
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

Rewriting Concepts Using Terminologies

Franz Baader and Ralf Molitor

LTCS-Report 99-06

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

Rewriting Concepts Using Terminologies

Franz Baader and Ralf Molitor

LuFg Theoretical Computer Science, RWTH Aachen

email: fbaader,molitorg@informatik.rwth-aachen.de

Abstract

In this work we consider the inference problem of computing (min-

imal) rewritings of concept descriptions using de�ned concepts from a

terminology. We introduce a general framework for this problem. For the

small description logic FL

0

, which provides us with conjunction and value

restrictions, we show that the decision problem induced by the minimal

rewriting problem is NP-complete.

1 Motivation

Informally, the problem of rewriting a concept given a terminology can be stated

as follows: given a TBox T and a concept description C that does not contain

concept names de�ned in T , can this description be rewritten into an equivalent

\better" description D by using (some of) the names de�ned in T ? Better may

mean shorter, but one can also imagine other optimality criteria. In the formal

framework of rewriting introduced in Section 2 of this paper, we will not �x

such an optimality criterion, and we will allow T , C, and D to be built over

di�erent DLs. However, when instantiating this framework in Section 3, we will

assume that T , C, and D are built over the same DL FL

0

, and we will use the

size of D as optimality criterion.

In the database area, the problem of rewriting queries using views is a well-

known research topic [7]. It is closely related to the problem introduced in this

paper since views can be regarded as TBox de�nitions and queries as concepts.

However, our motivation for considering this new type of inference problem

in DLs is quite di�erent from the one in the DB area. There, one wants to

optimize the runtime of queries by using cached views, and thus one wants to

minimize the access to source relations. Our goal is to optimize the readability

of concepts, and thus minimal length of the concept D appears to be a better

optimality criterion.

More precisely, our interest in the rewriting problem stems from an ap-

plication in chemical process engineering [6, 11]. Within this application, we

try to support the bottom-up construction of KBs by computing most speci�c

concepts (msc) of individuals and least common subsumers (lcs) of concepts:

instead of directly de�ning a new concept, the knowledge engineer introduces

1

2

several typical examples as individuals, which are then generalized into a con-

cept description by using the msc and the lcs operation [4, 2]. This description

is o�ered to the knowledge engineer as a possible candidate for a de�nition of

the concept.

Unfortunately, due to the nature of the algorithms for computing the lcs and

the msc proposed in [4, 2], these algorithms yield concept descriptions that do

not contain de�ned concept names, even if the descriptions of the individuals

used concepts de�ned in a TBox T . In addition, due to the inherent complexity

of the lcs and the msc operation, these descriptions may be quite large. To

overcome this problem, we want to employ rewriting of the computed concept

description using T in order to obtain a shorter and better readable description.

2 A general framework for rewriting

We �rst introduce the general framework for rewriting using terminologies.

De�nition 1 (Rewriting) Let N

r

be a set of role names and N

p

a set of

primitive concept names, and let L

1

, L

2

, and L

3

be three DLs. A rewriting

problem is given by

� an L

1

-TBox T containing only role names from N

r

and primitive concept

names from N

p

; the set of concept names de�ned by concept de�nitions in

T is denoted by N

d

;

� an L

2

-concept description C using only the names from N

r

and N

p

.

A rewriting of C using T is an L

3

-concept description D built using names from

N

r

and N

p

[N

d

such that C and D are equivalent modulo the TBox T , i.e.,

D

I

= C

I

for all models I of T .

Given an appropriate ordering � on L

3

-concepts built using names from

N

r

and N

p

[N

d

, a rewriting D is called �-minimal i� there does not exist a

rewriting D

0

such that D

0

� D.

It should be noted that there are cases in which there always exists a (trivial)

rewriting; e.g., whenever L

1

is a sublanguage of L

3

. However, in these cases

�nding a minimal rewriting is still a non-trivial task. In the next section, we will

consider the case where all three DLs are equal to FL

0

, and where the ordering

is induced by the size of (a normal form of) D.

Further, note that in contrast to inference tasks like subsumption or consis-

tency, decidability results for the rewriting problem for DLs L

1

;L

2

;L

3

cannot

be transferred to sublanguages L

0

i

of L

i

, 1 � i � 3. For example, C = P t :P

is a rewriting in ALC w.r.t. the empty TBox of itself, but there does not exist a

rewriting of C in FL

0

w.r.t. the empty TBox.

A comparison to rewriting queries using views

In the remainder of this section, we will analyze the results of Section 3 in

[7] within the framework introduced above. There are two di�erences between

3

the rewriting problem considered there and the one introduced above. First,

[7] is concerned with maximally contained rewritings, i.e., the case where one

wants to determine a maximal concept D subsumed by the input concept C.

It should be noted, however, that there exists a rewriting in our sense i� the

maximally contained rewriting is equivalent to C. Second, [7] is concerned with

total rewritings (i.e., D may only use de�ned concept names), whereas we allow

for partial rewritings (i.e., D may still contain primitive concepts). Section 3 of

[7] contains the following two results:

� For L

1

= L

2

= ALCNR

1

and L

3

= fu;tg, a maximally contained total

rewriting is computable. Using the subsumption algorithm for ALCNR,

this can be used to decide whether there exists a total rewriting equivalent

to the input concept C.

� If ALCNR is replaced by ALN

2

, then one can compute a maximally con-

tained total rewriting in polynomial time, and existence of a total rewriting

equivalent to C can also be decided in polynomial time.

3 Rewriting in FL

0

Under rewriting in FL

0

we understand the instance of the framework introduced

above where (i) all three DLs are the language FL

0

; (ii) the TBox is of the

usual form (i.e., acyclic and without multiple de�nitions); and (iii) FL

0

-conept

descritpions are ordered by their size.

Note that in this case, the problem wether there exists a rewriting of C

w.r.t. T is trivially decidable, because C is always a rewriting of itself. So we

are only interested in minimal rewritings.

We �rst recall syntax and semantics of FL

0

as well as an appropriate char-

acterization of subsumption for FL

0

. Thereafter, we will show that for a given

arbitrary TBox the problem of determining a minimal rewriting is NP-complete.

Syntax and semantics

Concept descriptions are inductively de�ned with the help of a set of construc-

tors, starting with a set N

C

of concept names and a set N

R

of primitive roles.

The constructors determine the expressive power of the DL. In the sequel, we

consider FL

0

-concept descriptions built from the constructors conjunction CuD

and value restriction 8r:C (see Table 1).

The semantics of a concept description is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation function �

I

maps each concept name P 2 N

C

to a set P

I

� �

and each primitive role r 2 N

R

to a binary relation r

I

� ���. The extension

1

In addition to the constructors in FL

0

, ALCNR allows for disjunction (C t D), number

restrictions ((� n r) and (� n r)), and role conjunction (r

1

u r

2

).

2

The sublanguage ALN of ALCNR only allows for conjunction, value restrictions and num-

ber restrictions.

4

Construct name Syntax Semantics

concept name P 2 N

C

P P

I

� �

conjunction C uD C

I

\D

I

value restr. for r 2 N

R

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

Table 1: Syntax and semantics of concept descriptions.

of �

I

to arbitrary concept descriptions is inductively de�ned, as shown in the

third column of Table 1.

In this paper, we are interested in the non-standard inference task of rewrit-

ing concept descriptions using a TBox T .

De�nition 2 (TBox) A concept de�nition is of the form A

:

= C, where A 2

N

C

is a concept name and C is a concept description. A TBox is a �nite set

T of concept de�nitions such that every concept name occurs at most once as

left-hand side of a de�nition and there do not exist cyclic dependencies between

concept de�nitions.

The concept name A is a de�ned concept in the TBox T i� it occurs on

the left-hand side of a concept de�nition in T ; otherwise, A is called primitive

concept.

In the sequel, N

D

denotes the set of concept names which are de�ned in T ,

and N

P

denotes the set of primitive concepts, i.e., N

P

= N

C

nN

D

.

The interpretation I is a model of a TBox T i� it satis�es A

I

= C

I

for

all concept de�nitions A

:

= C 2 T . A TBox T is called FL

0

-TBox if all

concept descriptions occuring in the concept de�nitions in T are FL

0

-concept

descriptions.

Subsumption in FL

0

De�nition 3 (Subsumption and equivalence) Let C;D be concept descrip-

tions, and let T be a TBox.

D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent to D (for short C � D) i� C v D and D v C, i.e., C

I

= D

I

for all interpretations I.

D subsumes C w.r.t. T (C v

T

D) i� C

I

� D

I

for all models I of T .

D is equivalent to C w.r.t. T (C �

T

D) i� C

I

= D

I

for all models I of T .

For the DL FL

0

, a concept-centered normal form has turned out to be quite

convenient for various purposes [5]: any FL

0

-concept description can be written

in the form 8L

1

:P

1

u : : :u 8L

k

:P

k

, where P

1

; : : : ; P

k

are concept names and the

L

i

are �nite sets of words over the alphabet of primitive roles. This normal

form can be obtained by

5

1. distributing value restrictions over conjunctions, i.e., by exhaustively ap-

plying the rule

8r:(D u E) �! 8r:D u 8r:E;

2. writing 8r

1

: : : r

n

:P

i

instead of 8r

1

: � � � 8r

n

:P

i

; and �nally

3. collecting the words w occurring in a value restrictions ending with P

i

in

the set L

i

.

Example 4 Consider the FL

0

-concept description

P u 8r:(8r:P u 8r:Q):

The corresponding normal form is given by

8f"; rrg:P u 8frrg:Q:

Using this normal form, equivalence of FL

0

-concept descriptions can be char-

acterized as follows.

Theorem 5 [5] Let C;D be FL

0

-concept descriptions with normal forms C �

8L

1

:P

1

u : : :u8L

k

:P

k

and D � 8M

1

:P

1

u : : :u8M

k

:P

k

. Then C � D i� L

i

=M

i

for i = 1; : : : ; k.

As an easy consequence we get that equivalence of FL

0

-concept descriptions

C;D can be decided in time polynomial in the size of C and D.

In the presence of an FL

0

-TBox, however, the equivalence problem C �

T

D

for FL

0

becomes co-NP-complete [10]. Note that in this case C and D may

contain primitive concepts as well as de�ned concepts. Thus, in order to test

the condition from Theorem 5, one must �rst unfold the concept descriptions

C;D w.r.t. T and then test the condition L

C

(P) = L

D

(P) for all primitive

concepts P . As shown in [10], unfolding an FL

0

-TBox T may yield a TBox T

0

of size exponential in the size of T .

In our framework, we have to decide wether a concept description D is

equivalent to C w.r.t. T where

1. C is an FL

0

-concept description of the form

8L

1

:P

1

u : : : u 8L

k

:P

k

;

containing only primitive concepts P

i

2 N

P

, and

2. D is an FL

0

-concept description of the form

D � 8M

1

:A

1

u : : : u 8M

`

:A

`

u 8K

1

:P

1

u : : : u 8K

k

:P

k

;

where, w.l.o.g., fA

1

; : : : ; A

`

g = N

D

and fP

1

; : : : ; P

k

g = N

P

.

6

A

1

A

2

A

T

:

P

2

P

1

r

r

r

"

A

3

r

r

r

q

2

q

1

Figure 1: The �nite automaton corresponding to T .

It turned out that in this special case, the equivalence C �

T

D can be

decided in time polynomial in the size of C, D, and T . This tractability result is

based on the automata-theoretic characterization of equivalence for FL

0

given in

[1]. The TBox T is translated into a �nite automaton A

T

(with "-transitions).

The concept names in T are the states of A

T

and the transitions in A

T

are

induced by the value restrictions in T (see [1] for details). For a de�ned concept

A from T and a primitive concept P , the language L

A

T

(A;P) denotes the set of

all words labeling paths from A to P in A

T

. The languages L

A

T

(A;P) represent

all value restrictions that must be satis�ed by instances of the concept A, i.e.,

A can be equivalently written as

8L

A

T

(A;P

1

):P

1

u : : : u 8L

A

T

(A;P

k

):P

k

:

Example 6 Consider the FL

0

-TBox

T := fA

1

:

= P

1

u 8r:8r:P

2

; A

2

:

= 8r:P

1

; A

3

:

= 8r:8r:P

2

u 8r:A

2

g:

The resulting automaton A

T

is depicted in Figure 1. The states q

1

; q

2

are

introduced as intermediate states on the paths from A

1

respectively A

3

to P

2

.

We have

L

A

T

(A

1

; P

1

)=f"; rrg L

A

T

(A

1

; P

2

)=frrg

L

A

T

(A

2

; P

1

)=frg L

A

T

(A

2

; P

2

)=;

L

A

T

(A

3

; P

1

)=frrg L

A

T

(A

3

; P

2

)=frrg

Theorem 7 Let T be an FL

0

-TBox, let N

P

= fP

1

; : : : ; P

k

g be the primitive

concepts in T , and N

D

= fA

1

; : : : ; A

`

the de�ned concepts from T . Further, let

C = 8L

1

:P

1

u : : : u 8L

k

:P

k

;

D = 8M

1

:A

1

u : : : u 8M

`

:A

`

u 8K

1

:P

1

u : : : u 8K

k

:P

k

be two FL

0

-concept descriptions in normal form.

1. It holds that C �

T

D i� L

C

(P

i

) =

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

for all

1 � i � k.

2. Deciding wether C �

T

D takes time polynomial in the size of C, D and

T .

7

Proof: The characterization of equivalence is a direct consequence of the

results in [1].

It remains to prove the complexity result. In order to decide C �

T

D,

we have to decide L

C

(P

i

) =

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

for all 1 � i � k.

Obviously, it is su�cient to show that we can test validity of the equation for a

�xed primitive concept P

i

in polynomial time.

By the results in [3] we get that for each FL

0

-concept description of the form

8L

C

(P

i

):P

i

there exists a deterministic �nite automaton A

C

such that (a) the

size of A

C

is polynomial in the size of L

C

(P

i

); and (b) L(A

C

) = L

C

(P

i

).

In order to complete the proof, we now de�ne a (non-deterministic) au-

tomaton A of size polynomial in the size of D and T with L(A) = L :=

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

.

Let A

T

= (Q

T

; N

R

;�

T

) be the automaton corresponding to T with "-

transitions. We �rst de�ne an automaton A

�

:= (Q;N

R

; q

0

;�; F) with "-

transitions as follows. Let q

0

be a new state, i.e., q

0

62 Q

T

. Let F := fP

i

g.

Q and � are obtained from Q

T

respectively �

T

as follows. For each j, if

" 2 M

j

, then introduce the transition (q

0

; "; A

j

); for each word r

1

: : : r

n

2 M

j

,

n � 1, introduce n� 1 new states q

1

; : : : ; q

n�1

and transitions (q

��1

; r

�

; q

�

) for

1 � � < n, and (q

n�1

; r

n

; A

j

). Further, if " 2 K

i

, then introduce the transition

(q

0

; "; P

i

); for each word r

1

: : : r

n

, n � 1, introduce n�1 new states q

1

; : : : ; q

n�1

and transitions (q

��1

; r

�

; q

�

) for 1 � � < n, and (q

n�1

; r

n

; P

i

).

Now, let A be the non-deterministic �nite automaton without "-transitions

obtained from A

�

. The automaton A

�

has size polynomial in the size of M

j

,

1 � j � `; K

i

; and A

T

. So, the size of A

�

, and hence of A, is polynomial in

the size of D and T . Further, it is not hard to see that L(A

�

) = L, and thus,

L(A) = L.

Using the automata A and A

C

, we can decide validity of the equation

L

C

(P

i

) =

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

as follows:

1. Testing L

C

(P

i

) � L(A) can be done in polynomial time by just testing

w 2 L(A) for all w 2 L

C

(P

i

).

2. Conversely, testing L(A

C

) � L(A) is reduced to testing L(A

C

)\L(A) = ;.

Since A

C

is a deterministic automaton, an automaton B with L(B) =

L(A

C

) \ L(A) can be determined in polynomial time. For a �nite au-

tomaton B the emptiness problem can be decided in time polynomial in

the size of B.

This shows that equivalence of C and D w.r.t. T can be decided in polynomial

time. 2

Rewriting as a formal language problem

With the help of the automata-theoretic characterization of subsumption, the

rewriting problem in FL

0

can be translated into a formal language problem.

Let (C; T) be an instance of the FL

0

rewriting problem, let P

1

; : : : ; P

k

be the

available primitive concepts, and let A

1

; : : : ; A

`

be the concept names de�ned in

8

T . We assume that C has the normal form C � 8L

1

:P

1

u : : :u8L

k

:P

k

, and that

the �nite automaton A

T

corresponding to T is de�ned as described before, i.e.,

we have A

j

� 8L

A

T

(A

j

; P

1

):P

1

u : : :u8L

A

T

(A

j

; P

k

):P

k

. Then, the FL

0

-concept

description D is a rewriting of C using the TBox T i� its normal form is of the

form

D � 8M

1

:A

1

u : : : u 8M

`

:A

`

u 8K

1

:P

1

u : : : u 8K

k

:P

k

;

where the assignment X

1

:= M

1

; : : : ; X

`

:= M

`

; Y

1

:= K

1

; : : : ; Y

k

:= K

k

solves

the system of formal language equations

L

i

= X

1

�L

A

T

(A

1

; P

i

) [: : : [X

`

�L

A

T

(A

`

; P

i

) [Y

i

(1 � i � k): (1)

Example 8 (Example 4 and 6 continued) Consider the FL

0

-concept de-

scription C de�ned in Example 4 and the FL

0

-TBox T introduced in Example 6

again.

The rewriting problem (C; T) translates into the system of formal language

equations

f"; rrg = X

1

�f"g [X

2

�frg [X

3

�frrg [Y

1

;

frrg = X

1

�frrg [X

2

�; [X

3

�frrg [Y

2

:

It is easy to see that the assignment X

1

:= f"g; X

2

:= frg and X

3

:= Y

1

:=

Y

2

:= ; solves this system. This solution yields the rewriting D := A

1

u 8r:A

2

.

There are also other solutions of the system; e.g., X

1

:= X

2

:= X

3

:= ; and

Y

1

:= f"; rrg; Y

2

:= frrg is also a solution, which yields the trivial rewriting

D

0

:= C.

If we compare the two rewritings D and D

0

given in Example 8, then intu-

itively, D is a better rewriting than D

0

since it is shorter, and thus better to read

and comprehend. This leads us to the de�nition of minimal rewritings. There

are di�erent partial orderings on FL

0

-concept descriptions that are appropriate

for measuring the quality of a rewriting w.r.t. size and readability.

De�nition 9 (Partial orderings on FL

0

-concept descriptions) Let C;D

be FL

0

-concept descriptions. Further, let C

0

= 8L

1

:A

1

u: : :u8L

m

:A

m

u8M

1

:P

1

u

: : :u8M

n

:P

n

be the normal form of C where the A

j

denote the de�ned concepts

and the P

i

the primitive concepts in C.

First, we de�ne the size of a set L of words as kLk :=

P

w2L

(jwj+1) where

jwj denotes the length of the word w.

3

Now, we de�ne di�erent sizes kCk

1

2 IN and kCk

2

2 IN� IN as follows:

1. kCk

1

:= kC

0

k

1

:=

P

1�i�n

kL

i

k

2. kCk

2

:= kC

0

k

2

:= (

P

1�i�n

kM

i

k;

P

1�i�m

kL

i

k)

Further, we de�ne

3

The +1 for each w 2 L corresponds to the size of the concept name occuring in the value

restriction 8L:P in C

0

.

9

1. C �

1

D i� kCk

1

� kDk

1

where � denotes the linear ordering on IN, and

2. C �

2

D i� kCk

2

� kDk

2

where � denotes the lexicographic ordering on

IN� IN.

If one is interested in a rewriting that is as small as possible, then one

must compare concept descriptions by �

1

. Comparing concept descriptions by

�

2

assures that the number of occurences of primitive concepts in a minimal

rewriting is minimal and hence the reuse of de�ned concepts is maximal. In

other words, whenever there exists a total rewriting, the minimal rewriting is

total (because for a total rewriting D, the �rst component in kDk

2

is 0).

The following example shows that the two orderings�

1

and�

2

yield di�erent

minimal rewritings D

1

, D

2

. Here, di�erent means that the concept descriptions

D

1

and D

2

are not equivalent (though they are still equivalent w.r.t. T).

Example 10 (Example 4 and 6 continued) Let C and T be de�ned as in

Example 4 and Example 6, respectively.

Now, consider the FL

0

-concept descriptions D

1

:= P u A

3

and D

2

:= A

1

u

8r:A

2

.

It is not hard to see that D

i

is a rewriting of C using T that is minimal

w.r.t. �

i

i = 1; 2.

But D

1

is not a minimal rewriting w.r.t. �

2

, because kD

2

k

2

= (0; 2) �

(1; 1) = kD

1

k

2

.

Also, D

2

is not a minimal rewriting w.r.t. �

1

, because kD

1

k

1

= 2 � 3 =

kD

2

k

1

.

We now show that the decision problem induced by the minimal rewrit-

ing problem is NP-complete (for both orderings introduced in De�nition 9).

NP-hardness is shown using a straight forward reduction of the NP-complete

problem SETCOVER [9].

Theorem 11 Let C be an FL

0

-concept description and T an FL

0

-TBox. Fur-

ther, let � 2 IN and (�

1

; �

2

) 2 IN� IN.

Deciding wether there exists a rewriting D of C using T with size kDk

1

� �

respectively kDk

2

� (�

1

; �

2

) is NP-complete.

Outline of the proof We will prove Theorem 11 as follows: First, we reduce

the problem of solving the k formal language equations (1) to solving a single

formal language equation (cf. Lemma 12). Then, we will determine a maximal

solution of the single equation (cf. Lemma 13). Unfortunately, determining the

maximal solution may take time exponential in the size of the TBox. Thus, in

order to obtain a non-deterministic polynomial algorithm, we introduce a set

of possible solutions that (a) contains all solutions (in particular, the maximal

solution), and (b) allows for a polynomial, non-deterministic step for choosing a

possible solution. For such a possible solution, deciding wether it is a solution of

size � � resp. � (�

1

; �

2

) takes time polynomial in the size of C and T . Hence,

we obtain an NP-decision algorithm.

10

In order to show that the problem is NP-hard, we will give a polynomial

reduction of the NP-complete problem SETCOVER to the minimal rewriting

decision problem.

Proof that the problem is in NP For a language L and a word w we de�ne

L � w := fvw j v 2 Lg and L � w

�1

:= fv j vw 2 Lg. For two languages L

1

; L

2

we de�ne L

1

� L

2

:= fvw j v 2 L

1

and w 2 L

2

g.

The system of formal language equations (1) can be transformed equivalently

into a single equation as follows: Let R

1

; : : : ; R

k

be new role names not occuring

in C and T . For convenience, let

S

0

:=

[

1�i�n

L

C

(P

i

) �R

i

and

S

j

:=

[

1�i�n

L

A

j

(P

i

) �R

i

for 1 � j � m:

Using these abbreviations, we can rewrite the system of equations (1) by the

single equation

S

0

=

[

1�j�`

(X

j

� S

j

) [

[

1�i�k

(Y

i

� R

i

): (2)

Lemma 12 The assignment X

1

:= M

1

; : : : ; X

`

:= M

`

; Y

1

:= K

1

; : : : ; Y

k

:=

K

k

solves the system of formal language equations (1) i� it solves the formal

language equation (2).

Proof: \=)" Let (M

j

)

1�j�m

; (K

i

)

1�i�k

be a solution of (1). We have

L

C

(P

i

) =

[

1�j�m

M

j

� L

A

j

(P

i

) [K

i

for all 1 � i � k. This implies

L

C

(P

i

) � R

i

= (

[

1�j�m

M

j

� L

A

j

(P

i

) [K

i

) �R

i

for all 1 � i � k and hence

[

1�i�k

L

C

(P

i

) � R

i

=

[

1�i�k

(

[

1�j�m

M

j

� L

A

j

(P

i

)) � R

i

[

[

1�i�k

K

i

�R

i

:

It remains to show

[

1�i�k

(

[

1�j�m

M

j

� L

A

j

(P

i

)) � R

i

=

[

1�j�m

M

j

�

[

1�i�k

L

A

j

(P

i

)) � R

i

:

\�" Let w 2

S

1�i�k

(

S

1�j�m

M

j

�L

A

j

(P

i

))�R

i

. There exist i

0

; j

0

and v

1

2M

j

0

,

v

2

2 L

A

j

0

(P

i

0

) such that w = v

1

v

2

R

i

0

. This implies

w 2 M

j

0

� L

A

j

0

(P

i

0

) � R

i

o

� M

j

0

�

[

1�i�k

L

A

j

(P

i

)) � R

i

�

[

1�j�m

M

j

�

[

1�i�k

L

A

j

(P

i

)) � R

i

:

11

\�" Let w 2

S

1�j�m

M

j

�

S

1�i�k

L

A

j

(P

i

)) � R

i

. There exist i

0

; j

0

and

v

1

2M

j

0

, v

2

2 L

A

j

0

(P

i

0

) such that w = v

1

v

2

R

i

0

. This implies

w 2 M

j

0

� L

A

j

0

(P

i

0

) �R

i

o

� (

[

1�j�m

M

j

� L

A

j

(P

i

0

)) � R

i

0

�

[

1�i�k

(

[

1�j�m

M

j

� L

A

j

(P

i

)) � R

i

:

\(=" We show that if (M

j

)

j

, (K

i

)

i

is not a solution of (1), then it is also not

a solution of (2).

Assume (M

j

)

j

, (K

i

)

i

is not a solution of (1), i.e., there exists 1 � i

0

� k

such that L

i

0

6=

S

1�j�m

M

j

� L

A

j

(P

i

0

). We have to consider two cases:

1. w 2 L

i

0

and w 62

S

1�j�m

M

j

� L

A

j

(P

i

0

) [K

i

0

. Then we have wR

i

0

2

S

1�i�n

L

C

(P

i

) � R

i

, but

w 62

[

1�j�m

M

j

� L

A

j

(P

i

0

) [K

i

0

=) wR

i

0

62

[

1�j�m

M

j

� L

A

j

(P

i

0

) [K

i

0

) �R

i

0

=) wR

i

0

62

[

1�i�k

(

[

1�j�m

M

j

� L

A

j

(P

i

) [K

i

) �R

i

;

because R

i

0

6= R

i

for i 6= i

0

and R

i

62 � for all i. In the �rst part of the

proof, we have already shown that

S

1�i�k

(

S

1�j�m

M

j

� L

A

j

(P

i

)) � R

i

=

S

1�j�m

M

j

�

S

1�i�k

L

A

j

(P

i

)) �R

i

. This implies that (M

j

)

j

, (K

i

)

i

is also

not a solution of (2).

2. w 62 L

i

0

and w 2

S

1�j�m

M

j

�L

A

j

(P

i

0

)[K

i

0

. As before, it follows wR

i

0

2

S

1�j�m

M

j

S

1�i�k

(L

A

j

(P

i

) [K

i

) � R

i

), but wR

i

0

62 L

i

0

R

i

0

. Further,

wR

i

0

62 L

i

0

R

i

0

, because R

i

0

6= R

i

for i 6= i

0

and R

i

62 � for all i. Hence,

wR

i

0

62

S

1�i�k

L

i

� R

i

, and (M

j

)

j

, (K

i

)

i

is not a solution of (2). 2

Lemma 13 For a given FL

0

-concept description C in normal form and an

FL

0

-TBox T let S

0

and S

j

, 1 � j � ` be de�ned as before. Further, let

M

j

:=

\

w2S

j

(S

0

� w

�1

) for 1 � j � `, and

K

i

:= L

C

(P

i

) for 1 � i � k:

The assignment X

j

:=M

j

for 1 � j � ` and Y

i

:= K

i

for 1 � i � k

1. satis�es the formal language equation (2), and

2. for each solution M

0

1

; : : : ;M

0

`

;K

0

1

; : : : ;K

0

k

of (2) we have M

0

j

�M

j

for all

1 � j � ` and K

0

i

� K

i

for all 1 � i � k.

Proof:

12

1. By de�nition of M

j

, 1 � j � `, and K

i

, 1 � i � k, we have

S

0

�

[

1�j�`

(M

j

� S

j

) [

[

1�i�k

(K

i

� R

i

):

By de�nition of K

i

, 1 � i � k, we have

S

0

�

[

1�i�k

(K

i

� R

i

)

�

[

1�j�`

(M

j

� S

j

) [

[

1�i�k

(K

i

� R

i

):

2. Assume that there exists w

0

such that w

0

2M

0

j

nM

j

for some j 2 f1; : : : ; `g.

We have M

j

=

T

w2S

j

S

0

� w

�1

. So, w

0

62 M

j

implies that there exists

w 2 S

j

such that w

0

62 S

0

� w

�1

. Let w = w

1

R

i

, R

i

2 fR

1

; : : : ; R

k

g.

We get w

0

w

1

R

i

62 S

0

. This is a contradiction to S

0

=

S

1�j�`

(M

j

� S

j

) [

S

1�i�k

(K

i

�R

i

).

Finally, assume that K

0

i

6� K

i

for some i 2 f1; : : : ; kg. As before, this

yields a contradiction to S

0

=

S

1�j�`

(M

j

� S

j

) [

S

1�i�k

(K

i

�R

i

). 2

Note that in order to determine the maximal solution for a given concept

description C and a given TBox T , the sets L

A

T

(A

j

; P

i

) must be explicitly

computed, i.e., the TBox must be unfolded. Since the unfolded TBox may

be of size exponential in the size of T [10], the resulting languages may be of

exponential size.

So since we are interested in a non-deterministic polynomial algorithm, we

cannot use the maximal solution as a starting point for guessing a possible

solution. In order to ensure that this �rst step takes time polynomial in the

size of C and T , we have to choose an appropriate set of possible solutions. In

the second step, we then have to test wether the possible solution really is a

solution of size � k (� (k

1

; k

2

), respectively).

Consider the maximal solution again. We have

M

j

� fv 2 N

�

R

j exists w 2 N

�

R

: vw 2 S

0

g (1 � j � `); (3)

K

i

� fv 2 N

�

R

j exists w 2 N

�

R

: vw 2 S

0

g (1 � i � k): (4)

For convenience, let

X := fv 2 N

�

R

j exists w 2 N

�

R

: vw 2 S

0

g

be the set of all pre�xes of words in S

0

. Obviously, the size of X is polynomial in

the size of S

0

and hence in the size of C. Thus, we can guess a possible solution

(M

0

1

; : : : ;M

0

`

;K

0

1

; : : : ;K

0

k

) where M

0

j

;K

0

i

� X for all 1 � j � ` and 1 � i � k

in polynomial time by just deciding for each M

0

j

(K

0

i

) and each w 2 X wether

w 2 M

0

j

(w 2 K

0

i

) or not. By Lemma 13 and (3) we get that each solution can

be obtained this way.

The non-deterministic decision algorithm works as follows:

13

1. Guess the sets M

0

j

� X , K

0

i

� X , i.e., determine a possible solution.

2. Test wether the FL

0

-concept description induced by M

0

j

, K

0

i

is equivalent

to C w.r.t. T .

3. Test wether the FL

0

-concept description induced by M

0

j

, K

0

i

has size � �

(resp. � (�

1

; �

2

)).

Return \yes", which means that there exists a rewriting with size � � (�

(�

1

; �

2

)), if there exists a successful computation for the steps 1{3, i.e., there

exist sets M

0

j

, K

0

i

such that the induced FL

0

-concept description is equivalent

to C w.r.t. T and has size � � (� (�

1

; �

2

)). Otherwise, return \no".

Obviously, this algorithm answers \yes" i� there exists a rewriting D of C

using T with kDk � � (� (�

1

; �

2

)). It remains to show that the steps 1{3 can

be executed in polynomial time.

The �rst step can be executed in polynomial time, because m; k, and X are

polynomial in the size of C and T . By Theorem 7 we get that C �

T

D can

be decided in time polynomial in the size of C and T . Finally, the size of the

induced FL

0

-concept description D is polynomial in the size of C and T , so

kDk

1

� � (kDk

2

� (�

1

; �

2

)) can also be decided in polynomial time.

Proof of NP-hardness We will use a reduction of the NP-complete problem

SETCOVER. An instance of the SETCOVER problem is of the following form

[9]:

Given: A �nite set U = fu

1

; : : : ; u

n

g, a family F of subsets of U , F = fF

i

�

U j 1 � i � mg, and a number k 2 IN.

Question: Does there exist a subset fF

i

1

; : : : ; F

i

k

g of F of size � k such that

F

i

1

[: : : [F

i

k

= U?

Obviously, we can restrict our attention to instances of the problem where (a)

at least F yields a covering of U , i.e., F

1

[: : : [F

n

= U , and (b) k � n.

For such an instance (U ;F ; k) of the SETCOVER problem, we consider U

as a set of role names and de�ne an FL

0

-concept description by C

U

:= 8U :P .

Further, we de�ne an FL

0

-TBox by T

F

:= fA

j

:

= 8F

j

:P j 1 � j � mg, where P

denotes a single primitive concept. Obviously, C and T are polynomial in the

size of (U ;F ; k).

We will now show that the following equivalences hold:

1. There exists a minimal rewriting D of C

U

using T

F

with kDk

1

� k i�

there exists a covering of U with k sets F

i

1

; : : : ; F

i

k

from F .

2. There exists a minimal rewriting D of C

U

using T

F

with kDk

2

� (0; k) i�

there exists a covering of U with k sets F

i

1

; : : : ; F

i

k

from F .

The maximal rewriting of C

U

using T

F

is of the form D = 8f"g:A

1

u : : : u

8f"g:A

m

u 8U :P . Hence, each rewriting of C

U

using T

F

is of the form D

0

=

14

8M

1

:A

1

u : : : u 8M

m

:A

m

u 8K:P such that M

j

= ; or M

j

= f"g, K � U , and

M

1

[: : : [M

m

[K = U .

Assume that F

i

1

; : : : ; F

i

k

is a covering of U of size k. Without loss of gener-

ality let i

j

= j for 1 � j � k. Then D

0

:= A

1

u : : : u A

k

is a rewriting of C

U

,

because L

C

U

(P) = U = F

1

[: : : [F

k

= L

A

1

(P) [: : : [L

A

k

(P). Further, we

have kD

0

k

1

= k and kD

0

k

2

= (0; k).

Conversely, assume thatD is a rewriting of C

U

using T

F

,D = u

1�i�m

8M

i

:A

i

u

8K:P .

1. Let D be minimal w.r.t. k � k

1

and kDk

1

� k. We show that M = ;. This

implies that D is of the form A

i

1

u : : : u A

i

k

and hence, fF

i

1

; : : : ; F

i

k

g is

a covering of U of size � k.

Assume K 6= ;. Let w 2 K. Then w 62

S

M

i

=f"g

F

i

. Otherwise, D

0

:=

u

1�i�m

8M

i

:A

i

u 8(K n fwg):P would also be a rewriting of C

U

with

kD

0

k

1

= kDk

1

� 2 < kDk

1

in contradiction to the minimality of D.

Now, let E := fF

i

2 F j M

i

= ;g. Then, for all F

j

2 E we have w 62 F

j

.

Otherwise, D

0

:= u

1�i�m

8M

i

:A

i

u A

j

u 8(K n fwg):P would also be a

rewriting of C

U

with kD

0

k

1

= kDk

1

+ 1 � 2 < kDk

1

in contradiction to

the minimality of D.

So, w 62

S

M

i

=f"g

F

i

[

S

M

i

=;

F

i

=

S

1�i�m

F

i

. Since w 2 L

D

(P) and

by assumption

S

1�i�m

F

i

= U = L

C

(P), this yields a contradiction to

C �

T

D.

Thus, we get K = ; and hence, D = A

i

1

u : : : u A

i

k

.

2. Let D be minimal w.r.t. k � k

2

and kDk

2

� (0; k).

By de�nition of k � k

2

we get that K = ;. Hence, D = A

i

1

u : : :uA

i

k

, and

fF

i

1

; : : : ; F

i

k

g is a covering of U of size � k.

This completes the proof of NP-hardness of the decision problem induced by

the minimal rewriting problem, and hence the proof of Theorem 11. 2

It should be noted that, in the formulation of Theorem 11, we do not assume

that the TBox T is unfolded. Since it is well-known [10] that the equivalence

problem w.r.t. (not unfolded) FL

0

-TBoxes is a co-NP-complete problem, one

might conjecture that this is the source of complexity for the rewriting problem.

This is not true, however: on the one hand, the reduction of SETCOVER to

the rewriting problem generates unfolded TBoxes; on the other hand, our NP-

algorithm is based on the fact that testing whether a candidate rewriting D is

equivalent to C can be realized in polynomial time, even if T is not assumed to

be unfolded.

Consider the proof of NP-hardness again. The reduction of an instance

(U ;F ; k) of the NP-complete problem SETCOVER is based on representing (i)

the set U by the concept description C

U

that has to be rewritten, and (ii) the

family of subsets F by de�ned concepts in the TBox T

F

. Consequently, in the

resulting minimal rewriting problem, the size of the concept description as well

15

as the TBox variates in the size of (U ;F ; k). Moreover, if we assume the TBox

to be �xed, then this reduction cannot be applied.

So far, we could not determine the exact complexity of the minimal rewriting

decision problem for a �xed TBox. Obviously, the NP-algorithm also works in

the case of a �xed TBox, i.e., the problem is in NP. But we could neither prove

that in this restricted case the problem becomes tractable, nor that it is still

NP-hard.

Minimal rewritings w.r.t. the role based normal form

In Theorem 11 we consider FL

0

-concept descriptions in the concept-based nor-

mal form. For a given FL

0

-concept description C the corresponding concept-

based normal form C

c

can be obtained by exhaustively applying the following

rule:

8r:(D u E) �! 8r:D u 8r:E:

If we apply the above rule from right to left, we obtain a role-based normal

form C

r

of C (as known from the structural subsumption algorithm used in

the classic-system [8]). The size of a concept description in role-based normal

form is given by the sum of the number of 8-constructors and the number of

occurences of concept names.

4

For example, the role-based normal form of the FL

0

-concept C from our

example is given as C

r

:= P u 8r:8r:(P uQ), and kC

r

k = 5.

A comparison of the concept-based normal form C

c

and the role-based nor-

mal form C

r

reveals that common pre�xes occuring in languages L

C

c

(P) and

L

C

c

(Q) are shared in C

r

. In our example, the subconcepts 8r:8r:P and 8r:8r:Q

yield the word rr in L

C

c

(P) and L

C

c

(Q) and hence, the 8-constructors are

counted twice in kC

c

k. In C

r

, however, there is only one subconcept beginning

with 8r:8r:� and hence, the 8-constructors are counted only once in kC

r

k. In

general, it is kC

r

k � kC

c

k for all FL

0

-concept descriptions C.

For the minimal rewriting problem, this means that we have to distinguish

between concept-based minimal rewritings, i.e., minimal rewritings in a concept-

based normal form, and those in role-based normal form. More precisely, it

turned out that the role-based normal form of a concept-based minimal rewriting

in general is not a role-based minimal rewriting and vice versa.

Example 14 Consider the concept description

C := 8r:8r:8r:(P

1

u P

2

u P

3

u P

4

u 8r:(P

1

u P

2

));

and the TBox

T := fA

1

:

= 8r:8r:P

1

; A

2

:

= 8r:8r:P

2

; A

3

:

= P

3

u P

4

;

A

4

:

= P

1

u P

2

u 8r:P

1

; A

5

:

= 8r:P

2

;

A

6

:

= 8r:8r:8r:(P

1

u P

2

)g:

4

Here, we only consider the size of the concept term. Note that one can also de�ne the

size of a concept description in role-based normal form that distinguishes between primitive

and de�ned concepts.

16

The unique concept-based minimal rewriting is given as

D

c

:= 8frgA

1

u 8frg:A

2

u 8frg:A

6

u 8frrrg:A

3

;

and the unique role-based minimal rewriting is given as

D

r

:= 8r:8r:8r:(A

3

u A

4

uA

5

):

Now, the role-based normal form of D

c

is given as

D

cr

:= 8r:(A

1

u A

2

u A

6

u 8r:8r:A

3

);

and the concept-based normal form of D

r

is given as

D

rc

:= 8frrrg:A

3

u 8frrrg:A

4

u 8frrrg:A

5

:

Obviously, we have kD

c

k = 10 < 12 = kD

rc

k and kD

r

k = 6 < 7 = kD

cr

k.

The above example shows that computing a role-based minimal rewriting

cannot be done by just computing the role-based normal form of a concept-

based minimal rewriting. But for the induced decision problem, we can re-use

the decision algorithm from the concept-based case.

Formally, the decision problem induced by the minimal rewriting problem

for FL

0

-concept descriptions in role-based normal form is given as follows:

Given: an FL

0

-concept description C, an FL

0

-TBox T , and a

number � 2 IN.

Question: Does there exist a rewriting D in role-based normal form

of C using T of size kDk � �?

This problem can be decided in non-deterministic polynomial time as follows:

As shown in the proof of Theorem 11, the concept-based normal form of every

rewriting of C using T is of the form

8M

0

1

:A

1

u : : : u 8M

0

m

:A

m

u 8K

0

1

:P

1

u : : : u 8K

0

k

:P

k

;

where M

0

j

resp. K

0

i

are subsets of the sets M

j

, K

i

occuring in the maximal

solution (see Lemma 13). So, in order to decide wether there exists a rewriting

in role-based normal form of size � �, we only have to modify the test on the

size of the possible solution:

1. Guess the sets M

0

j

� X , K

0

i

� X , i.e., determine a possible solution (see

proof of Theorem 11).

2. Test wether the FL

0

-concept description induced by M

0

j

, K

0

i

is equivalent

to C (in polynomial time, see Theorem 7).

3. Compute the role-based normal form D of the FL

0

-concept description

induced by M

0

j

, K

0

i

, and test wether kDk � �.

17

Return \yes", which means that there exists a rewriting in role-based normal

form with size � �, if there exists a successful computation of the steps 1{3,

i.e., there exist sets M

0

j

, K

0

i

such that the induced FL

0

-concept description is

equivalent to C w.r.t. T and has size � �. Otherwise, return \no".

Obviously, this algorithm answers \yes" i� there exists a rewriting D in

role-based normal form of C using T with kDk � �. Since the steps 1{3 can

be executed in polynomial time, this shows that the problem can be decided in

non-deterministic polynomial time.

4 Conclusion and future work

In this work, we �rst introduced a general framework for rewritng concept de-

scriptions using a TBox. For the problem of computing a minimal rewriting

in FL

0

of an FL

0

-concept description using an FL

0

-TBox, we obtained the

following complexity result: For a given TBox, the minimal rewriting decision

problem is NP-complete.

In future work, we will consider the (minimal) rewriting problem for more

expressive DLs. Motivated by the results in [2] and [4], we will extend the

results to (i) DLs that allow for number restrictions, and (ii) DLs that allow for

existential restrictions.

References

[1] F. Baader. Using automata theory for characterizing the semantics of termi-

nological cycles. Annals of Mathematic and Arti�cial Intelligence, 18:175{

219, 1996.

[2] F. Baader and R. K�usters. Computing the least common subsumer and the

most speci�c concept in the presence of cyclic ALN -concept descriptions. In

O. Herzog and A. G�unter, editors, Proceedings of the 22nd Annual German

Conference on Arti�cial Intelligence (KI'98), volume 1504 of Lecture Notes

in Computer Science, pages 129{140, Bremen, Germany, 1998. Springer{

Verlag.

[3] F. Baader, R. K�usters, and R. Molitor. Structural subsumption considered

from an automata theoretic point of view. In Proceedings of the 1998

International Workshop on Description Logics (DL'98), Trento, Italy, 1998.

[4] F. Baader, R. K�usters, and R. Molitor. Computing least common subsumer

in description logics with existential restrictions. In Proceedings of the 16th

International Joint Conference on Arti�cial Intelligence 1999 (IJCAI'99),

1999. To appear.

[5] F. Baader and P. Narendran. Uni�cation of concept terms in description

logics. In H. Prade, editor, Proceedings of the 13th European Conference on

18

Arti�cial Intelligence (ECAI-98), pages 331{335. John Wiley & Sons Ltd,

1998.

[6] F. Baader and U. Sattler. Knowledge representation in process engineering.

In Proceedings of the 1996 International Workshop on Description Logic

(DL'96), 1996.

[7] C. Beeri, A.Y. Levy, and M.-C. Rousset. Rewriting queries using views in

description logics. In Proceedings of the 16th ACM Symposium on Princi-

ples of Database Systems, Tucson, Arizona, 1997.

[8] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm

for subsumption in the classic description logic. Journal of Arti�cial

Intelligence Research, 1:277{308, 1994.

[9] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco, 1979.

[10] B. Nebel. Terminological reasoning is inherently intractable. Journal on

Arti�cial Intelligence, 43(2):235{249, 1990.

[11] U. Sattler. Terminological knowledge representation systems in a process

engineering application. PhD thesis, RWTH Aachen, 1998.

