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Abstrat

Desription logis are knowledge representation and reasoning for-

malisms whih represent oneptual knowledge on an abstrat logial

level. Conrete domains are a theoretially well-founded approah to

the integration of desription logi reasoning with reasoning about

onrete objets suh as numbers, time intervals or spatial regions. In

this paper, the omplexity of ombined reasoning with desription log-

is and onrete domains is investigated. We extend ALC(D), whih

is the basi desription logi for reasoning with onrete domains, by

the operators \feature agreement" and \feature disagreement". For

the extended logi, alled ALCF(D), an algorithm for deiding the

ABox onsisteny problem is devised. The strategy employed by this

algorithm is vital for the eÆient implementation of reasoners for de-

sription logis inorporating onrete domains. Based on the algo-

rithm, it is proved that the standard reasoning problems for both

logis ALC(D) and ALCF(D) are PSpae-omplete - provided that

the satis�ability test of the onrete domain used is in PSpae.

1 Introdution

Desription logis are formalisms for reasoning about oneptual knowledge

on an abstrat level. However, for a variety of appliations, it is essential
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to integrate the abstrat knowledge with knowledge of a more onrete na-

ture. Examples of suh \onrete knowledge" inlude all kinds of numerial

data as well as temporal and spatial information. Important appliation ar-

eas whih have been found to depend on integrated reasoning with onrete

knowledge are, e.g., mehanial engineering [7℄, reasoning about aggregation

in databases [10℄, reasoning with physial laws [21℄ as well as temporal and

spatial reasoning (see [16℄ and [24℄). Desription logi systems like, e.g.,

Classi, KRIS , and Taxon (see [11℄, [8℄, and [2℄, resp.), provide more or

less elaborated interfaes that allow the attahment of external reasoning fa-

ilities whih are apable of dealing with onrete information. Surprisingly,

the omplexity of ombined reasoning with abstrat and onrete knowledge

has, to the best of our knowledge, never been formally analyzed and provably

optimal algorithms have not been developed. Reent eÆient implementa-

tions of expressive desription logis like FaCT (see [20℄) onentrate on

logis for whih reasoning is \empirially tratable". The starting point for

developing these eÆient implementations are usually algorithms whih are

optimal w.r.t. worst ase omplexity. One important reason why these sys-

tems fail to integrate onrete knowledge is that no omplexity results and

no eÆient algorithms are available.

Baader and Hanshke [6℄ introdue onrete domains as an approah to

integrated reasoning with abstrat and onrete knowledge. They de�ne the

basi desription logi ALC(D), whih an be parameterized with a onrete

domainD. A onrete domain de�nes a set of onrete objets and prediates

over these objets. Baader and Hanshke prove that the standard reasoning

problems onept satis�ability, onept subsumption and ABox onsisteny

are deidable for the logi ALC(D) if an \admissible" onrete domain D

(i.e., D ful�lls a ertain set of requirements) is used. However, to the best

of our knowledge, the exat omplexity of reasoning with ALC(D) has never

been formally analyzed. The logiALC(D) uses features (single-valued roles)

to establish the onnetion between the abstrat and the onrete domain.

It does not, however, inlude two of the basi operators on features alled

feature agreement and feature disagreement. These operators �rst appeared

in ALCF , whih is the basi extension of ALC with features [19℄.

In this paper, two issues are treated: First, ALC(D) is extended with the

feature agreement and feature disagreement operators yielding the new logi

ALCF(D), whih is a ombination of ALC(D) and ALCF . Algorithms for

deiding the onept satis�ability and ABox onsisteny problems for this

logi are devised and their soundness and ompleteness is proved. The main
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strategy employed by the algorithms is to divide the onrete domain sat-

is�ability test into polynomial hunks. This tehnique is vital for eÆient

implementations of desription logis inorporating onrete domains. Se-

ond, the omplexity of reasoning with ALCF(D) and ALC(D) is examined

and a tight omplexity bound is established. Sine deiding ABox onsis-

teny involves a satis�ability hek for the onrete domain, the omplexity

of the ombined formalism depends on the omplexity of reasoning in the

onrete domain. It is proved that onept satis�ability, onept subsump-

tion and ABox onsisteny are PSpae-omplete for the desription logis

ALC(D) and ALCF(D), provided that the omplexity of the onrete do-

main satis�ability test is in PSpae. A lower omplexity annot be ahieved

sine reasoning in ALC, whih is a proper subset of ALC(D), ALCF , and

ALCF(D), is already PSpae-omplete. The omplexity results show that

the proposed algorithms are optimal.

2 The Desription Logi ALCF(D)

In this setion, the desription logi ALCF(D) is introdued. The logi

ALCF(D) extends ALC(D), as given in [6℄, by the operators feature agree-

ment and disagreement (see [19℄). First, onrete domains need to be de�ned.

De�nition 1. A onrete domain D is a pair (�

D

;�

D

), where �

D

is a set

alled the domain, and �

D

is a set of prediate names. Eah prediate name

P from �

D

is assoiated with an arity n and an n-ary prediate P

D

� �

n

D

.

A onrete domain D is alled admissible i� (1) the set of its prediate

names is losed under negation and ontains a name >

D

for �

D

and (2) the

satis�ability of �nite onjuntions of prediates is deidable.

On the basis of onrete domains, the syntax of ALCF(D) onepts an be

formally introdued.

De�nition 2. Let C, R, and F be disjoint sets of onept, role, and feature

names

1

. A omposition of features f

1

f

2

� � � f

n

is alled a feature hain. Any

element of C is a onept (atomi onept). If C and D are onepts, R is a

role or feature, P 2 �

D

is a prediate name with arity n, and u

1

, : : : ,u

n

are

feature hains, then the following expressions are also onepts:

1

In the following, the notion role (feature) is used synonymously for role name (feature

name).
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� :C (negation), C uD (onjuntion), C t D (disjuntion),

8R:C (value restrition), 9R:C (exists restrition),

� 9u

1

; : : : ; u

n

:P (prediate operator)

� u

1

#u

2

(feature agreement), u

1

"u

2

(feature disagreement).

Please note that a simple feature an be viewed as a feature hain of length

one. The prediate operator is written as P(u

1

; : : : ; u

n

) in [6℄. For a fea-

ture hain u = f

1

� � � f

n

, 9u:C and 8u :C will be used as abbreviations

for 9f

1

: : : :9f

n

:C and 8f

1

: : : :8f

n

:C , respetively. ALC(D) onepts are

ALCF(D) onepts in whih neither the feature agreement nor the feature

disgreement operator appears. ALCF onepts are ALCF(D) onepts in

whih the prediate operator does not appear.

As usual, a set theoreti semantis is given. The semantis for ALCF(D)

is a ombination of the semantis for ALC(D) and ALCF .

De�nition 3. An interpretation I = (�

I

; �

I

) onsists of a set �

I

(the ab-

strat domain) and an interpretation funtion �

I

. The sets �

D

and �

I

must

be disjoint. The interpretation funtion maps

� eah onept name C to a subset C

I

of �

I

,

� eah role name R to a subset R

I

of �

I

��

I

,

� and eah feature name f to a partial funtion f

I

from �

I

to �

D

[�

I

,

where f

I

(a) = x will be written as (a; x ) 2 f

I

.

If u = f

1

� � � f

k

is a feature hain, then u

I

is de�ned as the omposition f

I

1

Æ

: : : Æ f

I

k

of the partial funtions f

I

1

; : : : ; f

I

k

. Let the symbols C , D , R, P , and

u

1

, : : : ,u

n

be de�ned as in De�nition 2. Then the interpretation funtion an

be extended to omplex onepts as follows:

(C u D)

I

:= C

I

\ D

I

(C t D)

I

:= C

I

[ D

I

(:C )

I

:= �

I

n C

I

(9R:C )

I

:= fa 2 �

I

j 9b 2 �

I

: (a; b) 2 R

I

^ b 2 C

I

g

(8R:C )

I

:= fa 2 �

I

j 8b : (a; b) 2 R

I

! b 2 C

I

g

(9u

1

; : : : ; u

n

:P)

I

:= fa 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

(a; x

1

) 2 u

I

1

^ � � � ^ (a; x

n

) 2 u

I

n

^ (x

1

; : : : ; x

n

) 2 P

D

g
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(u

1

#u

2

)

I

:= fa 2 �

I

j 9b 2 �

I

: (a; b) 2 u

I

1

^ (a; b) 2 u

I

2

g

(u

1

"u

2

)

I

:= fa 2 �

I

j 9b

1

; b

2

2 �

I

: b

1

6= b

2

^

(a; b

1

) 2 u

I

1

^ (a; b

2

) 2 u

I

2

g

An interpretation I is a model of a onept C i� C

I

6= ;. A onept C is

satis�able i� there exists a model I of C . A onept C subsumes a onept

D (written D � C ) i� D

I

� C

I

for all interpretations I.

In the presene of negation, subsumption an be redued to satis�ability

sine D � C i� the onept D u :C is unsatis�able.

Please note that the feature agreement and feature disagreement opera-

tors onsider only objets from �

I

and no objets from �

D

. If agreement

and disagreement over onrete objets is desired, a onrete domain whih

inludes an equality prediate has to be used. Feature agreement and dis-

agreement over onrete objets, only, may then be expressed as 9u

1

; u

2

: =

and 9u

1

; u

2

: 6=, respetively. This an also be disjuntively ombined with

the feature agreement and disagreement operators to obtain \global" agree-

ment and disagreement over both domains. Global agreement is expressed

by the onept u

1

#u

2

t 9u

1

; u

2

: = and global disagreement is expressed by

u

1

"u

2

t 9u

1

; u

2

: 6= t (9u

1

:> u 9u

2

:>

D

) t (9u

2

:> u 9u

1

:>

D

), where >

is an abbreviation for A u :A.

2

In ALCF , the additional operator u" (feature unde�nedness) is intro-

dued [19℄. Its semantis is

(u")

I

:= fa 2 �

I

j :9b 2 �

I

: (a; b) 2 u

I

g:

We do not onsider this operator sine it is obviously just syntati sugar for

8u:? t 9u:>

D

. Next, the assertional formalism is introdued.

De�nition 4. Let O

D

and O

A

be disjoint sets of objet names. Elements

from O

D

are alled onrete objets while Elements from O

A

are alled ab-

strat objets. If C is a onept, R a role or feature name, f a feature name,

2

In fat, feature agreement and disagreement ould also have been de�ned to take into

aount both abstrat and onrete objets. This would have led to a language with exatly

the same expressivity but would have made some tehnial issues more ompliated. For

example, the de�nition of a onrete domain D to be admissible would have had to be

extended: �

D

would also be required to inlude an equality prediate. This approah was

not followed beause global agreement and disagreement are not onsidered to be very

\natural" operators.
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P a prediate name with arity n, a and b are elements of O

A

and x , and x

1

,

: : : ,x

n

are elements of O

D

, then the following expressions are assertional ax-

ioms.

a :C ; (a; b) :R; (a; x) : f ; a 6= b; (x

1

; : : : ; x

n

) :P

A �nite set of assertional axioms is alled an ALCF(D) ABox. An in-

terpretation for the onept language an be extended to the assertional

language by mapping every objet name from O

A

to an element of �

I

and every objet name from O

D

to an element of �

D

. The unique name

assumption is not imposed, i.e. a

I

= b

I

may hold even if a and b are

distint objet names. An interpretation satis�es an assertional axiom

a :C i� a

I

2 C

I

;

(a; b) :R i� (a

I

; b

I

) 2 R

I

;

(a; x) : f i� (a

I

; x

I

) 2 f

I

;

a 6= b i� a

I

6= b

I

;

(x

1

; : : : ; x

n

) :P i� (x

I

1

; : : : ; x

I

n

) 2 P

D

:

An interpretation is amodel of an ABox A i� it satis�es all assertional axioms

in A. An ABox is onsistent i� it has a model.

An objet b is alled a suessor of an objet a in an ABox A i� A ontains

an assertional axiom (a; b) :R, where R is a role or feature.

An ALC(D) ABox is an ALCF(D) ABox in whih only ALC(D) onepts

are used. Analogously, an ALCF ABox is an ALCF(D) ABox in whih only

ALCF onepts are used.

Satis�ability of onepts, as introdued in De�nition 3, an be redued

to ABox onsisteny sine a onept C is satis�able i� the ABox fa :Cg is

onsistent.

3 A Completion Algorithm

In this setion, a ompletion algorithm is devised whih an be used to deide

the onsisteny of ALCF(D) ABoxes. Completion algorithms, whih are also

known as tableau algorithms, are haraterized by a set of ompletion rules

and a strategy to apply these rules to the assertional axioms of an ABox.

The algorithm starts with an initial ABox A

0

whose onsisteny is to be
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deided. As noted before, if only the satis�ability of a single onept C

is to be heked, the speial ABox fa : C g is onsidered. The algorithm

repeatedly applies ompletion rules that add new axioms, and, by doing so,

it makes all knowledge that is impliitly ontained in the ABox expliit. If

the algorithm sueeds to onstrut an ABox A



whih is omplete (i.e., to

whih no more ompletion rules are appliable) and whih does not ontain an

obvious ontradition, then A



de�nes a anonial model for A

0

. Otherwise,

A

0

does not have a model. In fat, things are a little more diÆult due to

the presene of so-alled branhing rules. The appliation of a ompletion

rule to an ABox A yields one or more sueeding ABoxes (desendants of A).

The rules for whih more than one desendant per appliation is obtained

are alled branhing rules. In the presene of branhing rules, a ompletion

algorithm reates a tree of ABoxes. Again, if a omplete ABox is found whih

does not ontain a ontradition, then this ABox de�nes a anonial model

for A

0

.

In [19℄, it is proved that reasoning with ALCF is PSpae-omplete. A

ompletion algorithm is employed for the proof. To the ontrary, the om-

plexity of reasoning withALC(D) is yet unknown. Baader and Hanshke pro-

pose a ompletion algorithm for deiding the onsisteny of ALC(D) ABoxes

without analyzing its omplexity [6℄. This algorithm is disussed in the fol-

lowing setion.

3.1 Analyzing Baader and Hanshke's algorithm

In [6℄, Baader and Hanshke de�ne a ompletion algorithm (from now on

alled \BHA") in order to demonstrate deidability of the onsisteny prob-

lem for ALC(D) ABoxes. The algorithm applies ompletion rules until a

omplete ABox is found (keeping the whole ABox in memory) and then

performs a onrete domain satis�ability hek on all axioms of the form

(x

1

; : : : ; x

n

) :P (onrete domain axioms) found during the rule appliation

proess. As will be disussed in this setion, BHA may in the worst ase

generate ABoxes whih are exponential in the size of the initial ABox.

A formal notion of \size" will be introdued later. For now, onsider the

size of a onept C to be the number of operators in C , and the size of an

ABox A to be the sum of the sizes of all onepts used in assertional axioms

in A. When used with ABoxes that ontain onepts aording to the follow-

ing shema, BHA generates a omplete ABox that is exponential in the size of

7



the original ABox.

9R:C u 9R:D

u 8R:(9R:C u 9R:D)

: : :

u 8R

n

:(9R:C u 9R:D)

Here, 8R

n

denotes n nested value restritions over R. ABoxes an be seen

as graphs where role suessor relationships are edges and objets are nodes.

In this sense, all models (omplete ABoxes) that are generated by BHA

are trees. Please note that onepts following the given shema are also

satis�ed by a yli (non-tree) model with only 2 domain objets. This is,

however, not a general phenomenon. Halpern and Moses [17℄ show that for

the modal logi K, there exist formulae that have models of exponential size

only. Sine it is well-known that the logi K

n

is a notational variant of ALC

([30℄), these formulae an be diretly translated into ALC(D) onepts. On

the other hand, Shmidt-Shau� and Smolka show that for the logi ALC

(as for a number of other logis), algorithms an be devised whih use only

polynomial spae for exploring exponentially sized models by performing

depth-�rst searh over the role suessors and keeping only a \trae" of an

ABox in memory [31℄. If this tehnique is to be applied to ALC(D) or

ALCF(D), an additional problem arises. BHA requires that all onrete

domain axioms appearing in a omplete ABox A are onjoined into one big

onjuntion and then heked for onrete domain satis�ability. The onepts

obtained from the translation of the K formulae given by Halpern and Moses

an easily be extended suh that eah abstrat domain objet in every model

is in the extension of a onept of the form 9u

1

; : : : ; u

n

:P . Hene, there

are also exponentially many onrete domain axioms to be olleted. It is

obvious that any algorithm following this strategy needs exponential spae

in the worst ase.

In the following, it will be shown that it is not neessary to ollet all

onrete domain axioms at one: The onrete domain satis�ability hek an

be partitioned into polynomial hunks whih do not interat, i.e, whih do not

share any variables. In the next setion, a tableau algorithm is developed that

does exatly this. Only a polynomial trae of the ABox is kept in memory,

and, furthermore, the onrete domain satis�ability hek is broken down into

independent, polynomial hunks. This algorithm is then used to prove that

deiding ALCF(D) ABox onsisteny is PSpae-omplete provided that the
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onrete domain satis�ability test is in PSpae.

3.2 A PSpae Algorithm

The algorithm for deiding the onsisteny of ALCF(D) ABoxes is developed

in two steps. First, an algorithm sat for deiding onept satis�ability is

devised. Afterwards, an algorithm ABox-ons is developed whih is apable

of deiding the onsisteny of ALCF(D) ABoxes.

Sat takes a onept C as input. C has to be in negation normal form, i.e.,

negation is allowed only in front of atomi onepts. Conversion to NNF an

be done by exhaustively applying appropriate rewrite rules to push negation

inwards.

3

Lemma 5. Let D be an admissible onrete domain. Let C;D be ALC(D)

onepts,

^

R a role, f a feature, P an n-ary prediate in �

D

, and u

1

; : : : ; u

n

feature hains. For a feature hain u = f

1

� � � f

k

, set

�(u) := 9f

1

:>

D

t 9f

1

f

2

:>

D

t : : : t 9f

1

� � � f

k�1

:>

D

The following transformations preserve equivalene of onepts:

:(C uD) =) :C t :D :(C tD) =) :C u :D ::C =) C

:(8

^

R:C) =) 9

^

R::C :(9

^

R:C) =) 8

^

R::C

:(8f:C) =) 9f::C t 9f:>

D

:(9f:C) =) 8f::C t 9f:>

D

:(9u

1

; : : : ; u

n

:P ) =) 9u

1

; : : : ; u

n

:P t 8u

1

:> t : : : t 8u

n

:>

t �(u

1

) t : : : t �(u

n

)

:(u

1

#u

2

) =) u

1

"u

2

t 9u

1

:>

D

t 9u

2

:>

D

t 8u

1

:? t 8u

2

:?

t �(u

1

) t �(u

2

)

:(u

1

"u

2

) =) u

1

#u

2

t 9u

1

:>

D

t 9u

2

:>

D

t 8u

1

:? t 8u

2

:?

t �(u

1

) t �(u

2

)

By applying the above rules, any ALCF(D) onept an be onverted into

an equivalent onept in NNF in linear time.

In order to keep the further onsiderations simple, nondeterministi om-

pletion rules are used instead of branhing rules. This means that in a

3

In [6℄, the rewrite rule onerning the prediate operator is erroneous. This observation

is due to Anni-Yasmin Turhan.
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branhing situation, the algorithm does not explore all of the given possi-

bilities but just a single one. It is not spei�ed whih possibility is hosen.

Thus, the desribed ompletion algorithm is a nondeterministi deision pro-

edure. Suh an algorithm aepts its input (i.e. returns onsistent), if there

is any way to make the nondeterministi deisions suh that a positive result

is obtained (i.e., a omplete and non-ontraditory ABox is found). A onve-

nient way to think of nondeterministi rules is that they \guess" the \right"

desendant, i.e., if there is a desendant whih, if hosen, leads to a omplete

and non-ontraditory ABox, then this desendant is in fat onsidered.

To deide the satis�ability of the onept C , sat starts with the initial

ABox A

0

:= fo :Cg and then repeatedly applies ompletion rules. First, the

set of ompletion rules is de�ned.

3.2.1 The Ruleset

To de�ne the rules in a suint way, the two funtions su

A

and hain

A

are introdued.

For an objet a 2 O

A

and a feature hain u, su

A

(a; u) denotes the

objet b that an be found by following u starting from a in the ABox A.

If no suh objet exists, su

A

(a; u) denotes the speial objet � that annot

be part of any ABox. An objet name a 2 O

A

is alled fresh in an ABox A

if a is not used in A. Let a be an objet from O

A

, x be an objet from O

D

,

and u = f

1

� � � f

k

be a feature hain. The funtion hain is de�ned as follows:

hain

A

(a; x ; u) := f(a; 

1

) : f

1

; : : : ; (

k�1

; x ) : f

k

g

where the 

1

; : : : ; 

k�1

2 O

A

are distint and fresh in A.

An ABox A is said to ontain a fork (for a feature f ) if it ontains the two

axioms (a; b) : f and (a; ) : f or the two axioms (a; x ) : f and (a; y) : f , where

b and  are from O

A

and x and y are from O

D

. A fork an be eliminated by

replaing all ourrenes of  in A with b, or by replaing all ourrenes of x

inA with y, respetively. During rule appliation, it is assumed that forks are

eliminated as soon as they appear (as an integral part of the rule appliation)

with the proviso that newly generated objet are replaed by older ones and

not vie versa. Now, the set of ompletion rules an be formulated.

De�nition 6. The following ompletion rules replae a given ABox A non-

deterministially by an ABox A

0

. A

0

is alled a desendant of A. In the

following, C and D denote a onept,

^

R a role, f a feature, P a prediate

10



name from �

D

with arity n, u

1

, : : : ,u

n

feature hains, a and b objet names

from O

A

, and x

1

; : : : ; x

n

objet names from O

D

.

Ru The onjuntion rule.

Premise: a :C u D 2 A; fa :C ; a :Dg 6� A

Consequene: A

0

= A [ fa :C ; a :Dg

Rt The (nondeterministi) disjuntion rule.

Premise: a :C t D 2 A; fa :C ; a :Dg \ A = ;

Consequene: A

0

= A [ fa :Cg _ A

0

= A [ fa :Dg

Rr9C The role exists restrition rule.

Premise: a :9

^

R:C 2 A; :9b 2 O

A

: f(a; b) :

^

R; b :C g � A

Consequene: A

0

= A [ f(a; b) :

^

R ; b :Cg where b 2 O

A

is fresh in A.

Rf9C The feature exists restrition rule (may reate forks).

Premise: a :9f :C 2 A; :9b 2 O

A

: f(a; b) : f ; b :C g � A

Consequene: A

0

= A [ f(a; b) : f ; b :C g where b 2 O

A

is fresh in A.

Rr8C The role value restrition rule.

Premise: a :8

^

R:C 2 A; 9b 2 O

A

: (a; b) :

^

R 2 A ^ b : C =2 A

Consequene: A

0

= A [ fb :Cg

Rf8C The feature value restrition rule.

Premise: a :8R:C 2 A; 9b 2 O

A

: (a; b) : f 2 A ^ b : C =2 A

Consequene: A

0

= A [ fb :Cg

R9P The prediate exists restrition rule (may reate forks).

Premise: a :9u

1

; : : : ; u

n

:P 2 A;:9x

1

; : : : ; x

n

2 O

D

:

(su

A

(a; u

1

) = x

1

^ : : : ^ su

A

(a; u

n

) = x

n

^

(x

1

; : : : ; x

n

) :P 2 A)

Consequene: C

0

:= A[ f(x

1

; : : : ; x

n

) :Pg

where the x

i

2 O

D

are distint and fresh in A.

C

1

:= hain

C

0

(a; x

1

; u

1

); : : : ; C

n

:= hain

C

n�1

(a; x

n

; u

n

)

A

0

=

S

i=0:::n

C

i

R# The agreement rule (may reate forks).

Premise: a :u

1

#u

2

2 A;

:9b 2 O

A

: (su

A

(a; u

1

) = su

A

(a; u

2

) = b)

Consequene: C = A [ hain

A

(a; b; u

1

) where b 2 O

A

is fresh in A.

11



A

0

= C [ hain

C

(a; b; u

2

)

R" The disagreement rule (may reate forks).

Premise: a :u

1

"u

2

2 A; :9b

1

; b

2

2 O

A

: (su

A

(a; u

1

) = b

1

^

su

A

(a; u

2

) = b

2

^ b

1

6= b

2

2 A)

Consequene: C = A [ hain

A

(a; b

1

; u

1

)

A

0

= C [ hain

C

(a; b

2

; u

2

) [ fb

1

6= b

2

g

where the b

1

; b

2

2 O

A

are distint and fresh in A.

Rule appliations that generate new objets are alled generating. All other

rule appliations are alled non-generating. All appliations of the Rr9C

rule are generating. Appliation of the rules Rf9C, R9P, R#, R" are usually

generating but may be non-generating if fork elimination takes plae.

The ruleset is idential to the one used for BHA with three exeptions:

(i) The rule Rt is nondeterministi; this serves the purpose of making our

further onsiderations simpler; (ii) the rules Rr9C and Rf9C, as well as Rr8C

and Rf8C, respetively, are uni�ed in a single rule in Baader and Hanshke's

ruleset; in our setting, it is more onvenient to separate the rules sine in the

satis�ability algorithm to be de�ned, rule appliation to axioms of the form

(a; x) : f , where f is a feature, ourrs at a di�erent time than rule appliations

to axioms (a; b) :

^

R, where

^

R is a role; (iii) there are two new rules for dealing

with feature agreement and disagreement, see [19℄. A formalized notion of

ontraditory and omplete ABoxes needs to be introdued.

De�nition 7. Let the same naming onventions be given as in De�nition 6.

An ABox A is alled onrete domain satis�able if there exists a mapping Æ

from O

D

to �

D

, suh that

V

(x

1

;:::;x

n

):P2A

(Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

is true in D.

An ABox A is alled ontraditory if it is not onrete domain satis�able or

one of the following lash triggers is appliable. If none of the lash triggers

is appliable to an ABox A, then A is alled lash-free.

� Primitive lash: a :C 2 A; a ::C 2 A

� Feature domain lash: (a; x) : f 2 A; (a; b) : f 2 A

� All domain lash: (a; x ) : f 2 A; a :8f :C 2 A

� Agreement lash: a 6= a 2 A

An ABox to whih no ompletion rules are appliable is alled omplete.

In the following setion, the satis�ability algorithm is desribed.

12



3.2.2 The Satis�ability Algorithm

The satis�ability algorithm makes use of two auxiliary funtions whih will

be desribed only informally. The funtion apply takes two arguments whih

are an ABox A and a ompletion rule r. It applies r one to arbitrary axioms

from A mathing r's premise and returns the new axioms generated by the

rule appliation. The funtion satis�able? takes as arguments a onrete

domain D and a set C of onrete domain axioms. It returns yes if the

onjuntion of all axioms in C is satis�able w.r.t.D and no otherwise. Assume

that the satis�ability of a onept C is to be deided. Using the two auxiliary

funtions just de�ned, the satis�ability algorithm sat an be spei�ed as

follows.

De�nition 8. The funtion sat an be used to deide the satis�ability of

ALCF(D) onepts in NNF. To deide the satis�ability of the onept C ,

sat takes the input fo :Cg.

de�ne proedure sat(A)

A

0

:= feature-omplete(A)

if A

0

ontains a lash then

return inonsistent

C := f� 2 A

0

j � is of the form (x

1

; : : : ; x

n

) :Pg

if satis�able?(D,C) = no then

return inonsistent

forall a :9

^

R:D 2 A

0

, where

^

R is a role, do

Let b be an objet name from O

A

.

if sat(fb :Dg [ fb :E j a :8

^

R:E 2 A

0

g) = inonsistent then

return inonsistent

return onsistent

de�ne proedure feature-omplete(A)

while a rule r from fRu;Rt;Rf9C;Rf8C;R9P;R#;R"g

is appliable to A do

A := A [ apply(A; r)

return A

We will now informally desribe the strategy followed by sat. A formal proof

of its soundness and ompleteness will be given in Setion 4. The argu-

ment of sat is an ABox ontaining exatly one objet a 2 O

A

. Sat uses

13



the feature-omplete funtion to reate all feature suessors of a, all fea-

ture suessors of these feature suessors and so on. Sat thus onsiders a

luster of objets whih are related by features, only. If the resulting ABox

is interpreted as a graph (see Setion 3.1), the luster is a direted ayli

graph with a single root a. Afterwards, a reursive all is made for eah role

suessor of any objet in the luster. This strategy was �rst employed for

ALCF reasoning algorithms (see [19℄). Eah luster is heked separately for

ontraditions and onrete domain satis�ability. It will later be shown that

this is equivalent to the strategy used by Baader and Hanshke's algorithm.

For eah reursive all, sat generates an ABox whih ontains all axioms for

the respetive suessor. Please note that the generation of the new ABox

orresponds to an appliation of the Rr9C rule and �nitely many appliations

of the Rr8C rule. Sat is alled reursively for the newly generated ABox.

To summarize, sat is a reursive funtion following a \trae" of objet

lusters. Based on the sat algorithm, an algorithm for deiding ABox onsis-

teny an be de�ned.

3.2.3 The ABox Consisteny Algorithm

The algorithm ABox-ons, whih is introdued in this setion, an be used to

deide the onsisteny of ALCF(D) ABoxes. The algorithm takes an ABox

A as input, where all onepts appearing in A have to be in NNF. ABox-ons

redues the ABox onsisteny to onept satis�ability. It �rst performs pre-

proessing on the input ABox, then onstruts a set of \redution onepts"

and �nally heks their satis�ability using sat.

De�nition 9. The algorithm ABox-ons whih an be used to deide the

onsisteny of ALCF(D) ABoxes is de�ned as follows.

de�ne proedure ABox-ons(A)

eliminate forks in A (see De�nition 6)

A := preproess(A)

C := f� 2 A j � is of the form (x

1

; : : : ; x

n

) :Pg

if A ontains a lash then

return inonsistent

if satis�able?(D,C) = no then

return inonsistent

forall a :9

^

R:C 2 A, where

^

R is a role, do

Let b be an objet name from O

A

.

14



if sat(fb : (C u (u

a:8

^

R:D2A

D))g) = inonsistent then

return inonsistent

return onsistent

de�ne proedure preproess(A)

while a rule r from fRu;Rt;Rr8C;Rf9C;Rf8C;R9P;R#;R"g

is appliable to A, do

A := A [ apply(A; r)

return A

Again, an informal desription of the algorithm is given. The preproess-

ing is performed by the funtion preproess, whih is very similar to the

feature-omplete funtion used by sat. The rule set used by preproess is

idential to that used by feature-omplete, exept that the Rr8C rule is also

applied. This is neessary beause in the initial ABox A

0

, there may already

be axioms of the form (a; b) :

^

R, where

^

R is a role. After the resulting ABox,

whih is alled preproessing omplete, has been heked for ontraditions

and onrete domain satis�ability, it is suÆient to separately hek all su-

essors of objets in the preproessing omplete ABox for onsisteny. This

is done by onstruting a set of \redution onepts" and using sat to deide

their onsisteny. Please note that onept onstrution orresponds to the

appliation of the Rr9C and Rr8C rules. Regarding preproessing on ABoxes

with the goal to redue ABox onsisteny to onept satis�ability, see also

[18℄ and [9℄.

The orretness of the redution implemented by ABox-ons is proved in

the next setion.

4 Corretness and Complexity

In this setion, it is proved that both the satis�ability algorithm and the

onsisteny algorithm are sound and omplete and that they an be exe-

uted using only polynomial spae provided that the satis�able? funtion an

also be exeuted in polynomial spae. Starting from this result, it will be

straightforward to prove that deiding the onsisteny of an ALCF(D) ABox

is a PSpae-omplete problem provided that the satis�ability test for the

onrete domain D is in PSpae. Sat and ABox-ons are onsidered sepa-

rately.
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4.1 The sat Algorithm

First, some basi de�nitions are neessary. To haraterize spae require-

ments, a formal notion for the size of an ABox is given.

De�nition 10. The size jjC jj of a onept C is de�ned indutively. Let C

and D be onepts, A an atomi onept, R a role or feature, u = f

1

� � � f

k

a

feature hain, and let u

1

; : : : ; u

n

also be feature hains.

jjAjj = 1

jjCfu;tgD jj = jjC jj+ jjDjj+2

jj9u

1

; : : : ; u

n

:P jj = jju

1

jj+ � � �+ jju

n

jj+1

jju

1

#u

2

jj = jju

1

jj+ jju

2

jj

jjf

1

� � � f

k

jj = k

jj:C jj = jjCjj

jjf8; 9gR:C jj = jjC jj+1

jju

1

"u

2

jj = jju

1

jj+ jju

2

jj+1

The size of an axiom � is jjC jj if � is of the form x :C and 1 otherwise. The

size of an ABox A is the sum of the sizes of all axioms in A.

Please reall that sat is a nondeterministi algorithm, i.e., the sat yields a

positive result if there is any way to make the nondeterministi deisions suh

that a positive result is obtained. A way to make the nondeterministi orre-

sponds to a run of the algorithm. Corretness of the satis�ability algorithm

an be proved by showing that (1) whenever there is a sat run returning

onsistent , then the initial ABox A

0

= fa :C g has a model, (2) whenever all

possible sat runs are returning inonsistent , then A

0

annot have a model,

and (3) sat terminates on any input fa : Cg, i.e., all possible runs are of

�nite length. For doing so, it is onvenient to de�ne a sequene of ABoxes

A

0

[

;A

1

[

; : : : that is assoiated with a given run of the satis�ability algorithm.

The ABoxes A

i

[

ollet all axioms that the sat algorithm generates during

the run. Eah ABox A

i

[

is obtained by the appliation of a single rule to the

ABox A

i�1

[

. It will be shown that if sat terminates after n rule appliations

returning onsistent , then the ABox A

n

[

de�nes a anonial model for A

0

.

When de�ning A

i

[

, we must ope with the following tehnial problem:

The objet names reated by sat are unique only within the ABox onsidered

in a single reursion step. This means that we must ensure that an objet x

in one reursion step an be distinguished from x in another step sine these

two objets are not idential. To ahieve this, objets used in axioms are

renamed before the axioms are added to an ABox A

i

[

. For this purpose, the

objet names are indexed with the value of a ounter s, whih ounts the

(reursive) alls to the sat funtion.
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* r := s := 0

de�ne proedure sat(A)

A

0

:= feature-omplete(A)

if A

0

ontains a lash then

return inonsistent

C := f� 2 A

0

j � is of the form (x

1

; : : : ; x

n

) :Pg

if satis�able?(D,C) = no then

return inonsistent

forall a :9

^

R:D 2 A

0

, where

^

R is a role, do

* s := s + 1

* r := r + 1

Let b be an objet name from O

A

.

* A

r

[

:= A

r�1

[

[ f(a

s�1

; b

s

) :

^

Rg [ fb

s

:Dg

* forall � 2 A

0

of the form a :8

^

R:E do

* r := r + 1

* A

r

[

:= A

r�1

[

[ fb

s

:Eg

if sat(fb :Dg [ fb :E j a :8

^

R:E 2 A

0

g) = inonsistent then

return inonsistent

return onsistent

de�ne proedure feature-omplete(A)

while a rule r from fRu;Rt;Rf9C;Rf8C;R9P;R#;R"g

is appliable to A do

N := apply(A; r)

A := A [N

* r := r + 1

* forall � 2 N do

* forall a 2 O

A

(and all x 2 O

D

) used in � do

* Replae eah ourrene of a (resp. x)

* in � with a

s

(resp. x

s

)

* A

r

[

:= A

r�1

[

[ f�g

return A

Figure 1: The annotated sat algorithm.
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Let A

0

= fa : Cg be the ABox that is initially passed to sat. We set

A

0

[

:= fa

0

: Cg for any sat run with A

0

as initial argument. For i > 0,

A

i

[

is de�ned reursively by the annotated version of the sat algorithm given

in Figure 1. The annotations are marked with asterisks. The annotated

version introdues the two global variables s and r, whih are assumed to

be initialized with the value 0. The �rst one is a ounter for the number of

alls to the sat funtion. The seond one ounts the number of rules that have

been applied. Please note that the annotated version of sat is de�ned just

to prove the orretness of the original version. It is by no means intended

to be used as an algorithm for deiding the satis�ability of onepts, neither

do we laim that the annotated version itself an be exeuted in polynomial

spae. The following Lemma is needed for proving the orretness of the sat

algorithm.

Lemma 11. Let A

0

be an input to the sat funtion. Fix a run � of sat on

A

0

. Let A

0

[

;A

1

[

; : : : be the sequene of ABoxes that is assoiated with � . If

the run � terminates then this sequene is of �nite length n. In this ase, let

A

[

denote the ABox A

n

[

.

1. Let A be an ABox. For eah ompletion rule r that an be applied to

A, we have that A has a model if and only if one of the desendants of

A has a model.

4

2. If � terminates and returns inonsistent, then A

[

does not have a

model.

3. If � terminates and returns onsistent, then A

[

has a model.

4. Sat terminates on any input.

The four laims of the Lemma are proved separately:

(1) One diretion is trivial: Sine all desendants A

0

generated by rule

appliation are supersets of their anestor A, it follows immediately that

eah model of A

0

is also a model of A. The other diretion depends on the

respetive rule and is straightforward in most ases. A formal proof is omitted

sine the rules used by the sat algorithm have been used in [6℄ and [19℄ and

4

In ase of the nondeterministi rule Rt, there are two possible desendants. For all

other rules, there is only a single desendant.
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the property in question (\loal orretness") follows from the orretness

proofs for the algorithms that an be found in the referred papers.

5

(2) The run � of sat returns inonsistent if and only if an ABox A is

onsidered whih either ontains a lash or is not onrete domain satis�able.

In the former ase, A

[

does also ontain a lash; in the latter ase, A

[

annot be onrete domain satis�able. This follows trivially from the fat

that we have A � A

[

modulo objet renaming. The rest of the proof is

straightforward, again. It suÆes to show that no interpretation an satisfy

an ABox to whih a lash trigger is appliable or whih is not onrete domain

satis�able.

(3) First, the following Lemma needs to be established.

Lemma 12. If a sat run � returns onsistent, then A

[

is omplete, lash-

free, and onrete domain satis�able.

Proof: In the following, the i'th reursion step of � means the reursion step

in whih the ounter s has the value i. We say that i alls j if in the i'th

reursion step of � , a reursive all is made in whih the ounter s has the

value j. Please note that j = i + 1 does not need to hold.

� ompleteness. Assume that there exists a set C of axioms from A

[

to whih a ompletion rule r is appliable. It will be shown that a

ontradition an be derived from this assumption. A ase analysis

aording to the rules has to be made. First assume the rule r to be

from fRu;Rt;Rf9C;Rr9C;R9P;R#;R"g. In this ase, C has the form

fa

i

: Cg. From the onstrution of A

[

, it follows that there exists

an axiom � = a : C that either is reated by feature-omplete during

the i'th reursion step or that is ontained in the ABox whih is the

argument to the i'th reursion step of � . The latter ase happens if

either � is the axiom from the initial ABox A

0

and i = 0 or if � was

introdued by the impliit appliation of Rr9C and Rr8C during a j'th

reursion step of � , where j alls i. In all of the ases mentioned, r

is heked for appliability to an ABox A ontaining � during the i'th

reursion step. If r is Rr9C, this is done by sat itself; in the other ases,

this is done by feature-omplete. Assume �rst that r is not appliable

5

To be preise, the rules presented in this paper di�er in two points from those given

in [6℄, as was disussed in Setion 3.2.1. It is obvious that these two di�erenes (nonde-

terminism of Rt and separateness of Rr9C/Rf9C and Rr8C/Rf8C) do not inuene loal

orretness.
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to � in A. This an only be the ase if the axioms appearing in the

onsequene of the rule are already part of A. But sine we have

A � A

[

modulo objet renaming, this would learly ontradit the

assumption that r is appliable to C in A

[

. Now assume that r is

applied to � in A during the i'th reursion step. This means that the

axioms appearing in the onsequene of the rule are in A

[

(modulo

objet renaming). This again ontradits the assumption.

The remaining ases for Rf8C and Rr8C an be proved similarly. C now

ontains the additional axiom (a

i

; b

i

) : f or (a

i

; b

i+k

) :

^

R, respetively,

where f is a feature and

^

R a role. Eah axiom (a

i

; b

i

) : f in A

[

orre-

sponds to an axiom (a; b) : f that was introdued by feature-omplete

during the i'th reursion step to an ABox A. Eah axiom (a

i

; b

i+k

) :

^

R

in A

[

orresponds to an axiom (a; b) :

^

R that was introdued by an

impliit appliation of the Rr9C rule during reursion step i. Having

established these fats, ontradition proofs exatly analogous to the

one given above an be employed.

� lash-freeness. Assume that A

[

ontains a lash. A ase distintion

aording to the lash types need to be made. Sine the ases are very

similar, only one ase will be disussed exemplarily: A

[

ontains an

all domain lash if it ontains two axioms (a

i

; x

i

) : f and a

i

: 8f :C .

The axiom (a

i

; x

i

) : f orresponds to an axiom (a; x) : f introdued by

feature-omplete during the i'th reursion step of � . The axiom a

i

:8f :C

orresponds to an axiom a :8f :C that was introdued (i) during the i'th

reursion step by feature-omplete or (ii) by the impliit appliation of

the Rr8C or Rr9C rule during a reursion step j, where j alls i, or (iii)

that is the axiom ontained in the initial ABox A

0

and we have i = 0.

In any ase, an ABox A ontaining both (a; x) : f and a : 8f :C was

heked for the appliability of lash triggers during the i'th reursion

step of � . But this means that the run � terminated with the result

inonsistent whih is a ontradition.

� onrete domain satis�ability. Assume that there exists a set C � A

[

of axioms of the form (X

1

; : : : ; X

n

) :P , where eah X

i

denotes a on-

rete objet x

k

used in C, suh that the orresponding onjuntion of

onrete domain prediates is unsatis�able. Axioms of the above form

are introdued during rule appliation by feature-omplete, only. From

this follows that in any axiom (X

1

; : : : ; X

n

) : P from C, all objets
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X

1

; : : : ; X

n

have the same index, i.e., if X

i

= x

k

and X

j

= y

l

, then

k = l. This means that C an be divided into subsets C

1

; : : : ; C

k

, suh

that the sets C

i

are mutually disjoint, we have C = C

1

[ � � � [ C

k

, and,

furthermore, all onrete objets appearing in a set C

i

have the same

index. From a solution of the prediate onjuntions orresponding to

the sets C

1

; : : : ; C

k

, a solution for the prediate onjuntion orrespond-

ing to C an easily be onstruted. Fix a set C

i

. Let j be the index of

the onrete objets appearing in C

i

. Let X be the set of axioms that

is heked for onrete domain satis�ability in the j'th reursion step

of � . By de�nition of A

[

, we have C

i

� X . From the fat that the

run � returned onsistent , it follows that X and hene also C

i

is on-

rete domain satis�able. Sine this argument holds for all i = 1 : : : k, a

ontradition to the assumption is obtained.

We now return to the proof of the third laim of Lemma 11. Based on A

[

,

an interpretation I an be de�ned as follows:

1. �

I

onsists of all objets in O

A

that our in A

:

[

2. If A is a onept name then a 2 A

I

i� a :A 2 A

[

.

3. If R is a role or feature name then (a; b) 2 R

I

i� (a; b) :R 2 A

[

.

4. Beause there A

[

is onrete domain satis�able (Lemma 12 Point 3),

there is a variable assignment � that satis�es the onjuntion of all

ourring axioms (x

1

; : : : ; x

n

) :P . So we set x

I

= �(x) for all x 2 O

D

.

It remains to be proven that I is a model for A

[

. The proof is by indution

over the size of axioms of the form a :C in A

[

and makes a ase distintions

aording to the topmost operator in C . A prerequisite for the proof is that

the ABox A

[

, whih was used to onstrut the interpretation I, is omplete,

lash-free and onrete domain satis�able, whih is assured by Lemma 12.

Most ases are already treated in [6℄, so we only deal with the two remaining

ases, whih belong to the indution start.

� Let � be a : u

1

#u

1

. Sine the R# rule is not appliable, there is an

objet b 2 O

A

for whih we have both u

I

1

(a

I

) = b

I

and u

I

2

(a

I

) = b

I

.

Hene, I satis�es �.
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� Let � be a :u

1

"u

1

. Sine the R" rule is not appliable, there are objets

b

1

; b

2

2 O

A

for whih we have u

I

1

(a

I

) = b

I

1

and u

I

2

(a

I

) = b

I

2

. Sine the

agreement lash is not appliable, b

I

1

is distint from b

I

2

, and, hene, I

satis�es �.

(4) To �nish the proof of Lemma 11, the termination of sat needs to be

proven. Termination is a onsequene of the following laims:

(i) feature-omplete terminates on any input.

(ii) The reursion depth of sat is bounded.

(iii) In eah reursion step, only a �nite number of reursive alls are made.

Claim (iii) is obvious. Both (i) and (ii) will be proved by a lemma whih es-

tablish an even stronger result. The stronger result will be helpful in proving

the polynomial spae-omplexity of sat. The following Lemma settles laim

(i).

Lemma 13. For any input ABox A, the funtion feature-omplete termi-

nates and onstruts an ABox A

0

for whih we have jjA

0

jj � jjAjj

2

+ jjAjj.

Proof: The upper bound for the size of A

0

given in the Lemma is a onse-

quene of the following two points:

1. feature-omplete generates no more than jjAjj new axioms.

2. For eah axiom �, we have jj�jj � jjAjj.

Please note that axioms are never deleted whih is the reason for the seond

summand. The seond point is obvious, but the �rst one needs to be proven.

Termination of feature-omplete diretly follows from this �rst point as well.

The rules Rr9C and Rr8C will not be onsidered sine they are not applied

by feature-omplete. For all other ompletion rules, the most important ob-

servation is that they an be applied at most one per axiom a :C . This is

also true for axioms a : 8f :C and the Rf8C rule sine there is at most one

suessor per feature and objet. Beause of this, we make the simplifying

assumption that the premise of the Rf8C rule does only ontain the axiom

a :8f :C but no axiom (a; b) : f , i.e., that it is applied to every axiom of the

�rst form regardless if there is an axiom of the seond form or not. This may

result in too high an estimation of the number of generated axioms but not
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in one that is too low. Sine in our simpli�ed view, every ompletion rule

is applied to exatly one axiom, we may proof the �rst point from above by

showing that, for eah axiom � in A, no more than jj�jj axioms are generated

by feature-omplete. This will be done in the following.

No new axioms are generated for axioms of the form (a; b) :R, (a; x ) : f ,

a 6= b, and (x

1

; : : : ; x

n

) : P sine they do not appear in the premise of any

ompletion rule (please reall the simpli�ation we made about Rf8C). The

remaining axioms are of the form a : C . For these axioms, the property in

question an be proven by indution on the struture of C .

For the indution start, let C be 9u

1

; : : : ; u

n

:P , u

1

#u

2

, u

1

"u

2

, 9

^

R:C ,

8

^

R:C , or an atomi onept. In any of these ases, it is trivial to verify

that at most jjC jj new axioms may be generated. For the indution step, we

need to make a ase distintion aording to the form of C . Let C be of the

form D u E . The appliation of the Ru rule generates two axioms a :D and

a : E . By indution hypothesis, from these two axioms, at most jjDjj and

jjE jj axioms may be generated, respetively. Hene, from a :D u E , at most

jjDjj+ jjE jj+2 = jjD u E jj new axioms may be generated. The remaining

ases D t E , 9f :C , and 8f :C are analogous. Beause of the simplifying

assumptions made, universal quanti�ation over features does not need a

speial treatment.

Claim (ii) of the above list follows from the next Lemma whih onludes

the termination proof for sat.

Lemma 14. For any input A

0

, the reursion depth of sat is bounded by

jjA

0

jj.

Proof: The role depth of a onept C is the maximum nesting depth of exists

and value restritions in C .

6

The role depth of an ABox A is the maximum

role depth of all onepts ourring in A. As an immediate onsequene of

the way in whih the input ABoxes of reursive alls are onstruted, we

have that the role depth of the arguments ABoxes stritly dereases with

reursion depth (note that rule appliation performed by feature-omplete

annot inrease the role depth). It follows that the role depth of the initial

ABox A

0

is an upper bound for the reursion depth, and, by de�nition of

jj � jj, this number is learly smaller than jjA

0

jj.

6

E.g., the onept 9R:C u 8S :(D u 9R:C ) has role depth 2.
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The proof of Lemma 11 is now omplete. The Lemma plays a entral rôle in

the proof of the following proposition.

Proposition 15. The sat algorithm is sound, omplete and terminates on

any input.

Proof: By de�nition of nondeterministi algorithms, the appliation of the

sat algorithm to an ABox A

0

gives the result onsistent i� there is a run of

sat on A

0

whih returns onsistent . As shown in parts 2 and 3 of Lemma 11,

a sat run de�nes a model for the orresponding ABox A

[

if and only if the

run returns onsistent . First assume that there is a run of sat whih returns

onsistent . By part 1 of Lemma 11, there also exists a model for A

0

. Now

assume that all runs of sat return inonsistent . In this ase, it follows from

part 1 of Lemma 11 that A

0

annot have a model sine there is a run for

every ombination of nondeterministi hoies that an be made during rule

appliation.

Having proved its orretness, the omplexity of the sat algorithm an now

be analyzed. Sine the most important results have already been established,

this an be done straightforwardly.

Proposition 16. For any input A

0

, sat an be exeuted in spae polynomial

in jjA

0

jj, provided that this also holds for the funtion satis�able?.

Proof: Sat is a reursive funtion. Let us �rst analyze the maximum size

of arguments that are passed to sat in reursion alls. The argument to sat

is an ABox whih ontains axioms of the form a : C for a single objet a.

Sine no new onepts are generated during rule appliation, there an be

at most as many axioms of this form per single objet as there are distint

onepts and subonepts appearing in A

0

. Considering the de�nition of

jj � jj, it is easy to see that this number an be at most jjA

0

jj. Furthermore,

the size of any axiom is at most jjA

0

jj. It follows that the maximum size

of arguments given in a reursion all is jjA

0

jj

2

. Using feature-omplete,

the argument ABox is extended by new axioms. Combining the argument

size just obtained with Lemma 13, we �nd that the maximum size of ABoxes

onstruted during reursion alls is jjA

0

jj

4

+ jjA

0

jj

2

. Lemma 14 gives us that

the reursion depth is bounded by jjA

0

jj, and, hene, sat an be exeuted in

jjA

0

jj

5

+ jjA

0

jj

3

spae.
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4.2 The ABox-ons Algorithm

In this setion, the orretness of the ABox-ons algorithm will be established

and its omplexity analyzed. ABox-ons redues ABox onsisteny to onept

satis�ability as follows. It performs preproessing on A, then onstruts a

set of \redution onepts" and �nally alls sat one for eah onept in this

set.

We start with proving the orretness. First, a basi notion is introdued.

An ABox A that was ompleted by rule appliation through the preproess

funtion is alled preproessing omplete. If A

p

is preproessing omplete

and A � A

p

, then A

p

is a preproessing ompletion of A.

Proposition 17. The ABox-ons Algorithm is sound, omplete, and termi-

nates on any input.

Proof: Sine preproess applies the nondeterministi ompletion rule Rt,

there may be more than one preproessing ompletion for a given ABox A.

By de�nition of nondeterministi algorithms, the ABox-ons algorithm gives

the result onsistent for an ABox A

0

i� one of the possible runs of ABox-ons

on A

0

returns onsistent . Hene, to prove the soundness and ompleteness

of ABox-ons, it has to be shown that (i) an ABox A has a model i� one of

its preproessing ompletions has a model and (ii) the redution to onept

satis�ability is sound and omplete. This will be done in the following.

The next Lemma establishes point (i). It is an immediate onsequene of

the loal orretness of the ompletion rules (Lemma 11, part 1).

Lemma 18. Let A be an ABox. A has a model i� one the preproessing

ompletions A

p

of A has a model.

Next, point (ii) is proved. In the \for" loop of ABox-ons, a onept C

(redution onepts of A

p

) is generated for eah axiom of the form a :9

^

R:D

in A

p

. These onepts are then one by one passed to the sat funtion. It

needs to be shown that a preproessing omplete ABox has a model if and

only if all of the redution onepts have a model.

Proposition 19 (Soundness). Let I be a model for a preproessing om-

plete ABox A

p

. Then, all redution onepts C

1

; : : : ; C

n

of A

p

do also have

a model.

Proof: C

i

has the form C uD

1

u : : : u D

k

for 1 � i � n. This means that in

A

p

, there are axioms a :9

^

R:C , a :8

^

R:D

1

, : : : , a :8

^

R:D

k

. By the semantis of
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the exists and value restrition, there exists a domain objet x 2 �

I

, suh

that x 2 C

I

and x 2 D

I

1

, : : : , x 2 D

I

k

. I is obviously an interpretation for

C

i

and we have x 2 C

I

i

. Hene, I is a model for C

i

.

Let C be a redution onept. C is reated beause of the existene of a

onept a : 9

^

R:D in A

p

and then passed to sat as part of an ABox fb :C g.

The objet b is alled the root objet of C and denoted by robj (C ). The

objet a is denoted by obj (C ) and the role

^

R by role(C ).

Proposition 20 (Completeness). Let A

p

be an ABox whih is preproess-

ing omplete and onrete domain satis�able and does not ontain a lash. If

there are models I

1

; : : : ; I

n

for all redution onepts C

1

; : : : ; C

n

of A

p

, then

A

p

does also have a model.

Proof: The proposition will be proved by showing that from the preproessing

omplete ABox A

p

together with the models I

1

; : : : ; I

n

for the redution

onepts C

1

; : : : ; C

n

, a model I for A

p

an be onstruted. Without loss of

generality, it is assumed that �

I

1

\ � � � \�

I

n

\ fa 2 O

A

j a used in A

p

g = ;.

If this is not the ase, it an be ahieved by onsistently renaming the domain

objets used in I

1

; : : : ; I

n

. The interpretation I is de�ned as follows.

� �

I

is set to �

I

1

[ � � � [�

I

n

[ fa 2 O

A

j a used in A

p

g.

� For atomi onepts A, A

I

:=

S

i=1;:::;n

A

I

i

[

S

a:A2A

p

a.

� For roles

^

R,

^

R

I

:=

S

i=1;:::;nj

^

R=role(C

i

)

f(obj (C

i

); robj (C

i

)

I

i

)g [

S

i=1;:::;n

^

R

I

i

[

S

(o

1

;o

2

):

^

R2A

p

f(o

1

; o

2

)g.

� For features f , f

I

(a) := x i� 9i 2 f1; : : : ; ng : f

I

i

(a) := x or (o; x) : f 2

A

p

.

� For objet names a 2 O

A

used in A

p

, a

I

:= a.

� Sine A

p

is onrete domain satis�able, there is a mapping Æ from O

D

�

D

suh that

V

(x

1

;:::;x

n

):P2A

p

(Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

is true in D. x

I

is

set to Æ(x).

It remains to prove that I is a model of A

p

. First onsider axioms from A

p

whih are of the form a :9

^

R:C (where

^

R is a role): By de�nition of ABox-ons,

there is a redution onept C

i

with root objet b, suh that (a

I

; b

I

) 2

^

R

I

.

Sine I

i

is a model for b :C

i

, by onstrution of I we have b

I

2 C

I

.
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Now onsider axioms of the form a :8

^

R:C (with

^

R role). If there is also

an axiom a : 9

^

R:D in A

p

, then there is a redution onept C

i

with root

objet b, suh that (a

I

; b

I

) 2

^

R

I

. By onstrution of the redution onepts

and of I, we have b

I

2 D

I

. For eah axiom (a; b) :

^

R in A

p

, Rr8C has been

applied. Sine there is no primitive lash in A

p

, b is in C

I

.

To show that the remaining axioms in A

p

are also satis�ed by I, an

indutive proof over the size of the axioms, whih is idential to the one

employed in Lemma 11, part 3, an be used.

To omplete the proof of Proposition 17, termination of ABox-ons has to be

proven. This is part of the following Proposition whih also treats the spae

requirements of ABox-ons.

Proposition 21. Started on an ABox A, ABox-ons terminates and needs

spae polynomial in jjAjj, provided that the the funtion satis�able? an also

be exeuted in polynomial spae.

Proof: It was already proven that the sat algorithm terminates and an be

exeuted in polynomial spae if the funtion satis�able? an be exeuted in

polynomial spae (Propositions 15 and 16). Thus, it remains to show that

the preproess funtion terminates and that for any ABox A, the size jjA

0

jj

of A

0

:= preproess(A) is polynomial in jjAjj. For this proof, it is ruial that

the preproess funtion is idential to the feature-omplete funtion exept

that preproess does also apply the Rr8C rule. It will be shown that the

presene of this additional rule yields only \slightly" more axioms. In the

following, objets are alled old if they are used in A and new if they are

used in A

0

but not in A.

Consider appliations of the Rr8C rule performed by preproess. It is an

immediate onsequene of the following two observations that the number of

Rr8C appliations is bounded by jjAjj

2

:

� If Rr8C is applied to axioms a : 8

^

R:C and (a; b) :

^

R, then b is an old

objet. This is the ase sine preproess does not apply Rr9C, and,

hene, no new axioms of the form (a; b) :

^

R, where

^

R is a role, are

generated. Furthermore, there are at most jjAjj old objets.

� Rr8C reates only axioms of the form b :C , whih are not already part

of the ABox. For any objet b, there may exist at most one axiom b :C

per onept C used in A (inluding all subonepts). The number of

(sub)onepts in A is bounded by jjAjj, and, hene, there an be at

most jjAjj axioms of the form b :C per objet b.
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The size of eah axiom a :C is again bounded by jjAjj. It follows that the

total size of axioms added by Rr8C appliations performed by preproess is

bounded by jjAjj

3

.

Seond, onsider the appliation of all other rules. These are exatly

the rules applied by feature-omplete. Together with the upper bound for

the number of Rr8C appliations, this immediately gives us termination. If

feature-omplete is applied to an ABox A, then the size of the resulting ABox

is bounded by jjAjj

2

+ jjAjj (Lemma 13). To establish an upper bound for the

size of the ABox A

0

obtained from a all topreproess, the additional axioms

generated by Rr8C need to be taken into aount. It was just proved that

the size of these axioms is at most jjAjj

3

. Thus, an upper bound for jjA

0

jj is

given by the appliation of feature-omplete to an ABox of size jjAjj+ jjAjj

3

.

Summing up, jjA

0

jj is bounded by jjAjj

6

+ jjAjj

3

+ jjAjj

2

+ jjAjj.

4.3 PSpae-Completeness

Using the results from the last two setions, proving PSpae-ompleteness

of ALCF(D) ABox onsisteny is straightforward.

Theorem 22. Provided that the satis�ability test of the onrete domain D

is in PSpae, the following problems are PSpae-omplete:

1. Consisteny of ALCF(D) ABoxes.

2. Consisteny of ALC(D) and ALCF ABoxes.

3. Satis�ability and subsumption of ALCF(D) onepts.

4. Satis�ability and subsumption of ALC(D) onepts.

Proof: First, point 1 is proven. In [31℄ it is proved that satis�ability for ALC

onepts is PSpae-omplete. Sine ALC is a proper subset of ALCF(D),

deiding the onsisteny of ALCF(D) ABoxes is PSpae-hard. It remains

to be shown that it is also in PSpae if the onrete domain satis�ability

test is in PSpae. But this diretly follows from Proposition 21 together

with the well-known fat that PSpae = NPSpae [29℄.

Point 3 is a onsequene of the observation that satis�ability as well as

subsumption an be redued to ABox onsisteny (see Setion 2).
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Points 1 and 2 hold sine reasoning with ALC is PSpae-hard and ALC

is a proper subset of both ALC(D) and ALCF whih are in turn a proper

subsets of ALCF(D).

The next orollary makes a statement about the omplexity of reasoning with

onrete domains for whih the satis�ability test is not in PSpae.

Corollary 23. Let the satis�ability test of the onrete domain D be in a

omplexity lass X with PSpae � X. Then, subsumption, satis�ability and

ABox onsisteny for the logis ALC(D) and ALCF(D) are in X.

The next setion gives some examples of interesting onrete domains,

for whih the satis�ability hek is in PSpae.

5 Suitable Conrete Domains

In this setion, some examples of onrete domains, for whih the satis�ability

test is in PSpae, are given. This demonstrates that the results developed

in the preeding setions are useful sine there are in fat interesting onrete

domains whih allow to exploit the lower omplexity bound found.

As proposed in [24℄, ALC(D) (and hene also ALCF(D)) an be used

for temporal reasoning when instantiated with an appropriate onrete do-

main. Sine di�erent temporal ontologies an be used as a basis for temporal

reasoning, the de�nition of various temporal onrete domains is possible.

Allen's interval algebra (see [3℄, [23℄) provides an appropriate formalization

if intervals are used as the basi temporal entity. This formalism employs

a set of 13 base relations desribing all possible relationships between two

(time) intervals. These relations are known as Allen's relations. In the fol-

lowing, a set of onrete domains supporting reasoning with Allen's relations

is de�ned.

De�nition 24. Let (P; <) be a linear, unbounded, and dense temporal

struture, where P is a set of time points and < is a strit linear order on

P. The onrete domain I

(P;<)

is de�ned as follows. As the domain �

I

(P;<)

,

the set of intervals f(l; r) 2 P �P j l < rg is used. For an interval i 2 I

(P;<)

with i = (l; r), we de�ne l(i) = l and r(i) = r. The set �

I

(P;<)

ontains

the following prediates (we will in the following omit the index (P; <) for

brevity):
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� a unary prediate is-interval whih yields true for every element in �

I

;

its negation is-no-interval ; a prediate inonsistent-relation of arity 2

whih is always false.

� for eah of Allen's 13 relations, a prediate of arity 2 (basi prediates).

The prediates are de�ned by speifying relationships between interval

endpoints as usual:

(i

1

; i

2

) 2 equal

I

i� l(i

1

)� l(i

2

) = 0 ^ r(i

1

)� r(i

2

) = 0

(i

1

; i

2

) 2 before

I

i� l(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 after

I

i� l(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 meets

I

i� l(i

2

)� r(i

1

) = 0

(i

1

; i

2

) 2 overlaps

I

i� l(i

2

)� l(i

1

) > 0 ^ r(i

1

)� l(i

2

) > 0 ^ r(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 overlapped-by

I

i� l(i

1

)� l(i

2

) > 0 ^ r(i

2

)� l(i

1

) > 0 ^ r(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 during

I

i� l(i

1

)� l(i

2

) > 0 ^ r(i

2

)� l(i

1

) > 0 ^

r(i

1

)� l(i

2

) > 0 ^ r(i

2

)� r(i

1

) > 0

(i

1
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2

) 2 ontains

I

i� l(i

2

)� l(i

1

) > 0 ^ r(i

1

)� l(i

2

) > 0 ^

r(i

2

)� l(i

1

) > 0 ^ r(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 starts

I

i� l(i

2

)� l(i

1

) = 0 ^ r(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 started-by

I

i� l(i

2

)� l(i

1

) = 0 ^ r(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 �nishes

I

i� r(i

2

)� r(i

1

) = 0 ^ l(i

1

)� l(i

2

) > 0

(i

1

; i

2

) 2 �nished-by

I

i� r(i

2

)� r(i

1

) = 0 ^ l(i

2

)� l(i

1

) > 0

� for eah distint set fR

1

; : : : ; R

n

g of Allen's relations, an additional

prediate of arity 2 is de�ned (ombined prediates). The prediate has

the name R

1

-� � � -R

n

and we have (i

1

; i

2

) 2 R

1

-� � � -R

n

I

i� (i

1

; i

2

) 2 R

1

I

or : : : or (i

1

; i

2

) 2 R

n

I

. In total, there are 2

13

� 14 of these ombined

relations.

As an example of ombined prediates, please onsider the prediate after-

before. A pair of intervals (i

1

; i

2

) is in after-before

I

i� (i

1

; i

2

) 2 after

I

or

(i

1

; i

2

) 2 before

I

. As an example of the modeling of temporal onepts using
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Realisation

Project

Planning

realisationplanning

Figure 2: Visualization of the Projet onept

ALCF(I), onsider the following onepts:

Projet

:

= Interval u

9planning:Planning u 9realization:Realization u

9(planning Æ time); (time):starts u

9(realization Æ time); (time):ends u

9(planning Æ time); (realization Æ time):meets

The Projet onept gives the formalization of a projet on a very oarse

level. The projet an be devided into the two disjuntive phases \planning"

and \realization". Please see Figure 2 for a visualization of this onept.

To use I as a onrete domain for ALCF(D), the admissibility of I has

to be shown.

Proposition 25. The onrete domain I is admissible.

Proof: It has to be shown that (i) �

I

is losed under negation and (ii) the

satis�ability of �nite onjuntions of prediates from I is deidable.

(i) Allen's relations are mutually exlusive and exhaustive, i.e. exatly one

of Allen's relations holds between any two intervals i

1

and i

2

. Given this, it

is easy to verify that �

I

is losed under negation: Let A be the set of Allen's

13 base relations. For any prediate R

1

-� � � -R

n

with 1 � n < 13, we have

that the negation of R

1

-� � � -R

n

is S

1

-� � � -S

k

, where fS

1

; : : : ; S

k

g is de�ned as

A n fR

1

; : : : ; R

n

g. The prediate S

1

-� � � -S

k

is obviously in �

I

. Note that the

negation of the prediate representing the disjuntive ombination of all 13

base relations is inonsistent-relation and vie versa.
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(ii) Deiding the satis�ability of a �nite onjuntion of prediates from

I an be redued to heking the satis�ability of a temporal onstraint net-

work. In the following, a deision proedure will be desribed and its om-

plexity determined. A temporal onstraint network (TCN) is de�ned as a set

ft

1

(i

(1)

1

; i

(1)

2

); : : : ; t

n

(i

(n)

1

; i

(n)

2

)g, where eah t

i

is a disjuntionR

(i)

1

_� � �_R

(i)

n

i

of Allen's relations and the i

(i)

j

are interval variables. Let a �nite onjuntion

C = p

1

(x

(1)

1

; : : : ; x

(1)

n

1

)^ � � �^ p

k

(x

(k)

1

; : : : ; x

(k)

n

k

) of prediates from �

I

be given.

Its satis�ability an be determined as follows:

� If, for any i = 1; : : : ; k, p

i

is either is-no-interval or inonsistent-

relation, then return unsatis�able.

� For i 2 f1; : : : ; kg, if p

i

= is-interval , remove the i'th onjunt.

� Translate the remaining onjuntion C

0

(whih ontains only binary

prediates) into a TCN N as follows: The set V of interval variables

used in N is the set of variables used in C. For eah onjunt p

i

(x

1

; x

2

)

from C

0

, do the following. The prediate p

i

has the form R

1

-� � � -R

n

.

1. If there is no onstraint t(x

1

; x

2

) in N , then add R

1

_ � � � _

R

n

(x

1

; x

2

) to N .

2. If there is already a onstraint t(x

1

; x

2

) in N where t = R

0

1

_

� � �_R

0

m

, then let S be de�ned as fR

0

1

; : : : ; R

0

m

g\fR

1

; : : : ; R

n

g. If

S = ;, then return inonsistent . Otherwise, remove the existing

onstraint and add S

1

_ � � � _ S

l

(x

1

; x

2

), where fS

1

; : : : ; S

l

g = S.

� For all pairs (x

1

; x

2

) 2 V , for whih there is no onstraint t(x

1

; x

2

) in

N , add a onstraint ov(x

1

; x

2

), where ov is the disjuntion of all 13

base relations.

� Chek the satis�ability of the TCN N and return the result.

Testing the satis�ability of temporal onstraint networks of the given form

is an NP-omplete problem if the full set of relations is allowed [33℄. The

orretness of the proedure is easily seen.
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Hene, I is an admissible onrete domain and the standard reasoning prob-

lems for ALCF(I) are PSpae-omplete.

Some omments about the temporal logiALCF(I) are in order. We give

a brief omparison to a temporal desription logi de�ned by Artale and Fran-

oni. In ALCF(I), the struture of time has to be modeled in the logi itself.

This is alled an internal representation of time as opposed to an external

representation, where the struture of time is an integral part of the seman-

tis [14℄. The latter approah is taken in temporal logi and is also pursued

by the desription logi T L-ALCF [4℄. T L-ALCF is a temporal desription

logi for reasoning about eternal objets that have properties hanging over

time. Quite to the ontrary, ALCF(I) most adequately supports reasoning

about objets whih have stati properties but a unique temporal extension.

Please note that neither ALCF(I) nor T L-ALCF allows universal quan-

ti�ation about Allen's relations. See [16℄ for a desription logi whih is

apable of doing this. Artale and Franoni [5℄ give an extensive overview

over the various approahes to the de�nition of temporal desription logis.

In the remainder of this setion, we give a brief disussion of some more

onrete domains. An important approah to qualitative spatial reasoning

uses a set of 8 topologial relations alled RCC-8. These relations an be

used to desribe the relationships of two arbitrary regions in n-dimensional

spae (see [28℄ and [13℄). A onrete domain S

2

for reasoning with the RCC-8

relations about regions in the plane an be de�ned exatly analogous to the

de�nition of I. A formal de�nition an be found in [16℄. The satis�ability

test for this spatial onrete domain is also in NP.

A further soure for onrete domains for whih deiding satis�ability is in

PSpae are the areas of linear programming and onstraint programming.

Linear programming itself is a polynomial problem [32℄. This means that

linear equalities and inequalities over the rational numbers may be used as

prediates of a onrete domain and that the omplexity of reasoning with

the ombined language remains in PSpae. If the integers are used instead

of the rationals, tehniques from integer programming an be employed for

the onrete domain satis�ability test. In this ase, the (onrete domain)

satis�ability test is in NP [15, problem MP1℄, hene reasoning with the

ombined formalism is in PSpae.

A onrete domain for whih satis�ability is not in PSpae is e.g. R

as de�ned in [6℄. The domain of R is the set of all real numbers while the

prediates of this onrete domain are given by formulae built by �rst order

means from equalities and inequalities between integer polynomials. It was
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proved that deiding the satis�ability of suh expressions is an ExpSpae-

omplete problem [25℄.

6 Conlusion

In this paper, the desription logi ALCF(D) was introdued. ALCF(D)

extends ALC(D) by feature agreement and disagreement and is hene a

onglomeration of the logis ALC(D) and ALCF . Algorithms for deid-

ing the satis�ability of ALCF(D) onepts and for deiding the onsisteny

of ALCF(D) ABoxes were devised and it was shown that these algorithm

are sound and omplete and an be exeuted in polynomial spae if this is

also the ase for the onrete domain satis�ability test. From this result, it

was derived that the standard reasoning problems onerning onept sub-

sumption, onept satis�ability and ABox onsisteny are PSpae-omplete

for the desription logis ALC(D) and ALCF(D) - provided that the on-

rete domain satis�ability test is in PSpae. If the satis�ability test is in

a higher omplexity lass X, then the mentioned problems are also in X.

As an important ontribution, the ompletion algorithm demonstrates how

to split the onrete domain satis�ability hek into hunks of polynomial

size. This is a vital prerequisite for eÆient implementations of languages

inorporation onrete domains.
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