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Abstract
Query containment under constraints is the problem of determining whether

the result of one query is contained in the result of another query for every database
satisfying a given set of constraints. This problem is of particular importance in
information integration and warehousing where, in addition to the constraints de-
rived from the source schemas and the global schema, inter-schema constraints can
be used to specify relationships between objects in different schemas. A theoretical
framework for tackling this problem using theDLR logic has been established,
and in this paper we show how the framework can be extended to apractical deci-
sion procedure. The proposed technique is to extendDLR with an Abox (a set of
assertions about named individuals and tuples), and to transform query subsump-
tion problems intoDLR Abox satisfiability problems. We then show how such
problems can be decided, via a reification transformation, using a highly optimised
reasoner for theSHIQ description logic.

1 Introduction

Query containment under constraints is the problem of determining whether the result
of one query is contained in the result of another query for every database satisfying
a given set of constraints (derived, for example, from a schema). This problem is of
particular importance in information integration (see [9]) and data warehousing where,
in addition to the constraints derived from the source schemas and the global schema,
inter-schema constraints can be used to specify relationships between objects in differ-
ent schemas (see [6]).

This problem has been studied by Calvanese et al. [4]; they have established a theo-
retical framework using the logicDLR,1 presented several (un)decidability results, and
described a method for solving the decidable cases using an embedding in the propo-
sitional dynamic logic CPDL

g

[12, 11]. However, this method does not lead directly
to a practical decision procedure as there is no (known) implementation of a CPDL

g

reasoner. Moreover, even if such an implementation were to exist, similar embedding
techniques [10] have resulted in severe tractability problems when used, for example,
to embed theSHIF description logic inSHF by eliminating inverse roles [13].

1Set semantics is assumed in this framework.
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In this paper we present a practical decision procedure for the case where neither
the queries nor the constraints contain regular expressions. This represents a restriction
with respect to the framework described in Calvanese et al.,where it was shown that
the problem is still decidable if regular expressions are allowed in the schema and the
(possibly) containing query, but this seems to be acceptable when modelling classi-
cal relational information systems, where regular expressions are seldom used [7, 6].
Moreover, the use ofDLR in both schema and queries still allows for relatively ex-
pressive queries, and by staying within a strictly first order setting we are able to use a
decision procedure that has demonstrated good empirical tractability.

The procedure is based on the method described by Calvanese et al., but extends
DLR by defining anABox, a set of axioms that assert facts about namedindividuals
and tuples of named individuals (see [5]). This leads to a much more natural encoding
of queries (there is a direct correspondence between variables and individuals), and
allows the problem to be reduced to that of determining the satisfiability of aDLR
knowledge base(KB), i.e., a combined schema and ABox. This problem can in turn
be reduced to a KB satisfiability problem in theSHIQ description logic, withn-ary
relations reduced to binary ones by reification. In [16], a similar approach is presented.
However, the underlying description logic (ALCNR) is less expressive thanDLR and
SHIQ (for example, it is not able to capture Entity-Relationshipschemas).

We have good reasons to believe that this approach represents a practical solution.
In the FaCT system [13] we already have an (optimised) implementation of the decision
procedure forSHIQ schema satisfiability described in [15], and using FaCT we have
been able to reason very efficiently with a realistic schema derived from the integra-
tion of several Entity-Relationship schemas usingDLR inter-schema constraints.2 In
Section 4 we show how this algorithm can be straightforwardly extended to deal with
ABox axioms. As the number of individuals generated by the encoding of realistic
problems will be relatively small, this extension should not compromise the empirical
tractability.

2 Preliminaries

In this section we will (briefly) define the key components of our framework, namely
the logicDLR, (conjunctive) queries, and the logicSHIQ.

2.1 The LogicDLR

We will begin withDLR as it is used in the definition of both schemas and queries.
DLR is a description logic (DL) extended with the ability to describe relations of any
arity.

Definition 2.1.1 Given a set of atomic concept namesNC and a set of atomic relation
namesNR, everyC 2 NC is a concept and everyR 2 NR is a relation, with everyR
having an associated arity. IfC;D are concepts,R;S are relations of arityn, i is an

2The schemas and constraints were taken from a case study undertaken as part of the Esprit DWQ
project [7, 6].
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integer1 6 i 6 n, andk is a non-negative integer, then

>, :C, C uD, 9[$i℄R, (� k[$i℄R) areDLR concepts, and
>

n

, :R, R u S, ($i=n : C) areDLR relationswith arity n.

Relation expressions must be well typed in the sense that only relations with the same
arity can be conjoined, and in constructs like9[$i℄R the value ofi must be less than or
equal to the arity ofR.

The semantics ofDLR is given in terms ofinterpretationsI = (�

I

; �

I

), where
�

I is the domain (a non-empty set), and�I is an interpretation function that maps
every concept to a subset of�

I and everyn-ary relation to a subset of(�I

)

n such that
the following equations are satisfied (“℄” denotes set cardinality).
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; : : : ; d
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I

g

Note that>
n

does not need to be interpreted as the set of all tuples of arity n, but
only as a subset of them, and that the negation of a relationR with arityn is relative to
>

n

.
In our framework, a schema consists of a set of logical inclusion axioms expressed

in DLR. These axioms could be derived from the translation intoDLR of schemas
expressed in some other data modelling formalism (such as Entity-Relationship mod-
elling [3, 8]), or could directly stem from the use ofDLR to express, for example,
inter-schema constraints to be used in data warehousing, (see [6]).

Definition 2.1.2 A DLR schemaS is a set ofaxiomsof the formC vD andR v S,
whereC;D areDLR concepts andR;S areDLR relations of the same arity; an
interpretationI satisfiesC v D (written I j= C v D) iff CI

� D

I , and it satisfies
R v S (writtenI j= R v S) iff RI

� SI . An interpretationI satisfiesa schemaS iff
I satisfies every axiom inS.

Crucially, we extendDLR to assert properties ofindividuals, names represent-
ing single elements of the domain. AnABox is a set of axioms asserting facts about
individuals and tuples of individuals.

Definition 2.1.3 Given a set of individualsNI, aDLR ABoxA is a set ofaxiomsof the
formw:C and ~w:R, whereC is a concept,R is a relation of arityn, w is an individual
and~w is ann-tuplehw

1

; : : : ; w

n

i such thatw
1

; : : : ; w

n

are individuals. We will often
writew

i

to refer to theith element of ann-tuple ~w, where1 6 i 6 n.
Additionally, the interpretation function�I maps every individual to an element of

�

I . An interpretationI satisfiesan axiomw:C (writtenI j= w:C) iff wI 2 C

I , and
it satisfiesan axiom~w:R (writtenI j= ~w:R) iff ~w

I

2 RI . An interpretationI satisfies
an ABoxA iff I satisfies every axiom inA.

A knowledge base(KB) K is a pairhS;Ai, whereS is a schema andA is an ABox.
An interpretationI satisfiesa KBK iff it satisfies bothS andA.
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If an interpretationI satisfies a concept, schema, or ABoxX , then we say thatI is
amodelof X , callX satisfiable, and writeI j= X .

Note that it is not assumed that individuals with different names are mapped to
different elements in the domain (the so-called unique nameassumption).

Definition 2.1.4 If K is a KB,I is a model ofK, andA is an ABox, thenI 0 is called an
extensionof I toA iff I 0 satisfiesA, �I

= �

I

0

, and all concepts, roles and individuals
occuring inK are interpreted identically byI andI 0.

Given two ABoxesA;A0 and a schemaS, A is included in A0 w.r.t. S (written
hS;Aij�A

0) iff every modelI of hS;Ai can be extended toA0.

2.2 Queries

In this extended abstract we will consider only conjunctivequeries (see [1, chap. 4]).
A conjunctive queryq is an expression

q(~x) term

1

(~x; ~y;~) ^ : : : ^ term

n

(~x; ~y;~)

where~x, ~y, and~ are tuples ofdistinguishedvariables, variables, and constants, re-
spectively (distinguished variables appear in the answer,“ordinary” variables are used
only in the query expression, and constants are fixed values). Each termterm

i

(~x; ~y;~)

is called an atom inq and is in one of the formsC(w) or R(~w), wherew (resp.~w) is
a variable or constant (resp. tuple of variables and constants) in ~x; ~y;~, C is aDLR
concept andR is aDLR relation.3

For example, a query designed to return the bus number of the city buses travelling
in both directions between two stops is:

BUS(nr) busroute(nr ; stop
1

; stop

2

) ^ busroute(nr ; stop
2

; stop

1

) ^ city bus(nr)

wherenr is a distinguished variable (it appears in the answer),stop

1

andstop
2

are non-
distinguished variables, citybus is aDLR concept and busroute is aDLR relation.

In this framework, theevaluationof a queryq with n distinguished variables w.r.t.
aDLR interpretation4 I (written q(I)) is the set ofn-tuples~d 2 (�

I

)

n such that

I j= 9~y:term

1

(

~

d; ~y;~) ^ : : : ^ term

n

(

~

d; ~y;~):

A queryq
1

(~x) is containedin a queryq
2

(~x) w.r.t. a schemaS (writtenS j= q

1

v

q

2

), iff, for every possible modelI of S, q
1

(I) � q

2

(I).
For example, the schema containing the axioms

(busrouteu ($1=3 : city bus))v city bus route and
city bus routev (busrouteu ($1=3 : city bus));

states that the relation citybusroute contains exactly the busroute information that
concerns city buses. It is easy to see that the following CITYBUS query

CITY BUS(nr) city busroute(nr ; stop
1

; stop

2

) ^ city bus route(nr ; stop
2

; stop

1

)

3The fact that these concepts and relations can also appear inthe schema is one of the distinguishing
features of this approach.

4Here perceived as standard FO interpretation.
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is equivalent to the previous BUS query w.r.t. the given schema. In an information inte-
gration scenario, for example, this could be exploited by reformulating the BUS query
as a CITYBUS query ranging over a smaller database without any loss ofinformation.

2.3 The LogicSHIQ

SHIQ is a standard DL, in the sense that it deals with concepts and (only) binary
relations (calledroles), but it is unusually expressive in that it supports reasoning with
inverse roles, qualifying number restrictions on roles, transitive roles, and role inclusion
axioms.

Definition 2.3.1 Given a set of atomic concept namesNC and a set of atomic role
namesNR with transitive role namesNR

+

� NR, everyC 2 NC is a concept, every
R 2 NR is a role, and everyR 2 NR

+

is a transitive role. IfR is a role, thenR� is also
a role (and ifR 2 NR

+

thenR� is also a transitive role). IfS is a (possibly inverse)
role,C;D are concepts, andk is a non-negative integer, then

>, :C, C uD, 9S:C,6kS:C are alsoSHIQ concepts.

The semantics ofSHIQ is given in terms ofinterpretationsI = (�

I

; �

I

), where�I

is the domain (a non-empty set), and�I is an interpretation function that maps every
concept to a subset of�I and every role to a subset of(�I

)

2 such that the following
equations are satisfied.

>
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0
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0
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g
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I
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I
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I

= fd j ℄fd

0

:(d; d

0

) 2 S

I andd0 2 CI

g 6 kg

(C uD)

I

= C

I

\D

I

R

I

= (R

I

)

+ for all R 2 NR

+

(R

�

)

I

= f(d

0

; d) j (d; d

0

) 2 R

I

g

SHIQ schemas, ABoxes, and KBs are defined similarly to those forDLR: if
C;D are concepts,R;S are roles, andv; w are individuals, then a schemaS consists
of axioms of the formC v D andR v S, and an ABoxA consists of axioms of the
formw:C andhv; wi:R. Again, a KBK is a pairhS;Ai, whereS is a schema andA
is an ABox.

The definitions of interpretations, satisfiability, and models also parallel those for
DLR, and there is again no unique name assumption.

Note that, in order to maintain decidability, the roles thatcan appear in number
restrictions are restricted [15]: if a roleR occurs in a number restriction6kS:C, then
neitherS nor any of its sub roles may be transitive (i.e., if the schemacontains av-path
fromS

0 to S, thenS0 is not transitive).

3 Determining Query Containment

In this section we will describe how the problem of deciding whether one query is
contained in another one w.r.t. a schema can be reduced to theproblem of deciding KB
satisfiability in theSHIQ description logic. There are three steps to this reduction.
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Firstly, the queries are transformed intoDLR ABoxesA
1

andA
2

such thatS j=
q

1

v q

2

iff hS;A
1

ij�A

2

(see Definition 2.1.4). Secondly, the ABox inclusion problem
is transformed into one or more KB satisfiability problems. Finally, we show how a
DLR KB can be transformed into an equisatisfiableSHIQ KB.

3.1 Transforming Query Containment into ABox Inclusion

We will first show how a query can be transformed into acanonicalDLR ABox.
Such an ABox represents a generic pattern that must be matched by all tuples in the
evaluation of the query.

Definition 3.1.1 Let q be a conjunctive query. Thecanonical ABoxfor q is defined by

A

q

= f~w:R j R(~w) is an atom inqg [ fw:C j C(w) is an atom inqg:

We introduce a new atomic conceptP
w

for every individualw in A and define the
completedcanonical ABox forq by

b

A

q

= A

q

[ fw:P

w

j w occurs inA
q

g [ fw

i

::P

w

j

j w

i

; w

j

are constants inq andi 6= jg:

The axiomsw:P
w

in bA
q

introducerepresentative conceptsfor each individualw in
A

q

. They are used (in the axiomsw
i

::P

w

j

) to ensure that individuals corresponding
to different constants inq cannot have the same interpretation,5 and will also be useful
in the transformation to KB satisfiability.

By abuse of notation we will say that an interpretationI, and an assignment� of
distinguished variables, non-distinguished variables and constants to elements in the
domain ofI such thatI j= �(q), define a model forA

q

with the interpretation of the
individuals corresponding with� and the interpretationP I

w

= fw

I

g.

We can use this definition to transform the query containmentproblem into a (very
similar) problem involvingDLR ABoxes. We can assume that the names of the non-
distinguished variables inq

2

differ from those inq
1

(arbitrary names can be chosen
without affecting the evaluation of the query), and that thenames of distinguished vari-
ables and constants appear in both queries (if a name is missing in one of the queries,
it can be simply added using a term like>(v)).

The following Theorem shows that a canonical ABox really captures the structure
of a query, allowing the query containment problem to be restated as an ABox inclusion
problem.

Theorem 3.1.2Given a schemaS and two queriesq
1

and q

2

, S j= q

1

v q

2

iff
hS;

b

A

q

1

ij�A

q

2

.

PROOF: For the if direction, assumeS 6j= q

1

v q

2

. Then there exists a modelI of S
and a tuple(d

1

; : : : ; d

n

) 2 (�

I

)

n such that(d
1

; : : : ; d

n

) 2 q

1

(I) and(d
1

; : : : ; d

n

) 62

q

2

(I). I and the assignment of variables leading to(d

1

; : : : ; d

n

) define a model for
b

A

q

1

. If �I could be extended to satisfyA
q

2

, then the extension would correspond with
an assignment of the non-distinguished variables inq

2

such that(d
1

; : : : ; d

n

) 2 q

2

(I),
thus contradicting the assumption.

5A standard assumption in the database setting.
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For the only if direction, assume there is a modelI of bothS and bA
q

1

that cannot
be extended to a model ofA

q

2

. Hence there is a tuple(d
1

; : : : ; d

n

) 2 q

1

(I) and a
corresponding assignment of variables that defineI. If there is an assignment of the
non-distinguished variables inq

2

such that(d
1

; : : : ; d

n

) 2 q

2

(I), then this assignment
would define the extension ofI such thatA

q

2

is also satisfied.

The representative conceptsP
w

in a completed canonical ABoxbA have the useful
property that, without loss of generality, we can often restrict our attention to interpre-
tations in which, for everyw occurring in bA, P I

w

= fw

I

g.

Lemma 3.1.3 LetS be a schema,A a canonical ABox andbA the completed version
ofA. If I is an interpretation such thatI j= hS; bAi, then there exists an interpretation
I

0 where�I

= �

I

0

, P I

0

w

= fw

I

g for all individualsw occuring inA and their
corresponding representative conceptsP

w

, �I
0

is the same as�I in every other respect,
andI 0 j= hS; bAi.

PROOF: From the semantics it is clear that the interpretation of a conceptC depends
only on the interpretations of the atomic concepts and rolesthat appear syntactically
in C, and from Definition 3.1.1,P

w

i

appears only in axioms of the formw
i

:P

w

i

and
w

j

::P

w

i

in bAnA. ThereforeI 0 satisfies all the axiomsC v D andR v S in S and all
the axiomsw:C inA, becauseI j= hS; bAi and all theC,D, R, Sandw are identically
interpreted byI andI 0.

Moreover,I 0 also satisfies both kinds of axiom inbA nA. It obviously satisfies the
axioms of the formw:P

w

becausewI
0

= w

I andP I

0

w

= fw

I

g, sowI
0

2 P

I

0

w

. It also
satisfies the axioms of the formw

i

::P

w

j

, wherew
i

6= w

j

, because fromwI
j

2 P

I

w

j

andwI
i

62 P

I

w

j

we havewI
i

6= w

I

j

, andP I

0

w

j

= fw

I

j

g, sowI
0

i

62 P

I

0

w

j

.

3.2 Transforming ABox Inclusion into ABox Satisfiability

Next, we will show how to transform the ABox inclusion problem into one or more KB
satisfiability problems. In order to do this, there are two main difficulties that must be
overcome. The first is that, in order to transform inclusion into satisfiability, we would
like to be able to “negate” axioms. This is easy for axioms of the formw:C, because an
interpretation satisfiesw::C iff it does not satisfyw:C. However, we cannot deal with
axioms of the form~w:R in this way, becauseDLR only has a weak form of negation
for relations relative to>

n

. Our solution is to transform all axioms inA
q

2

into the form
w:C.

The second difficulty is thatA
q

2

may contain individuals corresponding to non-
distinguished variables inq

2

(given the symmetry between queries and ABoxes, we
will refer to them from now on as non-distinguished individuals). These individuals
introduce an extra level of quantification that we cannot deal with using our standard
reasoning procedures:hS; bA

q

1

ij�A

q

2

iff for all modelsI of hS; bA
q

1

i there existssome
extension ofI toA

q

2

. We deal with this problem by eliminating the non-distinguished
individuals fromA

q

2

.

We will begin by exploiting some general properties of ABoxes that allow us to
compactA

q

2

so that it contains only one axiom~w:R for each tuple~w, and one axiom
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w:C for each individualw that is not an element in any tuple. It is obvious from the se-
mantics that we can combine all ABox axioms relating to the same individual or tuple:
I j= fw:C;w:Dg (resp.f~w:R; ~w:Sg) iff I j= fw:(C uD)g (resp.f~w:(R u S)g). The
following lemma shows that we can also absorbw

i

:C into ~w:R whenw
i

is an element
of ~w.

Lemma 3.2.1 Let A be aDLR ABox withfw
i

:C; ~w:Rg � A, wherew
i

is the ith
element in~w. ThenI j= A iff I j= f~w:(R u $i : C)g [ A n fw

i

:C; ~w:Rg.

PROOF: From the semantics, if~wI 2 (R u $i : C)

I , then ~wI 2 RI andwI
i

2 C

I ,
and ifwI

i

2 C

I and~wI 2 RI , then~wI 2 (R u $i : C)

I .

The ABox resulting from exhaustive application of Lemma 3.2.1 can be represented
as a graph, with a node for each tuple, a node for each individual, and edges connecting
tuples with the individuals that compose them. The graph will consist of one or more
connected components, where each component is either a single individual (represent-
ing an axiomw:C, wherew is not an element in any tuple) or a set of tuples linked
by common elements (representing axioms of the form~w:R). As they do not have any
individuals in common, we can deal independently with the inclusion problem for each
connected set of axioms:hS;Aij�A0 iff hS;Aij�G for every connected set of axioms
G � A

0.

Returning to our original problem, we will now show how we cancollapsea con-
nected component ofA

q

2

G = f~w

1

:R
1

; : : : ; ~w

n

:R
n

g

into a single axiom of the formw:C, wherew (the “root” individual) is an element of
one of the tuples~w

1

: : : ~w

n

occurring inG, C is a concept that describesG from the
point of view ofw, andhS; bA

q

1

ij�G iff hS; bA
q

1

ij�fw:Cg. The collapsing procedure
works by replacing each axiom~w

i

:R
i

with an axiom of the formw:C (wherew is an
element of~w

i

), which can then be absorbed into another axiom~w
j

:R
j

(wherew is an
element of~w

j

) using Lemma 3.2.1. A recursive traversal of the graphical representa-
tion ofG is used to choose the order in which to apply the replacementsand absorptions
so thatG is collapsed into a single axiom (a similar technique is usedin [4] to transform
queries into concepts). During the collapsing procedure, new conceptsQ

w

i

may be in-
troduced to represent non-distinguished individualsw

i

that occur inG. These concepts
serve only as “place-holders”, and will be replaced whenG is completely collapsed.

A traversal starts at an (arbitrary) individual nodew (the “root”) and proceeds as
follows.

� At an individual nodex, the node is first marked as visited. Then, while there
remains an unmarked tuple node connected tox, one of these,~w, is selected,
visited, and the axiom~w:R is replaced with the axiom

x:9[$i℄(R u
l

16j6n:j 6=i

($j=n : C

w

j

));

where~w = hw

1

; : : : ; w

n

i, x is theith element of~w, w
j

is thejth element of~w,
andC

w

j

is either the representative conceptP

w

j

, if w
j

is an individual occurring
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in bA
q

1

, or a conceptQ
w

j

otherwise. Finally, any axiomsx:C
1

; : : : ; x:C

n

result-
ing from visiting the unmarked tuples connected tox are merged into a single
axiomx:(C

1

u : : : u C

n

).

� At a tuple node~w, the node is first marked as visited. Then, while there remains
an unmarked individual node connected to~w, one of these,x, is selected, visited,
and any axiomx:C that results from the visit is merged into the axiom~w:R using
Lemma 3.2.1.

After the traversal,G has been reduced to a single axiomw:C, but it may contain
conceptsQ

w

i

that were introduced during the collapsing procedure as representatives
for non-distinguished individuals. As these concepts do not occur in hS; bA

q

1

i, they
must be eliminated if the inclusion relationship is to be preserved. This is easy for
conceptsQ

w

i

that occur only once inC, and wherew
i

is not the root individual (i.e.,
w 6= w

i

): asw
i

is “referred to” only once in the collapsed axiom, and can be freely
interpreted when a modelI of hS; bA

q

1

i is extended toG, Q
w

i

can simply be replaced
with > (this will be shown more formally in Lemma 3.2.2).

This solution cannot be adopted for a conceptQ

w

i

that occurs more than once in
C, or that occurs at least once inC whenw = w

i

, becausew
i

must have the same
interpretation everywhere it is “referred to” in the collapsed axiom. However, in this
case we can deal withQ

w

i

by exploiting the fact that the individualw
i

must occur in
a cycle in the graph representingG. An individualw is in a cycle in the graph if there
is a path leading from the node representingw back to itself in which the same edge is
never traversed (in either direction) more than once. As themarking of nodes during
the traversal ensures that the same edge is never traversed more than once,w

i

must
have been in such a cycle.

Given the correspondence between the graph and the axioms inG, it is obvious that
G can only be satisfied by an interpretationI in whichwI

i

is also in a relational cycle
(the cycle is explicitly asserted by the axioms inG). Moreover, given thathS; bAij�G,
and that extending an interpretation ofhS; bAi to G cannot extend the interpretation of
any relation, then such a cycle must already exist in every interpretation ofhS; bAi.
Finally, the properties ofDLR mean that an interpretationI of hS; bAi can only be
guaranteed to contain a relational cycle if the cycle is explicitly asserted in axioms of
the form ~w:R in b

A, so that each element in the cycle must be the interpretationof one
of the individuals forming the tuples in these axioms. We cantherefore conclude that
the individualw

i

must have the same interpretation as some individualw

j

occurring in
b

A, and thatQ
w

i

can be replaced with the representative conceptP

w

j

(and that ifw
i

is
the root individual, the axiomw

i

: C can be replaced byw
j

: C).
Of course we do not know which individual occurring inbA corresponds to a given

Q

w

i

, but we can simply try all possible replacements (of which there can only be
finitely many), so thathS; bA

q

1

ij�G iff, for one of these replacements,hS; bA
q

1

ij�fw:Cg.
An extra level of non-determinism is thus added to the procedure, but this should be
manageable as the numbers of suchQ

w

i

will typically be very small.6 These replace-

6This represents a useful refinement over the procedure described in [4], where allz
i

that occur in cycles
are non-deterministically replaced with one of thew

i

, regardless of whether or not they are used to enforce
a co-reference.
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ments can obviously be performed either before or after the collapsing procedure with-
out affecting the the result. In practice, it will be more efficient to delay the replacement
as long as possible, but in the following Lemma (Lemma 3.2.2)we will assume that
the replacements have been performed before the collapsingprocedure.

The correctness of the collapsing procedure does not dependon the traversal (whose
purpose is simply to choose a suitable ordering), but only onthe correctness of the in-
dividual transformations. We have already shown that the compacting and absorbing
transformations preserve (un)satisfiability, and so obviously preserve the implication
relationship; it only remains to show that the implication relationship is also preserved
by each replacement of an axiom of the form~w:R with one of the formw:C.

Lemma 3.2.2 Let S be a schema,bA a completed canonical ABox andA
1

an ABox
where ~w:R 2 A

1

, ~w = hw

1

; : : : ; w

n

i, w
i

is the ith element of~w, and every other
element of~w is either an individual that occurs inbA or an individual that occurs
nowhere else in eitherbA or A

1

. LetC be the concept

9[$i℄(R u
l

16j6n:j 6=i

($j=n : C

w

j

));

whereC
w

j

is the representative conceptP
w

j

whenw
j

is individual that occurs inbA,
and> otherwise. IfA

2

is the ABox that results from the replacement of~w:R 2 A
1

with
the axiomw

i

:C, thenhS; bAij�A
1

iff hS; bAij�A
2

.

PROOF: It is only necessary to show thathS; bAij�f~w:Rg iff hS; bAij�fw
i

:Cg: if A
1

contains other axioms, then any interpretation that satisfies these axioms will still sat-
isfy them after the replacement. For the only if direction, it is easy to show that if
I j= hS;

b

Ai, andI 0 is an extension ofI that satisfies~w:R, thenI 0 also satisfiesw
i

:C.
Obviously,wI

0

i

is theith element of~wI
0

, and ~wI
0

2 RI

0

. For each component
($j=n : C

w

j

) in C there are two possible cases

1. Whenw
j

is an individual occurring inbA,C
w

j

isP
w

j

, the representative concept

for w
j

. In this case,w
j

:P

w

j

is an axiom in bA, sowI
0

j

2 P

I

0

w

j

and ~wI
0

2 ($j=n :

P

w

j

)

I

0

.

2. Otherwise,C
w

j

is >, and as ($j=n : >) is equivalent to>
n

, obviously~wI
0

2

($j=n : >)

I

0

.

Therefore, we also have~wI
0

2

T

16j6n:j 6=i

($j=n : C

w

j

)

I

0

, and sowI
0

i

2 C

I

0

.
The converse direction is more complicated. LetI be an interpretation such that

I j= hS;

b

A

q

1

i, andI cannot be extended to satisfy~w:R. From Lemma 3.1.3 we can
assume, without loss of generality, thatP

I

w

i

= fw

I

i

g for every representative concept

P

w

i

occurring in bA. Assume thatI can be extended to an interpretationI 0 that satisfies
w

i

:C. Then there must be some(d
1

; : : : ; d

n

) 2 RI

0

such thatd
i

= w

I

0

i

, and for each
d

j

with j 6= i, d
j

2 ($j=n : C

w

j

)

I

0

. Again, for each component($j=n : C

w

j

) in C

there are two possible cases.

1. Whenw
j

is an individual occurring inbA,C
w

j

isP
w

j

, the representative concept
for w

j

. In this case,P I

0

w

j

= fw

I

0

j

g, sod
j

= w

I

0

j

.
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2. Otherwise,C
w

j

is >. In this case,w
j

occurs nowhere else in eitherbA or A
1

,
so whenI was extended toI 0, w

j

could have been interpreted as any element
in �

I without affecting the satisfiability of any other axiom. We can therefore
assume, without loss of generality, that in this particularinterpretationwI

0

j

= d

j

(obviously,d
j

2 >

I

0

).

We therefore have~wI
0

= (d

1

; : : : ; d

n

) and (d

1

; : : : ; d

n

) 2 RI

0

, soI 0 j= ~w:R, in
contradiction of the assumption.

Having collapsedG, and (non-deterministically) replaced theQ
w

i

, we finally have
a problem that we can decide using KB satisfiability.

Lemma 3.2.3 If S is a schema,bA is a completed canonical ABox andC is a concept
composed only of relations and concepts occurring inS or bA, thenhS; bAij�fw:Cg
iff w is an individual in bA and hS; ( bA [ fw::Cg)i is not satisfiable, orw is not an
individual in bA andh(S [ f> v :Cg); bAi is not satisfiable.

PROOF: In the case wherew is an individual in bA, there are no longer any non-
distinguished individuals inw:C, sohS; bAij�fw:Cg iff every model ofhS; bAi is also
a model ofw:C. This is obviously true iff there are no models ofhS; bAij�fw:Cg that
are also models ofw::C, i.e., iff hS; ( bA [ fw::Cg)i is not satisfiable.

In the case wherew is not an individual inbA, hS; bAij�fw:Cg iff for every modelI
of hS; bAi, I can be extended tofw:Cg. Asw is the only remaining non-distinguished
individual infw:Cg, I can be extended tofw:Cg iff CI

6= ; (equivalently,(:C)

I

6=

�

I), i.e., iff h(S [ f> v :Cg); bAi is not satisfiable.

To illustrate the inclusion to satisfiability transformation, we will refer to the ex-
ample given in Section 2.2. The containment of BUS in CITYBUS w.r.t. the schema
is demonstrated by the inclusionhS; bA

1

ij�A

2

, whereS, bA
1

andA
2

are the schema
and two canonical ABoxes (completed in the case ofbA

1

) corresponding to the given
queries:

S =

�

(bus routeu ($1=3 : city bus))v city busroute;
city busroutev (bus routeu ($1=3 : city bus))

�

b

A

1

=

�

hn; y

1

; y

2

i:busroute; hn; y
2

; y

1

i:busroute; n:city bus; n:P
n

; y

1

:P

y

1

; y

2

:P

y

2

	

A

2

=

�

hn; z

1

; z

2

i:city busroute; hn; z
2

; z

1

i:city bus route
	

The two axioms inA
2

are connected, and can be collapsed into a single axiom using
the described procedure. Ifz

1

is chosen as the root, and the traversal visitshn; z
1

; z

2

i,
z

2

, andhn; z
2

; z

1

i, in that order, then the resulting axiom (describingA
2

from the point
of view of z

1

) is z
1

:C, whereC is the concept

9[$2℄(city busrouteu ($3 : (P

z

2

u 9[$2℄(city busrouteu $1 : P

n

u $3 : P

z

1

))) u $1 : P

n

);

andP
z

1

; P

z

2

are “place-holders” forz
1

; z

2

.7 As z
2

is referred to only once,P
z

2

can be
replaced with>. However, asz

1

is referred to twice (asP
z

1

and as the root), it must be

7The reader will recall that, in practice, we use such “place-holders” during the collapsing procedure and
then make appropriate substitutions.
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replaced (non-deterministically) with one of the individuals in bA
1

, andhS; bA
1

ij�A

2

iff hS; bA
1

ij�fz

1

:Cg for one of these replacements. SubstitutingP

z

2

with >, z
1

with
y

1

andP
z

1

with P

y

1

results in an axiomy
1

:C

0, andhS; bA
1

ij�fy

1

:C

0

g holds because
hS; (

b

A

1

[ fy

1

::C

0

g)i is not satisfiable.

Summing up, we thus have:

Theorem 3.2.4For a DLR KB K = hS;Ai and aDLR ABoxA0, the problem
whetherA is included inA0 w.r.t. S can be reduced to (possibly several)DLR ABox
satisfiability problems.

3.3 Dealing with disjunctive queries

In this section we will show how the technique can be extendedin order to decide the
containment of disjunctive queries.

Definition 3.3.1 A disjunctive queryq is an expression

q(~x) term

1;1

(~x; ~y

1

;~) ^ : : : ^ term

1;k

1

(~x; ~y

1

;~)

_

...
_

term

m;1

(~x; ~y

m

;~) ^ : : : ^ term

m;k

m

(~x; ~y

m

;~);

where all the terms are defined exactly as in the conjunctive queries of Section 2.2.
The query evaluation is defined as the union of all the evaluations for any disjunct.
Given a queryq with n distinguished variables, its evaluation w.r.t. the interpretation
I = (�

I

; �

I

) is the set ofn-tuples:

q(I) =

8

>

>

>

>

>

<

>

>

>

>

>

:

~

d 2 (�

I

)

n

j 9~y

1

:term

1;1

(

~

d; ~y

1

;~) ^ : : : ^ term

1;k

1

(

~

d; ~y

1

;~)

_

...
_

9~y

m

:term

m;1

(

~

d; ~y

m

;~) ^ : : : ^ term

m;k

m

(

~

d; ~y

m

;~)

9

>

>

>

>

>

=

>

>

>

>

>

;

Without loss of generality we can assume that all the variable names in~y
1

; : : : ; ~y

m

are distinct, and that distinguished variables and constant names appear in every dis-
junct (see Section 3.1). The query containment problem is defined as in the conjunctive
case.

The basic idea is to consider each conjunctive subexpression as a canonical ABox,
and to extend the inclusion relation of Section 2.1 to take into account the “disjunction”
of ABoxes. We will first extend the definition ofDLR ABoxes todisjunctiveDLR
ABoxes (in order to avoid ambiguity, we will sometimes referto the kind of ABox
defined in Section 2.1 as a conjunctive ABox).

Definition 3.3.2 A disjunctiveDLR ABox is a finite set of conjunctive ABoxesfA
1

; : : : ; A

m

g.
The definition of interpretation and satisfiability for eachconjunctive ABoxA

i

is the

12



same as that given in Section 2.1. An interpretationI satisfies a disjunctive ABoxA
(writtenI j= A) iff I satisfies at least one of the conjunctive ABoxes inA.

On top of the definition of a disjunctive ABox, is built the notion of a disjunctive KB
and its satisfiability. All the definitions given in Section 2.1 can be naturally extended
to the disjunctive case; in particular the fundamental notion of the inclusion relation
between ABoxes.

To simplify the notation, we define the operator(���) which adds a set of axioms to
each element of a disjunctive KB. The meaning of the operatoris given by the following
equations:

hS; fA

1

; : : : ; A

m

gi � fw:Cg = hS; fA

1

[ fw:Cg ; : : : ; A

m

[ fw:Cggi

hS; fA

1

; : : : ; A

m

gi � fC v Dg = hS [ fC v Dg ; fA

1

; : : : ; A

m

gi

with the natural extension to finite sets of axioms:

K � f�

1

; : : : ; �

n

g = (: : : (K � f�

1

g)� : : : )� f�

n

g :

Now we will proceed as in Sections 3.1 and 3.2 by first showing how to reduce the
query containment problem to ABox inclusion, and then to ABox satisfiability.

First, we will extend the definition of canonical ABox to dealwith disjunctive
queries.

Definition 3.3.3 Let q be a disjunctive query. Thecanonical disjunctive ABoxfor q is
defined by

A

q

= fA

1

; : : : ; A

m

g

where eachA
i

describes a single conjunct in the query:

A

i

= f~w:R j R(~w) = term

i;j

(~x; ~y

i

;~) is an atom inq for somejg [
fw:C j C(w) = term

i;j

(~x; ~y

i

;~) is an atom inq for somejg

The completed canonical disjunctive ABox forq is defined in a similar way to the non-
disjunctive case (see Definition 3.1.1), the difference being that the new axioms are
added to each of the conjunctive ABoxes making up the disjunction. Given the dis-
junctive ABoxA

q

= fA

1

; : : : ; A

m

g, its completed version (written asbA
q

) is defined
as:

b

A

q

= A

q

� (fw:P

w

j w occurs inA
q

g [

fw

i

::P

w

j

j w

i

; w

j

are constants inq andi 6= jg)

As in the non-disjunctive case, there is a natural correspondence between database
instances and interpretations of disjunctive KBs. Each element of a query evaluation
corresponds to an interpretation satisfying the canonicalABox and vice versa.8

Proposition 3.3.4 Given a databaseI = (�

I

; �

I

) and a disjunctive queryq(~x), then
the tuple~d is in the evaluationq(I) iff there is an extensionI 0 of I satisfying bA

q

such
thatx

i

I

0

= d

i

for eachx
i

in ~x.

8We will consider a database as a standardDLR interpretation in which an individuals corresponding to
a constant is taken to be interpreted as the actual constant.
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PROOF: For the “only if” direction, let~d be inq(I), then it satisfies at least one of the
disjuncts inq:

9~y

i

:term

i;1

(

~

d; ~y

i

;~) ^ : : : ^ term

i;k

i

(

~

d; ~y

i

;~)

for 1 � i � m, which means that there is an assignment for the variables in~y

i

that
makes the expression true. IfbA

i

2 A

q

is the corresponding conjunctive ABox, then an
extensionI 0 of I can be defined by adding to�I a mapping from each individual inbA

i

to the corresponding element of~d. It is easy to see thatI 0 satisfiesbA
i

and thus satisfies
b

A

q

.
For the “if” direction, letI 0 be an extension ofI satisfying bA

q

such thatx
i

I

0

= d

i

for eachx
i

in ~x. Then, from the definition of satisfiability of a disjunctiveABox, there
is some bA

i

2

b

A

q

such thatI 0 j= b

A

i

. Note thatI 0 must interpret all the individual
appearing inA

i

; it therefore defines an assignment for the variables~y

i

in the corre-
sponding disjunct ofq. It is easy to see that this assignment satisfies the formula

9~y

i

:term

i;1

(

~

d; ~y

i

;~) ^ : : : ^ term

i;k

i

(

~

d; ~y

i

;~):

Given the Proposition 3.3.4 above, we can extend Theorem 3.1.2 to the disjunctive
case.

Theorem 3.3.5Given a schemaS and two disjunctive queriesq
1

andq
2

, S j= q

1

v q

2

iff hS; bA
q

1

ij�A

q

2

.

PROOF: The same as for Theorem 3.1.2.

The next step consists of reducing ABox inclusion to ABox satisfiability. As in the
conjunctive case, we only consider a particular kind of ABoxon the r.h.s. of the inclu-
sion, namely those containing only axioms of the formw:C. This assumption can be
made without loss of generality because the connected components of each conjunctive
ABox can be collapsed into a single concept assertion, as shown in Section 3.2.

Proposition 3.3.6 LetS be a schema,bA a completed canonical disjunctive ABox and
A

0 a disjunctive ABox. ThenhS; bAij�A0 iff there is a disjunctive ABoxA00 containing
only axioms of the formw:C, such thathS; bAij�A00

PROOF: (SKETCHED) The same considerations set out in Section 3.2, which enable us
to “collapse” connected components into single axioms of the formw:C, also apply in
the disjunctive case, and can be used to transform each conjunctive ABox inA0 so that
it contains only such axioms.

In the following Lemma (Lemma 3.3.7), which provides the reduction to ABox
satisfiability, we use the notationw�C to describe the axiom which forces the inter-
pretation of the individualw not to be in the extension ofC. If w is a non-distinguished
individual, then it is the schema axiom> v :C; otherwise it is the ABox axiomw::C.

Lemma 3.3.7 LetS be a schema,bA a disjunctive ABox, andfA
1

; : : : ; A

m

g a disjunc-
tive ABox, where eachA

i

contains only axioms of the formw:C. ThenhS; bAij�fA
1

; : : : ; A

m

g

14



iff for every possible KB

K = hS;

b

Ai �

[

16i6m

fw�Cg for some(w:C) 2 A

i

;

K is unsatisfiable.

PROOF:

� For the “only if” direction, assume thathS; bAij�fA
1

; : : : ; A

m

g and that there
is someA

i

2 fA

1

; : : : ; A

m

g such that the KB

K

0

= hS;

b

Ai �

[

16i6m

fw�Cg for some(w:C) 2 A

i

is satisfiable. LetI be an interpretation satisfyingK0, andI 0 the restriction of
this interpretation to exclude the non-distinguished individuals infA

1

; : : : ; A

m

g.
ObviouslyI 0 satisfieshS; bAi. Therefore there is an extensionI 00 of I 0 satisfying
fA

1

; : : : ; A

m

g. LetA
`

2 fA

1

; : : : ; A

m

g be a conjunctive ABox satisfied by
I

00. By construction ofK0, there must be an assertionw:C 2 A
`

such that if
K

0

= hS

0

;A

0

i, then either(w�C) is in S 0 or (w�C) is in every conjunctive
ABox in A0. ThereforeI j= w�C, andI 00 j= w:C . Moreover, as bothI and
I

00 are extensions ofI 0 (see 2.1.4), they differ only in the interpretation of non-
distinguished variables. There are two cases, depending onwhether or notw is
a non-distinguished individual.

– If w is a non-distinguished individual, thenwI
00

2 C

I

00

and�I

� (:C)

I .
AsCI

00

= C

I , this implies thatwI
00

2 ;, an obvious contradiction.

– Otherwise,wI = w

I

00

,wI 2 (:C)

I andwI
00

2 C

I

00

. AsCI

00

= C

I , this
implies that(:C)

I

\ C

I

6= ;, again an obvious contradiction.

� For the “if” direction, assume that there is an interpretationI satisfyinghS; bAi
which cannot be extended to one satisfyingfA

1

; : : : ; A

m

g. For eachA
i

2

fA

1

; : : : ; A

m

g there must be at least one axiom(w
i

:C

i

) 2 A

i

thatI cannot be
extended to satisfy. Therefore, there is a KB

K

0

= hS;

b

Ai �

[

16i6m

fw�Cg for some(w:C) 2 A

i

such that the interpretationI cannot be extended to satisfy any of the selected
axiomsw:C 2 A

i

. The interpretationI satisfieshS; bAi, and it also satisfies
all the axiomsfw�Cg added inK0. Again, there are two cases, depending on
whether or notw is a non-distinguished individual.

– If w is a distinguished variable, thenwI 62 C

I otherwise any extension
will satisfyw:C. ThereforeI j= w::C .

– If w is a non-distinguished variable, thenCI must be empty, otherwise
an extension satisfyingw:C can be defined by mappingw to one of the
element ofCI . ThereforeI j= > v :C .
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Figure 1: Reification ofDLR concepts and relations

Lemma 3.3.7 shows how the problem can be reduced from ABox inclusion to ABox
satisfiability. Unfortunately, the resulting KB is still disjunctive, and Section 3.4.1
only shows how to solve satisfiability problems for conjunctive KBs. However, we
can reduce the problem to conjunctive KB satisfiability by introducing one more non-
deterministic step.

Lemma 3.3.8 A disjunctive KBhS; fA
1

; : : : ; A

m

gi is satisfiable iff for someA 2
fA

1

; : : : ; A

m

g, hS;Ai is satisfiable.

PROOF: Obviously, if I j= hS;Ai, then I j= hS; fA

1

; : : : ; A

m

gi, and if I j=
hS; fA

1

; : : : ; A

m

gi, then from Definition 3.3.2,I must satisfy at least on of the con-
junctive ABoxes infA

1

; : : : ; A

m

g.

3.4 TransformingDLR satisfiability into SHIQ satisfiability

We decide satisfiability ofDLR knowledge bases by means of a satisfiability-preserving
translation�(�) from DLR KBs to SHIQ KBs. This translation deals with the fact
thatDLR allows for arbitraryn-ary relations whileSHIQ only allows for unary pred-
icates and binary relations; this is achieved by a process called reification. The main
idea behind this is easily described: eachn-ary tuple in aDLR-interpretation is rep-
resented by an individual in aSHIQ-interpretation that is linked via the dedicated
functional relationsf

1

; : : : ; f

n

to the elements of the tuple.
ForDLR without regular expressions, the mapping�(�) shown in Figure 1 (given

by Calvanese et al. [4]) reifiesDLR expressions intoSHIQ-concepts. This mapping
can be extended to a knowledge base as follows.

Definition 3.4.1 LetK = (S;A) be aDLR knowledge base. The reification ofS is
given by

f(�(R
1

)v �(R
2

)) j (R
1

v R
2

) 2 Sg [ f(�(C

1

)v �(C

2

)) j (C

1

v C

2

) 2 Sg:

To reify the ABoxA, we have to reify all tuples appearing in the axioms. For
each distinct tuple~w = hw

1

; : : : ; w

n

i occurring inA we chose a distinct individualt
~w

(called the “reification of~w”) and define:

�(~w:R) = ft

~w

:�(R)g [ fht

~w

; w

i

i:f

i

j 1 � i � ng and

�(A) =

[

f�(~w:R) j ~w:R 2 Ag [ fw:�(C) j w:C 2 Ag:
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We need a few additional inclusion and ABox axioms to guarantee that any model
of (�(S); �(A)) can be “un-reified” into a model of(S;A). Letnmax denote the max-
imum arity of theDLR relations appearing inK. We definef(S) to consist of the
following axioms (wherex � y is an abbreviation forx v y andy v x):

> � >

1

t � � � t >

nmax

> v (� 1 f

1

) u � � � u (� 1 f

nmax)

8f

i

:? v 8f

i+1

:? for 2 � i < nmax

>

i

� 9f

1

:>

1

u � � � u 9f

i

:>

1

u 8f

i+1

:? for 2 � i � nmax

Pv >
n

for each atomic relationP of arity n
A v >

1

for each atomic conceptA

These are the standard axioms needed for reification in schema reasoning, and can
already be found in [4].

We introduce a new atomic conceptQ
w

for every individualw in A and define
f(A) to consist of the following axioms:

f(A) = fw:Q

w

j w occurs inAg [

fw

1

:6 1 f

�

1

:(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

) j hw

1

; : : : ; w

n

i occurs inAg

These axioms are crucial when dealing with the problem of tuple-admissibility (see
below) in the presence of ABoxes.

Finally, we define�(K) = h(�(S) [ f(S)); (�(A) [ f(A))i.

Theorem 3.4.2LetK = hS;Ai be aDLR knowledge-base.K is satisfiable iff the
SHIQ-KB �(K) is satisfiable.

The proof of Theorem 3.4.2 is rather involved and technical.We first give a sketch
of the proof.
PROOF (sketch): The same techniques that were used in [2] can be adapted to the DL
SHIQ, and extended to deal with ABox axioms. The only-if direction is straightfor-
ward. A modelI of K can be transformed into a model of�(K) by introducing, for
every arityn with 2 � n � nmax and everyn-tuple of elements~d 2 (�

I

)

n, a new
elementt

~

d

that is linked to the elements of~d by the functional relationsf
1

; : : : ; f

n

. If
we interpret>

1

by �

I , >
n

by the reifications of all elements in>I
n

, and, for everyw
that occurs inA, Q

w

bywI , then it is easy to show that we have constructed a model
of �(K).

The converse direction is more complicated since a model of�(K) is not necessar-
ily tuple-admissible, i.e., in general there may be distinct elementst; t

0 that are reifica-
tions of the same tuple~d. In the “un-reification” of such a model,~d would only appear
once which may conflict with assertions in theDLR KB about the number of tuples
in certain relations. However, it can be shown that every satisfiable KB�(K) also has
a tuple-admissible model. It is easy to show that such a model, by “un-reification”,
induces a model for the original KBK.

Theorem 3.4.2 will be an immediate consequence of the following Lemmata 3.4.3
and 3.4.5.
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Lemma 3.4.3 LetK = (S;A) be aDLR knowledge-base. IfK is satisfiable, then the
SHIQ-KB �(K) is satisfiable.

PROOF: Let I be a model of(S;A). We will reify it into a model^I for (�(S) [

f(K); �(A)).
Let nmax denote the maximum arity of relations inS andA. The set of individuals

of ^I is the set of individuals ofI plus a distinct individual for each possiblen-tuple
with 2 � n � nmax:

�

^

I

:= �

I

[ ft

~

d

j

~

d = hd

1

; : : : ; d

n

i 2 (�

I

)

n

; 2 � n � nmaxg

We have to fix the interpretation of the atomicSHIQ-concepts and roles. The only
roles that occur in(�(S) [ f(K; �(A)) are thef

n

with 1 � n � nmax. For each role
f

n

we set

f

^

I

n

= fht

~

d

; d

n

i j

~

d 2 (�

I

)

n andd
n

is then-th component of~dg

For every atomicDLR-conceptA, we set

A

^

I

= A

I

For every atomicSHIQ-conceptP that corresponds to ann-ary atomicDLR-relation
with n � 2 we define

P
^

I

= ft

~

d

j

~

d 2 (�

I

)

n and~d 2 PIg

Finally, we have to define the interpretation of the newly-introduced atomic concepts
>

n

for 1 � n � nmax. This is done as follows:

>

^

I

1

= �

I

>

^

I

n

= ft

~

d

j

~

d 2 >

I

n

g for 2 � n � nmax

It is easy to see that^I j= f(S).
By induction of the structure ofDLR-concepts and relations one can show, for

everyDLR-conceptC, everyDLR-relationR, everyd 2 �

I , and every~d 2 (�

I

)

n

for 2 � n � nmax, that

d 2 C

I

implies d 2 �(C)

^

I and
~

d 2 RI

implies t

~

d

2 �(R)

^

I

:

From this it immediately follows thatI j= S implies ^

I j= �(S) and hence^I j=
�(S) [ f(K). It remains to show that alsoI j= �(A).

We fix the interpretation of the auxiliary conceptsQ
w

that have been introduced in
f(A) by

Q

^

I

w

= w

I

At first, we have to define the interpretation of the individuals in �(S). For any
individual w that appears also inA we setw^

I

= w

I . For each newly introduced
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individual t
~w

with ~w = hw

1

; : : : ; w

n

i we sett^I
~w

= t

~

d

where~d = hw

I

1

; : : : ; w

I

n

i. With

this definition it is easy to see that^I j= �(A).
It remains to show that^I j= f(A). ^

I j= w:Q

w

follows by construction ofQ^

I

w

for every individualw that occurs inA. Let hw
1

; : : : ; w

n

i be a tuple that occurs in
A. We have to show thatw^

I

2 (6 1 f

�

1

:(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

))

^

I . By
construction we have that

(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

)

^

I

= ft

~

d

j

~

d 2 >

I

n

and~d = hx;w

I

2

; : : : ; w

I

n

i for somex 2 �

I

g

and hence

(6 1 f

�

1

:(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

))

^

I

= fx 2 �

I

j 9

�1

t

~

d

2 >

I

n

:

~

d = hx;w

I

2

; : : : ; w

I

n

ig

Trivially, for everyx 2 �

I , there is at most onen-tuple that starts withx and continues
with w

I

2

; : : : ; w

I

n

. Hence, we get, for every tuplehw
1

; : : : ; w

n

i that occurs inA, that
^

I j= w

1

:6 1 f

�

1

:(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

).

The proof of the converse direction of Lemma 3.4.3 is more involved. The problem
arises from the fact that a modelI of �(K) may not betuple-admissible, i.e., there
may be two distinct elementst; t0 2 �

I that are reifications of the same tuple~d =

hd

1

; : : : ; d

n

i. This means that botht; t0 2 >I
n

andht; d
i

i 2 f

I

i

as well asht0; d
i

i 2 f

I

i

for 1 � i � n. The next lemma shows that any consistentSHIQ knowledge base
always has a tuple-admissible model.

Lemma 3.4.4 LetK = (S;A) beDLR-KB and�(K) = (�(S) [ f(K); �(A)) its
reifiedSHIQ-counterpart. If�(K) is consistent, then there exists atuple-admissible
model^I for �(K), i.e., a model where, for every2 � n � nmax andt; t0 2 >^I

n

it holds
that

0

�

^

1�i�n

9d:(ht; di 2 f

I

i

^ ht

0

; di 2 f

I

i

)

1

A

) t = t

0 (�)

PROOF: Let I be a model of�(K). We will transformI into a tuple-admissible model
^

I for �(K). SinceI j= �(K), we have thatI j= f(K) and hencefI
n

is the graph of a
partial function. To this function we will refer byfI

n

(�).
For2 � n � nmax andn-tuple ~d = hd

1

; : : : ; d

n

i 2 (>

I

1

)

n, we define the set of all
reifications of this tuple by

T

~

d

= ft 2 �

I

j ht; d

1

i 2 f

I

1

^ � � � ^ ht; d

n

i 2 f

I

n

g

Each setT
~

d

which contains more than one element violates(�). For any such set we
pick an arbitrary elementt

~

d

2 T

~

d

and say that the other elements are conflicting with
t

~

d

. With Confwe denote the set of all elements that are conflicting with other elements.
We will now transformI into an interpretation^I that contains no conflicts.

We start by describing this transformation for the simple case that we have only a
single conflicting elementt. This conflict can be resolved as follows. LetI 0 be the
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interpretation consisting of two disjoint copies ofI (we will forget about the interpre-
tation of individuals at the moment).I 0 contains the conflicting elementt and a copy
t

0 of t. We define^I from I 0 by setting

f

^

I

1

= (f

I

0

1

n fht; f

I

0

1

(t)i; ht

0

; f

I

0

1

(t

0

)ig) [ fht; f

I

0

1

(t

0

)i; ht

0

; f

I

0

1

(t)ig;

and preserving the interpretation of all other atomic concepts and roles. The result is
an interpretation that contains no more conflicting elements.

The construction in the general case is a little bit more complicated because in
generalConf may be of arbitrary cardinality and we have to take care of theABox
axioms. To prevent interference of the later construction with the ABox axioms we will
use a little bit more care when choosingConf. Firstly, we show that the interpretation
of two different ABox individuals may never conflict.

CLAIM 1: Let t
~v

; t

~w

be two distinct ABox individuals. There is no conflict between tI
~v

andtI
~w

.

PROOF OFCLAIM 1: If tI
~v

= t

I

~w

then there cannot be a conflict because no element
conflicts with itself. AssumetI

~v

6= t

I

~w

but, for each1 � i � n, fI
i

(t

I

~v

) = f

I

i

(t

I

~w

)

(a conflict). SinceI j= �(A) we have, for each1 � i � n, vI
i

= w

I

i

and hence
v

I

i

2 Q

I

w

i

. This implies

ft

I

~v

; t

I

~w

g � (>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

)

I

;

which yieldswI
1

62 (6 1 f

�

1

:(>

n

u 9f

2

:Q

w

2

u : : : u 9f

n

:Q

w

n

))

^

I becausewI
1

appears
as the first component of two distinct reified tuples that satisfy>

n

u 9f

2

:Q

w

2

u : : : u

9f

n

:Q

w

n

. This is a contradiction to the assumption thatI j= f(A).

Using Claim 1, we make sure that we do not have any conflicting elements that
appear in the interpretation of ABox individuals. There areno two ABox individuals
t

~w

1

; t

~w

2

such thattI
~w

1

; t

I

~w

2

are conflicting. From this it follows that, in each setT

~

d

,
there is at most one element that appears as the image of an ABox individual of the
interpretationI (it may appear as the image of several ABox individuals). Hence, we
can chooseConf in a way that it contains no elements that appear as images of ABox
individuals ofI.

Let I 0 denote the disjoint union of℄(2Conf
) copies ofI. For a setZ � Conf we

denote the copy ofd 2 �

I in theZ-th copy ofI by d
Z

. For two distinct setsZ;Z 0

and elementsd
Z

; d

Z

0 , we callexchangingfI
0

1

(d

Z

) with f

I

0

1

(d

Z

0

) the operation onI 0

which changes the interpretation off
1

underI 0 as follows:

f

I

0

1

= (f

I

0

1

n fhd

Z

; f

I

0

1

(d

Z

)i; hd

Z

0

; f

I

0

1

(d

Z

0

)ig) [ fhd

Z

; f

I

0

1

(d

Z

0

)i; hd

Z

0

; f

I

0

1

(d

Z

)ig

We define^I from I 0 as the result ofsimultaneouslyexchanging, for eachd 2 Confand
eachZ � Confwith d 2 Z, f

1

(d

Z

) with f

1

(d

Znfdg

).

CLAIM 2: ^I does not contain any conflicts.

PROOF OF CLAIM 2: A conflict in ^

I may either origin fromI 0 or may be created
during the exchange.
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� A conflict in I 0 can only involve two elements in the same disjoint copy. Let
d

Z

; e

Z

denote the conflicting elements which reside in theZ-th copy. W.o.l.g.,
we can assumed 2 Conf\ Z. From the fact thatd

Z

; e

Z

are still in a conflict
originating fromI 0 we havefI

0

1

(d

Z

) = f

I

0

1

(e

Z

) andf ^I
1

(d

Z

) = f

^

I

1

(e

Z

).

– If e 2 Conf, then we have changed the relationf

1

for e
Z

. Strictly speaking,
we have to distinguish the two casese 2 Z ande 62 Z but these are dual.
In the first case we have exchangedf

I

0

1

(e

Z

) by fI
0

1

(e

Znfeg

), in the latter

case we have exchangedf
1

I

0

(e

Z[feg

) with f

I

0

1

(e

Z

).

– If e 62 Conf, then we have not changed the relationf

1

for e
Z

and hence we
havef ^I

1

(e

Z

) = f

I

0

1

(e

Z

). At the same time, we have exchangedf

1

(d

Z

) by
f

1

(d

Znfdg

) and hencef ^I
1

(d

Z

) 6= f

I

0

1

(d

Z

) which is a contradiction.

In both cases, we havef ^I
1

(d

Z

) 6= f

^

I

1

(e

Z

) because these elements are in different
disjoint copies. Hence,d

Z

ande
Z

cannot be conflicting.

� Now assume that we have created a new conflict between elements d
Z

; e

Z

0 in
^

I . This implies that, w.l.o.g., the functionf
1

has been modified ford
Z

during
the exchange (otherwise the conflict would already be present in I 0). Since we
only change the interpretation of the rolef

1

, d
Z

ande
Z

0 must havefI
0

i

(d

Z

) =

f

I

0

i

(e

Z

0

) for 2 � i � n, and henced
Z

ande
Z

0 must reside in the same disjoint
copy because we do not havef

i

-links between the disjoint copies inI 0 for i � 2.
Hence we haveZ = Z

0. Sinced
Z

ande
Z

do not conflict inI 0, we must have
f

I

0

1

(d

Z

) 6= f

I

0

1

(e

Z

).

– If both d; e 62 Conf, thenf ^I
1

(d

Z

) = f

I

0

1

(d

Z

) 6= f

I

0

1

(e

Z

) = f

^

I

1

(e

Z

), and
d

Z

; e

Z

cannot conflict in^I.

– If d 2 Conf and e 62 Conf, then we have thatf ^I
1

(d

Z

) lies in theY -th
disjoint copy forY 6= Z, while f

^

I

1

(e

Z

) lies in theZ-th disjoint copy.
Thus, we cannot have a conflict betweend

Z

ande
Z

.

– Finally, if d; e 2 Conf, then we have to distinguish between the following
cases:

� if d; e 2 Z thenf ^I
1

(d

Z

) = f

I

0

1

(d

Znfdg

) = f

^

I

1

(e

Z

) = f

I

0

1

(e

Znfeg

).
Hence,Znfdg andZnfeg refer to the same disjoint copy and we have
d = e and thusd

Z

ande
Z

are the same element and can not conflict.

� if d; e 62 Z, thend = e follows analogously and henced
Z

ande
Z

cannot conflict.

CLAIM 3: LetC be aSHIQ-concept,d 2 CI andZ � Conf. Thend
Z

2 C

^

I .

PROOF OFCLAIM 3. We use a simple induction over the stucture ofSHIQ-concepts.
The claim obviously holds for all atomic concepts. Also, perinduction, it immedi-
ately holds for the boolean combination of concepts. For theexistential, value, and
number restrictions it follows from the fact that we start with disjoint copies and only
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change the interpretation of roles by exchanging elements that are copies of the same
element. Hence, we do not changes the number of successors for each element, and,
we also exchange only links to elements which, by the induction hypothesis, cannot be
distinguished by “smaller” concepts.

From Claim 3 it follows that^I j= S. It remains to show that we can fix the
interpretation of the ABox individuals inA under^I such that^I j= A. This can be
done by interpreting all individuals in a single copy, e.g.,by setting, for every ABox
individualw, w^

I

= w

I

;

Again, from Claim 3, we get that, for every ABox assertionw:C 2 A we have that
w

I

2 C

I impliesw^

I

2 C

^

I . Furthermore, since, for every individualw that appears
inA, we havewI 62 Confand hence the interpretation off

i

is not changed forw^

I

;

. For

any assertionhw
1

; w

2

i:f

i

, we havehwI
1

; w

I

2

i 2 f

I

i

and hencehw^

I

1

; w

^

I

2

i 2 f

^

I

i

. Thus,
we also have^I j= A and thus^I j= K.

Together with Claim 2, which yields that^I satisfies(�), we have that^I is a tuple-
admissible interpretation with^I j= �(K).

Once we have solved the problem of tuple admissibility it is fairly straightforward
to show the following lemma.

Lemma 3.4.5 LetK = (S;A) be aDLR knowledge-base. If theSHIQ-KB �(K) is
satisfiable, thenK is satisfiable.

PROOF: If �(K) is consistent, then, by Lemma 3.4.4 we have that there is a tuple
admissible model^I for �(K). We will “un-reify” the reified tuples in^I into ordinary
tuples. We use the auxiliary functionur that maps a reified tuple to its un-reified
counterpart. Ift 2 >^

I

n

andf ^I
i

(t) = d

i

for 1 � i � n, then we defineur(t) =

hd

1

; : : : ; d

n

i.
The atomic concepts and relations will be defined as follows:

�

I

= >

^

I

1

A

I

= A

^

I for each atomic conceptA
PI = fur(t) j t 2 P^

I

g for each atomic relationP of arity n

We also have to define the interpretation of the ABox individuals inA. For every
individualw that appears inA we setwI = w

^

I . Please note that, also ifw appears
inside a tuple of a relation assertion inA, w will appear in�(A) and hencew^

I is
defined.

Since^I j= f(K) we have thatI is indeed a well defined interpretation. The fol-
lowing can easily be shown:

CLAIM : For everyDLR-conceptC andDLR-relationR,

d 2 �(C)

^

I

implies d 2 C

I

t 2 �(R)

^

I

implies ur(t) 2 RI
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PROOF OF THECLAIM . The claim is obvious for atomic concepts and relations by the
definition ofI. By induction it follows easily also for complex concepts and roles. We
need the fact that^I is tuple admissible to ensure that the claim holds for concepts and
relations involving counting expressions.

From this it follows thatI j= S and alsoI j= A, hence we have shown thatK is
consistent.

We now have the machinery to transform a query containment problem into one
or moreSHIQ schema and ABox satisfiability problems. In the next sectionwe will
present a decision procedure that will enable us to solve such problems.

4 Deciding Satisfiability ofSHIQ Knowledge Bases

To test satisfiability of a knowledge baseK = hS;Ai, we firstinternalisethe schemaS
into the ABoxA, i.e, we add, for each individualw that occurs inA, an axiomw:C

S

,
where

C

S

:=

l

CvD2S

:(C u :D) u 8U:

l

CvD2S

:(C u :D);

for U 2 NR

+

a new transitive role withR v U for all rolesR occurring inK. SinceU
functions as a universal role, the ABox resulting from this internalisation is satisfiable
iff K is satisfiable. Thus it only remains to decide satisfiabilityof SHIQ-ABoxes.

Satisfiability ofSHIQ-ABoxes can be decided by a tableaux algorithm that tries
to construct a model for the input ABoxA by breaking down concepts occurring in
A into sub-concepts, possibly introducing new individual variables, and thus making
explicit the constraints imposed on individuals in models of A. To this purpose, it
works on a completion forest (i.e., a collection of trees whose root nodes are possibly
connected to each other) some of whose nodes correspond to individuals in a model.
The forest’s edges denote role-successorships, and each node is labelled with concepts
it must be an instance of. This algorithm is similar to the onethat decides satisfiability
of SHIQ-concepts presented in Horrocks et al. [15]. Due to lack of space, we can
neither describe the algorithm in detail nor prove its soundness and completeness, and
refer the reader to [14], pages 38–49. Instead, we will simply point out the differences
between the concept- and the ABox-satisfiability algorithm.

Firstly, instead of working on a completiontree, it works on a completionforest,
that is, a collection of completion trees whose nodes correspond to individuals of a
model of the input ABox and whose root nodes correspond to those individuals that
occur explicitly in the ABox. Secondly, the rules of the algorithm had to be modified
to correctly handle completion forests. This mainly involves the rule that identifies
some of the neighbours of a nodex whenever it has>n neighbour nodes with respect
to a roleR, and we learn that, due to an at-most number restriction,x must only have at
mostn� 1 of these “R-successors”. Here, we must take special care when root nodes
are involved in this identification. Thirdly, theblocking conditionwhich guarantees
termination had to be modified in order to deal properly with root nodes. Basically,
this means that root nodes can never be blocked.
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5 Discussion

In this paper we have shown how the problem of query containment under constraints
can be decided using a KB (schema plus ABox) satisfiability tester for theSHIQ
description logic, and we have indicated how aSHIQ schema satisfiability testing al-
gorithm can be extended to deal with an ABox. We have only talked about conjunctive
queries, but extending the procedure to deal with disjunctions of conjunctive queries
should be straightforward. Although there is some loss of expressive power with re-
spect to the framework presented in [4], this seems to be acceptable when modelling
classical relational information systems, where regular expressions are seldom used.

Given that the FaCT implementation of theSHIQ schema satisfiability algorithm
has been shown to work well with realistic problems, and thatthe number of individ-
uals generated by query containment problems will be relatively small, there is good
reason to believe that a combination of the ABox encoding andthe extended algorithm
will lead to a practical decision procedure for query containment problems. Work is
underway to test this hypothesis by extending the FaCT system to deal withSHIQ
ABoxes.
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