Aachen University of Technology
Rm Research group for
Theoretical Computer Science

LTCS—Report

The Complexity of Reasoning with Concrete
Domains (Revised Version)

Carsten Lutz

LTCS-Report 99-01

This is an extended version of the article in: Proceedings
of IJCAI-99, Stockholm, Sweden, July 31-August 6, Morgan
Kaufmann Publ. Inc., San Mateo, CA, 1999

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

The Complexity of Reasoning with Concrete
Domains (Revised Version)

Carsten Lutz
RWTH Aachen, LuFg Theoretical Computer Science
Ahornstr. 55, 52074 Aachen

July 21, 1999

Abstract

Description logics are knowledge representation and reasoning for-
malisms which represent conceptual knowledge on an abstract logical
level. Concrete domains are a theoretically well-founded approach to
the integration of description logic reasoning with reasoning about
concrete objects such as numbers, time intervals or spatial regions. In
this paper, the complexity of combined reasoning with description log-
ics and concrete domains is investigated. We extend ALC(D), which
is the basic description logic for reasoning with concrete domains, by
the operators “feature agreement” and “feature disagreement”. For
the extended logic, called ALCF (D), an algorithm for deciding the
ABox consistency problem is devised. The strategy employed by this
algorithm is vital for the efficient implementation of reasoners for de-
scription logics incorporating concrete domains. Based on the algo-
rithm, it is proved that the standard reasoning problems for both
logics ALC(D) and ALCF (D) are PSPACE-complete - provided that
the satisfiability test of the concrete domain used is in PSPACE.

1 Introduction

Description logics are formalisms for reasoning about conceptual knowledge
on an abstract level. However, for a variety of applications, it is essential

to integrate the abstract knowledge with knowledge of a more concrete na-
ture. Examples of such “concrete knowledge” include all kinds of numerical
data as well as temporal and spatial information. Important application ar-
eas which have been found to depend on integrated reasoning with concrete
knowledge are, e.g., mechanical engineering [7], reasoning about aggregation
in databases [10], reasoning with physical laws [21] as well as temporal and
spatial reasoning (see [16] and [24]). Description logic systems like, e.g.,
CLAssIC, KRZS, and TAXON (see [11], [8], and [2], resp.), provide more or
less elaborated interfaces that allow the attachment of external reasoning fa-
cilities which are capable of dealing with concrete information. Surprisingly,
the complexity of combined reasoning with abstract and concrete knowledge
has, to the best of our knowledge, never been formally analyzed and provably
optimal algorithms have not been developed. Recent efficient implementa-
tions of expressive description logics like FACT (see [20]) concentrate on
logics for which reasoning is “empirically tractable”. The starting point for
developing these efficient implementations are usually algorithms which are
optimal w.r.t. worst case complexity. One important reason why these sys-
tems fail to integrate concrete knowledge is that no complexity results and
no efficient algorithms are available.

Baader and Hanschke [6] introduce concrete domains as an approach to
integrated reasoning with abstract and concrete knowledge. They define the
basic description logic ALC (D), which can be parameterized with a concrete
domain D. A concrete domain defines a set of concrete objects and predicates
over these objects. Baader and Hanschke prove that the standard reasoning
problems concept satisfiability, concept subsumption and ABox consistency
are decidable for the logic ALC(D) if an “admissible” concrete domain D
(i.e., D fulfills a certain set of requirements) is used. However, to the best
of our knowledge, the exact complexity of reasoning with ALC(D) has never
been formally analyzed. The logic ALC(D) uses features (single-valued roles)
to establish the connection between the abstract and the concrete domain.
It does not, however, include two of the basic operators on features called
feature agreement and feature disagreement. These operators first appeared
in ALCF, which is the basic extension of ALC with features [19].

In this paper, two issues are treated: First, ALC(D) is extended with the
feature agreement and feature disagreement operators yielding the new logic
ALCF (D), which is a combination of ALC(D) and ALCF. Algorithms for
deciding the concept satisfiability and ABox consistency problems for this
logic are devised and their soundness and completeness is proved. The main

strategy employed by the algorithms is to divide the concrete domain sat-
isfiability test into polynomial chunks. This technique is vital for efficient
implementations of description logics incorporating concrete domains. Sec-
ond, the complexity of reasoning with ALCF(D) and ALC(D) is examined
and a tight complexity bound is established. Since deciding ABox consis-
tency involves a satisfiability check for the concrete domain, the complexity
of the combined formalism depends on the complexity of reasoning in the
concrete domain. It is proved that concept satisfiability, concept subsump-
tion and ABox consistency are PSPACE-complete for the description logics
ALC(D) and ALCF (D), provided that the complexity of the concrete do-
main satisfiability test is in PSPACE. A lower complexity cannot be achieved
since reasoning in ALC, which is a proper subset of ALC(D), ALCF, and
ALCF (D), is already PSPACE-complete. The complexity results show that
the proposed algorithms are optimal.

2 The Description Logic ALCF(D)

In this section, the description logic ALCF(D) is introduced. The logic
ALCF(D) extends ALC(D), as given in [6], by the operators feature agree-
ment and disagreement (see [19]). First, concrete domains need to be defined.

Definition 1. A concrete domain D is a pair (Ap, Pp), where Ap is a set
called the domain, and ®p is a set of predicate names. Each predicate name
P from ®p is associated with an arity n and an n-ary predicate PP C A%.
A concrete domain D is called admissible iff (1) the set of its predicate
names is closed under negation and contains a name Tp for Ap and (2) the
satisfiability of finite conjunctions of predicates is decidable.

On the basis of concrete domains, the syntax of ALCF (D) concepts can be
formally introduced.

Definition 2. Let C, R, and F be disjoint sets of concept, role, and feature
names'. A composition of features ffs---fn is called a feature chain. Any
element of C is a concept (atomic concept). If C' and D are concepts, R is a
role or feature, P € ®p is a predicate name with arity n, and uy, ... ,u, are
feature chains, then the following expressions are also concepts:

'In the following, the notion role (feature) is used synonymously for role name (feature
name).

e —(C (negation), C M D (conjunction), C' U D (disjunction),
VR.C (value restriction), JR.C (exists restriction),

e Juy,...,u,.P (predicate operator)

e uiluy (feature agreement), wu;fus (feature disagreement).

Please note that a simple feature can be viewed as a feature chain of length
one. The predicate operator is written as P(uq,...,u,) in [6]. For a fea-
ture chain v = fy---f,, Ju.C and Vu.C will be used as abbreviations
for 3f1....3f,.C and Vf;....Vf,.C, respectively. ALC(D) concepts are
ALCF(D) concepts in which neither the feature agreement nor the feature
disgreement operator appears. ALCF concepts are ALCF(D) concepts in
which the predicate operator does not appear.

As usual, a set theoretic semantics is given. The semantics for ALCF(D)
is a combination of the semantics for ALC(D) and ALCF.

Definition 3. An interpretation T = (Az,-%) consists of a set Az (the ab-
stract domain) and an interpretation function -Z. The sets Ap and Az must
be disjoint. The interpretation function maps

e cach concept name C to a subset C7 of Az,

e cach role name R to a subset RT of Az x Az,

e and each feature name f to a partial function fZ from Az to Ap U Az,
where f%(a) = z will be written as (a,z) € f~.

If u=fy---f} is a feature chain, then u” is defined as the composition f7 o
...ofF of the partial functions f7,..., f%. Let the symbols C, D, R, P, and
U1, ... ,u, be defined as in Definition 2. Then the interpretation function can
be extended to complex concepts as follows:

(Cn D) :=cCc*nD*
(CuD):=ctuD?*
(_|C)I = AI\ CI
(AR.C) :={a € Az|3b e Az: (a,b) € R"Nb € CT}

(VR.C)F :={a € Az |Vb: (a,b) € RT = be CT}
(Fuy, ..., u,.P)Yr :={a € Az |Fzy,..., 7, € Ap:
(a,71) €l A---A(a,2,) € ul A (24,...,2,) € PP}

(urdug)’ :={a € Az |3b € Az: (a,b) € ul A(a,b) € ul}
(UlTUQ)I = {a € AI | Elbl, b2 S AII b1 7£ bQ A
(a,b1) € ul A (a,by) € ul}

An interpretation Z is a model of a concept C iff CT # (). A concept C is
satisfiable iff there exists a model Z of C. A concept C' subsumes a concept
D (written D < C) iff D C C7 for all interpretations Z.

In the presence of negation, subsumption can be reduced to satisfiability
since D < (' iff the concept D M —C' is unsatisfiable.

Please note that the feature agreement and feature disagreement opera-
tors consider only objects from Az and no objects from Ap. If agreement
and disagreement over concrete objects is desired, a concrete domain which
includes an equality predicate has to be used. Feature agreement and dis-
agreement over concrete objects, only, may then be expressed as Juq, us. =
and Juq, ug. #, respectively. This can also be disjunctively combined with
the feature agreement and disagreement operators to obtain “global” agree-
ment and disagreement over both domains. Global agreement is expressed
by the concept uiluy LI Juy, us. = and global disagreement is expressed by
urTug U Fug, ug. # U (Ju. T M Jue.Tp) U (Jue. T M Fuy. Tp), where T
is an abbreviation for A M —A.2

In ALCF, the additional operator u?l (feature undefinedness) is intro-
duced [19]. Tts semantics is

(ut)f :={a € Az |-3b € Az: (a,b) € u’}.

We do not consider this operator since it is obviously just syntactic sugar for
Vu.L U Ju.Tp. Next, the assertional formalism is introduced.

Definition 4. Let Op and O4 be disjoint sets of object names. Elements
from Op are called concrete objects while Elements from O4 are called ab-
stract objects. If C'is a concept, R a role or feature name, f a feature name,

’In fact, feature agreement and disagreement could also have been defined to take into
account both abstract and concrete objects. This would have led to a language with exactly
the same expressivity but would have made some technical issues more complicated. For
example, the definition of a concrete domain D to be admissible would have had to be
extended: ®p would also be required to include an equality predicate. This approach was
not followed because global agreement and disagreement are not considered to be very
“natural” operators.

P a predicate name with arity n, a and b are elements of O4 and z, and z1,
. ,x, are elements of Op, then the following expressions are assertional az-
10mMS.

a:C, (a,b):R, (a,z):f, a#b, (x1,...,7,):P

A finite set of assertional axioms is called an ALCF(D) ABoz. An in-
terpretation for the concept language can be extended to the assertional
language by mapping every object name from O, to an element of Az
and every object name from Op to an element of Ap. The unique name
assumption is not imposed, i.e. aZ = b% may hold even if o and b are
distinct object names. An interpretation satisfies an assertional axiom

a:C iff of € C7,
(a,b):R iff (a”,b%) € RT,
(a,z):f iff (af,2%) € f7,
a#b iff of #b%,
(z1,...,2,): P iff (2F,...,2%) € PP.

An interpretation is a model of an ABox A iff it satisfies all assertional axioms
in A. An ABox is consistent iff it has a model.

An object b is called a successor of an object a in an ABox A iff A contains
an assertional axiom (a, b): R, where R is a role or feature.

An ALC(D) ABox is an ALCF(D) ABox in which only ALC(D) concepts
are used. Analogously, an ALCF ABox is an ALCF(D) ABox in which only
ALCF concepts are used.

Satisfiability of concepts, as introduced in Definition 3, can be reduced
to ABox consistency since a concept C' is satisfiable iff the ABox {a: C} is
consistent.

3 A Completion Algorithm

In this section, a completion algorithm is devised which can be used to decide
the consistency of ALCF (D) ABoxes. Completion algorithms, which are also
known as tableau algorithms, are characterized by a set of completion rules
and a strategy to apply these rules to the assertional axioms of an ABox.
The algorithm starts with an initial ABox A4, whose consistency is to be

decided. As noted before, if only the satisfiability of a single concept C
is to be checked, the special ABox {a : C'} is considered. The algorithm
repeatedly applies completion rules that add new axioms, and, by doing so,
it makes all knowledge that is implicitly contained in the ABox explicit. If
the algorithm succeeds to construct an ABox A, which is complete (i.e., to
which no more completion rules are applicable) and which does not contain an
obvious contradiction, then A, defines a canonical model for Ay. Otherwise,
Ap does not have a model. In fact, things are a little more difficult due to
the presence of so-called branching rules. The application of a completion
rule to an ABox A yields one or more succeeding ABoxes (descendants of A).
The rules for which more than one descendant per application is obtained
are called branching rules. In the presence of branching rules, a completion
algorithm creates a tree of ABoxes. Again, if a complete ABox is found which
does not contain a contradiction, then this ABox defines a canonical model
for Ao.

In [19], it is proved that reasoning with ALCF is PSPACE-complete. A
completion algorithm is employed for the proof. To the contrary, the com-
plexity of reasoning with ALC (D) is yet unknown. Baader and Hanschke pro-
pose a completion algorithm for deciding the consistency of ALC (D) ABoxes
without analyzing its complexity [6]. This algorithm is discussed in the fol-
lowing section.

3.1 Analyzing Baader and Hanschke’s algorithm

In [6], Baader and Hanschke define a completion algorithm (from now on
called “BHA”) in order to demonstrate decidability of the consistency prob-
lem for ALC(D) ABoxes. The algorithm applies completion rules until a
complete ABox is found (keeping the whole ABox in memory) and then
performs a concrete domain satisfiability check on all axioms of the form
(z1,...,2,): P (concrete domain arioms) found during the rule application
process. As will be discussed in this section, BHA may in the worst case
generate ABoxes which are exponential in the size of the initial ABox.

A formal notion of “size” will be introduced later. For now, consider the
size of a concept C' to be the number of operators in C', and the size of an
ABox A to be the sum of the sizes of all concepts used in assertional axioms
in A. When used with ABoxes that contain concepts according to the follow-
ing schema, BHA generates a complete ABox that is exponential in the size of

the original ABox.

3R.C N 3R.D
M VR.(3R.C M 3R.D)

M VR".(3R.C N 3R.D)

Here, VR™ denotes n nested value restrictions over R. ABoxes can be seen
as graphs where role successor relationships are edges and objects are nodes.
In this sense, all models (complete ABoxes) that are generated by BHA
are trees. Please note that concepts following the given schema are also
satisfied by a cyclic (non-tree) model with only 2 domain objects. This is,
however, not a general phenomenon. Halpern and Moses [17] show that for
the modal logic K, there exist formulae that have models of exponential size
only. Since it is well-known that the logic K, is a notational variant of ALC
([30]), these formulae can be directly translated into ALC(D) concepts. On
the other hand, Schmidt-Schaufl and Smolka show that for the logic ALC
(as for a number of other logics), algorithms can be devised which use only
polynomial space for exploring exponentially sized models by performing
depth-first search over the role successors and keeping only a “trace” of an
ABox in memory [31]. If this technique is to be applied to ALC(D) or
ALCF (D), an additional problem arises. BHA requires that all concrete
domain axioms appearing in a complete ABox A are conjoined into one big
conjunction and then checked for concrete domain satisfiability. The concepts
obtained from the translation of the K formulae given by Halpern and Moses
can easily be extended such that each abstract domain object in every model
is in the extension of a concept of the form Juy,...,u,.P. Hence, there
are also exponentially many concrete domain axioms to be collected. It is
obvious that any algorithm following this strategy needs exponential space
in the worst case.

In the following, it will be shown that it is not necessary to collect all
concrete domain axioms at once: The concrete domain satisfiability check can
be partitioned into polynomial chunks which do not interact, i.e, which do not
share any variables. In the next section, a tableau algorithm is developed that
does exactly this. Only a polynomial trace of the ABox is kept in memory,
and, furthermore, the concrete domain satisfiability check is broken down into
independent, polynomial chunks. This algorithm is then used to prove that
deciding ALCF (D) ABox consistency is PSPACE-complete provided that the

8

concrete domain satisfiability test is in PSPACE.

3.2 A PSpACE Algorithm

The algorithm for deciding the consistency of ALCF (D) ABoxes is developed
in two steps. First, an algorithm sat for deciding concept satisfiability is
devised. Afterwards, an algorithm ABox-cons is developed which is capable
of deciding the consistency of ALCF(D) ABoxes.

Sat takes a concept C as input. C has to be in negation normal form, i.e.,
negation is allowed only in front of atomic concepts. Conversion to NNF can
be done by exhaustively applying appropriate rewrite rules to push negation
inwards.?

Lemma 5. Let D be an admissible concrete domain. Let C, D be ALC(D)
concepts, R a role, f a feature, P an n-ary predicate in ®p, and uq, ..., u,
feature chains. For a feature chainu = f1--- fi, set

)\(U) = Hfl.TD L HflfQ.T'D ... u Hfl v fk_l.TfD
The following transformations preserve equivalence of concepts:

-(CND)=-CU-D ~(CUD)=—-CN-D --C=C
~(VR.C) = 3R.-C —~(3R.C) = VR.—C
~(Vf.0) = 3f~CU3f.Tp —=(3fC) = Vf~CUIf.To
=(Jug,. .., up.P) = Juy, ..., uy. P UV T U... UV, T
LA (ug) U U A (ug)
—(urdus) = w1 Tus U Juy. Tp U Jue. Tp UVuy. L L Vuy. L
LA (ug) U A(ug)
—(urtTug) = urdus U Tuy. Tp U Fue. Tp UVuy. L U Vuy. L
LA (ug) U A(ug)

By applying the above rules, any ALCF(D) concept can be converted into
an equivalent concept in NNF in linear time.

In order to keep the further considerations simple, nondeterministic com-
pletion rules are used instead of branching rules. This means that in a

3In [6], the rewrite rule concerning the predicate operator is erroneous. This observation
is due to Anni-Yasmin Turhan.

branching situation, the algorithm does not explore all of the given possi-
bilities but just a single one. It is not specified which possibility is chosen.
Thus, the described completion algorithm is a nondeterministic decision pro-
cedure. Such an algorithm accepts its input (i.e. returns consistent), if there
is any way to make the nondeterministic decisions such that a positive result
is obtained (i.e., a complete and non-contradictory ABox is found). A conve-
nient way to think of nondeterministic rules is that they “guess” the “right”
descendant, i.e., if there is a descendant which, if chosen, leads to a complete
and non-contradictory ABox, then this descendant is in fact considered.

To decide the satisfiability of the concept C, sat starts with the initial
ABox Ay := {0: C'} and then repeatedly applies completion rules. First, the
set, of completion rules is defined.

3.2.1 The Ruleset

To define the rules in a succinct way, the two functions succy and chain 4
are introduced.

For an object a € O4 and a feature chain wu, succ4(a,u) denotes the
object b that can be found by following u starting from a in the ABox A.
If no such object exists, succ4(a, u) denotes the special object € that cannot
be part of any ABox. An object name a € O, is called fresh in an ABox A
if @ is not used in A. Let a be an object from O 4, be an object from Op,
and u = f1--- fr be a feature chain. The function chain is defined as follows:

Chain.A(aa T,y U) = {(aa Cl) :fla SRR (Ck—la I) fk}
where the ¢, ..., c,_1 € O4 are distinct and fresh in A.

An ABox A is said to contain a fork (for a feature f) if it contains the two
axioms (a, b):f and (a, ¢):f or the two axioms (a,z):f and (a,y):f, where
b and c are from O4 and x and y are from Op. A fork can be eliminated by
replacing all occurrences of ¢ in A with b, or by replacing all occurrences of x
in A with y, respectively. During rule application, it is assumed that forks are
eliminated as soon as they appear (as an integral part of the rule application)
with the proviso that newly generated object are replaced by older ones and
not vice versa. Now, the set of completion rules can be formulated.

Definition 6. The following completion rules replace a given ABox A non-
deterministically by an ABox A'. A’ is called a descendant of A. In the
following, C' and D denote a concept, R a role, f a feature, P a predicate

10

name from ®p with arity n, uq, ... ,u, feature chains, a and b object names
from Oy, and zq,...,x, object names from Op.

RM The conjunction rule.
Premise: a:CND e A, {a:C,a:D}Z A
Consequence: A'=AU{a:C, a:D}

Rl The (nondeterministic) disjunction rule.
Premise: a:CUD € A, {a:C, a:D}NA=10
Consequence: A'=AU{a:C} v A'=AU{a:D}

RridC The role exists restriction rule. X
Premise: a:3R.C € A, —3b € O4: {(a,b):R, b:C} C A
Consequence: A" = AU{(a,b):R, b:C} where b € Oy is fresh in A.

Rf3IC The feature exists restriction rule (may create forks).
Premise: a:3f.C € A, =3b € O04: {(a,b):f, b:C} C A
Consequence: A" = AU {(a,b):f, b:C} where b € O4 is fresh in A.

RrVC The role value restriction rule. X
Premise: a:VR.C € A, 3b € O4: (a,b):R€e AND:C ¢ A
Consequence: A'= AU {b:C}

RfVYC The feature value restriction rule.
Premise: a:VR.C € A, 3b € O4: (a,b): fE AND:C ¢ A
Consequence: A'= AU {b:C}

RAP The predicate exists restriction rule (may create forks).
Premise: a:3uq,...,u,.P € A,—3z,...,2, € Op:
(succa(a,ur) =z1 A ... Asuccq(a, uy) =z, A
(z1,...,2,): P € A)
Consequence: Co := AU {(z1,...,2,): P}
where the z; € Op are distinct and fresh in A.
Cy := chaing,(a, 1, u1), ... ,Cy = chaing, (a, Ty, uy)

AI = Ui:O...n C’l

R] The agreement rule (may create forks).
Premise: a:ulus € A,

—3b € O4: (succa(a, uy) = succy(a, ug) = b)
Consequence: C = AU chain 4(a, b, u;) where b € Oy4 is fresh in A.

11

A" = C U chainc(a, b, us)

Rt The disagreement rule (may create forks).

Premise: a:ujTus € A, —3by, by € O4: (succy(a,ur) = by A
succ(a, ug) = by ANby # by € A)

Consequence: C = AU chain 4(a, by, uq)
A" = CU chainc(a, by, us) U {by # be}
where the by, by € O4 are distinct and fresh in A.

Rule applications that generate new objects are called generating. All other
rule applications are called non-generating. All applications of the Rr3C
rule are generating. Application of the rules Rf3C, RAP, RJ, R1 are usually
generating but may be non-generating if fork elimination takes place.

The ruleset is identical to the one used for BHA with three exceptions:
(i) The rule RU is nondeterministic; this serves the purpose of making our
further considerations simpler; (ii) the rules Rr3C and Rf3C, as well as RrVC
and RIVC, respectively, are unified in a single rule in Baader and Hanschke’s
ruleset; in our setting, it is more convenient to separate the rules since in the
satisfiability algorithm to be defined, rule application to axioms of the form
(a,x):f, where f is a feature, occurrs at a different time than rule applications
to axioms (a,b): R, where R is a role; (iii) there are two new rules for dealing
with feature agreement and disagreement, see [19]. A formalized notion of
contradictory and complete ABoxes needs to be introduced.

Definition 7. Let the same naming conventions be given as in Definition 6.
An ABox A is called concrete domain satisfiable if there exists a mapping d
from Op to Ap, such that A, . e (6(21),...,d(zn)) € PP is true in D.
An ABox A is called contradictory if it is not concrete domain satisfiable or
one of the following clash triggers is applicable. If none of the clash triggers
is applicable to an ABox A, then A is called clash-free.

e Primitive clash: a:C € A, a:-C € A
e Feature domain clash: (a,z):f € A, (a,b):f € A
e All domain clash: (a,z):f € A, a:¥f.C € A

e Agreement clash: a #a € A
An ABox to which no completion rules are applicable is called complete.

In the following section, the satisfiability algorithm is described.

12

3.2.2 The Satisfiability Algorithm

The satisfiability algorithm makes use of two auxiliary functions which will
be described only informally. The function apply takes two arguments which
are an ABox A and a completion rule r. It applies 7 once to arbitrary axioms
from A matching r’s premise and returns the new axioms generated by the
rule application. The function satisfiable?” takes as arguments a concrete
domain D and a set C of concrete domain axioms. It returns yes if the
conjunction of all axioms in C is satisfiable w.r.t. D and no otherwise. Assume
that the satisfiability of a concept C'is to be decided. Using the two auxiliary
functions just defined, the satisfiability algorithm sat can be specified as
follows.

Definition 8. The function sat can be used to decide the satisfiability of
ALCF (D) concepts in NNF. To decide the satisfiability of the concept C,
sat takes the input {o: C'}.

define procedure sat(.A)
A’ := feature-complete(A)
if A’ contains a clash then
return inconsistent
C:={ae A |«aisof the form (zy,...,2,): P}
if satisfiable?(D,C) = no then
return inconsistent
forall a:3R.D € A', where R is a role, do
Let b be an object name from O 4.
if sat({b: D} U {b: E | a:YR.E € A'}) = inconsistent then
return inconsistent
return consistent

define procedure feature-complete(.A)
while a rule r from {RM, RU, RAC, RIVC, RAP, R|, Rt}
is applicable to A do
A= AU apply(A,r)

return A

We will now informally describe the strategy followed by sat. A formal proof
of its soundness and completeness will be given in Section 4. The argu-
ment of sat is an ABox containing exactly one object a € O4. Sat uses

13

the feature-complete function to create all feature successors of a, all fea-
ture successors of these feature successors and so on. Sat thus considers a
cluster of objects which are related by features, only. If the resulting ABox
is interpreted as a graph (see Section 3.1), the cluster is a directed acyclic
graph with a single root a. Afterwards, a recursive call is made for each role
successor of any object in the cluster. This strategy was first employed for
ALCF reasoning algorithms (see [19]). Each cluster is checked separately for
contradictions and concrete domain satisfiability. It will later be shown that
this is equivalent to the strategy used by Baader and Hanschke’s algorithm.
For each recursive call, sat generates an ABox which contains all axioms for
the respective successor. Please note that the generation of the new ABox
corresponds to an application of the Rr3C rule and finitely many applications
of the RrvVC rule. Sat is called recursively for the newly generated ABox.

To summarize, sat is a recursive function following a “trace” of object
clusters. Based on the sat algorithm, an algorithm for deciding ABox consis-
tency can be defined.

3.2.3 The ABox Consistency Algorithm

The algorithm ABox-cons, which is introduced in this section, can be used to
decide the consistency of ALCF (D) ABoxes. The algorithm takes an ABox
A as input, where all concepts appearing in A have to be in NNF. ABox-cons
reduces the ABox consistency to concept satisfiability. It first performs pre-
processing on the input ABox, then constructs a set of “reduction concepts”
and finally checks their satisfiability using sat.

Definition 9. The algorithm ABox-cons which can be used to decide the
consistency of ALCF (D) ABoxes is defined as follows.

define procedure ABox-cons(.A)

eliminate forks in A (see Definition 6)
A := preprocess(.A)
C:={a e A|aisof the form (z,,...,z,): P}
if A contains a clash then

return inconsistent
if satisfiable?(D,C) = no then

return inconsistent
forall a:3R.C € A, where R is a role, do

Let b be an object name from O 4.

14

if sat({b:(C M (M,.vp peaD))}) = inconsistent then
return inconsistent
return consistent

define procedure preprocess(.A)
while a rule r from {RM, RLI, RrvVC, Rf3C, RfYC, RIP, R|, R1}
is applicable to A, do
A= AU apply(A,r)

return A

Again, an informal description of the algorithm is given. The preprocess-
ing is performed by the function preprocess, which is very similar to the
feature-complete function used by sat. The rule set used by preprocess is
identical to that used by feature-complete, except that the RrVC rule is also
applied. This is necessary because in the initial ABox Ajg, there may already
be axioms of the form (a,b): R, where R is a role. After the resulting ABox,
which is called preprocessing complete, has been checked for contradictions
and concrete domain satisfiability, it is sufficient to separately check all suc-
cessors of objects in the preprocessing complete ABox for consistency. This
is done by constructing a set of “reduction concepts” and using sat to decide
their consistency. Please note that concept construction corresponds to the
application of the Rr4C and RrVC rules. Regarding preprocessing on ABoxes
with the goal to reduce ABox consistency to concept satisfiability, see also
[18] and [9].

The correctness of the reduction implemented by ABox-cons is proved in
the next section.

4 Correctness and Complexity

In this section, it is proved that both the satisfiability algorithm and the
consistency algorithm are sound and complete and that they can be exe-
cuted using only polynomial space provided that the satisfiable? function can
also be executed in polynomial space. Starting from this result, it will be
straightforward to prove that deciding the consistency of an ALCF(D) ABox
is a PSPACE-complete problem provided that the satisfiability test for the
concrete domain D is in PSPACE. Sat and ABox-cons are considered sepa-
rately.

15

4.1 The sat Algorithm

First, some basic definitions are necessary. To characterize space require-
ments, a formal notion for the size of an ABox is given.

Definition 10. The size ||C|| of a concept C is defined inductively. Let C
and D be concepts, A an atomic concept, R a role or feature, v = f1---f; a

feature chain, and let uq, ..., u, also be feature chains.
1Al =1 fo---fell =k
[1c{m, U} D[] = ||C]| + || D] +2 I=Cl = |C]]
[Bur, . un Pl = [[ua]] 4+ [lual[+1 [{Y, F}R.C| = ||C]| +1
[lurdus|| = [[ua]|+ |[uz]] [luiTual] = [[ua]] + [[uz]] +1

The size of an axiom « is ||C|| if « is of the form z: C and 1 otherwise. The
size of an ABox A is the sum of the sizes of all axioms in A.

Please recall that sat is a nondeterministic algorithm, i.e., the sat yields a
positive result if there is any way to make the nondeterministic decisions such
that a positive result is obtained. A way to make the nondeterministic corre-
sponds to a run of the algorithm. Correctness of the satisfiability algorithm
can be proved by showing that (1) whenever there is a sat run returning
consistent, then the initial ABox Ay = {a: C'} has a model, (2) whenever all
possible sat runs are returning inconsistent, then Ay cannot have a model,
and (3) sat terminates on any input {a: C'}, i.e., all possible runs are of
finite length. For doing so, it is convenient to define a sequence of ABoxes
AP, AL ... that is associated with a given run of the satisfiability algorithm.
The ABoxes A, collect all axioms that the sat algorithm generates during
the run. Each ABox A’ is obtained by the application of a single rule to the
ABox A" Tt will be shown that if sat terminates after n rule applications
returning consistent, then the ABox A, defines a canonical model for Ay.

When defining A?,, we must cope with the following technical problem:
The object names created by sat are unique only within the ABox considered
in a single recursion step. This means that we must ensure that an object x
in one recursion step can be distinguished from z in another step since these
two objects are not identical. To achieve this, objects used in axioms are
renamed before the axioms are added to an ABox A?,. For this purpose, the
object names are indexed with the value of a counter sc, which counts the
(recursive) calls to the sat function.

16

rc = sc:=0

define procedure sat(.A)

* *

* X X X

A’ := feature-complete(.A)
if A’ contains a clash then
return inconsistent
C:={ae A |aisof the form (zy,...,2,): P}
if satisfiable?(D,C) = no then
return inconsistent
forall a:3R.D € A', where R is a role, do
sc:=sc+1
rc:=rc+1
Let b be an object name from O 4.
AT = AU {(age—1, bye) : R} U {bye: D}
forall o € A’ of the form a:VR.E do
rc:=rc+1
Ar¢ = A U {bye: E'}
if sat({b: D} U {b:E | a:YR.E € A'}) = inconsistent then
return inconsistent
return consistent

define procedure feature-complete(.A)

* X X X X K

while a rule r from {RM, RLI, RfFC, RYC, R3P, R|, R1}
is applicable to A do
N = apply(A,r)
A=AUN
rc:=rc+1
forall « € N do
forall a € O4 (and all x € Op) used in « do
Replace each occurrence of a (resp. x)
in « with a,. (resp.)
Are .= A U {a}

return A

Figure 1: The annotated sat algorithm.

17

Let Ay = {a: C} be the ABox that is initially passed to sat. We set
AL = {ap : C} for any sat run with A, as initial argument. For i > 0,
Al is defined recursively by the annotated version of the sat algorithm given
in Figure 1. The annotations are marked with asterisks. The annotated
version introduces the two global variables sc and rc, which are assumed to
be initialized with the value 0. The first one is a counter for the number of
calls to the sat function. The second one counts the number of rules that have
been applied. Please note that the annotated version of sat is defined just
to prove the correctness of the original version. It is by no means intended
to be used as an algorithm for deciding the satisfiability of concepts, neither
do we claim that the annotated version itself can be executed in polynomial
space. The following Lemma, is needed for proving the correctness of the sat
algorithm.

Lemma 11. Let Ay be an input to the sat function. Fir a run 7 of sat on
Ao Let A%, AL, ... be the sequence of ABozes that is associated with 7. If
the run T terminates then this sequence is of finite length n. In this case, let

Ay denote the ABox Al,.

1. Let A be an ABox. For each completion rule r that can be applied to
A, we have that A has a model if and only if one of the descendants of
A has a model.*

2. If T terminates and returns inconsistent, then Ay does not have a
model.

3. If T terminates and returns consistent, then A, has a model.
4. Sat terminates on any input.

The four claims of the Lemma are proved separately:

(1) One direction is trivial: Since all descendants A" generated by rule
application are supersets of their ancestor A, it follows immediately that
each model of A’ is also a model of A. The other direction depends on the
respective rule and is straightforward in most cases. A formal proofis omitted
since the rules used by the sat algorithm have been used in [6] and [19] and

“In case of the nondeterministic rule RU, there are two possible descendants. For all
other rules, there is only a single descendant.

18

the property in question (“local correctness”) follows from the correctness
proofs for the algorithms that can be found in the referred papers.®

(2) The run 7 of sat returns inconsistent if and only if an ABox A is
considered which either contains a clash or is not concrete domain satisfiable.
In the former case, A, does also contain a clash; in the latter case, A
cannot be concrete domain satisfiable. This follows trivially from the fact
that we have A C A, modulo object renaming. The rest of the proof is
straightforward, again. It suffices to show that no interpretation can satisfy
an ABox to which a clash trigger is applicable or which is not concrete domain
satisfiable.

(3) First, the following Lemma needs to be established.

Lemma 12. If a sat run 7 returns consistent, then A, is complete, clash-
free, and concrete domain satisfiable.

Proof: In the following, the i ’th recursion step of 7 means the recursion step
in which the counter sc has the value i. We say that ¢ calls j if in the ¢’th
recursion step of 7, a recursive call is made in which the counter sc has the
value j. Please note that j =7+ 1 does not need to hold.

e completeness. Assume that there exists a set C of axioms from A,
to which a completion rule r is applicable. It will be shown that a
contradiction can be derived from this assumption. A case analysis
according to the rules has to be made. First assume the rule r to be
from {RM, R, RfAC, Rr3C, R3P, R, R1}. In this case, C has the form
{a; : C}. From the construction of Ay, it follows that there exists
an axiom a = a: C that either is created by feature-complete during
the 7’th recursion step or that is contained in the ABox which is the
argument to the i’th recursion step of 7. The latter case happens if
either o is the axiom from the initial ABox Ay and 7 = 0 or if o was
introduced by the implicit application of RrdC and RrVC during a j’th
recursion step of 7, where j calls . In all of the cases mentioned, r
is checked for applicability to an ABox A containing « during the i’th
recursion step. If r is RraC, this is done by sat itself; in the other cases,
this is done by feature-complete. Assume first that r is not applicable

5To be precise, the rules presented in this paper differ in two points from those given
in [6], as was discussed in Section 3.2.1. It is obvious that these two differences (nonde-
terminism of RU and separateness of Rr3C/Rf3C and RrVC/R{VC) do not influence local
correctness.

19

to a in A. This can only be the case if the axioms appearing in the
consequence of the rule are already part of A. But since we have
A C Ay modulo object renaming, this would clearly contradict the
assumption that r is applicable to C in A,. Now assume that r is
applied to a in A during the i’th recursion step. This means that the
axioms appearing in the consequence of the rule are in A, (modulo
object renaming). This again contradicts the assumption.

The remaining cases for RfVC and RrvVC can be proved similarly. C now
contains the additional axiom (a;,b;): f or (a;,biig): R, respectively,
where f is a feature and R a role. Each axiom (az, b;):f in Ay corre-
sponds to an axiom (a,b): f that was introduced by feature-complete
during the ¢’th recursion step to an ABox A. Each axiom (a;, b;1x) 'R
in A, corresponds to an axiom (a,b) : R that was introduced by an
implicit application of the Rr3C rule during recursion step ¢. Having
established these facts, contradiction proofs exactly analogous to the
one given above can be employed.

clash-freeness. Assume that A contains a clash. A case distinction
according to the clash types need to be made. Since the cases are very
similar, only one case will be discussed exemplarily: A, contains an
all domain clash if it contains two axioms (a;,z;) : f and a; : Vf.C.
The axiom (a;, x;): f corresponds to an axiom (a,x):f introduced by
feature-complete during the i’th recursion step of 7. The axiom a;:Vf.C
corresponds to an axiom a:Vf.C that was introduced (i) during the i’th
recursion step by feature-complete or (ii) by the implicit application of
the RrVC or Rr3C rule during a recursion step j, where j calls 4, or (iii)
that is the axiom contained in the initial ABox Ay and we have i = 0.
In any case, an ABox A containing both (a,z) : f and a: Vf.C' was
checked for the applicability of clash triggers during the 7’th recursion
step of 7. But this means that the run 7 terminated with the result
inconsistent which is a contradiction.

concrete domain satisfiability. Assume that there exists a set C C Ay
of axioms of the form (Xi,...,X,): P, where each X; denotes a con-
crete object x; used in C, such that the corresponding conjunction of
concrete domain predicates is unsatisfiable. Axioms of the above form
are introduced during rule application by feature-complete, only. From
this follows that in any axiom (Xi,...,X,): P from C, all objects

20

Xi,..., X, have the same index, i.e., if X; = x, and X; = y;, then
k = 1. This means that C can be divided into subsets Cy,...,C, such
that the sets C; are mutually disjoint, we have C = C; U --- U Cj, and,
furthermore, all concrete objects appearing in a set C; have the same
index. From a solution of the predicate conjunctions corresponding to
the sets Cy, ..., Ck, a solution for the predicate conjunction correspond-
ing to C can easily be constructed. Fix a set C;. Let j be the index of
the concrete objects appearing in C;. Let X be the set of axioms that
is checked for concrete domain satisfiability in the j’th recursion step
of 7. By definition of Ay, we have C; C X. From the fact that the
run 7 returned consistent, it follows that X and hence also C; is con-
crete domain satisfiable. Since this argument holds for alli =1...k, a
contradiction to the assumption is obtained.

We now return to the proof of the third claim of Lemma 11. Based on A,
an interpretation Z can be defined as follows:

1.
2.
3.
4.

Az consists of all objects in O4 that occur in A;,
If A is a concept name then a € AT iff a: A € A_.
If R is a role or feature name then (a, b) € R iff (a,b): R € A_.

Because there Ay is concrete domain satisfiable (Lemma 12 Point 3),
there is a variable assignment o that satisfies the conjunction of all
occurring axioms (1, ...,2,): P. So we set z¥ = a(z) for all z € Op.

It remains to be proven that Z is a model for A,. The proof is by induction
over the size of axioms of the form a: C in A, and makes a case distinctions
according to the topmost operator in C'. A prerequisite for the proof is that
the ABox Ay, which was used to construct the interpretation Z, is complete,
clash-free and concrete domain satisfiable, which is assured by Lemma 12.
Most cases are already treated in [6], so we only deal with the two remaining
cases, which belong to the induction start.

e Let o be a: uyluy;. Since the R] rule is not applicable, there is an

object b € O, for which we have both u?(a?) = b7 and uZ(a?) = b*.
Hence, T satisfies a.

21

e Let a be a:u;Tuq. Since the R1 rule is not applicable, there are objects
b1, by € Oy for which we have u?(a?) = b and uZ(a”) = bZ. Since the
agreement clash is not applicable, b7 is distinct from b2, and, hence, T
satisfies a.

(4) To finish the proof of Lemma 11, the termination of sat needs to be
proven. Termination is a consequence of the following claims:

(i) feature-complete terminates on any input.
(ii) The recursion depth of sat is bounded.
(iii) In each recursion step, only a finite number of recursive calls are made.

Claim (iii) is obvious. Both (i) and (ii) will be proved by a lemma which es-
tablish an even stronger result. The stronger result will be helpful in proving
the polynomial space-complexity of sat. The following Lemma settles claim

(i).

Lemma 13. For any input ABox A, the function feature-complete termi-
nates and constructs an ABox A’ for which we have ||A']| < ||A|]” + ||A]|.

Proof: The upper bound for the size of A’ given in the Lemma is a conse-
quence of the following two points:

1. feature-complete generates no more than || A|| new axioms.
2. For each axiom «a, we have ||a|| < ||A]l.

Please note that axioms are never deleted which is the reason for the second
summand. The second point is obvious, but the first one needs to be proven.
Termination of feature-complete directly follows from this first point as well.
The rules Rr3C and RrVC will not be considered since they are not applied
by feature-complete. For all other completion rules, the most important ob-
servation is that they can be applied at most once per axiom a: C. This is
also true for axioms a:Vf.C' and the RfVC rule since there is at most one
successor per feature and object. Because of this, we make the simplifying
assumption that the premise of the RfVC rule does only contain the axiom
a:Vf.C but no axiom (a,b):f, i.e., that it is applied to every axiom of the
first form regardless if there is an axiom of the second form or not. This may
result in too high an estimation of the number of generated axioms but not

22

in one that is too low. Since in our simplified view, every completion rule
is applied to exactly one axiom, we may proof the first point from above by
showing that, for each axiom « in A, no more than ||a|| axioms are generated
by feature-complete. This will be done in the following.

No new axioms are generated for axioms of the form (a,b): R, (a,z):f,
a # b, and (z1,...,z,): P since they do not appear in the premise of any
completion rule (please recall the simplification we made about RfVC). The
remaining axioms are of the form a: C. For these axioms, the property in
question can be proven by induction on the structure of C.

For the induction start, let C' be Juq,..., u,.P, uilus, uiTuo, EIRC,
V}?.C, or an atomic concept. In any of these cases, it is trivial to verify
that at most ||C|| new axioms may be generated. For the induction step, we
need to make a case distinction according to the form of C'. Let C be of the
form D M E. The application of the RN rule generates two axioms a: D and
a: E. By induction hypothesis, from these two axioms, at most ||D|| and
||E|| axioms may be generated, respectively. Hence, from a:D M E, at most
||D||+||E||+2 = ||D M E|| new axioms may be generated. The remaining
cases D LI E, 3f.C, and Vf.C are analogous. Because of the simplifying
assumptions made, universal quantification over features does not need a
special treatment. .

Claim (ii) of the above list follows from the next Lemma which concludes
the termination proof for sat.

Lemma 14. For any input Ay, the recursion depth of sat is bounded by
[Ao

Proof: The role depth of a concept C' is the maximum nesting depth of exists
and value restrictions in C.% The role depth of an ABox A is the maximum
role depth of all concepts occurring in A. As an immediate consequence of
the way in which the input ABoxes of recursive calls are constructed, we
have that the role depth of the arguments ABoxes strictly decreases with
recursion depth (note that rule application performed by feature-complete
cannot increase the role depth). It follows that the role depth of the initial
ABox Aj is an upper bound for the recursion depth, and, by definition of
|| - ||, this number is clearly smaller than ||.A4,]|. .

SE.g., the concept IR.C' M VS.(D M IR.C) has role depth 2.

23

The proof of Lemma 11 is now complete. The Lemma plays a central role in
the proof of the following proposition.

Proposition 15. The sat algorithm is sound, complete and terminates on
any input.

Proof: By definition of nondeterministic algorithms, the application of the
sat algorithm to an ABox A, gives the result consistent iff there is a run of
sat on Ay which returns consistent. As shown in parts 2 and 3 of Lemma 11,
a sat run defines a model for the corresponding ABox A, if and only if the
run returns consistent. First assume that there is a run of sat which returns
consistent. By part 1 of Lemma 11, there also exists a model for A,. Now
assume that all runs of sat return inconsistent. In this case, it follows from
part 1 of Lemma 11 that Ay cannot have a model since there is a run for
every combination of nondeterministic choices that can be made during rule
application. .

Having proved its correctness, the complexity of the sat algorithm can now
be analyzed. Since the most important results have already been established,
this can be done straightforwardly.

Proposition 16. For any input Ay, sat can be executed in space polynomial
in || Aol|, provided that this also holds for the function satisfiable?.

Proof: Sat is a recursive function. Let us first analyze the maximum size
of arguments that are passed to sat in recursion calls. The argument to sat
is an ABox which contains axioms of the form a: C' for a single object a.
Since no new concepts are generated during rule application, there can be
at most as many axioms of this form per single object as there are distinct
concepts and subconcepts appearing in Ag. Considering the definition of
|| - ||, it is easy to see that this number can be at most ||Ap||. Furthermore,
the size of any axiom is at most ||Ap||. It follows that the maximum size
of arguments given in a recursion call is ||Ao||. Using feature-complete,
the argument ABox is extended by new axioms. Combining the argument
size just obtained with Lemma 13, we find that the maximum size of ABoxes
constructed during recursion calls is ||Ao||* + || Ap||*. Lemma 14 gives us that
the recursion depth is bounded by ||.4||, and, hence, sat can be executed in
[14o]I” + || Ao||* space. .

24

4.2 The ABox-cons Algorithm

In this section, the correctness of the ABox-cons algorithm will be established
and its complexity analyzed. ABox-cons reduces ABox consistency to concept
satisfiability as follows. It performs preprocessing on A, then constructs a
set of “reduction concepts” and finally calls sat once for each concept in this
set.

We start with proving the correctness. First, a basic notion is introduced.
An ABox A that was completed by rule application through the preprocess
function is called preprocessing complete. If A, is preprocessing complete
and A C A, then A, is a preprocessing completion of A.

Proposition 17. The ABox-cons Algorithm is sound, complete, and termi-
nates on any input.

Proof: Since preprocess applies the nondeterministic completion rule RLI,
there may be more than one preprocessing completion for a given ABox A.
By definition of nondeterministic algorithms, the ABox-cons algorithm gives
the result consistent for an ABox Ay iff one of the possible runs of ABox-cons
on Ay returns consistent. Hence, to prove the soundness and completeness
of ABox-cons, it has to be shown that (i) an ABox A has a model iff one of
its preprocessing completions has a model and (ii) the reduction to concept
satisfiability is sound and complete. This will be done in the following.

The next Lemma establishes point (i). It is an immediate consequence of
the local correctness of the completion rules (Lemma 11, part 1).

Lemma 18. Let A be an ABox. A has a model iff one the preprocessing
completions A, of A has a model.

Next, point (ii) is proved. In the “for” loop of ABox-cons, a concept C
(reduction concepts of A,) is generated for each axiom of the form a: 3R.D
in A4,. These concepts are then one by one passed to the sat function. It
needs to be shown that a preprocessing complete ABox has a model if and
only if all of the reduction concepts have a model.

Proposition 19 (Soundness). Let Z be a model for a preprocessing com-
plete ABox A,. Then, all reduction concepts C4,...,C, of A, do also have
a model.

Proof: C; has the form C r Dynm. .M D, for1 < z;g n. This means that in
A,, there are axioms a:3R.C, a:VR.Dy, ..., a:VR.Dj. By the semantics of

25

the exists and value restriction, there exists a domain object x € Az, such
that z € C* and x € DI, ..., z € D. T is obviously an interpretation for
C; and we have x € C?. Hence, T is a model for C;. .

Let C' be a reduction concept. C is created because of the existence of a
concept a:3R.D in A, and then passed to sat as part of an ABox {b: C'}.
The object b is called the root object of C and denoted by robj(C). The
object a is denoted by cobj(C) and the role R by role(C).

Proposition 20 (Completeness). Let A, be an ABoz which is preprocess-
ing complete and concrete domain satisfiable and does not contain a clash. If
there are models I, . .., I, for all reduction concepts Cy,...,C, of Ay, then
A, does also have a model.

Proof: The proposition will be proved by showing that from the preprocessing
complete ABox A, together with the models 7,,...,Z, for the reduction
concepts Cf,...,C,, a model Z for A, can be constructed. Without loss of
generality, it is assumed that Az, N---N Az, N{a € O4 | a used in A,} = 0.
If this is not the case, it can be achieved by consistently renaming the domain
objects used in Zy,...,Z,. The interpretation Z is defined as follows.

e Azisset to Az, U---UAz, U{a € O4 | a used in A4,}.

e For atomic concepts A, AT :=,_, , A% U Upscy, @

e For roles RA? RAI = Ui:l,...,n\ﬁ:mle(ci){(ACObj(Ci)v TOb](Cl)L)} U
Ui:l,...,n R* U U(OI,OQ)ZREAP{(01702)}'

e For features f, ff(a) :=z iff Fi € {1,...,n}: ffi(a) :=z or (0,7):f €
Ap.

e For object names a € O4 used in A,, a® := a.

e Since A4, is concrete domain satisfiable, there is a mapping ¢ from Op
Ap such that A\, . pes (6(71),...,6(zn)) € PP is true in D. 27 is
set to §(z).

It remains to prove that 7 is a model of A,. First consider axioms from A,
which are of the form a:3R.C (where R is a role): By definition of ABox-cons,
there is a reduction concept C; with root object b, such that (a”,b?) € RT.
Since Z; is a model for b: C;, by construction of Z we have b € CZ.

26

Now consider axioms of the form a:VR.C (with R role). If there is also
an axiom a: 3R.D in A,, then there is a reduction concept C; with root
object b, such that (aZ,b%) € RZ. By construction of the reduction concepts
and of Z, we have ¥ € DZ. For each axiom (a,b): R in A,, RrVC has been
applied. Since there is no primitive clash in A,, b is in CZ.

To show that the remaining axioms in A, are also satisfied by Z, an
inductive proof over the size of the axioms, which is identical to the one
employed in Lemma 11, part 3, can be used. .

To complete the proof of Proposition 17, termination of ABox-cons has to be
proven. This is part of the following Proposition which also treats the space
requirements of ABox-cons.

Proposition 21. Started on an ABox A, ABox-cons terminates and needs
space polynomial in ||A||, provided that the the function satisfiable? can also
be executed in polynomaial space.

Proof: It was already proven that the sat algorithm terminates and can be
executed in polynomial space if the function satisfiable? can be executed in
polynomial space (Propositions 15 and 16). Thus, it remains to show that
the preprocess function terminates and that for any ABox A, the size ||A'||
of A’ := preprocess(.A) is polynomial in ||.4]|. For this proof, it is crucial that
the preprocess function is identical to the feature-complete function except
that preprocess does also apply the RrVC rule. It will be shown that the
presence of this additional rule yields only “slightly” more axioms. In the
following, objects are called old if they are used in A and new if they are
used in A" but not in A.

Consider applications of the RrVC rule performed by preprocess. It is an
immediate consequence of the following two observations that the number of
RrvC applications is bounded by ||A|[*:

o If RrVC is applied to axioms a:VR.C and (a,b): R, then b is an old
object. This is the case since preprocess does not apply Rr3C, and,
hence, no new axioms of the form (a,b) : R, where R is a role, are
generated. Furthermore, there are at most ||A|| old objects.

e RrVC creates only axioms of the form b: C', which are not already part
of the ABox. For any object b, there may exist at most one axiom b: C'
per concept C used in A (including all subconcepts). The number of
(sub)concepts in A is bounded by ||A||, and, hence, there can be at
most ||A|| axioms of the form b: C' per object b.

27

The size of each axiom a: C is again bounded by [|A||. Tt follows that the
total size of axioms added by RrVC applications performed by preprocess is
bounded by ||A|[>.

Second, consider the application of all other rules. These are exactly
the rules applied by feature-complete. Together with the upper bound for
the number of RrvVC applications, this immediately gives us termination. If
feature-complete is applied to an ABox A, then the size of the resulting ABox
is bounded by ||A|]” + ||A|| (Lemma 13). To establish an upper bound for the
size of the ABox A’ obtained from a call topreprocess, the additional axioms
generated by RrVC need to be taken into account. It was just proved that
the size of these axioms is at most ||.A||>. Thus, an upper bound for ||A'[| is
given by the application of feature-complete to an ABox of size ||.A|| + ||A]|[*.
Summing up, ||A|| is bounded by ||A]|® +||A|* + ||A|]* + ||.A]|- .

4.3 PSprACE-Completeness

Using the results from the last two sections, proving PSPACE-completeness
of ACLCF(D) ABox consistency is straightforward.

Theorem 22. Provided that the satisfiability test of the concrete domain D
15 in PSPACE, the following problems are PSPACE-complete:

1. Consistency of ACCF (D) ABozes.
2. Consistency of ALC (D) and ALCF ABozes.
3. Satisfiability and subsumption of ALCF (D) concepts.

4. Satisfiability and subsumption of ALC (D) concepts.

Proof: First, point 1 is proven. In [31] it is proved that satisfiability for ALC
concepts is PSPACE-complete. Since ALC is a proper subset of ALCF (D),
deciding the consistency of ALCF (D) ABoxes is PSPACE-hard. It remains
to be shown that it is also in PSPACE if the concrete domain satisfiability
test is in PSPACE. But this directly follows from Proposition 21 together
with the well-known fact that PSPACE = NPSPACE [29].

Point 3 is a consequence of the observation that satisfiability as well as
subsumption can be reduced to ABox consistency (see Section 2).

28

Points 1 and 2 hold since reasoning with ALC is PSPACE-hard and ALC
is a proper subset of both ALC(D) and ALCF which are in turn a proper
subsets of ALCF (D). .

The next corollary makes a statement about the complexity of reasoning with
concrete domains for which the satisfiability test is not in PSPACE.

Corollary 23. Let the satisfiability test of the concrete domain D be in a
complexity class X with PSPACE C X. Then, subsumption, satisfiability and
ABozx consistency for the logics ALC(D) and ALCF (D) are in X .

The next section gives some examples of interesting concrete domains,
for which the satisfiability check is in PSPACE.

5 Suitable Concrete Domains

In this section, some examples of concrete domains, for which the satisfiability
test is in PSPACE, are given. This demonstrates that the results developed
in the preceding sections are useful since there are in fact interesting concrete
domains which allow to exploit the lower complexity bound found.

As proposed in [24], ALC(D) (and hence also ALCF(D)) can be used
for temporal reasoning when instantiated with an appropriate concrete do-
main. Since different temporal ontologies can be used as a basis for temporal
reasoning, the definition of various temporal concrete domains is possible.
Allen’s interval algebra (see [3], [23]) provides an appropriate formalization
if intervals are used as the basic temporal entity. This formalism employs
a set of 13 base relations describing all possible relationships between two
(time) intervals. These relations are known as Allen’s relations. In the fol-
lowing, a set of concrete domains supporting reasoning with Allen’s relations
is defined.

Definition 24. Let (P,<) be a linear, unbounded, and dense temporal
structure, where P is a set of time points and < is a strict linear order on
P. The concrete domain Z(p .y is defined as follows. As the domain Az, _,,
the set of intervals {(/,7) € P x P |l < r} is used. For an interval i € Zip
with i = (I,7), we define [(i) = [and r(i) = 7. The set &z, _, contains
the following predicates (we will in the following omit the index (P, <) for
brevity):

29

e a unary predicate is-interval which yields true for every element in Az;
its negation is-no-interval; a predicate inconsistent-relation of arity 2
which is always false.

e for each of Allen’s 13 relations, a predicate of arity 2 (basic predicates).
The predicates are defined by specifying relationships between interval
endpoints as usual:

i1,i9) € equal® iff I(i
(1, 2) q (1)
i1,1) € before® iff 1(i
(1, 2) f (2)
(i1,1) € after® iff [(iy) —
(i1,42) € meets™ iff 1(iy) — (zl) 0
(i1,12) € overlaps™ iff 1(iy) —
(i1,12) € overlapped-by™ iff I(i1) —
(i1,19) € during® iff 1(i,) —

)
)
)
0
(i1,19) € contains® iff 1(iy) — I(i1) > 0 A r(iy) — I(iy) > O A
0
)
)

1)
(iy,d9) € starts™ iff 1(iy) — 1(iy) = 0 Ar(iy) — (i) > 0
(i1,19) € started-by® iff 1(iy) — 1(i1) = 0 A7(iy) — r(iz) > 0
(iy,d9) € finishes™ iff r(iy) — r(iy) = 0 AL(iy) — I(iy) > 0
(i1,49) € finished-by™ iff r(iz) — r(i1) = 0 Al(iy) — I(iy) > 0

e for each distinct set {Ry,...,R,} of Allen’s relations, an additional
predicate of arity 2 is defined (combined predicates). The predicate has
the name R;-----R, and we have (i1,iy) € Ry ---R, T iff (i1,iy) € Ry
or ... or (iy,iy) € R,%. In total, there are 213 — 14 of these combined
relations.

As an example of combined predicates, please consider the predicate after-
before. A pair of intervals (iy,is) is in after-before? iff (iy,iy) € after? or
(i1,i2) € before’. As an example of the modeling of temporal concepts using

30

Project

planning realisation

Planning | Realisation
|
| |

Figure 2: Visualization of the Project concept

ALCF(I), consider the following concepts:

Project = Interval M
dplanning. Planning M Jrealization. Realization M
A(planning o time), (time).starts 1
A(realization o time), (time).ends I

A(planning o time), (realization o time).meets

The Project concept gives the formalization of a project on a very coarse
level. The project can be devided into the two disjunctive phases “planning”
and “realization”. Please see Figure 2 for a visualization of this concept.

To use Z as a concrete domain for ALCF(D), the admissibility of Z has
to be shown.

Proposition 25. The concrete domain I is admissible.

Proof: Tt has to be shown that (i) ®7 is closed under negation and (ii) the
satisfiability of finite conjunctions of predicates from Z is decidable.

(i) Allen’s relations are mutually exclusive and exhaustive, i.e. exactly one
of Allen’s relations holds between any two intervals ¢; and i,. Given this, it
is easy to verify that ®7 is closed under negation: Let A be the set of Allen’s
13 base relations. For any predicate R;-----R, with 1 < n < 13, we have
that the negation of Ry-----R, is Si- - - -Sg, where {Si, ..., Sk} is defined as
A\{Ry,...,R,}. The predicate S;-----Si is obviously in ®7. Note that the
negation of the predicate representing the disjunctive combination of all 13
base relations is inconsistent-relation and vice versa.

31

(ii) Deciding the satisfiability of a finite conjunction of predicates from
7 can be reduced to checking the satisfiability of a temporal constraint net-
work. In the following, a decision procedure will be described and its com-
plexity determined. A temporal constraint network (TCN) is defined as a set
{ter (18,30, L ten (517, ign).)}, where each #c; is a disjunction RV - -V R
of Allen’s relations and the ig-l) are interval variables. Let a finite conjunction
C=pmp (:1:51), . ,xq(lll)) A== Apg (xgk), . ,a;SZ?) of predicates from ®7 be given.
Its satisfiability can be determined as follows:

o If for any ¢ = 1,...,k, p; is either is-no-interval or inconsistent-
relation, then return unsatisfiable.

e Forie {1,...,k},if p; = is-interval, remove the i’th conjunct.

e Translate the remaining conjunction C’' (which contains only binary
predicates) into a TCN N as follows: The set V' of interval variables
used in N is the set of variables used in C'. For each conjunct p;(z1, z2)
from C’, do the following. The predicate p; has the form R~ ---R,.

1. If there is no constraint tc(xy,z3) in N, then add Ry V ---V
R, (x1,25) to N.

2. If there is already a constraint tc(zi,z5) in N where tc = R}V
-V R! then let S be defined as {R},..., R, }N{Ry,...,R,}. If

S = (), then return inconsistent. Otherwise, remove the existing
constraint and add Sy V ---V Sj(xq,xs), where {Sy,...,S5} =S.

e For all pairs (z1,25) € V, for which there is no constraint tc(xq, x2) in
N, add a constraint cov(zy,xs), where cov is the disjunction of all 13
base relations.

e Check the satisfiability of the TCN N and return the result.

Testing the satisfiability of temporal constraint networks of the given form
is an NP-complete problem if the full set of relations is allowed [33]. The
correctness of the procedure is easily seen. .

32

Hence, 7 is an admissible concrete domain and the standard reasoning prob-
lems for ALCF(Z) are PSPACE-complete.

Some comments about the temporal logic ALCF(Z) are in order. We give
a brief comparison to a temporal description logic defined by Artale and Fran-
coni. In ALCF(T), the structure of time has to be modeled in the logic itself.
This is called an internal representation of time as opposed to an external
representation, where the structure of time is an integral part of the seman-
tics [14]. The latter approach is taken in temporal logic and is also pursued
by the description logic TL-ALCF [4]. TL-ALCF is a temporal description
logic for reasoning about eternal objects that have properties changing over
time. Quite to the contrary, ALCF(Z) most adequately supports reasoning
about objects which have static properties but a unique temporal extension.
Please note that neither ALCF(Z) nor TL-ALCF allows universal quan-
tification about Allen’s relations. See [16] for a description logic which is
capable of doing this. Artale and Franconi [5] give an extensive overview
over the various approaches to the definition of temporal description logics.

In the remainder of this section, we give a brief discussion of some more
concrete domains. An important approach to qualitative spatial reasoning
uses a set of 8 topological relations called RCC-8. These relations can be
used to describe the relationships of two arbitrary regions in n-dimensional
space (see [28] and [13]). A concrete domain S, for reasoning with the RCC-8
relations about regions in the plane can be defined exactly analogous to the
definition of Z. A formal definition can be found in [16]. The satisfiability
test for this spatial concrete domain is also in NP.

A further source for concrete domains for which deciding satisfiability is in
PSPACE are the areas of linear programming and constraint programming.
Linear programming itself is a polynomial problem [32]. This means that
linear equalities and inequalities over the rational numbers may be used as
predicates of a concrete domain and that the complexity of reasoning with
the combined language remains in PSPACE. If the integers are used instead
of the rationals, techniques from integer programming can be employed for
the concrete domain satisfiability test. In this case, the (concrete domain)
satisfiability test is in NP [15, problem MP1], hence reasoning with the
combined formalism is in PSPACE.

A concrete domain for which satisfiability is not in PSPACE is e.g. R
as defined in [6]. The domain of R is the set of all real numbers while the
predicates of this concrete domain are given by formulae built by first order
means from equalities and inequalities between integer polynomials. It was

33

proved that deciding the satisfiability of such expressions is an EXPSPACE-
complete problem [25].

6 Conclusion

In this paper, the description logic ALCF (D) was introduced. ALCF(D)
extends ALC(D) by feature agreement and disagreement and is hence a
conglomeration of the logics ALC(D) and ALCF. Algorithms for decid-
ing the satisfiability of ALCF (D) concepts and for deciding the consistency
of ACLCF(D) ABoxes were devised and it was shown that these algorithm
are sound and complete and can be executed in polynomial space if this is
also the case for the concrete domain satisfiability test. From this result, it
was derived that the standard reasoning problems concerning concept sub-
sumption, concept satisfiability and ABox consistency are PSPACE-complete
for the description logics ALC(D) and ALCF(D) - provided that the con-
crete domain satisfiability test is in PSPACE. If the satisfiability test is in
a higher complexity class X, then the mentioned problems are also in X.
As an important contribution, the completion algorithm demonstrates how
to split the concrete domain satisfiability check into chunks of polynomial
size. This is a vital prerequisite for efficient implementations of languages
incorporation concrete domains.

Acknowledgments

I would like to thank Ulrike Sattler for stoicism and countless discussions
and Franz Baader for enlightening discussions and helpful comments. The
work in this paper was supported by the “Foundations of Data Warehouse
Quality” (DWQ) European ESPRIT IV Long Term Research (LTR) Project
22469.

References

[1] Proceedings of the Ninth National Conference on Artificial Intelligence
AAAI-91, Anaheim, California, July 14 - 19, 1991. AAAI-Press/The
MIT Press, Menlo Park — Cambridge — London, 1991.

34

2]

(6]

[10]

A. Abecker, D. Drollinger, and P. Hanschke. Taxon: A concept lan-
guage with concrete domains. In PDK ’91: Proc. of the International
Workshop on Processing Declarative Knowledge, Kaiserslautern, 1991.

J. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26(11), 1983.

A. Artale and E. Franconi. A temporal description logic for reason-

ing about actions and plans. Journal of Artificial Intelligence Research
(JAIR), (9), 1998.

A. Artale and E. Franconi. Temporal description logics. In L. Vila, P. van
Beek, M. Boddy, M. Fisher, D. M. Gabbay, A. Galton, and R. Morris,
editors, Handbook of Time and Temporal Reasoning in Artificial Intel-
ligence. MIT Press, To appear.

F. Baader and P. Hanschke. A scheme for integrating concrete domains
into concept languages. In Mylopoulos and Reiter [27], pages 452-457.
Ausfiihrliche Fassung erschienen als DFKI Research Report RR-91-10,
Kaiserslautern.

F. Baader and P. Hanschke. Extensions of concept languages for a me-
chanical engineering application. In Proceedings of the 16th German
AI-Conference, GWAI-92, volume 671 of Lecture Notes in Computer
Science, pages 132-143, Bonn (Germany), 1993. Springer—Verlag.

F. Baader and B. Hollunder. KRIS: Knowledge representation and in-
ference system. SIGART Bulletin, 2(3):8-14, 1991. Special Issue on
Implemented Knowledge Representation and Reasoning Systems.

F. Baader and B. Hollunder. A terminological knowledge representa-
tion system with complete inference algorithms. In H. Boley and M. M.
Richter, editors, Processing Declarative Knowledge — Proc. of the In-
ternational Workshop PDK’91, volume 567 of Lecture Notes in Artifi-
cial Intelligence, pages 67-86, Kaiserslautern, Germany, July 1-3, 1991.
Springer-Verlag, Berlin — Heidelberg — New York, 1991.

F. Baader and U. Sattler. Description logics with concrete domains and
aggregation. In H. Prade, editor, Proceedings of the Thirteenth Furopean
Conference on Artificial Intelligence ECAI-98, Brighton, August 23-28,
1998. John Wiley & Sons, New York, 1998.

35

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Borgida, R. J. Brachman, D. I.. McGuiness, and L. Alpern Resnick.
CLASSIC: A structural data model for objects. In Proc. 1989 ACM
SIGMOD International Conference on Management of Data, pages 59—
67, Portland, OR, 1989.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti-
ficial Intelligence, (49):61-95, 1991.

M. Egenhofer. Reasoning about Binary Topological Relations. In
O. Giinther and H.-J. Schek, editors, Advances in Spatial Databases, Sec-
ond Symposium, SSD’91, Zurich, Aug. 28-30, 1991, volume 525 of Lec-
ture Notes in Computer Science, pages 143-160. Springer-Verlag, Aug.
1991.

M. Finger and D. M. Gabbay. Adding a temporal dimension to a logic
system. Journal of Logic Language and Information, 1:203-233, 1992.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

V. Haarslev, C. Lutz, and R. Moller. A description logic with concrete
domains and role-forming predicates. Journal of Logic and Computation,

9(3), 1999.

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54(3):319—
380, 1992.

B. Hollunder. Algorithmic Foundations of Terminological Knowledge
Representation Systems. PhD thesis, Universitat des Saarlandes, 1994.

B. Hollunder and W. Nutt. Subsumption algorithms for concept lan-
guages. DFKI Research Report RR-90-04, Deutsches Forschungszen-
trum fiir Kiinstliche Intelligenz, Kaiserslautern, 1990.

[. Horrocks. Using an expressive description logic: Fact or fiction? In
A. Cohn, L. Schubert, and S.C.Shapiro, editors, Principles of Knowledge
Representation and Reasoning — Proc. of the Sixth International Con-
ference KR’98, pages 636647, Trento, Italy, June 2-5, 1998. Morgan
Kaufmann Publ. Inc., San Francicso, CA, 1998.

36

[21] G. Kamp and H. Wache. CTL - a description logic with expressive
concrete domains. Technical Report LKI-M-96/01, Labor fiir Kiinstliche
Intelligenz, Universitat Hamburg, Germany, 1996.

[22] H. A. Kautz and P. B. Ladkin. Integrating metric and qualitative tem-
poral reasoning. In AAAI [1], pages 241-246.

[23] P. B. Ladkin and R. D. Maddux. On binary constraint problems. Journal
of the ACM, 41(3):435-469, 1994.

[24] C. Lutz, V. Haarslev, and R. Moller. A concept language with role-
forming predicate restrictions. Technical Report FBI-HH-M-276/97,
University of Hamburg, Computer Science Department, Hamburg, 1997.

[25] E. W. Mayr and A. R. Meyer. The complexity of the word problem for
commutative semigroups and polynomial ideals. Advanced Mathematics,
46:305-329, 1982.

[26] I. Meiri. Combining qualitative and quantitative constraints in temporal
reasoning. In AAAT [1], pages 260-267.

[27] J. Mylopoulos and R. Reiter, editors. Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intelligence IJCAI-91, Sydney,
Australia, August 24-30, 1991. Morgan Kaufmann Publ. Inc., San Ma-
teo, CA, 1991.

[28] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions
and connection. In B. Nebel, C. Rich, and W. Swartout, editors, Prin-
ciples of Knowledge Representation and Reasoning — Proc. of the Third
International Conference KR’92, pages 165-176, Cambridge, Mass., Oc-
tober 25-29, 1992. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1992.

[29] W. J. Savitch. Relationsship between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci., 4:177-192, 1970.

[30] K. D. Schild. A correspondence theory for terminological logics: Pre-
liminary report. In Mylopoulos and Reiter [27], pages 466-471. Auch
erschienen als KIT-Report 91, TU Berlin, Fachbereich Informatik.

[31] M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1-26, 1991.

37

[32] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chich-
ester, England, 1986.

[33] M. Vilain, H. Kautz, and P. Van Beek. Constraint propagation algo-
rithms for temporal reasoning: A revised report. In D. S. Weld and
J. de Kleer, editors, Readings in Qualitative Reasoning about Physical
Systems, pages 373-381. Kaufmann, San Mateo, CA, 1990.

38

