
Dresden University of Technology

Institute for Theoretical Computer Science

Chair for Automata Theory

LTCS–Report

A Description Logic with

Transitive and Converse Roles, Role Hierarchies

and Qualifying Number Restrictions

Ian Horrocks and Ulrike Sattler and Stephan Tobies

LTCS-Report 99-08

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Hans-Grundig-Str. 25
01062 Dresden

Germany

A Description Logic with

Transitive and Converse Roles, Role Hierarchies

and Qualifying Number Restrictions

Ian Horrocks and Ulrike Sattler and Stephan Tobies

Revised Version - March 11, 2004

Sections 1–3 have already been published as the LTCS-Report [HS98], Section 4 is
an excerpt from [HS99]. The new material in this report extends these results and
is presented in Sections 5 and 6.

Contents

1 Introduction 2

2 A Tableaux Algorithm for SI 3
2.1 Syntax and Semantics . 3
2.2 An SI Tableau . 4
2.3 Constructing an SI Tableau . 6
2.4 Soundness and Completeness . 7

3 Extending SI by Role Hierarchies 11
3.1 General Concept Inclusion Axioms 15

4 Extending SHI by Functional Restrictions 16
4.1 Pair-wise Blocking . 17
4.2 Constructing an SHIF Tableau 18
4.3 Soundness and Completeness . 20

5 Extending SHI by Qualifying Number Restrictions 24
5.1 Syntax and Semantics . 24
5.2 An SHIQ-Tableau . 25
5.3 Constructing an SHIQ-Tableau 28
5.4 Soundness and Completeness . 29

6 Deciding consistency of SHIQ ABoxes 36
6.1 A Tableau for ABoxes . 37
6.2 An ABox consistency algorithm 38
6.3 ABox Reasoning with Respect to a Terminology 49

1

1 Introduction

As widely argued [HG97; Sat96], transitive roles play an important rôle in the
adequate representation of aggregated objects: they allow these objects to be
described by referring to their parts without specifying a level of decompo-
sition. In [HG97], the Description Logic (DL) ALCHR+ is presented, which
extends ALC with transitive roles and a role hierarchy. It is argued in [Sat98]

that ALCHR+ is well-suited to the representation of aggregated objects in ap-
plications that require various part-whole relations to be distinguished, some
of which are transitive. However, ALCHR+ allows neither the description of
parts by means of the whole to which they belong, or vice versa. To overcome
this limitation, we present the DL SHI which allows the use of, for example,
has part as well as is part of. To achieve this, ALCHR+ was extended with
inverse roles.

It could be argued that, instead of defining yet another DL, one could make
use of the results presented in [DL96] and use ALC extended with role expres-
sions which include transitive closure and inverse operators. The reason for not
proceeding like this is the fact that transitive roles can be implemented more
efficiently than the transitive closure of roles (see [HG97]), although they lead
to the same complexity class (ExpTime-hard) when added, together with role
hierarchies, to ALC. Furthermore, it is still an open question whether the tran-
sitive closure of roles together with inverse roles necessitates the use of the cut
rule [DM98], and this rule leads to an algorithm with very bad behaviour. We
will present an algorithm for SHI without such a rule.

Furthermore, we enrich the language with functional restrictions and, finally,
with qualifying number restrictions. We give sound and complete decision pro-
cedures for the resulting logics that are derived from the initial algorithm for
SHI.

The structure of this report is as follows: In Section 2, we introduce the
DL SI and present a tableaux algorithm for satisfiability (and subsumption)
of SI-concepts—in another report [HST98] we prove that this algorithm can
be refined to run in polynomial space. In Section 3 we add role hierarchies
to SI and show how the algorithm can be modified to handle this extension
appropriately. Please note that this logic, namely SHI, allows for the inter-
nalisation of general concept inclusion axioms, one of the most general form
of terminological axioms. In Section 4 we augment SHI with functional re-
strictions and, using the so-called pairwise-blocking technique, the algorithm
can be adapted to this extension as well. Finally, in Section 5, we show
that standard techniques for handling qualifying number restrictions [HB91;
BBH96] together with the techniques described in previous sections can be used
to decide satisfiability and subsumption for SHIQ, namely ALC extended with
transitive and inverse roles, role hierarchies, and qualifying number restrictions.
Although Section 5 heavily depends on the previous sections, we have made it
self-contained, i.e. it contains all necessary definitions and proofs from scratch,
for a better readability. Building on the previous sections, Section 6 presents
an algorithm that decides the satisfiability of SHIQ-ABoxes.

2

2 A Tableaux Algorithm for SI

In this section a tableaux algorithm for testing the satisfiability of SI con-
cept expressions will be described and a proof of its soundness and complete-
ness presented. The algorithm and proof are extensions of those described for
ALCR+ [Sat96].

2.1 Syntax and Semantics

SI is the Description Logic (DL) obtained by augmenting the well-known DL
ALC [SS88] with transitively closed roles and inverse (converse) roles. The set of
transitive role names R+ is a subset of the set of role names R. Interpretations
map role names to binary relations on the interpretation domain, and transitive
role names to transitive relations. In addition, for any role R ∈ R, the role R−

is interpreted as the inverse of R.

Definition 1 Let NC be a set of concept names and let R be a set of role names
with both transitive and normal role names R+∪RP = R, where RP∩R+ = ∅.
The set of SI-roles is R∪{R− | R ∈ R}. The set of SI-concepts is the smallest
set such that

1. every concept name C ∈ NC is a concept and

2. if C and D are concepts and R is an SI-role, then (C⊓D), (C⊔D), (¬C),
(∀R.C), and (∃R.C) are concepts.

An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain of I,
and a function ·I which maps every concept to a subset of ∆I and every role
to a subset of ∆I × ∆I such that

(C ⊓ D)I = CI ∩ DI ,

(C ⊔ D)I = CI ∪ DI ,

¬CI = ∆I \ CI ,

(∃R.C)I = {x ∈ ∆I | There is some y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},

(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI},

and, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I
,

if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

A concept C is called satisfiable iff there is some interpretation I such that
CI 6= ∅. Such an interpretation is called a model of C. A concept D subsumes
a concept C (written C ⊑ D) iff CI ⊆ DI holds for each interpretation I. Two
concepts C, D are equivalent (written C ≡ D) iff they are mutually subsuming.
For an interpretation I, an individual x ∈ ∆I is called an instance of a concept
C iff x ∈ CI .

3

In order to make the following considerations easier, we introduce two func-
tions on roles:

1. The inverse relation on roles is symmetric, and to avoid considering roles
such as R−−, we define a function Inv which returns the inverse of a role,
more precisely

Inv(R) :=

{

R− if R is a role name,
S if R = S− for a role name S.

2. Obviously, a role R is transitive if and only if Inv(R) is transitive. However,
either R or Inv(R) is in R+. In order to avoid this case distinction, the
function Trans returns true iff R is a transitive role—regardless whether
it is a role name or the inverse of a role name.

Trans(R) :=

{

true if R ∈ R+ or Inv(R) ∈ R+,
false otherwise.

2.2 An SI Tableau

Like other tableaux algorithms, the SI algorithm tries to prove the satisfiability
of a concept expression D by constructing a model of D. The model is repre-
sented by a so-called completion tree, a tree some of whose nodes correspond to
individuals in the model, each node being labelled with a set of SI-concepts.
When testing the satisfiability of an SI-concept D, these sets are restricted to
subsets of sub(D), where sub(D) is the set of subconcepts of D.

For ease of construction, we assume all concepts to be in negation normal
form (NNF), that is, negation occurs only in front of concept names. Any
SI-concept can easily be extended to an equivalent one in NNF by pushing
negations inwards using a combination of DeMorgan’s laws and the following
equivalences:

¬(C ⊔ D) ≡ ¬C ⊓ ¬D

¬(C ⊓ D) ≡ ¬C ⊔ ¬D

¬(∃R.C) ≡ (∀R.¬C)

¬(∀R.C) ≡ (∃R.¬C)

The soundness and completeness of the algorithm will be proved by showing
that it creates a tableau for D:

Definition 2 If D is an SI-concept in NNF and RD is the set of roles occur-
ring in D, together with their inverses, a tableau T for D is defined to be a
triple (S, L, E) such that: S is a set of individuals, L : S → 2sub(D) maps each
individual to a set of concepts which is a subset of sub(D), E : RD → 2S×S maps
each role in RD to a set of pairs of individuals, and there is some individual

4

s ∈ S such that D ∈ L(s). For all s ∈ S, C, C1, C2 ∈ sub(D), and R ∈ RD, it
holds that:

1. if C ∈ L(s), then ¬C /∈ L(s),

2. if C1 ⊓ C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

3. if C1 ⊔ C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

4. if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R), then C ∈ L(t),

5. if ∃R.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(R) and
C ∈ L(t),

6. if ∀R.C ∈ L(s), 〈s, t〉 ∈ E(R) and Trans(R), then ∀R.C ∈ L(t), and

7. 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)).

Lemma 1 An SI-concept D is satisfiable iff there exists a tableau for D.

Proof: For the if direction, if T = (S, L, E) is a tableau for D with D ∈
L(s0), a model I = (∆I , ·I) of D can be defined as:

∆I = S

CNI = {s | CN ∈ L(s)} for all concept names CN in sub(D)

RI =

{

E(R)+ if Trans(R)
E(R) otherwise

where E(R)+ denotes the transitive closure of E(R). DI 6= ∅ because s0 ∈ DI .
Transitive roles are obviously interpreted as transitive relations. By induction
on the structure of concepts, we show that, if E ∈ L(s), then s ∈ EI . Let
E ∈ L(s) with E ∈ sub(D).

1. If E is a concept name, then s ∈ EI by definition.

2. If E = ¬C, then C /∈ L(s) (due to property 1 in Definition 2), so s ∈
∆I \ CI = EI .

3. If E = (C1 ⊓ C2), then C1 ∈ L(s) and C2 ∈ L(s), so by induction s ∈ CI
1

and CI
2 . Hence s ∈ (C1 ⊓ C2)

I .

4. If E = (C1 ⊔ C2), then C1 ∈ L(s) or C2 ∈ L(s), so by induction s ∈ CI
1

or s ∈ CI
2 . Hence s ∈ (C1 ⊔ C2)

I .

5. If E = (∃S.C), then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and
C ∈ L(t). By definition, 〈s, t〉 ∈ SI and by induction t ∈ CI . Hence
S ∈ (∃S.C)I .

6. If E = (∀S.C) and 〈s, t〉 ∈ SI , then either

(a) 〈s, t〉 ∈ E(S) and C ∈ L(t), or

5

(b) 〈s, t〉 6∈ E(S), then there exists a path of length n ≥ 1 such that
〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(S). Due to property 6 in Definition 2,
∀S.C ∈ L(si) for all 1 ≤ i ≤ n, and we have C ∈ L(t).

In both cases, we have by induction t ∈ CI , hence s ∈ (∀S.C)I .

For the converse, if I = (∆I , ·I) is a model of D, then a tableau T = (S, L, E)
for D can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ sub(D) | s ∈ CI}

It only remains to demonstrate that T is a tableau for D:

1. T satisfies properties 1–5 in Definition 2 as a direct consequence of the
semantics of the ¬C, C1⊓C2, C1⊔C2, ∀R.C and ∃R.C concept expressions.

2. If d ∈ (∀R.C)I , 〈d, e〉 ∈ RI and Trans(R), then e ∈ (∀R.C)I unless there
is some f such that 〈e, f〉 ∈ RI and f /∈ CI . However, if 〈d, e〉 ∈ RI ,
〈e, f〉 ∈ RI and R ∈ R+, then 〈d, f〉 ∈ RI and d /∈ (∀R.C)I . T therefore
satisfies property 6 in Definition 2.

3. T satisfies property 7 in Definition 2 as a direct consequence of the se-
mantics of inverse relations.

2.3 Constructing an SI Tableau

From Lemma 1, an algorithm which constructs a tableau for an SI-concept D
can be used as a decision procedure for the satisfiability of D. Such an algorithm
will now be described in detail.

The tableaux algorithm works on completion trees. This is a tree where each
node x of the tree is labelled with a set L(x) ⊆ sub(D) and each edge 〈x, y〉 is
labelled L(〈x, y〉) = R for some (possibly inverse) role R occurring in sub(D).
Edges are added when expanding ∃R.C and ∃R−.C terms; they correspond to
relationships between pairs of individuals and are always directed from the root
node to the leaf nodes. The algorithm expands the tree either by extending
L(x) for some node x or by adding new leaf nodes.

For a node x, L(x) is said to contain a clash if, for some concept C,
{C,¬C} ⊆ L(x).

If nodes x and y are connected by an edge 〈x, y〉, then y is called a successor
of x and x is called a predecessor of y; ancestor is the transitive closure of
predecessor.

A node y is called an R-neighbour of a node x if either y is a successor of x
and L(〈x, y〉) = R or y is a predecessor of x and L(〈y, x〉) = Inv(R).

6

⊓-rule: if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

⊔-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y):

then create a new node y with L(〈x, y〉) = S and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y) :

then L(y) −→ L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), Trans(S), x is not indirectly blocked, and
2. there is an S-neighbour y of x with ∀S.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀S.C}

Figure 1: Tableaux expansion rules for SI

A node x is blocked if for some ancestor y, y is blocked or L(x) = L(y).
A blocked node x is indirectly blocked if its predecessor is blocked, otherwise
it is directly blocked. If x is directly blocked it has a unique ancestor y such
that L(x) = L(y): if there existed another ancestor z such that L(x) = L(z)
then either y or z must be blocked. If x is directly blocked, and y is the unique
ancestor such that L(x) = L(y), we will say that y blocks x.

The algorithm initialises a tree T to contain a single node x0, called the root
node, with L(x0) = {D}, where D is the concept to be tested for satisfiability.
T is then expanded by repeatedly applying the rules from Figure 1.

The completion tree is called complete when for some node x, L(x) contains
a clash, or when none of the rules is applicable. If, for an input concept D,
the expansion rules can be applied in such a way that they yield a complete,
clash-free completion tree, then the algorithm returns “D is satisfiable”, and
“D is unsatisfiable” otherwise.

2.4 Soundness and Completeness

The soundness and completeness of the algorithm will be demonstrated by prov-
ing that, for an SI-concept D, it always terminates and that it returns satisfiable
if and only if D is satisfiable.

Lemma 2 For each SI-concept D, the tableaux algorithm terminates.

7

Proof: Let m = |sub(D)|. Obviously, m is linear in the length of D. Ter-
mination is a consequence of the following properties of the expansion rules:

1. The expansion rules never remove nodes from the tree or concepts from
node labels.

2. Successors are only generated for existential value restrictions (concepts
of the form ∃R.C), and for any node each of these restrictions triggers the
generation of at most one successor. Since sub(D) cannot contain more
than m existential value restrictions, the out-degree of the tree is bounded
by m.

3. Nodes are labelled with nonempty subsets of sub(D). If a path p is of
length at least 2m, then there are 2 nodes x, y on p, with L(x) = L(y),
and blocking occurs. Since a path on which nodes are blocked cannot
become longer, paths are of length at most 2m.

Together with Lemma 1, the following lemma implies soundness of the tab-
leaux algorithm.

Lemma 3 If the expansion rules can be applied to an SI-concept D such that
they yield a complete and clash-free completion tree, then D has a tableau.

Proof: Let T be the complete and clash-free tree constructed by the tab-
leaux algorithm for D. A tableau T = (S, L, E) can be defined with:

S = {x | x is a node in T and x is not blocked},

E(R) = {〈x, y〉 ∈ S × S | 1. y is an R-neighbour of x or
2. L(〈x, z〉) = R and y blocks z or
3. L(〈y, z〉) = Inv(R) and x blocks z},

and it can be shown that T is a tableau for D:

1. D ∈ L(x0) for the root x0 of T, and as x0 has no predecessors it cannot
be blocked. Hence D ∈ L(s) for some s ∈ S.

2. Property 1 of Definition 2 is satisfied because T is clash free.

3. Properties 2 and 3 of Definition 2 are satisfied because neither the ⊓-rule
nor the ⊔-rule apply to any x ∈ S.

4. Property 4 in Definition 2 is satisfied because for all x ∈ S, if ∀R.C ∈ L(x)
and 〈x, y〉 ∈ E(R) then either:

(a) x is an R-neighbour of y,

(b) L(〈x, z〉) = R, y blocks z, from the ∀-rule C ∈ L(z), L(y) = L(z), or

(c) L(〈y, z〉) = Inv(R), x blocks z, L(x) = L(z), so from the ∀-rule
C ∈ L(y).

8

In all 3 cases, the ∀-rule ensures that C ∈ L(y).

5. Property 5 in Definition 2 is satisfied because for all x ∈ S, if ∃R.C ∈ L(x)
then the ∃-rule ensures that there is either:

(a) a predecessor y such that L(〈y, x〉) = Inv(R) and C ∈ L(y). Because
y is a predecessor of x it cannot be blocked, so y ∈ S and 〈y, x〉 ∈
E(R).

(b) a successor y such that L(〈x, y〉) = R and C ∈ L(y). If y is not
blocked, then y ∈ S and 〈x, y〉 ∈ E(R). Otherwise, y is blocked by
some z with L(z) = L(y). Hence C ∈ L(z), z ∈ S and 〈x, z〉 ∈ E(R).

6. Property 6 in Definition 2 is satisfied because for all x ∈ S, if ∀R.C ∈ L(x),
〈x, y〉 ∈ E(R) and Trans(R) then either:

(a) x is an R-neighbour of y,

(b) L(〈x, z〉) = R, y blocks z, and L(y) = L(z), or

(c) L(〈y, z〉) = Inv(R), x blocks z, hence L(x) = L(z) and ∀R.C ∈ L(z).

In all 3 cases, the ∀+-rule ensures that ∀R.C ∈ L(y).

7. Property 7 in Definition 2 is satisfied because for each 〈x, y〉 ∈ E(R),
either:

(a) x is an R-neighbour of y, so y is an Inv(R)-neighbour of x and 〈y, x〉 ∈
E(Inv(R)).

(b) L(〈x, z〉) = R and y blocks z, so L(〈x, z〉) = Inv(Inv(R)) and 〈y, x〉 ∈
E(Inv(R)).

(c) L(〈y, z〉) = Inv(R) and x blocks z, so 〈y, x〉 ∈ E(Inv(R)).

Lemma 4 If D has a tableau, then the expansion rules can be applied in such a
way that the tableaux algorithm yields a complete and clash-free completion tree
for D.

Proof: Let T = (S, L, E) be a tableau for D. Using T , we trigger the
application of the expansion rules such that they yield a completion tree T that
is both complete and clash-free. We start with T consisting of a single node x0,
the root, with L(x0) = {D}.

T is a tableau, hence there is some s0 ∈ S with D ∈ L(s0). When applying
the expansion rules to T, the application of the non-deterministic ⊔-rule is
driven by the labelling in the tableau T . To this purpose, we define a mapping
π which maps the nodes of T to elements of S, and we steer the application
of the ⊔-rule such that L(x) ⊆ L(π(x)) holds for all nodes x of the completion
tree.

More precisely, we define π inductively as follows:

9

• π(x0) = s0.

• If π(xi) = si is already defined, and a successor y of xi was generated
for ∃R.C ∈ L(xi), then π(y) = t for some t ∈ S with C ∈ L(t) and
〈si, t〉 ∈ E(R).

To make sure that we have L(xi) ⊆ L(π(xi)), we use the ⊔′-rule instead of the
⊔-rule, where

⊔′-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {D} for some D ∈ {C1, C2} ∩ L(π(x)),
The expansion rules given in Figure 1 with the ⊔-rule replaced by the ⊔′-rule

are called modified expansion rules in the following.
It is easy to see that, if a tree T was generated using the modified expansion

rules, then the expansion rules can be applied in such a way that they yield T.
Hence Lemma 3 and Lemma 2 still apply, and thus using the ⊔′-rule instead of
the ⊔-rule preserves soundness and termination.

We will now show by induction that, if L(x) ⊆ L(π(x)) holds for all nodes
x in T, then the application of an expansion rule preserves this subset-relation.
To start with, we clearly have {D} = L(x0) ⊆ L(s0).

If the ⊓-rule can be applied to x in T with C = C1 ⊓C2 ∈ L(x), then C1, C2

are added to L(x). Since T is a tableau, {C1, C2} ⊆ L(π(x)), and hence the
⊓-rule preserves the subset-relation between L(x) and L(π(x)).

If the ⊔′-rule can be applied to x in T with C = C1 ⊔ C2 ∈ L(x), then
D ∈ {C1, C2} is in L(π(x)), and D is added to L(x) by the ⊔′-rule. Hence the
⊔′-rule preserves the subset-relation between L(x) and L(π(x)).

If the ∃-rule can be applied to x in T with C = ∃R.C1 ∈ L(x), then C ∈
L(π(x)) and there is some t ∈ S with 〈π(x), t〉 ∈ E(R) and C1 ∈ L(t). The ∃-
rule creates a new successor y of x for which π(y) = t for some t with C1 ∈ L(t).
Hence we have L(y) = {C1} ⊆ L(π(y)).

If the ∀-rule can be applied to x in T with C = ∀R.C1 ∈ L(x) and y is
an R-neighbour of x, then 〈π(x), π(y)〉 ∈ E(R), and thus C1 ∈ L(π(y)). The
∀-rule adds C1 to L(y) and thus preserves the subset-relation between L(x) and
L(π(x)).

If the ∀+-rule can be applied to x in T with C = ∀R.C1 ∈ L(x), Trans(R)
and y being an R-neighbour of x, then 〈π(x), π(y)〉 ∈ E(R), and thus ∀R.C1 ∈
L(π(y)). The ∀+-rule adds C1 to L(y) and thus preserves the subset-relation
between L(y) and L(π(y)).

Summing up, the tableau-construction triggered by T terminates with a
complete tree, and since L(x) ⊆ L(π(x)) holds for all nodes x in T, T is clash-
free due to Property 1 of Definition 2.

Theorem 1 The tableaux algorithm is a decision procedure for the satisfiability
and subsumption of SI-concepts.

10

Theorem 1 is an immediate consequence of the Lemmata 1, 2, 3, and 4.
Moreover, since SI is closed under negation, subsumption C ⊑ D can be reduced
to unsatisfiability of C ⊓ ¬D.

3 Extending SI by Role Hierarchies

We will now extend the tableaux algorithm presented in Section 2.3 to deal
with role hierarchies in a similar way to the algorithm for ALCHR+ presented
in [HG97]. SHI extends SI by allowing, additionally, for inclusion axioms on
roles. These axioms can involve transitive as well as non-transitive roles, and
inverse roles as well as role names. For example, to express that a role R is
symmetric, we add the two axioms R ⊑ R− and R− ⊑ R.

Definition 3 A role inclusion axiom is of the form

R ⊑ S,

for two (possibly inverse) roles R and S. For a set of role inclusion axioms R,
R+ := (R∪{Inv(R) ⊑ Inv(S) | R ⊑ S ∈ R}, ⊑*) is called a role hierarchy, where
⊑* is the transitive-reflexive closure of ⊑ over R∪ {Inv(R) ⊑ Inv(S) | R ⊑ S ∈
R}.

Definition 4 SHI is the extension of SI obtained by allowing, additionally,
for a role hierarchy R+.

As well as being correct for SI concepts, an SHI interpretation has to
satisfy the additional condition,

〈x, y〉 ∈ RI implies 〈x, y〉 ∈ SI for all rolesR, S with R ⊑* S.

The tableaux algorithm given in the preceding section can easily be modified
to decide satisfiability of SHI-concepts by extending the definitions of both R-
neighbours and the ∀+-rule to include the notion of role hierarchies. To prove
the soundness and correctness of the extended algorithm, the definition of a
tableau is also extended.

Definition 5 As well as satisfying Definition 2 (i.e. being a valid SI tableau),
a tableau T = (S, L, E) for an SHI-concept D must also satisfy:

6′. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R ⊑* S with Trans(R), then
∀R.C ∈ L(t),

8. if 〈x, y〉 ∈ E(R) and R ⊑* S, then 〈x, y〉 ∈ E(S),

where property 6′ extends and supersedes property 6 from Definition 2.

For the SHI algorithm, the ∀+-rule is replaced with the ∀′+-rule (see Fig-
ure 2), and the definition of R-neighbours extended as follows:

11

∀′+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R ⊑* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}

Figure 2: The new ∀+-rule for SHI.

Definition 6 Given a completion tree, a node y is called an R-neighbour of a
node x if either y is a successor of x and L(〈x, y〉) = S or y is a predecessor of
x and L(〈y, x〉) = Inv(S) for some S with S ⊑* R.

In the following, the tableaux algorithm resulting from these modifications
will be called the modified tableaux algorithm.

To prove that the modified tableaux algorithm is indeed a decision procedure
for the satisfiability of SHI-concepts, all 4 technical lemmata used in Section 2
to prove this fact for the SI tableaux algorithm have to be re-proven for SHI.
In the following, we will restrict our attention to cases that differ from those
already considered for SI.

Lemma 5 An SHI-concept D is satisfiable iff there exists a tableau for D.

Proof: For the if direction, the construction of a model of D from a tableau
for D is similar to the one presented in the proof of Lemma 1. If T = (S, L, E)
is a tableau for D with D ∈ L(s0), a model I = (∆I , ·I) of D can be defined as
follows:

∆I = S

CNI = {s | CN ∈ L(s)} for all concept names CN in sub(D)

RI =

{

E(R)+ if Trans(R)
E(R) ∪

⋃

P ⊑* R,P 6=R

P I otherwise

The interpretation of non-transitive roles is recursive in order to correctly
interpret those non-transitive roles that have a transitive sub-role. From the
definition of RI and property 8 of a tableau it follows that if 〈x, y〉 ∈ SI , then
either 〈x, y〉 ∈ E(S) or there exists a path 〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(R) for
some R with Trans(R) and R ⊑* S.

Property 8 of a tableau ensures that RI ⊆ SI holds for all roles with R ⊑* S,
including those cases where R is a transitive role. Again, it can be shown by
induction on the structure of concepts that I is a correct interpretation. We
restrict our attention to the only case that is different from the ones in the proof
of Lemma 1. Let E ∈ sub(D) with E ∈ L(s).

6′. If E = (∀S.C) and 〈s, t〉 ∈ SI , then either

(a) 〈s, t〉 ∈ E(S) and C ∈ L(t), or

12

(b) 〈s, t〉 6∈ E(S), then there exists a path of length n ≥ 1 such that
〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(R) for some R with Trans(R) and
R ⊑* S. Due to Property 6’, ∀R.C ∈ L(si) for all 1 ≤ i ≤ n, and
we have C ∈ L(t).

In both cases, we have t ∈ CI .

For the converse, if I = (∆I , ·I) is a model of D, then a tableau T = (S, L, E)
for D can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ sub(D) | s ∈ CI}

It remains to demonstrate that T is a tableau for D:

1. T satisfies properties 1–5 in Definition 2 as a direct consequence of the
semantics of SHI-concepts.

2. If d ∈ (∀S.C)I and 〈d, e〉 ∈ RI for R with Trans(R) and R ⊑* S, then
e ∈ (∀R.C)I unless there is some f such that 〈e, f〉 ∈ RI and f /∈ CI .
In this case, if 〈d, e〉 ∈ RI , 〈e, f〉 ∈ RI and Trans(R), then 〈d, f〉 ∈ RI .
Hence 〈d, f〉 ∈ SI and d /∈ (∀S.C)I—in contradiction of the assumption.
T therefore satisfies Property 6′ in Definition 5.

3. Since I is a model of D, 〈x, y〉 ∈ RI implies 〈x, y〉 ∈ SI for all roles R, S
with R ⊑* S. Hence T satisfies Property 8 in Definition 5.

Lemma 6 For each SHI-concept D, the modified tableaux algorithm termi-
nates.

The proof is identical to the one given for Lemma 2.

Lemma 7 If the expansion rules can be applied to an SHI-concept D such that
they yield a complete and clash-free completion tree, then D has a tableau.

Proof: The definition of a tableau from a complete and clash-free completion
tree, as presented in the proof of Lemma 3, has to be slightly modified. A tableau
T = (S, L, E) is now defined with:

S = {x | x is a node in T and x is not blocked}

E(S) = {〈x, y〉 ∈ S × S | 1. y is an S-neighbour of x or
2. There exists a role R with R ⊑* S and

a. L(〈x, z〉) = R and y blocks z or
b. L(〈y, z〉) = Inv(R) and x blocks z}

and, again, it can be shown that T is a tableau for D:

13

1. Since the expansion rules were started with L(x0) = {D}, D ∈ L(x0) for
some x0 ∈ S.

2. Properties 1-3 are identical to the proof of Lemma 3.

3. Property 4 in Definition 2 is satisfied because for all x ∈ S, if ∀S.C ∈ L(x)
and 〈x, y〉 ∈ E(S) then either:

(a) x is an S-neighbour of y,

(b) for some role with R ⊑* S, either

i. L(〈x, z〉) = R, y blocks z, hence from the ∀-rule C ∈ L(z), and
L(y) = L(z), or

ii. L(〈y, z〉) = Inv(R), x blocks z, hence L(x) = L(z) and therefor
∀S.C ∈ L(z).

In all three cases, the ∀-rule ensures C ∈ L(y).

4. Property 5 in Definition 2 is satisfied for the same reasons as in the proof
of Lemma 3

5. Property 6’ in Definition 5 is satisfied because for all x ∈ S, if ∀S.C ∈ L(x),
〈x, y〉 ∈ E(R) for some R with Trans(R) and R ⊑* S, then either:

(a) y is an R-neighbor of x, or

(b) there is some role R′ with R′ ⊑ R and

i. L(〈x, z〉) = R′, y blocks z and L(y) = L(z), or

ii. L(〈y, z〉) = Inv(R), x blocks z and L(x) = L(z), hence ∀S.C ∈
L(z).

In all three cases, ∀R.C ∈ L(y) follows from the ∀′+-rule.

6. Property 8 in Definition 5 follows immediately from the definition of E.

Lemma 8 If SHI-concept D has a tableau, then the expansion rules can be
applied in such a way that the tableaux algorithm yields a complete and clash-
free completion tree for D.

The proof of Lemma 8 is identical to the one presented for Lemma 4. Again,
summing up, we have the following theorem.

Theorem 2 The tableaux algorithm is a decision procedure for the satisfiability
and subsumption of SHI-concepts.

14

3.1 General Concept Inclusion Axioms

In [Baa90; Sch91; BBN+93], the internalisation of terminological axioms is in-
troduced. This technique is used to reduce reasoning with respect to a (possibly
cyclic) terminology to satisfiability of concepts. In [HG97], we saw how role hi-
erarchies can be used to reduce satisfiability and subsumption with respect to
a terminology to concept satisfiability and subsumption. In the presence of
inverse roles, this reduction must be slightly modified.

Definition 7 A terminology T is a finite set of general concept inclusion ax-
ioms,

T = {C1 ⊑ D1, . . . , Cn ⊑ Dn},

where Ci, Di are arbitrary SHI-concepts. An interpretation I is said to be
a model of T iff CI

i ⊆ DI
i holds for all Ci ⊑ Di ∈ T . C is satisfiable with

respect to T iff there is a model I of T with CI 6= ∅. Finally, D subsumes C
with respect to T (C ⊑T D) iff for each model I of T we have CI ⊆ DI .

The following lemma shows how general concept inclusion axioms can be
internalised using a “universal” role U . This role U is a transitive super-role of
all relevant roles and their respective inverses. Hence, for each interpretation
I, each individual t reachable via some role path from another individual s is
an UI-successor of s. All general concept inclusion axioms Ci ⊑ Di in T are
propagated along all role paths using the value restriction ∀U.¬C ⊔ D.

Lemma 9 Let T be terminology and C, D be SHI-concepts and let

CT := ⊓
Ci⊑Di∈T

¬Ci ⊔ Di.

Let U be a transitive role with R ⊑ U , Inv(R) ⊑ U for each role R that occurs
in T , C, or D.

Then C is satisfiable with respect to T iff

C ⊓ CT ⊓ ∀U.CT

is satisfiable. D subsumes C with respect to T (C ⊑T D) iff

C ⊓ ¬D ⊓ CT ⊓ ∀U.CT

is unsatisfiable.

Remark: Instead of defining U as a transitive super-role of all roles and their
respective inverses, one could have defined U as a transitive super-role of all
roles and, additionally, a symmetric role by adding U ⊑ U− and U− ⊑ U .

The proof of Lemma 9 is similar to the ones that can be found in [Sch91;
Baa90]. One point to show is that, if an SHI-concept C is satisfiable with
respect to a terminology T , then C, T have a connected model, namely one

15

whose individuals are all related to each other by some role path. This follows
from the definition of the semantics of SHI-concepts. The other point to proof
is that, if y is reachable from x via a role path (possibly involving inverse roles),
then 〈x, y〉 ∈ UI , which is an easy consequence of the definition of U .

Decidability of satisfiability and subsumption with respect to a terminology
is an immediate consequence of Lemma 9 and Theorem 2.

Theorem 3 The modified tableaux algorithm is a decision procedure for satis-
fiability and subsumption of SHI-concepts with respect to terminologies.

4 Extending SHI by Functional Restrictions

In this section, we will present the extension of SHI with functional restrictions
to give SHIF . The most general way to do this is to allow, for (possibly inverse)
roles R, concepts of the form (6 1 R). These concepts express local functional-
ity, and can be used to express global functionality, by using the general concept
inclusion axiom ⊤ ⊑ (6 1 R). As the logic supports general negation, it is also
necessary to allow for negated functional restrictions ¬(6 1 R); in negation
normal form these become restrictions of the form (> 2 R) [HNS90].

In SHIF , the roles that can appear in functional restrictions are limited to
simple roles, where a role is simple if it is neither transitive nor has transitive
sub-roles. Without this limitation the extension of the SHI tableau construc-
tion algorithm would be more difficult due to the possibility of having to collapse
a chain of successors into a single node. This would be necessary if, for example,
(6 1 S) is added to the label of a node x where R ∈ R+, x already has a chain
of R-successors, and R ⊑* S.

Definition 8 SHIF is the extension of SHI obtained by allowing, addition-
ally, for functional restrictions: for a simple role R, (6 1 R) is also an SHIF-
concept. A role R is a simple role iff R /∈ R+ and, for any S ⊑* R, S is also a
simple role.

An SHIF-interpretation is an SHI-interpretation that satisfies, addition-
ally,

(6 1 R)I = {x ∈ ∆I | For all y, z: if 〈x, y〉 ∈ RI and 〈x, z〉 ∈ RI , then y = z},

(> 2 R)I = {x ∈ ∆I | There exist y, z: 〈x, y〉 ∈ RI , 〈x, z〉 ∈ RI , and y 6= z}.

Definition 9 If D is an SHIF-concept in NNF, then a tableau T for D is
defined like in Definition 5, with the additional properties:

9. if (6 1 R) ∈ L(s) and 〈s, t〉 ∈ E(R) and 〈s, t′〉 ∈ E(R), then t = t′, and

10. if (> 2 R) ∈ L(s), then there are some t, t′ ∈ S such that 〈s, t〉 ∈ E(R),
〈s, t′〉 ∈ E(R), and t 6= t′.

16

Lemma 10 An SHIF -concept D is satisfiable iff there exists a tableau for D.

As will be shown in the next section, SHIF no longer has the finite model
property. In the algorithm presented here, this will be dealt with by generating
(finite) completion trees and showing how they can be interpreted as infinite
tableaux.

The proof is similar to the proof of Lemma 5, with the additional observa-
tions that

1. In the if direction, Properties 9 and 10 in Definition 9 ensure that func-
tional restrictions are interpreted correctly. This depends on the fact that
only simple roles can appear in functional restrictions, as for a simple role
R, RI = E(R).

2. In the only if direction, the semantics of functional restrictions ensure
that Properties 9 and 10 in Definition 9 are satisfied.

4.1 Pair-wise Blocking

Further extending the logic with functional restrictions (concepts of the form (6
1 R), meaning that an individual can be related to at most one other individual
by the role R) and a role hierarchy (subsumption relationships between roles)
introduces new problems associated with the fact that the logic no longer has the
finite model property. This means that there are concepts that are satisfiable
but for which there exists no finite model. An example of such a concept is

¬C ⊓ ∃F−.C ⊓ (6 1 F) ⊓ ∀R−.(∃F−.(C ⊓ (6 1 F)))

where R is a transitive role and F ⊑ R. Any model of this concept must
contain an infinite sequence of individuals, each related to a single successor by
an F− role, and each satisfying C ⊓ ∃F−.C, the ∃F−.C term being propagated
along the sequence by the transitive super-role R. Attempting to terminate the
sequence in a cycle causes the whole sequence to collapse into a single node due
the functional restrictions (6 1 F), and this results in a contradiction as both
C and ¬C will be in the node’s label.

In order to deal with infinite models—namely to have an algorithm that
terminates correctly even if the input concept has only infinite models—a more
sophisticated pair-wise blocking strategy is introduced, and soundness is proved
by demonstrating that a (possibly blocked) tree always has a corresponding
(possibly infinite) model.1

The new blocking strategy generates a tree where an infinite tableau is de-
fined by recursively replacing the blocked node with a copy of the tree rooted
at the blocking node. To be certain that this transplanted tree is still valid in
its new location, blocks are established between pairs of nodes connected by the
same role: a node y is blocked by a node x when their labels are equal, the
labels of their predecessors y′ and x′ are equal, and the edges connecting x′ to x

1This is not to say that it may not also have a finite model.

17

L(y) = {D, ∃F−.D, ∀R−.(∃F−.D), C, (6 1 F),∃F.¬C}

L(x) = {¬C, (6 1 F),∃F−.D, ∀R−.(∃F−.D)}

F−

F−

L(z) = {D, ∃F−.D, ∀R−.(∃F−.D), C, (6 1 F),∃F.¬C}z

y

x

Figure 3: A tableau where pair-wise blocking is crucial

and y′ to y are labelled with the same role names. Note the similarity between
this condition and that imposed by the combination of the blocking condition
and cut rule in 4converse-PDL [DM98].

Figure 3 shows how pair-wise blocking is crucial in order to ensure that the
algorithm discovers the unsatisfiability of the concept

¬C ⊓ (6 1 F) ⊓ ∃F−.D ⊓ ∀R−.(∃F−.D),

where F ⊑ R and D represents the concept

C ⊓ (6 1 F) ⊓ ∃F.¬C.

Using dynamic blocking, z would be blocked by y. The resulting tree cannot
represent a cyclical model in which y is related to itself by an F− role as this
would conflict with (6 1 F) ∈ L(y). The tree must therefore represent the
infinite model generated by recursively replacing each occurrence of z with a
copy of the tree rooted at y. However, this is not a valid model as when z is
substituted by a copy of y, ∃F.¬C ∈ L(y), which was satisfied by ¬C ∈ L(x),
is no longer satisfied in its new location.

When pair-wise blocking is used, z is no longer blocked by y as the labels
of their predecessors (y and x respectively) are not equal, and the algorithm
continues to expand L(z). The expansion of ∃F.¬C ∈ L(z) calls for the existence
of a node whose label includes ¬C and that is connected to z by an F labelled
edge. Because of (6 1 F) ∈ L(z), this node must be y, and this results in a
contradiction as both C and ¬C will be in L(y).

4.2 Constructing an SHIF Tableau

In this section, we show how the tableaux algorithm for SHI can be extended
to deal with SHIF-concepts. The following is a list of modifications that are
necessary to deal with functional roles. The resulting definitions are then given
in Definition 10.

1. If a node x has more R-neighbours than allowed by a functional restriction
(6 1 R), we will merge these R-neighbours into a single one. Since these

18

R-neighbours can also be neighbours with respect to some roles S, S′ which
are not comparable by ⊑* , the merged R-neighbour is also an S- and an
S′-neighbour of x. To capture this, edges will be labelled with sets of
roles.

2. Due to the new, set-valued edge labelling, the definitions of neighbours
and successors have to be adjusted; as described in Definition 10.

3. The blocking strategy from Section 2.3 is extended by using pair-wise
blocking as described in Section 4.1.

4. Tableau expansion rules must be added for functional restriction concepts,
and the ∃-rule must be amended in order to deal with set valued edge
labels. The complete set of SHIF expansion rules is given in Figure 4. For
the proof of the soundness of these rules, namely the proof of Lemma 12,
if (> 2 R) ∈ L(x), then we always introduce two R-successors which can
never be merged. For this purpose, we use a concept name A that does
not occur in the input concept D and thus does not interfere with the
other constraints. For implementation purposes, this rule could clearly be
simplified,2 but its current design facilitates the proofs.

5. The definition of a clash is extended to include those cases where there
are conflicting functional restrictions. Given the >-rule as described, this
is not strictly necessary, but it would be required if the >-rule did not
create two logically disjoint successors.

Definition 10 In contrast to completion trees introduced in the previous Sec-
tions, in the following, each edge of completion trees is labelled with a set of
roles.

Given a completion tree, a node y is called an R-successor of a node x if
y is a successor of x and S ∈ L(〈x, y〉) for some S with S ⊑* R; y is called an
R-neighbour of x if it is an R-successor of x, or if x is an Inv(R)-successor of y.

A node x is directly blocked if none of its ancestors are blocked, and it has
ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′ and

2. L(x) = L(y) and L(x′) = L(y′) and

3. L(〈x′, x〉) = L(〈y′, y〉).

In this case we will say that y blocks x.
A node is indirectly blocked if its predecessor is blocked, and in order to avoid

wasted expansion after an application of the 6-rule, a node y will also be taken
to be indirectly blocked if it is a successor of a node x and L(〈x, y〉) = ∅.

2It is intuitively obvious that if (> 2 R) ∈ L(x), and there is no conflicting functional
restriction in L(x), then the sub-tree rooted in a single R-successor of x could be duplicated
in order to satisfy (> 2 R).

19

⊓-rule: if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

⊔-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then, L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y):

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y)

then L(y) −→ L(y) ∪ {C}

∀′+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked,
2. there is some R with Trans(R) and R ⊑* S, and
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}

>-rule: if 1. (> 2 R) ∈ L(x), x is not blocked, and
2. there is no R-neighbour y of x with A ∈ L(y)

then create two new nodes y1, y2 with L(〈x, y1〉) = {R},
L(〈x, y2〉) = {R}, L(y1) = {A} and L(y2) = {¬A}

6-rule: if 1. (6 1 R) ∈ L(x), x is not indirectly blocked,
2. x has two R-neighbours y and z s.t. y is not an ancestor of z,

then 1. L(z) −→ L(z) ∪ L(y) and
2. if z is an ancestor of y

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅

Figure 4: The complete tableaux expansion rules for SHIF

For a node x, L(x) is said to contain a clash if it contains an SHI-clash, or,
for roles R and S, {(6 1 R), (> 2 S)} ⊆ L(x) and S ⊑* R.

4.3 Soundness and Completeness

The soundness and completeness proof follows the same pattern as those for the
other logics, but the tableaux construction proof is more complex as it must be
able to create an infinite tableau.

Lemma 11 For each SHIF -concept D, the tableaux algorithm terminates.

20

Proof: Very similar to the proof of Lemma 2, it only being necessary to
show that there are a finite number of different node-relation-node triples. Let
m = |sub(D)| and n = |RD|. Termination is a consequence of the following
properties of the expansion rules:

1. The expansion rules never remove nodes from the tree or concepts from
node labels. Edge labels can only be changed by the 6-rule which either
expands them or sets them to ∅; in the latter case the node below the
∅-labelled edge is blocked and will remain blocked forever.

2. Nodes are labelled with nonempty subsets of sub(D)∪ {A,¬A} and edges
with subsets of RD, so there are at most 22mn different possible labellings
for a pair of nodes and an edge. Therefore, if a path p is of length at least
22mn, then, from the pair-wise blocking condition defined in Section 4.2,
there must be 2 nodes x, y on p such that x is directly blocked by y. Since
a path on which nodes are blocked cannot become longer, paths are of
length at most 22mn. This implies that also the maximum distance of any
node to root node is bounded by 22mn.

3. Successors of a node x must be the result of an application of the ∃- or
the >-rule to concepts of the form ∃R.C and (> 2 R) in L(x). Each of
these concepts triggers the generation of at most two successors y: note
that if the 6-rule subsequently causes L(〈x, y〉) to be changed to ∅, then
x will have some R-neighbour z with L(z) ⊇ L(y). This, together with
the enhanced definition of a clash, implies that the rule application which
led to the generation of y will not be repeated. Since sub(D) contains a
total of at most m ∃R.C and (> 2 R) concepts, the out-degree of the tree
is bounded by 2m.

Lemma 12 (Soundness) If the expansion rules can be applied to an SHIF-
concept D such that they yield a complete and clash-free completion tree, then
D has a tableau.

Proof: Intuitively, the definition of a tableau T = (S, L, E) from a complete
and clash-free completion tree T works as follows: An individual in S corre-
sponds to a path in T from the root node to some node that is not blocked.
To obtain infinite tableaux, these paths may be cyclic. Instead of going to a
directly blocked node, these paths go “back” to the blocking node—and this
an infinite number of times. Thus, if blocking occurred while constructing a
tableaux, we obtain an infinite tableau. 3

More precisely, let T be a complete and clash-free completion tree. We will
use the mapping Tail(p) to return the last element in a path p: given a path
p = [x0, . . . , xn], where the xi are nodes in T, Tail(p) = xn. Paths in T are
defined inductively as follows:

3If a simplified >-rule were employed, as outlined in Section 4.2, then a more elaborate
construction would be required, one that created duplicate paths as necessary in order to
satisfy (> 2 R) concepts.

21

1. For the root node x0 in T, [x0] is a path in T;

2. For a path p and a node xi in T, [p, xi] is a path in T iff

(a) xi is a successor of Tail(p) and xi is not blocked, or

(b) for some node y in T, y is a successor of Tail(p) and xi blocks y.

Now we can define a tableau T = (S, L, E) with:

S= {xp | p is a path in T}

L(xp)=L(Tail(p))

E(R) = {〈xp, xq〉 ∈ S× S | Either q = [p, Tail(q)] and
1.Tail(q) is an R-successor of Tail(p), or
2. for some node y in T, y is an R-successor

of Tail(p) and Tail(q) blocks y
or p = [q, Tail(p)] and
1.Tail(p) is an Inv(R)-successor of Tail(q), or
2. for some node y in T, y is an Inv(R)-successor

of Tail(q) and Tail(p) blocks y}

and it can be shown that T is a tableau for D.

1. D ∈ L(x0) for the root x0 of T and [x0] is a path in T. Hence D ∈ L(x[x0])
for x[x0] ∈ S.

2. The proof that Properties 1–3 of Definition 2 are satisfied is identical to
the proof of Lemma 3.

3. The proof that Properties 4–6 of Definition 2 are satisfied is similar to
that given in the proof of Lemma 3, with the additional observations that

(a) The new Definition 10 of R-neighbours must be taken into account.

(b) For all individuals xp ∈ S, the “immediate environment” of xp is
identical to that of the node Tail(p) in T. To be more precise, for all
nodes x in T, if y is an R-neighbour of x, then, for every individual
xp ∈ S with Tail(p) = x, there is an individual xq ∈ S such that
〈xp, xq〉 ∈ E(R) and L(xq) = L(y). This is straightforward in the
case where y is an R-successor of x: either Tail(q) = y, or Tail(q) = z
for some z that blocks y and L(z) = L(y).

However, in the case where x is an Inv(R)-successor of y (so y is an R-
neighbour of x), and x blocks some node z, the maintenance of this
property crucially depends on the definition of pair-wise blocking:
let w be the predecessor of z, q be a path with Tail(q) = w and p
be the path [q, x] resulting from the block. By definition xp ∈ S
with Tail(p) = x. From pair-wise blocking we have that w is an R-
neighbour of z, and L(w) = L(y), so for xq ∈ S, 〈xp, xq〉 ∈ E(R) and
L(xq) = L(y).

22

4. Property 7 holds because of the symmetric definition of the mapping E.

5. The proof that Properties 6′ and 8 of Definition 5 are satisfied is identical
to the proof of Lemma 7.

6. Suppose Property 9 of Definition 9 were not satisfied. Let xp, xq, xq′ be
individuals in S with (6 1 R) ∈ L(xp), {〈xp, xq〉, 〈xp, xq′ 〉} ⊆ E(R) and
q 6= q′. This means that either

(a) Tail(q) and Tail(q′) are both R-neighbours of Tail(p), or

(b) one of them, say Tail(q), is an R-neighbour of Tail(p) and Tail(q′)
blocks an R-neighbour y of Tail(p), but then both y and Tail(q) are
R-neighbours of Tail(p), and y 6= Tail(q) because y is blocked while
Tail(q) is not, or

(c) Tail(q) and Tail(q′) block R-neighbours y and z of Tail(p), but then
both y and z are R-neighbours of Tail(p), with y 6= z because q 6= q′

and a blocked node has a unique blocking node.

In all three cases Tail(p) has two R-neighbours, the 6-rule would be ap-
plicable, and T cannot be complete.

7. Property 10 of Definition 9 follows immediately from the >-rule and the
definition of the tableau T : since T is clash-free, if (> 2 R) ∈ L(xp), then
Tail(p) in T has two R-successors y, z that cannot be blocked by the same
node since, w.l.o.g. A ∈ L(y) and ¬A ∈ L(z). Hence 〈xp, xq〉 ∈ E(R) and
〈xp, xq′ 〉 ∈ E(R), with q 6= q′.

Lemma 13 (Completeness) If D has a tableau, then the expansion rules can
be applied to an SHIF-concept D such that they yield a complete and clash-free
completion tree.

Again, this proof is similar to the one for Lemma 4 and SI-concepts. This
is due to the fact that we did not introduce new non-deterministic rules. Given
a tableau, we can trigger the application of the expansion rules such that they
yield a complete and clash-free completion tree, with Properties 9 and 10 of
Definition 9 ensuring that it is also complete and clash-free with respect to
functional restrictions.

Theorem 4 The tableaux algorithm is a decision procedure for the satisfiability
and subsumption of SHIF -concepts with respect to terminologies.

Using the same techniques and arguments as in Section 3.1, general concept
inclusion axioms can be internalised. Hence the tableaux algorithm is a decision
procedure for satisfiability and subsumption of ALCFIR+ -concepts with respect
to terminologies.

23

5 Extending SHI by Qualifying Number Re-

strictions

In the following we present, in detail, a tableaux algorithm for SHIQ, which
extends SHIF with qualifying number restrictions. The algorithm combines
the methods already used in the previous section with techniques that are used
to deal with qualifying number restrictions [HB91; BBH96; Tob99]. In order
to avoid references to definitions and proofs in all previous sections, we make
this section self-contained. Of course, this leads to various repetitions, yet, it
increases the readability.

5.1 Syntax and Semantics

Definition 11 Let R be a set of role names with both transitive and normal
role names R+ ∪ RP = R, where RP ∩ R+ = ∅. The set of SHIQ-roles is
R ∪ {R− | R ∈ R}. A role inclusion axiom is of the form

R ⊑ S,

for two (possibly inverse) SHIQ-roles R and S. For a set of role inclusion
axioms R, R+ := (R ∪ {Inv(R) ⊑ Inv(S) | R ⊑ S ∈ R}, ⊑*) is called a role
hierarchy, where ⊑* is the transitive-reflexive closure of ⊑ over R ∪ {Inv(R) ⊑
Inv(S) | R ⊑ S ∈ R}.

A role R is called simple with respect to R+ iff R /∈ R+ and, for any S ⊑* R,
S is also a simple role.

Let NC be a set of concept names. The set of SHIQ-concepts is the smallest
set such that

1. every concept name C ∈ NC is a concept,

2. if C and D are concepts and R is an SHIQ-role, then (C ⊓ D), (C ⊔ D),
(¬C), (∀R.C), and (∃R.C) are concepts, and

3. if C is a concept, R is a simple SHIQ-role and n ∈ N, then (6 n R C)
and (> n R C) are concepts.

An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain of I,
and a function ·I which maps every concept to a subset of ∆I and every role
to a subset of ∆I × ∆I such that

(C ⊓ D)I = CI ∩ DI ,

(C ⊔ D)I = CI ∪ DI ,

¬CI = ∆I \ CI ,

(∃R.C)I = {x ∈ ∆I | There is some y ∈ ∆I with 〈x, y〉 ∈ RI and y ∈ CI},

(∀R.C)I = {x ∈ ∆I | For all y ∈ ∆I , if 〈x, y〉 ∈ RI , then y ∈ CI},

(6 n R C)I = {x ∈ ∆I | ♯RI(x, C) 6 n},

(> n R C)I = {x ∈ ∆I | ♯RI(x, C) > n},

24

where for a set M we denote the cardinality of M by ♯M , RI(x, C) is defined
as {y | 〈x, y〉 ∈ RI and y ∈ CI}, and we define, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I
,

if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

An interpretation I satisfies a role hierarchy R+, iff RI ⊆ SI for each R ⊑ S ∈
R+; we denote this fact by I |= R+.

A concept C is called satisfiable with respect to a role hierarchy R+ iff there
is some interpretation I such that I |= R+ and CI 6= ∅. Such an interpretation
is called a model of C with respect to R+. A concept D subsumes a concept
C with respect to R+ (written C ⊑R+ D) iff CI ⊆ DI holds for each interpre-
tation I with I |= R+. Two concepts C, D are equivalent with respect to R+

(written C ≡R+ D) iff they are mutually subsuming. For an interpretation I,
an individual x ∈ ∆I is called an instance of a concept C iff x ∈ CI .

5.2 An SHIQ-Tableau

Again we define a satisfiability criterion that can be tested by a tableaux al-
gorithm. For ease of construction, we assume all concepts to be in negation
normal form (NNF), that is, negation occurs only in front of concept names.
Any SHIQ-concept can easily be extended to an equivalent one in NNF by
pushing negations inwards using a combination of DeMorgan’s laws and the
following equivalences:

¬(∃R.C) ≡ (∀R.¬C)

¬(∀R.C) ≡ (∃R.¬C)

¬(6 n R C) ≡ (> (n + 1) R C)

¬(> n R C) ≡

{

(∀R.¬C) if n = 1
(6 (n − 1) R C) otherwise

For a concept C we will denote the NNF of ¬C by ∼C.

Definition 12 For an SHIQ-concept D in NNF we define clos(D) to be the
smallest set that contains D and is closed under sub-formulae and ∼.

Definition 13 If R+ is a role hierarchy, D is an SHIQ-concept in NNF and
RD is the set of roles occurring in D, together with their inverses, a tableau T
for D with respect to R+ is defined to be a triple (S, L, E) such that: S is a set
of individuals, L : S → 2clos(D) maps each individual to a set of concepts which
is a subset of clos(D), E : RD → 2S×S maps each role in RD to a set of pairs
of individuals, and there is some individual s ∈ S such that D ∈ L(s). For all
s ∈ S, C, C1, C2 ∈ clos(D), and R, S ∈ RD, T must satisfy:

1. if C ∈ L(s), then ¬C /∈ L(s),

25

2. if C1 ⊓ C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

3. if C1 ⊔ C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

4. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t),

5. if ∃S.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and
C ∈ L(t),

6. if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R ⊑* S with Trans(R), then
∀R.C ∈ L(t),

7. 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)),

8. if 〈s, t〉 ∈ E(R) and R ⊑* S then 〈s, t〉 ∈ E(S),

9. if (6 n S C) ∈ L(s), then ♯ST (s, C) 6 n,

10. if (> n S C) ∈ L(s), then ♯ST (s, C) > n,

11. if (⊲⊳ n S C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t) or ∼C ∈ L(t),

where we use ⊲⊳ as a placeholder for both 6 and > and we define

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}.

Lemma 14 An SHIQ-concept D is satisfiable with respect to a role hierarchy
R+ iff there exists a tableau for D with respect to R+.

Proof: For the if direction, the construction of a model of D from a tableau
for D is similar to the one presented in the proof of Lemma 5. If T = (S, L, E)
is a tableau for D with D ∈ L(s0), a model I = (∆I , ·I) of D can be defined as
follows:

∆I = S

AI = {s | A ∈ L(s)} for all concept names A in clos(D)

RI =







E(R)+ if Trans(R)

E(R) ∪
⋃

P ⊑* R,P 6=R

P I otherwise

The interpretation of non-transitive roles is recursive in order to correctly
interpret those non-transitive roles that have a transitive sub-role. From the
definition of RI and Property 8 of a tableau, it follows that, if 〈s, t〉 ∈ SI , then
either 〈s, t〉 ∈ E(S) or there exists a path 〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈ E(R) for
some R with Trans(R) and R ⊑* S.

To show that I is a model of D w.r.t. R+ we have to prove (1) I |= R+ and
(2) DI 6= ∅. The first part is obvious due to Property 7 of Def. 13. The second
part is shown by proving I |= R+ and C ∈ L(s) ⇒ s ∈ CI for any s ∈ S. This
implies DI 6= ∅ since T is a tableau for D and hence there must be some s ∈ S
with D ∈ L(s). It is not longer possible to use induction over the length of the

26

concept C, instead we will use the following norm ‖ · ‖ of a concept C. The
norm ‖C‖ for concept in NNF is inductively defined by:

‖A‖ := ‖¬A‖ := 0 for A ∈ NC

‖C1 ⊓ C2‖ := ‖C1 ⊔ C2‖ := 1 + ‖C1‖ + ‖C2‖
‖∀R.C‖ := ‖∃R.C‖ := 1 + ‖C‖
‖(⊲⊳ n S C)‖ := 1 + ‖C‖

The two base cases of the induction are C = A or C = ¬A. If A ∈ L(s), then
by definition s ∈ AI . If ¬A ∈ L(s), then by Property 1, A 6∈ L(s) and hence
s 6∈ AI . For the induction step we have to distinguish several cases:

• C = C1 ⊓ C2. Since T is a tableau, C ∈ L(s) implies C1 ∈ L(s) and
C2 ∈ L(s). Hence, by induction, we have s ∈ CI

1 and s ∈ CI
2 which yields

s ∈ (C1 ⊓ C2)
I .

• C = C1 ⊔ C2. Similar to the previous case.

• C = ∃S.E. Since T is a tableau, C ∈ L(s) implies the existence of an
individual t ∈ S such that 〈s, t〉 ∈ E(S) and E ∈ L(t). By induction, we
have t ∈ EI and from the definition of SI and Property 7 it follows that
〈s, t〉 ∈ SI and hence s ∈ CI .

• C = ∀S.E. Let s ∈ S with C ∈ L(s), let t ∈ S be an arbitrary individual
such that 〈s, t〉 ∈ SI . There are two possibilities:

– 〈s, t〉 ∈ E(S). Then Property 4 implies E ∈ L(t) and by induction
t ∈ EI .

– 〈s, t〉 6∈ E(S). Then there exists a path 〈s, s1〉, 〈s1, s2〉, . . . , 〈sn, t〉 ∈
E(R) for some R with Trans(R) and R ⊑* S. Then Property 6 implies
∀R.E ∈ L(si) for all 1 ≤ i ≤ n and, from Property 4, E ∈ L(t) also
holds. Again, by induction, this implies t ∈ EI .

In both cases we have t ∈ EI and since t has been chosen arbitrarily,
s ∈ CI holds.

• C = (> n S E). For an s with C ∈ L(s) we have ♯ST (s, E) > n. Hence
there are n individuals t1, . . . , tn such that ti 6= tj for i 6= j, 〈s, ti〉 ∈ E(S),
and E ∈ L(ti) for all i. By induction, we have ti ∈ EI and, since E(S) ⊆
SI , also s ∈ CI .

• C = (6 m S E). For this case we need that S is a simple role, which
implies SI = E(S). Let s be an individual with C ∈ L(s). Due to
Property 11 we have E ∈ L(t) or ∼E ∈ L(t) for each t with 〈s, t〉 ∈ E(S).
Moreover, ♯ST (s, E) 6 n holds due to Property 9. We can show that
♯SI(s, E) 6 ♯ST (s, E): assume ♯SI(s, E) > ♯ST (s, E). This implies the
existence of some t with 〈s, t〉 ∈ SI with t ∈ EI but E 6∈ L(t) (because
SI = E(S)). By Property 11 this implies ∼E ∈ L(t), which, by induction
yields t ∈ (∼E)I in contradiction to t ∈ EI .

27

For the only-if direction we have to show that satisfiability of D with respect
to R+ implies the existence of a tableau T for D with respect to R+.

Let I = (∆I , ·I) be a model of D with I |= R+. A tableau T = (S, L, E)
for D can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ clos(D) | s ∈ CI}

It remains to demonstrate that T is a tableau for D:

• The Properties 1–5, 7, and 9–11 are satisfied as a direct consequence of
the definition of the semantics of SHIQ-concepts.

• If s ∈ (∀S.C)I and 〈s, t〉 ∈ RI for R with Trans(R) and R ⊑* S, then
t ∈ (∀R.C)I unless there is some u such that 〈t, u〉 ∈ RI and u /∈ CI .
In this case, if 〈s, t〉 ∈ RI , 〈t, u〉 ∈ RI and Trans(R), then 〈s, u〉 ∈ RI .
Hence 〈s, u〉 ∈ SI and s /∈ (∀S.C)I—in contradiction to the assumption.
T therefore satisfies Property 6.

• Property 8 is satisfied because I |= R+.

5.3 Constructing an SHIQ-Tableau

From Lemma 14, an algorithm which constructs a tableau for an SHIQ-concept
D can be used as a decision procedure for the satisfiability of D with respect to a
role hierarchy R+. Such an algorithm will now be described in detail. It uses the
same techniques used for SHIF , especially the pairwise-blocking. Additionally,
we add rules to deal with the qualifying number restrictions. It is not sufficient
to add a >- and 6-rule similar to the ones from the SHIF -algorithm. In order
for the algorithm to be correct, we also have to make sure that certain relevant
constraints are always added to labels of certain nodes; this is ensured by the
choose-rule. In order to guarantee the termination of the algorithm, we have to
make sure that the >- and 6-rules can not be applied in a way that would yield
to an infinite sequence of rule applications. This is enforced by recording which
nodes have been introduced by an application of the >-rule and by prohibiting
an identification of these nodes by the 6-rule.

Definition 14 Let R+ be a role hierarchy. A completion tree with respect to
R+ is a tree T where each node x of the tree is labelled with a set L(x) ⊆ clos(D)
and each edge 〈x, y〉 is labelled with a set of role names L(〈x, y〉) containing
(possibly inverse) roles occurring in clos(D). Additionally, we keep track of in-
equalities between nodes of the tree with a symmetric binary relation 6

.
= between

the nodes of T.
Given a completion tree, a node y is called an R-successor of a node x if

y is a successor of x and S ∈ L(〈x, y〉) for some S with S ⊑* R; y is called an
R-neighbour of x if it is an R-successor of x, or if x is an Inv(R)-successor of y.

28

For a role S, a concept C and a node x in T we define ST(x, C) by

ST(x, C) := {y | y is S-neighbour of x and C ∈ L(y)}

A node x is directly blocked if none of its ancestors are blocked, and it has
ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′ and

2. L(x) = L(y) and L(x′) = L(y′) and

3. L(〈x′, x〉) = L(〈y′, y〉).

In this case we will say that y blocks x.
A node is indirectly blocked if its predecessor is blocked, and in order to avoid

wasted expansion after an application of the 6-rule, a node y will also be taken
to be indirectly blocked if it is a successor of a node x and L(〈x, y〉) = ∅.

For a node x, L(x) is said to contain a clash if, for some concept name
A ∈ NC , {A,¬A} ⊆ L(x), or if for a some concept C, some role S, and some
n ∈ N: (6 n S C) ∈ L(x) and there are n + 1 nodes y0, . . . , yn such that
C ∈ L(yi), yi is an S-neighbour of x and yi 6

.
= yj for all 0 ≤ i < j ≤ n.

The algorithm initialises the tree T to contain a single node x0, called the root
node, with L(x0) = {D}, where D is the concept to be tested for satisfiability.
The inequality relation 6

.
= is initialised with the empty set. T is then expanded

by repeatedly applying the rules from Figure 5.3.
The completion tree is complete, when for some node x, L(x) contains a

clash, or when none of the rules is applicable. If, for an input concept D, the
expansion rules can be applied in such a way that they yield a complete, clash-
free completion tree, then the algorithm returns “D is satisfiable”, and “D is
unsatisfiable” otherwise.

5.4 Soundness and Completeness

Again we will show that the algorithm is terminating, sound, and complete.

Lemma 15 For each SHIQ-concept D and role hierarchy R+, the tableaux
algorithm terminates.

Proof: This proof uses the same ideas as the proof of Lemma 11. Let m =
|clos(D)|, k = |RD|, and nmax the maximum n that occurs in a concept of the
form (⊲⊳ n S C) ∈ clos(D). Termination is a consequence of the following
properties of the expansion rules:

1. The expansion rules never remove nodes from the tree or concepts from
node labels. Edge labels can only be changed by the 6-rule which either
expands them or sets them to ∅; in the latter case the node below the
∅-labelled edge is blocked and will remain blocked forever.

29

⊓-rule: if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

⊔-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y):

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y)

then L(y) −→ L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R ⊑* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}

choose-rule: if 1. (⊲⊳ n S C) ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with {C,∼C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C,∼C}

>-rule: if 1. (> n S C) ∈ L(x), x is not blocked, and
2. there are no n nodes y1, . . . , yn such that C ∈ L(yi),

yi is an S-neighbour of x, and yi 6
.
= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6 n S C) ∈ L(x), x is not indirectly blocked, and
2. ♯ST(x, C) > n and there are two S-neighbours y, z of x with

C ∈ L(y), C ∈ L(z), y is not an ancestor of z, and not y 6
.
= z

then 1. L(z) −→ L(z) ∪ L(y) and
2. if z is an ancestor of y

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅
4. Set u 6

.
= z for all u with u 6

.
= y

Figure 5: The Completion Rules for SHIQ

30

2. Successors of a node x must be the result of an application of the ∃- or
the >-rule to concepts of the form ∃R.C (which yields one successor) and
(> n S C) (which yields n successors) in L(x). For a node x, each of
these concepts can trigger the generation of successors at most once. For
the ∃-rule, if a successor y of x was generated for a concept ∃S.C ∈ L(x)
and later L(〈x, y〉) is set to ∅ by an application of the 6-rule, then there
will be some S-neighbour z of x such that C ∈ L(z). For the >-rule: If
y1, . . . , yn were generated by an application of the >-rule for a concept
(> n S C), then yi 6

.
= yj holds for all 1 ≤ i < j ≤ n. This implies that

there will always be n S-neighbours y′
1, . . . , y

′
n of x with C ∈ L(y′

i) and
y′

i 6
.
= y′

j for all 1 ≤ i < j ≤ n, since the 6-rule can never merge two nodes
y′

i, y
′
j (because y′

i 6
.
= y′

j), and, whenever an application of the 6-rule sets
L(〈x, y′

i〉) to ∅, then there will be some S-neighbour z of x with C ∈ L(z)
and z “inherits” all inequalities from y′

i.

Since clos(D) contains a total of at most m ∃R.C and (> n S C) concepts,
the out-degree of the tree is bounded by m · nmax.

3. Nodes are labelled with nonempty subsets of clos(D) and edges with sub-
sets of RD, so there are at most 22mk different possible labellings for a
pair of nodes and an edge. Therefore, if a path p is of length at least 22mk,
then from the pair-wise blocking condition defined in Definition 14 there
must be two nodes x, y on p such that x is directly blocked by y. Since
a path on which nodes are blocked cannot become longer, paths are of
length at most 22mn.

Lemma 16 (Soundness) If the expansion rules can be applied to an SHIQ-
concept D such that they yield a complete and clash-free completion tree with
respect to R+, then D has a tableau with respect to R+.

Proof: We use a path construction similar to the one in the proof of Lemma 12,
however, due to qualifying number restrictions we have to take special care. In
particular, we must distinguish different nodes that are blocked by the same
node.

Let T be a complete and clash-free completion tree. A path is a sequence
of pairs of nodes of T of the form p = [(x0, x

′
0), . . . , (xn, x′

n)]. For such a path
we define Tail(p) := xn and Tail′(p) := x′

n. With [p|(xn+1, x
′
n+1)] we denote

the path [(x0, x
′
0), . . . , (xn, x′

n), (xn+1, x
′
n+1)]. The set Paths(T) is defined in-

ductively as follows:

• For the root node x0 of T, [(x0, x0)] ∈ Paths(T), and

• For a path p ∈ Paths(T) and a node z in T:

– if z is a successor of Tail(p) and z is not blocked, then [p|(z, z)] ∈
Paths(T), or

– if, for some node y in T, y is a successor of Tail(p) and z blocks y,
then [p|(z, y)] ∈ Paths(T).

31

Please note that, due to the construction of Paths, for p ∈ Paths(T) with
p = [p′|(x, x′)], x is not blocked, x′ is blocked iff x 6= x′, and x′ is never indirectly
blocked. Furthermore, L(x) = L(x′) holds.

Now we can define a tableau T = (S, L, E) with:

S=Paths(T)

L(p) =L(Tail(p))

E(R) = {〈p, q〉 ∈ S× S | Either q = [p|(x, x′)] and
x′ is an R-successor of Tail(p)

or p = [q|(x, x′)] and
x′ is an Inv(R)-successor of Tail(q)}.

Claim: T is a tableau for D with respect to R+.

We have to show that T satisfies all the properties from Definition 13.

• D ∈ L([(x0, x0)]) since D ∈ L(x0).

• Property 1 holds because T is clash-free; Properties 2,3 hold because
Tail(p) is not blocked and T is complete.

• Property 4: Assume ∀S.C ∈ L(p) and 〈p, q〉 ∈ E(S). If q = [p|(x, x′)],
then x′ is an S-successor of Tail(p) and thus C ∈ L(x′) must hold (because
the ∀-rule is not applicable). Since L(q) = L(x) = L(x′) we have C ∈
L(q). If p = [q|(x, x′)], then x′ is an Inv(S)-successor of Tail(q) and thus
C ∈ L(Tail(q)) must hold (because x′ is not indirectly blocked and the
∀-rule is not applicable), hence C ∈ L(q).

• Property 5: Assume ∃S.C ∈ L(p). Define x := Tail(p). In T there must
an S-neighbour y of x with C ∈ L(y), because the ∃-rule is not applicable.
There are two possibilities:

– y is a successor of x in T. If y is not blocked, then q := [p|(y, y)] ∈ S
and 〈p, q〉 ∈ E(S) as well as C ∈ L(q). If y is blocked by some node
z in T, then q := [p|(z, y)] ∈ S.

– y is a predecessor of x. Again, there are two possibilities:

∗ p is of the form p = [q|(x, x′)] with Tail(q) = y.

∗ p is of the form p = [q|(x, x′)] with Tail(q) = u 6= y. x only has
one predecessor in T, hence u is not the predecessor of x. This
implies x 6= x′, x blocks x′ in T, and u is the predecessor of x′

due to the construction of Paths. Together with the definition of
the blocking condition, this implies L(〈u, x′〉) = L(〈y, x〉) as well
as L(u) = L(y) due to the pairwise blocking.

In all three cases, 〈p, q〉 ∈ E(S) and C ∈ L(q).

• Property 6: Assume ∀S.C ∈ L(p), 〈p, q〉 ∈ E(R) for some R ⊑* S with
Trans(R). If q = [p|(x, x′)], then x′ is an R-successor of Tail(p) and thus

32

∀R.C ∈ L(x′) must hold (because otherwise the ∀+-rule would be ap-
plicable). From L(q) = L(x) = L(x′) it follows that ∀R.C ∈ L(q). If
p = [q|(x, x′)], then x′ is an Inv(R)-successor of Tail(q) and hence Tail(q)
is an R-neighbour of x′. Because x′ is not indirectly blocked, this implies
∀R.C ∈ L(Tail(q)) and hence ∀R.C ∈ L(q).

• Property 11: Assume (⊲⊳ n S C) ∈ L(p), 〈p, q〉 ∈ E(S). If q = [p|(x, x′)]
then x′ is an S-successor of Tail(p) and thus {C,∼C} ∩ L(x′) 6= ∅ must
hold (since the choose-rule is not applicable). Since L(q) = L(x) = L(x′)
we have {C,∼C} ∩ L(q) 6= ∅. If p = [q|(x, x′)], then x′ is an Inv(S)-
successor of Tail(q) and thus {C,∼C} ∩ L(Tail(q)) 6= ∅ must hold (since
x′ is not indirectly blocked and the choose-rule is not applicable), hence
{C,∼C} ∩ L(q) 6= ∅.

• Assume Property 9 does not hold. Hence there is some p ∈ S with
(6 n S C) ∈ L(p) and ♯ST (p, C) > n. We will show that this implies
♯ST(Tail(p), C) > n which is a contradiction to either the clash-freeness
or completeness of T. Define x := Tail(p) and P := ST (p, C). Due to the
assumption, we have ♯P > n. We distinguish two cases:

– P contains only paths of the form q = [p|(y, y′)]. We claim that
the function Tail′ is injective on P . If we assume that there are two
paths q1, q2 ∈ P with q1 6= q2 and Tail′(q1) = Tail′(q2) = y′ then
this implies that q1 is of the form q1 = [p|(y1, y

′)] and q2 is of the
form q2 = [p|(y2, y

′)] with y1 6= y2. If y′ is not blocked in T, then
y1 = y′ = y2 holds, contradicting y1 6= y2. If y′ is blocked in T, then
both y1 and y2 block y′, which implies y1 = y2, again a contradiction.

Since Tail′ is injective on P , it holds that ♯P = ♯Tail′(P). Also for
each y′ ∈ Tail′(P), y′ is an S-successor of x and C ∈ L(y′). This
implies ♯ST(x, C) > n.

– P contains a path q where p is of the form p = [q|(x, x′)]. Obviously,
P may only contain one such path. As in the previous case, Tail′ is
an injective function on the set P ′ := P \ {q}, each y′ ∈ Tail′(P ′) is
an S-successor of x and C ∈ L(y′) for each y′ ∈ Tail′(P ′). To show
that indeed ♯ST(x, C) > n holds, we have to prove the existence of
a further S-neighbour u of x with C ∈ L(u) and u 6∈ Tail′(P ′). This
will be “supplied” by z := Tail(q). We distinguish two cases:

∗ x = x′. Hence x is not blocked. This implies that x is an Inv(S)-
successor of z in T. Since Tail′(P ′) contains only successors of
x we have that z 6∈ Tail′(P ′) and, by construction, z is an S-
neighbour of x with C ∈ L(z).

∗ x 6= x′. This implies that x′ is blocked in T by x and that x′ is
an Inv(S)-successor of z in T. Due to the definition of pairwise-
blocking this implies that x is an Inv(S)-successor of some node
u in T with L(u) = L(z). Again, since Tail′(P ′) contains only

33

successors of x we have that u 6∈ Tail′(P ′) and, by construction,
u is an S-neighbour of x and C ∈ L(u).

• Property 10: Assume (> n S C) ∈ L(p). This implies that there
exist n individuals y1, . . . , yn in T such that each yi is an S-neighbour
of Tail(p) and C ∈ L(yi). We claim that, for each of these individuals,
there is a path qi such that 〈p, qi〉 ∈ E(S), C ∈ L(qi), and qi 6= qj for all
1 ≤ i < j ≤ n. Obviously, this implies ♯ST (p, C) > n. For each yi there
are three possibilities:

– yi is an S-successor of x and yi is not blocked in T. Then qi =
[p|(yi, yi)] is a path with the desired properties.

– yi is an S-successor of x and yi is blocked in T by some node z. Then
qi = [p|(z, yi)] is the path with the desired properties. Since the same
z may block several of the yjs, it is indeed necessary to include yi

explicitly into the path to make them distinct.

– x is an Inv(S)-successor of yi. There may be at most one such yi.
This implies that p is of the form p = [q|(x, x′)] with Tail(q) = yi.
Again, q has the desired properties and, obviously, q is distinct from
all other paths qj .

• Property 7 is satisfied due to the symmetric definition of E. Property
8 is satisfied due to the definition of R-successor that takes into account
the role hierarchy ⊑* .

Lemma 17 (Completeness) If an SHIQ-concept D has a tableau with re-
spect to R+, then the expansion rules can be applied to an D such that they
yield a complete and clash-free completion tree with respect to R+.

Proof: Let T = (S, L, E) be a tableau for D w.r.t. R+. We use this tableau
to guide the application of the non-deterministic rules. To do this, we will
inductively define a function π, mapping the individuals of the tree T to S such
that, for each x, y in T:

L(x) ⊆ L(π(x))
if y is an S-neighbour of x then 〈π(x), π(y)〉 ∈ E(S)
x 6

.
= y implies π(x) 6= π(y)







(∗)

Claim: Let T be a completion-tree and π a function that satisfies (∗). If a
rule is applicable to T then the rule is applicable to T in a way that yields a
completion-tree T′ and a function π′ that satisfy (∗).

Let T be a completion-tree and π be a function that satisfies (∗). We have
to consider the various rules.

• The ⊓-rule: If C1 ⊓ C2 ∈ L(x), then C1 ⊓ C2 ∈ L(π(x)). This implies
C1, C2 ∈ L(π(x)) due to Property 2 from Definition 13, and hence the
rule can be applied without violating (∗).

34

• The ⊔-rule: If C1 ⊔ C2 ∈ L(x), then C1 ⊔ C2 ∈ L(π(x)). Since T is a
tableau, Property 3 from Definition 13 implies {C1, C2} ∩ L(π(x)) 6= ∅.
Hence the ⊔-rule can add a concept E ∈ {C1, C2} to L(x) such that
L(x) ⊆ L(π(x)) holds.

• The ∃-rule: If ∃S.C ∈ L(x), then ∃S.C ∈ L(π(x)) and, since T is a
tableau, Property 5 of Definition 13 implies that there is an element t ∈ S
such that 〈π(x), t〉 ∈ E(S) and C ∈ L(t). The application of the ∃-rule
generates a new variable y with L(〈x, y〉 = {S} and L(y) = {C}. Hence
we set π′ := π[y 7→ t] which yields a function that satisfies (∗) for the
modified tree.

• The ∀-rule: If ∀S.C ∈ L(x), then ∀S.C ∈ L(π(x)), and if y is an S-
neighbour of x, then also 〈π(x), π(y)〉 ∈ E(S) due to (∗). Since T is a
tableau, Property 4 of Definition 13 implies C ∈ L(π(y)) and hence the
∀-rule can be applied without violating (∗).

• The ∀+-rule: If ∀S.C ∈ L(x), then ∀S.C ∈ L(π(x)), and if there is some
R ⊑* S with Trans(R) and y is an R-neighbour of x, then also 〈π(x), π(y)〉 ∈
E(R) due to (∗). Since T is a tableau, Property 6 of Definition 13 implies
∀R.C ∈ L(π(y)) and hence the ∀+-rule can be applied without violating
(∗).

• The choose-rule: If (⊲⊳ n S C) ∈ L(x), then (⊲⊳ n S C) ∈ L(π(x)), and, if
there is an S-neighbour y of x, then 〈π(x), π(y)〉 ∈ E(S) due to (∗). Since
T is a tableau, Property 11 of Definition 13 implies {C,∼C}∩L(π(y) 6= ∅.
Hence the choose-rule can add an appropriate concept E ∈ {C,∼C} to
L(x) such that L(y) ⊆ L(π(y)) holds.

• The >-rule: If (> n S C) ∈ L(x), then (> n S C) ∈ L(π(x)). Since
T is a tableau, Property 10 of Definition 13 implies ♯ST (π(x), C) > n.
Hence there are individuals t1, . . . , tn ∈ S such that 〈π(x), ti〉 ∈ E(S),
C ∈ L(ti), and ti 6= tj for 1 ≤ i < j ≤ n. The >-rule generates n new
nodes y1, . . . , yn. By setting π′ := π[y1 7→ t1, · · · yn 7→ tn], one obtains a
function π′ that satisfies (∗) for the modified tree.

• The 6-rule: If (6 n S C) ∈ L(x), then (6 n S C) ∈ L(π(x)). Since T is a
tableau, Property 9 of Definition 13 implies ♯ST (π(x), C) 6 n. If the 6-
rule is applicable, we have ♯ST(x, C) > n, which implies that there are at
least n + 1 S-neighbours y0, . . . , yn of x such that C ∈ L(yi). Thus, there
must be two nodes y, z ∈ {y0, . . . , yn} such that π(y) = π(z) (because
otherwise ♯ST (π(x), C) > n would hold). π(y) = π(z) implies that y 6

.
= z

cannot hold because of (∗), and y, z can be chosen such that y is not an
ancestor of z. Hence the 6-rule can be applied without violating (∗).

Why does this claim yield the completeness of the tableaux algorithm? For
the initial completion-tree consisting of a single node x0 with L(x0) = {D} and
6
.
= = ∅ we can give a function π that satisfies (∗) by setting π(x0) := s0 for

35

some s0 ∈ S with D ∈ L(s0) (such an s0 exists since T is a tableau for D).
Whenever a rule is applicable to T, it can be applied in a way that maintains
(∗), and, from Lemma 15, we have that any sequence of rule applications must
terminate. Since (∗) holds, any tree generated by these rule-applications must
be clash-free. This can be seen as follows: There are two possibilities for a clash:

• T cannot contain a node x such that {C,¬C} ∈ L(x) because L(x) ⊆
L(π(x)) and hence Property 1 of Definition 13 would be violated for π(x).

• T cannot contain a node x with (6 n S C) ∈ L(x) and n+1 S-neighbours
y0, . . . yn of x with C ∈ L(yi) and yi 6

.
= yj for 0 ≤ i < j ≤ n, be-

cause (6 n S C) ∈ L(π(x)), and, since yi 6
.
= yj implies π(yi) 6= π(yj),

♯ST (π(x), C) > n would hold which contradicts Property 9 of Defini-
tion 13.

Since internalisation of terminologies is obviously also possible for SHIQ
with the same techniques presented in Section 3.1, we have the following theo-
rem:

Theorem 5 The tableaux algorithm is a decision procedure for the satisfiability
and subsumption of SHIQ-concepts with respect to role hierarchies and termi-
nologies.

6 Deciding consistency of SHIQ ABoxes

In this section, we extend the completion algorithm presented in Section 5 to
decide consistency of SHIQ-ABoxes. This extension does not concern the ex-
pansion rules (besides a modification of the 6-rule), but only the way in which
the completion algorithm is started. We start with a definition of ABoxes.

Definition 15 Let I = {a, b, c . . .} (possibly with subscripts) be a set of indi-
vidual names. An assertion is of the form a :C, (a, b) :R, or a 6= b for a, b ∈ I,
a (possibly inverse) role R, and a SHIQ-concept C. An ABox is a finite set of
assertions.

An interpretation I = (∆I , ·I) is defined as in Definition 11, with the addi-
tional requirement that ·I maps every individual a to an element aI of ∆I .4

An interpretation I satisfies an assertion a : C (resp. (a, b) : R) iff aI ∈ CI

(resp. 〈aI , bI〉 ∈ RI), and it satisfies an assertion a 6= b iff aI 6= bI . An
interpretation satisfies an ABox iff it satisfies each assertion in the ABox. Such
an interpretation is called a model of an ABox.

An ABox A is called consistent with respect to a role hierarchy R+ iff there
is a model I of A such that I |= R+. Such an interpretation is called a model
of A w.r.t. R+.

4Please note that we do not employ the unique name assumption, i.e., we do allow two
individual names to be interpreted as the same object. Instead, we have taken the more
general approach of allowing explicit inequality assertions.

36

6.1 A Tableau for ABoxes

In the following, if not stated otherwise, C, D denote a SHIQ-concepts in NNF,
R+ a role hierarchy, RA the set of roles occurring in A and R+ together with
their inverses, and IA is the set of individuals occurring in A.

Without loss of generality, we assume all concepts C occurring in assertions
ai :C ∈ A to be in NNF.

Definition 16 T = (S, L, E, I) is a tableau for A w.r.t. R+ iff

• S is a set of objects,

• L : S → 2clos(A) maps each object to a set of concepts,

• E : RD → 2S×S maps each role to a set of pairs of individuals, and

• I : IA → S maps individuals occurring in A to objects in S.

Furthermore, for all s, t ∈ S, C, C1, C2 ∈ clos(A), and R, S ∈ RA, it holds that:

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1 ⊓ C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1 ⊔ C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t),

(P5) if ∃S.C ∈ L(s), then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and
C ∈ L(t),

(P6) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some R ⊑* S with Trans(R), then
∀R.C ∈ L(t),

(P7) 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)),

(P8) if 〈s, t〉 ∈ E(R) and R ⊑* S, then 〈s, t〉 ∈ E(S),

(P9) if (6 n S C) ∈ L(s), then ♯ST (s, C) 6 n,

(P10) if (> n S C) ∈ L(s), then ♯ST (s, C) > n,

(P11) if (⊲⊳ n S C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t) or ∼C ∈ L(t),

(P12) if a :C ∈ A, then C ∈ L(I(a)),

(P13) if (a, b) :R ∈ A, then 〈I(a), I(b)〉 ∈ E(R),

(P14) if a 6= b ∈ A, then I(a) 6= I(b),

where ⊲⊳ is a placeholder for both 6 and >, and ST (s, C) := {t ∈ S | 〈s, t〉 ∈
E(S) and C ∈ L(t)}.

Lemma 18 A SHIQ-ABox A is consistent w.r.t. R+ iff there exists a tableau
for A w.r.t. R+.

37

Proof: For the if direction, if T = (S, L, E, I) is a tableau for A w.r.t. R+,
a model I = (∆I , ·I) of A can be defined similarly to the one in the proof of
Lemma 14:

∆I = S

for concept names A in clos(A) : AI = {s | A ∈ L(s)}

for individual names a ∈ I : aI = I(a) ∈ ∆I

RI =

{

E(R)+ if Trans(R)
E(R) ∪

⋃

P ⊑* R,P 6=R

P I otherwise

where E(R)+ denotes the transitive closure of E(R). The proof that this in-
terpretation is indeed a model of A w.r.t. R+ is identical to the one given for
Lemma 14, with the additional observations that (P12) ensures that I satisfies
assertions of the form a :C ∈ A, (P13) ensures that I satisfies assertions of the
form (a, b) :R ∈ A, and (P14) ensures that I satisfies inequality assertions.

For the converse, if I = (∆I , ·I) is a model of A w.r.t. R+, then a tableau
T = (S, L, E, I) for A can be defined as:

S = ∆I

E(R) = RI

L(s) = {C ∈ clos(A) | s ∈ CI}

I(a) = aI

The proof that T is a tableau for A is identical to the one given for Lemma 14,
with the additional observations that: I being a model for A yields aI ∈ CI for
all a :C ∈ A, which ensures that T satisfies (P12); analogously, T satisfies (P13)
since (a, b) : R ∈ A implies 〈a, b〉 ∈ RI ; and finally, a 6= b ∈ A implies aI 6= bI

which implies (P14).

6.2 An ABox consistency algorithm

In this section we extend the completion algorithm presented in Section 5 to
decide consistency of SHIQ ABoxes (with respect to role hierarchies). Instead
of working on completion trees, it works on completion forests, that is, a col-
lection of completion trees whose root nodes correspond to individuals in the
ABox. Moreover, the 6-rule is modified to keep track of the identification of
root nodes/individuals5 so that we can easily build a tableau from a complete
and clash-free completion forest. Finally, we modify the blocking condition so
that root nodes can neither be blocked nor block any other node.

Definition 17 A completion forest for a SHIQ ABox A is a collection of com-
pletion trees whose root nodes are possibly connected by edges, where, besides

5Please recall that we do not employ the unique name assumption.

38

having an explicit inequality relation 6
.
=, we also have an explicit equality relation

.
= which is used to memorise identifications of root nodes.

The edges between root nodes are labelled with a set L(〈x0, y0〉) of (possibly
inverse) roles occurring in A. Root nodes may be connected in an arbitrary
way, forming a directed graph rather than a tree. However, as we do not want
to introduce a special notion for edges connecting root nodes, we will abuse the
existing notation be calling a root node y0 an R-successor of a node x0 if the
graph has an edge 〈x0, y0〉 and S ∈ L(〈x, y〉) for some S with S ⊑* R. As before,
y0 an R-neighbour of a node x0 if y0 an R-successor of a node x0 or x0 an
Inv(R)-successor of a node y0.

A node is blocked iff it is not a root node and it is either directly or indirectly
blocked. A node x is directly blocked iff none of its ancestors are blocked, and
it has ancestors x′, y and y′ such that

1. y is not a root node and

2. x is a successor of x′ and y is a successor of y′ and

3. L(x) = L(y) and L(x′) = L(y′) and

4. L(〈x′, x〉) = L(〈y′, y〉).

In this case we will say that y blocks x.
A node y is indirectly blocked iff one of its ancestors is blocked, or it is a

successor of a node x and L(〈x, y〉) = ∅; the latter condition avoids wasted
expansions after an application of the 6-rule.

Given a SHIQ-ABox A and a role hierarchy R+, the algorithm initialises a
completion forest FA consisting only of root nodes. More precisely, FA contains
a root node xi

0 for each individual ai ∈ IA occurring in A, and an edge 〈xi
0, x

j
0〉

for each pair of individuals (ai, aj) occurring in FA (i.e., in an assertion (ai, aj) :
R for some role R). The labels of these nodes and edges are initialised so that

L(xi
0) := {C ∈ clos(A) | ai :C ∈ A}, and

L(〈xi
0, x

j
0〉) := {R ∈ RA | (ai, aj) : R ∈ A}.

Finally, the 6
.
= relation is initialised to correspond to the inequality assertions

from A:
xi

0 6
.
= xj

0 iff ai 6= aj ∈ A,

and the
.
= is initialised to be empty. FA is then expanded by repeatedly applying

the rules from Figure 6.2.
The definitions of clash-free and complete for completion forests are the

same as those given for completion trees in Definition 14, the same applies to
the definition of ♯SF (x, C). If the expansion rules can be applied in such a way
that they yield a complete and clash-free completion forest, then the algorithm
returns “A is consistent w.r.t. R+”, and “A and is inconsistent w.r.t. R+”
otherwise.

Please note that the expansion rules are almost identical to those in Fig-
ure 5.3: only the 6-rule is modified in order to deal correctly with root nodes.

39

For increased readability the modified rule is divided into two parts, the 6-rule
and the 6r-rule.

Since both the 6-rule and the 6r-rule are rather complicated, they deserve
some more explanation. Both rules deal with the situation where a concept
(6 n R C) ∈ L(x) requires the indentification of two R-neighbours y, z of x
that contain C in their labels. Of course, y and z may only be identified if
y 6

.
= z does not hold. If these conditions are met, then one of the two rules can

be applied. The 6-rule deals with the case where one of y, z is not a root-node,
and this can lead to one of two possible situations, both shown in Figure 6.2.

The upper situation occurs when both y and z are successors of x. In this
case, we add the label of y to that of z, and also add the label of the edge 〈x, y〉
to the label of the edge 〈x, z〉. Finally, z inherits all inequalities from y, and
L(〈x, y〉) is set to ∅, blocking y and all its successors (in order to avoid wasted
expansion).

The lower situation occurs when both y and z are neighbours of x, but z is
a predecessor of x. Note that, in this case, if one of y, z is a root node, then it
must be z because a non-root node can never be the ancestor of a root node.
Again, L(y) is added to L(z), but in this case the inverse of L(〈x, y〉) is added to
L(〈z, x〉), because the edge 〈x, y〉 was pointing away from x while 〈z, x〉 points
towards it. Again, z inherits the inequalities from y and L(〈x, y〉) is set to ∅.

The 6r rule is needed to handle the indentification of two root nodes. In
this case, special care has to be taken to preserve the relations introduced into
the completion forest due to role assertions in the ABox, and to memorize the
identification of root nodes (this will be needed in order to construct a tableau
from a complete and clash-free completion forest). The 6r rule includes some
additional steps that deal with these issues. Firstly, as well as adding L(y) to
L(z), the relations between y and its neighbours are also added to z. Thus,
for each edge 〈y, w〉 (resp. 〈w, y〉) in the forest, if 〈z, w〉 (rest. 〈w, z〉) does not
already exist, then it is created and its label initialised to ∅; L(〈y, w〉) (resp.
L(〈w, y〉)) is then added to L(〈z, w〉) (resp. L(〈w, z〉)). Secondly, y and all edges
adjacent to y are removed from the forest. This will not lead to dangling trees,
because all neighbours of y became neighbours of z in the previous step. Finally,
the identification of y and z is recorded in the

.
= relation. An example of the

whole procedure is given in Figure 9.

Lemma 19 Let A be a SHIQ-ABox and R+ a role hierarchy. The tableaux
algorithm terminates when started for A and R+.

Proof: This proof is identical to the one of Lemma 11 with the following addi-
tional observation: In contrast to the tableaux algorithm given in the previous
section, this one “removes” nodes: The 6r-rule removes a root node y if y must
be identical to another root note due to a concept of the form (6 n S C) in
a third root node. However, since no rule generates root nodes, this removal
may only happen a finite number of times. Each root node is only connected
to those non-root nodes that form the completion tree whose root it is. The

40

⊓-rule: if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}

⊔-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y), and

then create a new node y with L(〈x, y〉) = {S} and L(y) = {C}

∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C /∈ L(y)

then L(y) −→ L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R ⊑* S,
3. there is an R-neighbour y of x with ∀R.C /∈ L(y)

then L(y) −→ L(y) ∪ {∀R.C}

choose-rule: if 1. (⊲⊳ n S C) ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with {C,∼C} ∩ L(y) = ∅

then L(y) −→ L(y) ∪ {E} for some E ∈ {C,∼C}

>-rule: if 1. (> n S C) ∈ L(x), x is not blocked, and
2. there are no n nodes y1, . . . , yn such that C ∈ L(yi),

yi is an S-neighbour of x, and yi 6
.
= yj for 1 ≤ i < j ≤ n, and

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6 n S C) ∈ L(x), x is not indirectly blocked, and
2. ♯SF (x, C) > n and there are two S-neighbours y, z of x

not both root-nodes with C ∈ L(y), C ∈ L(z), not y 6
.
= z and

3 y is not an ancestor of z
then 1. L(z) −→ L(z) ∪ L(y) and

2. if z is an ancestor of x
then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅
4. Set u 6

.
= z for all u with u 6

.
= y

Figure 6: The Expansion Rules for SHIQ-Aboxes

41

6r-rule: if 1. (6 n S C) ∈ L(x), and
2. ♯SF(x, C) > n and there are two S-neighbours y, z of x

both root-nodes C ∈ L(y), C ∈ L(z), not y 6
.
= z

then 1. L(z) −→ L(z) ∪ L(y) and
2. For all edges 〈y, w〉:

i. if the edge 〈z, w〉 does not exist, create it with L(〈z, w〉) = ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)

3. For all edges 〈w, y〉:
i. if the edge 〈w, z〉 does not exist, create it with L(〈w, z〉) = ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)

4. Remove y together with all edges from/to y.
5. Set u 6

.
= z for all u with u 6

.
= y.

6. Set y
.
= z.

Figure 7: The 6r-rule that deals with root nodes.

z y L(y)

x

L(〈x, z〉) ∪ L(〈x, y〉) ∅

6-rule

L(z)

y L(y)

x

L(〈x, z〉)

z

L(〈x, y〉)

z y L(y)

x

L(〈x, z〉) L(〈x, y〉)

L(z)

6-rule

L(y)

x

z

L(〈x, z〉) ∪ Inv(L(〈x, y〉))

L(z) ∪ L(y)

∅

y

L(z) ∪ L(y)

Figure 8: Effect of the 6-rule

42

z y L(y)

x

L(〈x, z〉) L(〈x, y〉)

L(z)

L(〈y, w2〉)

w2

w1

L(〈w1, y〉)

z

x

L(z) ∪ L(y)

w2

w1

L(〈y, w2〉)

L(〈x, z〉) ∪ L(〈x, y〉)

L(〈w1, z〉) ∪ L(〈w1, y〉)L(〈w1, z〉)

6r-rule

Figure 9: Effect of the 6r-rule

structures “hanging” on the root nodes are still completion trees, and expan-
sion rules working on completion trees are indentical to those in the previous
section.

Lemma 20 Let A be a SHIQ-ABox and R+ a role hierarchy. If the expansion
rules can be applied to A and R+ such that they yield a complete and clash-free
completion forest, then A has a tableau w.r.t. R+.

Proof: Apart from the treatment of root nodes, the definition of a tableau
T = (S, L, E, I) from a complete and clash-free completion forest F works as
the one for completion trees: an individual in S corresponds to a path in F
from some root node to some node that is not blocked, and which goes only via
non-root nodes.

More precisely, let F be a complete and clash-free completion forest. A path
is a sequence of pairs of nodes of F of the form p = [(x0, x

′
0), . . . , (xn, x′

n)]. For
such a path we define Tail(p) := xn and Tail′(p) := x′

n. With [p|(xn+1, x
′
n+1)]

we denote the path [(x0, x
′
0), . . . , (xn, x′

n), (xn+1, x
′
n+1)]. The set Paths(F) is

defined inductively as follows:

• For root nodes xi
0 of F , [(xi

0, x
i
0)] ∈ Paths(F), and

• For a path p ∈ Paths(F) and a node z in F :

– if z is a successor of Tail(p) and z is neither blocked nor a root node,
then [p|(z, z)] ∈ Paths(F), or

– if, for some node y in F , y is a successor of Tail(p) and z blocks y,
then [p|(z, y)] ∈ Paths(F).

Let us collect some simple facts that follow from the construction of
Paths(F):

43

• Root nodes are never blocked, nor are they blocking other nodes, so paths
are never extended by root-nodes. Hence, the only place where they occur
in a path is in the first place.

• For each p ∈ Paths(F), Tail(p) is not blocked.

• For each p ∈ Paths(F), Tail(p) = Tail′(p) iff Tail′(p) is not blocked.

• For each p ∈ Paths(F), L(Tail(p)) = L(Tail′(p)).

Now we can define a tableau T = (S, L, E, I) with:

S= Paths(F)

L(p)= L(Tail(p))

E(R)= {〈p, [p|(x, x′)]〉 ∈ S × S | x′ is an R-successor of Tail(p)} ∪
{〈[q|(x, x′)], q〉 ∈ S× S | x′ is an Inv(R)-successor of Tail(q)} ∪

{〈[(xi
0, x

i
0)], [(x

j
0, x

j
0)]〉 ∈ S × S | xi

0, x
j
0 are root nodes, and

xj
0 is an R-neighbour of xi

0

I(ai)=

{

[(xi
0, x

i
0)] if xi

0 is a root node in F

[(xj
0, x

j
0)] for xj

0 a root node in F with xi
0

.
= xj

0

and it can be shown that T is a tableau for D.

• T satisfies (P1) because F is clash-free.

• (P2) and (P3) are satisfied by T because F is complete.

• Suppose T does not satisfy (P4), i.e., there are p, q ∈ S with ∀R.C ∈ L(p),
〈p, q〉 ∈ E(R), and C 6∈ L(q). If q = [p|(x, x′)], then x′ is an R-successor
of Tail(p) and, due to completeness of F , C ∈ L(x′) = L(x) = L(q).

If p = [q|(x, x′)], then x′ is an Inv(R)-successor of Tail(q) and, due to
completeness of F , C ∈ L(Tail(q)) = Lab(q).

If p = [(xi
0, x

i
0)] and q = [(xj

0, x
j
0] for two root nodes xi

0, xj
0, then xj

0 is

an R-neighbour of xi
0, and completeness of F yields C ∈ L(xj

0) and hence
C ∈ L(q).

• For (P5), let ∃R.C ∈ L(p). Define Tail(p) = x. Since x is not blocked, x
has some R-neighbour y with C ∈ L(y).

There are the following two possibilities:

– y is a successor of x in F . y can either be a root node or not.

∗ Assume y is not a root node: if y is not blocked, then q :=
[p|(y, y)] ∈ S; if y is blocked by some node z in F , then q :=
[p|(z, y)] ∈ S.

∗ If y is a root node, then, since y is a successor of x, x is also a
root node. This implies p = [(x, x)] and q = [(y, y)] ∈ S.

In any of these cases, 〈p, q〉 ∈ E(R) and C ∈ L(q) holds.

44

– x is an Inv(R)-successor of y, then either

∗ p is of the form p = [q|(x, x′)] with Tail(q) = y.

∗ p is of the form p = [q|(x, x′)] with Tail(q) = u 6= y. x only has
one predecessor in F , hence u is not the predecessor of x. This
implies x 6= x′, x blocks x′ in F , and u is the predecessor of x′

due to the construction of Paths. Together with the definition of
the blocking condition, this implies L(〈u, x′〉) = L(〈y, x〉) as well
as L(u) = L(y) due to the pairwise blocking.

∗ p is of the form p = [(x, x)] with x being a root node. This
implies that also y is a root node and q = [(y, y)].

Again, in any of these cases, 〈p, q〉 ∈ E(R) and C ∈ L(q).

• For (P6), let ∀S.C ∈ L(p), and 〈p, q〉 ∈ E(R) for some R ⊑* S with
Trans(R).

If q = [p|(x, x′)], then x′ is an R-successor of Tail(p) and thus ∀R.C ∈ L(x′)
because otherwise the ∀+-rule would be applicable. From L(q) = L(x) =
L(x′) it follows that ∀R.C ∈ L(q).

If p = [q|(x, x′)], then x′ is an Inv(R)-successor of Tail(q) and, due to
completeness of F , ∀S.C ∈ L(Tail(q)) = Lab(q).

If p = [(xi
0, x

i
0)] and q = [(xj

0, x
j
0)] for two root nodes xi

0, xj
0, then xj

0 is an

R-neighbour of xi
0, and completeness of F yields ∀R.C ∈ L(xj

0) = L(q).

• (P7) holds because of the symmetric definition of the mapping E.

• (P8) is due to the definition of (R-)neighbours and (R-)successor: If a
node y is an R-neighbour (resp. R-successor) of a node x and R ⊑* S, then
y is also S-neighbour (resp. S-successor) of x.

• Suppose (P9) were not satisfied. Hence there is some p ∈ S with
(6 n S C) ∈ L(p) and ♯ST (p, C) > n. We will show that this implies
♯SF (Tail(p), C) > n which is a contradiction to either the clash-freeness
or completeness of F .

Define x := Tail(p) and P := ST (p, C). Due to the assumption, we have
♯P > n. Like in the proof of Lemma 16, we distinguish two cases:

– P contains only paths of the form [p|(y, y′)] and [(xiℓ

0 , xiℓ

0)]. We claim
that the function Tail′ is injective on P . If we assume that there are
two paths q1, q2 ∈ P with q1 6= q2 and Tail′(q1) = Tail′(q2) = y′ then
this implies that each qi is of the form qi = [p|(yi, y

′)] or qi = [(y′, y′)].
From q1 6= q2, we have that qi = [p|(yi, y

′)] holds for i ∈ {1, 2}. Since
root nodes occur only in the beginning of paths, qi = [p|(yi, y

′)]
and qj = [(y′, y′)] is not possible. Hence qi = [p|(yi, y

′)] for both
i ∈ {1, 2}. If y′ is not blocked in F , then y1 = y′ = y2 holds,
contradicting q1 6= q2. If y′ is blocked in F , then both y1 and y2

block y′, which implies y1 = y2, again a contradiction.

45

Since Tail′ is injective on P , it holds that ♯P = ♯Tail′(P). Moreover,
for each y′ ∈ Tail′(P), y′ is an S-successor of x and C ∈ L(y′). This
implies ♯SF(x, C) > n.

– P contains a path q where p is of the form p = [q|(x, x′)]. Hence p
is not of the form [(xi

0, x
i
0)], and this case is identical to the one in

Lemma 16.

• For (P10), assume (> n S C) ∈ L(p). This implies that there exist n
individuals y1, . . . , yn in F such that each yi is an S-neighbour of x =
Tail(p) and C ∈ L(yi). We claim that, for each of these individuals, there
is a path qi such that 〈p, qi〉 ∈ E(S), C ∈ L(qi), and qi 6= qj for all
1 ≤ i < j ≤ n. Obviously, this implies ♯ST (p, C) > n. For each yi there
are three possibilities:

– yi is an S-successor of x and yi is not blocked in F . Then qi =
[p|(yi, yi)] or yi is a root node and qi = [(yi, yi)], and qi is a path
with the desired properties.

– yi is an S-successor of x and yi is blocked in F by some node z. Then
qi = [p|(z, yi)] is the path with the desired properties. Since the same
z may block several of the yjs, it is indeed necessary to include yi

explicitly into the path to make them distinct.

– x is an Inv(S)-successor of yi. There may be at most one such yi if
x is not a root node. Hence either p is of the form p = [q|(x, x′)]
with Tail(q) = yi, or p = [(x, x)] and qi = [(yi, yi)]. Again, qi has the
desired properties and, obviously, q is distinct from all other paths
qj .

• For (P11), let (⊲⊳ n S C) ∈ L(p) and 〈p, q〉 ∈ E(S). If q = [p|(x, x′)]
or q = [(x′, x′)], then x′ is an S-successor of Tail(p) and thus {C,∼C} ∩
L(x′) 6= ∅ must hold since the choose-rule is not applicable. Since L(q) =
L(x) = L(x′) we have {C,∼C} ∩L(q) 6= ∅. If p = [q|(x, x′)], then x′ is an
Inv(S)-successor of Tail(q) and thus {C,∼C} ∩ L(Tail(q)) 6= ∅ must hold
(since x′ is not indirectly blocked and the choose-rule is not applicable),
hence {C,∼C} ∩ L(q) 6= ∅.

• (P12) is due to the fact that, when the tableaux algorithm is started for
an ABox A, the initial completion forest FA contains, for each individual
name ai occurring in A, a root node xi

0 with

L(xi
0) = {C ∈ clos(A) | ai :C ∈ A}.

The tableaux algorithm never blocks root individuals, and, for each root
node xi

0 that is removed by the 6-rule, there is another root node xj
0 with

xi
0

.
= xj

0. For I(xi
0) = xj

0, we can say that xj
0 has “inherited” all concepts

in the label of xi
0, i.e. {C ∈ clos(A) | ai :C ∈ A} ∈ L(xj

0). Hence for each

individual name ai that occurs in A, there is a path [(xj
0, x

j
0)] ∈ S with

C ∈ L([(xk
0 , xk

0)]) for each ai :C ∈ A.

46

• (P13) is satisfied for the same reasons as (P12), i.e. root nodes are never
blocked, and if a root node is removed, there is another root node that
“inherits” all its role-relationships.

• (P14) is satisfied because the 6r-rule can not identify two root nodes
xi

0, y
i
0 for which xi

0 6
.
= yi

0 holds. The relation 6
.
= is initialised with all the

inequality assertions from A.

Lemma 21 Let A be a SHIQ-ABox and R+ a role hierarchy. If A has a
tableau w.r.t. R+., then the expansion rules can be applied to A and R+ such
that they yield a complete and clash-free completion forests.

Proof: Let T = (S, L, E, I) be a tableau for A and R+. Similarly to the proof
of Lemma 17, we can use T to trigger the application of the expansion rules
such that they yield a completion forest F that is both complete and clash-free.
Again, we use a function π which maps the nodes of F to elements of S, and
we steer the application of the ⊔-rule, the 6-rule, and the 6r-rule such that
L(x) ⊆ L(π(x)) holds for all nodes x of the completion forest.

Since T is a tableau for A, for each assertion ai :C ∈ A, we have C ∈ L(I(ai)).
When applying the expansion rules, the application of the non-deterministic ⊔-
rule is driven by the labelling L in the tableau T . To this purpose, we define
a mapping π which maps the nodes of F to elements of S, and we steer the
application of the ⊔-rule such that

L(x) ⊆ L(π(x))
if y is an S-neighbour of x then 〈π(x), π(y)〉 ∈ E(S)
x 6

.
= y implies π(x) 6= π(y)







(∗)

Claim: Let F be a completion forest and π a function that satisfies (∗). If a
rule is applicable to F then the rule is applicable to F in a way that yields a
completion forest F and a function π that satisfy (∗). This claim is now proved
by induction, similar to the proof of Lemma 17:

• If the ⊓-rule can be applied to x in F with C1 ⊓ C2 ∈ L(x), then C1, C2

are added to L(x). Since T is a tableau, {C1, C2} ⊆ L(π(x)), and hence
the ⊓-rule preserves L(x) ⊆ L(π(x)).

• If the ⊔′-rule can be applied to x in F with C1 ⊔ C2 ∈ L(x), then C ∈
{C1, C2} is in L(π(x)), and C1 or C2 is added to L(x) by the ⊔-rule.
Hence the ⊔-rule can be applied such that, after its application, we have
L(x) ⊆ L(π(x)) for all nodes x in F .

• If the ∃-rule can be applied to x in F with C = ∃R.C1 ∈ L(x), then
C ∈ L(π(x)) and there is some t ∈ S with 〈π(x), t〉 ∈ E(R) and C1 ∈ L(t).
The ∃-rule creates a new successor y of x for which we thus can define
π(y) := t for some t with C1 ∈ L(t) and 〈π(x), t〉 ∈ E(R). Hence we have
L(y) = {C1} ⊆ L(π(y)) and 〈π(x), π(y)〉 ∈ E(R) for the new R-successor
y of x.

47

• If the ∀-rule can be applied to x in F with C = ∀R.C1 ∈ L(x) and
y is an R-neighbour of x, then 〈π(x), π(y)〉 ∈ E(R), and thus, due to
(P4), C1 ∈ L(π(y)). The ∀-rule adds C1 to L(y) and thus preserves
L(y) ⊆ L(π(y)).

• If the ∀+-rule can be applied to x in F with C = ∀S.C1 ∈ L(x), Trans(R),
R ⊑* S, and y an R-neighbour of x, then 〈π(x), π(y)〉 ∈ E(R), and thus,
due to (P6), ∀R.C1 ∈ L(π(y)). The ∀+-rule adds ∀R.C1 to L(y) and thus
preserves L(y) ⊆ L(π(y)).

• If the >-rule can be applied to x in F with C = (> n S C)1 ∈ L(x), then
C ∈ L(π(x)) and, by (P10), there are t1, . . . , tn ∈ S with 〈π(x), ti〉 ∈ ES
and C1 ∈ L(ti). Hence applying the >-rule and extending π by π(yi) = ti
yields a completion forest and a mapping π that still satisfies (∗).

• If the choose-rule can be applied to x with (⊲⊳ n S C) ∈ L(x) and an
S-neighbour y of x, then (⊲⊳ n S C) ∈ L(π(x)) and 〈x, y〉 ∈ E(S) and,
due to (P11) either C ∈ L(y) or ∼C ∈ L(y). Hence the choose-rule can
be applied to x in such a way that (∗) is satisfied.

• Let the 6- or the 6r-rule be applicable to x with C = (6 n S C1) ∈ L(x)
and more than n S-neighbours. Since (6 n S C1) ∈ L(π(x)) and T
satisfies (P9), there are at most n elements yj with 〈π(x), yj〉 ∈ E(S) and
thus, due to (∗), there are two S-neighbours t1, t2 of x with π(t1) = π(t2).

– In the case that one of the ti is not a root node, the 6-rule is appli-
cable. π(y) = π(z) implies that y 6

.
= z cannot hold because of (∗),

and y, z can be chosen such that y is not an ancestor of z. Hence the
6-rule can be applied without violating (∗).

– If both t1, t2 are root nodes, then (∗) implies L(t1)∪L(t2) ⊆ L(π(t1)),
hence setting L(t1) = L(t1) ∪ L(t2) preserves this subset-relation.
Moreover, together with (∗), we have that, if z is an S-neighbour of
t1 or of t2, then 〈π(z), π(t1)〉 ∈ E(S). Hence, adding edges 〈z, w〉 and
〈w, z〉 as necessary, then setting L(〈z, t1〉) = L(〈z, t1〉) ∪ L(〈z, t2〉)
and L(〈t1, z〉) = L(〈t1, z〉) ∪ L(〈t2, z〉), yields a forest that satisfies
(∗). Summing up, the 6r-rule can be applied in such a way that it
yields a completion forest and a mapping π that satisfy (∗).

This claim proves the lemma as follows. By setting π(xi
0) = I(ai) for each

root node xi
0 we obtain a mapping π that satisfies (∗) for the initial comple-

tion forest FA due to (P12), (P13), and (P14). From Lemma 19, the tableau-
construction triggered by FA terminates with a complete forest F . Moreover,
whenever a rule is applicable, then it can be applied in a way that maintains
(∗). Hence, there is a complete forest F and a mapping π that satisfies (∗). Yet,
this implies that F must be clash free:

• F cannot contain a node x such that {C,¬C} ∈ L(x) because L(x) ⊆
L(π(x)) and hence (P1) would be violated for π(x).

48

• F cannot contain a node x with (6 n S C) ∈ L(x) and n+1 S-neighbours
y0, . . . yn of x with C ∈ L(yi) and yi 6

.
= yj for 0 ≤ i < j ≤ n, be-

cause (6 n S C) ∈ L(π(x)), and, since yi 6
.
= yj implies π(yi) 6= π(yj),

♯ST (π(x), C) > n would hold which contradicts (P9).

6.3 ABox Reasoning with Respect to a Terminology

Using the same techniques and arguments as in Section 3.1, general concept
inclusion axioms can be internalised. However, as it is not guaranteed that all
root nodes will be connected, it is necessary to add the concept CT ⊓ ∀U.CT

to the label of every root node when the completion forest is initialised. This
is equivalent to adding an assertion a : (CT ⊓ ∀U.CT) to the ABox for every
individual a occurring in it. We thus have the following theorem:

Theorem 6 The tableaux algorithm is a decision procedure for the consistency
of SHIQ-ABoxes with respect to role hierarchies and terminologies.

References

[Baa90] Franz Baader. Augmenting concept languages by transitive closure
of roles: An alternative to terminological cycles. Technical Report
RR-90-13, DFKI, Kaiserslautern, Deutschland, 1990. An abridged
version appeared in Proc. of IJCAI-91, pp. 446–451.

[BBH96] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions
on concepts. Artificial Intelligence, 88(1–2):195–213, 1996.

[BBN+93] F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the
expressivity of feature logics with negation, functional uncertainty,
and sort equations. Journal of Logic, Language and Information,
2:1–18, 1993.

[DL96] G. De Giacomo and M. Lenzerini. Tbox and Abox reasoning in
expressive description logics. In Proc. of KR-96, pages 316–327. M.
Kaufmann, Los Altos, 1996.

[DM98] G. De Giacomo and F. Massacci. Combining deduction and model
checking into tableaux and algorithms for converse-pdl. Information
and Computation, 1998. To appear.

[HB91] B. Hollunder and F. Baader. Qualifying number restrictions in con-
cept languages. In Proc. of KR-91, pages 335–346, Boston, MA,
USA, 1991.

[HG97] I. Horrocks and G. Gough. Description logics with transitive roles. In
M.-C. Rousset, R. Brachmann, F. Donini, E. Franconi, I. Horrocks,
and A. Levy, editors, Proc. of DL’97, pages 25–28, 1997.

49

[HNS90] B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption al-
gorithms for concept description languages. In ECAI-90, Pitman
Publishing, London, 1990.

[HS98] I. Horrocks and U. Sattler. A description logic with transitive and
inverse roles and role hierarchies. Technical Report 98-05, LuFg
Theoretical Computer Science, RWTH Aachen, 1998. Available via
www: http://www-lti.informatik.rwth-aachen.de/Forschung/
Papers.html.

[HS99] I. Horrocks and U. Sattler. A description logic with transitive and
inverse roles and role hierarchies. J. of Logic and Computation, 1999.
To appear.

[HST98] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for decid-
ing ALCNIR+ -satisfiability. LTCS-Report 98-08, LuFg Theoretical
Computer Science, RWTH Aachen, Germany, 1998.

[Sat96] U. Sattler. A concept language extended with different kinds
of transitive roles. In G. Görz and S. Hölldobler, editors, 20.
Deutsche Jahrestagung für Künstliche Intelligenz, volume 1137 of
LNAI. Springer-Verlag, 1996.

[Sat98] U. Sattler. Terminological knowledge representation systems in a
process engineering application. PhD thesis, RWTH Aachen, 1998.

[Sch91] K. Schild. A correspondence theory for terminological logics: Pre-
liminary report. In Proc. of IJCAI-91, pages 466–471, Sydney, 1991.

[SS88] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept de-
scriptions with unions and complements. Technical Report SR-88-21,
FB Informatik, Univ. Kaiserslautern, Kaiserslautern, Deutschland,
1988.

[Tob99] S. Tobies. A PSpace algorithm for graded modal logic. In
H. Ganzinger, editor, Automated Deduction – CADE-16, 16th In-
ternational Conference on Automated Deduction, LNAI 1632, pages
52–66, Trento, Italy, July 7–10, 1999. Springer-Verlag.

50

