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Abstra
t

Des
ription logi
s are knowledge representation and reasoning for-

malisms whi
h represent 
on
eptual knowledge on an abstra
t logi
al

level. Con
rete domains are a theoreti
ally well-founded approa
h to

the integration of des
ription logi
 reasoning with reasoning about


on
rete obje
ts su
h as numbers, time intervals or spatial regions. In

this paper, the 
omplexity of 
ombined reasoning with des
ription log-

i
s and 
on
rete domains is investigated. We extend ALC(D), whi
h

is the basi
 des
ription logi
 for reasoning with 
on
rete domains, by

the operators \feature agreement" and \feature disagreement". For

the extended logi
, 
alled ALCF(D), an algorithm for de
iding the

ABox 
onsisten
y problem is devised. The strategy employed by this

algorithm is vital for the eÆ
ient implementation of reasoners for de-

s
ription logi
s in
orporating 
on
rete domains. Based on the algo-

rithm, it is proved that the standard reasoning problems for both

logi
s ALC(D) and ALCF(D) are PSpa
e-
omplete - provided that

the satis�ability test of the 
on
rete domain used is in PSpa
e.

1 Introdu
tion

Des
ription logi
s are formalisms for reasoning about 
on
eptual knowledge

on an abstra
t level. However, for a variety of appli
ations, it is essential
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to integrate the abstra
t knowledge with knowledge of a more 
on
rete na-

ture. Examples of su
h \
on
rete knowledge" in
lude all kinds of numeri
al

data as well as temporal and spatial information. Important appli
ation ar-

eas whi
h have been found to depend on integrated reasoning with 
on
rete

knowledge are, e.g., me
hani
al engineering [7℄, reasoning about aggregation

in databases [10℄, reasoning with physi
al laws [21℄ as well as temporal and

spatial reasoning (see [16℄ and [24℄). Des
ription logi
 systems like, e.g.,

Classi
, KRIS , and Taxon (see [11℄, [8℄, and [2℄, resp.), provide more or

less elaborated interfa
es that allow the atta
hment of external reasoning fa-


ilities whi
h are 
apable of dealing with 
on
rete information. Surprisingly,

the 
omplexity of 
ombined reasoning with abstra
t and 
on
rete knowledge

has, to the best of our knowledge, never been formally analyzed and provably

optimal algorithms have not been developed. Re
ent eÆ
ient implementa-

tions of expressive des
ription logi
s like FaCT (see [20℄) 
on
entrate on

logi
s for whi
h reasoning is \empiri
ally tra
table". The starting point for

developing these eÆ
ient implementations are usually algorithms whi
h are

optimal w.r.t. worst 
ase 
omplexity. One important reason why these sys-

tems fail to integrate 
on
rete knowledge is that no 
omplexity results and

no eÆ
ient algorithms are available.

Baader and Hans
hke [6℄ introdu
e 
on
rete domains as an approa
h to

integrated reasoning with abstra
t and 
on
rete knowledge. They de�ne the

basi
 des
ription logi
 ALC(D), whi
h 
an be parameterized with a 
on
rete

domainD. A 
on
rete domain de�nes a set of 
on
rete obje
ts and predi
ates

over these obje
ts. Baader and Hans
hke prove that the standard reasoning

problems 
on
ept satis�ability, 
on
ept subsumption and ABox 
onsisten
y

are de
idable for the logi
 ALC(D) if an \admissible" 
on
rete domain D

(i.e., D ful�lls a 
ertain set of requirements) is used. However, to the best

of our knowledge, the exa
t 
omplexity of reasoning with ALC(D) has never

been formally analyzed. The logi
ALC(D) uses features (single-valued roles)

to establish the 
onne
tion between the abstra
t and the 
on
rete domain.

It does not, however, in
lude two of the basi
 operators on features 
alled

feature agreement and feature disagreement. These operators �rst appeared

in ALCF , whi
h is the basi
 extension of ALC with features [19℄.

In this paper, two issues are treated: First, ALC(D) is extended with the

feature agreement and feature disagreement operators yielding the new logi


ALCF(D), whi
h is a 
ombination of ALC(D) and ALCF . Algorithms for

de
iding the 
on
ept satis�ability and ABox 
onsisten
y problems for this

logi
 are devised and their soundness and 
ompleteness is proved. The main
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strategy employed by the algorithms is to divide the 
on
rete domain sat-

is�ability test into polynomial 
hunks. This te
hnique is vital for eÆ
ient

implementations of des
ription logi
s in
orporating 
on
rete domains. Se
-

ond, the 
omplexity of reasoning with ALCF(D) and ALC(D) is examined

and a tight 
omplexity bound is established. Sin
e de
iding ABox 
onsis-

ten
y involves a satis�ability 
he
k for the 
on
rete domain, the 
omplexity

of the 
ombined formalism depends on the 
omplexity of reasoning in the


on
rete domain. It is proved that 
on
ept satis�ability, 
on
ept subsump-

tion and ABox 
onsisten
y are PSpa
e-
omplete for the des
ription logi
s

ALC(D) and ALCF(D), provided that the 
omplexity of the 
on
rete do-

main satis�ability test is in PSpa
e. A lower 
omplexity 
annot be a
hieved

sin
e reasoning in ALC, whi
h is a proper subset of ALC(D), ALCF , and

ALCF(D), is already PSpa
e-
omplete. The 
omplexity results show that

the proposed algorithms are optimal.

2 The Des
ription Logi
 ALCF(D)

In this se
tion, the des
ription logi
 ALCF(D) is introdu
ed. The logi


ALCF(D) extends ALC(D), as given in [6℄, by the operators feature agree-

ment and disagreement (see [19℄). First, 
on
rete domains need to be de�ned.

De�nition 1. A 
on
rete domain D is a pair (�

D

;�

D

), where �

D

is a set


alled the domain, and �

D

is a set of predi
ate names. Ea
h predi
ate name

P from �

D

is asso
iated with an arity n and an n-ary predi
ate P

D

� �

n

D

.

A 
on
rete domain D is 
alled admissible i� (1) the set of its predi
ate

names is 
losed under negation and 
ontains a name >

D

for �

D

and (2) the

satis�ability of �nite 
onjun
tions of predi
ates is de
idable.

On the basis of 
on
rete domains, the syntax of ALCF(D) 
on
epts 
an be

formally introdu
ed.

De�nition 2. Let C, R, and F be disjoint sets of 
on
ept, role, and feature

names

1

. A 
omposition of features f

1

f

2

� � � f

n

is 
alled a feature 
hain. Any

element of C is a 
on
ept (atomi
 
on
ept). If C and D are 
on
epts, R is a

role or feature, P 2 �

D

is a predi
ate name with arity n, and u

1

, : : : ,u

n

are

feature 
hains, then the following expressions are also 
on
epts:

1

In the following, the notion role (feature) is used synonymously for role name (feature

name).
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� :C (negation), C uD (
onjun
tion), C t D (disjun
tion),

8R:C (value restri
tion), 9R:C (exists restri
tion),

� 9u

1

; : : : ; u

n

:P (predi
ate operator)

� u

1

#u

2

(feature agreement), u

1

"u

2

(feature disagreement).

Please note that a simple feature 
an be viewed as a feature 
hain of length

one. The predi
ate operator is written as P(u

1

; : : : ; u

n

) in [6℄. For a fea-

ture 
hain u = f

1

� � � f

n

, 9u:C and 8u :C will be used as abbreviations

for 9f

1

: : : :9f

n

:C and 8f

1

: : : :8f

n

:C , respe
tively. ALC(D) 
on
epts are

ALCF(D) 
on
epts in whi
h neither the feature agreement nor the feature

disgreement operator appears. ALCF 
on
epts are ALCF(D) 
on
epts in

whi
h the predi
ate operator does not appear.

As usual, a set theoreti
 semanti
s is given. The semanti
s for ALCF(D)

is a 
ombination of the semanti
s for ALC(D) and ALCF .

De�nition 3. An interpretation I = (�

I

; �

I

) 
onsists of a set �

I

(the ab-

stra
t domain) and an interpretation fun
tion �

I

. The sets �

D

and �

I

must

be disjoint. The interpretation fun
tion maps

� ea
h 
on
ept name C to a subset C

I

of �

I

,

� ea
h role name R to a subset R

I

of �

I

��

I

,

� and ea
h feature name f to a partial fun
tion f

I

from �

I

to �

D

[�

I

,

where f

I

(a) = x will be written as (a; x ) 2 f

I

.

If u = f

1

� � � f

k

is a feature 
hain, then u

I

is de�ned as the 
omposition f

I

1

Æ

: : : Æ f

I

k

of the partial fun
tions f

I

1

; : : : ; f

I

k

. Let the symbols C , D , R, P , and

u

1

, : : : ,u

n

be de�ned as in De�nition 2. Then the interpretation fun
tion 
an

be extended to 
omplex 
on
epts as follows:

(C u D)

I

:= C

I

\ D

I

(C t D)

I

:= C

I

[ D

I

(:C )

I

:= �

I

n C

I

(9R:C )

I

:= fa 2 �

I

j 9b 2 �

I

: (a; b) 2 R

I

^ b 2 C

I

g

(8R:C )

I

:= fa 2 �

I

j 8b : (a; b) 2 R

I

! b 2 C

I

g

(9u

1

; : : : ; u

n

:P)

I

:= fa 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

:

(a; x

1

) 2 u

I

1

^ � � � ^ (a; x

n

) 2 u

I

n

^ (x

1

; : : : ; x

n

) 2 P

D

g

4



(u

1

#u

2

)

I

:= fa 2 �

I

j 9b 2 �

I

: (a; b) 2 u

I

1

^ (a; b) 2 u

I

2

g

(u

1

"u

2

)

I

:= fa 2 �

I

j 9b

1

; b

2

2 �

I

: b

1

6= b

2

^

(a; b

1

) 2 u

I

1

^ (a; b

2

) 2 u

I

2

g

An interpretation I is a model of a 
on
ept C i� C

I

6= ;. A 
on
ept C is

satis�able i� there exists a model I of C . A 
on
ept C subsumes a 
on
ept

D (written D � C ) i� D

I

� C

I

for all interpretations I.

In the presen
e of negation, subsumption 
an be redu
ed to satis�ability

sin
e D � C i� the 
on
ept D u :C is unsatis�able.

Please note that the feature agreement and feature disagreement opera-

tors 
onsider only obje
ts from �

I

and no obje
ts from �

D

. If agreement

and disagreement over 
on
rete obje
ts is desired, a 
on
rete domain whi
h

in
ludes an equality predi
ate has to be used. Feature agreement and dis-

agreement over 
on
rete obje
ts, only, may then be expressed as 9u

1

; u

2

: =

and 9u

1

; u

2

: 6=, respe
tively. This 
an also be disjun
tively 
ombined with

the feature agreement and disagreement operators to obtain \global" agree-

ment and disagreement over both domains. Global agreement is expressed

by the 
on
ept u

1

#u

2

t 9u

1

; u

2

: = and global disagreement is expressed by

u

1

"u

2

t 9u

1

; u

2

: 6= t (9u

1

:> u 9u

2

:>

D

) t (9u

2

:> u 9u

1

:>

D

), where >

is an abbreviation for A u :A.

2

In ALCF , the additional operator u" (feature unde�nedness) is intro-

du
ed [19℄. Its semanti
s is

(u")

I

:= fa 2 �

I

j :9b 2 �

I

: (a; b) 2 u

I

g:

We do not 
onsider this operator sin
e it is obviously just synta
ti
 sugar for

8u:? t 9u:>

D

. Next, the assertional formalism is introdu
ed.

De�nition 4. Let O

D

and O

A

be disjoint sets of obje
t names. Elements

from O

D

are 
alled 
on
rete obje
ts while Elements from O

A

are 
alled ab-

stra
t obje
ts. If C is a 
on
ept, R a role or feature name, f a feature name,

2

In fa
t, feature agreement and disagreement 
ould also have been de�ned to take into

a

ount both abstra
t and 
on
rete obje
ts. This would have led to a language with exa
tly

the same expressivity but would have made some te
hni
al issues more 
ompli
ated. For

example, the de�nition of a 
on
rete domain D to be admissible would have had to be

extended: �

D

would also be required to in
lude an equality predi
ate. This approa
h was

not followed be
ause global agreement and disagreement are not 
onsidered to be very

\natural" operators.
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P a predi
ate name with arity n, a and b are elements of O

A

and x , and x

1

,

: : : ,x

n

are elements of O

D

, then the following expressions are assertional ax-

ioms.

a :C ; (a; b) :R; (a; x) : f ; a 6= b; (x

1

; : : : ; x

n

) :P

A �nite set of assertional axioms is 
alled an ALCF(D) ABox. An in-

terpretation for the 
on
ept language 
an be extended to the assertional

language by mapping every obje
t name from O

A

to an element of �

I

and every obje
t name from O

D

to an element of �

D

. The unique name

assumption is not imposed, i.e. a

I

= b

I

may hold even if a and b are

distin
t obje
t names. An interpretation satis�es an assertional axiom

a :C i� a

I

2 C

I

;

(a; b) :R i� (a

I

; b

I

) 2 R

I

;

(a; x) : f i� (a

I

; x

I

) 2 f

I

;

a 6= b i� a

I

6= b

I

;

(x

1

; : : : ; x

n

) :P i� (x

I

1

; : : : ; x

I

n

) 2 P

D

:

An interpretation is amodel of an ABox A i� it satis�es all assertional axioms

in A. An ABox is 
onsistent i� it has a model.

An obje
t b is 
alled a su

essor of an obje
t a in an ABox A i� A 
ontains

an assertional axiom (a; b) :R, where R is a role or feature.

An ALC(D) ABox is an ALCF(D) ABox in whi
h only ALC(D) 
on
epts

are used. Analogously, an ALCF ABox is an ALCF(D) ABox in whi
h only

ALCF 
on
epts are used.

Satis�ability of 
on
epts, as introdu
ed in De�nition 3, 
an be redu
ed

to ABox 
onsisten
y sin
e a 
on
ept C is satis�able i� the ABox fa :Cg is


onsistent.

3 A Completion Algorithm

In this se
tion, a 
ompletion algorithm is devised whi
h 
an be used to de
ide

the 
onsisten
y of ALCF(D) ABoxes. Completion algorithms, whi
h are also

known as tableau algorithms, are 
hara
terized by a set of 
ompletion rules

and a strategy to apply these rules to the assertional axioms of an ABox.

The algorithm starts with an initial ABox A

0

whose 
onsisten
y is to be

6



de
ided. As noted before, if only the satis�ability of a single 
on
ept C

is to be 
he
ked, the spe
ial ABox fa : C g is 
onsidered. The algorithm

repeatedly applies 
ompletion rules that add new axioms, and, by doing so,

it makes all knowledge that is impli
itly 
ontained in the ABox expli
it. If

the algorithm su

eeds to 
onstru
t an ABox A




whi
h is 
omplete (i.e., to

whi
h no more 
ompletion rules are appli
able) and whi
h does not 
ontain an

obvious 
ontradi
tion, then A




de�nes a 
anoni
al model for A

0

. Otherwise,

A

0

does not have a model. In fa
t, things are a little more diÆ
ult due to

the presen
e of so-
alled bran
hing rules. The appli
ation of a 
ompletion

rule to an ABox A yields one or more su

eeding ABoxes (des
endants of A).

The rules for whi
h more than one des
endant per appli
ation is obtained

are 
alled bran
hing rules. In the presen
e of bran
hing rules, a 
ompletion

algorithm 
reates a tree of ABoxes. Again, if a 
omplete ABox is found whi
h

does not 
ontain a 
ontradi
tion, then this ABox de�nes a 
anoni
al model

for A

0

.

In [19℄, it is proved that reasoning with ALCF is PSpa
e-
omplete. A


ompletion algorithm is employed for the proof. To the 
ontrary, the 
om-

plexity of reasoning withALC(D) is yet unknown. Baader and Hans
hke pro-

pose a 
ompletion algorithm for de
iding the 
onsisten
y of ALC(D) ABoxes

without analyzing its 
omplexity [6℄. This algorithm is dis
ussed in the fol-

lowing se
tion.

3.1 Analyzing Baader and Hans
hke's algorithm

In [6℄, Baader and Hans
hke de�ne a 
ompletion algorithm (from now on


alled \BHA") in order to demonstrate de
idability of the 
onsisten
y prob-

lem for ALC(D) ABoxes. The algorithm applies 
ompletion rules until a


omplete ABox is found (keeping the whole ABox in memory) and then

performs a 
on
rete domain satis�ability 
he
k on all axioms of the form

(x

1

; : : : ; x

n

) :P (
on
rete domain axioms) found during the rule appli
ation

pro
ess. As will be dis
ussed in this se
tion, BHA may in the worst 
ase

generate ABoxes whi
h are exponential in the size of the initial ABox.

A formal notion of \size" will be introdu
ed later. For now, 
onsider the

size of a 
on
ept C to be the number of operators in C , and the size of an

ABox A to be the sum of the sizes of all 
on
epts used in assertional axioms

in A. When used with ABoxes that 
ontain 
on
epts a

ording to the follow-

ing s
hema, BHA generates a 
omplete ABox that is exponential in the size of

7



the original ABox.

9R:C u 9R:D

u 8R:(9R:C u 9R:D)

: : :

u 8R

n

:(9R:C u 9R:D)

Here, 8R

n

denotes n nested value restri
tions over R. ABoxes 
an be seen

as graphs where role su

essor relationships are edges and obje
ts are nodes.

In this sense, all models (
omplete ABoxes) that are generated by BHA

are trees. Please note that 
on
epts following the given s
hema are also

satis�ed by a 
y
li
 (non-tree) model with only 2 domain obje
ts. This is,

however, not a general phenomenon. Halpern and Moses [17℄ show that for

the modal logi
 K, there exist formulae that have models of exponential size

only. Sin
e it is well-known that the logi
 K

n

is a notational variant of ALC

([30℄), these formulae 
an be dire
tly translated into ALC(D) 
on
epts. On

the other hand, S
hmidt-S
hau� and Smolka show that for the logi
 ALC

(as for a number of other logi
s), algorithms 
an be devised whi
h use only

polynomial spa
e for exploring exponentially sized models by performing

depth-�rst sear
h over the role su

essors and keeping only a \tra
e" of an

ABox in memory [31℄. If this te
hnique is to be applied to ALC(D) or

ALCF(D), an additional problem arises. BHA requires that all 
on
rete

domain axioms appearing in a 
omplete ABox A are 
onjoined into one big


onjun
tion and then 
he
ked for 
on
rete domain satis�ability. The 
on
epts

obtained from the translation of the K formulae given by Halpern and Moses


an easily be extended su
h that ea
h abstra
t domain obje
t in every model

is in the extension of a 
on
ept of the form 9u

1

; : : : ; u

n

:P . Hen
e, there

are also exponentially many 
on
rete domain axioms to be 
olle
ted. It is

obvious that any algorithm following this strategy needs exponential spa
e

in the worst 
ase.

In the following, it will be shown that it is not ne
essary to 
olle
t all


on
rete domain axioms at on
e: The 
on
rete domain satis�ability 
he
k 
an

be partitioned into polynomial 
hunks whi
h do not intera
t, i.e, whi
h do not

share any variables. In the next se
tion, a tableau algorithm is developed that

does exa
tly this. Only a polynomial tra
e of the ABox is kept in memory,

and, furthermore, the 
on
rete domain satis�ability 
he
k is broken down into

independent, polynomial 
hunks. This algorithm is then used to prove that

de
iding ALCF(D) ABox 
onsisten
y is PSpa
e-
omplete provided that the

8




on
rete domain satis�ability test is in PSpa
e.

3.2 A PSpa
e Algorithm

The algorithm for de
iding the 
onsisten
y of ALCF(D) ABoxes is developed

in two steps. First, an algorithm sat for de
iding 
on
ept satis�ability is

devised. Afterwards, an algorithm ABox-
ons is developed whi
h is 
apable

of de
iding the 
onsisten
y of ALCF(D) ABoxes.

Sat takes a 
on
ept C as input. C has to be in negation normal form, i.e.,

negation is allowed only in front of atomi
 
on
epts. Conversion to NNF 
an

be done by exhaustively applying appropriate rewrite rules to push negation

inwards.

3

Lemma 5. Let D be an admissible 
on
rete domain. Let C;D be ALC(D)


on
epts,

^

R a role, f a feature, P an n-ary predi
ate in �

D

, and u

1

; : : : ; u

n

feature 
hains. For a feature 
hain u = f

1

� � � f

k

, set

�(u) := 9f

1

:>

D

t 9f

1

f

2

:>

D

t : : : t 9f

1

� � � f

k�1

:>

D

The following transformations preserve equivalen
e of 
on
epts:

:(C uD) =) :C t :D :(C tD) =) :C u :D ::C =) C

:(8

^

R:C) =) 9

^

R::C :(9

^

R:C) =) 8

^

R::C

:(8f:C) =) 9f::C t 9f:>

D

:(9f:C) =) 8f::C t 9f:>

D

:(9u

1

; : : : ; u

n

:P ) =) 9u

1

; : : : ; u

n

:P t 8u

1

:> t : : : t 8u

n

:>

t �(u

1

) t : : : t �(u

n

)

:(u

1

#u

2

) =) u

1

"u

2

t 9u

1

:>

D

t 9u

2

:>

D

t 8u

1

:? t 8u

2

:?

t �(u

1

) t �(u

2

)

:(u

1

"u

2

) =) u

1

#u

2

t 9u

1

:>

D

t 9u

2

:>

D

t 8u

1

:? t 8u

2

:?

t �(u

1

) t �(u

2

)

By applying the above rules, any ALCF(D) 
on
ept 
an be 
onverted into

an equivalent 
on
ept in NNF in linear time.

In order to keep the further 
onsiderations simple, nondeterministi
 
om-

pletion rules are used instead of bran
hing rules. This means that in a

3

In [6℄, the rewrite rule 
on
erning the predi
ate operator is erroneous. This observation

is due to Anni-Yasmin Turhan.

9



bran
hing situation, the algorithm does not explore all of the given possi-

bilities but just a single one. It is not spe
i�ed whi
h possibility is 
hosen.

Thus, the des
ribed 
ompletion algorithm is a nondeterministi
 de
ision pro-


edure. Su
h an algorithm a

epts its input (i.e. returns 
onsistent), if there

is any way to make the nondeterministi
 de
isions su
h that a positive result

is obtained (i.e., a 
omplete and non-
ontradi
tory ABox is found). A 
onve-

nient way to think of nondeterministi
 rules is that they \guess" the \right"

des
endant, i.e., if there is a des
endant whi
h, if 
hosen, leads to a 
omplete

and non-
ontradi
tory ABox, then this des
endant is in fa
t 
onsidered.

To de
ide the satis�ability of the 
on
ept C , sat starts with the initial

ABox A

0

:= fo :Cg and then repeatedly applies 
ompletion rules. First, the

set of 
ompletion rules is de�ned.

3.2.1 The Ruleset

To de�ne the rules in a su

in
t way, the two fun
tions su



A

and 
hain

A

are introdu
ed.

For an obje
t a 2 O

A

and a feature 
hain u, su



A

(a; u) denotes the

obje
t b that 
an be found by following u starting from a in the ABox A.

If no su
h obje
t exists, su



A

(a; u) denotes the spe
ial obje
t � that 
annot

be part of any ABox. An obje
t name a 2 O

A

is 
alled fresh in an ABox A

if a is not used in A. Let a be an obje
t from O

A

, x be an obje
t from O

D

,

and u = f

1

� � � f

k

be a feature 
hain. The fun
tion 
hain is de�ned as follows:


hain

A

(a; x ; u) := f(a; 


1

) : f

1

; : : : ; (


k�1

; x ) : f

k

g

where the 


1

; : : : ; 


k�1

2 O

A

are distin
t and fresh in A.

An ABox A is said to 
ontain a fork (for a feature f ) if it 
ontains the two

axioms (a; b) : f and (a; 
) : f or the two axioms (a; x ) : f and (a; y) : f , where

b and 
 are from O

A

and x and y are from O

D

. A fork 
an be eliminated by

repla
ing all o

urren
es of 
 in A with b, or by repla
ing all o

urren
es of x

inA with y, respe
tively. During rule appli
ation, it is assumed that forks are

eliminated as soon as they appear (as an integral part of the rule appli
ation)

with the proviso that newly generated obje
t are repla
ed by older ones and

not vi
e versa. Now, the set of 
ompletion rules 
an be formulated.

De�nition 6. The following 
ompletion rules repla
e a given ABox A non-

deterministi
ally by an ABox A

0

. A

0

is 
alled a des
endant of A. In the

following, C and D denote a 
on
ept,

^

R a role, f a feature, P a predi
ate

10



name from �

D

with arity n, u

1

, : : : ,u

n

feature 
hains, a and b obje
t names

from O

A

, and x

1

; : : : ; x

n

obje
t names from O

D

.

Ru The 
onjun
tion rule.

Premise: a :C u D 2 A; fa :C ; a :Dg 6� A

Consequen
e: A

0

= A [ fa :C ; a :Dg

Rt The (nondeterministi
) disjun
tion rule.

Premise: a :C t D 2 A; fa :C ; a :Dg \ A = ;

Consequen
e: A

0

= A [ fa :Cg _ A

0

= A [ fa :Dg

Rr9C The role exists restri
tion rule.

Premise: a :9

^

R:C 2 A; :9b 2 O

A

: f(a; b) :

^

R; b :C g � A

Consequen
e: A

0

= A [ f(a; b) :

^

R ; b :Cg where b 2 O

A

is fresh in A.

Rf9C The feature exists restri
tion rule (may 
reate forks).

Premise: a :9f :C 2 A; :9b 2 O

A

: f(a; b) : f ; b :C g � A

Consequen
e: A

0

= A [ f(a; b) : f ; b :C g where b 2 O

A

is fresh in A.

Rr8C The role value restri
tion rule.

Premise: a :8

^

R:C 2 A; 9b 2 O

A

: (a; b) :

^

R 2 A ^ b : C =2 A

Consequen
e: A

0

= A [ fb :Cg

Rf8C The feature value restri
tion rule.

Premise: a :8R:C 2 A; 9b 2 O

A

: (a; b) : f 2 A ^ b : C =2 A

Consequen
e: A

0

= A [ fb :Cg

R9P The predi
ate exists restri
tion rule (may 
reate forks).

Premise: a :9u

1

; : : : ; u

n

:P 2 A;:9x

1

; : : : ; x

n

2 O

D

:

(su



A

(a; u

1

) = x

1

^ : : : ^ su



A

(a; u

n

) = x

n

^

(x

1

; : : : ; x

n

) :P 2 A)

Consequen
e: C

0

:= A[ f(x

1

; : : : ; x

n

) :Pg

where the x

i

2 O

D

are distin
t and fresh in A.

C

1

:= 
hain

C

0

(a; x

1

; u

1

); : : : ; C

n

:= 
hain

C

n�1

(a; x

n

; u

n

)

A

0

=

S

i=0:::n

C

i

R# The agreement rule (may 
reate forks).

Premise: a :u

1

#u

2

2 A;

:9b 2 O

A

: (su



A

(a; u

1

) = su



A

(a; u

2

) = b)

Consequen
e: C = A [ 
hain

A

(a; b; u

1

) where b 2 O

A

is fresh in A.

11



A

0

= C [ 
hain

C

(a; b; u

2

)

R" The disagreement rule (may 
reate forks).

Premise: a :u

1

"u

2

2 A; :9b

1

; b

2

2 O

A

: (su



A

(a; u

1

) = b

1

^

su



A

(a; u

2

) = b

2

^ b

1

6= b

2

2 A)

Consequen
e: C = A [ 
hain

A

(a; b

1

; u

1

)

A

0

= C [ 
hain

C

(a; b

2

; u

2

) [ fb

1

6= b

2

g

where the b

1

; b

2

2 O

A

are distin
t and fresh in A.

Rule appli
ations that generate new obje
ts are 
alled generating. All other

rule appli
ations are 
alled non-generating. All appli
ations of the Rr9C

rule are generating. Appli
ation of the rules Rf9C, R9P, R#, R" are usually

generating but may be non-generating if fork elimination takes pla
e.

The ruleset is identi
al to the one used for BHA with three ex
eptions:

(i) The rule Rt is nondeterministi
; this serves the purpose of making our

further 
onsiderations simpler; (ii) the rules Rr9C and Rf9C, as well as Rr8C

and Rf8C, respe
tively, are uni�ed in a single rule in Baader and Hans
hke's

ruleset; in our setting, it is more 
onvenient to separate the rules sin
e in the

satis�ability algorithm to be de�ned, rule appli
ation to axioms of the form

(a; x) : f , where f is a feature, o

urrs at a di�erent time than rule appli
ations

to axioms (a; b) :

^

R, where

^

R is a role; (iii) there are two new rules for dealing

with feature agreement and disagreement, see [19℄. A formalized notion of


ontradi
tory and 
omplete ABoxes needs to be introdu
ed.

De�nition 7. Let the same naming 
onventions be given as in De�nition 6.

An ABox A is 
alled 
on
rete domain satis�able if there exists a mapping Æ

from O

D

to �

D

, su
h that

V

(x

1

;:::;x

n

):P2A

(Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

is true in D.

An ABox A is 
alled 
ontradi
tory if it is not 
on
rete domain satis�able or

one of the following 
lash triggers is appli
able. If none of the 
lash triggers

is appli
able to an ABox A, then A is 
alled 
lash-free.

� Primitive 
lash: a :C 2 A; a ::C 2 A

� Feature domain 
lash: (a; x) : f 2 A; (a; b) : f 2 A

� All domain 
lash: (a; x ) : f 2 A; a :8f :C 2 A

� Agreement 
lash: a 6= a 2 A

An ABox to whi
h no 
ompletion rules are appli
able is 
alled 
omplete.

In the following se
tion, the satis�ability algorithm is des
ribed.

12



3.2.2 The Satis�ability Algorithm

The satis�ability algorithm makes use of two auxiliary fun
tions whi
h will

be des
ribed only informally. The fun
tion apply takes two arguments whi
h

are an ABox A and a 
ompletion rule r. It applies r on
e to arbitrary axioms

from A mat
hing r's premise and returns the new axioms generated by the

rule appli
ation. The fun
tion satis�able? takes as arguments a 
on
rete

domain D and a set C of 
on
rete domain axioms. It returns yes if the


onjun
tion of all axioms in C is satis�able w.r.t.D and no otherwise. Assume

that the satis�ability of a 
on
ept C is to be de
ided. Using the two auxiliary

fun
tions just de�ned, the satis�ability algorithm sat 
an be spe
i�ed as

follows.

De�nition 8. The fun
tion sat 
an be used to de
ide the satis�ability of

ALCF(D) 
on
epts in NNF. To de
ide the satis�ability of the 
on
ept C ,

sat takes the input fo :Cg.

de�ne pro
edure sat(A)

A

0

:= feature-
omplete(A)

if A

0


ontains a 
lash then

return in
onsistent

C := f� 2 A

0

j � is of the form (x

1

; : : : ; x

n

) :Pg

if satis�able?(D,C) = no then

return in
onsistent

forall a :9

^

R:D 2 A

0

, where

^

R is a role, do

Let b be an obje
t name from O

A

.

if sat(fb :Dg [ fb :E j a :8

^

R:E 2 A

0

g) = in
onsistent then

return in
onsistent

return 
onsistent

de�ne pro
edure feature-
omplete(A)

while a rule r from fRu;Rt;Rf9C;Rf8C;R9P;R#;R"g

is appli
able to A do

A := A [ apply(A; r)

return A

We will now informally des
ribe the strategy followed by sat. A formal proof

of its soundness and 
ompleteness will be given in Se
tion 4. The argu-

ment of sat is an ABox 
ontaining exa
tly one obje
t a 2 O

A

. Sat uses

13



the feature-
omplete fun
tion to 
reate all feature su

essors of a, all fea-

ture su

essors of these feature su

essors and so on. Sat thus 
onsiders a


luster of obje
ts whi
h are related by features, only. If the resulting ABox

is interpreted as a graph (see Se
tion 3.1), the 
luster is a dire
ted a
y
li


graph with a single root a. Afterwards, a re
ursive 
all is made for ea
h role

su

essor of any obje
t in the 
luster. This strategy was �rst employed for

ALCF reasoning algorithms (see [19℄). Ea
h 
luster is 
he
ked separately for


ontradi
tions and 
on
rete domain satis�ability. It will later be shown that

this is equivalent to the strategy used by Baader and Hans
hke's algorithm.

For ea
h re
ursive 
all, sat generates an ABox whi
h 
ontains all axioms for

the respe
tive su

essor. Please note that the generation of the new ABox


orresponds to an appli
ation of the Rr9C rule and �nitely many appli
ations

of the Rr8C rule. Sat is 
alled re
ursively for the newly generated ABox.

To summarize, sat is a re
ursive fun
tion following a \tra
e" of obje
t


lusters. Based on the sat algorithm, an algorithm for de
iding ABox 
onsis-

ten
y 
an be de�ned.

3.2.3 The ABox Consisten
y Algorithm

The algorithm ABox-
ons, whi
h is introdu
ed in this se
tion, 
an be used to

de
ide the 
onsisten
y of ALCF(D) ABoxes. The algorithm takes an ABox

A as input, where all 
on
epts appearing in A have to be in NNF. ABox-
ons

redu
es the ABox 
onsisten
y to 
on
ept satis�ability. It �rst performs pre-

pro
essing on the input ABox, then 
onstru
ts a set of \redu
tion 
on
epts"

and �nally 
he
ks their satis�ability using sat.

De�nition 9. The algorithm ABox-
ons whi
h 
an be used to de
ide the


onsisten
y of ALCF(D) ABoxes is de�ned as follows.

de�ne pro
edure ABox-
ons(A)

eliminate forks in A (see De�nition 6)

A := prepro
ess(A)

C := f� 2 A j � is of the form (x

1

; : : : ; x

n

) :Pg

if A 
ontains a 
lash then

return in
onsistent

if satis�able?(D,C) = no then

return in
onsistent

forall a :9

^

R:C 2 A, where

^

R is a role, do

Let b be an obje
t name from O

A

.

14



if sat(fb : (C u (u

a:8

^

R:D2A

D))g) = in
onsistent then

return in
onsistent

return 
onsistent

de�ne pro
edure prepro
ess(A)

while a rule r from fRu;Rt;Rr8C;Rf9C;Rf8C;R9P;R#;R"g

is appli
able to A, do

A := A [ apply(A; r)

return A

Again, an informal des
ription of the algorithm is given. The prepro
ess-

ing is performed by the fun
tion prepro
ess, whi
h is very similar to the

feature-
omplete fun
tion used by sat. The rule set used by prepro
ess is

identi
al to that used by feature-
omplete, ex
ept that the Rr8C rule is also

applied. This is ne
essary be
ause in the initial ABox A

0

, there may already

be axioms of the form (a; b) :

^

R, where

^

R is a role. After the resulting ABox,

whi
h is 
alled prepro
essing 
omplete, has been 
he
ked for 
ontradi
tions

and 
on
rete domain satis�ability, it is suÆ
ient to separately 
he
k all su
-


essors of obje
ts in the prepro
essing 
omplete ABox for 
onsisten
y. This

is done by 
onstru
ting a set of \redu
tion 
on
epts" and using sat to de
ide

their 
onsisten
y. Please note that 
on
ept 
onstru
tion 
orresponds to the

appli
ation of the Rr9C and Rr8C rules. Regarding prepro
essing on ABoxes

with the goal to redu
e ABox 
onsisten
y to 
on
ept satis�ability, see also

[18℄ and [9℄.

The 
orre
tness of the redu
tion implemented by ABox-
ons is proved in

the next se
tion.

4 Corre
tness and Complexity

In this se
tion, it is proved that both the satis�ability algorithm and the


onsisten
y algorithm are sound and 
omplete and that they 
an be exe-


uted using only polynomial spa
e provided that the satis�able? fun
tion 
an

also be exe
uted in polynomial spa
e. Starting from this result, it will be

straightforward to prove that de
iding the 
onsisten
y of an ALCF(D) ABox

is a PSpa
e-
omplete problem provided that the satis�ability test for the


on
rete domain D is in PSpa
e. Sat and ABox-
ons are 
onsidered sepa-

rately.

15



4.1 The sat Algorithm

First, some basi
 de�nitions are ne
essary. To 
hara
terize spa
e require-

ments, a formal notion for the size of an ABox is given.

De�nition 10. The size jjC jj of a 
on
ept C is de�ned indu
tively. Let C

and D be 
on
epts, A an atomi
 
on
ept, R a role or feature, u = f

1

� � � f

k

a

feature 
hain, and let u

1

; : : : ; u

n

also be feature 
hains.

jjAjj = 1

jjCfu;tgD jj = jjC jj+ jjDjj+2

jj9u

1

; : : : ; u

n

:P jj = jju

1

jj+ � � �+ jju

n

jj+1

jju

1

#u

2

jj = jju

1

jj+ jju

2

jj

jjf

1

� � � f

k

jj = k

jj:C jj = jjCjj

jjf8; 9gR:C jj = jjC jj+1

jju

1

"u

2

jj = jju

1

jj+ jju

2

jj+1

The size of an axiom � is jjC jj if � is of the form x :C and 1 otherwise. The

size of an ABox A is the sum of the sizes of all axioms in A.

Please re
all that sat is a nondeterministi
 algorithm, i.e., the sat yields a

positive result if there is any way to make the nondeterministi
 de
isions su
h

that a positive result is obtained. A way to make the nondeterministi
 
orre-

sponds to a run of the algorithm. Corre
tness of the satis�ability algorithm


an be proved by showing that (1) whenever there is a sat run returning


onsistent , then the initial ABox A

0

= fa :C g has a model, (2) whenever all

possible sat runs are returning in
onsistent , then A

0


annot have a model,

and (3) sat terminates on any input fa : Cg, i.e., all possible runs are of

�nite length. For doing so, it is 
onvenient to de�ne a sequen
e of ABoxes

A

0

[

;A

1

[

; : : : that is asso
iated with a given run of the satis�ability algorithm.

The ABoxes A

i

[


olle
t all axioms that the sat algorithm generates during

the run. Ea
h ABox A

i

[

is obtained by the appli
ation of a single rule to the

ABox A

i�1

[

. It will be shown that if sat terminates after n rule appli
ations

returning 
onsistent , then the ABox A

n

[

de�nes a 
anoni
al model for A

0

.

When de�ning A

i

[

, we must 
ope with the following te
hni
al problem:

The obje
t names 
reated by sat are unique only within the ABox 
onsidered

in a single re
ursion step. This means that we must ensure that an obje
t x

in one re
ursion step 
an be distinguished from x in another step sin
e these

two obje
ts are not identi
al. To a
hieve this, obje
ts used in axioms are

renamed before the axioms are added to an ABox A

i

[

. For this purpose, the

obje
t names are indexed with the value of a 
ounter s
, whi
h 
ounts the

(re
ursive) 
alls to the sat fun
tion.
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* r
 := s
 := 0

de�ne pro
edure sat(A)

A

0

:= feature-
omplete(A)

if A

0


ontains a 
lash then

return in
onsistent

C := f� 2 A

0

j � is of the form (x

1

; : : : ; x

n

) :Pg

if satis�able?(D,C) = no then

return in
onsistent

forall a :9

^

R:D 2 A

0

, where

^

R is a role, do

* s
 := s
 + 1

* r
 := r
 + 1

Let b be an obje
t name from O

A

.

* A

r


[

:= A

r
�1

[

[ f(a

s
�1

; b

s


) :

^

Rg [ fb

s


:Dg

* forall � 2 A

0

of the form a :8

^

R:E do

* r
 := r
 + 1

* A

r


[

:= A

r
�1

[

[ fb

s


:Eg

if sat(fb :Dg [ fb :E j a :8

^

R:E 2 A

0

g) = in
onsistent then

return in
onsistent

return 
onsistent

de�ne pro
edure feature-
omplete(A)

while a rule r from fRu;Rt;Rf9C;Rf8C;R9P;R#;R"g

is appli
able to A do

N := apply(A; r)

A := A [N

* r
 := r
 + 1

* forall � 2 N do

* forall a 2 O

A

(and all x 2 O

D

) used in � do

* Repla
e ea
h o

urren
e of a (resp. x)

* in � with a

s


(resp. x

s


)

* A

r


[

:= A

r
�1

[

[ f�g

return A

Figure 1: The annotated sat algorithm.
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Let A

0

= fa : Cg be the ABox that is initially passed to sat. We set

A

0

[

:= fa

0

: Cg for any sat run with A

0

as initial argument. For i > 0,

A

i

[

is de�ned re
ursively by the annotated version of the sat algorithm given

in Figure 1. The annotations are marked with asterisks. The annotated

version introdu
es the two global variables s
 and r
, whi
h are assumed to

be initialized with the value 0. The �rst one is a 
ounter for the number of


alls to the sat fun
tion. The se
ond one 
ounts the number of rules that have

been applied. Please note that the annotated version of sat is de�ned just

to prove the 
orre
tness of the original version. It is by no means intended

to be used as an algorithm for de
iding the satis�ability of 
on
epts, neither

do we 
laim that the annotated version itself 
an be exe
uted in polynomial

spa
e. The following Lemma is needed for proving the 
orre
tness of the sat

algorithm.

Lemma 11. Let A

0

be an input to the sat fun
tion. Fix a run � of sat on

A

0

. Let A

0

[

;A

1

[

; : : : be the sequen
e of ABoxes that is asso
iated with � . If

the run � terminates then this sequen
e is of �nite length n. In this 
ase, let

A

[

denote the ABox A

n

[

.

1. Let A be an ABox. For ea
h 
ompletion rule r that 
an be applied to

A, we have that A has a model if and only if one of the des
endants of

A has a model.

4

2. If � terminates and returns in
onsistent, then A

[

does not have a

model.

3. If � terminates and returns 
onsistent, then A

[

has a model.

4. Sat terminates on any input.

The four 
laims of the Lemma are proved separately:

(1) One dire
tion is trivial: Sin
e all des
endants A

0

generated by rule

appli
ation are supersets of their an
estor A, it follows immediately that

ea
h model of A

0

is also a model of A. The other dire
tion depends on the

respe
tive rule and is straightforward in most 
ases. A formal proof is omitted

sin
e the rules used by the sat algorithm have been used in [6℄ and [19℄ and

4

In 
ase of the nondeterministi
 rule Rt, there are two possible des
endants. For all

other rules, there is only a single des
endant.
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the property in question (\lo
al 
orre
tness") follows from the 
orre
tness

proofs for the algorithms that 
an be found in the referred papers.

5

(2) The run � of sat returns in
onsistent if and only if an ABox A is


onsidered whi
h either 
ontains a 
lash or is not 
on
rete domain satis�able.

In the former 
ase, A

[

does also 
ontain a 
lash; in the latter 
ase, A

[


annot be 
on
rete domain satis�able. This follows trivially from the fa
t

that we have A � A

[

modulo obje
t renaming. The rest of the proof is

straightforward, again. It suÆ
es to show that no interpretation 
an satisfy

an ABox to whi
h a 
lash trigger is appli
able or whi
h is not 
on
rete domain

satis�able.

(3) First, the following Lemma needs to be established.

Lemma 12. If a sat run � returns 
onsistent, then A

[

is 
omplete, 
lash-

free, and 
on
rete domain satis�able.

Proof: In the following, the i'th re
ursion step of � means the re
ursion step

in whi
h the 
ounter s
 has the value i. We say that i 
alls j if in the i'th

re
ursion step of � , a re
ursive 
all is made in whi
h the 
ounter s
 has the

value j. Please note that j = i + 1 does not need to hold.

� 
ompleteness. Assume that there exists a set C of axioms from A

[

to whi
h a 
ompletion rule r is appli
able. It will be shown that a


ontradi
tion 
an be derived from this assumption. A 
ase analysis

a

ording to the rules has to be made. First assume the rule r to be

from fRu;Rt;Rf9C;Rr9C;R9P;R#;R"g. In this 
ase, C has the form

fa

i

: Cg. From the 
onstru
tion of A

[

, it follows that there exists

an axiom � = a : C that either is 
reated by feature-
omplete during

the i'th re
ursion step or that is 
ontained in the ABox whi
h is the

argument to the i'th re
ursion step of � . The latter 
ase happens if

either � is the axiom from the initial ABox A

0

and i = 0 or if � was

introdu
ed by the impli
it appli
ation of Rr9C and Rr8C during a j'th

re
ursion step of � , where j 
alls i. In all of the 
ases mentioned, r

is 
he
ked for appli
ability to an ABox A 
ontaining � during the i'th

re
ursion step. If r is Rr9C, this is done by sat itself; in the other 
ases,

this is done by feature-
omplete. Assume �rst that r is not appli
able

5

To be pre
ise, the rules presented in this paper di�er in two points from those given

in [6℄, as was dis
ussed in Se
tion 3.2.1. It is obvious that these two di�eren
es (nonde-

terminism of Rt and separateness of Rr9C/Rf9C and Rr8C/Rf8C) do not in
uen
e lo
al


orre
tness.
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to � in A. This 
an only be the 
ase if the axioms appearing in the


onsequen
e of the rule are already part of A. But sin
e we have

A � A

[

modulo obje
t renaming, this would 
learly 
ontradi
t the

assumption that r is appli
able to C in A

[

. Now assume that r is

applied to � in A during the i'th re
ursion step. This means that the

axioms appearing in the 
onsequen
e of the rule are in A

[

(modulo

obje
t renaming). This again 
ontradi
ts the assumption.

The remaining 
ases for Rf8C and Rr8C 
an be proved similarly. C now


ontains the additional axiom (a

i

; b

i

) : f or (a

i

; b

i+k

) :

^

R, respe
tively,

where f is a feature and

^

R a role. Ea
h axiom (a

i

; b

i

) : f in A

[


orre-

sponds to an axiom (a; b) : f that was introdu
ed by feature-
omplete

during the i'th re
ursion step to an ABox A. Ea
h axiom (a

i

; b

i+k

) :

^

R

in A

[


orresponds to an axiom (a; b) :

^

R that was introdu
ed by an

impli
it appli
ation of the Rr9C rule during re
ursion step i. Having

established these fa
ts, 
ontradi
tion proofs exa
tly analogous to the

one given above 
an be employed.

� 
lash-freeness. Assume that A

[


ontains a 
lash. A 
ase distin
tion

a

ording to the 
lash types need to be made. Sin
e the 
ases are very

similar, only one 
ase will be dis
ussed exemplarily: A

[


ontains an

all domain 
lash if it 
ontains two axioms (a

i

; x

i

) : f and a

i

: 8f :C .

The axiom (a

i

; x

i

) : f 
orresponds to an axiom (a; x) : f introdu
ed by

feature-
omplete during the i'th re
ursion step of � . The axiom a

i

:8f :C


orresponds to an axiom a :8f :C that was introdu
ed (i) during the i'th

re
ursion step by feature-
omplete or (ii) by the impli
it appli
ation of

the Rr8C or Rr9C rule during a re
ursion step j, where j 
alls i, or (iii)

that is the axiom 
ontained in the initial ABox A

0

and we have i = 0.

In any 
ase, an ABox A 
ontaining both (a; x) : f and a : 8f :C was


he
ked for the appli
ability of 
lash triggers during the i'th re
ursion

step of � . But this means that the run � terminated with the result

in
onsistent whi
h is a 
ontradi
tion.

� 
on
rete domain satis�ability. Assume that there exists a set C � A

[

of axioms of the form (X

1

; : : : ; X

n

) :P , where ea
h X

i

denotes a 
on-


rete obje
t x

k

used in C, su
h that the 
orresponding 
onjun
tion of


on
rete domain predi
ates is unsatis�able. Axioms of the above form

are introdu
ed during rule appli
ation by feature-
omplete, only. From

this follows that in any axiom (X

1

; : : : ; X

n

) : P from C, all obje
ts
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X

1

; : : : ; X

n

have the same index, i.e., if X

i

= x

k

and X

j

= y

l

, then

k = l. This means that C 
an be divided into subsets C

1

; : : : ; C

k

, su
h

that the sets C

i

are mutually disjoint, we have C = C

1

[ � � � [ C

k

, and,

furthermore, all 
on
rete obje
ts appearing in a set C

i

have the same

index. From a solution of the predi
ate 
onjun
tions 
orresponding to

the sets C

1

; : : : ; C

k

, a solution for the predi
ate 
onjun
tion 
orrespond-

ing to C 
an easily be 
onstru
ted. Fix a set C

i

. Let j be the index of

the 
on
rete obje
ts appearing in C

i

. Let X be the set of axioms that

is 
he
ked for 
on
rete domain satis�ability in the j'th re
ursion step

of � . By de�nition of A

[

, we have C

i

� X . From the fa
t that the

run � returned 
onsistent , it follows that X and hen
e also C

i

is 
on-


rete domain satis�able. Sin
e this argument holds for all i = 1 : : : k, a


ontradi
tion to the assumption is obtained.

We now return to the proof of the third 
laim of Lemma 11. Based on A

[

,

an interpretation I 
an be de�ned as follows:

1. �

I


onsists of all obje
ts in O

A

that o

ur in A

:

[

2. If A is a 
on
ept name then a 2 A

I

i� a :A 2 A

[

.

3. If R is a role or feature name then (a; b) 2 R

I

i� (a; b) :R 2 A

[

.

4. Be
ause there A

[

is 
on
rete domain satis�able (Lemma 12 Point 3),

there is a variable assignment � that satis�es the 
onjun
tion of all

o

urring axioms (x

1

; : : : ; x

n

) :P . So we set x

I

= �(x) for all x 2 O

D

.

It remains to be proven that I is a model for A

[

. The proof is by indu
tion

over the size of axioms of the form a :C in A

[

and makes a 
ase distin
tions

a

ording to the topmost operator in C . A prerequisite for the proof is that

the ABox A

[

, whi
h was used to 
onstru
t the interpretation I, is 
omplete,


lash-free and 
on
rete domain satis�able, whi
h is assured by Lemma 12.

Most 
ases are already treated in [6℄, so we only deal with the two remaining


ases, whi
h belong to the indu
tion start.

� Let � be a : u

1

#u

1

. Sin
e the R# rule is not appli
able, there is an

obje
t b 2 O

A

for whi
h we have both u

I

1

(a

I

) = b

I

and u

I

2

(a

I

) = b

I

.

Hen
e, I satis�es �.
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� Let � be a :u

1

"u

1

. Sin
e the R" rule is not appli
able, there are obje
ts

b

1

; b

2

2 O

A

for whi
h we have u

I

1

(a

I

) = b

I

1

and u

I

2

(a

I

) = b

I

2

. Sin
e the

agreement 
lash is not appli
able, b

I

1

is distin
t from b

I

2

, and, hen
e, I

satis�es �.

(4) To �nish the proof of Lemma 11, the termination of sat needs to be

proven. Termination is a 
onsequen
e of the following 
laims:

(i) feature-
omplete terminates on any input.

(ii) The re
ursion depth of sat is bounded.

(iii) In ea
h re
ursion step, only a �nite number of re
ursive 
alls are made.

Claim (iii) is obvious. Both (i) and (ii) will be proved by a lemma whi
h es-

tablish an even stronger result. The stronger result will be helpful in proving

the polynomial spa
e-
omplexity of sat. The following Lemma settles 
laim

(i).

Lemma 13. For any input ABox A, the fun
tion feature-
omplete termi-

nates and 
onstru
ts an ABox A

0

for whi
h we have jjA

0

jj � jjAjj

2

+ jjAjj.

Proof: The upper bound for the size of A

0

given in the Lemma is a 
onse-

quen
e of the following two points:

1. feature-
omplete generates no more than jjAjj new axioms.

2. For ea
h axiom �, we have jj�jj � jjAjj.

Please note that axioms are never deleted whi
h is the reason for the se
ond

summand. The se
ond point is obvious, but the �rst one needs to be proven.

Termination of feature-
omplete dire
tly follows from this �rst point as well.

The rules Rr9C and Rr8C will not be 
onsidered sin
e they are not applied

by feature-
omplete. For all other 
ompletion rules, the most important ob-

servation is that they 
an be applied at most on
e per axiom a :C . This is

also true for axioms a : 8f :C and the Rf8C rule sin
e there is at most one

su

essor per feature and obje
t. Be
ause of this, we make the simplifying

assumption that the premise of the Rf8C rule does only 
ontain the axiom

a :8f :C but no axiom (a; b) : f , i.e., that it is applied to every axiom of the

�rst form regardless if there is an axiom of the se
ond form or not. This may

result in too high an estimation of the number of generated axioms but not
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in one that is too low. Sin
e in our simpli�ed view, every 
ompletion rule

is applied to exa
tly one axiom, we may proof the �rst point from above by

showing that, for ea
h axiom � in A, no more than jj�jj axioms are generated

by feature-
omplete. This will be done in the following.

No new axioms are generated for axioms of the form (a; b) :R, (a; x ) : f ,

a 6= b, and (x

1

; : : : ; x

n

) : P sin
e they do not appear in the premise of any


ompletion rule (please re
all the simpli�
ation we made about Rf8C). The

remaining axioms are of the form a : C . For these axioms, the property in

question 
an be proven by indu
tion on the stru
ture of C .

For the indu
tion start, let C be 9u

1

; : : : ; u

n

:P , u

1

#u

2

, u

1

"u

2

, 9

^

R:C ,

8

^

R:C , or an atomi
 
on
ept. In any of these 
ases, it is trivial to verify

that at most jjC jj new axioms may be generated. For the indu
tion step, we

need to make a 
ase distin
tion a

ording to the form of C . Let C be of the

form D u E . The appli
ation of the Ru rule generates two axioms a :D and

a : E . By indu
tion hypothesis, from these two axioms, at most jjDjj and

jjE jj axioms may be generated, respe
tively. Hen
e, from a :D u E , at most

jjDjj+ jjE jj+2 = jjD u E jj new axioms may be generated. The remaining


ases D t E , 9f :C , and 8f :C are analogous. Be
ause of the simplifying

assumptions made, universal quanti�
ation over features does not need a

spe
ial treatment.

Claim (ii) of the above list follows from the next Lemma whi
h 
on
ludes

the termination proof for sat.

Lemma 14. For any input A

0

, the re
ursion depth of sat is bounded by

jjA

0

jj.

Proof: The role depth of a 
on
ept C is the maximum nesting depth of exists

and value restri
tions in C .

6

The role depth of an ABox A is the maximum

role depth of all 
on
epts o

urring in A. As an immediate 
onsequen
e of

the way in whi
h the input ABoxes of re
ursive 
alls are 
onstru
ted, we

have that the role depth of the arguments ABoxes stri
tly de
reases with

re
ursion depth (note that rule appli
ation performed by feature-
omplete


annot in
rease the role depth). It follows that the role depth of the initial

ABox A

0

is an upper bound for the re
ursion depth, and, by de�nition of

jj � jj, this number is 
learly smaller than jjA

0

jj.

6

E.g., the 
on
ept 9R:C u 8S :(D u 9R:C ) has role depth 2.
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The proof of Lemma 11 is now 
omplete. The Lemma plays a 
entral rôle in

the proof of the following proposition.

Proposition 15. The sat algorithm is sound, 
omplete and terminates on

any input.

Proof: By de�nition of nondeterministi
 algorithms, the appli
ation of the

sat algorithm to an ABox A

0

gives the result 
onsistent i� there is a run of

sat on A

0

whi
h returns 
onsistent . As shown in parts 2 and 3 of Lemma 11,

a sat run de�nes a model for the 
orresponding ABox A

[

if and only if the

run returns 
onsistent . First assume that there is a run of sat whi
h returns


onsistent . By part 1 of Lemma 11, there also exists a model for A

0

. Now

assume that all runs of sat return in
onsistent . In this 
ase, it follows from

part 1 of Lemma 11 that A

0


annot have a model sin
e there is a run for

every 
ombination of nondeterministi
 
hoi
es that 
an be made during rule

appli
ation.

Having proved its 
orre
tness, the 
omplexity of the sat algorithm 
an now

be analyzed. Sin
e the most important results have already been established,

this 
an be done straightforwardly.

Proposition 16. For any input A

0

, sat 
an be exe
uted in spa
e polynomial

in jjA

0

jj, provided that this also holds for the fun
tion satis�able?.

Proof: Sat is a re
ursive fun
tion. Let us �rst analyze the maximum size

of arguments that are passed to sat in re
ursion 
alls. The argument to sat

is an ABox whi
h 
ontains axioms of the form a : C for a single obje
t a.

Sin
e no new 
on
epts are generated during rule appli
ation, there 
an be

at most as many axioms of this form per single obje
t as there are distin
t


on
epts and sub
on
epts appearing in A

0

. Considering the de�nition of

jj � jj, it is easy to see that this number 
an be at most jjA

0

jj. Furthermore,

the size of any axiom is at most jjA

0

jj. It follows that the maximum size

of arguments given in a re
ursion 
all is jjA

0

jj

2

. Using feature-
omplete,

the argument ABox is extended by new axioms. Combining the argument

size just obtained with Lemma 13, we �nd that the maximum size of ABoxes


onstru
ted during re
ursion 
alls is jjA

0

jj

4

+ jjA

0

jj

2

. Lemma 14 gives us that

the re
ursion depth is bounded by jjA

0

jj, and, hen
e, sat 
an be exe
uted in

jjA

0

jj

5

+ jjA

0

jj

3

spa
e.
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4.2 The ABox-
ons Algorithm

In this se
tion, the 
orre
tness of the ABox-
ons algorithm will be established

and its 
omplexity analyzed. ABox-
ons redu
es ABox 
onsisten
y to 
on
ept

satis�ability as follows. It performs prepro
essing on A, then 
onstru
ts a

set of \redu
tion 
on
epts" and �nally 
alls sat on
e for ea
h 
on
ept in this

set.

We start with proving the 
orre
tness. First, a basi
 notion is introdu
ed.

An ABox A that was 
ompleted by rule appli
ation through the prepro
ess

fun
tion is 
alled prepro
essing 
omplete. If A

p

is prepro
essing 
omplete

and A � A

p

, then A

p

is a prepro
essing 
ompletion of A.

Proposition 17. The ABox-
ons Algorithm is sound, 
omplete, and termi-

nates on any input.

Proof: Sin
e prepro
ess applies the nondeterministi
 
ompletion rule Rt,

there may be more than one prepro
essing 
ompletion for a given ABox A.

By de�nition of nondeterministi
 algorithms, the ABox-
ons algorithm gives

the result 
onsistent for an ABox A

0

i� one of the possible runs of ABox-
ons

on A

0

returns 
onsistent . Hen
e, to prove the soundness and 
ompleteness

of ABox-
ons, it has to be shown that (i) an ABox A has a model i� one of

its prepro
essing 
ompletions has a model and (ii) the redu
tion to 
on
ept

satis�ability is sound and 
omplete. This will be done in the following.

The next Lemma establishes point (i). It is an immediate 
onsequen
e of

the lo
al 
orre
tness of the 
ompletion rules (Lemma 11, part 1).

Lemma 18. Let A be an ABox. A has a model i� one the prepro
essing


ompletions A

p

of A has a model.

Next, point (ii) is proved. In the \for" loop of ABox-
ons, a 
on
ept C

(redu
tion 
on
epts of A

p

) is generated for ea
h axiom of the form a :9

^

R:D

in A

p

. These 
on
epts are then one by one passed to the sat fun
tion. It

needs to be shown that a prepro
essing 
omplete ABox has a model if and

only if all of the redu
tion 
on
epts have a model.

Proposition 19 (Soundness). Let I be a model for a prepro
essing 
om-

plete ABox A

p

. Then, all redu
tion 
on
epts C

1

; : : : ; C

n

of A

p

do also have

a model.

Proof: C

i

has the form C uD

1

u : : : u D

k

for 1 � i � n. This means that in

A

p

, there are axioms a :9

^

R:C , a :8

^

R:D

1

, : : : , a :8

^

R:D

k

. By the semanti
s of
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the exists and value restri
tion, there exists a domain obje
t x 2 �

I

, su
h

that x 2 C

I

and x 2 D

I

1

, : : : , x 2 D

I

k

. I is obviously an interpretation for

C

i

and we have x 2 C

I

i

. Hen
e, I is a model for C

i

.

Let C be a redu
tion 
on
ept. C is 
reated be
ause of the existen
e of a


on
ept a : 9

^

R:D in A

p

and then passed to sat as part of an ABox fb :C g.

The obje
t b is 
alled the root obje
t of C and denoted by robj (C ). The

obje
t a is denoted by 
obj (C ) and the role

^

R by role(C ).

Proposition 20 (Completeness). Let A

p

be an ABox whi
h is prepro
ess-

ing 
omplete and 
on
rete domain satis�able and does not 
ontain a 
lash. If

there are models I

1

; : : : ; I

n

for all redu
tion 
on
epts C

1

; : : : ; C

n

of A

p

, then

A

p

does also have a model.

Proof: The proposition will be proved by showing that from the prepro
essing


omplete ABox A

p

together with the models I

1

; : : : ; I

n

for the redu
tion


on
epts C

1

; : : : ; C

n

, a model I for A

p


an be 
onstru
ted. Without loss of

generality, it is assumed that �

I

1

\ � � � \�

I

n

\ fa 2 O

A

j a used in A

p

g = ;.

If this is not the 
ase, it 
an be a
hieved by 
onsistently renaming the domain

obje
ts used in I

1

; : : : ; I

n

. The interpretation I is de�ned as follows.

� �

I

is set to �

I

1

[ � � � [�

I

n

[ fa 2 O

A

j a used in A

p

g.

� For atomi
 
on
epts A, A

I

:=

S

i=1;:::;n

A

I

i

[

S

a:A2A

p

a.

� For roles

^

R,

^

R

I

:=

S

i=1;:::;nj

^

R=role(C

i

)

f(
obj (C

i

); robj (C

i

)

I

i

)g [

S

i=1;:::;n

^

R

I

i

[

S

(o

1

;o

2

):

^

R2A

p

f(o

1

; o

2

)g.

� For features f , f

I

(a) := x i� 9i 2 f1; : : : ; ng : f

I

i

(a) := x or (o; x) : f 2

A

p

.

� For obje
t names a 2 O

A

used in A

p

, a

I

:= a.

� Sin
e A

p

is 
on
rete domain satis�able, there is a mapping Æ from O

D

�

D

su
h that

V

(x

1

;:::;x

n

):P2A

p

(Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

is true in D. x

I

is

set to Æ(x).

It remains to prove that I is a model of A

p

. First 
onsider axioms from A

p

whi
h are of the form a :9

^

R:C (where

^

R is a role): By de�nition of ABox-
ons,

there is a redu
tion 
on
ept C

i

with root obje
t b, su
h that (a

I

; b

I

) 2

^

R

I

.

Sin
e I

i

is a model for b :C

i

, by 
onstru
tion of I we have b

I

2 C

I

.
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Now 
onsider axioms of the form a :8

^

R:C (with

^

R role). If there is also

an axiom a : 9

^

R:D in A

p

, then there is a redu
tion 
on
ept C

i

with root

obje
t b, su
h that (a

I

; b

I

) 2

^

R

I

. By 
onstru
tion of the redu
tion 
on
epts

and of I, we have b

I

2 D

I

. For ea
h axiom (a; b) :

^

R in A

p

, Rr8C has been

applied. Sin
e there is no primitive 
lash in A

p

, b is in C

I

.

To show that the remaining axioms in A

p

are also satis�ed by I, an

indu
tive proof over the size of the axioms, whi
h is identi
al to the one

employed in Lemma 11, part 3, 
an be used.

To 
omplete the proof of Proposition 17, termination of ABox-
ons has to be

proven. This is part of the following Proposition whi
h also treats the spa
e

requirements of ABox-
ons.

Proposition 21. Started on an ABox A, ABox-
ons terminates and needs

spa
e polynomial in jjAjj, provided that the the fun
tion satis�able? 
an also

be exe
uted in polynomial spa
e.

Proof: It was already proven that the sat algorithm terminates and 
an be

exe
uted in polynomial spa
e if the fun
tion satis�able? 
an be exe
uted in

polynomial spa
e (Propositions 15 and 16). Thus, it remains to show that

the prepro
ess fun
tion terminates and that for any ABox A, the size jjA

0

jj

of A

0

:= prepro
ess(A) is polynomial in jjAjj. For this proof, it is 
ru
ial that

the prepro
ess fun
tion is identi
al to the feature-
omplete fun
tion ex
ept

that prepro
ess does also apply the Rr8C rule. It will be shown that the

presen
e of this additional rule yields only \slightly" more axioms. In the

following, obje
ts are 
alled old if they are used in A and new if they are

used in A

0

but not in A.

Consider appli
ations of the Rr8C rule performed by prepro
ess. It is an

immediate 
onsequen
e of the following two observations that the number of

Rr8C appli
ations is bounded by jjAjj

2

:

� If Rr8C is applied to axioms a : 8

^

R:C and (a; b) :

^

R, then b is an old

obje
t. This is the 
ase sin
e prepro
ess does not apply Rr9C, and,

hen
e, no new axioms of the form (a; b) :

^

R, where

^

R is a role, are

generated. Furthermore, there are at most jjAjj old obje
ts.

� Rr8C 
reates only axioms of the form b :C , whi
h are not already part

of the ABox. For any obje
t b, there may exist at most one axiom b :C

per 
on
ept C used in A (in
luding all sub
on
epts). The number of

(sub)
on
epts in A is bounded by jjAjj, and, hen
e, there 
an be at

most jjAjj axioms of the form b :C per obje
t b.
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The size of ea
h axiom a :C is again bounded by jjAjj. It follows that the

total size of axioms added by Rr8C appli
ations performed by prepro
ess is

bounded by jjAjj

3

.

Se
ond, 
onsider the appli
ation of all other rules. These are exa
tly

the rules applied by feature-
omplete. Together with the upper bound for

the number of Rr8C appli
ations, this immediately gives us termination. If

feature-
omplete is applied to an ABox A, then the size of the resulting ABox

is bounded by jjAjj

2

+ jjAjj (Lemma 13). To establish an upper bound for the

size of the ABox A

0

obtained from a 
all toprepro
ess, the additional axioms

generated by Rr8C need to be taken into a

ount. It was just proved that

the size of these axioms is at most jjAjj

3

. Thus, an upper bound for jjA

0

jj is

given by the appli
ation of feature-
omplete to an ABox of size jjAjj+ jjAjj

3

.

Summing up, jjA

0

jj is bounded by jjAjj

6

+ jjAjj

3

+ jjAjj

2

+ jjAjj.

4.3 PSpa
e-Completeness

Using the results from the last two se
tions, proving PSpa
e-
ompleteness

of ALCF(D) ABox 
onsisten
y is straightforward.

Theorem 22. Provided that the satis�ability test of the 
on
rete domain D

is in PSpa
e, the following problems are PSpa
e-
omplete:

1. Consisten
y of ALCF(D) ABoxes.

2. Consisten
y of ALC(D) and ALCF ABoxes.

3. Satis�ability and subsumption of ALCF(D) 
on
epts.

4. Satis�ability and subsumption of ALC(D) 
on
epts.

Proof: First, point 1 is proven. In [31℄ it is proved that satis�ability for ALC


on
epts is PSpa
e-
omplete. Sin
e ALC is a proper subset of ALCF(D),

de
iding the 
onsisten
y of ALCF(D) ABoxes is PSpa
e-hard. It remains

to be shown that it is also in PSpa
e if the 
on
rete domain satis�ability

test is in PSpa
e. But this dire
tly follows from Proposition 21 together

with the well-known fa
t that PSpa
e = NPSpa
e [29℄.

Point 3 is a 
onsequen
e of the observation that satis�ability as well as

subsumption 
an be redu
ed to ABox 
onsisten
y (see Se
tion 2).
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Points 1 and 2 hold sin
e reasoning with ALC is PSpa
e-hard and ALC

is a proper subset of both ALC(D) and ALCF whi
h are in turn a proper

subsets of ALCF(D).

The next 
orollary makes a statement about the 
omplexity of reasoning with


on
rete domains for whi
h the satis�ability test is not in PSpa
e.

Corollary 23. Let the satis�ability test of the 
on
rete domain D be in a


omplexity 
lass X with PSpa
e � X. Then, subsumption, satis�ability and

ABox 
onsisten
y for the logi
s ALC(D) and ALCF(D) are in X.

The next se
tion gives some examples of interesting 
on
rete domains,

for whi
h the satis�ability 
he
k is in PSpa
e.

5 Suitable Con
rete Domains

In this se
tion, some examples of 
on
rete domains, for whi
h the satis�ability

test is in PSpa
e, are given. This demonstrates that the results developed

in the pre
eding se
tions are useful sin
e there are in fa
t interesting 
on
rete

domains whi
h allow to exploit the lower 
omplexity bound found.

As proposed in [24℄, ALC(D) (and hen
e also ALCF(D)) 
an be used

for temporal reasoning when instantiated with an appropriate 
on
rete do-

main. Sin
e di�erent temporal ontologies 
an be used as a basis for temporal

reasoning, the de�nition of various temporal 
on
rete domains is possible.

Allen's interval algebra (see [3℄, [23℄) provides an appropriate formalization

if intervals are used as the basi
 temporal entity. This formalism employs

a set of 13 base relations des
ribing all possible relationships between two

(time) intervals. These relations are known as Allen's relations. In the fol-

lowing, a set of 
on
rete domains supporting reasoning with Allen's relations

is de�ned.

De�nition 24. Let (P; <) be a linear, unbounded, and dense temporal

stru
ture, where P is a set of time points and < is a stri
t linear order on

P. The 
on
rete domain I

(P;<)

is de�ned as follows. As the domain �

I

(P;<)

,

the set of intervals f(l; r) 2 P �P j l < rg is used. For an interval i 2 I

(P;<)

with i = (l; r), we de�ne l(i) = l and r(i) = r. The set �

I

(P;<)


ontains

the following predi
ates (we will in the following omit the index (P; <) for

brevity):
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� a unary predi
ate is-interval whi
h yields true for every element in �

I

;

its negation is-no-interval ; a predi
ate in
onsistent-relation of arity 2

whi
h is always false.

� for ea
h of Allen's 13 relations, a predi
ate of arity 2 (basi
 predi
ates).

The predi
ates are de�ned by spe
ifying relationships between interval

endpoints as usual:

(i

1

; i

2

) 2 equal

I

i� l(i

1

)� l(i

2

) = 0 ^ r(i

1

)� r(i

2

) = 0

(i

1

; i

2

) 2 before

I

i� l(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 after

I

i� l(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 meets

I

i� l(i

2

)� r(i

1

) = 0

(i

1

; i

2

) 2 overlaps

I

i� l(i

2

)� l(i

1

) > 0 ^ r(i

1

)� l(i

2

) > 0 ^ r(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 overlapped-by

I

i� l(i

1

)� l(i

2

) > 0 ^ r(i

2

)� l(i

1

) > 0 ^ r(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 during

I

i� l(i

1

)� l(i

2

) > 0 ^ r(i

2

)� l(i

1

) > 0 ^

r(i

1

)� l(i

2

) > 0 ^ r(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 
ontains

I

i� l(i

2

)� l(i

1

) > 0 ^ r(i

1

)� l(i

2

) > 0 ^

r(i

2

)� l(i

1

) > 0 ^ r(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 starts

I

i� l(i

2

)� l(i

1

) = 0 ^ r(i

2

)� r(i

1

) > 0

(i

1

; i

2

) 2 started-by

I

i� l(i

2

)� l(i

1

) = 0 ^ r(i

1

)� r(i

2

) > 0

(i

1

; i

2

) 2 �nishes

I

i� r(i

2

)� r(i

1

) = 0 ^ l(i

1

)� l(i

2

) > 0

(i

1

; i

2

) 2 �nished-by

I

i� r(i

2

)� r(i

1

) = 0 ^ l(i

2

)� l(i

1

) > 0

� for ea
h distin
t set fR

1

; : : : ; R

n

g of Allen's relations, an additional

predi
ate of arity 2 is de�ned (
ombined predi
ates). The predi
ate has

the name R

1

-� � � -R

n

and we have (i

1

; i

2

) 2 R

1

-� � � -R

n

I

i� (i

1

; i

2

) 2 R

1

I

or : : : or (i

1

; i

2

) 2 R

n

I

. In total, there are 2

13

� 14 of these 
ombined

relations.

As an example of 
ombined predi
ates, please 
onsider the predi
ate after-

before. A pair of intervals (i

1

; i

2

) is in after-before

I

i� (i

1

; i

2

) 2 after

I

or

(i

1

; i

2

) 2 before

I

. As an example of the modeling of temporal 
on
epts using
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Realisation

Project

Planning

realisationplanning

Figure 2: Visualization of the Proje
t 
on
ept

ALCF(I), 
onsider the following 
on
epts:

Proje
t

:

= Interval u

9planning:Planning u 9realization:Realization u

9(planning Æ time); (time):starts u

9(realization Æ time); (time):ends u

9(planning Æ time); (realization Æ time):meets

The Proje
t 
on
ept gives the formalization of a proje
t on a very 
oarse

level. The proje
t 
an be devided into the two disjun
tive phases \planning"

and \realization". Please see Figure 2 for a visualization of this 
on
ept.

To use I as a 
on
rete domain for ALCF(D), the admissibility of I has

to be shown.

Proposition 25. The 
on
rete domain I is admissible.

Proof: It has to be shown that (i) �

I

is 
losed under negation and (ii) the

satis�ability of �nite 
onjun
tions of predi
ates from I is de
idable.

(i) Allen's relations are mutually ex
lusive and exhaustive, i.e. exa
tly one

of Allen's relations holds between any two intervals i

1

and i

2

. Given this, it

is easy to verify that �

I

is 
losed under negation: Let A be the set of Allen's

13 base relations. For any predi
ate R

1

-� � � -R

n

with 1 � n < 13, we have

that the negation of R

1

-� � � -R

n

is S

1

-� � � -S

k

, where fS

1

; : : : ; S

k

g is de�ned as

A n fR

1

; : : : ; R

n

g. The predi
ate S

1

-� � � -S

k

is obviously in �

I

. Note that the

negation of the predi
ate representing the disjun
tive 
ombination of all 13

base relations is in
onsistent-relation and vi
e versa.
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(ii) De
iding the satis�ability of a �nite 
onjun
tion of predi
ates from

I 
an be redu
ed to 
he
king the satis�ability of a temporal 
onstraint net-

work. In the following, a de
ision pro
edure will be des
ribed and its 
om-

plexity determined. A temporal 
onstraint network (TCN) is de�ned as a set

ft


1

(i

(1)

1

; i

(1)

2

); : : : ; t


n

(i

(n)

1

; i

(n)

2

)g, where ea
h t


i

is a disjun
tionR

(i)

1

_� � �_R

(i)

n

i

of Allen's relations and the i

(i)

j

are interval variables. Let a �nite 
onjun
tion

C = p

1

(x

(1)

1

; : : : ; x

(1)

n

1

)^ � � �^ p

k

(x

(k)

1

; : : : ; x

(k)

n

k

) of predi
ates from �

I

be given.

Its satis�ability 
an be determined as follows:

� If, for any i = 1; : : : ; k, p

i

is either is-no-interval or in
onsistent-

relation, then return unsatis�able.

� For i 2 f1; : : : ; kg, if p

i

= is-interval , remove the i'th 
onjun
t.

� Translate the remaining 
onjun
tion C

0

(whi
h 
ontains only binary

predi
ates) into a TCN N as follows: The set V of interval variables

used in N is the set of variables used in C. For ea
h 
onjun
t p

i

(x

1

; x

2

)

from C

0

, do the following. The predi
ate p

i

has the form R

1

-� � � -R

n

.

1. If there is no 
onstraint t
(x

1

; x

2

) in N , then add R

1

_ � � � _

R

n

(x

1

; x

2

) to N .

2. If there is already a 
onstraint t
(x

1

; x

2

) in N where t
 = R

0

1

_

� � �_R

0

m

, then let S be de�ned as fR

0

1

; : : : ; R

0

m

g\fR

1

; : : : ; R

n

g. If

S = ;, then return in
onsistent . Otherwise, remove the existing


onstraint and add S

1

_ � � � _ S

l

(x

1

; x

2

), where fS

1

; : : : ; S

l

g = S.

� For all pairs (x

1

; x

2

) 2 V , for whi
h there is no 
onstraint t
(x

1

; x

2

) in

N , add a 
onstraint 
ov(x

1

; x

2

), where 
ov is the disjun
tion of all 13

base relations.

� Che
k the satis�ability of the TCN N and return the result.

Testing the satis�ability of temporal 
onstraint networks of the given form

is an NP-
omplete problem if the full set of relations is allowed [33℄. The


orre
tness of the pro
edure is easily seen.
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Hen
e, I is an admissible 
on
rete domain and the standard reasoning prob-

lems for ALCF(I) are PSpa
e-
omplete.

Some 
omments about the temporal logi
ALCF(I) are in order. We give

a brief 
omparison to a temporal des
ription logi
 de�ned by Artale and Fran-


oni. In ALCF(I), the stru
ture of time has to be modeled in the logi
 itself.

This is 
alled an internal representation of time as opposed to an external

representation, where the stru
ture of time is an integral part of the seman-

ti
s [14℄. The latter approa
h is taken in temporal logi
 and is also pursued

by the des
ription logi
 T L-ALCF [4℄. T L-ALCF is a temporal des
ription

logi
 for reasoning about eternal obje
ts that have properties 
hanging over

time. Quite to the 
ontrary, ALCF(I) most adequately supports reasoning

about obje
ts whi
h have stati
 properties but a unique temporal extension.

Please note that neither ALCF(I) nor T L-ALCF allows universal quan-

ti�
ation about Allen's relations. See [16℄ for a des
ription logi
 whi
h is


apable of doing this. Artale and Fran
oni [5℄ give an extensive overview

over the various approa
hes to the de�nition of temporal des
ription logi
s.

In the remainder of this se
tion, we give a brief dis
ussion of some more


on
rete domains. An important approa
h to qualitative spatial reasoning

uses a set of 8 topologi
al relations 
alled RCC-8. These relations 
an be

used to des
ribe the relationships of two arbitrary regions in n-dimensional

spa
e (see [28℄ and [13℄). A 
on
rete domain S

2

for reasoning with the RCC-8

relations about regions in the plane 
an be de�ned exa
tly analogous to the

de�nition of I. A formal de�nition 
an be found in [16℄. The satis�ability

test for this spatial 
on
rete domain is also in NP.

A further sour
e for 
on
rete domains for whi
h de
iding satis�ability is in

PSpa
e are the areas of linear programming and 
onstraint programming.

Linear programming itself is a polynomial problem [32℄. This means that

linear equalities and inequalities over the rational numbers may be used as

predi
ates of a 
on
rete domain and that the 
omplexity of reasoning with

the 
ombined language remains in PSpa
e. If the integers are used instead

of the rationals, te
hniques from integer programming 
an be employed for

the 
on
rete domain satis�ability test. In this 
ase, the (
on
rete domain)

satis�ability test is in NP [15, problem MP1℄, hen
e reasoning with the


ombined formalism is in PSpa
e.

A 
on
rete domain for whi
h satis�ability is not in PSpa
e is e.g. R

as de�ned in [6℄. The domain of R is the set of all real numbers while the

predi
ates of this 
on
rete domain are given by formulae built by �rst order

means from equalities and inequalities between integer polynomials. It was
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proved that de
iding the satis�ability of su
h expressions is an ExpSpa
e-


omplete problem [25℄.

6 Con
lusion

In this paper, the des
ription logi
 ALCF(D) was introdu
ed. ALCF(D)

extends ALC(D) by feature agreement and disagreement and is hen
e a


onglomeration of the logi
s ALC(D) and ALCF . Algorithms for de
id-

ing the satis�ability of ALCF(D) 
on
epts and for de
iding the 
onsisten
y

of ALCF(D) ABoxes were devised and it was shown that these algorithm

are sound and 
omplete and 
an be exe
uted in polynomial spa
e if this is

also the 
ase for the 
on
rete domain satis�ability test. From this result, it

was derived that the standard reasoning problems 
on
erning 
on
ept sub-

sumption, 
on
ept satis�ability and ABox 
onsisten
y are PSpa
e-
omplete

for the des
ription logi
s ALC(D) and ALCF(D) - provided that the 
on-


rete domain satis�ability test is in PSpa
e. If the satis�ability test is in

a higher 
omplexity 
lass X, then the mentioned problems are also in X.

As an important 
ontribution, the 
ompletion algorithm demonstrates how

to split the 
on
rete domain satis�ability 
he
k into 
hunks of polynomial

size. This is a vital prerequisite for eÆ
ient implementations of languages

in
orporation 
on
rete domains.
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