v H

0

, we get E:r u F:r u F

1

v E:r u F:r u F

2

in contradiction to the

assumption that F is E-reduced.

iv) Let r 2 N

R

. Assume that there exists a existential restrictions 9r:F

0

2 F ,

9r:H

0

2 H with H:r u F:r uH

0

v F

0

. By Observation 64, we know that there

exists 9r:E

0

2 E such that E:ruE

0

v H:ruH

0

. Thus, we obtain E:ruF:ruE

0

v

F

0

in contradiction to the fact that F is E-reduced.

v) Let r 2 N

R

. Assume F:r 6= >. We know E:r 6v F:r. By Observation 64,

it is E:r v H:r. Thus H:r 6v F:r.

Finally, the last two conditions for F to be H-reduced in De�nition 66 are

satis�ed by induction and the fact that E:r v H:r.

Now, we proof that two concepts that are equivalent modulo a given concept

and reduced w.r.t. that concept must in fact be equivalent.

Lemma 69 Let C;D;E be ALE-concept descriptions in 8-normal from. Then,

if E u C � E uD and C, D are E-reduced, then C � D.

Proof. If E u C � E uD � ?, then we know C = D = ?.

Now, assume E u C � E uD 6� ?.

i) We know prim(C); prim(D) are disjoint from prim(E). Then, Observa-

tion 64 implies prim(C) = prim(D).
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ii) Let r 2 N

R

. We know that C:r;D:r are E:r-reduced. Furthermore, by

assumption E:r u C:r � E:r uD:r. By induction, we can conclude C:r � D:r.

iii) By Observation 64 we know that for every existential restriction 9r:D

0

2

D there a) exists an existential restriction 9r:C

0

2 C with E:r u D:r u C

0

v

E:r uD:r uD

0

(recalling C:r � D:r) or b) there exists an existential restriction

9r:E

0

2 E with E:ruD:ruE

0

v E:ruD:ruD

0

. However, sinceD isE-reduced, b)

cannot occur. Analogously, for 9r:C

0

2 C there exists an existential restriction

9r:D

00

2 D such that E:ruD:ruD

00

v E:ruD:ruC

0

. Since D is E-reduced, we

can deduceD

0

= D

00

. Therefore, E:ruD:ruD

0

� E:ruD:ruC

0

. By assumption,

D

0

is E:r uD:r-reduced and C

0

is E:r u C:r-reduced. By Lemma 68, C

0

is also

E:r uD:r-reduced. By induction, we may conclude C

0

� D

0

. Analogously, by

symmetry, for every existential restriction 9r:C

0

2 C there exists an existential

restriction 9r:D

0

2 D with D

0

� C

0

.

Now from i), ii), and iii) it follows C � D.

Theorem 70 Let C;D;E be ALE-concept descriptions in 8-normal form where

C;D are E-reduced. Then, C � D i� G(C)

�

=

G(D).

Proof. The if direction of the statement is obvious. We proceed by proving

the only-if direction. If EuC � ?, then by de�nition C = ?. As a consequence,

D � ?. Thus, E uD � ? implies D = ?, which shows G(C)

�

=

G(D).

Now, assume that E u C � E u D 6� ?. The proof proceeds by induction

on the depths of the quanti�ers of C;D and E. We inductively construct an

isomorphism from G(C) onto G(D).

i) Since C � D 6� ? we know by Observation 64 that prim(C) = prim(D).

Thus, mapping the root of G(C) to the root of G(D) is an isomorphism on the

roots.

ii) Also, from Observation 64 we can conclude that for every r 2 N

R

, C:r �

D:r. By de�nition, C:r, D:r are E:r-reduced. Thus, the induction step yields

G(C:r)

�

=

G(D:r). Consequently, we can extend the isomorphism from i) to the

value restrictions.

iii) Again, by Observation 64 we know that for every existential restriction

9r:D

0

2 D there exists an existential restriction 9r:C

0

2 C such that D:ruC

0

v

D:r u D

0

, recalling D:r � C:r. Analogously, for C

0

there exists an existential

restriction 9r:D

00

2 D with D:r uD

00

v D:r uC

0

. Hence, D:r uD

00

v D:r uD

0

,

and adding E:r, E:ruD:ruD

00

v E:ruD:ruD

0

. Since C, D are E-reduced, it

is D

0

= D

00

. Therefore, E:r uD:r u C

0

� E:r uD:r uD

0

. By assumption C

0

is

E:r u C:r-reduced. Furthermore, D

0

is E:r uD:r-reduced. Now, by Lemma 68

D

0

is E:r u C:r-reduced as well. Employing Lemma 69, C

0

� D

0

. Again, the

induction step yields G(C

0

)

�

=

G(D

0

). Since C is E-reduced, we know that for

D

0

there is exactly one C

0

equivalent to D

0

. Analogously, for every existential

restriction 9r:C

0

there exists exactly one existential restriction 9r:D

0

2 D such

that C

0

� D

0

. In particular, there exists a bijection mapping every existential

restriction 9r:D

0

in D to one restriction 9r:C

0

in C with D

0

� C

0

.

Now, from i), ii), and iii) it follows G(C)

�

=

G(D).
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Computing reduced ALE-concept descriptions

In the following we show that every ALE-concept description C can be turned

into an equivalent >-reduced concept. Then, using Theorem 70, we can deduce

that the two notions >-reduction and reduction in fact mean the same.

De�nition 71 Let F;E be ALE-concept descriptions in 8-normal form. Then,

H := F nE is the E-reduced concept of F i�

H = ? in case E u F � ?; otherwise

1. prim(H) = prim(F ) n prim(E); and every concept name on the top-level

of H only occurs ones;

2. for all r 2 N

R

, H:r = F:r n E:r and H does not have a value restriction

for r on top-level of H if H:r = >;

3. for all r 2 N

R

, let 9r:H

1

; : : : ; 9r:H

q

2 H , 9r:F

1

; : : : ; 9r:F

n

2 F , and

9r:E

1

; : : : ; 9:E

m

2 E be the all existential restrictions on the top-level of

H;F , and E, respectively. Then, there exists a subset fC

1

; : : : ; C

q

g of

fF

1

; : : : ; F

n

g such that

(a) there exist no j

1

; j

2

2 f1; : : : ; qg, j

1

6= j

2

with E:r u F:r u C

j

1

v

E:r u F:r u C

j

2

;

(b) there exists no i 2 f1; : : : ;mg and j 2 f1; : : : ; qg with E:ruF:ruE

i

v

C

j

;

(c) for all i 2 f1; : : : ; ng there exist j 2 f1; : : : ; qg with E:r u F:r uC

j

v

E:r u F:r u F

i

; and

(d) for all j 2 f1; : : : ; qg, H

j

= C

j

n (E:r u F:r).

We summarize simple properties of F nE.

Lemma 72 1. F n E is a subdescription of F (up to commutativity and

assoziativity of concept conjunction).

2. jF nEj � jF j where j � j denotes the size of a concept.

3. F nE is E-reduced.

4. F nE u E � F u E, in particular F n > � F .

5. For every ALE-concept description F , F nE can be computed by a poly-

nomial time algorithm with an oracle for deciding subsumption.

Now, we are primed to show

Corollary 73 Let C be an ALE-concept description in 8-normal form. Then,

C is reduced i� C is >-reduced.
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Proof. Assume that C is reduced. We know that C n> is a subdescription of

C, C n > � C, and C n > is >-reduced. But then, since C is reduced, C and

C n top must syntactically coincide (up to commutativity and assoziativity of

concept conjunction). As a result, C is >-reduced as well.

Assume that C is >-reduced. Then, by Theorem 70 we know that every

>-reduced ALE-concept description equivalent to C syntactically coincides with

C (up to commutativity and assoziativity of concept conjunction). Therefore,

C must be reduced. Otherwise, there would exist a strict and equivalent sub-

description of C, which then does not syntactically coincide with C.

Reduced concepts are indeed minimal representations of their equivalence

class in the following sense:

Corollary 74 For every ALE-concept description F one can compute (in poly-

nomial time with an oracle for deciding subsumption in ALE) an equivalent

ALE-concept description F

0

with jF

0

j � jEj for all E � F .

Proof. Every ALE-concept description can be turned into 8-normal form by a

polynomial time algorithm. Furthermore, turning a concept into its 8-normal

form decreases the size of the concept. Therefore, we can assume that F and

E are in 8-normal form. We show that the statement is true for F

0

:= F n >.

So, let F

0

:= F n > and let E be a concept in 8-normal form equivalent to F .

By Corollary 73, we know that F is >-reduced. Furthermore, E n > � E and

jE n>j � jEj. Then, since E n> is >-reduced, Theorem 70 implies G(F n >)

�

=

G(E n >), which means jF j = jE n >j � jEj.

In the subsequent sections, we will need a variant of Theorem 70 where

only one concept description is reduced. In order to formulate the statement

we need the following notation. Let C be an ALE-concept description. Then,

the ?-extension C

?

of C denotes the ALE-concept description obtained from C

by adding ? at all positions in C such that the resulting concept description

is equivalent to C. In other words, in C

?

inconsistencies are made explicit.

Analogously, ?-extensions G

?

are de�ned for description trees G, which are

needed later on.

Proposition 75 Let C;D be ALE-concept descriptions in 8-normal form and

let C be reduced. Then, there exists an injective homomorphism from G(C)

into G(D

?

)(= G(D)

?

).

Proof. By Theorem 70, we know that there exists an isomorphism  from

G(C) onto G(D n >). By Lemma 72, D n > is a subdescription of D. Then, it

is easy to see that G(D n >) is a subtree of G(D

?

). For that reason,  is an

injective homomorphism from G(C) into G(D

?

).

Note that for FLE , D

?

= D.
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6 Deciding the solvability of matching in FLE

In this section, we investigate the complexity of deciding the solvability of match-

ing in FLE .

As an immediate consequence of Lemma 10 and since subsumption in FLE

is an NP-complete problem [12] we know

Corollary 76 Deciding the solvability of FLE-matching problems modulo sub-

sumption is an NP-complete problem.

Also, this problem is NP-hard for matching modulo equivalence. The main

contribution of this section is to show that the solvability of matching mod-

ulo equivalence in FLE can be decided in non-deterministic polynomial time in

the size of the matching problem. More precisely, we show that if a matching

problem C �

?

D is solvable, then there exists a matcher of size polynomially

bounded in the size of the matching problem. The reason why considering FLE

separately from ALE is twofold. First, results for one language not necessarily

carry over to its sublanguages. Second, the proof presented here for FLE di�ers

from the one for ALE in that in FLE matchers can always be built from conjunc-

tions of subdescriptions of C. For ALE , on the other hand, we can only proof

the polynomial bound without any further information about the structure of

the matchers. We conjecture that with the additional information for FLE we

might be able to specify an NP-decision algorithm similar to the one for EL in

Section 3.6.

The proof for FLE makes use of the minimal representation of concept de-

scriptions presented in Section 5. Therefore, we need to introduce so-called

8-mappings that turn description trees into their 8-normal from.

6.1 The 8-mapping

When representing a concept description/pattern C by its description tree G :=

G(C) = (V;E; v; `), then applying the 8-rule means merging certain nodes in G:

Let n; n

1

; n

2

be nodes in G and r 2 N

R

with n8rn

1

; n8rn

2

2 E. Now, applying

the 8-rule means merging n

1

and n

2

, i.e. we construct a new node n

1


n

2

with

label `(n

1

) [ `(n

2

). In addition, in all edges of G, n

1

and n

2

are replaced by

n

1


 n

2

. Just as for concepts, G is in 8-normal form if the 8-rule cannot be

applied.

The 8-rule takes G into a new tree G

0

where two nodes of G are merged. This

induces a homomorphism from G into G

0

mapping n

1

and n

2

on n

1


 n

2

in G

0

and mapping all other nodes onto themselves.

Exhaustively applying the 8-rule to G induces a sequence '

1

; : : : ; '

n

of ho-

momorphisms such that ' := '

n

� � � � � '

1

is a homomorphism from G into

the 8-normal form of G; ' is called the 8-mapping of G. Properties of ' are

summarized in the following lemma.

Lemma 77 1. ' is a homomorphism from G into the 8-normal form of G.
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2. If H is a subtree of G, then '(H) is the 8-normal form of H, in particular,

'(H) � H.

3. If the subtree H of G is 8-normalized, then '(H) is isomorphic to H.

6.2 NP-completeness of matching in FLE

We shall prove the following theorem.

Theorem 78 If the FLE-matching problem C �

?

D is solvable, then there

exists a matcher of size polynomially bounded in the size of the matching prob-

lem which only uses concept names and role names already contained in the

matching problem.

Just as for EL, we construct a matcher � polynomially bounded in the size

of the matching problem (using only identi�ers in C) given a matcher �

0

for

C �

?

D. Without loss of generality, we may assume that �

0

(X) is in 8-normal

form for every variable X in D.

Let ' be the 8-mapping on G(�

0

(D)). Then, according to Proposition 75,

there exists an injective homomorphism  from G(C n >) into '(G(�

0

(D))).

The description tree G(D) can be viewed as subtree of G(�

0

(D)). As in

Section 3.3, V

D

(X) := fw 2 G(D) j X 2 G(D)(w)g denotes the set of nodes

in G(D) with X in their label. Also, for w 2 V

D

(X) we refer to the subtree of

G(�

0

(D)) with root w isomorphic to G(�

0

(X)) by G

�

0

(X);w

.

Now � is de�ned as follows:

�(X) := u

w2V

D

(X)

C

 

�1

('(G

�

0

(X);w

))

for every variable X in D.

By construction, �(X) only contains identi�ers used in C. Just as for EL,

we �rst show that � is more general than �

0

.

Lemma 79 � w

s

�

0

.

Proof. Let w 2 V

D

(X). By Lemma 58,  is a homomorphism from  

�1

('(G

�

0

(X);w

))

into  ( 

�1

('(G

�

0

(X);w

))), which, according to Lemma 60, is a rooted sub-

tree of '(G

�

0

(X);w

). Thus,  is a homomorhism from  

�1

('(G

�

0

(X);w

)) into

'(G

�

0

(X);w

), which by Remark 63 implies  

�1

('(G

�

0

(X);w

)) w '(G

�

0

(X);w

). Fol-

lowing Lemma 77, '(G

�

0

(X);w

) is equivalent to G

�

0

(X);w

, and by construction,

G

�

0

(X);w

� �

0

(X). This shows that C

 

�1

('(G

�

0

(X);w

))

w G

�

0

(X);w

� �

0

(X), and

hence, �(X) w �

0

(X).

Consequently, by virtue of Lemma 5, �(D) w �

0

(D).

Lemma 80 �(D) v C.
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Proof. By Remark 63, it su�ces to show that  is a homomorphism from

G(C n>) into a description tree isomorphic to '(G(�(D))), since '(G(�(D))) �

G(�(D)) � �(D) (Lemma 77).

Since �

0

(X) is in 8-normal form, Lemma 77 implies that for every w 2

V

D

(X), '(G

�

0

(X);w

) is isomorphic to G

�

0

(X);w

. Furthermore, due to Lemma 60,

 ( 

�1

('(G

�

0

(X);w

)) is a rooted subtree of '(G

�

0

(X);w

), and thus, isomorphic to a

rooted subtree of G

�

0

(X);w

. In the sequel, we will call this subtree G

X;w

and refer

to the isomorphism from G

X;w

onto the corresponding subtree in '(G

�

0

(X);w

)

by  

X;w

. Hence, G

X;w

=  

�1

X;w

( ( 

�1

('(G

�

0

(X);w

)))). Note that for every

v 2 G

X;w

,  

X;w

(v) = '(v).

Let G be the description tree obtained by instantiating G(D) as follows: For

every w 2 V

D

(X) extend G(D) by G

X;w

at the node w.

By construction, G is a rooted subtree of G(�

0

(D)). We prove that  is a

homomorphism from G(C n >) into '(G):

Let v 2 G(C n >). If there exists a node v

0

2 G(D) with '(v

0

) =  (v),

then, as v

0

2 G, we know  (v) 2 '(G). In case, there is no node v

0

2 G(D) with

'(v

0

) =  (v), then there exists a variableX in D, and a node w 2 V

D

(X) as well

as v

0

2 G

�

0

(X);w

with '(v

0

) =  (v). Hence,  ( 

�1

('(v

0

)) =  (v). Therefore,

 

�1

X;w

( (v)) is an element of G

X;w

, thus an element of G and '( 

�1

X;w

( (v))) =

 (v) is an element of '(G). This shows that for every v 2 G(Cn>),  (v) 2 '(G).

Let v; w 2 G(C n >), r 2 N

R

, and vrw 2 G(C n >) (v8rw 2 G(C n >)). We

know that  is a homomorphism from G(C n >) into '(G(�

0

(D))). Therefore,

 (v)r (w) 2 '(G(�

0

(D))) ( (v)8r (w) 2 '(G(�

0

(D)))). As veri�ed above,

 (v);  (w) 2 '(G) and G is a rooted subtree of G(�

0

(D)). Consequently,

 (v)r (w) 2 '(G) ( (v)8r (w) 2 '(G)).

It remains to be shown that for every node v 2 G(C n >), G(C n >)(v) �

'(G)( (v)). Let A 2 G(C n>)(v). We know G(C n>)(v) � '(G(�

0

(D)))( (v)).

By de�nition of ', there exists a node v

0

2 G(�

0

(D)) with '(v

0

) =  (v)

and A 2 G(�

0

(D))(v

0

). If v

0

2 G(D), then since G extends G(D), it follows

A 2 G(v

0

), and therefore, A 2 '(G)('(v

0

)). Otherwise, there exists a vari-

able X in D and w 2 V

D

(X) as well as v

0

2 G

�

0

(X);w

with '(v

0

) =  (v) and

A 2 G

�

0

(X);w

(v

0

). As a result, A 2 '(G

�

0

(X);w

)('(v

0

)). Together with our as-

sumption A 2 G(C n >)(v) this implies A 2  

�1

('(G

�

0

(X);w

))(v). Therefore,

A 2  ( 

�1

('(G

�

0

(X);w

)))( (v)). Consequently, A 2 G

X;w

( 

�1

X;w

( (v)), which

shows that A 2 '(G

X;w

)( (v)). Thus, A 2 '(G)( (v)).

This shows that  is a homomorphism from G(C n >) into '(G). By Re-

mark 63, this implies that G(C n >) w '(G).

Finally, observe that for w 2 V

D

(X), C

 

�1

('(G

�

0

(X);w

))

is equivalent to

 ( 

�1

('(G

�

0

(X);w

))) (see Lemma 60), which, by construction, is isomorphic

to G

X;w

. Therefore, G

X;w

is isomorphic to a subtree of G(�(X)). Hence,

G w G(�(D)).

To sum up, we have shown that G(C n >) w '(G) � G w G(�(D)).

From Lemma 79 and 80 we can deduce that � is a matcher of the problem

C �

?

D. It remains to show that the size of � is polynomially bounded in the

size of the matching problem. This fact is a consequence of the following lemma.
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Lemma 81 For every variableX inD, the size of �(X) is polynomially bounded

in the size of C.

Proof. By Lemma 60, we know that  

�1

('(G

�

0

(X);w

)) is a subtree of G(C n>).

Thus, C

 

�1

('(G

�

0

(X);w

))

is linearly bounded in the size of C n>. This shows that

�(X) is bounded by the jDj � jCj.

Now, a non-deterministic algorithm can guess a possible matcher � poly-

nomially bounded in the size of the matching problem and checks C � �(D).

For FLE-concept descriptions, equivalence can be tested in non-deterministic

polynomial time. Thus, we obtain an NP-algorithm for deciding solvability of

FLE-matching problems modulo equivlanece.

Furthermore, deciding the solvability of the matching problem C �

?

D in

case D is an FLE-concept description corresponds to deciding equivalence of C

and D. As equivalence of FLE-concept description is an NP-complete problem,

we know that deciding the solvability of matching problems modulo equivalence

is NP-hard. To sum up, we obtain the following complexity result:

Corollary 82 Deciding the solvability of FLE-matching problems modulo equiv-

alence is an NP-complete problem.

7 Deciding the solvability of matching in ALE

In this section, we investage the complexity of deciding the solvability of match-

ing problems in ALE . Just as for FLE , for matching modulo subsumption we

obtain:

Corollary 83 Deciding the solvability of ALE-matching problems modulo sub-

sumption is an NP-complete problem.

Again, this problem is NP-hard for matching modulo equivalence. The main

contribution of this section is to prove that matching modulo equivalence in ALE

is an NP-complete problem. Analogously to EL and FLE , given some matcher

�

0

, we construct a matcher � of size polynomially bounded in the size of the

matching problem. For EL and FLE , such a � has been built as conjunction of

subdescriptions of C. For ALE , however, it is not clear whether there always

exists such a matcher. Therefore, we rather de�ne �(X) as a certain subdescrip-

tion of �

0

(X). Within that construction, an important step is to show that an

inconsistent concept contains a \small" inconsistent FLE-subdescription. For

that reason, we introduce the notion of \traces".

7.1 Traces and inconsistent concepts

In this section, we shall show that for every inconsistent concept description

C, there exists an inconsistent FLE-subdescription C

0

of C of size polynomially

bounded in the role depth depth(C) of C.
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A �rst characterization of inconsistent ALE-concept descriptions comes from

[12]. In their paper a tableaux algorithm is employed in order to check for

inconsistency. One can simulate their approach by applying the following so-

called p-rule (`p' for propagation) to concept descriptions:

8r:E u 9r:F �! 8r:E u 9r:(F u E):

A concept description is in p-normal form if the p-rule cannot be applied. On

the other hand, a concept description can be turn into p-normal form by ex-

haustively applying the p-rule. The p-rule can be applied to description trees

as well. If n

0

rn

1

; n

0

8rn

2

2 G are edges in G, then applying the p-rule means

instantiating G at n

1

with a copy of G

n

2

. Now, analogously to concept descrip-

tions, a description tree is in p-normal form if the p-rule cannot by applied.

Also, every description tree can be turned into p-normal form by exhaustively

applying the p-rule. We refer to G

p

(C) as the p-normal form of G(C).

Based on the results in [12], it is easy to see that inconsistency can be

described in terms of the existence of certain 9-paths in G

p

(C).

Lemma 84 Let C be an ALE-concept description. Then, C � ? i� G

p

(C)

contains a rooted 9-path p of length less or equal depth(C) such that the last

node of p has i) ? in its label or ii) P and :P .

Such an 9-path corresponds to a role chain in an ABox leading to a contradictory

assertion x : ? resp. x : P and x : :P .

Recall that we are interested in a \small" inconsistent FLE-subdesription

of an inconsistent C. According to Lemma 84, the p-normal form of such a

subdescription of C should contain an 9-path leading to an inconsistent label.

The question is which parts of C are necessary to obtain such paths. We will now

de�ne so-called traces which exactly describe those parts of a concept description

that contribute to 9-paths in the p-normal form of a concept description. With

:N

C

:= f:A j A 2 N

C

g we denote the set of negated concept names.

De�nition 85 Let G = (V;E; v

0

; `) be an ALE -description tree and L be a

�nite subset of N

C

[:N

C

[f?g. Then, a trace of the description tree G labeled

r

1

1

� � � r

1

i

1

� � � r

l

1

� � � r

l

i

l

L is a multi-set

l

[

j=1

fv

j

0

; : : : ; v

j

i

j

g [

[

A2L

fv

A

g

such that

1. v

1

0

= v

0

;

2. v

j

0

r

j

1

� � � r

j

i

j

v

j

i

j

is an 9-path in G;

3. for all j = 2; : : : ; l there exits a k = 1; : : : ; j�1 and an m = 0; : : : ; i

k

�1

such that there exists a 8-path in G from v

k

m

to v

j

0

labeled

r

k

m+1

� � � r

k

i

k

r

k+1

1

� � � r

j�1

i

j�1

; and



49

4. for all A 2 L, A 2 `(v

A

) and there exists a k 2 f1; : : : ; lg and an

m 2 f0; : : : ; i

k

g such that there is a 8-path from v

k

m

to v

A

in G labeled

r

k

m+1

� � � r

l

i

l

in case m < i

k

and r

k+1

1

� � � r

l

i

l

otherwise. Note that if k = l

and m = i

k

, then the 8-path must be labeled with ".

In order to state the relationship between 9-paths and traces we need the

following notations: Let L be a �nite subset of N

C

[:N

C

[ f?g. Then, a path

in G labeled r

1

� � � r

n

L stands for a path in G labeled r

1

� � � r

n

where the label of

the last node in the path contains L.

Theorem 86 Let G be an ALE-description tree and G

p

its p-normal form.

Then, G

p

contains a rooted 9-path labeled r

1

� � � r

n

L i� there exists a trace

in G labeled r

1

� � � r

n

L.

Proof. The if-direction of the statement is easy to proof by induction on the

number of segments l of the trace (see De�nition 85 for l). As for the only-if

direction, assume that G

0

:= G;G

1

; : : : ;G

m

:= G

p

denotes the sequence of graphs

obtained by applying the p-rule in order to turn G into its p-normal form G

p

.

We now show that if G

i+1

contains a trace labeled r

1

� � � r

n

L, then G

i

contains

such a trace. By induction, this would imply for every trace in G

m

that there

exists a trace in G

0

with the same label. In particular, for a rooted 9-path in

G

p

labeled r

1

� � � r

n

L there exists a trace in G

0

with the same label.

Let G

i+1

= (V

i+1

; E

i+1

; v

0

; `

i+1

) be obtained from G

i

= (V

i

; E

i

; v

0

; `

i

) by

applying the p-rule at n

0

2 G

i

with n

0

rn

1

; n

0

8rn

2

2 G

i

. This means that G

i+1

is obtained by instantiating G

i

at n

1

by a copy G

0

of G

i;n

2

. In what follows, we

call the nodes in G

0

, except for its root, new nodes. All other nodes in G

i+1

are

called old. The old node of a copy is called corresponding old node.

Now, let t be a trace in G

i+1

labeled r

1

� � � r

n

L. We shall prove that there

exists a trace in G

i

with the same label. We distinguish two cases:

1. t only contains old nodes:

(a) If n

1

62 t, then, obviously, t is a trace in G

i

since old nodes only have

old nodes as their predecessors. Furthermore, the labels of the nodes

in t coincide for G

i

and G

i+1

.

(b) Assume n

1

2 t. We de�ne a new trace t

0

as follows: If for A 2 L,

A 62 `

i

(n

1

) and v

A

= n

1

, then v

A

in t is replaced by n

2

. It is easy to

see that t

0

is a trace with label r

1

� � � r

n

L in G

i

.

2. Assume that t contains new nodes n. W.l.o.g, every node v

A

, A 2 L, is

an old node. Otherwise, for every A 2 L, if v

A

is a new node, then v

A

can be replaced by its corresponding old node. This still yields a trace

labeled r

1

� � � r

n

L in G

i+1

. There exists k = 1; : : : ; l andm = 0; : : : ; i

k

with

n = v

k

m

. We assume k to be minimal and for that k we assume m to be

minimal. Again, two cases are distinguished:

(a) If n is connected to its predecessor by an 8-edge, then by construction

there must exist an 8-path from n

1

to n. But then, it is easy to verify
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that replacing the new nodes by their corresponding old ones yields

a trace in G

i

labeled r

1

� � � r

n

L. Note that there cannot be an A 2 L

with v

A

= n

1

. This means that the problem in 1.,(b) cannot occur

here.

(b) If n is connected to its predecessor by an 9-edge, then because of the

minimality of k and m, the predecessor must be n

1

. Then, replacing

all new nodes by their corresponding old ones and adding n

2

yields

the desired trace in G

i

.

A trace t of G induces a rooted subtree G

t

of G which will yield the FLE-

subdesription we are interested in.

De�nition 87 Let t be a trace in G labeled r

1

� � � r

n

L. Then, G

t

is de�ned to

be a subtree of G containing all nodes of t and their predecessors. For a node

n 2 G

t

, its label G

t

(n) is de�ned as follows:

A 2 G

t

(n) i� there exists A 2 L with v

A

= n 2 t:

Obviously, the size of G

t

is polynomially bounded in the size of the label

r

1

� � � r

n

L of t. As an immediate consequence of Theorem 86 we obtain:

Corollary 88 Let t be a trace in G labeled r

1

� � � r

n

L. Then, G

t

contains an

9-path labeled r

1

� � � r

n

L.

Finally, we are primed to prove the main theorem of this subsection.

Theorem 89 Let C be an ALE-concept description. Then, C � ? i� there

exists an FLE-subdesription C

0

of C of size polynomially bounded in depth(C)

such that C

0

� ?.

Proof. The if direction of the proposition is trivial. Let us assume that C

is inconsistent. Then, by Lemma 84 G

p

(C) contains a rooted 9-path labeled

r

1

� � � r

n

Lwhere L = f?g or L = fP;:Pg for some atomic concept P . According

to Theorem 86, G(C) contains a trace t labeled r

1

� � � r

n

L. By Corollary 88,

we know that G

t

is an inconsistent FLE-subdescription of G(C). We de�ne

C

0

:= C

G

t

.

It remains to show that G

t

(and thus C

0

) is of size polynomially bounded in

the size of C. First, note that L is a set of cardinality at most two. Thus, the

size of the label r

1

� � � r

n

L is linear in n. Moreover, n � depth(C) by Lemma 84.

Finally, as mentioned above, the size of G

t

is polynomially bound in the size of

the label of t, thus, polynomially bounded in depth(C).

7.2 NP-completeness of matching in ALE

In what follows we will prove the following theorem:
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Theorem 90 If the ALE matching problem C �

?

D is solvable, then there

exists a matcher of size polynomially bounded in the size of the matching prob-

lem which only uses concept names and role names already contained in the

matching problem.

First, we show that one may restrict to matchers where the role depth of the

image of every variable is restricted by the role depth of C. For that purpose,

we prove a more general statement which will also be used later on.

Proposition 91 For every matcher � of the ALE-matching problem C �

?

D,

there exists a matcher �

0

such that �

0

(X) is a subdescription of �(X) with

depth(�

0

(X)) � depth(C) for all variables X in D and �

0

(X) only contains

identi�ers already used in C.

Proof. First, every �(X) can be turned into >-normal form, which yields a

matcher �

00

of C �

?

D with �(X) � �

00

(X) and �

00

(X) subdescription of �(X)

for all variables X in D. Since, C � �

00

(D), by Theorem 62 we know that

there exists a homormorphism ' from G

>

(�

00

(D)) into G

C

. The tree G(�

00

(D))

is obtained by instantiating G(D) with a new copy of G(�

00

(X)) for every X

and every node in G(D) with X in its label. Since �

00

(X) is in >-normal form,

the copies of G(�

00

(X)) in G

>

(�

00

(D)) are unchanged in case �

00

(X) 6= >. Now,

by the de�nition of a homomorphism, it is easy to see that every node v in (a

copy of) G(�

00

(X)) which is reached by a rooted path in G

>

(�

00

(D)) of length

greater depth(G

C

) must be mapped by ' on a node n in G

C

with ? in its label.

But then, also the predecessor v

0

of v must be mapped on n. Consequently, in

G(�

00

(X)) the label of v

0

can be replaced by ? and one can delete the subtree of

v

0

. The same is true if v

0

has an outgoing edge labeled by a role name not used

in C. Furthermore, if a node v

0

in G(�

00

(X)) contains a concept name not used

in C, then this node must be mapped on a node in G

C

containing ?. Again, the

label of v

0

can be replaced by ? and one can delete the subtree of v

0

. Changing

G(�

00

(X)) in this way, provides us with the description tree for �

0

(X) of the

desired matcher �

0

.

Now, let �

0

be a matcher of C �

?

D with depth(�

0

(X)) � depth(C) such

that �

0

(X) only contains identi�ers already used in C. Also, w.l.o.g, we may

assume that �

0

(X) is in 8-normal form. In the following, we will turn �

0

into a

new matcher � of size polynomially bounded in the size of the matching problem

C �

?

D.

More precisely, our proof proceeds in two steps: First, we de�ne a rooted

subtree G of G(�

0

(D)) of size polynomially bounded in the size of the matching

problem C �

?

D such that G v C; we obtain G w G(�

0

(D))(� C) since G is

a subtree of G(�

0

(D)). Intuitively, G comprises only those parts of G(�

0

(D))

that are necessary to guarantee G v C. Second, using G we de�ne the desired

matcher �.

Just as for FLE , we need the 8-mapping ' on G(�

0

(D)) de�ned as in Sec-

tion 6.1. According to Proposition 75, there exists an injective homomorphism

 from G(C n >) into the ?-extension H := '(G(�

0

(D)))

?

of '(G(�

0

(D))).
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The �rst \approximation" of G is

G

0

:= '

�1

( (G(C n >))):

For FLE , this would already be the rooted subtree G of G(�

0

(D)) we are inter-

ested in. However, G

0

is not su�cient in the presence of inconsistent concepts.

In order to see this point, assume that v is a node in G(C n>) labeled ?. Then,

G

0

contains nodes n 2 '

�1

( (v)). But the labels of n in G(�

0

(D)) need not

contain ?. Thus, G

0

(n) might not contain ?, and hence, G

0

v C does not hold

in general. The inconsistency at the node  (v) in H might rather be caused

by an interaction of certain subtrees in '(G(�

0

(D))). One needs to extend G

0

by those subtrees. Before, extending G

0

accordingly to G we will identify the

subtrees in '(G(�

0

(D))) that contribute to the inconsistency in  (v).

So, let v be a node in G(C n>) labeled ?. By de�nition, the node  (v) in H

has ? in its label. Let V

 (v)

be the subset of all nodes w in '(G(�

0

(D))) with a

predecessor w

0

such that w

0

(i) has  (v) as its successor (see Section 4 for the

de�nition of predecessor and successor); and (ii) if the path from the root of

'(G(�

0

(D))) to  (v) is labeled r

1

� � � r

n

and the path to w

0

is labeled r

1

� � � r

m

,

m � n, then the path from w

0

to w is an 8-path labeled r

m+1

� � � r

n

. Observe

that by de�nition  (v) 2 V

 (v)

. Now, we de�ne

C

 (v)

:= u

w2V

 (v)

C

'(G(�

0

(D)))

w

The following lemma states that C

 (v)

in fact represents the parts of '(G(�

0

(D)))

that contribute to the inconsistency in  (v).

Lemma 92 C

 (v)

� ?.

By de�nition of ', we can conclude

Lemma 93 C

 (v)

� u

w2'

�1

(V

 (v)

)

C

G(�

0

(D))

w

.

According to Lemma 93, the �rst idea would be to extend G

0

by G(�

0

(D))

w

for every w 2 '

�1

(V

 (v)

). However, the size of such an extension might not be

polynomially bounded in the size of the matching problem C �

?

D. However,

by our assumption we know that depth(C

 (v)

) � depth(C) + depth(D). Then,

C

 (v)

comprised an inconsistent FLE-subdesription C

0

 (v)

of size polynomially

bounded in depth(C) + depth(D). Thus, by Lemma 93 G(C

0

 (v)

) consists of

rooted subtrees G

v;w

of the description trees G(�

0

(D))

w

, w 2 '

�1

(V

 (v)

). Note

that some of the trees G

v;w

might correspond to >. Clearly, these trees do not

contribute to G(C

0

 (v)

). Now, G

0

is extended to G by adding all G

v;w

to G

0

in

case G

v;w

6� >. Of course, all predecessors of w in G(�

0

(D)) must be added as

well.

Formally, G

0

= (V

0

; E

0

; v

0

; `

0

) is extended to G = (V;E; v

0

; `) as follows: Let

W := fv 2 G(C n>) j ? 2 G(C n>)(v)g andW

v

:= fw j w 2 '

�1

(V

 (v)

);G

v;w

6�

>g. Now, for v 2 W , w 2 W

v

, let G

v;w

:= (V

v;w

; E

v;w

; w; `

v;w

) and Q :=

S

v2W

S

w2W

v

V

v;w

. Finally, let G(�

0

(D)) = (V

00

; E

00

; v

0

; `

00

). Then,
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� V := V

0

[Q [ fw j w is a predecessor in G(�

0

(D)) for some node in Qg;

� E := E

00

\ V � (N

R

[ 8N

R

)� V ;

� `(n) := `

0

(n) [

S

v2W;w2W

v

`

v;w

(n) where `

0

(n) := `

v;w

(n) := ; in case

n =2 V

0

resp. n =2 V

v;w

.

With G thus de�ned, we are able to show

Lemma 94 G v C.

Proof. We show that  is an homomorphism from G(C n >) into the ?-

extension '(G)

?

of '(G). Since '(G) � G (cf. Lemma 77) and G(C n >) � C,

this completes the proof.

We �rst show that  is an homomorphism from G(C n >) into '(G) when

the labels of the nodes are not taken into account, i.e., for the time being, we

ignore the second condition in De�nition 55: By de�nition,  is an injective

homomorphism from G(C n >) into H the ?-extension of '(G(�

0

(D))). Thus,

when ignoring the labels  is a homomorphism from G(C n>) into '(G(�

0

(D))).

But then, since G

0

= '

�1

( (G(C n >))) is a rooted subtree of G,  is also a

homomorphism from G(C n >)) into '(G) when, again, ignoring the labels of

the nodes.

It remains to take the labels of the nodes in G(C n >) into account. For

every concept name P , negation :P , or ? in the label of a node v 2 G(C n >),

we need to show P 2 '(G)( (v)) resp. :P;? 2 '(G)( (v)). However, it turns

out that for ? we must take the ?-extension '(G)

?

of '(G).

First, assume P 2 G(C n >)(v). The case :P 2 G(C n >)(v) can be dealt

with analogously. We know that  (G(C n >)) is a rooted subtree of H. In

particular, H coincides with '(G(�

0

(D))) except that some labels of nodes in

H are extended by ?. Consequently, there must exist a node v

0

in the set

'

�1

( (v)) with P 2 G(�

0

(D))(v

0

). Then, by construction P 2 G(v

0

).

Now, assume that ? 2 G(C n >)(v). By construction of G, we can add ? to

the label of  (v) in '(G) without changing the semantics of '(G).

This shows that  is an homomorphism from G(C n>) into the ?-extension

of '(G).

Now, we show that G is indeed \small". Let V

D

(X) and G

�

0

(X);w

be de�ned

as in Section 6.2.

Lemma 95 The size of G is polynomially bounded in the size of the matching

problem C �

?

D.

Proof. We �rst investigate the size of G

0

= '

�1

( (G(C n>))). By Lemma 72,

jG(C n >)j � jG(C)j. Furthermore, since  is a homomorphism on G(C n >) it

is j (G(C n >))j � jG(C n >)j.

Let v 2  (G(C n >)) and w 2 V

D

(X) for a variable X in D. Then, because

�

0

(X) is in 8-normal form, we know by de�nition of ' that '

�1

(v) contains at

most one node in G

�

0

(X);w

. Thus, the number of nodes that are in G

�

0

(X);w

and
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G

0

is linearly bounded in the size of  (G(C n >)). Furthermore, the number

of variables and nodes w 2 V

D

(X) is linear in the size of D. Consequently,

intersecting the union of nodes in G

�

0

(X);w

, for the variables X in D and w 2

V

D

(X), with the nodes in G

0

yields a set of nodes polynomially bounded in

the size of the matching problem. Finally, observe that G(�

0

(D)) is obtained

by instantiating G(D) at the node w by G

�

0

(X);w

for all variables X in D and

w 2 V

D

(X). As a result, the number of nodes in G

0

is polynomially bounded in

the size of the matching problem.

Now, let v

0

be a node in G

0

. Then there exists a node v in  (G(C n>)) such

that v

0

2 '

�1

(v). By de�nition, the label of v

0

in G

0

is a subset of the label of

v.

This shows that the size of G

0

is polynomially bounded in the size of the

matching problem.

By de�nition of G, it is easy to see that jGj � jG

0

j is polynomially bounded

in the size of the matching problem, which completes the proof.

In order to derive the matcher � from G we need to de�ne the intersection

of subtrees.

De�nition 96 Let H = (V;E; v

0

; `) be an ALE -description tree and let H

1

=

(V

1

; E

1

; v

1

; `

1

) and H

2

= (V

2

; E

2

; v

2

; `

2

) be subtrees of H. Then, restricting H

1

to H

2

yields the following subtree H

1

H

2

= (V

0

; E

0

; v

1

; `

0

) of H

1

:

� V

0

:= V

1

\ V

2

if V

1

\ V

2

6= ;; otherwise H

1

H

2

is de�ned to be a tree only

consisting of v

1

without any edges and with empty label;

� E

0

:= E \ V

0

� (N

R

[ 8N

R

)� V

0

;

� `

0

(n) := `

1

(n) \ `

2

(n) for all n 2 V

0

.

Obviously, H

1

H

2

is a subtree of H

1

, and thus, jH

1

H

2

j � jH

1

j. With that

notion at hand and the de�nition of G, � is de�ned as follows:

De�nition 97 For all variables X in D we de�ne

�(X) := u

w2V

D

(X)

C

(G

�

0

(X);w

)

G

:

Lemma 98 The substitution � speci�ed in De�nition 97 is a matcher for C �

?

D of size polynomially bounded in the size of the matching problem. Also, �

only contains identi�ers used in C.

Proof. By construction, we know that G is isomorphic to a rooted subtree of

G(�(D)). Thus, �(D) v G. By Lemma 94, this means �(D) v C.

On the other hand, for every variableX and w 2 V

D

(X), �

0

(X) � G

�

0

(X);w

v

C

(G

�

0

(X);w

)

G

. Consequently, �

0

(X) v �(X). Then, Lemma 5 guarantees �

0

(D) v

�(D). This shows that �(D) � C.

By the assumption that �

0

only uses identi�ers already used in C, it is plain

to see that � only uses identi�ers already used in C.
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It remains to investigate the size of �. By Lemma 95, the size of G is

polynomially bounded in the size of the matching problem. Moreover, we know

that j(G

�

0

(X);w

)

G

j � jGj and the number of variables X and nodes in V

D

(X) is

linearly bounded in the size of D. From that, it is easy to derive that the size

of � is polynomially bounded in the size of the matching problem.

Theorem 90 is an immediate consequence of Lemma 98. From Theorem 90

and the hardness result for deciding the solvability of ALE-matching problems

modulo equivlance we obtain the following corollary.

Corollary 99 Deciding the solvability of ALE-matching problems is an NP-

complete problem.

8 Computing matchers in ALE

After having investigated the complexity of deciding the solvability of matching

problems, we show how matchers can actually be computed. Just as for EL, ALE-

matching problems may have several solutions. So, the �rst step is to formally

characterize those sets which contain the potentially most interesting matchers.

The description of these sets essentially coincides with the one presented in

Section 3.4. Then, in the two subsequent sections we show how to compute the

sets of matchers thus de�ned.

8.1 Solutions of ALE-matching problems

Just as for EL (cf. Section 3.4) the set of interesting matchers of a given ALE-

matching problem is formally captured using the orderings v

i

, v

s

, and �

d

.

For the readers convenience, we recall the de�nitions of these orderings and the

related notions for matching problems modulo subsumption. The de�nitions

can be extended to matching modulo equivalence in the obvious way.

De�nition 100 Let C v

?

D be an ALE -matching problem modulo subsump-

tion, and let �; � be solutions of this problem. Then, we de�ne:

� � is i-subsumed (\i" for \instance") by � (� v

i

�) if and only if �(D) v

�(D).

� � is s-subsumed (\s" for \substitution") by � (� v

s

�) if and only if

�(X) v �(X) for all variables X 2 D;

� � is submatcher of � (� �

d

�) if and only if �(X) �

d

�(X) for all variables

X 2 D.

6

6

Of course, �

d

is used in the sense speci�ed in De�nition 65. Moreover, when restricting

to FLE-matching problems, the only di�erence is that �

d

is de�ned with respect to FLE-

subdesriptions.
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Again, two matchers �; � are i-equivalent i� � v

i

� and � v

i

�; � is i-minimal

i� for every matcher � , � v

i

� implies � �

i

�. Equivalence and minimality for

the other two orderings are de�ned analogously. As before, d-minimal matchers

are also called reduced. In particular, the images of these matchers are reduced

as well. However, as already shown in Section 3.4, this is only a necessary not

a su�cient condition for a matcher to be reduced. Thus, for a given matcher it

is not su�cent to simply reduce the images of the matcher in order to obtain a

reduced matcher.

With these orderings at hand, the set of matchers we want to compute for

an ALE-matching problem modulo subsumption contains for every i-equivalence

class of i-minimal matchers the set of reduced matchers of that class. More pre-

cisely, we are only interested in those matchers where the images of the variables

are in 8-normal form. In the following, we will refer to these kind of matchers

as matchers in 8-normal form. But then, by Theorem 70 we know that reduced

and s-equivalent matchers in 8-normal form coincide up to commutativity and

assoziativity of concept conjunction. So, it is su�cient to compute the reduced

matchers up to s-equivalence.

Just as for EL, our approach for computing i-minimal and reduced matchers

of C v

?

D prodeeds in two steps (which we consider in more detail in the next

two sections):

1. Compute the set of all i-minimal matchers of C v

?

D up to i-equivalence

(i.e., one matcher of for each i-equivlanece class).

2. For each i-minimal matcher � computed in the �rst step, compute the

d-minimal matchers in 8-normal form up to s-equivalence of the matching

problem �(D) �

?

D.

Of course, if we are interested in matching modulo equivlanece in the �rst

place, we just apply the second step to C �

?

D.

8.2 Computing i-minimal matchers in ALE

In this section, we present an algorithm for computing s-complete sets for ALE-

matching problems modulo subsumption, similar to the one in Section 3.5 for EL.

As already mentioned there, given an s-complete set one can extract represen-

tatives for each i-equivalence class of i-minimal matchers using the subsumption

algorithm for ALE .

Just as for EL, the algorithm can easily be extended to one that computes

s-complete sets for matching modulo equivalence, which, according to Lemma 9

is a more general problem.

The ALE-matching algorithm for computing s-complete sets

The main idea of the matching algorithm for ALE is the same as for EL, i.e.,

based on homomorphisms from the description tree of the concept pattern D

into the description tree of the concept description C one de�nes certain substi-

tutions and checks if these substitutions are solutions of the matching problem.
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r

8s

v

3

: Q

8r

v

4

: P w

2

: X w

3

: Y

r

r

8s8r

v

0

: ;

v

2

: ;v

1

: ;

w

0

: ;

w

1

: ;

Figure 7: The description trees for C and D.

However, as illustrated by the following example, we now need to compute com-

plete sets for a set of so-called >-patterns of the original pattern D, which are

obtained from D by replacing certain variables by >.

Example 101 Let

C := (9r:8r:Q) u (9r:8s:P ) v

?

9r:(8r:X u 8s:Y ) =: D

be an ALE-matching problem. The description trees for C and D are depicted

in Figure 7. Obviously, � := fX 7! Q; Y 7! >g and � := fX 7! >; Y 7! Pg are

solutions for the given matching problem. However, there is no homomorphism

from the tree for D into the one for C: The node w

1

can be mapped either on

v

1

or v

2

. In the former case, w

2

can be mapped on v

3

, but then there is no way

to map w

3

. In the latter case, w

3

must be mapped on v

4

, but then there is no

node w

2

can be mapped on.

The example shows that there need not to be a homomorphism between a

description tree corresponding to a pattern and a description tree for a concept

description, although the matching problem is solvable. On the other hand, as

shown in [3], subsumption of ALE-concept descriptions can be characterized in

terms of homomorphisms (see also Theorem 62). Still, this requires the normal-

ization of both the subsumee and the subsumer. In particular, the subsumer

must be turned into >-normal form. But as far as matching is concerned, a

normalization of the concept pattern (subsumer) would depend on the substi-

tutions for the variables, which we do not no in advance. So there is no unique

way to normalize a concept pattern. We illustrate this problem by Example 101.

Both instances �(D), �(D) of D are not >-normalized since they contain

the subdescriptions 8s:> and 8r:>, respectively. The description tree for the

>-normalized concept description �(D) would not include the node w

3

and

the 8s-edge leading to it. In this case, there is a homomorphism from this

description tree into the one for C. Analogously, for �(D), w

2

would be deleted,

which again allows to de�ne a homomorphism.

As a result, in order to compute matchers using homormophisms one has

to consider a set of so-called >-patterns of D. These patterns are obtained by
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replacing a subset of variables in D by >. Furthermore, before turning such a

>-pattern into a description tree one has to normalize the pattern using the >-

rule. Referring to the example, we get the following normalized >-patterns for

D: D, 9r:(8r:X), 9r:(8s:Y ), and 9r:>. Matching these patterns against C, our

matching algorithm computes the following sets of solutions: ;, f�g, f�g, and

ffX 7! >; Y 7! >gg. The union of these sets provides us with an s-complete

set of solutions for C v

?

D.

Another way to overcome the problem posed by Example 101, is to intro-

duce partial homomorphisms instead of total ones. The idea is that the partial

homomorphisms allow to leave the image of certain nodes of a description tree

for D unde�ned if there is no corresponding node in C. In Example 101, this

means that the image of w

2

and w

3

might be unde�ned. We will not pursue

this approach in the sequel, however.

In the sequel, the matching algorithm sketched above is formally described.

De�nition 102 A concept pattern D

0

is called >-pattern of D if D

0

is obtained

from D by substituting a subset of variables in D by >.

Using this notion the ALE-matching algorithm for computing s-complete sets

for matching modulo equivalence can be speci�ed as depicted in Figure 8. Delet-

ing the last line of the algorithm, provides us with the variant for computing

s-complete sets for matching modulo subsumption.

Input: ALE-matching problem C �

?

D

Output: s-complete set C of matchers for C �

?

D

C := ;

For all >-pattern D

0

of D do

For all homomorphisms ' from G

>

D

0

into G

C

De�ne � by

�(X) := lcs(C

(G

C

)

'(w)

j X 2 `(w)) for all variables X in D

0

and

�(X) := > for all variables X in D not in D

0

If C w �(D

0

) then C := C [ f�g

Figure 8: The ALE-matching algorithm.

Soundness of the ALE-matching algorithm

The proof will proceed similarly to the one for EL in Section 3.5 and just as for

EL, it is based on two lemmas.

The �rst lemma says that for all substitutions � computed by the algorithm

in Figure 8, it is C v �(D). We will use this fact to show that for computing

s-complete sets for matching modulo subsumption one can use the algorithm

depicted in Figure 8 when simply deleting the last line.
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Lemma 103 Let D

0

be a >-pattern of D, ' be a homomorphism from G

>

D

0

into G

C

, and let � be a substitution computed by the matching algorithm in

Figure 8 w.r.t. D

0

and '. Then, C v �(D).

Proof. We �rst show that C v �(D

0

). Let X be a variable in D

0

. Then for

every node w inD

0

with X in its label there exists a node v in G

C

with '(w) = v.

By the de�nition of � it follows C

G

C

(v)

v �(X). Thus, according to Theorem 62

there exists a homomorphism from G

>

�(X)

into G

C

(v).

For this reason, analogously to Lemma 40, one can extend ' to a homomor-

phism from G into G

C

where G is obtaiend by instantiating G

>

D

0

by (copies of)

G

>

�(X)

for all variables X in D

0

. It is easy to see that G � �(D

0

). Therefore, by

Remark 63 we can conclude C v �(D

0

).

Now, from the de�nition of a >-pattern and since �(Y ) = > for all variables

in D that are not in D

0

we know �(D) � �(D

0

). This shows C v �(D) and

completes the proof of the lemma.

Analogously to Lemma 41 we now show

Lemma 104 If �

0

is a matcher for C �

?

D, then there exists a matcher � in

the set C of matchers computed by the matching algorithm depicted in Figure 8

with � v

s

�

0

.

Proof. We know C v �

0

(D). Let T := fX j �

0

(X) � >g be a subset of

variables in D. Furthermore, let D

0

be the >-pattern of D where the variables

in T are substituted by >. We can conclude �

0

(D) � �

0

(D

0

). Thus, C v �

0

(D

0

).

Theorem 62 implies that there exists a homomorphism '

0

from G

>

�

0

(D

0

)

into G

C

.

Now, let G be the description tree obtained by instantiating G

>

D

0

by (copies

of) G

>

�(X)

for all variables X in D

0

. We claim that G is isomorphic to G

>

�

0

(D

0

)

:

Computing G

>

E

for some concept pattern E corresponds to iteratively delet-

ing the nodes in G(E) which i) are connected with their direct predecessors

by means of an 8-edge, which ii) have an empty label, and which iii) have no

outgoing edges.

Now, the description tree G(�

0

(D

0

)) is obtained by instantiating G(D

0

) by

G(�

0

(X)) for all variables in D

0

. By de�nition of D

0

, we know that �

0

(X) 6� >

for all variables X in D

0

. Thus, the nodes in the subtree G(D

0

) of G(�

0

(D

0

))

containing variables are not deleted when >-normalizing G(�

0

(D

0

)). For this

reason, one can obtain G

>

�

0

(D

0

)

by �rst >-normalizing G(D

0

), which yields G

>

D

0

,

and then instantiating G

>

D

0

by G

>

�

0

(X)

. This shows that G is isomophic to G

>

�

0

(D

0

)

.

But then, G

>

D

0

is a subtree of G

>

�

0

(D

0

)

. Therefore, restricting '

0

to G

>

D

0

,

provides us with a homomorphism ' from G

>

D

0

into G

C

.

Let � be the substitution computed by the matching algorithm in Figure 8

w.r.t. D

0

and '. It remains to show � v

s

�

0

:

If X is a variable in D but not in D

0

, then we know �

0

(X) � >. Thus,

�(X) = > v �

0

(X).

Now, let X be a variable in D

0

. Then, there exists a node w in D

0

with

X in its label. Let v := '(w). When restricting '

0

to (G

>

�

0

(D

0

)

)

w

, one gets an
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homomorphism from (G

>

�

0

(D

0

)

)

w

into (G

C

)

v

. Since G is isomorphic to G

>

�

0

(D

0

)

, we

can conclude from the de�nition of G that G

>

�

0

(X)

is (isomorphic to) a subtree

of (G

>

�

0

(D

0

)

)

w

. Therefore, there exists a homomorphism from G

>

�

0

(X)

into (G

C

)

v

.

By Theorem 62, we know C

(G

C

)

v

v �

0

(X). Hence, �(X) v �

0

(X).

Note that the proof of this lemma makes heavy use of the fact that for the

concept patternD (or the >-patternsD

0

) only a \minor" normalization, namely,

>-normalization, is necessary, as opposed to the full normalization which is

needed for C. As we will see in the next section, this has a major impact on

complexity issues.

Lemma 103 and Lemma 104, analogously to EL (Section 3.5), provide us

with the following theorem.

Theorem 105 For a matching problem modulo equivalence, the set C com-

puted by the algorithm depicted in Figure 8 is s-complete.

Furthermore, note that the Lemmas 103 and 104 do not make use of the fact

that the algorithm in Figure 8 checks C w �(D

0

). Also, Lemma 104 only uses

the fact that �

0

satis�es C v �

0

(D). As a result, we obtain

Theorem 106 For a matching problem modulo subsumption, the algorithm

depicted in Figure 8 when deleting the last line computes an s-complete set C

of matchers.

Complexity of computing s-complete and i-complete sets

Just as for EL (Section 3.5), one can prove:

Corollary 107 1. For ALE- and FLE-matching problems modulo equiva-

lence

(a) the cardinality of a (minimal) s-complete set of matchers might grow

exponentially in the size of the matching problem;

(b) the size of s-minimal matchers might grow exponentially in the size

of the matching problem.

2. For ALE- and FLE-matching problems modulo subsumption

(a) the cardinality of (minimal) s-complete and i-complete sets of match-

ers might grow exponentially in the size of the matching problem;

(b) the size of s-minimal and i-minimal matchers might grow exponen-

tially in the size of the matching problem.

As already mentioned in Section 3.5, a minimal i-complete set for matching

modulo equivalence contains at most one element. Furthermore, by Theorem 78

for FLE resp. Theorem 90 for ALE , we know that this matcher can polynomially

be bounded in the size of the matching problem.



61

Again, as in Section 3.5, the algorithm in Figure 8 can be used to prove

matching upper bounds for the exponential lower bounds mentioned in Corol-

lary 107.

Since the size of G

>

D

0

for some >-pattern D

0

of D is linear in D and since

G

C

is of size at most exponential in C the number of mappings from G

>

D

0

into

G

C

is exponentially bounded. Furthermore, the number of >-patterns of D is

exponentially bounded by the size of D. As shown in [3], lcs(C

(G

C

)

'(w)

j X 2

`(w)) corresponds to the product of the description trees (G

C

)

'(w)

. Due to the

fact that the number of nodes w in G

>

D

0

is linear in the size of the matching

problem and the size of (G

C

)

'(w)

is at most exponential in C the lcs can be

computed in time exponential in the size of the matching problem C �

?

D.

Thus, the size of every substitution computed by the matching algorithm is at

most exponential in the size of the matching problem. To sum up,

Corollary 108 1. For ALE- and FLE-matching problems modulo equiva-

lence

(a) the cardinality of a (minimal) s-complete set of matchers can expo-

nentially be bounded in the size of the matching problem; and

(b) the size of s-minimal matchers can exponentially be bounded in the

size of the matching problem.

2. For ALE- and FLE-matching problems modulo subsumption

(a) the cardinality of (minimal) s-complete and i-complete sets of match-

ers can exponentially be bounded in the size of the matching problem;

and

(b) the size of s-minimal and i-minimal matchers can exponentially be

bounded in the size of the matching problem.

We now consider the complexity of the matching algorithm itself. As shown

in [12], subsumption of ALE-concept descriptions is NP-complete. Since a sub-

stitution � computed by the matching algorithm is of size at most exponential

in the size of the matching problem C �

?

D it follows that C w �(D) can be

decided in non-deterministic exponential time in the size of the matching prob-

lem. Thus, it can be decided in space exponential in the size of the matching

algorithm. Recalling that the number of >-patterns D

0

of D and the number of

mappings from G

>

D

0

into G

C

is at most exponential in the size of D and that the

lcs speci�ed in the matching algorithm can be computed in time exponential in

the size of the matching problem, the matching algorithms in Figure 8 runs in

space exponential in the size of the matching problem. As mentioned above, for

i-complete sets it is su�cient to compute only one matcher of size polynomially

bounded in the size of the matching problem. Thus, i-complete sets can be

computed by an exponential time algorithm by simply enumerating all substi-

tutions up to the polynomially bound and testing for equivalence, which in ALE

and FLE can be done by an NP-algorithm.
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For matching modulo subsumption we can dispense with the last subsump-

tion test in the algorithm in Figure 8. Thus, for this problem we obtain an expo-

nential time algorithm for computing s-complete (and therefore, i-complete) sets

of matchers. We summarize these complexity results in the following corollary.

Corollary 109 1. For ALE- and FLE-matching problems modulo equiva-

lence

(a) s-complete sets can be computed by an algorithm using exponential

space in the size of the matching problem; and

(b) i-complete sets can be computed by an exponential time algorithm.

2. For ALE- and FLE-matching problems modulo subsumption both s- and

i-complete sets can be computed by exponential time algorithms.

Given s-complete (i-complete) sets, minimal sets can be computed by using

the subsumption algorithms for FLE and ALE . Note, however, that the size of

the matchers in these sets (and therefore, the subsumption problems to con-

sider) might already be of exponential size in the size of the matching problem.

Consequently, such an algorithm only provides us with an exponential space

algorithm for computing minimal complete sets.

8.3 Computing d-minimal matchers in ALE

In this section, we present a (na��ve) algorithm for computing d-complete sets

of matchers for ALE- and FLE-matching problems modulo equivalence. Recall

that d-complete sets contain (at least) all d-minimal (i.e., reduced) matchers in

8-normal form up to s-equivalence.

The algorithm is based on the following lemma.

Lemma 110 For a ALE-matching problem C �

?

D, the size of the d-minimal

matchers in 8-normal form can polynomially be bounded in the size of the

matching problem.

Proof. Let �

00

be some matcher of C �

?

D in 8-normal form. By Proposi-

tion 91, there exists a matcher �

0

, with �

0

�

d

�

00

and depth(�

0

(X)) � depth(C)

for all variables X in D. Clearly, because of �

0

�

d

�

00

, �

0

is in 8-normal form as

well. Now, by Lemma 98 � speci�ed in De�nition 97 is a matcher of C �

?

D and

of size polynomially bounded in the size of the matching problem. Furthermore,

by De�nition 97 it is easy to see that � can be represented in such a way that

� �

d

�

0

.

Note that the construction of � in Section 7.2 also works for FLE-matching

problems. In fact, the proof is easier since one does not need to take inconsistent

concepts into account. Thus, the above lemma also holds for matching problems

in FLE .

Now, a na��ve algorithm for computing (minimal) d-complete sets can simply

compute all possible substitutions (in 8-normal form) up to the polynomial
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bound and �lter out those that do not solve the matching problem (and that are

not d-minimal). In order to obtain minimal d-complete sets one must also take

care of s-equivalent matchers. It is easy to see that d-minimality can be tested by

a polynomially time algorithm with an oracle for checking subsumption. Thus,

by Lemma 110, we obtain

Corollary 111 (Minimal) d-complete sets for ALE- and FLE-matching prob-

lems modulo equivalence can be compute by an exponential time algorithm in

the size of the matching problem.

The approach for computing d-complete sets pursued in Section 3.6 using

s-maximal matchers does not work for ALE , since the set of s-maximal matcher

in ALE might be in�nite. Consider for example the ALE-matching problem

9r:Au9r::A �

?

X uY . Then, the substitutions �

n

:= fX 7! 9r: � � � :9r:A; Y 7!

9r: � � � :9r::Ag for 9-chains of length n are s-incomparable, s-maximal matchers.

For FLE , we conjecture however, that Theorem 50 still holds. So, the approach

pursued in Section 3.6 might work for FLE .

Just as for EL (cf. Section 3.6), we can show that the cardinality of a

d-complete set can grow exponentially in the size of the matching problem.

However, Lemma 110 shows that the size of the matchers in d-complete sets

can polynomially be bounded in the size of the matching problem. To sum up,

for the size of d-complete sets we obtain

Corollary 112 For ALE- and FLE-matching problems modulo equivalence

� the cardinality of d-complete sets might grow exponentially in the size of

the matching problem;

� the size of matchers in d-complete sets can polynomially be bounded.

Observe that when computing d-complete sets for matchers � in i-equivalence

classes of i-minimal matchers, the matching problem �(D) �

?

D might already

be of size exponential in the size of the original matching problem C v

?

D (see

the steps 1. and 2. at the end of Section 8.1).

9 Conclusion and future work

In this work, we have seen that adding existential restrictions to description logis

increases the complexity of both deciding the solvability of matching problems

and computing matchers for these problems. Also, as opposed to the languages

considered in the literature for matching so far, matching problems do not have

unique least matchers anymore in the presence of existential restrictions. Using

orderings on matchers, we formally answered the question of what are good sets

of matchers.

The remaining technical challenge is to design a practical algorithm for com-

puting d-minimal matchers for the languages ALE as well as ALN and its ex-

tension to the Classic description language.
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We will also evaluate the usefulness of matching for removing redundancies

in knowledge bases within our process engineering application [6]. In order

to apply matching to the problem of integrating knowledge bases [9], we �rst

need to extend the matching algorithm to an algorithm that takes schemas (i.e.,

certain types of inclusion axioms) into account.
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