
What's in an Attribute?

Consequences for the Least Common Subsumer

�

Ralf K�usters

LuFG Theoretical Computer Science

RWTH Aachen Ahornstra�e 55

52074 Aachen

Germany

kuesters@informatik.rwth-aachen.de

Alex Borgida

Department of Computer Science

Rutgers University

Piscataway, NJ 08855 USA

borgida@cs.rutgers.edu

Abstract

Functional relationships between objects, called \attributes", are of

considerable importance in knowledge representation languages, in-

cluding Description Logics (DLs). A study of the literature indicates

that papers have made, often implicitly, di�erent assumptions about

the nature of attributes: whether they are always required to have a

value, or whether they can be partial functions. The work presented

here is the �rst explicit study of this di�erence for (sub-)classes of the

Classic DL, involving the same-as concept constructor. It is shown

that although determining subsumption between concept descriptions

has the same complexity (though requiring di�erent algorithms), the

story is di�erent in the case of determining the least common subsumer

(lcs). For attributes interpreted as partial functions, the lcs exists and

can be computed relatively easily; even in this case our results correct

and extend three previous papers about the lcs of DLs. In the case

where attributes must have a value, the lcs may not exist, and even if

it exists it may be of exponential size. Interestingly, it is possible to

decide in polynomial time if the lcs exists.

�

An abridged version has been submitted to JAIR.

1

Contents

1 Introduction 3

2 Formal Preliminaries 6

3 Subsumption 11

3.1 Description Graphs : 12

3.2 Translating Concept Descriptions to Description Graphs : : : 15

3.3 Translating a Description Graph to a Concept Description : : 18

3.4 Canonical Description Graphs : : : : : : : : : : : : : : : : : : 20

3.5 Subsumption Algorithm : 25

3.6 Soundness and Completeness of the Subsumption Algorithm : 27

4 Computing the lcs in Classic 35

4.1 The Product of Description Graphs : : : : : : : : : : : : : : : 35

4.2 Computing the lcs : 36

5 The Lcs for Same-as and Total Attributes 41

5.1 The Existence of the Lcs : 41

5.2 Characterizing the Existence of an Lcs : : : : : : : : : : : : : 46

5.3 Deciding the Existence of an Lcs : : : : : : : : : : : : : : : : 50

5.4 Computing the Lcs : 51

6 Conclusion 55

2

1 Introduction

Knowledge representation systems based on Description Logics (DL sys-

tems) have been the subject of continued attention in Arti�cial Intelligence,

both as a subject of theoretical studies (e.g., [2, 11, 14]) and in applications

(e.g., [1, 17]). More impressively, DLs have found applications in other areas

involving information processing, such as databases [6, 16], semi-structured

data [12, 13], information integration [15, 9], as well as more general prob-

lems such as con�guration [28] and software engineering [7, 21].

In Description Logics, one takes an object-centered view, where the world

is modeled as individuals, connected by binary relationships (here called

roles), and grouped into classes (called concepts). In every DL system the

concepts of the application domain are described by concept descriptions

that are built from atomic concepts and roles using the constructors pro-

vided by the DL language. For example, using the atomic concepts Model,

Manufacturer, and INTEGER as well as the roles model, seats, and

madeBy the concept Car can be described as follows:

Car := madeBy # model madeBy u

seats # model seats u 8seats:INTEGER u

8model:Model u 8madeBy:Manufacturer

By using same-as equalities (like seats # model seats), we ensure that the

manufacturer (number of seats) of a car is the same as the manufacturer

(number of seats) of the model of that car.

DLs support a variety of inferences, including deciding if a concept

subsumes another one. Subsumption algorithms allow one to determine

subconcept-superconcept relationships: C is subsumed by D (C v D) if

and only if all instances of C are also instances of D, i.e., the �rst descrip-

tion is always interpreted as a subset of the second description.

The traditional inference problems for DL systems, such as subsumption,

inconsistency detection, membership checking, are by now well-investigated.

Algorithms and detailed complexity results for realizing such inferences are

available for a great variety of DL languages of di�ering expressive power

(e.g., [23, 3, 29, 22, 25]).

In most knowledge representation systems, including DLs, functional re-

lationships, here called attributes (in the literature also called features), are

distinguished as a subclass of general relationships, at least in part because

functional restrictions occur so frequently in practice. In the above exam-

ple, madeBy and seats are meant to be attributes, thus making unnecessary

3

number restrictions like ((� 1madeBy) u (� 1madeBy)). In addition, dis-

tinguishing attributes helps identify tractable subsets of DL constructors:

in classic, coreferences between attribute chains (as in the above exam-

ples) can be reasoned with e�ciently [10], while if we changed to roles (e.g.,

allowed (repairs # ownedBy � repairsPaidFor)), the subsumption problem be-

comes undecidable [30].

The distinction between roles and attributes in DLs is both theoreti-

cally and practically well understood. However, it turns out that there is a

distinction to be made between attributes being interpreted as total (total

attributes) or partial functions (partial attributes). This distinction is use-

ful in practice, since there is a di�erence between a car not having a license

plate, and having a license plate whose value is not currently known. In DLs,

the latter is modeled by having the attribute hasLicensePlate, with restric-

tion (� 1 hasLicensePlate), while the former is modeled with the restriction

(� 0 hasLicensePlate). If attributes were total functions, the last assertion

would immediately lead to a contradiction.

It turns out that the study of the theoretical implications of this dis-

tinction has "slipped through the cracks" of contemporary research. The

purpose of this paper is to show explicitly and precisely the e�ect of allow-

ing attributes to be total or partial. Speci�cally, we show that for one group

of DLs related to the Classic system, although this distinction does not af-

fect the complexity of computing subsumption (the details of the algorithm

do need to be changed), it does have a signi�cant impact on the problem

of computing the least common subsumer (lcs) of concepts, i.e., the most

speci�c concept description subsuming a set of given concepts.

Since, as detailed below, a number of published papers on the above

topic made di�ering assumptions about the nature of attributes, but did

not highlite these di�erences, the more general lesson we want to impart is

that in all knowledge representation schemes and investigations it is very

important to be clear about whether attributes are total or partial.

Least common subsumer

The lcs was �rst introduced as a new inference problem in DLs in [20]. One

motivation for considering the lcs is to use it as an alternative to disjunction.

The idea is to replace disjunctions like C

1

t� � �tC

n

by the lcs of C

1

; : : : ; C

n

.

In [8, 20], this operation is called knowledge-base vivi�cation. Although, in

general, the lcs is not equivalent to the corresponding disjunction, it is the

best approximation of the disjunctive concept within the available language.

Using such an approximation is motivated by the fact that, in many cases,

4

adding disjunction would increase the complexity of reasoning.

1

As proposed in [4, 5], the lcs operation can be used to support the

\bottom-up" construction of DL knowledge bases, where, roughly speaking,

starting from \typical" examples an lcs algorithm is used to compute a con-

cept description that (i) contains all these examples, and (ii) is the most

speci�c description satisfying property (i). In [4], such an algorithm has

been presented for cyclic ALN -concept descriptions; ALN is a sublanguage

of Classic allowing for concept conjunction, primitive negation, value re-

strictions, and number restrictions. Baader et al. [5] have proposed an lcs

algorithm for a DL allowing for existential restrictions instead of number

restrictions.

Originally, the lcs was introduced as an operation in the context of induc-

tive learning from examples [20], and several papers followed up this lead.

The DLs considered were mostly sublanguages of Classic which allowed

for same-as equalities, i.e., expressions like madeBy # model � madeBy.

Cohen et al. [20] proposed an lcs algorithm for ALN and a language that

allows for concept conjunction and same-as, which we will call S. In [18], the

algorithm for S was extended to CoreClassic, which additionally allows

for value restrictions (see [19] for experimental results). Finally, Frazier and

Pitt [24] presented an lcs algorithm for full Classic.

All these algorithms are based on a translation of concept descriptions

into so-called description graphs, which had been used in [10] to decide

subsumption. More precisely, the lcs is computed in three steps: First, the

concept descriptions are turned into description graphs. Second, the lcs is

computed as the product of the description graphs. Finally, the product

graph thus obtained is turned back into a concept description, representing

the lcs of the given concepts.

However, there is a mismatch between the semantics of attributes under-

lying the subsumption algorithm on the one hand and the lcs algorithms on

the other hand. In particular, in the work of Borgida and Patel-Schneider

[10], attributes are interpreted as total functions, whereas a careful exami-

nation of the lcs algorithms proposed, especially the ones involving same-as,

reveals that the lcs is computed for DLs with partial attributes. Further-

more, it turns out that the lcs algorithm presented by Frazier and Pitt

[24] does not handle properly inconsistency, which can be expressed in full

Classic.

1

Observe that if the language already allows for disjunction, we have lcs(C

1

; : : : ; C

n

) �

C

1

t � � � t C

n

. In particular, this means that, for such languages, the lcs is not really of

interest.

5

New results

In Section 3, we provide a subsumption algorithm for full Classic with

partial attributes, which essential extends ALN by same-as equalities, but

also allows for the �lls and one-of constructors on (host) individuals. This

algorithm is a modi�cation of the corresponding algorithm for the total at-

tribute case presented in [10]. Then we present an lcs algorithm for this

language along the lines of [18], and formally prove its correctness using

the subsumption algorithm speci�ed before. It turns out that, as in Core-

Classic, the lcs always exists, and, for two concept descriptions, it can be

computed in time polynomial in their size.

Finally, the central new results of this paper examines the problem of

computing lcs when attributes are total (Section 5). The surprising result

is that in this case the lcs does not exist in general for the language S |

the construction in [20] being actually for partial attributes. We do however

provide a polynomial-time algorithm for deciding when the lcs exists, and

a (necessarily) worst-case exponential-time algorithm for computing the lcs

in case it exists.

We start by introducing the basic notions necessary for our investiga-

tions.

2 Formal Preliminaries

Following [10], in this section we formally introduce the (full) Classic lan-

guage except for the non-declarative test-de�ned concepts employed in the

Classic system to algorithmically approximate representations for ideas

that cannot be encoded using the constructors provided by Classic.

Concept descriptions inClassic are built up from a collection of concept

names, role names, attribute names, and individuals. Roles, attributes, and

individuals are always atomic but descriptions can be built up using con-

structors. Classic incorporates two di�erent kinds of concept descriptions,

namely, host concept descriptions and classic concept descriptions. There-

fore, we distinguish host concept names and classic (or atomic) concept

names as well as host individuals and classic individuals.

Host concept descriptions are used to describe objects in a concrete do-

main, e.g., a programming language. A general scheme for incorporating

such host objects has been presented in [3].

Host concept descriptions in Classic are relatively simple. They are

de�ned built up from host concepts names and host individuals. More pre-

cisely, such concepts have the following syntax:

6

Syntax Constructor Name

>

H

top concept of the host domain

E host concept (name)

fI

1

: : : I

n

g one of

C uD concept conjunction

where I

1

; : : : ; I

n

are host individuals and C and D are host concept descrip-

tions.

The semantics of host concepts and host individuals is prede�ned and

�xed. The extension of a host concept is a subset of �

H

, the so-called host

realm. A host individual is interpreted as an element in �

H

where di�erent

individuals are assigned to di�erent elements of the host realm (unique name

assumption). The elements in the host realm have no role or attribute suc-

cessors. However, they can be successors of elements in the classic realm (see

below). Finally, we require that (i) all host concept names have an extension

that is either of in�nite size or is empty; and (ii) that if the extensions of

two host concepts overlap, then one must be subsumed by the other (i.e.,

host concept names are disjoint, unless they are subconcepts of each other).

and (iii) that the di�erence (A � B) of the extensions of two host concept

names is either in�nite or empty. (These conditions are needed to avoid

being able to infer conclusions from the size of host descriptions.) This, for

example, allows for host concepts like INTEGER, REAL, COMPLEX,

and STRING, but not BOOLEAN .

Classic concept descriptions in Classic allow for more complex concepts

than host concept descriptions. They are formed according to the following

syntax:

Syntax Constructor Name

>

C

top concept of the classic realm

E classic/atomic concept name

(� n R) at least restriction

(�mR) at most restriction

R : I �lls (on a role)

A : I �lls (on an attribute)

fI

1

: : : I

n

g one of

A

1

� � �A

k

B

1

� � �B

h

sams-as equality

C uD concept conjunction

8R:C (role) value restriction

8A:C (attribute) value restriction

7

where E is an atomic concept name; R is a role; A, A

i

, and B

j

are at-

tributes; I is the name of a classic or host individual; I

j

are names of classic

individuals; C and D are classic concept descriptions; F is a host or classic

concept description; and k; h;m; n are non-negative integers.

A description which is either a host concept description or a classic

concept description is called (Classic) concept description. In addition,

a concept description might be the top concept >, which will be interpreted

as the whole domain.

The sublanguage S of Classic only allows for same-as and concept

conjunction.

In the sequel, the set of concept names (host and classic) is called C, the

set of role names R, the set of attributes A, and the set of individuals IND

(which consists of the set of host individuals IND

H

and classic individuals

IND

C

). All these sets are pairwise disjoint. Furthermore, we will use

8R

1

� � �R

n

:C as abbreviation of 8R

1

:8R

2

� � � 8R

n

:C where 8":C denotes C.

As argued in [10], for individuals it is reasonable to introduce a non-

standard semantics. The most signi�cant reason is to avoid intractability of

subsumption. It has been shown in [10, 27] that subsumption in Classic

is NP-complete when individuals are interpreted as single elements of the

domain.

To avoid this problem the semantics of individuals are de�ned as follows:

instead of mapping classic individuals onto single elements of the domain,

as we have done it for host individuals or as it is done in standard se-

mantics, classic individuals are mapped onto disjoint subsets of the domain,

intuitively representing di�erent possible realizations of that (Platonic) in-

dividual.

For a given interpretation I the classic individuals induce the following

congruence relation over the domain dom(I) of I: two elements in dom(I)

are said to be congruent if and only if they belong to the same extension

of the same individual I 2 IND

C

or if they are identical. The cardinality

of a set of elements of the domain is then the size of the set modulo this

congruence relationship.

As usual, the denotational semantics for concept descriptions is recur-

sively built on the extensions of atomic identi�ers (i.e., of concept names,

role names, attribute names, and individuals) by an interpretation:

De�nition 1 An interpretation I consists of a domain � and an interpre-

tation function �

I

. The domain is disjointly divided into a classic realm �

C

and the host realm �

H

which is �xed for all interpretations. The interpre-

tation function assigns extensions to atomic identi�ers as follows:

8

� The extension of an atomic concept name E is some subset E

I

of the

classic realm.

� The extension of a host concept name H is some prede�ned subset of

�

H

which is �xed for all interpretations and satis�es the conditions

stated above.

� The extension of an atomic role name R is some subset R

I

of �

C

��.

� The extension of an atomic attribute name A is some partial function

A

I

from �

C

to �, i.e., if (x; y

1

) 2 A

I

and (x; y

2

) 2 A

I

then y

1

= y

2

.

� The extension of a classic individual I is some non-empty subset I

I

of �

C

where the interpretations of distinct identi�ers must be disjoint

as discussed above.

� Host individuals are interpreted according to the unique name assump-

tion (see above). The extension I

I

of a host individual I is an element

in �

H

. As already mentioned, the interpretation of the host individu-

als is �xed for all interpretations. Therefore, we occasionally refer to

I

I

as I.

By (R

1

� � �R

n

)

I

for role names or attributes R

i

we denote the composite

of the binary relations R

I

i

. If n = 0 then "

I

denotes the identical relation,

i.e., "

I

:= f(d; d) j d 2 �

C

g. For an individual d, we de�ne R

I

(d) :=

fe j (d; e) 2 R

I

g. If the R

i

are attributes, we say that (R

1

� � �R

n

)

I

is

de�ned for d i� (R

1

� � �R

n

)

I

(d) 6= ;; occasionally, we will refer to the image

of d by (R

1

� � �R

n

)

I

(d).

The extension C

I

of a concept description C is inductively de�ned as

follows:

� >

I

= �; >

I

C

= �

C

; >

I

H

= �

H

;

� p : I

I

= fd 2 �

C

j 9x (d; x) 2 p

I

^ x 2 I

I

g where p is a role or an

attribute;

� fI

1

: : : I

n

g

I

=

S

n

k=1

I

I

k

. If the I

0

k

s are all host individuals then this

means fI

1

: : : I

n

g

I

= fI

1

: : : I

n

g;

� (� n R)

I

(resp. (� n R)

I

) is those objects in �

C

with at least (resp.

at most) n non-congruent successors for the role R;

� (A

1

� � �A

k

B

1

� � �B

h

)

I

= fd 2 �

C

j (A

1

� � �A

k

)

I

and (B

1

� � �B

h

)

I

are

de�ned for d and A

1

� � �A

k

I

(d) = B

1

� � �B

h

I

(d)g;

9

� (C uD)

I

= C

I

\D

I

;

� (8p:C)

I

= fd 2 �

C

j p

I

(d) � C

I

g where p is a role or an attribute.

If we had not restricted the interpretation of the constructors like value-

restriction and number restriction to subsets of �

C

then subsumption rela-

tionships as INTEGER v 8R:C or INTEGER v (� n R) would hold.

Note that the above de�nition supports partial attributes. Since the

main point of this paper is to demonstrate the impact of di�erent semantics

for attributes, we occasionally restrict the set of interpretations to those

that map attributes to total functions. Such interpretations are called t-

interpretations.

The main inference service provided by a system based on description

logics is to compute subconcept-superconcept relationships, which are also

called subsumption relationships.

De�nition 2 A concept description C is subsumed by the concept descrip-

tion D (C v D for short) if and only if for all interpretations I it is

C

I

� D

I

. If we consider only total interpretations, we get t-subsumption:

C v

t

D i� C

I

� D

I

for all t-interpretations I.

Having de�ned subsumption, equivalence of concept descriptions is de-

�ned in the usual way: C � D if and only if C v D andD v C. Analogously,

t-equivalence C �

t

D is speci�ed.

Although, Classic as introduced here does not contain the bottom con-

cept ? explicitly, it can be expressed by, e.g., (� 1R)u (� 0R). We will use

? as abbreviation of some inconsistent concept description. Furthermore,

primitive negation can be expressed by number restrictions. For an atomic

concept E one can replace every occurrence of E by � 1R

E

and the negation

:E of E by � 0R

E

where R

E

is a new role name. We also do not allow for

number restrictions on attributes. However, (�nA) � ? and (�nA) � >

C

for every n � 2. Moreover, (�0A) � 8A:?, (�1A) � >

C

, (�0A) � >

C

, and

(�1A) � A # A. Usually, Classic also allows formin n := fm j m is a non-

negative integer greater or equal ng and max n := fm j m is a nonnegative

integer less or equal ng where n is a nonnegative integer. This constructor

can be simulated by introducing a host concept name NON-NEGATIVE-

INTEGER which is interpreted as the nonnegative integers and an in�nite

set of host individuals 0; 1; 2; : : : Then, for example, min n is equivalent to

the concept description fn; n + 1; n + 2; : : :g (in�nite one-of) which can be

represented �nitely. To sum up, the results presented in this paper, can

10

easily be extended to a language that in addition to the constructors intro-

duced for Classic also allows for the bottom concept, primitive negation,

number restrictions on attributes, and min n, max n.

The least common subsumer of a set of concept descriptions is the most

speci�c concept subsuming all concept descriptions of the set:

De�nition 3 The concept description D is the least common subsumer

(lcs) of the concept descriptions C

1

; : : : ; C

n

(lcs(C

1

; : : : ; C

n

) for short) i� i)

C

i

v D for all i = 1; : : : ; n and ii) for every D

0

with that property D v D

0

.

Analogously, we de�ne lcs

t

(C

1

; : : : ; C

n

) using v

t

instead of v.

Note that the lcs of concept descriptions may not exist, but if it does,

by de�nition it is uniquely determined up to equivalence. In this sense, we

may refer to the lcs.

In the following two sections, attributes are always interpreted as partial

functions; only in Section 5 we consider total attributes.

3 Subsumption

As proposed in [10] subsumption is decided by a multi-part process. First,

descriptions are turned into description graphs. Next, description graphs

are put into canonical form, where certain inferences are explicated and

other redundancies are reduced by combining nodes and edges in the graph.

Finally, subsumption is determined between a description and a canonical

description graph.

Since in [10] attributes are interpreted as total functions, we need to

adjust the steps listed above to decide subsumption in the case of partial

attributes. However, we have tried to reduce the changes necessary. For

this reason, roughly speaking, attributes are treated as roles unless they

form part of a same-as equality. (Note that attributes participating in a

same-as construct must have values!) To some extent, this will allow us

to adopt the semantics of the original description graphs, which is crucial

for proofs. However, the two di�erent occurrences of attributes, namely,

in a same-as equality vs. a role in a value-restriction, require us to modify

and extend the de�nition of description graphs, the normalization rules, and

the subsumption algorithm itself. Furthermore, the subsumption algorithm

proposed in [10] was still incomplete because some normalization rules were

missing, e.g., for dealing with singleton sets of host individuals.

In the following, we will present the steps of the subsumption algorithm

in detail. We start with the de�nition of description graphs.

11

3.1 Description Graphs

Intuitively, description graphs reect the syntactic structure of concept de-

scriptions. A description graph is a labeled, directed multigraph, with a

distinguished node. Roughly speaking, the edges (a-edges) of the graph

capture the constraints expressed by same-as equalities. The nodes are la-

beled with a set of so-called r-edges which correspond to value restrictions.

These r-edges lead to description graphs again which represent the concept

descriptions of the corresponding value restrictions. Unlike the graphs pro-

posed in [10], the value restrictions represented by nodes not only contain

restrictions on roles, as in [10], but also on attributes. We shall comment on

the advantage of this modi�cation in order to deal with attributes as partial

functions instead of total functions.

Before de�ning description graphs formally, we will look at our example

concept Car. The description graph depicted in Figure 1 corresponds to

C. We use G(Manufacturer), G(Model), G(INTEGER) to denote the

descriptions graphs for the atomic concept namesManufacturer andModel

as well as the host concept name INTEGER. In this case, these description

graphs are very simple; they merely consist of one node labeled with the

corresponding concept name. In general, the description graphs in r-edges

are more complicated since in a value restriction like 8R:C, C is an arbitrary

concept description.

For the sake of simplicity, we have omitted the components of the nodes

and edges corresponding to the one of constructor and �lls.

Although, the concept Car does not have number restrictions, the corre-

sponding graph has the restriction [0; 1] on the r-edges since in our example

these edges are restrictions on attributes, which have at most one direct

successor. By adding these additional informations for attributes it is pos-

sible to treat attributes like roles, unless no successors by �lls or a same-as

equality are required. In our example, there are same-as restrictions on the

attributes. As we will see later, it is necessary to \lift" the r-edges to a-edges

in order to get a complete subsumption algorithm. This normalization op-

eration was not necessary for the graphs de�ned in [10] since attributes were

not allowed in r-edges.

Formally, description graphs are de�ned as follows:

De�nition 4 A description graph G is a tuple (N;E; r; l), consisting of a

�nite set N of nodes; a �nite set E of edges (a-edges); a distinguished node

r in N (root of the graph); and a function l from N into the set of labels

of nodes. We will occasionally use the notation G:Nodes, G:Edges, and

G:root to access the components N , E and r of the graph G.

12

seats

model

seats

model

model [0; 1]

seats [0; 1]

f>

C

g>

C

>

C

> >

G(INTEGER) G(Model)

G(Manufacturer)

madeBy [0; 1]

madeBy

madeBy

Figure 1: The description graph for Car where the node in the middle is

the root of the graph

An a-edge is a tuple of the form (n

1

; n

2

; A; F) where n

1

, n

2

are nodes, A

is an attribute name, and F is a set of individuals (the �llers of the node).

A label of a node is de�ned to be ? or a tuple of the form (C;D;H),

consisting of a �nite set C of concept names (the atoms of the node), a �nite

set D of classic individuals or > (the dom of the node), and a �nite set H

of tuples (the r-edges of the node). Concept names in a description graph

are atomic concept names, host concept names, >, >

C

, or >

H

. We will

occasionally use the notation n:Atoms, n:Dom, and n:REdges to access the

components C, D, and H of the node n.

An r-edge is a tuple, (R;m;M;F;G

0

), of a role or an attribute name,

R; a min, m, which is a non-negative integer; a max, M , which is a non-

negative integer or 1; a �nite set F of individuals (the �llers of the r-

edge); and a (recursively nested) description graph G

0

. The graph G

0

will

often be called the restriction graph of the node for the role R. We assume

that the nodes of G

0

are distinct from all nodes of G and from all other

nested description graphs of G. If R is an attribute then we require m = 0,

M 2 f0; 1g, and F = ;.

A path p in G from the node n

0

to n

m

is a sequence of a-edges of the

form (n

0

; n

1

; A

1

; F

1

); (n

1

; n

2

; A

2

; F

2

) : : : ; (n

m�1

; n

m

; A

m

; F

m

) where m � 0

(for m = 0 the path p is empty); w = A

1

� � �A

m

is called attribute-label of p

(the empty path has attribute-label ").

For n 2 N we de�ne G

jn

to be the description graph (N;E; n; l).

In order to merge description graphs we need the notion of \recursive

13

set of nodes" of a description graph G: The recursive set of nodes of G is

the union of the nodes of G and the recursive set of nodes of all description

graphs in the r-edges of nodes in G.

Just as for concept descriptions, the semantics of description graphs is

de�ned by means of an interpretation I. We introduce a function � which

assigns an individual of the domain of I to every node of the graph. This

ensures that all same-as equalities are satis�ed.

De�nition 5 Let G = (N;E; r; l) be a description graph and let I be an

interpretation.

An element, d, of � is in G

I

, i� there is some function, �, from N into

� such that

1. d = �(r);

2. for all n 2 N it is �(n) 2 n

I

;

3. for all (n

1

; n

2

; A; F) 2 E we have (�(n

1

);�(n

2

)) 2 A

I

, and for all

f 2 F , �(n

2

) 2 f

I

.

The extension of a node n with label ? is the empty set. An element, d,

of � is in n

I

, where n = (C;D;H), i�

1. for all B 2 C, we have d 2 B

I

;

2. If D is not > then there exists f 2 D such that d 2 f

I

.

3. for all (R;m;M;F;G

0

) 2 H,

(a) there are between m and M elements, d

0

, of the domain such that

(d; d

0

) 2 R

I

;

(b) for all f 2 F there is a domain element, d

0

, such that (d; d

0

) 2 R

I

and d

0

2 f

I

; and

(c) d

0

2 G

0I

for all d

0

such that (d; d

0

) 2 R

I

The semantics of the graphs in [10] has been de�ned in the same way.

However, in their paper not only same-as equalities have been expressed by

a-edges but also value restrictions on attributes. But then, in the context

of partial functions, we could not de�ne the semantics of description graphs

by means of the function � since individuals need not to have successors

for attributes. For that purpose, value restrictions of attributes are always

translated into r-edges. The next section will present the translation of

concept description into description graphs in detail.

14

Having de�ned the semantics of description graphs, subsumption and

equivalence between description graphs (e.g., H v G) as well as concept

descriptions and description graphs (e.g., C v G) is de�ned in the same way

as subsumption and equivalence between concept descriptions.

3.2 Translating Concept Descriptions to Description Graphs

A Classic description is turned into a description graph by a recursive pro-

cess, working from the \inside out". In this process, nodes and description

graphs are often merged.

De�nition 6 The merge of two nodes, n

1

� n

2

, is a new node n with the

following label: if n

1

or n

2

has label ? then the label of n is ?. Otherwise

if both labels are not equal to ? then the atoms of n are the union of the

atoms of n

1

and n

2

; the dom is the dom of n

2

, if the dom of n

1

is > and

vice versa; otherwise, if both the dom of n

1

and n

2

are not equal to > then

dom of n is the intersection of the dom of n

1

and n

2

; the set of r-edges is

the union of the r-edges of the two nodes.

De�nition 7 Let G

1

and G

2

be two description graphs with disjoint recur-

sive sets of nodes (see above). Then the merge of G

1

and G

2

, G := G

1

�G

2

,

is de�ned as follows: The nodes of G are the union of the nodes of G

1

and

G

2

without the roots of G

1

and G

2

but with an additional node r. The a-

edges of the merged graphs are the union of the a-edges of G

1

and G

2

, except

that edges touching on the roots of G

1

and G

2

are modi�ed to touch r, i.e.,

in all a-edges of G

1

and G

2

the roots are replaced by r. The new node r is

the root of G and its label is de�ned by the merge of the two root nodes of

G

1

and G

2

.

The rules for translating a description C in Classic into a description

graph G(C) are as follows:

1. > (>

C

or >

H

) is turned into a description graphs with one node r and

no a-edges. The only atom of r is > (>

C

or >

H

); the dom of r is >;

and the set of r-edges is empty.

2. ? is turned into a description graph with one node r and no a-edges.

The label of r is ?.

3. A concept name is turned into a description graph with one node and

no a-edges. The atoms of the node contain only the concept name;

dom is >; and the node has no r-edges.

15

4. A description of the form (� n R) is turned into a description graph

with one node and no a-edges. The node has as its atoms >

C

; dom is

>; and it has a single r-edge (R;n;1; ;; G(>)). s

5. A description of the form (� n R) is turned into a description graph

with one node and no a-edges. The node has as its atom >

C

; dom is

>, and it has a single r-edge (R; 0; n; ;; G(>)).

6. A description of the form R : I is turned into a description graph with

one node and no a-edges. The node has as its atom >

C

, as dom >, and

it has a single r-edge (R; 0;1; fIg; G(>

C

)) if I is a classic individual,

and (R; 0;1; fIg; G(>

H

)) otherwise.

7. A description of the form A : I is turned into a description graph with

two nodes r, n, and the a-edges (r; n;A; fIg) where r denotes the root

of the graph. The atom of r is >

C

; dom is >; and r has no r-edges.

The atom of n is >

C

if I is a classic individual and >

H

otherwise; dom

is >; and n has no r-edges.

8. A description of the form fI

1

: : : I

n

g is turned into a description graph

with one node. The node has as dom the set containing I

1

through

I

n

, and no r-edges. The only atom of the node is >

H

if all of the

individuals are host values, and >

C

if all of the individuals are classic

individual names. (Note that classic and host individuals can not be

together in one set.)

9. A description of the form A

1

� � �A

n

B

1

� � �B

m

is turned into a graph

with the pairwise distinct nodes a

1

; : : : ; a

n�1

; b

1

; : : : ; b

m�1

, the root

a

0

= b

0

= r, and an additional node a

n

= b

m

= e; the set of

a-edges consists of (a

0

; a

1

; A

1

; ;), (a

1

; a

2

; A

2

; ;),. . . ,(; a

n�1

; a

n

; A

n

; ;)

and (b

0

; b

1

; B

1

; ;), (b

1

; b

2

; B

2

; ;), : : :, (b

m�1

; b

m

; B

m

; ;), i.e., two dis-

joint paths from r to e. (Note that for n = 0 the �rst path is the

empty path from r to r and for m = 0 the second path is the empty

path from r to r.) All nodes except e have >

C

as there only atom. If

r 6= e then the atom of e is >. Finally, the domain of all nodes is >,

and there are no r-edges.

10. A description of the form 8R:C, where R is a role, is turned into a

description graph with one node and no a-edges. The node has the

atom f>

C

g, its dom is >, and it has a single r-edge (R; 0;1; ;; G(C)).

16

11. A description of the form 8A:C, where A is an attribute, is turned into

a description graph with one node and no a-edges. The node has the

atom f>

C

g, its dom is >, and it has a single r-edge (A; 0; 1; ;; G(C)).

2

12. To turn a description of the form C uD into a description graph,

construct G(C) and G(D) and merge them.

Note that this translation is well-de�ned since it ensured that for every

r-edge containing an attribute min is 0 and max = 1 2 f0; 1g.

Figure 1 shows the description graph for the concept description Car of

our example.

Now we want to show that this process preserves extensions. As we use

the merge operations we �rst show that they work correctly.

Lemma 1 If n

1

and n

2

are nodes then (n

1

� n

2

)

I

= n

I

1

\ n

I

2

. If D

1

and

D

2

are description graphs then (D

1

�D

2

)

I

= D

I

1

\D

I

2

.

Proof: It is easy to see that the claim is true for nodes if one of them

has label ?. Otherwise, if both labels are not ? then atoms and r-edges of

the merged node are obtained by unioning the components of the respective

nodes; the dom of the new node is the intersection of dom of n

1

and n

2

if both

are not >, otherwise the dom of the node which is not > or it is > if both

nodes have dom >. This implies that the interpretation of each component

of the new node is the intersection of the interpretation of the corresponding

component of n

1

and n

2

. Furthermore, since the interpretation of a node

is the intersection of the interpretations of its components, the result is

obviously true for nodes.

For merging graphs, the only di�erence is that the root nodes are re-

placed by their merger in all edges and that the new root is the merger of

the roots of the merged graphs. But then an element of (D

1

�D

2

)

I

is clearly

an element of both D

I

1

and D

I

2

. Conversely, since we take the disjoint union

of the other nodes in the two graphs, the mapping functions �

1

and �

2

in

De�nition 5 can simply be unioned, so that an element of both D

I

1

and D

I

2

is an element of the merged root node, and hence of (D

1

�D

2

)

I

.

Theorem 1 A concept description C and its corresponding description graph

G(C) are equivalent, i.e., C � G(C).

Proof: The proof is by structural induction on concept descriptions.

2

In [10], the concept description 8A:C would be turned into an a-edge. As already

mentioned, this would cause problems for attributes interpreted as partial functions when

de�ning the semantics by means of � as speci�ed in De�nition 5.

17

The extension of concept names, �lls, one of, number restrictions, and

8-restrictions on roles and attributes can be easily seen to agree with the

extension of description graphs formed from them. Lemma 1 shows that

conjunction is properly handled.

For same-as equalities A

1

� � �A

n

B

1

� � �B

m

the construction forms a

description graph with two disjoint paths from the distinguished node r to

an end node e, one labeled by the A

i

's, through nodes a

i

, and the other

labeled by the B

j

's, through nodes b

j

. If d 2 (A

1

� � �A

n

B

1

� � �B

m

)

I

then de�ning �(a

i

) := (A

1

� � �A

i

)

I

(d), and �(b

j

) := (B

1

� � �B

j

)

I

(d), yields

the mapping required by De�nition 5. The converse is satis�ed by the re-

quirement in De�nition 5 that for each a-edge (n

1

; n

2

; A; F) 2 E, we have

(�(n

1

);�(n

2

)) 2 A

I

.

3.3 Translating a Description Graph to a Concept Descrip-

tion

Although, we do not need the converse translation from description graphs

to concept descriptions for characterizing subsumption, the translation is

presented here already in order to show that concept descriptions and de-

scription graphs are equivalent representations. Later on, when discussing

the lcs, we will actually need to translate description graphs into concept

descriptions.

In the sequel, let G = (N;E; r; l) be a description graph. W.l.o.g. we

assume that G and (recursively) all description graphs nested in G are con-

nected. A description graph is said to be connected if all nodes of the graph

can be reached from the root of the graph by a directed path and if all nested

graphs are connected. Note that the semantics of a graph is not changed, if

nodes that are not connected via a path with the root are deleted.

We now (recursively) specify C

G

which corresponds to the description

graph G using the concept description C

n

corresponding to the label of the

node n in G.

Let n be a node in G. If the label of n is ?, then C

n

:= ?. Now, let

(S;D;H) be the label of n. Then, C

n

is a conjunction consisting of the

following conjuncts:

1. atomic concepts: If S = ;, then >; otherwise

u

E2S

E:

2. one-of: If D = >, then >; if D = ;, then ?; otherwise D.

18

3. r-edges: If H = ;, then >; otherwise

u

(R;l;k;F;G

0

)2H

�

8R:C

G

0

u (� l R) u (� k R) u u

f2F

(R : f)

�

:

If R is an attribute, then we know l = 0, k 2 f0; 1g, and F = ;. In

this case, we de�ne (� l R) to be >. Furthermore, we de�ne (� k R)

to be > if k = 1 and 8R:? otherwise.

Using C

n

, C

G

is de�ned as follows:

1. Same-as: Let T be a spanning tree of G. (Note that because G is

connected, T contains all nodes of G.) For every leave of T , C

G

has

a same-as equality v # v where v is the attribute-label of the rooted

path in T to the leave. Furthermore, for every a-edge (n

1

; n

2

; A; F)

not contained in T we have v # w in the conjunction where v and w

are de�ned as follows: w is the attribute-label of the rooted path in

T to n

2

; v is the attribute-label of the path in T to n

1

concatenated

with the a-edge (n

1

; n

2

; A; F) from n

1

to n

2

.

2. nodes and a-edges: For every node n in T we have

8al(n):

"

C

n

u u

(n;m;A;F)2E

�

u

f2F

(A : f)

�

#

where al(n) denotes the attribute-label of the rooted path in T .

We can show:

Lemma 2 G � C

G

.

Proof idea: Let n be a node in G. Then, it is easy to see that if C

n

is

translated back into a description graph G

00

where according to part 3 of

the de�nition of C

n

the r-edges for 8R:C

G

0

u (� l R) u (� k R) u u

f2F

(R : f)

are merged to one r-edge, then G

00

is isomorphic to the subgraph of G only

consisting of the node n.

The conjunction consisting of the conjuncts 8al(n):C

n

where n is a node

in T can be translated back into a description graph where certain a-edges

are merged such that the resulting graph is a tree isomorphic to T except

for the �llers of the a-edges. Now adding the remaing same-as equalities

yields a description graph G

0

which is isomorphic to G except for �llers on

a-edges.

19

Finally, it is not hard to verify that the description graph for the con-

junction consisting of 8al(n):

"

u

(n;m;A;F)2E

�

u

f2F

(A : f)

�

#

on the one hand,

where, again, n is a node in T , and the graph G

0

on the other hand can

be merged in such a way that the resulting description graph (which by

construction is equivalent to C

G

) is isomorphic to G.

3.4 Canonical Description Graphs

In the following we occasionally refer to \marking a node incoherent"; this

means that the label of this node is changed to ?. \Marking a description

graph as incoherent" means that the description graph is replaced by the

graph G(?) corresponding to ?.

One important property of canonical description graphs is that they are

deterministic, i.e., every node has at most one outgoing edge (r-edge or a-

edge) with the same attribute or role name. Therefore, as in [10], to turn

a description graph into a canonical graph we need to merge a-edges and

r-edges. In addition, because in the graphs de�ned here, attributes can

occur in r-edges and in a-edges it might be necessary to \lift" r-edges to

a-edges. Finally, because of the one of constructor on host values, it might

be necessary to merge nodes.

To merge two a-edges (n; n

1

; A; F

1

) and (n; n

2

; A; F

2

) in a description

graph G, replace them with a single new edge (n; n

0

; A; F

1

[F

2

) where n

0

is

the result of merging n

1

and n

2

. (If n

1

= n

2

then n

0

= n

1

.) In addition,

replace n

1

and n

2

by n

0

in all other a-edges of G.

To merge two r-edges (R; l

1

; r

1

; F

1

; G

1

), (R; l

2

; r

2

; F

2

; G

2

) replace them

by (R;max(l

1

; l

2

);min(r

1

; r

2

); F

1

[F

2

; G

1

�G

2

).

To lift up an r-edge (A; l; r; F

A

; G

A

) of a node n in concept graph G

when G has edge (n; n

1

; A; F), remove it from n:REdges, and augment G

by adding G

A

:Nodes to G:Nodes, G

A

:Edges to G:Edges, as well as adding

(n;G

A

:Root; A; F

A

) to G:Edges.

To merge two nodes n

1

, n

2

in a concept graph G let n

0

be the result of

merging n

1

, n

2

and replace n

1

and n

2

by n

0

in all a-edges of G.

Description graphs are transformed into canonical form by repeating the

following normalization rules whenever possible for the description graph

and all its descendants. In the sequel, the cardinality of the dom of a node

is de�ned as follows: > has cardinality 1 and if the domain is a subset of

IND the cardinality is the number of elements in this subset.

20

1. If any node in a description graph is marked incoherent, mark the

description graph as incoherent. (Reason: Even if the node is not a

root, attributes corresponding to a-edges must always have a value (since

they participate in same-as equalities), and this value cannot belong to the

empty set.)

2. If an a-edge of a node has more than one �ller, then mark the node

incoherent. (Reason: Attributes can only have at most one �ller.)

3. If an a-edge of a node n points to a node n

0

where the dom is not

> and the �ller of the a-edge is not included the dom of n

0

, mark n

incoherent. (Reason: Same as 2.)

4. If the dom of a node is empty, mark the node incoherent. (Reason:

fg � ?)

5. If some r-edge in a node has its min greater than its max, mark the

node incoherent. (Reason: (� 2R) u (� 1R) � ?)

6. If for an r-edge dom of the distinguished node of the restriction graph

3

is not > and the �llers of this r-edge are not a subset of the dom, mark

the node of the r-edge incoherent. (Reason: R : I u 8R:fI

1

; : : : ; I

n

g � ?

if I 62 fI

1

; : : : ; I

n

g)

7. If some node has both >

H

and >

C

in its atoms, mark the node in-

coherent. If some node has in its atoms a pair of host concepts that

are not related by the pre-de�ned subsumption relationship, mark the

node incoherent. (Reason: The intersection of the atoms will be empty.)

8. If the �llers of an r-edge are host individuals and they are not contained

in the extension of all atoms of the root of the restriction graph for the

r-edge then mark the node as incoherent. (Reason: R : I u 8R:C

H

� ?

if I is not an element of the extension of the host concept C

H

.)

9. If the �llers of an a-edge from n to n

0

are host individuals and they

are not contained in the extension of all atoms of the node the a-edge

is pointing to then mark n as incoherent. (Reason: see 8.)

10. If some node has in its atoms a pre-de�ned host concept, add >

H

to

its atoms. If some node has an atomic concept name in its atoms, add

>

C

to its atoms. For each pre-de�ned host concept in the atoms of the

node, add all the more-general pre-de�ned host concepts to its atoms.

3

Recall that this is the graph contained in an r-edge.

21

11. If a host individual in the dom of a node is not in all the atoms of

the node, remove it from the dom. (Reason: fI

1

; I

2

g u INTEGER �

fI

1

g u INTEGER if I

1

is an integer but I

2

is not an integer.)

12. If dom of a node is not > and dom contains host individuals then

add to the atoms of the node all host concepts which extensions con-

tain all the host individuals in dom. (Reason: fI

1

; I

2

g u INTEGER �

fI

1

; I

2

g u INTEGER u REAL if I

1

and I

2

both belong to INTEGER since

INTEGER v REAL.)

13. If some r-edge in a node has its description graph marked incoherent,

change its max to 0. (Reason: (� 0R) � 8R:?.)

14. If some r-edge in a node has a max of 0, mark its restriction graph as

incoherent. (Reason: See 13)

15. If the min on an r-edge is less than the cardinality of �llers on it, let

the min be this cardinality. (Reason: R : I

1

uR : I

2

u R : I

3

v (� 3R))

16. If the max on an r-edge is greater than the cardinality of the dom on

the distinguished node of the restriction graph, make the max of this

edge be the cardinality of the dom. (Reason: 8R:fI

1

; I

2

; I

3

g v (� 3R))

17. If the min on an r-edge is greater than or equal to the cardinality of

the dom on the distinguished node of the restriction graph, let the

�llers of the edge be the union of its �llers and the dom above. (If

min is greater than the cardinality, then steps 5 and 16 detect the

inconsistency.) (Reason: 8R:fI

1

; I

2

; I

3

gu (�3R) v R : I

1

uR : I

2

uR : I

3

;

8R:fI

1

; I

2

; I

3

g u (� 4R) � ?)

18. If the max on an r-edge is less than or equal to the cardinality of �llers

on the edge, let the dom on the distinguished node of the restriction

graph be the intersection of the dom and the �llers. (If max is less

than the cardinality, steps 5 and 15 detect the inconsistency.) (Reason:

R : I

1

u R : I

2

u R : I

3

u (� 3 R) v 8R:fI

1

; I

2

; I

3

g; R : I

1

u R : I

2

u R :

I

3

u (� 2R) � ?)

19. If an a-edge has a �ller and the node at its end has > as its dom or the

�ller is an element of the dom, make the dom be the �ller. (Reason:

A : I � A : I u fIg)

20. If a node has only one element in its dom, add this element to the

�llers for all the a-edges pointing to it. (Reason: fIg � A : I u fIg)

22

21. If there are two nodes n

1

, n

2

where the dom in each of these nodes

is fIg for some host individual I, merge these nodes in G.

4

(Reason:

A # B u C # D u 8A:fIg u 8C:fIg v A # C if I is a host individual)

22. If some node has two r-edges labeled with the same role, merge the

two edges, as described above. (Reason: 8R:C u 8R:D � 8R:(C uD))

23. If some description graph has two a-edges from the same node labeled

with the same attribute, merge the two edges, as described above.

(Reason: 8A:C u 8A:D � 8A:(C uD))

24. If some node in a graph has both an a-edge and an r-edge for the same

attribute, then \lift up the r-edge", as described above. (Reason: r-

edges participating in same as restrictions need to be a-edges.)

These normalization rules are well-de�ned: Starting with a description

graph the outcome of applying a normalization rule is always a description

graph. In particular, min of an r-edge with attribute is always 0 and max 2

f0; 1g. Furthermore, no rules can force such an r-edge to have �llers.

We need to show that the transformations to canonical form do not

change the extension of the graph. The main di�culty is in showing that

the merging processes and the lifting do not change the extension.

Lemma 3 Let G = (N;E; r; l) be a description graph with two mergeable

a-edges and let G

0

= (N

0

; E

0

; r

0

; l

0

) be the result of merging these two a-edges.

Then, G � G

0

.

Proof: Let the two edges be (n; n

1

; A; F

1

) and (n; n

2

; A; F

2

) and the new

node n

0

be n

1

� n

2

.

Choose d 2 G

I

, and let � be a function from N into the domain of

I satisfying the conditions for extensions (De�nition 5) such that �(r) =

d. Then �(n

1

) = �(n

2

) because both are equal to A

I

(�(n)). Let �

0

be

the same as � except that �

0

(n

0

) = �(n

1

) = �(n

2

). Then �

0

satis�es

De�nition 5, part 3, for G

0

, because we replace n

1

and n

2

by n

0

everywhere,

and the conditions for �llers are satis�ed for �. Moreover, �

0

(n

0

) = �(n

1

) 2

n

I

1

\n

I

2

, which by Lemma 1 equals (n

1

� n

2

)

I

; so part 2 is satis�ed too, since

n

0

= n

1

� n

2

. Finally, if the root is modi�ed by the merger, i.e., n

1

or n

2

is r, say n

1

, then d = �(n

1

) = �

0

(n

0

), so part 1 of the de�nition is also

satis�ed.

Conversely, given d 2 G

0I

, let �

0

be the function stipulated by Def-

inition 5 such that �

0

(r

0

) = d. Let � be the same as �

0

except that

4

This rule was missing in [10].

23

�(n

1

) = �(n

0

) and �(n

2

) = �

0

(n

0

). Then the above argument can be

traversed in reverse to verify that � satis�es De�nition 5, such that d 2 G

I

.

Lemma 4 Let n be a node with two mergeable r-edges and let n

0

be the node

with these edges merged. Then n

I

= n

0I

for every interpretation I.

Proof: Let the two r-edges be (R;m

1

;M

1

; F

1

; G

1

;) and (R;m

2

;M

2

; F

2

; G

2

).

Let d 2 n

I

. Then there are between m

1

(m

2

) and M

1

(M

2

) elements

d

0

of the domain such that (d; d

0

) 2 R

I

. Therefore there are between the

maximum of m

1

and m

2

and the minimum of M

1

and M

2

elements d

0

of the

domain such that (d; d

0

) 2 R

I

. Furthermore, for all f 2 F

1

(f 2 F

2

) there

is a d

0

such that (d; d

0

) 2 R

I

and d

0

2 f

I

. Thus, there are �llers of d for all

f 2 F

1

[F

2

. Also, all d

0

such that (d; d

0

) 2 R

I

are in G

I

1

(G

I

2

). Therefore,

all d

0

such that (d; d

0

) 2 R

I

are in G

I

1

\ G

I

2

, which equals (G

1

�G

2

)

I

by

Lemma 1. Thus, d 2 n

0I

.

Let d 2 n

0I

. Then there are between the maximum ofm

1

andm

2

and the

minimum of M

1

and M

2

elements d

0

of the domain such that (d; d

0

) 2 R

I

.

Therefore there are betweenm

1

(m

2

) andM

1

(M

2

) elements d

0

of the domain

such that (d; d

0

) 2 R

I

. Furthermore, for all f 2 F

1

[F

2

there is a d

0

such

that (d; d

0

) 2 R

I

and d

0

2 f

I

. Thus, for all f 2 F

1

(f 2 F

2

) there is a d

0

such that (d; d

0

) 2 R

I

and d

0

2 f

I

. Also, all d

0

such that (d; d

0

) 2 R

I

are in

(G

1

�G

2

)

I

= G

I

1

\ G

I

2

. Therefore, all d

0

such that (d; d

0

) 2 R

I

are in G

I

1

(G

I

2

). Hence, d 2 n

I

.

Lemma 5 Let G = (N;E; r; l) be a description graph with node n and a-

edge (n; n

0

; A; F). Suppose n has an associated r-edge (A; l; r; F

A

; G

A

) and

let G

0

= (N

0

; E

0

; r

0

; l

0

) be the result of lifting up the r-edge. Then, G � G

0

.

Proof: Obviously, it is su�cient to show that G

I

jn

= G

0

I

jn

since only the

label of n is changed in G

0

and only n obtains an additional a-edge which

point to the graph G

A

not connected to the rest of G

0

. W.l.o.g. we therefore

can assume that n is the root of G, i.e., n = r. Let d 2 G

I

. Thus, there is

a function � from N into � as speci�ed in De�nition 5 and an individual e

such that d = �(n), e = �(n

0

), and (d; e) 2 A

I

. This implies e 2 G

I

A

. Hence,

there exists a function �

0

from G

A

:Nodes into � for G

A

and e satisfying

the conditions in De�nition 5. Since the sets of nodes of G and G

A

are

disjoint, we can de�ne �

00

to be the union of � and �

0

, i.e., �

00

(m) := �(m)

for all nodes m in G and �

00

(m) := �

0

(m) for all nodes m in G

A

. Since

by construction for the additional a-edge (n;G

A

:Root; A; F

A

) 2 E

0

we have

(�

00

(n);�

00

(G

A

:Root)) 2 A

I

and the conditions on the �llers F

A

are satis�ed,

it follows that all conditions in De�nition 5 are satis�ed for d and G

0

, and

thus, d 2 G

0I

.

24

Now let d 2 G

0I

. Thus, there is a function �

00

from N

0

into � according

to De�nition 5. Let e := �

00

(G

A

:Root) = �

00

(n

0

). Let G

00

be the description

graph we obtain from G

0

by deleting the nodes corresponding to G

A

, which

is the same graph as G without the r-edge (A; l; r; F

A

; G

A

). If we restrict

�

00

to the nodes of G

00

, then it follows d 2 G

00I

. Furthermore, restricting �

00

to the nodes of G

A

yields e 2 G

I

A

. Since e is the only A-successor of d, we

can conclude d 2 G

I

.

Lemma 6 Let G = (N;E; r; l) be a description graph with nodes n

1

and n

2

such that the dom of these nodes is fIg where I is a host individual. Let

G

0

= (N

0

; E

0

; r

0

; l

0

) be the result of merging n

1

and n

2

in G. Then, G � G

0

.

Proof: Let n

0

be the result of merging n

1

and n

2

, i.e., n

0

= n

1

� n

2

.

Choose d 2 G

I

, and let � be a function from N into the domain satis-

fying the conditions for extensions (De�nition 5) such that �(r) = d. Then,

�(n

1

) = �(n

2

) = I because the dom of n

1

and n

2

is fIg. Let �

0

be the same

as � except that �

0

(n

0

) = �(n

1

) = �(n

2

). Then �

0

satis�es De�nition 5,

part 3, for G

0

, because we replace n

1

and n

2

by n

0

everywhere, and the con-

ditions for �llers are satis�ed for �. Moreover, �

0

(n

0

) = �(n

1

) 2 n

I

1

\ n

I

2

,

which, by Lemma 1, equals (n

1

� n

2

)

I

; so part 2 is satis�ed too, since

n

0

= n

1

� n

2

. Finally, if the root is modi�ed by the merger, i.e., n

1

or n

2

is r, say n

1

, then d = �(n

1

) = �

0

(n

0

), so part 1 of the de�nition is also

satis�ed.

Conversely, given arbitrary d 2 G

0I

, let �

0

be the function stipulated

by De�nition 5 such that �

0

(r

0

) = d. Let � be the same as �

0

except

that �(n

1

) = �(n

0

) and �(n

2

) = �

0

(n

0

). Then the above argument can be

traversed in reverse to verify that � satis�es De�nition 5, so that d 2 G

I

.

Having dealt with the issue of merging and lifting, it is now easy to verify

that \normalization" does not a�ect the meaning of description graphs.

Theorem 2 If G is a description graph and G

0

is the corresponding canon-

ical description graph, then G and G

0

are equivalent, i.e., G � G

0

.

An example of the canonical description graph shown in Figure 1 is

given in Figure 2. In this example all r-edges are lifted since there are

corresponding a-edges. Thus, all nodes contain only atoms and no r-edges

anymore.

3.5 Subsumption Algorithm

The �nal part of the subsumption process is checking to see if a canonical

description graph is subsumed by a concept description. It turns out that it

25

fModel;>

C

gfINTEGER;>

H

g fManufacturer;>

C

g

manu-

facturerseats

model

f>

C

g

seats manufacturer

Figure 2: The canonical description graph for Car where the components

for individuals as well as > are omitted

is not necessary to turn the potential subsumer into a canonical description

graph.

Algorithm 1 (Subsumption Algorithm) Given a description D and de-

scription graph G = (N;E; r; l), subsumes?(D;G) is de�ned to be true if and

only if any of the following conditions hold:

1. The description graph G is marked incoherent.

2. D is >.

3. D is a concept name, >

C

, or >

H

and is an element of the atoms of r.

4. D is (� n R) and i) some r-edge of r has R as its role and min greater

than or equal to n; or ii) n = 0 and r has >

C

in its atoms.

5. D is (� n R) and some r-edge of r has R as its role and max less than

or equal to n.

6. D is R : I, for a role R, and some r-edge of r has role R and �llers

including I.

7. D is A : I, for an attribute A, and some a-edge from r has attribute

A and �llers including I.

8. D is fI

1

: : : I

n

g and the dom of r is a subset of fI

1

: : : I

n

g.

9. D is A

1

� � �A

n

B

1

� � �B

m

and r has >

C

in its atoms, and there are

paths with attribute-label A

1

� � �A

n

and B

1

� � �B

m

in G starting from

r and ending at the same node.

26

10. D is 8R:C, for a role R, and i) some r-edge of r has R as its role

and G

0

as its restriction graph and, further, subsumes?(C;G

0

); or ii)

subsumes?(C;G(>)) and r has >

C

in its atoms. (Reason: 8R:> only

requires the possibility that R be applicable to an object, which is absent for

host values.)

11. D is 8A:C, for an attribute A, and i) some a-edge of G is of the

form (r; r

0

; A; F), and subsumes?(C; (N;E; r

0

)); or ii) some r-edge of

r has A as its attribute and G

0

as its restriction graph and, further,

subsumes?(C;G

0

); or iii) subsumes?(C;G(>)) and r has >

C

in its

atoms.

12. D is C uE and both subsumes?(C;G) and subsumes?(E;G) are true.

In the next section we will proof soundness and completeness of the

subsumption algorithm.

In [10], it has been shown that the canonical description graph G of a

concept description C can be constructed in time polynomial in the size of

C. Furthermore, Algorithm 1 runs in time polynomial in the size of G and

D. It is not hard to see that the changes presented here do not increase

the complexity. Thus, soundness and completeness of the subsumption al-

gorithm provides us with the following corollary.

Corollary 1 Subsumption for Classic concept descriptions C, D, where

attributes are interpreted as partial functions, can be decided in time poly-

nomial in the size of C and D.

3.6 Soundness and Completeness of the Subsumption Algo-

rithm

The soundness of this algorithm is fairly obvious, so we shall not dwell on it.

The structure of the proof of completeness is similar to that in [10]. We show

that if Algorithm 1 returns false then there is an interpretation I and an

element of the domain of I such that this element is in the extension ofD but

not in the one for G. To be more precise, we de�ne a set of interpretations,

so-called graphical worlds, for the canonical description graphG (not marked

incoherent) such that the root of the graphical world (the distinguished

element) is in the extension of G. In order to show completeness, we then

prove that one can pick a graphical world for G such that the distinguished

element of this world does not belong to the extension of D.

A common operation is to merge two interpretations.

27

De�nition 8 Let I

1

and I

2

be two interpretations. The merge of I

1

and

I

2

, I

1

� I

2

, is an interpretation with classic realm the disjoint union of the

classic realm of I

1

and the classic realm of I

2

. The extension of atomic

names, roles, attributes, and classic individuals in I

1

� I

2

is the disjoint

union of their extensions in I

1

and I

2

. Note that the host realm and the

interpretation of host concept names and host individuals is the same for all

interpretations.

It is easy to show that the extension of a concept description, a descrip-

tion graph, or a node in I

1

� I

2

is the union (disjoint union for the classic

realm) of its extensions in I

1

and I

2

.

Another operation is to add new domain elements to an interpretation.

These new domain elements must be in the classic realm. The extension of

all atomic concept names, roles, attributes, and classic individuals remain

the same except that the new domain elements belong to some arbitrary set

of atomic concept names (classic individuals) and have some arbitrary set

of successors for each role (attribute). Again, for Classic it is easy to show

that a domain element of the original world is in an extension in the original

world i� it is in the extension in the augmented world.

A �nal operation is to add to some individual role successors for a role

or attribute which is not restricted in any way by the concepts to which the

individual belongs. We now de�ne the set of graphical worlds for canonical

description graphs which are not marked incoherent as well as nodes of such

graphs.

Given a node, n, that is not marked as incoherent, we construct the

graphical worlds for n as follows:

1. If the atoms of n are precisely >, then n can have no r-edges, because

the only constructs that cause r-edges to be created also add >

C

to

the atoms. Furthermore, dom must be > because otherwise the atoms

of n would contain >

C

or >

H

. Any interpretation, with any domain

element the distinguished domain element, is a graphical world for n.

2. If the atoms of n include >

H

, then n can have no r-edges. If dom

is > then any interpretation, with distinguished element any domain

element exactly in the extension of all the atoms of n, is a graphical

world for n. This is is possible because of the normalization rule 10

for canonical description graphs. If dom is not > then dom can only

contain host individuals that are elements of any host concept in the

set of atoms of n. In this case, all interpretations with distinguished

element one of the elements in dom are graphical worlds for n.

28

3. If the atoms of n include >

C

, then for each r-edge, (R;m;M;F;G),

in n, construct between m and M pairwise disjoint graphical worlds

for G. This can be done for any number between m and M because

m � M and if m > 0 then G is not incoherent, and if G is marked

incoherent thenM = 0. Let S denote the set of distinguished elements

of the constructed worlds. For each �ller f in F we require that there

is an element in S that belongs to the extension of f . In the following,

we verify that such a set S can be constructed:

(a) If G is incoherent, then F is the empty set and S := ; satis�es

the conditions.

(b) Assume the root of G has >

H

in its atoms. By assumption, the

intersection of the extensions of the atoms is in�nite.

i) Thus, if dom of the root of G is >, then pairwise distinct

element can be chosen. Furthermore, since n is coherent F is

a subset of each extension of an atom of the root of G and the

cardinality of F is less or equal m. Thus, we can construct a set

S satisfying the required conditions.

ii) If the dom of G is not >, then dom consists of host individuals.

Since n is not marked incoherent the cardinality of the dom is

at least M . Therefore, again, the distinguished elements of the

graphical worlds can be chosen pairwise distinct. Furthermore,

since F is a subset of dom of the root of G and m is greater or

equal to the cardinality of F , the set S of distinguished elements

can be chosen such that it contains F .

(c) Assume, G has >

C

in its root. Then, the distinguished elements

for the graphical worlds of G can be de�ned to be pairwise dis-

tinct. If F is not empty, then for each �ller f in F one can choose

one distinguished element to be in the extension of f . Since, if

dom is not >, the �llers F are a subset of dom and we de�ne the

distinguished elements to be contained in one of the extensions

of the classic individuals in the �llers. All other distinguished

elements can be de�ned to be in the extensions of one classic in-

dividual in dom if dom is not > and otherwise, if dom is >, there

are de�ned to be not contained in any extension of an individual.

Now merge all the graphical worlds for each r-edge into one interpre-

tation. Add some new domain elements such that one of them satis�es

the following conditions:

29

(a) It is in exactly the extensions of the atoms of n;

(b) if dom is not >, then it is in one of the extensions of the classic

individuals in dom; and

(c) it has as successors for each R exactly the distinguished elements

S of the appropriate graphical worlds (see above).

It is easy to see that the resulting world is a graphical world for n.

Although, we have shown that R-successors can be constructed for

any number between m and M , in graphical worlds the number of

such successors of distinguished elements of nodes should only be m.

However, in some cases in the proof of completeness we will need to

extend the number of R-successors for particular elements.

Given a canonical description graph, G = (N;E; r; l), that is not marked

incoherent, we construct the graphical worlds for G as follows:

1. For each node n 2 N construct a graphical world for n. This can be

done because none of them are marked incoherent. Note that in an

canonical description graph all a-edges pointing to a single node have

the same value for their �llers, and that if this is not the empty set,

then the node has this as the value for its dom. Thus, the distinguished

elements of the graphical worlds corresponding to a node not only

satisfy the restrictions on the dom on the node but also the restrictions

on the �llers in a-edges pointing to this node.

2. Merge these graphical worlds.

3. Modify the resulting world I so that for each (n

1

; n

2

; A; F) 2 E the

A-successor for the distinguished node of the graphical world from

n

1

is the distinguished node of the graphical world from n

2

. Make

the distinguished element of r be the distinguished element of I. As

mentioned above, the distinguished element in n

2

is an element of

the extension of F (since n

1

is consistent F contains at most one

individual). Furthermore, note that the distinguished element in the

graphical world of n

1

has no A-successor since n

1

has no r-edge with

label A (normalization rule 24).

It is easy to show that the distinguished node of I is in the extension of G.

Now we can show the �nal part of the result.

30

Theorem 3 Let D be a Classic description and G a canonical description

graph. Then, if subsumes?(D;G) yields false then G is not subsumed by D.

Proof: Assume subsumes?(D;G) indicates that G is not subsumed by D.

We show that there are some graphical worlds for G such that their distin-

guished domain elements are not in the extension of D.

Remember that if the subsumption algorithm indicates that G is not

subsumed by D, G must not be marked as incoherent and thus there are

graphical worlds for G.

The proof proceeds by structural induction on D. Let G := (N;E; r; l).

� If D is >

C

or >

H

, then the distinguished domain elements will be in

the wrong realm. If D is >, then it is not possible for the subsumption

algorithm to indicate a non-subsumption. In each case any graphical

world for G has the property that its distinguished domain element is

not in the extension of D.

� If D is an atomic concept name then D does not occur in the atoms

of r. By construction, in any graphical world for G the distinguished

domain element will not be in the extension of D.

� If D is a pre-de�ned host concept name then again D does not occur

in the atoms of r. We distinguish two cases:

1. If dom of r is > then the distinguished elements of all graphical

worlds of G are exactly in the atoms of r by construction.

2. If dom of r is not > then dom contains only host individuals.

Thus, all distinguished elements of graphical worlds for G are

some of the host individuals in dom. Since D is not in the atoms

of r the normalization rule 12 ensures that not all of these host

individuals are in the extension of the atoms of r. Thus, there

is at least one graphical world for G such that its distinguished

element is not in the extension of D.

� If D is of the form (� n R) then n > 0 and either the r-edge from r

labeled with R has min less than n or there is no such r-edge.

In the former case all distinguished elements of graphical worlds for

G have less then n R-successors. Thus, the distinguished elements of

these worlds are not in the extension of D.

In the latter case, again, all distinguished elements of graphical worlds

for G have less then n R-successors, since the number of R-successors

31

is 0 < n. Thus, the distinguished elements of these worlds are not in

the extension of D.

� If D is of the form (� n R) then either the r-edge from r labeled with

R has max greater than n (including1) or there is no such r-edge.

In the former case one can extend graphical worlds for G such that

the distinguished nodes have at least n+ 1 successors for R, because

n is less than the max on the r-edge for R, and thus the distinguished

node is not in the extension of D.

In the latter case, one can extend graphical worlds for G such that the

distinguished nodes have any number of successors for R. Those with

n+1 successors have the property that their distinguished node is not

in the extension of D.

� If D is of the form R : I then either the r-edge from r labeled with R

does not have �ller I or there is no such r-edge.

In the former case the cardinality of the dom of the distinguished node

of the description graph of this r-edge is greater than the min, m, of

the r-edge, or the dom does not include I.

If the dom does not include I , then all graphical worlds for the node

have their distinguished element not in the extension of I, as required.

If the dom does include I, there are at least m elements of the dom

besides I, and the successors of the r-edge are a subset of the set of

these elements. There are thus graphical worlds for G that use only

these elements, as required.

In the latter case, all distinguished elements of graphical worlds for G

have no R-successors. Obviously, these distinguished elements are not

in the extension of D.

� If D is of the form A : I then we distinguish two cases:

1. The root of G has no a-edge with label A. If G has an r-edge

with label A then we know that themin component of this r-edge

is 0. Thus, in any case, all distinguished elements of graphical

worlds for G have no A-successors. Obviously, the distinguished

elements for these graphical worlds for G are not in the extension

of D.

2. If the root r has an a-edge labeled with A then the node pointed

to by the a-edge cannot have as its dom the singleton consist-

ing of I. Therefore there are graphical worlds for G that have

32

their distinguished node A-successor not in the extension of I, as

required.

3. If the root has an r-edge labeled with A then the graphical worlds

for G can be de�ned as in the case of R : I.

� If D is of the form A

1

� � �A

n

B

1

: : : B

m

again several cases arise.

1. If the paths A

1

; : : : ; A

n

and B

1

; : : : ; B

m

exist in G starting from r

but end at di�erent nodes n

1

and n

2

, then use graphical worlds in

which the domain elements for these two nodes are di�erent. This

is obviously possible if the distinguished elements of n

1

, n

2

can be

chosen in di�erent realms, if the atoms of n

1

, n

2

contain >

C

, or

if dom of at least one of these nodes is >. Otherwise, the atoms

of r contain >

H

and dom is a set of host individuals. Because of

normalization rule 21 and 19 we know that dom of both nodes

are not the same singletons. Consequently, if the dom of both

nodes is a singleton then the distinguished elements of graphical

worlds for these nodes are distinct. Otherwise, at least one dom

contains more than one host individual, say the dom for n

1

. This

implies that there is no a-edge to n

1

with a �ller. Therefore, there

are graphical worlds for G such that the distinguished elements

corresponding to n

1

and n

2

are distinct.

Thus, in all cases the distinguished elements of the constructed

worlds are not in the extension of D.

2. If one of the paths A

1

; : : : ; A

n

and B

1

; : : : ; B

m

does not exist

in G starting from r then in all graphical worlds the image of

one of the chains A

1

� � �A

n

or B

1

� � �B

m

is not de�ned for the

distinguished element. Thus, the distinguished element is not in

the extension of D. Note that successors of attributes are not

required by r-edges since the min component is always 0.

� If D is of the form D

1

uD

2

then the subsumption algorithm must

indicate that G is not subsumed by at least one of D

1

or D

2

. By the

inductive hypothesis, we get some graphical worlds of G where the

distinguished domain elements are not in the extension of D

1

or not

in the extension of D

2

, and thus are not in the extension of D.

� If D is of the form 8R:C, where R is a role, then two cases arise.

1. If subsumes?(C;G(>)) then >

C

is not in the atoms of r. Thus,

33

there are some graphical worlds for G whose distinguished ele-

ment is in the host realm, and thus not in the extension of D.

2. Otherwise, either there is an r-edge from r with role R and de-

scription graph H such that subsumes?(C;H) is false or there is

no r-edge from r with role R. Note that the extension of C is not

the entire domain, and thus must be a subset of either the host

realm or the classic realm.

In the former case H is not marked incoherent (or else the sub-

sumption could not be false) and the max on the r-edge cannot

be 0. Thus, there is graphical world for H whose distinguished

element is not in the extension of C and one can extend a graph-

ical world for G such that the distinguished element uses this

distinguished element for H as distinguished domain element R-

successors. In these graphical worlds for G the distinguished ele-

ment is not in the extension of D.

In the latter case, extend graphical worlds for G such that they

have some distinguished node R-successor in the wrong realm. In

these graphical worlds for G the distinguished element is not in

the extension of D.

� If D is of the form 8A:C, where A is an attribute, then four cases arise.

1. If subsumes?(C;G(>)) then >

C

is not in the atoms of r. Then

there are some graphical worlds for G whose distinguished ele-

ment is in the host realm, and thus, not in the extension of D.

2. There is no a-edge and r-edge from r with attribute A. Extend

graphical worlds for G such that they have some distinguished

node A-successor in the wrong realm. In these graphical worlds

for G the distinguished element is not in the extension of D.

3. There is an a-edge from r with attribute A to some other node r

0

such that subsumes?(C;H) is false, where H = (N;E; r

0

). Note

that the extension of C is not the entire domain, and thus, must

be a subset of either the host realm or the classic realm.

We know H is not marked incoherent, because G is not marked

incoherent. Thus, there are graphical worlds for H whose distin-

guished element is not in the extension of C. Given any graph-

ical world for H, a graphical world for G can be formed simply

by changing the distinguished domain element. If the original

graphical world's distinguished element is not in the extension of

34

C, then the new graphical world's distinguished element will not

be in the extension of D, as required.

4. If r has an r-edge with attribute A then graphical worlds can be

constructed as in the case of 8R:C.

This complete the proof of Theorem 3.

4 Computing the lcs in Classic

In this section, we will show that the lcs of two Classic concept descriptions

can be stated in terms of a product of canonical description graphs.

A similar result has been proved in [18] for a sublanguage of Classic,

which only allows for atomic concept names, concept conjunction, value

restrictions, and same-as equalities. In particular, this sublanguage does

not allow for inconsistent concept descriptions (which, for example, can be

expressed by conicting number-restrictions). Furthermore, the semantics

of the description graphs de�ned in [18] is not well-de�ned: their graphs

do not have a recursive structure such that cycles in a graph lead to cyclic

statements concerning the extension of the graph.

In the following, we �rst de�ne the product of description graphs. Then,

we show that for given concept descriptions C and D the lcs is equivalent

to a description graph obtained as product of G

C

and G

D

.

4.1 The Product of Description Graphs

A description graph represents the constraints that must be satis�ed by all

individuals in the extension of the graph. Intuitively, the product of two

description graphs is the intersection of these constraints|as the product of

�nite automata corresponds to the intersection of the words accepted by the

automata. Moreover, the intersection of constraints, intuitively, describes

the lcs of concepts.

5

De�nition 9 Let G

1

= (N

1

; E

1

; r

1

; l

1

) and G

2

= (N

2

; E

2

; r

2

; l

2

) be two de-

scription graphs where the recursive set of nodes of these graphs are disjoint.

Then, the product G = (N;E; r; l) of the two graphs (G

1

�G

2

for short) is

recursively de�ned as follows:

5

In [4], the lcs for cyclic ALN -concept description is de�ned in terms of the intersection

of regular languages, which corresponds to the product of �nite automata. In [20, 18], the

correspondence between the lcs and the product of �nite automata has been pointed out

as well.

35

1. N := N

1

�N

2

;

2. r := (r

1

; r

2

);

3. E :=f((n

1

; n

2

); (m

1

;m

2

); A;min(l

1

; l

2

);max(r

1

; r

2

); F

1

\ F

2

) j

(n

1

;m

1

; A; l

1

; r

1

; F

1

) 2 E

1

and (n

2

;m

2

; A; l

2

; r

2

; F

2

) 2 E

2

g;

4. Let n

1

2 N

1

and n

2

2 N

2

. If l

1

(n

1

) = ?, then let l((n

1

; n

2

)) := l

2

(n

2

)

and, analogously, if l

2

(n

2

) = ? then l((n

1

; n

2

)) := l

1

(n

1

). Otherwise

if l

1

(n

1

) = (S

1

;D

1

;H

1

) and l

2

(n

2

) = (S

2

;D

2

;H

2

) then l((n

1

; n

2

)) :=

(S;D;H) where

(a) S := S

1

\ S

2

;

(b) If D

1

= >, then D := D

2

; if D

2

= > then D := D

1

; otherwise

D := D

1

[D

2

.

(c) H := f(R;min(l

1

; l

2

);max(r

1

; r

2

); F

1

\ F

2

; G

0

1

�G

0

2

) j

(R; l

1

; r

1

; F

1

; G

0

1

) 2 H

1

, (R; l

2

; r

2

; F

2

; G

0

2

) 2 H

2

g [

f(A; 0; 1; F

1

\F

2

; G

1

jn

0

1

�G

0

2

) j (n

1

; n

0

1

; A; F

1

) 2 E

1

, (A; l

2

; r

2

; F

2

; G

0

2

) 2

H

2

g [

f(A; 0; 1; F

1

\F

2

; G

0

1

�G

2

jn

0

2

) j (A; l

1

; r

1

; F

1

; G

0

1

) 2 H

1

, (n

2

; n

0

2

; A; F

2

) 2

E

2

g.

Note that since attributes can occur both in r-edges and a-edges we have

to consider not only the product of restriction graphs but also the product

of a description graph and G

1

, G

2

rooted at certain nodes.

4.2 Computing the lcs

In this section, we will show how the lcs can be computed using the product

of description graphs. W.l.o.g. we can assume that the product of two

description graphs is connected (see Section 3.3). The main theorem is:

Theorem 4 Let C

1

and C

2

be two concept descriptions, and let G

1

and G

2

be corresponding canonical description graphs. Then, C

G

1

�G

2

� lcs(C

1

; C

2

).

Proof. First, we show that C := C

G

1

�G

2

subsumes C

1

(by symmetry this

also holds for C

2

). For this purpose, we show by induction over the size of

G

1

and G

2

that subsumes?(C

0

; G

1

) for every conjunct C

0

in C. Let G

1

=

(N

1

; E

1

; r

1

; l

1

), G

2

= (N

2

; E

2

; r

2

; l

2

), and let G = (N;E; r; l) be G

1

� G

2

.

According to the de�nition of C (Section 3.3) we distinguish two cases:

36

1. Same-as: If this part is equal to >, then there is nothing to show. Let

C

0

= v # w be a conjunct in C. Then, by de�nition of C there are two

paths in G from the root (r

1

; r

2

) to a node (n

1

; n

2

) with attribute-label

v and w, respectively (v = w is allowed). By De�nition of the product

of graphs this implies that there are two paths from r

1

to n

1

in G

1

with attribute-label v and w, respectively. Thus, subsumes?(C

0

; G

1

).

2. Nodes and a-edges: Let n = (n

1

; n

2

) be a node in G. Then, since G

is connected, it follows from the de�nition of the product of descrip-

tion graphs that there is a path from r

1

to n

1

with attribute-label

al(n) in G

1

. Now, let ((n1; n2); (m

1

;m

2

); A; F) 2 E. Then, by de�-

nition of G we know that (n1;m

1

; A; F

1

) 2 E

1

where F � F

1

. Thus,

for f 2 F it follows subsumes?(A : f;G

1

jn

1

). We now show that

subsumes?(C

n

; G

1

jn

1

). Then, by the de�nition of subsumes? we can

infer

subsumes?(8al(n):

"

C

n

u u

(n;m;A;F)2E

�

u

f2F

(A : f)

�

#

; G

1

)

which then completes the proof that C subsumes C

1

. In order to show

subsumes?(C

n

; G

1

jn

1

) we show that subsumes?(D

0

; G

1

jn

1

) for every

conjunct D

0

in C

n

. If l(n) = ?, then this implies l

1

(n

1

) = ? by de�-

nition of G. Thus, subsumes?(C

n

; G

1

jn

1

). If l

2

(n

2

) = ?, then by def-

inition l(n) = l

N

1

(n

1

) which also implies subsumes?(C

n

; G

1

jn

1

). Oth-

erwise, according to the de�nition of � we distinguish three cases. Let

l

1

(n

1

) = (S

1

;D

1

;H

1

), l

2

(n

2

) = (S

2

;D

2

;H

2

), and let l(n) = (S;D;H).

(a) If S = ;, then D

0

= > which implies subsumes?(D

0

; G

1

jn

1

). By

de�nition of l we know S � S

1

. Thus, for S 6= ; we also have

subsumes?(u

E2S

E;G

1

jn

1

).

(b) IfD = >, then it follows subsumes?(D;G

1

jn

1

) immediately. Oth-

erwise, by de�nition of l(n) we know D � D

1

, which again shows

subsumes?(D;G

1

jn

1

).

(c) Let (R;min;max; F;G

0

) 2 H. According to the de�nition of l we

distinguish three cases:

i) There are r-edges (R; k

1

; s

1

; F

1

; G

0

1

) 2 H

1

, (R; k

2

; s

2

; F

2

; G

0

2

) 2

H

2

such that min � k

1

and max � s

1

. Furthermore, F �

F

1

. This implies subsumes?((�min R) u (�max R) u u

f2F

(R :

f); G

1

jn

1

). Finally, it is G

0

= G

0

1

� G

0

2

. By the induction hy-

pothesis this means subsumes?(C

G

0

; G

0

1

). Thus, by de�nition of

subsumes? we know subsumes?(8R:C

G

0

; G

1

jn

1

).

37

ii) There is an r-edge (A; k

1

; s

1

; F

1

; G

0

1

) 2 H

1

and an a-edge

(n

2

; n

0

2

; A; F

2

) 2 E

2

such that min = 0 and max = s

1

. Fur-

thermore, F � F

1

. This implies subsumes?(u

f2F

(A : f); G

1

jn

1

).

Finally, it is G

0

= G

0

1

�G

2

jn

2

. By the induction hypothesis this

means subsumes?(C

G

0

; G

0

1

). Thus, by de�nition of subsumes?

we know subsumes?(8A:C

G

0

; G

1

jn

1

).

iii) There is an a-edge (n

1

; n

0

1

; A; F

1

) 2 E

1

as well as an r-edge

(A; k

2

; s

2

; F

2

; G

0

2

) 2 H

2

such that min = 0 and max = s

2

. Fur-

thermore, F � F

1

. This implies subsumes?(u

f2F

(A : f); G

1

jn

1

).

Finally, it is G

0

= G

1

jn

0

1

�G

0

2

. By the induction hypothesis this

means subsumes?(C

G

0

; G

1

jn

0

1

). Thus, by de�nition of subsumes?

we know subsumes?(8R:C

G

0

; G

1

jn

1

).

We now show by induction over the size of D, C

1

, and C

2

that if D

subsumes C

1

and C

2

then D subsumes C: We distinguish di�erent cases

according to the de�nition of \subsumes?". Let G

1

= (N

1

; E

1

; r

1

; l

1

) denote

the canonical description graph of C

1

, G

2

= (N

2

; E

2

; r

2

; l

2

) the canonical

description graph of C

2

, and G = (N;E; r; l) = G

1

� G

2

. In the follow-

ing we assume that C

1

v D and C

2

v D, thus, subsumes?(D;G

1

) and

subsumes?(D;G

2

). We show that subsumes?(D;G):

1. If G is incoherent or D = >, then there is nothing to show.

2. If D is a concept name, >

C

, >

H

, �lls, one-of, or a number-restriction

then by de�nition of the label of r and its a-edges and r-edges it is

easy to see that subsumes?(D;G).

3. If D is v # w, then there exist nodes n

1

in G

1

and n

2

in G

2

such that

there are two paths from r

1

to n

1

with label v and w, respectively,

as well as two paths from r

2

to n

2

with label v and w. Then, by

the de�nition of G it is easy to see that there are two paths from

r = (r

1

; r

2

) to (n

1

; n

2

) with label v and w, respectively. This shows

subsumes?(D;G).

4. If D is 8R:C, R role or attribute, then i) r

1

and r

2

have r-edges with

role or attribute R and restriction graphs G

0

1

and G

0

2

, respectively,

such that subsumes?(C;G

0

1

) and subsumes?(C;G

0

2

), or (w.o.l.g.)

ii) r

1

has an a-edge pointing to n

1

with attribute R (G

0

1

:= G

1

jn

1

) and

r

2

has an r-edge with restriction graph G

0

2

such that subsumes?(C;G

0

1

)

and subsumes?(C;G

0

2

). In both of these cases, we know by induction

38

subsumes?(C;G

0

1

� G

0

2

). Furthermore, by de�niton of G there is an

r-edge with role R and restriction graph G

0

1

�G

0

2

for r. This implies

subsumes?(D;G).

Now, iii) assume that r

1

and r

2

have a-edges with attribute R lead-

ing to nodes n

1

and n

2

, respectively, and subsumes?(C;G

1

jn

1

) and

subsumes?(C;G

2

jn

2

). By induction we know subsumes?(C;G

1

jn

1

�

G

2

jn

2

). It is easy to see that G

j(n

1

;n

2

)

= G

1

jn

1

� G

2

jn

2

. Further-

more, by de�nition there is an a-edge with attribute R from (r

1

; r

2

) to

(n

1

; n

2

) in G. This shows subsumes?(D;G).

iv) Finally, we have to consider the case that (w.o.l.g.) r

1

has no

r-edge and no a-edge with role or attribute R. Then, this implies

subsumes?(C;G(>)) and r

1

has >

C

in its atoms. Furthermore, since

subsumes?(D;G

2

) we know that r

2

has >

C

in its atoms: by de�nition

of description graphs if r

2

has an r-edge, then >

C

is an atom of r

2

; by

de�nition of subsumes? if r

2

has no r-edge and no a-edge with role or

attribute R, then >

C

belongs to the atoms of r

2

as well. This means

that G has >

C

in its root (r

1

; r

2

) and thus, subsumes?(D;G).

5. If D is C u E, then by de�nition of the subsumption algorithm we

know subsumes?(C;G

1

) and subsumes?(C;G

2

). By induction we

have subsumes?(C;G), and analogously, subsumes?(E;G). Thus,

subsumes?(D;G).

As stated in Section 3.5 the canonical description graph for a Classic

concept description can be computed in time polynomial in the size of the

concept description. Furthermore, it is not hard to verify that the product of

two description graphs can be computed in time polynomial in the size of the

graphs. In addition, the concept description corresponding to a description

graph can be computed in time polynomial in the size of the graph. Thus,

as a consequence of Theorem 4 we obtain

Corollary 2 The lcs of two Classic concept descriptions always exists and

can be computed in time polynomial in the size of the concept descriptions.

We now show that this is not true if one is interested in the lcs of a

sequence of concept descriptions since the lcs of such a sequence might

be exponential in the size of the sequence. As a result, an algorithm

computing the lcs of a sequence of concept descriptions is at least expo-

nential. Such an exponential time algorithm can easily be speci�ed since

39

A

i

A

i

A

j

, j 6= i A

j

, j 6= i

Figure 3: The canonical description graph for D

i

without atoms, dom, r-

edges, and �llers.

lcs(D

1

; : : : ;D

n

) = lcs(D

n

; lcs(D

n�1

; lcs(� � � lcs(D

2

;D

1

) � � �); one only needs

to iterate the algorithm for computing the lcs of two concept descriptions.

We will prove that the size of the lcs of a sequence might be exponential

in the size of the descriptions in the sequence. To do so, we take an example

proposed in [20], although in that case total attributes are assumed.

Proposition 1 For all integers n � 2 there exists a sequence D

1

; : : : ;D

n

of

Classic concept descriptions such that the size of every Classic concept

description equivalent to lcs(D

1

; : : : ;D

n

) is at least exponential in n where

the size of the D

i

0

s is linear in n.

Proof: For a given n the concept descriptions D

i

are de�ned as follows:

D

i

:= u

j 6=i

(" # A

j

) u u

j 6=i

(A

i

A

i

A

j

) u (" # A

i

A

i

)

where A

1

; : : : ; A

n

denote attributes. The canonical description graph for

D

i

is depicted in Figure 3.

Using Algorithm 1 it is easy to see that D

i

v v # w i� the number of

A

i

0

s in v and the number of A

i

0

s in w are equal modulo 2 where v; w are

words over fA

1

; : : : ; A

n

g. This implies that

D

1

; : : : ;D

n

v v # w i� for all 1 � i � n the number of A

i

0

s

in v and the number of A

i

0

s in w are

equal modulo 2.

(1)

Let s � f1; : : : ; ng be a non-empty set. We de�ne v

s

:= A

i

1

� � �A

i

k

where

i

1

< � � � < i

k

are the elements of s and w

s

:= A

3

i

1

A

3

i

2

� � �A

3

i

k

with A

j

3

:=

A

j

A

j

A

j

. Now let E be the lcs of D

1

; : : : ;D

n

and G

E

the corresponding

canonical description graph with root r. From (1) we know that for every

s � f1; : : : ; ng it is E v v

s

w

s

. Algorithm 1 implies that the paths from

r in G

E

labelled v

s

and w

s

exist and that they lead to the same node q

s

.

40

Assume, there are non-empty subsets s; t of f1; : : : ; ng, s 6= t, such that

q

s

= q

t

. This would imply E v v

s

v

t

in contradiction to (1). Thus, s 6= t

implies q

s

6= q

t

. Since there are 2

n

� 1 non-empty subsets of f1; : : : ; ng this

shows that G

E

contains at least 2

n

�1 nodes. Finally, as G

E

is linear in the

size of E this completes the proof of the proposition.

5 The Lcs for Same-as and Total Attributes

In the previous sections, attributes were interpreted as partial functions. In

this section, we will present the signi�cant changes occurring when consider-

ing total functions instead of partial functions. More precisely, we will look

at a sublanguage S of classic that only allows for concept conjunction and

same-as equalities, but where we have the general assumption:

Attributes are interpreted as total functions.

We restrict our attention to the language S in order to concentrate on

the changes caused by going from partial to total functions. However, we

strongly conjecture that the results represented here can easily be transfered

to classic by extending the description graphs for S as in Section 4.

First, we shall show that in S the lcs

t

of two concept descriptions does not

always exist. Then, we will present a polynomial decision algorithm for the

existence of an lcs

t

of two concept descriptions. Finally, it will be shown that

if the lcs

t

of two concept descriptions exists, then it might be exponential

in the size of the given concept descriptions and it can be computed in

exponential time. Note that the later result considerably generalizes the

original result in [20], which only provides an exponential size for the lcs

t

of

a sequence of n concept descriptions.

In the sequel, we will simply refer to the lcs

t

by lcs. Since throughout

the section attributes are always assumed to be total, this does not lead to

any confusion.

A useful observation for understanding the proofs in this section is that

for total attributes we have (u # v) v

t

(uw # vw) for any u;w; v 2

A

�

, where A

�

is the set of �nite words over A, the �nite set of attribute

names. Throughout this section, attributes are always denoted by small

letters a; b; c; d.

5.1 The Existence of the Lcs

In this section, we shall prove that the lcs of two concept descriptions in S

does not always exist. However, there is always an in�nite representation of

41

the lcs, which will be used in the next section to characterize the existence

of the lcs.

To accomplish the above, we return to the graph-based characterization

of subsumption proposed in [10] | the one modi�ed for partial attributes

in Section 3. For a concept description C, let G

C

denote the corresponding

canonical description graph, as de�ned in Section 3.4. Its semantics is spec-

i�ed as in Section 3.1, although now the set of interpretations is restricted

to allow attributes to be interpreted as total functions only.

Since S contains no atomic concepts and does not allow for value-restric-

tions, the nodes in G

C

do not contain atomic concepts and the set of r-edges

is empty. Therefore, G

C

can be de�ned by the triple (N;E; n

0

) where N is

a �nite set of nodes, E is a �nite set over N �A�N , and n

0

is the root of

the graph.

According to [10], subsumption C v

t

D of concept descriptions C and

D in S can be decided with the following algorithm subsumes

t

?(D;G

C

),

which also provides us with a characterization of t-subsumption.

6

Algorithm 2 Let C, D be concept descriptions in S, and G

C

= (N;E; n

0

)

be the canonical description graph of C. Then, subsumes

t

?(D;G

C

) is de-

�ned to be true if and only if one of the following conditions hold:

1. D is v # w and there are words v

0

, w

0

, and u over A such that v = v

0

u

and w = w

0

u, and there are rooted paths in G

C

labeled v

0

, resp. w

0

,

ending at the same node.

2. D is D

1

uD

2

and both subsumes

t

?(D

1

; G

C

) and subsumes

t

?(D

2

; G

C

)

are true.

The main Theorem of this section is

Theorem 5 There are concept descriptions in S such that the lcs of these

concept descriptions does not exist in S.

This result corrects the statement in [20] that the lcs always exists, a state-

ment that inadvertently assumed that attributes were partial, not total.

To prove the theorem above, consider the two concept descriptions

C

0

:= a # b

D

0

:= a # ac u b # bc u ad # bd

It will be shown that they do not have an lcs in S. The graphs for these

concepts are depicted in Figure 4. Intuitively, note that for an lcs E of C

0

6

Note that subsumes

t

? as introduced here is di�erent from the algorithm presented in

Section 3.5 since we restricted the set of possible interpretations.

42

a

b

a

b

d

d

c

c

G

C

0

: G

D

0

:

Figure 4: The canonical graphs for C

0

and D

0

and D

0

we have

E v

t

v # w i� v = w or there exists a nonnegative integer

n and u 2 A

�

such that v = ac

n

du and w =

bc

n

du or vice versa,

(2)

which is no longer a regular structure. In fact, using Algorithm 2, one can

show that no �nite description graph can be equivalent to E:

Let G

E

be the canonical graph for E with root n

0

and let v

n

:= ac

n

d,

w

n

:= bc

n

d for all nonnegative integers n. By (2) it follows subsumes

t

?(v

n

#

w

n

; G

E

). Thus, for all n there exists a node q

n

in G

E

as well as v

0

n

, w

0

n

, and

u such that v

n

= v

0

n

u, w

n

= w

0

n

u, and there are two rooted paths to q

n

with

label v

0

n

and w

0

n

, respectively. If u 6= " then v

0

n

= ac

m

and w

0

n

= bc

m

for some

nonnegative integer m. But then we know subsumes

t

?(ac

m

bc

m

; G

E

), and

thus, E v ac

m

bc

m

, which is a contradiction to (2). This implies, u = ".

Since G

E

is a �nite graph, there exist n < m such that q

n

= q

m

. Thus,

by de�nition of q

n

and q

m

, there exists a path from n

0

to q

n

with label

v

n

and a path from n

0

to q

n

with label w

m

. This shows, subsumes?(v

n

#

w

m

; G

E

), and hence, E v v

n

w

m

, which is again a contradiction to (2).

Consequently, there is no lcs for the concept descriptions C

0

and D

0

.

However one can prove that there always exists an in�nite description

graph representing the lcs. Such an in�nite graph will then be used in

Theorem 6 to characterize the existence of an lcs. In particular, from the

in�nite description graph representing the lcs of C

0

and D

0

in the example,

one can deduce that there exists no lcs for these two concept descriptions.

So, one could dispense with the proof just presented. Nevertheless, it gives

a �rst idea of how the following more general statements can be shown.

An in�nite description graph G is de�ned by a triple (N;E; n

0

), as in

the case of ordinary, �nite description graphs, except that the set of nodes

N and the set of edges E might be in�nite. The semantics of these graphs is

43

de�ned as for �nite graphs in Section 3.1. Furthermore, in�nite graphs are

translated into concept descriptions as follows: take an (in�nite) spanning

tree T of G, and, as in the �nite case, for every edge of G not contained

in it, add to C

G

a same-as equality. (The translation is simpler than the

one in Section 3.3 because we are dealing with t-attributes.) Note, however,

that such translations might yield concept descriptions with an in�nite num-

ber of conjunctions (thus, in�nite concept descriptions). The semantics of

such concept descriptions is de�ned in the obvious way. Analogously to

Lemma 2, one can show that an (in�nite) graph G and its corresponding

concept description C

G

are equivalent, i.e., C

G

�

t

G.

We call an (in�nite) description graph G deterministic if and only if for

every node n in G and every attribute a 2 A there is at most one a-successor

for n in G. The graph G is called complete if for every node n in G and

every attribute a 2 A there is (at least) one a-successor for n in G. For a

deterministic and complete (in�nite) description graph and a word v 2 A

�

there is exactly one path labeled v in G from the root n

0

to one node n.

Furthermore, if there is a path between two nodes n, n

0

, then there is exactly

one path. As before, we write nvn

0

2 G to say that there is a path in G

from n to n

0

labeled v.

Obviously, Algorithm 2 can be generalized to in�nite description graphs

G

C

. Thus, we can conclude:

Corollary 3 Let G = (N;E; n

0

) be a deterministic and complete (in�nite)

description graph and v; w 2 A

�

. Then,

G v

t

v # w i� n

0

vn 2 G and n

0

wn 2 G for some node n:

We shall construct an (in�nite) graph representing the lcs of two concept

descriptions in S as the product of the so-called completed canonical graphs.

This in�nite representation of the lcs will be used later on to characterize

the existence of an lcs in S, i.e., the existence of a �nite representation of

the lcs.

We now de�ne the completion of a graph. Let G be an (in�nite) descrip-

tion graph. The graph G

0

is an extension of G if for every node n in G and

for every attribute a 2 A such that n has no outgoing edges labeled a, a new

node m

n;a

is added, as well as an edge (n; a;m

n;a

). Now, let G

0

; G

1

; G

2

; : : :

be a sequence of graphs such that G

0

= G and G

i+1

is an extension of G

i

; for

i � 0. If G

i

= (N

i

; E

i

; n

0

), then G

1

:= (

S

i�0

N

i

;

S

i�0

E

i

; n

0

) is called the

completion of G. By construction, G

1

is a complete graph. Furthermore,

if G is deterministic, then G

1

is deterministic as well. Finally, it is easy

44

to see that a graph and its extension are equivalent. Thus, by induction,

G

1

�

t

G.

The nodes in

S

i�1

N

i

, i.e., the nodes in G

1

that are not in G, are called

tree nodes; the nodes of G are called non-tree nodes. By construction, for

every tree node t in G

1

there is exactly one direct predecessor of t in G

1

,

i.e., there is exactly one node n and one attribute a such that (n; a; t) is an

edge in G

1

; n is called a-predecessor of t. Furthermore, there is exactly one

youngest ancestor n in G of a tree node t in G

1

; n is the youngest ancestor

of t if there is a path from n to t in G

1

which does not contain non-tree

nodes except for n. Note that there is only one path from n to t in G

1

.

Finally, observe that non-tree nodes have only non-tree nodes as ancestors.

As an example, the completion of G

C

0

depicted in Figure 4 is shown in

Figure 5, when A = fa; b; c; dg. Note that the completion of a canonical de-

scription graph is always complete and deterministic. In the sequel, let C, D

.

.

.

.

.

.

� � �

a

b

a

b

c

d

a b c d a b c d

G

1

C

0

:

c d

Figure 5: The complete graph for C

0

be two concept descriptions in S, G

C

= (N

C

; E

C

; n

C

), G

D

= (N

D

; E

D

; n

D

)

be their corresponding canonical graphs, and G

1

C

, G

1

D

be the completions

of G

C

, G

D

. The products G := G

C

�G

D

and G

�

1

:= G

1

C

�G

1

D

are de�ned

analogously to Section 4.1, where again G and G

�

1

only contain nodes that

are reachable from the root (n

C

; n

D

), i.e., G and G

�

1

are supposed to be

connected.

A subgraph of G

�

1

for the concept descriptions C

0

and D

0

(Figure 4) is

depicted in Figure 6.

As an easy consequence of the fact G

C

�

t

G

1

C

and Corollary 3 we get

45

� � �

a

b

d

d

d

d

d

d

c c c

c c c

Figure 6: A subgraph of G

1

C

0

�G

1

D

0

Lemma 7 C v

t

v # w i� n

C

vn 2 G

1

C

and n

C

wn 2 G

1

C

for a node n in

G

1

C

.

But then, by the construction of G

�

1

we know:

Proposition 2 C v

t

v # w and D v

t

v # w i� (n

C

; n

D

)vn 2 G

�

1

and

(n

C

; n

D

)wn 2 G

�

1

for a node n in G

�

1

.

In particular, G

�

1

represents the lcs of the concept descriptions C and

D in S. Formally, this means:

Corollary 4 The (in�nite) concept description C

G

�

1

corresponding to G

�

1

is the lcs of C and D, i.e., i) C;D v

t

C

G

�

1

and ii) C;D v

t

E

0

implies

C

G

�

1

v

t

E

0

for every concept description E

0

in S.

5.2 Characterizing the Existence of an Lcs

Let C, D be concept descriptions in S and let the graphs G

C

, G

D

, G, G

1

C

,

G

1

D

, and G

�

1

be de�ned as above.

It turns out that G

�

1

can be used to characterize the existence of the

lcs E of C and D. The existence depends on whether there is a �nite or an

in�nite number of a certain kind of nodes which we will call same-as nodes.

De�nition 10 A node n of an (in�nite) description graph H is called a

same-as node if there exist two distinct nodes n

1

, n

2

in H and an attribute

a 2 A such that (n

1

; a; n) and (n

2

; a; n) are edges in H.

The graph depicted in Figure 6 contains an in�nite number of same-as

nodes. We will show that this is a su�cient and necessary condition for the

lcs of C and D not to exist.

46

Before proving the main theorem of this section, we need to show a

lemma that will be useful in the subsequent sections as well. We shall use

the notation n

0

u�n

1

�vn

2

2 H to describe a path inH labeled uv from node n

0

to n

2

that passes through node n

1

after u (i.e., n

0

un

1

2 H and n

1

vn

2

2 H);

we generalize this the obvious way to interpret n

0

u

1

�n

1

�u

2

�n

2

�u

3

n

3

2 H.

G

G

�

1

e

1

6= e

2

v w v 6= w

a a

(e

1

; q

0

) (e

2

; q

0

)

.

.

. xx

.

.

.

n = (f; t)

(n

C

; n

D

)

(h

1

; p

0

) (h

2

; p

0

) h

1

6= h

2

Figure 7: same-as nodes in G

�

1

Lemma 8 Given a node f in G

C

and a tree-node t in G

1

D

, the node n =

(f; t) in G

�

1

is a same-as node i�

� there exist nodes (h

1

; p

0

), (h

2

; p

0

) in G, h

1

6= h

2

;

� (e

1

; q

0

), (e

2

; q

0

) in G

�

1

, where e

1

, e

2

are distinct nodes in G

C

and q

0

is a node in G

1

D

; and

� a 2 A and v; w; x 2 A

�

, v 6= w, where A is the set of attributes in C,

such that (n

C

; n

D

)v�(h

1

; p

0

)�x�(e

1

; q

0

)�a(f; t) is a path in G

�

1

as well as

(n

C

; n

D

)w�(h

2

; p

0

)�x�(e

2

; q

0

)�a(f; t) (see Figure 7) and the successor of p

0

in

these paths is a tree node in G

1

D

.

Proof: The if direction is obvious. We proceed with the only-if direc-

tion and assume that n is a same-as node in G

�

1

. Let p

0

be the youngest

ancestor of t in G

1

D

. In particular, p

0

is a node in G

D

and there exists

p

0

x�q

0

�at in G

1

D

with a 2 A and x 2 A

�

such that the successor of p

0

in

this path is a tree node in G

D

. Since G

�

1

is connected, we can conclude

that there exist nodes h

1

; h

2

; e

1

; e

2

in G

C

such that (h

1

; p

0

)x�(e

1

; q

0

)�a(f; t)

and (h

2

; p

0

)x�(e

2

; q

0

)�a(f; t) are paths in G

�

1

. In particular, xa is a label

47

of a path from h

1

to f in G

C

. Consequently, the label xa only consists of

attributes contained in C.

Furthermore, since t has only one predecessor in G

1

D

, namely, the a-

predecessor q

0

, we know that e

1

6= e

2

, and consequently, since G

C

is deter-

ministic, h

1

6= h

2

. Otherwise, n could not be a same-as node.

Finally, since G

�

1

is connected there are paths (in G) from (n

C

; n

D

) to

(h

1

; p

0

) and (h

2

; p

0

) labeled v, resp. w. As G is deterministic and h

1

6= h

2

,

it follows v 6= w.

The main results of this section is stated in the next theorem. As a

direct consequence of this theorem, we obtain that there exists no lcs in S

for the concept descriptions C

0

and D

0

of our example.

Theorem 6 The lcs of C and D exists i� the number of same-as nodes in

G

�

1

is �nite.

Proof. We start by proving the only-if direction. For this purpose, we

assume that G

�

1

contains an in�nite number of same-as nodes and show

that there is no lcs for C and D in S.

Since G

�

1

contains only a �nite number of nodes of the form (f; g) where

f and g are non-tree nodes, the remaining (in�nitely many) same-as nodes

are of the form (f; t) or (t; f). This is because a node of the form (t

1

; t

2

),

where t

1

; t

2

are tree nodes, cannot be a same-as node in G

�

1

since it has

only one direct predecessor. Thus, w.l.o.g., G

�

1

has an in�nite number of

same-as nodes n

i

= (f

i

; t

1;i

) such that f

i

is a node in G

C

and t

1;i

is a tree

node in G

1

D

. According to Lemma 8, for every same-as node n

i

there exist

nodes h

1;i

; h

2;i

; e

1;i

; e

2;i

in G

C

, p

0;i

in G

D

, and q

0;i

in G

1

D

as well a

i

2 A and

x

i

2 A

�

with the properties stated in Lemma 8.

Since G

C

and G

D

are a �nite objects, the number of tuples of the form

h

1;i

; h

2;i

; e

1;i

; e

2;i

; f

i

; a

i

is �nite. Thus, there must be an in�nite number of

i's yielding the same tuple h

1

; h

2

; e

1

; e

2

; f; a. In particular, h

1

6= h

2

and

e

1

6= e

2

are nodes in G

C

and there is an in�nite number of same-as nodes of

the form n

i

= (f; t

1;i

).

Finally, as in the lemma, let v, w be the label of paths (in G) from

(n

C

; n

D

) to (h

1

; p

0

) and (h

2

; p

0

).

Now, assume there is an lcs E of C andD in S. According to Corollary 4,

E �

t

C

G

�

1

. Let G

E

be the �nite canonical graph for E with root n

0

. By

Proposition 2 and Lemma 8 we know E v

t

vx

i

a # wx

i

a. From Algorithm 2

it follows that there are words v

0

, w

0

, and u such that vx

i

a = v

0

u and

wx

i

a = w

0

u, where the paths in G

E

starting from n

0

labeled v

0

, w

0

lead to

the same node in G

E

.

48

If u 6= ", then u = u

0

a for some word u

0

. Then, Algorithm 2 ensures

E v

t

vx

i

wx

i

. However, by Lemma 8 we know that the words vx

i

and

wx

i

lead to di�erent nodes in G

�

1

, namely, (e

1

; q

0;i

) and (e

2

; q

0;i

), which,

with Proposition 2, leads to the contradiction E 6v

t

vx

i

wx

i

. Thus, u = ".

As a result, for every i � 1 there exists a node q

i

in G

E

such that n

0

vx

i

aq

i

and n

0

wx

i

aq

i

are paths inG

E

. Because G

E

is �nite there exist i; j � 1, i 6= j,

with q

i

= q

j

. By Algorithm 2, this implies E v

t

vx

i

a # wx

j

a. On the other

hand, the path in G

�

1

starting from (n

C

; n

D

) with label vx

i

a leads to the

node n

i

and the one for wx

j

a leads to n

j

. Since n

i

6= n

j

by de�nition, from

Proposition 2 it follows E 6v

t

vx

i

a # wx

j

a, which is a contradiction.

This shows that there is no lcs of C, D in S which completes the proof

of the only-if direction.

We now prove the if direction of Theorem 6. For this purpose, we assume

that G

�

1

has only a �nite number of same-as nodes. Note that every same-as

node in G

�

1

has only a �nite number of direct predecessors: i) a node of the

form (g

1

; g

2

) in G has only predecessors in G; ii) if t is a tree node and g a

non-tree node, then a predecessor of (g; t) in G

�

1

is of the form (g

0

; t

0

) where

t

0

is the unique predecessor (tree or non-tree node) of t and g

0

is a non-tree

node. Since the number of nodes in G

C

and G

D

is �nite, in both cases we

only have a �nite number of predecessors. But then, the spanning tree T

of G

�

1

coincides with G

�

1

except for a �nite number of edges because if T

does not contain a certain edge, then this edge leads to a same-as node. As

a result, C

G

�

1

is a concept description in S because it is a �nite conjunct of

same-as equalities. By Corollary 4, C

G

�

1

is the lcs of C and D.

If v # w is a conjunct in C

G

�

1

, then v and w lead from the root of G

�

1

to

a same-as node. As shown in the proof of Lemma 8, same-as nodes are of

the form (f; g); (f; t), or (t; f), where t is a tree node and f; g are non-tree

nodes. Consequently, v and w must be paths in G

C

or G

D

. Thus, they only

contain attributes occurring in C or D. Therefore, we get

Corollary 5 If the lcs of two concept description C and D in S exists,

then there is a concept description in S that is equivalent to the lcs and that

contains only attributes already occurring in C or D.

Therefore, when asking for the existence of an lcs, we can w.o.l.g. assume

that the set of attributes A is �nite. This fact will be used in the following

section.

49

5.3 Deciding the Existence of an Lcs

From Lemma 8 and Theorem 6 we can derive a corollary which we will use

to specify a decision algorithm for the existence of an lcs of two concept

descriptions in S. To state the corollary we need to introduce the regular

language L

G

C

(q

1

; q

2

) := fw 2 A

�

j there is a path from the node q

1

to q

2

in G

C

labeled wg. Moreover, let aA

�

denote the set faw j w 2 A

�

g for any

attribute a 2 A, where A is a �nite alphabet.

Corollary 6 G

�

1

contains an in�nite number of same-as nodes i� either

(i) there exist nodes (h

1

; p

0

), (h

2

; p

0

) in G as well as nodes f , e

1

, e

2

in G

C

,

a; b 2 A such that

1. h

1

6= h

2

, e

1

6= e

2

;

2. p

0

has no b-successor in G

D

;

3. (e

1

; a; f), (e

2

; a; f) are edges in G

C

; and

4. L

G

C

(h

1

; e

1

) \ L

G

C

(h

2

; e

2

) \ bA

�

is an in�nite set of words;

or

(ii) the same statement as (i) but with switched rôles for C and D.

Proof. We �rst prove the only-if direction. Assume that G

�

1

contains an

in�nite number of nodes. Then, w.l.o.g., we �nd the con�guration in G

�

1

described in the proof of Theorem 6. In particular, we have an in�nite

number of same-as nodes n

i

= (f; t

1;i

). Observe that there is only one path

from p

0

to q

0;i

in G

1

D

. Consequently, the x

i

's are pairwise distinct. Since A

is �nite, we can assume, w.l.o.g., that all of these paths have pre�x b 2 A

for some �xed b. This proves condition 4 stated in the corollary.

We now prove the if direction of the corollary. For this purpose, let

bx 2 L

G

C

(h

1

; e

1

) \ L

G

C

(h

2

; e

2

) \ bA

�

. Since p

0

has no b-successor in G

D

it

follows that there are tree nodes t; t

0

in G

1

D

such that p

0

bx�t�at

0

2 G

1

D

. Thus,

we have (h

1

; p

0

)bx�(e

1

; t)�a(f; t

0

) 2 G

�

1

and (h

2

; p

0

)bx�(e

2

; t)�a(f; t

0

) 2 G

�

1

.

Since e

1

6= e

2

, we have (e

1

; t) 6= (e

2

; t), which means that (f; t

0

) is a same-as

node. Analogously, for by 2 L

G

C

(h

1

; e

1

) \ L

G

C

(h

2

; e

2

) \ bA

�

there are tree

nodes s; s

0

in G

1

D

such that p

0

by�s�as

0

2 G

1

D

and (f; s

0

) is a same-as node in

G

�

1

. Since bx and by both start with b, and the b-successor of p

0

in G

1

D

is a

tree node, x 6= y implies s

0

6= t

0

, and thus, (f; t

0

), (f; s

0

) are distinct same-as

nodes.

This shows that if the set L

G

C

(h

1

; e

1

)\L

G

C

(h

2

; e

2

)\ bA

�

is in�nite, G

�

1

must have an in�nite number of same-as nodes, which completes the proof

50

of the corollary.

For given nodes (h

1

; p

0

), (h

2

; p

0

) in G, attributes a; b 2 A, and nodes

f; e

1

; e

2

2 G

C

the conditions 1. to 3. in Corollary 6 can obviously be

checked in time polynomial in the size of the concept descriptions C and D.

As for the last condition, note that an automaton accepting the language

L

G

C

(h

1

; e

1

)\L

G

C

(h

2

; e

2

)\bA

�

can be constructed in time polynomial in the

size of C. Furthermore, for a given �nite automaton it is decidable in time

polynomial in the size of the automaton if it accepts an in�nite language (see

[26] for details). Thus, condition 4. can be tested in time polynomial in the

size of C and D as well. Finally, since the size of G and G

C

is polynomial

in the size of C and D, only a polynomial number of con�gurations need to

be tested. Hence, we have shown

Corollary 7 For given concept descriptions C and D in S it is decidable

in time polynomial in the size of C and D if there is an lcs for C and D in

S.

5.4 Computing the Lcs

In this section we �rst look at the minimal size of an lcs, and then present an

exponential time algorithm which computes the lcs of two concept descrip-

tions in S. As it turns out, the minimal size of an lcs can be exponential in

the size of the two concept descriptions. This is a stronger result than that

presented in [20], since in their work it has only been shown that the lcs of

a sequence of concept descriptions in S can grow exponentially.

In order to show that the lcs might be of exponential size we consider

the following example, where A := fa; b; c; dg. For an attribute �, let �

k

,

k � 0, denote the word � � � �� of length k. We de�ne

C

0

:= a # b;

D

k

:=

k

u

i=1

ac

i

ad

i

u

k

u

i=1

bc

i

bd

i

u ac

k

a # bc

k

a:

The corresponding canonical description graphs G

C

0

and G

D

k

are depicted

in Figure 8.

A �nite graph representing the lcs of C

0

and D

k

is depicted in Figure 9

for k = 2. This graph can easily be derived from G

1

C

0

� G

1

D

k

. The graph

comprises two binary trees of height k, and thus, it contains at least 2

k

nodes. In the following, we will show that there is no canonical description

graph G

E

k

(with root n

0

) representing the lcs E

k

of C

0

and D

k

with less

51

d

c

d

c

d

c

d

c

� � �

� � �

a

b

a

a

a

b

k

G

D

k

:G

C

0

:

Figure 8: The canonical description graphs for C

0

and D

k

a b

c d

c

c d

d d

d c

c

d c

a a a a a a a a

2

Figure 9: A �nite graph representing the lcs of C

0

and D

2

than 2

k

nodes. Let x 2 fc; dg

k

, i.e., x is a word of length k over fc; dg, and

let v := axa, w := bxa. Using the canonical description graphs G

C

0

and

G

D

k

it is easy to see that C

0

v

t

v # w and D

k

v

t

v # w. Thus, E

k

v

t

v # w.

By Algorithm 2, this means that there are words v

0

; w

0

; u such that v = v

0

u,

w = w

0

u, and there are paths from n

0

labeled v

0

and w

0

in G

E

k

leading

to the same node in G

E

k

. Suppose u 6= ". By Algorithm 2 this implies

E

k

v

t

ax # bx. But according to G

D

, D 6v

t

ax # bx. Therefore u must be

". This, proves that in G

E

k

there is a path from n

0

labeled axa for every

x 2 fc; dg

k

. Hence, there is a path for every ax. Now, let y 2 fc; dg

k

, x 6= y.

If the paths for ax and ay from n

0

in G

E

k

lead to the same node, then this

implies E

k

v

t

ax # ay which is a contradiction to C

0

6v

t

ax # ay. As a result,

ax and ay lead to di�erent nodes in G

E

k

. Since fc; dg

k

contains 2

k

words,

52

this shows that G

E

k

has at least 2

k

nodes.

Now, observe that the canonical graph of a concept description in S is

linear in the size of the concept. Thus, we have proved

Theorem 7 If the lcs of two concept descriptions in S exists, then it can

be exponential in the size of the concept descriptions.

As a result, there can be no algorithm for computing the lcs of concept

descriptions in S only using polynomial space. However, one can specify an

exponential time algorithm.

Algorithm 3

Input: concept descriptions C, D in S, for which the lcs exists in S;

Output: lcs of C and D in S;

1. Compute G

0

:= G

C

�G

D

;

2. For every combination

� of nodes (h

1

; p

0

), (h

2

; p

0

) in G = G

C

�G

D

, h

1

6= h

2

;

� a 2 A, e

1

; e

2

; f in G

C

, e

1

6= e

2

, where (e

1

; a; f) and (e

2

; a; f) are

edges in G

C

extend G

0

as follows: Let G

h

1

;t

, G

h

2

;t

be two trees representing the

(�nite) set of words in

L :=

0

@

L

G

C

(h

1

; e

1

) \ L

G

C

(h

2

; e

2

) \

[

b62succ(p

0

)

bA

�

1

A

[f" j a 62 succ(p

0

)g

where succ(p

0

) := fb j p

0

has a b-successorg. Furthermore, the set of

nodes of G

h

1

;t

, G

h

2

;t

, and G

0

are assumed to be disjoint. Now, replace

the root of G

h

1

;t

by (h

1

; p

0

), the root of G

h

2

;t

by (h

2

; p

0

), and extend

G

0

by the nodes and edges of these two trees. Finally, add a new node

n

v

for every word v in L, and for each node of the trees G

h

1

;t

and

G

h

2

;t

corresponding to v, add an edge with label a from it to n

v

. The

extension is illustrated in Figure 10.

3. The same as in step 2, with switched rôles for C and D.

4. Compute the canonical graph of G

0

, which we will call G

0

again. Then,

output the concept description C

G

0

of G

0

.

53

a a

aa

aa

a a

b b

d d

c c

n

b

n

bc

n

bad

G

0

(h

1

; p

0

) (h

2

; p

0

)

Figure 10: The extension at the nodes (h

1

; p

0

), (h

2

; p

0

) in G

0

where L =

fb; bc; badg

Proposition 3 The translation C

G

0

of the graph G

0

computed by Algo-

rithm 3 is the lcs E of C and D.

Proof. It is easy to see that if there are two path in G

0

labeled y

1

and y

2

leading from the root (n

C

; n

D

) to the same node, then G

�

1

contains such

paths as well. Consequently, (E �

t

)G

�

1

v

t

G

0

.

Now, assume E v

t

y

1

y

2

, y

1

6= y

2

. By Proposition 2 we know that there

are paths in G

�

1

labeled y

1

and y

2

leading to the same node n. W.l.o.g, we

may assume that n is a same-as node in G

�

1

. Otherwise, there exist words

y

1

0

; y

2

0

; u with y

1

= y

1

0

u, y

2

= y

2

0

u such that y

1

0

and y

2

0

lead to a same-as

node. If we can show that G

0

contains paths labeled y

1

0

and y

2

0

leading to

the same node, then by Algorithm 2 this is su�cient for G

0

v

t

y

1

y

2

. So

let n be a same-as node. We distinguish two cases:

1. If n is a node in G = G

C

�G

D

, then the paths for y

1

and y

2

are paths

in G. Since G is a subgraph of G

0

this shows that y

1

and y

2

are paths

in G

0

, which by Algorithm 2 implies C

G

0

v

t

y

1

y

2

.

2. Assume n is not a node in G. Then, since n is a same-as node, we

know that n is of the form (f; t) or (t; f) where f is a non-tree node

and t is a tree node. By symmetry, we may assume that n = (f; t).

Now it is easy to see that there exist nodes h

1

; h

2

; e

1

; e

2

in G

C

, p

0

in

G

D

, and a tree node q

0

in G

1

D

as well as a 2 A and x; v; w 2 A

�

as speci�ed in Lemma 8 such that y

1

= vxa and y

2

= wxa. But

then, with h

1

; h

2

; e

1

; e

2

; p

0

; f and a the preconditions of Algorithm 3

are satis�ed and x 2 L. Therefore, by construction of G

0

there are

paths labeled y

1

, resp. y

2

, from the root to the same node.

54

We note that the product G of G

C

and G

D

can be computed in time

polynomial in the size of C and D. Furthermore, there is only a polynomial

number of combinations of nodes (h

1

; p

0

), (h

2

; p

0

) in G, e

1

; e

2

; f in G

C

, a 2

A. Finally, the �nite automaton for L can be computed in time polynomial

in the size of C and D. This automaton is acyclic, which implies that the

set of words accepted by this automaton is at most exponential in the size

of the automaton. Consequently, trees representing the words in L can be

computed in time exponential in the size of C and D.

Corollary 8 If the lcs of two concept descriptions in S exists, then it can

be computed in time exponential in the size of the concept descriptions.

6 Conclusion

Attributes | binary relations that can have at most one value { have been

distinguished in many knowledge representation schemes and other object-

centered modeling languages. This had been done to facilitate modeling and,

in description logics, to help identify tractable sets of concept constructors

(e.g., restricting same-as to attributes). In fact, same-as restrictions are

quite important from a practical point of view, because they support the

modeling of actions and their components (e.g., [7]).

A second distinction, between attributes as total versus partial functions

had not been considered so essential until now. This paper has shown that

this distinction can sometime have signi�cant e�ects.

In particular, we have �rst shown that the approach for computing sub-

sumption of Classic concepts with total attributes, presented in [10], can be

modi�ed to accommodate partial attributes, by treating partial attributes as

roles until they are guaranteed to have at least one �ller, in which case they

are \converted" to total attributes. As a result, we obtain polynomial-time

algorithms for subsumption and consistency checking in this case also.

In the case of computing least common subsumers, which was introduced

as a technique for learning non-propositional descriptions of concepts, we

�rst noted that several of the papers in the literature [18, 24] (implicitly)

used partial attributes, when considering Classic. Furthermore, these pa-

pers used a weaker version of the \concept graphs" employed in [10], which

make the results only hold for the case of same-as restrictions that do not

generate \cycles". Furthermore, the algorithm in [24] does not handle in-

consistent concepts, which can easily arise in Classic concepts as a result

of conicts between lower and upper bounds of roles.

55

Therefore, we have provided an lcs algorithm together with a formal

proof of correctness for full Classic with partial attributes. In this case,

the lcs always exists, and it can be computed in time polynomial in the

size of the two initial concept descriptions. As suggested in [20], there are

sequences of concept descriptions for which the lcs might grow exponentially

in the size of the sequence.

To complete the picture, and as the main part of the paper, we then

examined the question of computing lcs in the case of total attributes. Sur-

prisingly, the situation here is very di�erent from the partial attribute case

(unlike with subsumption). First, for the language S the lcs may not even

exist. (The existence of the lcs mentioned in [20] is due to an inadvertent

switch to partial semantics for attributes.) Nevertheless, the existence of

the lcs of two concept descriptions can be decided in polynomial time. But

if the lcs exists, it might grow exponentially in the size of the concept de-

scriptions, and hence the computation of the lcs may take time exponential

in the size of the two given concept descriptions.

As an aside, we note that it has been pointed out in [20] that con-

cept descriptions in S correspond to a �nitely generated right congruence.

Furthermore, in this context the lcs of two concept descriptions is the in-

tersection of right congruences. Thus, the results presented in this paper

also show that the intersection of �nitely generated right congruences is not

always a �nitely generated right congruence, and that there is a polyno-

mial algorithm for deciding this question. Furthermore, if the intersection

can be �nitely generated, then the generating system might be exponential

and can be computed with an exponential time algorithm in the size of the

generating systems of the given right congruences.

The results in this paper therefore lay out the scope of the e�ect of

making attributes be total or partial functions in a description logic that

supports the same-as constructor. Moreover, we correct some problems and

extend results in the previous literature.

We believe that the disparity between the results in the two cases should

serve as a warning to other researchers in knowledge representation and

reasoning, concerning the importance of explicitly considering the di�erence

between total and partial attributes.

References

[1] A. Artale, E. Franconi, N. Guarino, and L. Pazzi. Part-whole relations

in object-centered systems: An overview. Data & Knowledge Engineer-

56

ing, 20(3):347{383, 1996.

[2] F. Baader. Using automata theory for characterizing the semantics

of terminological cycles. Annals of Mathematics and Arti�cial Intelli-

gence, 18(2{4):175{219, 1996.

[3] F. Baader and P. Hanschke. A scheme for integrating concrete do-

mains into concept languages. In J. Mylopoulos and R. Reiter, editors,

Proceedings of the 12th International Joint Conference on Arti�cial In-

telligence, IJCAI-91, pages 452{457, Sydney (Australia), 1991. Morgan

Kaufmann.

[4] F. Baader and R. K�usters. Computing the least common subsumer

and the most speci�c concept in the presence of cyclic ALN -concept

descriptions. In O. Herzog and A. G�unter, editors, Proceedings of the

22nd Annual German Conference on Arti�cial Intelligence, KI-98, vol-

ume 1504 of Lecture Notes in Computer Science, pages 129{140, Bre-

men, Germany, 1998. Springer{Verlag.

[5] F. Baader, R. K�usters, and R. Molitor. Computing least common sub-

sumer in description logics with existential restrictions. In T. Dean,

editor, Proceedings of the 16th International Joint Conference on Arti-

�cial Intelligence (IJCAI'99), pages 96{101. Morgan Kaufmann, 1999.

[6] A. Borgida. Description logics in data management. IEEE Trans. on

Knowledge and Data Engineering, 7(5):671{682, 1995.

[7] A. Borgida and P. Devanbu. Adding more "DL" to IDL: towards more

knowledgeable component inter-operability. In Proceedings of the 1999

International Conference on Software Engineering, pages 378{387, Los

Angeles, CA USA, 1999. ACM.

[8] A. Borgida and D.W. Etherington. Hierarchical knowledge bases

and e�cient disjunctive reasoning. In R.J. Brachman and R. Reiter

H.J. Levesque, editors, Proceedings of the 1st International Conference

on Principles of Knowledge Representation and Reasoning (KR'89),

pages 33{43, Toronto, Canada, 1989. Morgan Kaufmann.

[9] A. Borgida and R. K�usters. What's not in a name? Initial explorations

of a structural approach to integrating large concept knowledge-bases.

Technical Report DCS-TR-391, Rutgers University, USA, 1999. Avail-

able via ftp://ftp.cs.rutgers.edu/pub/technical-reports/.

57

[10] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm

for subsumption in the CLASSIC description logic. Journal of Arti�cial

Intelligence Research, 1:277{308, 1994.

[11] M. Buchheit, F.M. Donini, W. Nutt, and A. Schaerf. A re�ned ar-

chitecture for terminological systems: Terminology = Schema + View.

Arti�cial Intelligence, 99(2):209{260, 1999.

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. What can knowledge

representation do for semi-structured data? In Proceedings of the 16th

National Conference of the American Association for Arti�cial Intelli-

gence, AAAI-98, pages 205{210. AAAI Press/The MIT Press, 1998.

[13] D. Calvanese, G. De Giacomo, and M. Lenzerini. Modeling and query-

ing semi-structured data. Network and Information Systems, 2(2):253{

273, 1999.

[14] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in ex-

pressive description logics with �xpoints based on automata on in�nite

trees. In T. Dean, editor, Proceedings of the 16th International Joint

Conference on Arti�cial Intelligence (IJCAI'99), pages 84{89. Morgan

Kaufmann, 1999.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.

Description logic framework for information integration. In A.G. Cohn,

L.K. Schubert, and S.C. Shapiro, editors, Proceedings of the 6th In-

ternational Conference on the Principles of Knowledge Representation

and Reasoning (KR-98), pages 2{13. Morgan Kaufmann, 1998.

[16] D. Calvanese, M. Lenzerini, and D. Nardi. A uni�ed framework for

class based representation formalisms. In J. Doyle, E. Sandewall, and

P. Torasso, editors, Proceedings of the Fourth International Conference

on the Principles of Knowledge Representation and Reasoning (KR-94),

pages 109{120. Morgan Kaufmann, Los Altos, 1994.

[17] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based repre-

sentation formalisms. Journal of Arti�cial Intelligence Research, 1999.

To appear.

[18] W. W. Cohen and H. Hirsh. Learnability of description logics with

equality constraints. Machine Learning, 17(2/3):169{199, 1994.

58

[19] W. W. Cohen and H. Hirsh. Learning the classic description logic:

Theoretical and experimental results. In J. Doyle, E. Sandewall, and

P. Torasso, editors, Proceedings of the Fourth International Conference

on Principles of Knowledge Representation and Reasoning (KR'94),

pages 121{133, San Francisco, Calif., 1994. Morgan Kaufmann.

[20] W.W. Cohen, A. Borgida, and H. Hirsh. Computing least common

subsumers in description logics. In William Swartout, editor, Proceed-

ings of the 10th National Conference on Arti�cial Intelligence, pages

754{760, San Jose, CA, July 1992. MIT Press.

[21] P.T. Devanbu and M.A. Jones. The use of description logics in KBSE

systems. ACM Transactions on Software Engineering and Methodology

(TOSEM), 6(2):141{172, 1997.

[22] F.M. Donini, B. Hollunder, M. Lenzerini, A. Marchetti, D. Nardi, and

W. Nutt. The complexity of existential quanti�cation in concept lan-

guages. Arti�cial Intelligence, 2{3:309{327, 1992.

[23] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of

concept languages. Information and Computation, 134:1{58, 1997.

[24] M. Frazier and L. Pitt. Classic learning. Machine Learning Journal,

25:151{193, 1996.

[25] G. De Giacomo and M. Lenzerini. Description logics with inverse roles,

functional restrictions, and n-ary relations. In C. MacNish, D. Pearce,

and Lu

�

is Moniz Pereira, editors, Proceedings of the Fourth European

Workshop on Logics in Arti�cial Intelligence (JELIA'94), volume 838 of

Lecture Notes in Arti�cial Intelligence, pages 332{346. Springer-Verlag,

1994.

[26] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory.

Addison-Wesley Publ. Co., 1979.

[27] Maurizio Lenzerini and Andrea Schaerf. Concept languages as query

languages. In Proc. of the 9th Nat. Conf. on Arti�cial Intelligence

(AAAI-91), pages 471{476, 1991.

[28] D.L. McGuinness and J.R. Wright. An industrial strength description

logic-based con�gurator platform. IEEE Intelligent Systems, 13(4):66{

77, 1998.

59

[29] B. Nebel. Terminological reasoning is inherently intractable. Arti�cial

Intelligence, 43:235{249, 1990.

[30] M. Schmidt-Schau�. Subsumption in KL-ONE is undecidable. In R. J.

Brachman, editor, Proceedings of the 1st International Conference on

Principles of Knowledge Representation and Reasoning, pages 421{431,

Toronto, Ont., 1989.

60

