
\What's not in a name?"

Initial Explorations of a Structural Approach to Integrating Large

Concept Knowledge-Bases

Alex Borgida

Dept. of Computer Science

Rutgers University

Ralf K�usters

Theoretical Computer Science

RWTH Aachen

1 Introduction

Given two ontologies/terminologies | collections of terms and their \meanings" as used in some

universe of discourse (UofD), our general task is to integrate them into a single ontology, which

captures the meanings of the original terms and their inter-relationships.

This problem is motivated by several application scenarios:

� First, such ontologies have been and are being developed independently by multiple groups

for knowledge-based and other applications. Among others, medicine is an area in which such

ontologies already abound [RZStGC, CCHJ94, SCC97].

� Second, a traditional step in database design has been so-called \view integration": taking

the descriptions of the database needs of di�erent parts of an organization (called \external

views"), and coming up with a uni�ed central schema (called the \logical schema") for the

database [BLN86]. Although the database views might be expressed in some low-level for-

malism, such as the relational data model, one can express the semantics (meta-data) in a

more expressive notation, which can be thought of as an ontology. Then, the integration of

the ontologies can guide the integration of the views.

� Finally, databases and semistructured data on the internet provide many examples where

there are multiple, existing heterogeneous information sources, for which uniform access is

desired. To achieve this goal, it is necessary to relate the contents of the various information

sources. The approach of choice has been the development of a single, integrated ontology,

starting from separate ontologies capturing the semantics of the heterogeneous sources[Kas97,

CDGL

+

98].

Of course, we could just take the union of the two ontologies, and return the result as the

integration. However, except for the case when the ontologies had absolutely nothing to do with

each other, this seems inappropriate. Therefore part of our task will to be explore what it means

to \integrate" two ontologies. To help in this, we will in fact assume here that the ontologies are

describing exactly the same aspects of the universe of discourse (UofD), leaving for a separate paper

the issue of dealing with partially overlapping ontologies.

So why wouldn't the two ontologies be identical when modeling the same UofD? The answer is

that there are multiple ways of modeling the same situation. For example

1

� choice of identi�ers: identi�ers for the same UofD term may be simple morphological variants

(e.g. PATIENT vs. PATIENTS), synonymous (e.g., DOCTOR vs. PHYSICIAN), or related, but

not synonymous terms (OFFICE-VISIT vs. APPOINTMENT).

� choice of modeling detail: (i) an address might be modeled as a single string or, in greater

detail, as an object with attributes street, city, state etc.; (ii) the o�ce phone number of an

employee may be modeled directly as an attribute o�ce-phone, or the employee might have

an associated o�ce (attribute hasO�ce), which in turn has its own phone value.

� rei�cation: the relationship between a patient and her doctor might be modeled by the role

treatedBy, or there might be a new concept, TREAT, with functional attributes who (a doctor)

and whom (a patient).

Therefore, a central part of ontology integration is obtaining some (maximal?) collection of

assertions that relate the terms in them. (Another part is eliminating redundancies.) A simple

form of such assertions is a mapping from single identi�ers in one ontology to expressions in the

other ontology which correspond to the same notion | an integration mapping. (If the ontologies

are not modeling exactly the same UofD because di�erent levels of abstraction are allowed, then

the integration mapping would indicate additional relationships, like hypernomy.)

The above problems and ideas are not new, as we shall see in the next section. One distin-

guishing aspects of the present work is that the terminology will be assumed to consist of concept

descriptions in a description logic (DL) [Bor95] { a formalism that allows semantic relationships to

be captured using complex nested structures, de�nitions and attribute hierarchies |unlike previ-

ously used formalisms such as the relational, ER, and OO data models. A second di�erentiating

feature is the assumption that the ontologies are large (containing on the order of thousands of

terms), and possibly in di�erent languages.

This means that we cannot ask the user to generate interschema assertions on their own, because

the KBs are too large. Therefore our eventual goal is to provide tools which ask users to verify

certain highly plausible inter-schema relationships. Research on such tools has, in the past, relied

heavily on the matching of identi�ers | a not unreasonable heuristic. However, we want to �rst

understand to what extent ontologies explicate the meaning of their terms independent of the choice

of identi�ers. This is important because to the extent that the meaning of terms is captured purely

formally, an integration mapping might be found automatically.

The present paper therefore looks at formal ways of characterizing ontology integration, specif-

ically integration mappings, and then considers algorithmic aspects of �nding such mappings.

To study the problem empirically, we also carry out experiments with a real ontology { galen

[RZStGC] { containing close to 3000 concepts. In fact, we will set up an idealized integration

experiment, where the ontology will be integrated with a copy of itself (in which the identi�ers

have been renamed).

To summarize, this paper can therefore be considered as an investigation into the limits of

automatic ontology integration under idealized circumstances. However, as mentioned earlier, our

long term goal is the development of tools for supporting humans in large-scale ontology integration

under de-idealized circumstances.

2 Related work

The problem of taking two or more pre-existing world-descriptions and merging them into a single,

globally uni�ed one has been considered in several disciplines within computer science. We will

2

review here mostly work that has appeared in the database literature (see [BLN86] for an overview

of early work in this �eld).

We mention from the start that we will be ignoring one issue that has received considerable

attention lately: namely whether the integration should be carried out completely at �rst, gener-

ating a new schema; or whether, due to continuous changes in the original schemas, it is better to

follow a more \loosely-coupled" [Goh96, Kas97, CDGL

+

98] strategy, where the system maintains

inter-ontology links (which can be dynamically changed or discovered), and then uses these during

the access process.

2.1 Database schema integration

Since the early days of the ANSI database design methodology, developers were supposed to obtain

from di�erent stake-holders external views, representing each group's perspective and interest in

the company's UofD. Then, the database designer was supposed to reconcile these into a single

global schema, which supports the activities of the entire enterprise. Clearly, it is essential that all

stake-holders be able to re-derive their own view from the global, integrated schema.

More recently, the development of heterogeneous and federated databases requires the design

of a conceptual schema that can be presented to the user for the purposes of querying, and which

hides the essential independence of the component databases.

The traditional integration methodology, as described in [BLN86] involves 4 steps:

1. Choice of integration strategy.

In the case when more than two schemas are to be merged, some strategy needs to be chosen

for merging them. Choices include various orderings of binary merges, as well as \one-shot"

merges of entire sets of schemas at a time. The binary strategies motivate the potential need

for a non-symmetric \directional" integration operator, since one of the schemas seems more

important (if it was already the result of lots of other integrations).

In this paper, we will consider only the integration of two ontologies.

2. Schema comparison.

This phase requires determining correspondences between the elements of the two schemas.

When the correspondences are not the identity relationship, they are traditionally called \con-

icts" (a misnomer, since conict should probably be reserved for irreconcilable di�erences {

logical inconsistencies). Among the conicts, it is traditional to distinguish

� Name conicts, such as homonyms (same identi�er denotes distinct UofD notions), and

synonyms (di�erent identi�ers denoting identical UofD notions).

� Structural conicts, arising because of di�erent ways of modeling the same aspect of

the UofD. The kinds of such conicts depend on the conceptual modeling language, and

considerable work has been devoted to �nding exhaustive catalogs of such conicts for the

relational data model (augmented by various dependencies) and the Entity-Relationship

model (or its extensions).

3. Schema conforming.

One attempts to resolve the previously discovered conicts by �nding an \equivalent" repre-

sentation for one (or both) of the conicting schema elements. There are a variety of notions

of equivalence that have been mentioned in the literature:

� mapping: there is a one-one correspondence between the instances of the two schemas;

3

� behavioural: for every instance of the �rst representation there is a corresponding in-

stance of the second, which gives the same answer to any query;

� transformational: one schema can be obtained from the other through a sequence of

primitive transformations, each of which is, by de�nition, equivalence preserving.

4. Schema merging and restructuring.

After conforming, common concepts are superimposed. In the resulting mixed schema one

than looks for additional relationships between concepts, other than equivalence; these in-

clude various set-based relationships such as containment, compatibility and disjointness of

concepts.

The superimposed schema is then subject to additional transformations in order to capture

these interschema assertions and to eliminate redundancies. In non-relational data models,

this phase normally results in the introduction of new concepts in the IsA or aggregation

hierarchy, which capture the various interschema assertions discovered at the beginning.

The survey of Batini et al [BLN86] (which covered the period up to 1984 or so) was brought

up-to-date to 1992 by Francalanci and Pernici [FP93]. We will not repeat here the material in these

surveys.

Instead, we will concentrate on several special issues that are of interest to us, including di�erent

notions of schema and concept equivalence.

2.2 What is a good integration?

The desired intuitive properties of the integrated schema seem to include

� ability to recover all the information stored under the original schemas;

� \correctness" of the resulting schema: it must satisfy the inherent constraints of the data

model;

� minimality: there should be no redundant elements in the schema; a special case of this

would be the absence of schema elements that can have no instances, because its speci�cation

is equivalent to the concept false.

� the ability to propagate updates from the original schemas to the integrated schema;

� possibly the converse ability to propagate updates from the integrated schema to the (appro-

priate) components;

� naturalness/understandability: a qualitative preference criterion for humans;

In order to explain the various approaches (more or less formal) in the literature, let us assume

in the following that every view schema V, consists of a set of predicates P

V

, and a set of logical

constraints C

V

describing the semantics of these predicates. (Hence, we shall occasionally treat a

schema as a logical theory, with a set of models.) The set of constraints is expressed in a language

dictated by the data model; (e.g., for the relational model, they might be key constraints and

dependencies of some �xed kind).

Integration of information sources is based on the general notion of information capacity intro-

duced by Hull [Hul86]:

4

De�nition 1 The schema W is dominated by V if there is a total 1-1 function f from the models

of W to those of V.

Schema W and V have equivalent information capacity, if they dominate each other.

This de�nition turns out to be an insu�cient basis for expressing the intuitive relationship

between a view and the global schema that dominates it since f can perform too much computation.

Therefore, in general one looks for limitations on f and uses dominance as an auxiliary tool for

integration.

Integration using assertions The most general and appealing form of the view integration

problem is presented by Biskup [BC86], who characterize view integration as a process with

� input: two schemas, V1 and V2, together with a set A of integration assertions (IAs): these

assertions essentially relate the terms in the two views by enforcing complex relationships

between the predicates in the two views. IA are expressed in a second language, the integration

language. (Assumption: identi�ers in V1 and V2 are distinct, to avoid homonym problems.)

� intermediate result: Comb, equal to V 1 [V 2 [A

� output: a schema G, and functions q; q

0

(expressed in a third language | the derivation/query

language), such that q(models(G)) = models(Comb) and models(G) = q

0

(models(Comb));

i.e., each view state/model can be obtained from the state of the global schema, and (con-

versely), all states of the global schema correspond to combinations of the states of the views.

In this case, presumably the minimality condition is folded into the notion of schema, where

there should be no redundancy in the semantic speci�cation C

G

.

Therefore the general task of schema integration has the following steps:

a) gather the interschema assertions;

b) transform Comb, eliminating IAs which are not in the language of schema de�nitions, while

preserving the set of models;

c) minimize the resulting schema

d) specify the query q for deriving the views from the global schema.

The above scheme can then be investigated for a variety of languages for specifying schemas,

IAs, and queries. We summarize here some related research based on the IA language used.

General: Catarci and Lenzerini [CL93] use DLs (see Section 3 for an introduction) for describing

the schema, and also for IAs, allowing arbitrary containment assertions of the form D1 v D2

for this purpose. If schemas can also contain arbitrary containments of the above form, then

there is nothing more to do after step (a), except the standard classi�cation of concepts,

which automatically detects synonyms, including synonyms of the incoherent concept (which

are of course undesirable). More recently, Calvanese et al. [CGL

+

98] have used a much more

expressive description logic for information integration, one which supports n-ary relations

and other features desirable for practical applications.

5

Set theoretic containment: Biskup and Convent [BC86] consider the integration of relational

databases, and use 4 kinds of IAs for pairs of relations in di�erent views; these deal with

identity (possibly using the selection operation), disjointness and containment. For example,

the doctors in one view (identi�ed by their name and phone), correspond to the New Jersey

health providers in the other view (identi�ed by their IdNr)

DOCTOR[name,phone] � Select

state=

0

nj

0

(HEALTH-PROVIDER[IdNr])

Their paper discusses how each of these constraints can be \discharged" by modifying the

schema Comb, and some circumstances under which this cannot be done.

Kashyap et al [MKSI96] describe their information sources using DLs again (a relatively weak

one in this case), and utilize 3 kinds of IAs between identi�ers in two ontologies: synonym,

hyponym and hypernym, indicating equality or containment of intensions.

Identi�er mapping: Johannesson and colleagues [EJ95] restrict IAs to have the form <identi�er

in V1>=<formula in V2>. This restricted form (which has synonyms as a special case) has

the advantage of making the elimination of IAs relatively easy, since all we need to do is

substitute formulas for names in C

2

(and then eliminate redundant constraints).

To summarize, it appears that the form of the IAs allowed depends a lot on the technology

available for eliminating them from Comb (hence on the schema language).

Transformational approaches to integration One approach to integration is to union the

schemas, and then apply restructuring/merging transformations, which are designed to identify

common structures that can be combined in order to simplify the result. For example, the shared

attributes of two entities are factored out into a superclass [DH84].

A di�erent approach is to superimpose/merge constructs judged to be equivalent [LNE89], and

to transform structurally inequivalent representations of the same concept into mergeable forms

[GLN92]. Much of this work has the avor of considering various syntactic combinations of schema

modeling constructs, and �nding conditions under which one can be used to represent the same

real-world notion as the other.

The theoretical foundation for the work on schema transformations is provided by Miller et al

[MIR93], who examine a large variety of such transformations and show that they (should) obey

the rule of information capacity preservation (see De�nition 1).

Unfortunately, little is said anywhere about the formal theory of schema integration using

transformations { what happens after identical schema fragments are superimposed.

3 Concept Description Languages/Logics

DLs have an object-centered ontology. Individual DL objects (which have immutable identity)

may be related to other objects via roles, and may be grouped into concepts. For example, C45 (an

instance of concept CAR) can be related to its maker, Gm (an instance of MANUF and US-CORP)

by having Gm be a �ller of the madeBy attribute. By default, an individual object may be related to

zero or more other objects by an role { e.g., ownedBy for C45 may include several entities, indicating

multiple ownership.

DLs start from atomic/primitive concept and role names, and combine these into composite

concepts using concept constructors. Some concept constructors are the familiar boolean connec-

tives: CARu BLACK-OBJECT denotes the set of cars that are also black objects. Other concept

constructors are more specially suited to represent conceptual models of application domains. For

6

example, one can express cardinality constraints on roles using constructors at-least and at-most:

� 2 ownedBy denotes objects with at least two owners. The values of roles can be restricted in

various ways, including by universal quanti�cation, as in 8ownedBy:PERSON which denotes objects

owned only by persons.

A useful property of DLs is the ability to nest composite descriptions, so that

8madeBy:(MANUF u 8postedPro�t:HIGH)

describes objects made by MANUFs who posted a HIGH pro�t.

Table 1 contains a subset of DL constructors (see, e.g., [Bor95] for other constructors). The

DL called FL

0

allows for the �rst four constructors in the table; FLE extends FL

0

by existential

restrictions. In the sequel, we occasionally use 8r

1

� � � r

n

:C as abbreviation for 8r

1

:8r

2

: � � � 8r

n

:C.

Construct name Syntax Semantics

concept name P P P

I

� �

top-concept > > �

conjunction C uD C

I

\D

I

value restrictions 8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

existential restrictions 9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

primitive negation :P � n P

I

incoherent concept ? ;

atmost restrictions (� n r) fx 2 � j #fy j (x; y) 2 r

I

g � ng

atleast restrictions (� n r) fx 2 � j #fy j (x; y) 2 r

I

g � ng

Table 1: Syntax and semantics of concept descriptions

Formally, the semantics of a concept description is de�ned in terms of an interpretation I =

(�; �

I

). The domain � of I is a non-empty set of individuals and the interpretation function �

I

maps each concept name P to P

I

� � and each role name r to a binary relation r

I

� � � �.

The extension of �

I

to arbitrary concept descriptions is inductively de�ned, as shown in the third

column of Table 1.

DLs can not only express information about a domain of discourse, but are also logics that

provide reasoning services. A basic operation is determining if some concept C is subsumed by

another, D (C v D). For example, CAR u 8ownedBy:PERSON v CAR. Formally, subsumption is

de�ned as follows:

De�nition 2 Let C;D be concept descriptions.

D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

D is equivalent to C (for short C � D) i� C v D and D v C, i.e., C

I

= D

I

for all interpretations

I.

Often, the question of subsumption is asked in the context of so-called schemas which state

necessary (and possibly su�cient) conditions for concept names. A schema S consists of a �nite

set of axioms of the form A v C and A � C where A is a concept name and C is a concept

description; S is called FL

0

-schema if the concept descriptions C are FL

0

-concept descriptions.

Analogously, we de�ne FLE -schemas. A model I of a schema S is an interpretation such that all

axioms are satis�ed, i.e., for all axioms A v C (A � C) in S, I satis�es A

I

� C

I

(A

I

= C

I

). Now,

C is subsumed by D w.r.t. a schema S (S j= C v D for short) i� C

I

� D

I

for all models I of S.

7

The various DLs investigated so far have di�erent kinds of implementations: the most widely

used, including classic[ABM

+

89] and Loom[Mac87], are implemented in a \normalize then com-

pare" approach, which is quite di�erent than standard theorem proving, and relies on �nding a

normal form for descriptions that detects nested incoherences, explicates implicit concepts, and

removes redundancies. A second family of DLs, typi�ed by Crack [BFT95] and iFact [HPSar], is

implemented with tableaux-like refutation theorem proving techniques, albeit ones specially made

for DLs. Recently, several powerful decidable DLs [CGL99] have been identi�ed, which are closely

related to Propositional Dynamic Logic; therefore theorem provers of the later could be used for

reasoning, although the prefered trend is to extend tableaux techniques to handle them.

It is important to note that a key focus of reasoning research, especially for DLs, has been the

trade-o� between expressiveness of a language and the cost of reasoning with it. Speci�cally, there

are detailed results about the decidability and computational complexity of reasoning with various

subsets of constructors (and restrictions of them). For example, classic [ABM

+

89] has a complete

subsumption algorithm that is O(n

3

). Also, recent empirical evidence [HPSar] suggests that special

optimizations make tableaux techniques work quite fast on \normal" knowledge bases, though the

problem is worst-case exponential.

4 A Formal Framework for Integration

Integration mappings, which induce interschema assertions, form the core of our framework. The

goal is to compute such mappings, and then o�er them to the human user as potential interschema

assertions. Integration mappings relate sets of elements in one schema to sets of descriptions in the

other schema. This enables us to take into account more structural information, encoded in the

schemas, than if we were considering only the structural similarity between two elements at a time.

Formally, we express interschema assertions between two schemas S

1

and S

2

over disjoint sig-

natures �

1

and �

2

, respectively. The interschema assertions we are dealing with generally connect

two concepts (roles) C and D, over signatures �1 and �2 respectively. As we saw in Section 2,

traditionally the relationship between C and D is usually in the set fsynononymy, hypernomy, hy-

ponymyg, which can be captured by DL assertions of the form C v D and/or D v C. Antonymy

relations can be captured by assertions of the form CuD � ? (or C v :D, if the language supports

negation/complement).

As we saw earlier, the over-riding intuition is that information in the original schemas should

not be lost when they are integrated. This means that interschema assertions speci�ed by the user

do not reduce the information capacity of the schemas to be integrated; in other words, the set of

models of the views/schemas shall not be reduced by the IAs. We will formalize this by using the

notion of conictfreeness that has been introduced in [BC86] for the relational data model, and

also used in [EJ95] for a FOL data model.

In order to give a formal de�nition of conictfreeness, we need the set of all models I(S) of a

schema S. Furthermore, if �

0

denotes a subset of the signature � of S then we refer to I(S)[�

0

] as

the projection of the models in I(S) to �

0

.

De�nition 3 Let A be a set of interschema assertions between S

1

and S

2

. Then S

1

and S

2

are

conictfree w.r.t. A if and only if I(S

1

[S

2

[A)[�

i

] = I(S

i

) for i = 1; 2.

Since I(S

1

[S

2

[A)[�

i

] � I(S

i

) is always true, the interesting inclusion is in the other direction,

which says that every model I of S

i

can be extended to a model I

0

of S

1

[S

2

[A where extension

means that I

0

and I coincide on the signature of S

i

, say S

1

, but I

0

might have a bigger domain

and in addition interprets the identi�ers of S

2

. Intuitively, the inclusion means that the assertions

8

in A actually describe a certain connection between S

1

and S

2

as opposed to imposing additional

constraints on the schemas. If they restricted the models of S

1

or S

2

then these assertions could

not just be a description of the connections between these two schemas: they would be adding

additional knowledge too! So conictfreeness can be seen as a necessary condition for interschema

assertions to describe relationships between expressions in S

1

and S

2

. Additional knowledge is

added, for example, when relating not necessarily disjoint concepts in S

1

to disjoint concepts in S

2

.

The underlying assumption of our approach is that the schemas contain the complete structural

information expressible in the language of choice . Thus, if concepts in S

1

are not de�ned to be

disjoint, it would not make sense to relate them to disjoint concepts in S

2

.

In the following, we shall concentrate on a subset of IAs, which try to give the meaning of

an identi�er in one of the schemas in terms of descriptions in the other schema. Formally, these

assertions have the form N � C, where N is a concept name (role name) in �

1

, C is a concept

description (role chain) over �

2

. (Symmetrically, we could also give the meaning of identi�ers B,

from �

2

, in terms of S1.) The collection of such assertions can be represented by a partial mapping

� from �

1

into T

�

2

, where �(N) is C. Such a mapping � is called an integration mapping from S

1

into S

2

. Conversely, such a mapping induces a set A

�

of interschema assertions

A

�

:= fN � �(N) j N 2 domain(�)g:

The meaning of a term used lies in the intuition of the user. In the schema, some portion of

the meaning is captured by the name and some by the structure of the concept. The structure of

a concept includes its sub- and super-concepts, the various role restrictions, and its use in other

concept speci�cations.

We suppose that intuitively identical concepts (roles) in di�erent schemas have similar struc-

tures; hence � should map an identi�er on a structurally similar concept (role expression). This

similarity is captured by the notion of conictfreeness, introduced above.

De�nition 4 A partial mapping � from �

1

into T

�

2

is called an integration mapping from S

1

into

S

2

if and only if it is conictfree, i.e., S

1

and S

2

are conictfree w.r.t. A

�

.

In the following, we will discuss the notion of conictfreeness in order to give a feel to what

extent this notion rules out certain unintuitive integration mappings. To this end, we will start

with a very simple example.

Example 5 Let the schemas S

1

and S

2

be de�ned as follows:

S

1

:

HeartClinic v Clinic

PsychiatricClinic v Clinic

S

2

:

Heart v Hospital

Psychiatric v Hospital

Through this example, we can illustrate that an integration mapping must be i) injective, which,

roughly speaking, means that two di�erent concepts in S

1

may not be mapped on the same concept

in S

2

(see below for a formal de�nition) and ii) must preserve the subsumption relationships.

Concerning injectiveness, if � mapped HeartClinic and Clinic on the same concept in S

2

, say

Heart, then such a � would not be conictfree: One could easily come up with a model of S

1

where

HeartClinic and Clinic do not have the same interpretation. In this case, it is not possible to extend

that model to a model of S

2

together with the two assertions induced by �.

9

In order to see that � must preserve subsumption relationships, consider a function � mapping

Clinic on Heart and HeartClinic on Hospital. Then, any model of S

1

where the interpretation of

HeartClinic is a proper subset of the interpretation for Clinic can not be extended to a model of S

2

and the assertions A

�

for �.

These two observation are generalized in the following two lemmas. First, we need to de�ne

injectivity. A mapping � from S

1

into S

2

is called injective if and only if for all identi�ers A;B in

the domain of �, S

2

j= �(A) � �(B) implies S

1

j= A � B.

Lemma 6 Let � be an integration mapping from S

1

into S

2

. Then � is injective.

Proof. Assume that � is not injective. In this case, there are identi�ers A;B such that S

2

j=

�(A) � �(B) but S

1

j= A 6� B. Thus, there exists a model I of S

1

such that A

I

6= B

I

. If I

0

is

an extension of I with I

0

j= S

1

[S

2

[A

�

, then since A � �(A) and B � �(B) are assertions in

A

�

we know �(A)

I

0

6= �(B)

I

0

, which is a contradiction to the fact that I

0

is a model of S

2

and

S

2

j= �(A) � �(B).

The next lemma shows that integration mappings must preserve the subsumption relationships.

Lemma 7 Let � be an integration mapping from S

1

into S

2

. Then, for all C;D 2 T

domain(�)

,

S

1

j= C v D is equivalent to S

2

[A

�

j= C v D (which is equivalent to S

2

j= �(C) v �(D)).

Proof. Assume, there exist C;D 2 T

domain(�)

with S

1

j= C v D but S

2

[A

�

6j= C v D. Then

there exists I j= S

2

[A

�

with C

I

6� D

I

. This means that I cannot be extended to a model I

0

of

S

1

since otherwise we would have C

I

= C

I

0

� D

I

0

= D

I

in contradiction to the assumption.

Conversely, assume that there are C;D 2 T

domain(�)

with S

2

[A

�

j= C v D but S

1

6j= C v D.

Then, there exists a model I of S

1

with C

I

6� D

I

. Analogously to the only-if direction, one can

show that I cannot be extended to a model of S

1

[S

2

[A

�

.

These lemmas show that conictfreeness rules out some unintuitive mappings. Nevertheless,

due to the restricted structural information provided by schemas, it is not possible to rule out all

undesirable mappings. In Section 5, we consider some fundamental limitations of structural infor-

mation, which will be con�rmed by experimental results. As a �rst example, consider Example 5.

The mapping

Clinic 7! Hospital

HeartClinic 7! Heart

PsychiatricClinic 7! Psychiatric

cannot be distinguished from the one that switches the images for HeartClinic and PsychiatricClinic.

Both mappings are conictfree, but only the former is the intended one.

In the remainder of this section we shall take a look at weaker and stronger constraints on

integration mappings.

Weaker constraints on integration mappings

In [EJ95], a weaker version of conictfreeness has been considered, which we will call S

2

-conictfreeness.

De�nition 8 A partial mapping � from �

1

into T

�

2

is called S

2

-conictfree if and only if I(S

1

[

S

2

[A

�

)[�

2

] = I(S

2

).

10

Thus, one only requires that S

2

-models can be extend to models of S

1

[S

2

[A

�

as opposed to

both S

1

- and S

2

-models. As a result, the statement of Lemma 7 has to be restricted as follows.

Lemma 9 Let � be an S

2

-conictfree mapping from S

1

into S

2

. Then, for all C;D 2 T

domain(�)

,

S

1

j= C v D implies S

2

[A

�

j= C v D (which is equivalent to S

2

j= �(C) v �(D)).

In the sequel, we will illustrate that S

2

-conictfreeness is a strictly weaker condition than

(general) conictfreeness. The �rst observation is that mappings from S

1

into S

2

no longer have

to be injective. Referring to Example 5, when mapping all concepts of S

1

onto Hospital in S

2

one

obtains a non-injective S

2

-conictfree mapping.

More generally, one can construct mappings from S

1

into S

2

that intuitively are not related

to S

2

whatsoever: For this, suppose that S

1

is an acyclic FL

0

-schema with axioms of the form

A v C. Furthermore, w.l.o.g. assume that for every concept name A in S

1

there exists at most

one axiom A v N

A

in S

1

. Now, we iteratively expand S

1

until the right hand-side of the axioms

only contain concept names for which there are no axioms that have this concept as left hand-side.

Expanding means that a concept name A occurring somewhere on the right hand-side of an axiom

is replaced by its necessary condition N

A

in case such an axiom A v N

A

exists for A. Let S

0

1

denote the expanded version of S

1

with axioms of the form A v N

0

A

. Finally, let � be a mapping

from S

1

into S

2

where all concept names that do not occur on the left hand-side of some axiom

in S

1

are mapped on some concept description over �

2

and all role names are mapped on some

role chain over �

2

. Furthermore, we de�ne �(A) := �(N

0

A

). Then it is easy to verify that � is an

S

2

-conictfree mapping. This mapping could be constructed regardless of S

2

, and therefore, is not

a useful integration mapping. Note, that in general such a � is not conictfree. An example shall

illustrate the construction.

Example 10 Let S

1

consist of the already expanded axiom

HeartClinic v 8patients:HeartDisease:

and let S

2

be

Heart v 8patients-have:HeartProblems:

The mapping � de�ned by

patients 7! patients-have

HeartDisease 7! Heart

HeartClinic 7! 8patients-have:Heart

is a S

2

-conictfree mapping. However, � is not conictfree since one can construct a model of S

1

such that the interpretation of HeartClinic is a proper subset of the interpretation of its necessary

conditions. Such an interpretation cannot be extended to a model of S

1

[S

2

[A

�

as such a model

would require the interpretation of HeartClinic and its necessary conditions to be equal.

These examples show that S

2

-conictfreeness is a condition too weak to rule out unintended

integration mappings.

11

Stronger constraints on integration mappings

A natural question to ask is whether conictfreeness is su�cient to rule out as many unintuitive

mappings as possible. It turns out that the answer is no. Referring to Example 10, � de�ned by

HeartClinic 7! 8patients-have:Heart

HeartDisease 7! 8patients-have:HeartProblems

patients 7! patients-have

is a conictfree mapping from S

1

into S

2

, although, it is not an intuitive one.

One way of solving these kinds of problems is to impose some kind of \Occam's razor" preference

for simpler explanations, which would lead us to prefer \small" mappings.

Another e�ective way of avoiding unintended mappings is to include additional interschema

assertions speci�ed by the user, and thus provide additional semantics that eliminate unreasonable

mappings.

De�nition 11 An integration mapping � from S

1

into S

2

w.r.t. interschema assertions A has to

satisfy two conditions:

� � is conictfree;

� S

2

[A

�

j= C v D (C w D) for every assertion C v D 2 A (C w D 2 A).

In Example 10, adding the assertion HeartClinic � Heart would only allow for the intuitive

integration mapping from S

1

into S

2

(even together with the schemas de�ned in Example 5).

Of course, the whole point of our tool will be to prompt users with such assertions, rather

than have users �sh them out of thin air; but to the extent that such assertions become available

serendipitously, they should be taken advantage o�.

5 Limitations of Structural Knowledge

The number of possible integration mappings is closely related to the answers of the following

questions: (i) How much structural knowledge is provided by a schema, or in other words, how

much information lies merely in the intuition of the names? (ii) To what degree identi�ers can be

distinguished by their structure?

If there is only little structural information provided for identi�ers by the schema, and thus, their

is not much structural di�erence between the identi�ers, then there are of course more conictfree

mappings than for schemas with rich structural information.

For example consider the following two schemas:

S

1

:

Patient v Human

Employee v Human

Patient v :Employee

S

0

1

:

Patient v Human

Employee v Human

Patient v :Employee

Patient v (� 1 disease)

A total integration mapping from the set of identi�ers of S

1

into itself can not only map Patient

and Employee on themselves but it could also map Patient on Employee and Employee on Patient.

12

There is no structural di�erence between these two concepts. On the other hand, in S

0

1

these

concepts can structurally be distinguished. Therefore, only the �rst integration mapping, namely

the identity mapping is valid for S

0

1

.

In this section, we will formalize some aspects of the limitations of the structural knowledge

that is provided by a schema. For that purpose, we �rst formalize the notion of structurally

indistinguishable identi�ers and then generalize this notion to indistinguishable sets of identi�ers.

5.1 Indistinguishable Identi�ers

Intuitively, there is no structural di�erence speci�ed above between Patient and Employee in S

1

. In

order to formalize this intuition, we need the following notation: For identi�ers i

1

; : : : ; i

n

; i

0

1

; : : : ; i

0

n

and a schema S we de�ne S[i

1

=i

0

1

; : : : ; i

n

=i

0

n

] to be a schema that is obtained from S by simultane-

ously substituting i

j

by i

0

j

for all j = 1; : : : ; n. Thus, for example, S[A=B;B=A] means that A and

B are switched in S.

De�nition 12 Let S be a schema and let A, B be identi�ers in S of the same type, i.e., both are

concept names or both are roles. We call A and B indistinguishable in S (A �

S

B for short) if and

only if S � S[A=B;B=A]; otherwise A and B are called distinguishable.

According to this de�nition Parents and Employee are indistinguishable in S

1

but distinguishable

in S

0

1

.

To state a simple characterization of indistinguishable identi�ers we need the following notation:

For identi�ers i

1

; : : : ; i

n

; i

0

1

; : : : ; i

0

n

2 �, where i

j

is of the same type as i

0

j

, and an interpretation I

over the signature � we de�ne I[i

1

=i

0

1

; : : : ; i

n

=i

0

n

] to be the interpretation that coincides with I on

all identi�ers distinct from i

1

; : : : ; i

n

and that interprets i

1

; : : : ; i

n

by i

0

1

I

; : : : ; i

0

n

I

, respectively.

Lemma 13 Let S be a schema and A, B be identi�ers in S of the same type. Then, A and B are

indistinguishable if and only if I j= S implies I[A=B;B=A] j= S for all interpretations I.

Proof. We �rst assume that A;B are indistinguishable. Now, let I j= S. Since S � S[A=B;B=A]

we know I j= S[A=B;B=A]. But then I[A=B;B=A] j= S.

For the if direction we assume that the right-hand side of the statement is true. Thus, I j= S

implies I[A=B;B=A] j= S. Therefore, I j= S[A=B;B=A]. On the other hand, I j= S[A=B;B=A]

implies I[A=B;B=A] j= S. Then, by the assumption we know that I j= S. This shows that

S � S[A=B;B=A] which means A �

S

B.

As an easy consequence, we can show that A �

S

B is an equivalence relation.

Lemma 14 For a schema S the relation �

S

is an equivalence relation on the set of concept

names/role names in S.

Proof. Obviously, �

S

is reexive and symmetric. It remains to be shown that �

S

is transitive.

Let A;B;C be identi�ers of S of the same type with A �

S

B and B �

S

C. We need to show

A �

S

C. Let I j= S. From A �

S

B and Lemma 13 we know that I[A=B;B=A] j= S. Then,

B �

S

C and Lemma 13 imply (I[A=B;B=A])[B=C;C=B] j= S. Again, employing A �

S

B gives us

((I[A=B;B=A])[B=C;C=B])[A=B;B=A] j= S. Now, observe that ((I[A=B;B=A])[B=C;C=B])[A=B;B=A] =

I[A=C;C=A]. By Lemma 13 this shows that A and C are indistinguishable.

13

In the example above, we have mapped Patient on Patient and Employee on Employee. As already

mentioned, Patient �

S

1

Employee, i.e., Patient and Employee are mapped onto one equivalence class

w.r.t. S

1

. Furthermore, we have seen that one can switch the mapping of Patient and Employee,

which results in mapping Patient on Employee and vice versa. In the following lemma we shall prove

that switching equivalent identi�ers in an integration mapping preserves conictfreeness.

Lemma 15 Let S

1

and S

2

be two schemas with disjoint signatures. Furthermore, let A

0

; B

0

be

identi�ers in S

1

, A;B identi�ers in S

2

, and � an integration mapping from the identi�ers in S

1

into

the identi�ers in S

2

such that �(A

0

) = A, �(B

0

) = B and A �

S

2

B. Then, �

0

obtained from � by

switching the image of A

0

and B

0

, i.e., �

0

(A

0

) = B and �

0

(B

0

) = A is an integration mapping from

S

1

into S

2

.

Proof. Let I j= S

1

. Since � is conictfree, we know that I can be extended to a model I

0

of

S

1

[S

2

[A

�

. Since A;B do not occur in S

1

it follows I

0

[A=B;B=A] j= S

1

. Since by Lemma 6, � is

injective, it follows that in A

�

the concepts A and B only occur in the axioms A

0

� A and B

0

� B.

Thus, by de�nition of �

0

we can conclude I

0

[A=B;B=A] j= A

�

0

. Finally, I

0

[A=B;B=A] j= S

2

since A �

S

2

B. This shows that there is an extension I

0

[A=B;B=A] of I with I

0

[A=B;B=A] j=

S

1

[S

2

[A

�

0

.

Now, let I j= S

2

. Because A �

S

2

B we know I[A=B;B=A] j= S

2

. Furthermore, I[A=B;B=A]

can be extend to a model (I[A=B;B=A])

0

of S

1

[S

2

[A

�

. As before, we obtain (I[A=B;B=A])

0

[A=B;B=A]) j=

S

1

[S

2

[A

�

0

. By construction, this model is an extension of I.

Closely related to the lemma stated above is the following fact.

Lemma 16 Let S

1

and S

2

be schemas with disjoint signatures �

1

and �

2

, respectively. Let � be

an integration mapping �

1

into �

2

. Furthermore, let �(A) = B. Finally, let B

0

be an identi�er

in S

2

not contained in the image of � and indistinguishable to B. Then the mapping �

0

obtained

from � by mapping A on B

0

instead of B is an integration mapping.

Proof. Let I j= S

1

. Then, there exists an extension I

0

of I model of S

1

[S

2

[A

�

. Since B and B

0

do not occur in S

1

it follows I

0

[B=B

0

; B

0

=B] j= S

1

. By Lemma 13, I

0

[B=B

0

; B

0

=B] j= S

2

. Moreover,

by construction A

�

and A

�

0

coincide except for A � B which in A

�

0

is replaced by A � B

0

.

Since B;B

0

do not occur somewhere else in the assertions it follows I

0

[B=B

0

; B

0

=B] j= A

�

0

. Thus,

I

0

[B=B

0

; B

0

=B], which is an extension of I, is a model of S

1

[S

2

[A

�

0

.

Now, let I j= S

2

. As B �

S

2

B

0

, we know I[B=B

0

; B

0

=B] j= S

2

. Furthermore, there exists an

extension (I[B=B

0

; B

0

=B])

0

of I[B=B

0

; B

0

=B] which is a model of S

1

[S

2

[A

�

. As above, we get

(I[B=B

0

; B

0

=B])

0

[B=B

0

; B

0

=B] j= S

1

[S

2

[A

�

0

. By construction, that model is an extension of I.

On the one hand, the two preceeding lemmas show that because of indistinguishable identi�ers

one can derive additional integration mappings from given ones. On the other hand, the lemmas

also provide us with a way of representing sets of integration mappings from �

1

into �

2

in a more

compact way. Instead of �

2

one can map into the set of equivalence classes �

2

=

�

S

2

. Then, if

� is given as a mapping into these classes one can derive other integration mappings as follows:

For a class [A] 2 �

2

=

�

S

2

let E � �

1

be the set of all identi�ers that are mapped onto [A]. New

integration mappings can be computed by simply de�ning an injective mapping from E into [A].

This can be done for every equivalence class of �

2

. By putting these injective mappings together

one obtains new integration mappings.

It cannot structurally be determined which one of those derived mappings is the right one,

i.e., the mapping that coincides with the intuition behind the identi�ers. One has to use other

14

informations, like semantic word distance of the names of the identi�ers or input from the user, to

decide which element in an equivalence class �ts best.

It should be mentioned that for integration mappings �, A �

S

1

B does not imply �(A) �

S

2

�(B). Example: Let S

1

consist of the axioms A v C, B v C and S

2

of A

0

v C

0

, B

0

v C

0

, D

0

v A

0

.

Then, � mapping A on A

0

, B on B

0

and C on C

0

is an integration mapping. However, although

A �

S

1

B, A

0

and B

0

are not indistinguishable.

For that reason, mappings from equivalence classes of �

1

into equivalence classes of �

2

are

not well-de�ned since the images of the elements of one equivalence class of �

1

are not necessarily

equivalent w.r.t. S

2

.

5.2 Indistinguishable sets of identi�ers

In the previous section, we only related single identi�ers to each other. Here we want to generalize

these relationships in order to relate sets of identi�ers that structurally cannot be distinguished

from other sets of identi�ers.

Before formally de�ning the generalized relationship, we illustrate the new notion by means of

a simple example: Let S be the schema consisting of the axioms:

Patient v 8disease:Disease

Heart-Patient v Patient

Employee v 8address:Address

Boss v Employee

Patient v :Employee

Obviously, switching the identi�ers describing the patient and the ones for employees, i.e., switching

Patient and Employee, disease and address, Disease and Address, Heart-Patient and Boss leads to an

equivalent schema. We shall call these two sets indistinguishable.

For the formal de�nition we need some notation: Let S be a schema with signature � and let

' be a partial, injective mapping from � into � where the domain domain(') of ' and the image

image(') := '(domain(')) of ' are disjoint. Now, let fi

1

; : : : ; i

n

g be an enumeration of the domain

of '. Then, we de�ne S['] to be the schema S[i

1

='(i

1

); '(i

1

)=i

1

; : : : ; i

n

='(i

n

); '(i

n

)=i

n

]. Thus, if

the domain of ' is fAg and '(A) = B, then S[A=B;B=A] = S[']. In the same way, we generalize

the de�nition of I[A=B;B=A] to I['] where I is an interpretation over �.

De�nition 17 Let S be a schema with signature �. Furthermore, let ' be a partial, injective

mapping from � into � such that the domain domain(') and the image image(') of ' are disjoint.

Then, ' is called indistinguishable in S if and only if S � S['].

Note that as long as subsumption modulo a schema is decidable, it is decidable if ' is indistin-

guishable in S since in order to check S � S['] one only has to check whether every axiom in S is

implied by S['] and vice versa. Consequently, the set of all indistinguishable ''s can be computed.

Lemma 15 can be generalized as follows:

Lemma 18 Let S

1

and S

2

be two schemas with disjoint signatures �

1

and �

2

, respectively, and �

be an integration mapping from �

1

into �

2

. Furthermore, let ' be an indistinguishable mapping

for S

2

such that there are two disjoint subsetsM

1

,M

2

of �

1

with �(M

1

) = domain(') and �(M

2

) =

image('). Now, let �

0

be a mapping obtained from � with the following modi�cation: for every

m 2M

1

we de�ne �

0

(m) := '(�(m)) and for every m 2M

2

we specify �

0

(m) := '

�1

(�(m)). Then,

�

0

is an integration mapping from S

1

into S

2

.

15

Proof. Analogously to the proof of Lemma 15.

The generalization of Lemma 16 can be stated as follows:

Lemma 19 Let S

1

and S

2

be two schemas with disjoint signatures �

1

and �

2

, respectively, and �

be an integration mapping from �

1

into �

2

. Furthermore, let ' be an indistinguishable mapping

for S

2

such that domain(') � image(�) and image(')\ image(�) = ;. Now, let �

0

be a mapping that

coincides with � except that for every A 2 �

1

with �(A) 2 domain(') we de�ne �

0

(A) := '(�(A)).

Then, �

0

is an integration mapping from S

1

into S

2

.

Proof. Analogously to the proof of Lemma 16.

5.3 Indistinguishable Identi�ers in a Real Ontology

In order to get a feel for the occurrence of indistinguishable identi�ers, we have computed the equiv-

alence classes of indistinguishable concept names and role names in the medical ontology galen.

Lemma 15 and 16 show the impact of indistinguishable concepts on the number of integration

mappings. Intuitively, for our structural integration approach we prefer ontologies with as few

indistinguishable concepts as possible, in other words, with as much structure as possible.

The underlying description logic of the galen knowledge base is FLE . The axioms are of the

form C v D where both C and D are FLE-concept descriptions. In addition, galen contains a

role hierarchy, i.e., one allows for axioms of the form r v r

0

where r, r

0

are roles.

We have employed a correct but incomplete heuristic for computing the equivalence classes of

indistinguishable identi�ers. As a result, the actual equivalence classes might be bigger than the

ones we computed. However, the heuristic, tailored to the galen ontology, seems to be a good

approximation. Roughly speaking, our algorithm checks for two given identi�ers whether switching

these identi�ers in the schema leads to a syntactically equal schema.

The results of our computation are depicted in Table 2 where NTE stands for \non-trivial

equivalence classes" which refers to all those classes with more than one element.

number of identi�ers number of number of identi�ers

in galen identi�ers in NTE in the biggest class

concepts 2727 910 29

roles 413 116 9

Table 2: indistinguishable identi�ers in galen

On the one hand, the table shows that galen has a \rich" structure since two thirds of the

concept names can be distinguished structurally from all other concepts in the ontology. On the

other hand, indistinguishability plays a surprisingly large role in the ontology since one third of the

concepts cannot be distinguished from all other concepts.

Among others, this means that the set of integration mappings from galen into galen does

not contain only the identity mapping, which, in this case, is the intuitive mapping that one would

expect to be computed; Lemma 15 and 16 show that one can derive other integration mappings

from the identity mapping.

16

6 Algorithmic Issues

In this section, we examine the problem of computing integration mappings. First, we show that

several versions of this problem are not \easy", and then specify a generic algorithm for computing

integration mappings based on the notion of uni�cation for description logics. Finally, we present

some initial empirical results on the number of integration mappings in real ontologies.

6.1 Some NP-hardness Results

We show that deciding the existence of a total integration mapping is an NP-hard problem even for

description logics, such as FL

0

, in which other reasoning (e.g., computing subsumption) is easy.

First we consider integration mappings that take identi�ers to identi�ers only, and show that

this problem is related to 1-in-3-SAT, a known NP-hard problem [GJ79]. Let � be a 1-in-3-SAT

formula, i.e., a conjunction of n clauses c

i

of the form c

i

= p _ q _ r where p; q; r are propositional

variables. We de�ne two FL

0

-schemas S

1

and S

2

over the signatures �

1

and �

2

as follows. For

S

1

we introduce the concept names C

1

; : : : ; C

n

as well as A

p

for every propositional variable p. In

addition, we need a role name s; S

2

is de�ned over the concept names D

1

i

;D

2

i

;D

3

i

for i = 1; : : : ; n

as well as G

0

p

; G

1

p

for every propositional variable p. Again, we need one role t. The idea is that A

p

is mapped on G

0

p

or G

1

p

corresponding to assigning p to false or true.

Now, for every clause c

i

= p _ q _ r, S

1

contains the axiom

C

i

v 8s

3i

:A

p

u 8s

3i

s:A

q

u 8s

3i

ss:A

r

where s

m

for some non-negative integer m is the word s � � � s of length m.

For every clause c

i

= p _ q _ r, S

2

contains the axioms

D

1

i

v 8t

3i

:G

0

p

u 8t

3i

t:G

0

q

u 8t

3i

tt:G

1

r

;

D

2

i

v 8t

3i

:G

0

p

u 8t

3i

t:G

1

q

u 8t

3i

tt:G

0

r

;

D

3

i

v 8t

3i

:G

1

p

u 8t

3i

t:G

0

q

u 8t

3i

tt:G

0

r

:

Lemma 20 � is satis�able i� there exists a total integration mapping from �

1

into �

2

.

Proof. For the only-if direction of the lemma, let � be an assignment of the propositional variables

satisfying �. Now, we de�ne a total mapping � from �

1

to �

2

as follows: A

p

is mapped on G

0

p

if

�(p) = false and on G

1

p

otherwise; C

i

is mapped on one of the concepts D

1

i

,D

2

i

, or D

3

i

corresponding

to the mappings of the A

p

's. Finally, s is mapped on t. It is easy to verify that � is an integration

mapping from S

1

into S

2

.

Now, we prove the if direction. Since there are no axioms for the concept names A

p

's, we know

that S

1

j= A

p

v E implies E � >. In S

2

, this property is only satis�ed by the concepts G

�

�

. Thus,

as an easy consequence of Lemma 7 the concepts A

p

are mapped on some G

�

�

. Then, because of

the structure of role chains, it is not hard to see that C

i

must be mapped on one of the concepts

D

1

i

;D

2

i

;D

3

i

. As a result, the A

p

's are taken either to G

0

p

or to G

1

p

and for every c

i

= p _ q _ r only

one of the concepts A

p

; A

q

; A

r

is mapped on G

1

�

, � 2 fp; q; rg. Thus,

�(p) :=

(

true if �(A

p

) = G

1

p

;

false if �(A

p

) = G

0

p

satis�es �.

As an immediate consequence of the lemma, we obtain

17

Proposition 21 Deciding the existence of total integration mappings from identi�ers to identi�ers

for FL

0

-schemas is an NP-hard problem.

Note that in the proof we use only a constant number of role names | in fact, exactly one for

each schema.

One can show NP-hardness even for integration mappings that can map identi�ers onto complex

expressions. However, the proof we present here requires an unbounded number of roles as well as

prede�ned interschema assertions.

Again, the proof is by reduction to 1-in-3-SAT. For every clause c

i

= p _ q _ r the schema S

1

contains the axiom

A

i

v 8R

p

:8R

q

:8R

r

:B

and for every propositional variable p the axiom

A

p

v 8R

p

:B:

Furthermore, S

2

contains for every propositional variable p and clause c

i

= p _ q _ r the axioms

A

0

i

v 8R

0

p

:8R

0

q

:8R

1

r

:B u 8R

0

p

:8R

1

q

:8R

0

r

:B u 8R

1

p

:8R

0

q

:8R

0

r

:B

A

0

p

v 8R

0

p

:B

0

u 8R

1

p

:B

0

:

Finally, we need the interschema assertions

A

p

� A

0

p

B � B

0

A

i

� A

0

i

for every propositional variable p and clause c

i

. Thus, every integration mapping must map A

p

on

A

0

p

, B on B

0

and A

i

on A

0

i

. Because of the axioms to A

p

and A

0

p

, we know that every R

p

is mapped

either on R

0

p

or on R

1

p

, which corresponds to mapping p on false or true. Now, the axioms to A

i

and

A

0

i

ensure that the assignment of the propositional variables induced by an integration mapping

satis�es �. Analogously, every truth assignment for � induces an integration mapping. As a result

we obtain:

Proposition 22 Deciding the existence of total integration mappings w.r.t. interschema assertions

for FL

0

-schemas is an NP-hard problem.

6.2 A Generic Algorithm for Computing Integration Mappings

In this section, we relate the problem of computing total integration mappings to that of �nding

solutions to certain \uni�cation" problems involving descriptions.

Suppose we allow variable symbols to appear in descriptions, so they can be thought of as pat-

terns that can be matched against other concepts (or even other patterns, resulting in a uni�cation

problem). Then, intuitively we can think of all the identi�ers in S1 as variables, and the integration

mapping should be one of the substitutions resulting from matching all the concepts in S1 against

the concepts in S2.

18

6.2.1 Uni�cation modulo schemas

The notion of matching and uni�cation between concepts has been explored in [BM96, BKBM99,

BN98].

De�nition 23 Let N

C

, N

R

, N

X

C

, and N

X

R

be four disjoint sets, the set of concept names, the set

of role names, the set of concept variables, and the set of role variables. The set of all FL

0

-concept

patterns over the four sets is inductively de�ned as follows:

� Every concept name and concept variable is a concept pattern.

� The symbol > is a concept pattern.

� If C and D are concept patterns, then C uD is a concept pattern.

� If C is a concept pattern and R is a role name or a role variable, then 8R:C is a concept

pattern.

A substitution � is a mapping from the set of concept and role variables into the set of FL

0

-

concept descriptions and role chains, respectively. This mapping is extended to concept patterns

in the obvious way, i.e.,

� �(A) := A for all A 2 N

C

,

� �(>) := >,

� �(C uD) := �(C) u �(D), and

� �(8R:C) := 8�(R):�(C) where �(R) := R in case R 2 N

R

.

De�nition 24 Let S be a FL

0

-schema over N

C

and N

R

. Then a uni�cation problem modulo S

is of the form S � fC

1

v D

1

; : : : ; C

n

v D

n

g where C

i

, D

i

, i = 1; : : : ; n are concept patterns over

N

C

, N

R

, N

X

C

, and N

X

R

. A substitution � is a uni�er of this problem i� S j= �(C

i

) v �(D

i

) for all

i = 1; : : : ; n. In this case, the uni�cation problem is called uni�able or solvable. In the case when

the D

i

contain no variables, the uni�cation is said to reduce to a matching problem.

For example, let A;B;C be concept names, R be a role name, X;Z be concept variables, and

Y be a role variable. If S := fA v 8R:8R:B;B v Cg, then a possible uni�er for the uni�cation

problem S � fX v 8Y:Zg is � = fX 7! A;Z 7! C; Y 7! RRg since S j= A v 8RR:C.

6.2.2 The Generic Algorithm

In the sequel, let S

1

and S

2

be two FL

0

-schemas over disjoint signatures �

1

and �

2

. As an easy

consequence of Lemma 9, we obtain that every conictfree mapping from S

1

into S

2

is a uni�er of

the following uni�cation problem modulo S

2

over the set of concept and role names in �

2

and the

concept and role variables in �

1

, i.e., the concept and role names of S

1

are now considered to be

variables:

S

2

� fA v C j A v C 2 S

1

g [fA � C j A � C 2 S

1

g:

Integration mappings w.r.t. interschema assertionsA satisfy the above uni�cation problem extended

by:

fC v D j C v D 2 Ag [fC w D j 2 Ag:

Note that C is a concept pattern and D is a concept description.

19

Therefore integration mappings can be obtained by, �rst, computing sets of uni�ers of the above

uni�cation problem, and second, deciding conictfreeness for these uni�ers.

As an example for our generic algorithm, consider the schemas

S

1

: HeartClinic v 8patients-have:HeartDisease

S

2

: Heart v 8patients:Heart-Patients

The identi�ers of S

1

are turned into variables and we obtain the uni�cation problem:

S

2

� fX

HC

v 8X

ph

:X

HD

g

A possible uni�er is � := fX

HC

7! Heart;X

ph

7! patients;X

HD

7! Heart-Patientsg which also

yields an integration mapping.

It should be noted that the uni�cation problem introduced above can also be understood as a

matching problem with side conditions modulo a schema. Side conditions are of the form X v C

where X is a variable and C is a concept pattern. Such problems, although modulo empty schemas,

have been introduced in [BKBM99] where side conditions have been considered in order to further

restrict possible matchers. In our context, the interschema assertions C v D and C w D where

C consists of variables only (namely, the identi�ers in S

1

) and D is a concept description over �

2

induce a matching problem since only the left hand-side contains variables. The side conditions

(on variables A) are given by the axioms A v C, A � C in S

1

where, again, C contains variables

only.

So far, it is only known that deciding the solvability of uni�cation problems in FL

0

w.r.t. empty

schemas is EXPTIME-complete [BN98]. Uni�cation and matching problems modulo schemas have

not been investigated yet.

Conictfreeness is known to be undecidable in the context of the relation model [Con86] and

for First Order Logic [EJ95]. It is an open problem whether (S

2

-)conictfreeness is undecidable

for Description Logics. Thus, there are a lot of algorithmic problems to solve before the generic

algorithm can be employed to compute integration mappings.

6.3 Integration Mappings of Real Ontologies |

An Idealized Experiment

In this section, we investigate how much structure real ontologies provide to support the task of

computing an intuitive integration mapping. For this purpose, we think of the following experiment:

Given are two copies of the same schema where one schema has, say, English and the other schema

has Chinese identi�ers. Of course the \identity mapping", which maps the English identi�ers to the

corresponding Chinese ones, is the intuitive integration mapping. Now the question arises: How

much do integration mappings resemble the identity mapping?

By Section 5, we know that even in this idealized situation we cannot expect to obtain exactly the

identity mapping since one can derive new integration mappings due to indistinguishable identi�ers.

However, in order to get some clue to our question for a real ontology, we have computed total

integration mappings from galen into galen.

More precisely, we have computed a mapping ', called set-mapping in the following, from the

set N

C

of concept names in galen to the power-set 2

N

C

=

�

of equivalence classes in N

C

=

�

where �

is the equivalence relation de�ned by indistinguishable concept names (see Section 5). The mapping

' has the following property:

20

If there is a total integration mapping from N

C

into N

C

that maps

A 2 N

C

onto B 2 N

C

, then the equivalence class [B]

�

of B is an

element of '(A).

The reverse direction does not hold in general, i.e., if [B]

�

2 '(A), then this does not mean

that there exists a total integration mapping that maps A on B. Thus, '(A) is an upper bound

for the concept names A can be mapped on. The reason is that the algorithm for computing '

uses conditions on total (conictfree) integration mappings that are necessary for conictfreeness

but not su�cient.

The algorithm we propose, henceforth called set-algorithm, consists of three steps which grad-

ually re�ne the set-mapping '. In the sequel of this section, we will illustrate each step of the

algorithm with respect to some given schema S with signature � and the set N

C

� � of concept

names occurring in S where > is considered to be a concept name equivalent to the top-concept >.

We then present the results we have obtained for galen.

The �rst step of the algorithm uses necessary conditions that every total integration mapping

must satisfy regarding the super-concept/sub-concept hierarchy. The concept hierarchy of S is a

Hasse diagram for the subsumption relationv, i.e., a (rooted) directed acyclic graph G

S

= hV;E;>i

where N

C

is the set of vertices, E = f(A;B) 2 V � V j S j= A w B and there is no C 2 V , C 6= A,

C 6= B such that S j= A w C and S j= C w Bg is the set of edges, and > the root. (We assume

that V does not contain two equivalent elements. Otherwise G

S

would not be acyclic. In case,

there are two equivalent elements one can substitute one of the elements by the other one which

would yield an equivalent schema.) Note that every node in G

S

is reachable from the root >.

The next lemma shows that every total integration mapping from S to S is an isomorphism from

the hierarchy of S onto itself. For two rooted directed graphsH

1

= hV

1

; E

1

; r

1

i andH

2

= hV

2

; E

2

; r

2

i

a mapping : V

1

7�! V

2

is an isomorphism from H

1

onto H

2

i� i) (r

1

) = r

2

, ii) is bijective,

and iii) (a; b) 2 E

1

i� ((a); (b)) 2 E

2

for all a; b 2 V

1

.

Lemma 25 Every total integration mapping � : � �! � from S into S is an automorphism on

G

S

= hV;Ei when restricted to N

C

� �.

Proof. Since no two elements in V are equivalent, we can conclude by Lemma 6 that � is an

injective mapping from V into V , and thus, � is bijective. Now, let (A;B) 2 E. By Lemma 7,

we know S j= �(A) w �(B). Assume that there is a C 2 V di�erent from A and B such that

S j= �(A) w C and S j= C w �(B). Again, by Lemma 7, S j= A w �

�1

(C) and S j= �

�1

(C) w B,

which is a contradiction to (A;B) 2 E. Thus, there is no such C. This means (�(A); �(B)) 2 E.

As � is bijective, we can analogously conclude that (�(A); �(B)) 2 E implies (A;B) 2 E. Since

G

S

is a rooted graph, we need to show �(>) = >, which is an easy consequence of the fact that �

is conictfree.

The �rst step of our algorithm for computing ' is based on necessary conditions that are satis�ed

by graph isomorphisms. In order to specify these conditions, we need some more notation: For a

rooted directed graph H = hV;E; ri and a node v 2 V , in-degree(v) := jfw 2 V j (w; v) 2 Egj

denotes the number of in-going edges of v. Analogously, out-degree(v) := jfw 2 V j (v; w) 2 Egj

denotes the number of out-going edges of v. Furthermore, levels(v) := fn j there exists a path

from the root r to v of length ng is the set of levels of v.

Observation 26 For every isomorphism from H

1

= hV

1

; E

1

; r

1

i onto H

2

= hV

2

; E

2

; r

2

i and

v 2 V

1

it is true that:

1. out-degree(v) = out-degree((v)),

21

2. in-degree(v) = in-degree((v)),

3. levels(v) = levels((v)), and

4. if X := fv

1

; : : : ; v

l

g are the children of v and Y := fw

1

; : : : ; w

l

g are the children of (v), then

there exists a bijective mapping

0

from X onto Y such that there exists an isomorphism

from H

1

j

v

j

onto H

2

j

0

(v

j

)

for all j = 1; : : : ; l where H

1

j

v

j

and H

2

j

0

(v

j

)

denote the subgraphs

of H

1

and H

2

with roots v

j

and

0

(v

j

), respectively.

The algorithm depicted in Figure 1 computes for every w 2 V

2

a set �(w) such that if there

exists an isomorphism from H

1

onto H

2

with (v) = w, then v 2 �(w). This property of the

algorithm is an immediate consequence of the observations stated above.

Let �(w) := ; for every w 2 V

2

For every w 2 V

2

in post-order do

Let Y := fw

1

; : : : ; w

k

g be the set of children of w

For every v 2 V

1

do

Let X := fv

1

; : : : ; v

l

g be the set of children of v

If

out-degree(w) = out-degree(v) () l = k) and

in-degree(w) = in-degree(v) and

levels(w) = levels(v) and

there is a bijective mapping

0

from X onto Y such that

v

i

2 �(

0

(v

i

)) for every i = 1; : : : ; l

then �(w) := �(w) [fvg.

Figure 1: First step of the algorithm computing '

By Lemma 25, the algorithm of Figure 1 also yields a set-mapping ' := �

�1

when applying it

to H

1

= H

2

= G

S

where for v 2 V

1

, �

�1

(v) := fw j v 2 �(w)g.

However, we can easily get smaller sets �(w), and thus, '(v). The sets �(w) computed so far

do not take the information of higher levels into account. More precisely, if w is a child of w

0

in

H

2

, then every element in �(w) must be a child of a node v 2 �(w

0

) in H

1

. Therefore, the sets

�(w) computed by the algorithm in Figure 1 can be intersected with

fv

0

2 V

1

j there exists a parent w

0

of w and v 2 '(w

0

) such that v

0

is a child of v.g

One can easily implement an algorithm intersecting the sets �(w) with these sets where the

nodes of H

2

are traversed in pre-order to get as small sets �(w) out of the intersection as possible.

The �rst two steps of our algorithm are illustrated in Figure 2. After traversing the hierarchy

bottom-up the sets �(w) for the leaves are f6; 7; 8g. This is because the structure of the higher

levels has not been taken into account in the �rst step. By only looking at the leaves there is no

structural di�erence between the three nodes 6,7, and 8. After passing down the informations of the

higher levels in the second step of the algorithm, in our example we almost obtain the one-to-one

mapping except for the nodes 6 and 7. In a schema containing only the super-concept/sub-concept

information of the hierarchy, the nodes 6 and 7 are indisintuishable such that we cannot expect to

obtain a one-to-one mapping merely based on that hierarchy.

Note that if the hierarchy is traversed top-down instead of bottom-up, one loses structural

information from lower levels. Figure 3 shows that a second step passing information from the

bottom two the top would yield better results, i.e., smaller sets �(w).

22

1

2 3

4 5

6 7 8

1

2 3

4 5

6,7,8 6,7,8 6,7 6,7 8

4 5

2 3

1

6,7,8

top-downbottom-up

Figure 2: Illustrating the �rst two steps of the algorithm computing '

1

2 3

4 5

6 7 8

1

4 5

6,7 6,7 8

4 5

2 3

1

top-down bottom-up

2,3 2,3

6,7 6,7 8

Figure 3: Traversing a hierarchy top-down

Intuitively speaking, traversing the hierarchy bottom-up and top-down yields better results

since one can use more information both from the bottom and from the top of the hierarchy.

In the third step of the re�nement of ' = �

�1

we take the so-called local part-of hierarchy of

concepts into account. Intuitively, this hierarchy represents the restrictions on roles and attributes

of concepts.

De�nition 27 The local part-of hierarchy of a concept name A in an FLE -schema S consists of

the set of in- and out-going edges of A.

1

A concept A has an in-going edge (B;A) i� there exists

a role R such that

S j= B v 9R:A

where B is a concept name; A has an out-going edge (A; fB

1

; : : : ; B

n

g) i� there exists a role R such

that

S j= A v 9R:(B

1

u � � � uB

n

)

1

We only consider FLE-schemas here since galen is based on FLE .

23

where fB

1

; : : : ; B

n

g is a maximal set (w.r.t. set inclusion) of concept names with that property.

So far, we know that a concept name A can only be mapped on the concepts in '(A). One can

combine this information and the local part-of hierarchy to further cut down the set '(A).

The main observation for this step is the following: If A and D are concept names in S and A

is in the �rst component of an in-going edge to D, then for every total integration mapping � from

the identi�ers of S into itself, �(A) is a concept in an in-going edge to �(D). This is a consequence

of the fact that S j= A v 9R:D implies S j= �(A) v 9�(R):�(D) (cf. Lemma 7). Analogously, we

can conclude that �(A) is a concept in some out-going edge of �(D) in case A is contained in an

out-going edge of D.

Therefore, we know that A can only be mapped on the concepts in the following set �(A) where

In(D) := fB j B is contained in some in-going edge of Dg and Out(D) := fB j B is contained in

some out-going edge of Dg; note that

T

;

� � � := N

C

:

T

A2In(D)

S

B2'(D)

fC j C 2 In(B)g\

T

A2Out(D)

S

B2'(D)

fC j C 2 Out(B)g.

Consequently, we know that a concept name A can only be mapped on '(A) := '(A) \ �(A)

which is the output of the third and �nal step of our set-algorithm.

Applying this to the galen medical ontology with its 2727 concept names, we obtained the

following results:

� 1727 concepts are mapped by ' on exactly one equivalence class.

� 2179 concepts are mapped by ' on at most two equivalence classes.

Since there are only 225 non-trivial equivalence classes, i.e., classes with more than one element,

at least 1502 concepts can only be mapped on themselves and at least 1954 concepts can only be

mapped on not more than two elements. This means that every total integration mapping from

galen into galen maps more than one half of the concepts to the right element. Thus, using only

the structural information of the concepts encoded in the galen ontology, one gets more than half

of the the identity mapping which is the intuitive integration mapping in this case. One would

expect the result to be even better if more of the structural information than the concept hierarchy

and the local part-of hierarchy were used.

7 Summary and Future Work

Ontologies record the meaning of terms in some universe of discourse, by containing concept de-

scriptions/de�nitions. We are interested in the problem of integrating several such ontologies that

contain information about the same UofD. We are particularly concerned with ontologies described

in descriptions logics, and containing large numbers of concepts.

After reviewing various approaches to information integration from the database literature, we

have o�ered a formal framework for integration based on inter-ontology assertions, which relate

concepts appearing in one ontology to (complex) descriptions expressible in the other ontology. A

key property of such assertions is that they should not a�ect the meaning of the original ontologies

(conict-freeness [BC86]).

24

Our general goal is to explore the potential for generating automatically such IAs (as candidate

integration assertions that could be proposed to users). Formally, this problem was characterized

as one of �nding \matches" between one ontology (treated as a pattern) and the other (treated

as a target). Although the problem was proven to be intractable. We specify a relatively simple

algorithm for �nding IAs that are conict free (and hence preserve the structural aspects of the

terms being mapped to each other).

In empirical work, we considered the Galen knowledge base, and tried to �nd automorphic

integration mappings on it. Among others, we discovered that there are surprisingly many groups

of \indistinguishable concepts" { ones whose structural properties are identical, and are therefore

distinguished strictly by their identi�ers. This is an interesting comment on the extent (actually

lack of it) to which real ontologies provide \de�nitions" of their terms. To get around this problem,

we group such indistinguishable concepts into equivalence classes, and only one member is used as

a representative, in order to reduce the number of possible IAs that need to be considered by the

user. (In a fully useful tool, a morphological and semantic analysis of the identi�ers would also

be used of course.) Furthermore, we found that over 50% of the (ideal) identity automorphism is

recovered by our algorithm.

We are currently investigating additional heuristics for structure-based algorithms for �nding

conict-free IAs. In the long term, we also want to integrate identi�er-based heuristics. Of course,

these heuristics need to be tested on real ontologies with large numbers of concepts, like Galen

and others.

Acknowledgements

This research was supported in part by the US National Science Foundation under grant IRI-961997.

References

[ABM

+

89] A.Borgida, R. J. Brachman, D. L. McGuinness, , and L. A. Resnick. CLASSIC: a

structural data model for objects. In Proc. ACM SIGMOD'898, pages 59{67, June

1989.

[BC86] Joachim Biskup and Bernhard Convent. A formal view integration method. In Carlo

Zaniolo, editor, Proceedings of the 1986 ACM SIGMOD International Conference on

Management of Data, Washington, D.C., May 28-30, 1986, pages 398{407. ACM

Press, 1986.

[BFT95] P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive de-

scription logics: a preliminary report. In 1995 International Workshop on Description

Logics (DL'95), Rome, Italy, June 1995. Also in the Proceedings of the International

KRUSE Symposium, Santa Cruz, August 1995.

[BKBM99] F. Baader, R. K�usters, A. Borgida, and D. McGuinness. Matching in description

logics. Journal of Logic and Computation, 9(3):411{447, 1999.

[BLN86] C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of methodologies

for database schema integration. Computing Surveys, 18(4):323{364, 1986.

25

[BM96] A. Borgida and D. L. McGuinness. Asking queries about frames. In Proceedings of

the Fifth International Conference on Principles of Knowledge Representation and

Reasoning (KR'96), pages 340{349, San Francisco, Calif., 1996. Morgan Kaufmann.

[BN98] F. Baader and P. Narendran. Uni�cation of concept terms in description logics. In

Proceedings of the 13th biennial European Conference on Arti�cial Intelligence (ECAI-

98). Brighton, UK, 1998.

[Bor95] Alex Borgida. Description logics in data management. IEEE Trans. on Knowledge

and Data Engineering, 7(5):671{682, October 1995.

[CCHJ94] J.J. Cimino, P.D. Clayton, G. Hripcsak, and S.B. Johnson. Knowledge-based ap-

proaches to the maintenance of a large controlled medical terminology. JAMIA,

1(1):35{50, 1994.

[CDGL

+

98] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Ric-

cardo Rosati. Description logic framework for information integration. In Proc. of the

6th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR-98),

pages 2{13, 1998.

[CGL

+

98] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Ric-

cardo Rosati. Information integration: Conceptual modeling and reasoning support. In

Proceedings of the 6th International Conference on Cooperative Information Systems

(CoopIS'98), pages 280{291, 1998.

[CGL99] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in expres-

sive description logics with �xpoints based on automata on in�nite trees. In IJCAI'99,

1999.

[CL93] T. Catarci and M. Lenzerini. Representing and using interschema knowledge in co-

operative information systems. Int. J. of Intelligent and Coorperative Information

Systems, pages 375{398, 1993.

[Con86] B. Convent. Unsolvable problems related to the view integration approach. In

G. Ausiello and P. Atzeni, editors, Lecture Notes in Computer Science, volume 243,

pages 141{156, Rome, Italy, September 1986. Springer.

[DH84] U. Dayal and H.-Y. Hwang. View de�nition and generalization for database integration

in a multidatabase system. IEEE TSE, 10(6):628{645, 1984.

[EJ95] L. Ekenberg and P. Johannesson. Conictfreeness as a basis for schema integration.

In S. Bhalla, editor, 6th International Conference on Information Systems and Data

Management, pages 1{13, Bombay, 1995. Springer.

[FP93] C. Francalanci and B. Pernici. View integration: a survey of current developments.

Internal Report 93-053, Politecnico di Milano, 1993.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco, 1979.

[GLN92] W. Gotthard, P.C. Lockemann, and A. Neufeld. System-guided view integration for

object-oriented databases. IEEE Transactions on Knowledge and Data Engineering,

4(1):1{22, February 1992.

26

[Goh96] C. Goh. Representing and Reasonning about Semantic Conicts in Heteroge-

neous Information Systems. PhD thesis, MIT Sloan School of Management, 1996.

http://context.mit.edu/ coin/publications/.

[HPSar] I. Horrocks and P.F. Patel-Schneider. Optimizing description logic subsumption. J.

Logic and Computation, (to appear).

[Hul86] R. Hull. Relative information capacity of simple relational database schemata. SIAM

J. Comput., 15(3):856{886, 1986.

[Kas97] Vipul Kashyap. Information brokering over heterogeneous digita data: a medata-based

approach. PhD thesis, Rutgers University, Dept. of Computer Science, New Brunswick,

1997.

[LNE89] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in

databases with application to schema integration. IEEE Transactions on Software

Engineering, 15(4):449{463, April 1989.

[Mac87] R.M. MacGregor. A deductive pattern matcher. In Proc. AAAI'87, pages 403{408,

1987.

[MIR93] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. The use of information capacity

in schema integration and translation. In VLDB'93, pages 120{133, Dublin, Ireland,

August 1993.

[MKSI96] E. Mena, V. Kashyap, A.P. Sheth, and A. Illarramendi. Observer: An approach for

query processing in global information systems based on interoperation across pre-

existing ontologies. CoopIS, pages 14{25, 1996.

[RZStGC] A.L. Rector, P. Zanstra, W.D. Solomon, and the GALEN Consortium. Galen: Termi-

nology services for clinical information systems. In Health in the New Communications

Age: Health care telematics for the 21st century, pages 90{100, Amsterdam, ? IOS

Press.

[SCC97] K.A. Spackman, K.E. Campbell, and R.A. Cote. Snomed rt: A reference terminology

for health care. In AMIA Annual Fall Symposium, 1997.

27

