
LTCS{Report

Aahen University of Tehnology

Researh group for

Theoretial Computer Siene

PSpae Reasoning for DLs with

Qualifying Number Restritions

Stephan Tobies

LTCS-Report 99-11

RWTH Aahen

LuFg Theoretishe Informatik

http://www-lti.informatik.rwth-aahen.de

Ahornstr. 55

52074 Aahen

Germany

PSpae Reasoning for DLs with

Qualifying Number Restritions

Stephan Tobies

Otober 11, 1999 - Revised Version

Abstrat

The desription logi ALCQI extends the \standard" desription

logi ALC by qualifying number restritions and onverse roles. We

show that onept satis�ability for this DL is still deidable in poly-

nomial spae. The presented algorithm ombines tehniques from

[Tob99a℄ to deal with qualifying number restritions and from [HST99℄

to deal with onverse roles. Additionally, we extend the result to

ALCQIR, whih extends ALCQI by role intersetions. This solves

an open problem from [DLNN97℄.

The result for ALCQI has already been presented in the seperate tehni-

al report [Tob99b℄. In this report we use the same tehniques to obtain

the stronger result for ALCQIR.

1 The Desription Logi ALCQI

Qualifying number restritions [HB91℄ are a ommon generalisation of both

role-quanti�ation and standard number restritions that are present in al-

most all implementations of DL systems. They provide an expressive means

to desribe objets by the number of other objets they are related to and

are neessary for reasoning with semanti data models [CLN94℄. In [Tob99a℄

we have shown that|at least for ALC|number restritions an be replaed

by qualifying number restritions without inreasing the (worst-ase) om-

plexity of the satis�ability problem. In this setion we extend this result to

onverse roles.

1

De�nition 1 (The DL ALCQI) Let N

C

be a set of atomi onepts and

N

R

a set of atomi roles. The set of ALCQI-roles N

R

is N

R

[fR

�

j R 2

N

R

g. Conepts in ALCQI are built indutively using the following rules:

1. every A 2 N

C

is an ALCQI-onept, and

2. if C;D

1

; D

2

are ALCQI-onepts, n 2 N and R 2 N

R

then :C, D

1

u

D

2

, D

1

tD

2

, (> n R C), and (6 n R C) are ALCQI-onepts.

For an interpretation I = (�

I

; �

I

), we extend the usual semantis of ALC-

onepts to qualifying number restritions as follows:

(> n R C)

I

:= fx 2 �

I

j ℄fy j (x; y) 2 R

I

; y 2 C

I

g > ng;

(6 n R C)

I

:= fx 2 �

I

j ℄fy j (x; y) 2 R

I

; y 2 C

I

g 6 ng;

where ℄ denotes the ardinality of a set. For onverse roles we de�ne (R

�

)

I

:=

f(y; x) j (x; y) 2 R

I

g. With ALCQ we denote the fragment of ALCQ whih

does not ontain onverse roles. With Sat(ALCQ) and Sat(ALCQI) we

denote the set of all satis�able ALCQ-, resp., ALCQI-onepts.

In order to avoid onsidering roles suh as R

��

, we de�ne a funtion Inv

that returns the inverse of a role by setting

Inv(R) :=

(

R

�

if R 2 N

R

S if R = S

�

for some S 2 N

R

2 Reasoning for ALCQI

In [HB91℄ a tableaux algorithm is presented that deides Sat(ALCQ) in

polynomial spae, provided that unary oding of numbers in the input is

assumed when alulating the size of the input. In [dHR95℄ it is onjetured

that binary oding of numbers would make Sat(ALCQ) ExpTime-omplete.

Why does the oding of numbers seem to be of suh an importane for the

problem? The answer lies in the nature of the tableaux algorithms forALCQ:

They deide the satis�ability of a onept C by trying to expliitly onstrut

a model for it. For a onept of the form (> n R C), the algorithm in

[HB91℄ generates n individuals, and the orretness of the algorithms relies

on that fat that they are kept in memory simultaneously. Assuming unary

oding of numbers in the input, this is admissible beause the number n will

2

onsume n bits in the input and hene the amount of memory needed for the

n suessors is polynomial in the size of the input. This hanges if we assume

binary oding of numbers: The number n onsumes only log

2

n bits in the

input, making the amount of memory needed for n suessors potentially

exponential in the size of the input.

In [Tob99a℄ we give an algorithm derived from the one presented in [HB91℄

that is apable of deiding Sat(ALCQ) in PSpae, even if binary oding

of numbers in the input is allowed. While still generating n suessors for a

onept (> n R C), non-deterministi guessing of an assignment of relevant

onstraints to newly generated nodes is used to be able to generate these

one after another re-using spae. This exatly determines the omplexity of

Sat(ALCQ) as PSpae-omplete. This rather surprising result shows that

augmenting ALC with qualifying number restritions does not inrease the

(worst-ase) omplexity of the satis�ability problem.

In this paper we present an extension of the algorithm in [Tob99a℄ that

an additionally deal with onverse roles and runs in polynomial spae. This

yields that also Sat(ALCQI) is PSpae-omplete. The \reset-restart" teh-

nique, whih is used to deal with onepts moving upwards in the ompletion

tree, has already been used in [HST99℄ to deal with onverse roles.

De�nition 2 An ALCQI-onept C is in negation normal form (NNF) if

negation ours only in front of atomi onepts; we denote the NNF of :C

by �C. For a onept C in NNF we de�ne los(C) to be the smallest set of

ALCQI-onepts that ontains C and is losed under sub-onepts and �.

A ompletion tree for an ALCQI-onept D is a tree where eah node x of

the tree is labelled with a set L(x) � los(D) and eah edge hx; yi is labelled

with a role name L(hx; yi) = R for a (possibly inverse) role ourring in

los(D).

Given a ompletion tree, a node y is alled an R-suessor of a node x i� y

is a suessor of x and L(hx; yi) = R. A node y is alled an R-neighbour of x

i� y is an R-suessor of x, or if x is an Inv(R)-suessor of y. Predeessors

and anestors are de�ned as usual.

A node x in T is said to ontain a lash if,

� for some atomi onept A, fA;:Ag � L(x), or

� for some onept C, role R, and n 2 N, (6 n R C) 2 L(x) while

℄R

T

(x; C) > n, where R

T

(x; C) := fy j y is R-neighbour of x in T and

C 2 L(y)g.

3

u-rule: if 1. C

1

u C

2

2 L(x) and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x) and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [fCg for some C 2 fC

1

; C

2

g

hoose-rule: if 1. (./ n R C) 2 L(x) and

2. there is an R-predeessor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [fEg for some E 2 fC;�Cg

and delete all desendants of y.

>-rule: if 1. (> n R C) 2 L(x), x is not bloked and no

non-generating rule is appliable to x or any

of its anestors, and

2. ℄R

T

(x;C) < n

then reate a new node y with L(hx; yi) = R and

L(y) = fC;E

1

; : : : ; E

n

g where

fD

1

; : : : D

n

g = fD j (./ n R D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 1: Tableaux expansion rules for ALCQI

A ompletion tree is alled lash-free i� none of its nodes ontains a lash;

it is alled omplete i� none of the expansion rules in Figure 1 is appliable.

For an ALCQI-onept D, the algorithm starts with a ompletion tree

onsisting of a single node x with L(x) = fDg. It applies the expansion

rules, stopping when a lash ours, and answers \D is satis�able" i� the

ompletion rules an be applied in suh a way that they yield a omplete and

lash-free ompletion tree.

2.1 Corretness of the Algorithm

In order to prove the orretness of the algorithm we have to show termina-

tion, soundness, and ompleteness.

Before we prove termination of the algorithm we will establish a bound

on the size of a ompletion tree generated by the tableaux algorithm that

will also be used in the omplexity analysis.

4

Lemma 3 Let D be an ALCQI-onept in NNF and T a ompletion tree

that is generated for D by the tableaux algorithm.

1. ℄los(D) = O(jDj).

2. The length of a path in T is limited by jDj.

3. The out-degree of T is limited by ℄los(D)� 2

jDj

.

Proof.

1. The �rst part of this Lemma an easily be proved by observing that

for a onept D in NNF

los(D) = sub(D) [f�C j C 2 sub(D)g

holds, where sub(D) denotes the set of all sub-onepts ofD. Obviously,

℄sub(D) � jDj and hene ℄los(D) � O(jDj).

2. For a node x we de�ne `(x) as the maximum depth of nested number

restritions in L(x). Obviously, for the root x

0

of T, `(x

0

) � jDj holds.

Also, if y is a suessor of x in T, then `(x) > `(y). Hene eah path

x

1

; : : : ; x

n

in T indues a stritly dereasing sequene `(x

1

) > `(x

2

) >

� � � > `(x

k

) of natural numbers. Thus, the longest path in T starts at

x

0

and its length is bounded by jDj.

3. Suessors in T are only generated by the >-rule. For a node x this rule

will generate at most n suessors for eah (> n R C) 2 L(x). There

are at most ℄los(D) suh formulae in L(x). Hene the out-degree of

x is bounded by ℄los(D) � 2

jDj

, where 2

jDj

is a limit for the biggest

number that may appear in D if binary oding is used.

From this we an follow termination of the algorithm.

Lemma 4 (Termination) For any ALCQI-onept D the tableaux algo-

rithm terminates.

Proof. Termination of the algorithm is a onsequene of the following fats:

� Eah node is labelled with a subset of the �nite set los(D). Conepts

are never removed from the labels of the nodes.

5

� The size of the tree is bounded by Lemma 3.

� The rules either add onepts to the label of a node or add nodes to

the tree.

� Whenever a node is deleted from the tree the labels of one of its anes-

tors grows.

Assume that algorithm does not terminate. Due to the mentioned fats

this an only be beause of an in�nite number of deletions of subtrees. Eah

node an of ourse only be deleted one, but the suessors of a single node

may be deleted several times. The root of the ompletion tree annot be

deleted beause it has no predeessor. Hene there are nodes whih are

never deleted. Choose one of these nodes x with maximum distane from

the root, i.e., whih has a maximum number of predeessors. Suppose that

x's suessors are deleted only �nitely many times. This annot be the ase

beause, after the last deletion of x's suessors, the \new" suessors were

never deleted and thus x would not have maximum distane from the root.

Hene x triggers the deletion of its suessors in�nitely many times. However,

the hoose-rule is the only rules that leads to a deletion, and it simultaneously

leads to an inrease of L(x), namely by the missing onept whih aused

the deletion of x's suessors. Sine we never remove any onepts from the

labels, this implies the existene of an in�nitely inreasing hain of subsets

of los(D), whih is learly impossible.

Lemma 5 (Soundness) If the expansion rules an be applied to an ALCQI-

onept D suh that they yield a omplete and lash-free ompletion tree, then

D is satis�able.

Proof. Let T be suh a ompletion tree for D. A model I = (�

I

; �

I

) for D

an be de�ned by setting �

I

to be the nodes of T and by de�ning:

A

I

= fx j A 2 L(x)g for all onept names A in los(D)

R

I

= fhx; yi j L(hx; yi) = R or L(hy; xi) = Inv(R)g:

Indutively we will show for all x 2 �

I

and all C 2 los(D) that C 2 L(x)

implies x 2 C

I

. We annot use indution over the struture of onepts due

to the >-rule that adds negated onepts to the tree. Instead we will use the

6

following norm k � k of a onept C. The norm kCk for onept in NNF is

indutively de�ned by:

kAk := k:Ak := 0 for A 2 N

C

kC

1

u C

2

k := kC

1

t C

2

k := 1 + kC

1

k+ kC

2

k

k(./ n S C)k := 1 + kCk

The two base ases of the indution are C = A or C = :A. If A 2 L(x), then

by de�nition x 2 A

I

. If :A 2 L(x), then A 62 L(x) beause T is lash-free

and hene x 62 A

I

. For the indution step we have to distinguish several

ases:

� C = C

1

u C

2

. Sine T is omplete C 2 L(x) implies C

1

2 L(x) and

C

2

2 L(x). Hene, by indution, we have x 2 C

I

1

and x 2 C

I

2

whih

yields x 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous ase.

� C = (> n R E). For an x with C 2 L(x) we have ℄R

T

(x; E) >

n beause T is omplete. Hene there are n distint R-neighbours

y

1

; : : : ; y

n

with E 2 L(y

i

) for all i. By indution, we have y

i

2 E

I

and,

sine, for eah R-neighbour y

j

, hx; y

j

i 2 R

I

holds, also x 2 C

I

.

� C = (6 n R E). Let x be an individual with C 2 L(x). For any R-

neighbour y of x either E 2 L(y) of �E 2 L(y). This is guaranteed by

the hoose-rule (for an R-predeessor of x) and by the >-rule whih is

suspended until no other rules an applied to x or any predeessor of x

together with the reset-restart mehanism that is triggered by onepts

\moving upwards" in the tree.

We show that ℄R

I

(x; E) 6 ℄R

T

(x; E): Assume ℄R

I

(x; E) > ℄R

T

(x; E).

This implies the existene of some y with hx; yi 2 R

I

with y 2 E

I

but E 62 L(y). This implies �E 2 L(y), whih, by indution yields

y 2 (�E)

I

in ontradition to x 2 E

I

.

Sine D 2 L(x

0

) for the root x

0

of T this implies D

I

6= ; and hene I is

a model for D.

7

Lemma 6 (Completeness) Let D be an ALCQI-onept: If D is satis�-

able, then the expansion rules an be applied in suh a way that they yield a

omplete and lash-free ompletion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the appliation of the non-deterministi ompletion rules. For this we will

inremently de�ne a funtion � mapping the nodes in T to elements of �

I

suh that at any given stage the following holds:

1: L(x)) �(x) 2 C

I

2: if L(hx; yi) = R then h�(x); �(y)i 2 R

I

3: if y; z are two R-neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a funtion � and a rule is

appliable to T then it an be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hene the rule an be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[C

I

2

. Hene the t-rule an add a onept E 2 fC

1

; C

2

g to

L(x) suh that (�) still holds.

� The hoose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Sine (�E)

I

= �

I

n E

I

the rule an always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n R C) 2 L(x), then �(x) 2 (> n R C)

I

. This

implies ℄S

I

(�(x); C) > n. We laim that there is an element t 2 �

I

suh that

h�(x); ti 2 R

I

; t 2 C

I

; and t 62 f�(y) j y is an R-neighbour of x g (��)

We will ome bak to this laim later. Let D

1

; : : : ; D

n

be an enumer-

ation of the set fD j (./ n R D) 2 L(x)g. The >-rule an add a new

node y with L(hx; yi) = R and L(y) = fCg [fD

i

j t 2 D

I

i

g [f�D

i

j

8

t 62 D

I

i

g. If we set �

0

:= �[y 7! t℄, then the modi�ed tree together with

�

0

satis�es (�).

Why does there exists an element t that satis�es (��)? It is obvi-

ous that there exists an element t with h�(x); ti 2 R

I

and t 2 C

I

suh that t 62 f�(y) j y is an R-neighbour of x and C 2 L(y)g beause

℄R

T

(�(x); C) � n > ℄R

T

(x; C).

Assume t appears as an image of an R-neighbour y of x with C 62 L(y).

This implies �C 2 L(y) as follows: Either y is an R-predeessor of x,

then in order for the >-rule to be appliable, no non-generating rules

and espeially the hoose-rule is not appliable to x and its anestor

whih implies fC;�Cg \ L(y) 6= ;. If y is an R-suessor of x then

it must have been generated by an appliation of the >-rule to x. In

order for this rule to be appliable no non-generating rule may have

been appliable to x or any of its anestors. This implies that at the

time of the generation of y already (> n R C) 2 L(x) held and hene

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any ase �C 2 L(y) holds and together with (�) this implies t 62 C

I

whih ontradits t 2 C

I

. Hene C 2 L(y) must hold whih is a

ontradition to the assumption C 62 L(y) and thus there must be an

element that satis�es (��).

This onludes the proof of the laim. The laim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if we set �(x

0

) := s

0

for an element s

0

2 D

I

(suh an element must exist

beause I is a model for D). The laim yields that whenenver a rule is appli-

able then it an be applied in a manner that maintains (�). Lemma 4 yields

that eah sequene of rule appliations must terminate, and also eah tree for

whih (�) holds is neessarily lash-free. It annot ontain a lash of the form

fA;:Ag � L(x) beause this would imply �(x) 2 A

I

and �(x) 62 A

I

. It an

neither ontain a lash of the form (6 n R C) 2 L(x) and ℄R

T

(x; C) > n

beause � is an injetive funtion on the set of all R-neighbours of y and

hene ℄R

T

(x; C) > n implies ℄R

I

(x; C) > n and whih annot be the ase

sine �(x) 2 (6 n R C)

I

.

Summing up, from Lemmas 4, 5, and 6 we get the following:

9

Theorem 7 The tableaux algorithm is a non-deterministi deision proe-

dure for ALCQI-satis�ability.

2.2 Complexity of ALCQI

What remains to show is that the algorithm an be implemented to run in

polynomial spae. This is stated in the following lemma.

Due to Savith's theorem [Sav70℄ that states that PSpae oinides with

NPSpae we don't have to deal with the non-determinism in the rules. Nev-

ertheless, models for a ALCQI-onept may be required to have exponential

size so we have to develop a method that failitates re-use of spae while

generating the ompletion tree.

Lemma 8 The tableaux algorithm an be implemented in PSpae.

Proof. Let D be the ALCQI-onept to be tested for satis�ability. We an

assume D to be in NNF beause the transformation of a formula to NNF an

be performed in linear time and spae.

The key idea for a PSpae implementation is the trae tehnique[SSS91℄,

i.e., it is suÆient to keep only a single path (a trae) of T in memory at a

given stage if the ompletion tree is generated in a depth-�rst manner. This

has already been the key to a PSpae upper bound for the propositional

modal logi K

m

and ALC in [Lad77, SSS91, HM92℄. To do this we need to

store the values for ℄R

T

(x; C) for eah node x in the path, eah R whih

appears in los(D) and eah C 2 los(D). By storing these values in binary

form, we are able to keep information about exponentially many suessors

in memory while storing only a single path at any stage.

Consider the algorithm in Fig. 2, where R

D

denotes the set of role names

that appear in los(D) together with their inverses. It re-uses the spae

needed to hek the satis�ability of a suessor y of x one the existene

of a omplete and lash-free \subtree" for the onstraints on y has been

established. This is admissible sine the tableaux rules an delete but will

never modify this subtree one is it ompleted. This deletion is neessary

beause the hoose-rule pushes onepts upwards in the tree whih might

have an inuene of the subtrees of the e�eted node. Sine these have

already been disarded from memory they have to be regenerated.

Constraints in a subtree have no inuene on the ompleteness or the

existene of a lash in the rest of the tree, with the exeption that a onept

10

C 2 L(y) for an R-neighbour y of x ontributes to the value of ℄R

T

(x; C).

These numbers play a role both in the de�nition of a lash and for the

appliability of the >-rule. Hene, in order to re-use the spae oupied by

the subtree for y, it is neessary and suÆient to store these numbers.

An algorithm that works as previously desribed is shown in Fig. 2. Let

us examine the memoryusage of this algorithm. Let n = jDj. The algorithm

is designed to keep only a single path of T in memory at a given stage. For

eah node x on a path, L(x) � los(D) and hene its size is bounded by

2n. Thus, for a single variable x, L(x) an be stored in O(n) bits. For

eah variable, there are at most ℄R

D

� ℄los(D) = O(n

2

) ounters to be

stored. The numbers to be stored in these ounters do not exeed the out-

degree of the tree, whih, by Lemma 3, is bounded by ℄los(D)�2

jDj

. Hene

eah ounter an be stored using O(n

2

) bits when binary oding is used to

represent the ounters, and all ounters for a single variable require O(n

4

)

bits. Due to Lemma 3, the length of a path is limited by n, whih yields an

overall memory onsumption of O(n

5

+ n

2

) bits.

Obviously, satis�ability for ALCQI is at least as hard as for ALC. To-

gether with the previous lemma this yields the following.

Theorem 9 Sat(ALCQI) is PSpae-omplete, even if numbers in the in-

put are represented in binary oding.

11

ALCQI � SAT(D) := sat(x

0

; [x

0

7! fDg℄)

sat(x;L):

alloate ounters ℄R

T

(x; C) for all R 2 R

D

and C 2 los(D).

restart:

for eah ounter ℄R

T

(x; C):

if x has a predeessor y and L(hy; xi) = Inv(R) and C 2 L(y)

then ℄R

T

(x; C) := 1 else ℄R

T

(x; C) := 0

while (the u- or the t-rule an be applied at x) and (T is lash-free)

do

apply the u- or the t-rule to x.

od

if T ontains a lash then return \not satis�able".

if the hoose-rule is appliable to x for (./ n R C) 2 L(x)

then return \restart with C"

while (the >-rule applies to a onept (> n R C) 2 L(x))

do

C

new

:= fC;E

1

; : : : ; E

k

g

where

fD

1

; : : : ; D

k

g = fD j (./ m R D) 2 L(x), and

E

i

is hosen non-deterministially from fD

i

;�D

i

g

for eah D 2 C

new

do inrease ℄R

T

(x;D)

if (6 m R D) 2 L(x) and ℄R

T

(x;D) > m

then return \not satis�able".

result := sat(y;L[y 7! C

new

; hx; yi 7! R℄)

where y is a fresh node

if result = \not satis�able" then return \not satis�able"

if result = \restart with D" then

L(x) := L(x) [fEg

where E is hose non-deterministially from fD;�Dg

goto restart

od

remove the ounters for x from memory.

return \satis�able"

Figure 2: A NPSpae deision proedure for ALCQI-satis�ability.

12

3 Adding Role-Intersetion

In this setion we will extend the PSpae result to the DL ALCQIR, whih

extends ALCQI by role intersetion.

De�nition 10 (The DL ALCQIR) ALCQIR-onepts are de�ned sim-

ilar to ALCQI-onepts, with the di�erene that we allow role intersetions

instead of roles in qualifying number restritions. This means that for an

ALCQIR-onept C, n 2 N and ALCQI-roles R

1

; : : : ; R

m

2 N

R

(6 n (R

1

u � � � u R

m

) C); (> n (R

1

u � � � u R

m

) C)

are ALCQIR-onepts. We will use small Greek letters as plaeholders for

intersetion of roles and, by abuse of notation, we will sometimes identify

suh an intersetion of roles ! with the set of roles appearing in it and write

R 2 ! if ! = R

1

u � � � uR

m

and R = R

i

for some 1 � i � m. The semantis

are extended anonially:

(./ n ! C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 !

I

; y 2 C

I

g ./ ng

where for ! = R

1

u � � � u R

m

we de�ne

!

I

= R

I

1

\ � � � \ R

I

m

To deide satis�ability forALCQIR, we proeed pretty muh the same as

for ALCQI, the only di�erene is that we have to allow for multiple labels

on the edges to aount for role intersetions and that we have to guess

additional role labels in the same manner as we had to guess additional

onepts in the previous ase to get an algorithm that does not rely on the

identi�ation of nodes.

De�nition 11 NNF for ALCQIR is de�ned as for ALCQI.

A ompletion tree for an ALCQIR-onept D is a tree where eah node x

of the tree is labelled with a set L(x) � los(D) and eah edge hx; yi is labelled

with a set of role names L(hx; yi) = fR

1

; : : : ; R

m

g for (possibly inverse)

roles ourring in los(D). We will denote the set of all roles ouring in D

together with their inverses by R

D

Given a ompletion tree, a node y is alled an R-suessor of a node x i� y

is a suessor of x and R 2 L(hx; yi). A node y is alled an R-neighbour of x

i� y is an R-suessor of x, or if x is an Inv(R)-suessor of y. Predeessors

and anestors are de�ned as usual.

A node x in T is said to ontain a lash if,

13

u-rule: see Fig. 1

t-rule: see Fig. 1

hoose-rule: if 1. (./ n ! C) 2 L(x) and

2. for some R 2 ! there is an R-predeessor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [fEg for some E 2 fC;�Cg

and delete all desendants of y.

>-rule: if 1. (> n ! C) 2 L(x) and no non-generating rule

is appliable to x or any of its anestors, and

2. ℄!

T

(x;C) < n

then reate a new node y with

L(hx; yi) = ! [fS

1

; : : : ; S

k

g and

L(y) = fC;E

1

; : : : ; E

n

g where

fS

1

; : : : ; S

k

g � R

D

n !

fD

1

; : : : D

n

g = fD j (./ n � D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 3: The modi�ed expansion rules for ALCQIR

� for some atomi onept A, fA;:Ag � L(x), or

� for some onept C, role intersetion !, and n 2 N, (6 n ! C) 2 L(x)

while ℄!

T

(x; C) > n, where !

T

(x; C) := fy j y is R-neighbour of x in

T for eah R 2 ! and C 2 L(y)g.

A ompletion tree is alled lash-free i� none of its nodes ontains a lash;

it is alled omplete i� none of the expansion rules in Figure 3 is appliable.

For an ALCQI-onept D, the algorithm starts with a ompletion tree

onsisting of a single node x

0

with L(x

0

) = fDg. It applies the expansion

rules, stopping when a lash ours, and answers \D is satis�able" i� the

ompletion rules an be applied in suh a way that they yield a omplete and

lash-free ompletion tree.

Again we have to show termination, soundness and ompleteness. Termi-

nation follows exatly as for ALCQI, all arguments of the proofof Lemma 4

are still valid. Hene we have:

Lemma 12 (Termination) For any ALCQIR-onept D the tableaux al-

gorithm terminates.

14

The proof of soundness is also nearly idential to the proof of Lemma 5.

Lemma 13 (Soundness) If the expansion rules an be applied to an ALCQIR-

onept D suh that they yield a omplete and lash-free ompletion tree, then

D is satis�able.

Proof. We onstrut a model from a omplete and lash-free tree as in the

ALCQI-ase. The only di�erene in the proof is the ase of quali�ed number

restrition in the indution step:

� C = (> n ! E). For an x with C 2 L(x) we have ℄!

T

(x; E) > n

beause T is omplete. Hene there are n distint individuals y

1

; : : : ; y

n

that are R-neighbours of x for eah R 2 ! and E 2 L(y

i

) for all

i. By indution, we have y

i

2 E

I

and, sine R 2 L(hx; y

j

i) implies

hx; y

j

i 2 R

I

, also x 2 C

I

.

� C = (6 n ! E). Let x be an individual with C 2 L(x). For any

R 2 ! and any R-neighbour y of x either E 2 L(y) of �E 2 L(y).

This is guaranteed by the hoose-rule (for an R-predeessor of x) and

by the >-rule whih is suspended until no other rules an applied to x

or any predeessor of x together with the reset-restart mehanism that

is triggered by onepts \moving upwards" in the tree.

We show that ℄!

I

(x; E) 6 ℄!

T

(x; E): Assume ℄!

I

(x; E) > ℄!

T

(x; E).

This implies the existene of some y with hx; yi 2 R

I

for eah R 2 !

and y 2 E

I

but E 62 L(y). This implies �E 2 L(y), whih, by

indution yields y 2 (�E)

I

in ontradition to y 2 E

I

.

The proof of ompleteness is more ompliated then in the ALCQI-ase,

although the ideas are the same.

Lemma 14 (Completeness) Let D be an ALCQIR-onept: If D is sat-

is�able, then the expansion rules an be applied in suh a way that they yield

a omplete and lash-free ompletion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the appliation of the non-deterministi ompletion rules. Again we will use

an inremently de�ned funtion �, but this time the onstraints on � are

15

more restritive:

1: L(x)) �(x) 2 C

I

2: L(hx; yi) = fR 2 R

D

j h�(x); �(y)i 2 R

I

g

3: if y; z are two neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a funtion � and a rule is

appliable to T then it an be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hene the rule an be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[C

I

2

. Hene the t-rule an add a onept E 2 fC

1

; C

2

g to

L(x) suh that (�) still holds.

� The hoose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Sine (�E)

I

= �

I

n E

I

the rule an always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n ! C) 2 L(x), then �(x) 2 (> n ! C)

I

. This

implies ℄!

I

(�(x); C) > n. We laim that there is an element t 2 �

I

suh that

h�(x); ti 2 R

I

for eah R 2 ! and t 2 C

I

; and

t 62 f�(y) j y is a neighbour of x g

�

(��)

We will ome bak to this laim later. Let D

1

; : : : ; D

n

be an enu-

meration of the set fD j (./ n � D) 2 L(x)g. The >-rule an add

a new node y with L(hx; yi) = fR 2 R

D

j h�(x); ti 2 R

I

g and

L(y) = fCg[fD

i

j t 2 D

I

i

g[f�D

i

j t 62 D

I

i

g. If we set �

0

:= �[y 7! t℄,

then the modi�ed tree together with �

0

satis�es (�).

Why does there exists an element t that satis�es (��)? Let s 2 �

I

be

an element with h�(x); si 2 !

I

and s 2 C

I

that appears as an image

of an arbitrary neighbour y of x. Condition 2 of (�) implies that y is

an R-neighbour for any R 2 ! and also C 2 L(y) must hold as follows:

Assume C 62 L(y). This implies�C 2 L(y): Either y is a predeessor of

x, then in order for the >-rule to be appliable, no non-generating rules

16

and espeially the hoose-rule is not appliable to x and its anestor

whih implies fC;�Cg \ L(y) 6= ;. If y is an suessor of x then it

must have been generated by an appliation of the >-rule to x. In

order for this rule to be appliable no non-generating rule may have

been appliable to x or any of its anestors. This implies that at the

time of the generation of y already (> n ! C) 2 L(x) held and hene

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any ase �C 2 L(y) holds and together with Condition 1 of (�) this

implies t 62 C

I

whih ontradits t 2 C

I

.

Sine the >-rule is appliable we have ℄!

T

(x; C) < n. From the pre-

vious onsiderations is follows that there must exist an element t with

h�(x); ti 2 !

I

and t 2 C

I

suh that t 62 f�(y) j y is an neighbour of x

and C 2 L(y)g beause of ondition 2 of (�).

This onludes the proof of the laim. The laim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if

we set �(x) := s

0

for an element s

0

2 D

I

(suh an element must exist beause

I is a model for D). The laim implies that whenever a rule is appliable

then it an be applied in a manner that maintains (�). Lemma 12 yields

that eah sequene of rule appliations must terminate, and also eah tree

for whih (�) holds is neessarily lash-free. It annot ontain a lash of the

form fA;:Ag � L(x) beause this would imply �(x) 2 A

I

and �(x) 62 A

I

. It

an neither ontain a lash of the form (6 n ! C) 2 L(x) and ℄!

T

(x; C) > n

beause � is an injetive funtion on the set of all neighbours of x that

preserves all relations in R

D

and hene ℄!

T

(x; C) > n implies ℄!

I

(x; C) > n,

whih annot be the ase sine �(x) 2 (6 n ! C)

I

.

As a onsequene from Lemma 12, 13, and 14, we have:

Theorem 15 The tableaux algorithm is a non-deterministi deision proe-

dure for ALCQIR-satis�ability.

Again, it remains to show that the algorithm an be implemented to run in

only polynomial spae. The tehnique used for this is similar to the ALCQI-

ase, but we have to deal with an additional problem: it is impossible to store

the numbers for all sequenes R

1

u � � � uR

m

for all roles in R

D

, beause the

number of all sequenes may grow exponentially in the size of the input

formula. On the other hand, not all of these sequenes are of relevane, only

17

those that atually appear in the input onept. Of ourse, there are only

linearly many of those and hene, with a similar algorithm to the one given

in Figure 2, we have:

Lemma 16 The ALCQIR-tableau algorithm an be implemented in PSpae.

Together with Theorem 15 this yields:

Theorem 17 Sat(ALCQIR) is PSpae-omplete, even if numbers in the

input are represented in binary oding.

This settles a open problem from [DLNN97℄, where it is stated:

Without this assumption [unary oding of numbers in the input℄,

however, we would not have been able to prove that satis�ability

in ALCNR is in PSpae. It is open whether this upper bound

still holds if we allow for binary enoding of numbers.

Sine ALCNR is stritly ontained in ALCQIR, we an now solve this

problem:

Corollary 18 Satis�ability for ALCNR is PSpae-omplete, even if num-

bers in the input are represented in binary oding.

Referenes

[CLN94℄ D. Calvanese, M. Lenzerini, and D. Nardi. A uni�ed framework

for lass based representation formalisms. In Proeedings of KR-

94, 1994.

[dHR95℄ Wiebe Van der Hoek and Maarten De Rijke. Counting objets.

J. of Logi and Computation, 5(3):325{345, June 1995.

[DLNN97℄ Franeso M. Donini, Maurizio Lenzerini, Daniele Nardi, and

Werner Nutt. The omplexity of onept languages. Informa-

tion and Computation, 134(1):1{58, 10 April 1997.

[HB91℄ B. Hollunder and F. Baader. Qualifying number restritions in

onept languages. In Proeedings of the Seond International

Conferene on Priniples of Knowledge Representation and Rea-

soning, KR-91, pages 335{346, Boston (USA), 1991.

18

[HM92℄ J. Y. Halpern and Y. Moses. A guide to ompleteness and om-

plexity for model logis of knowledge and belief. Arti�ial Intel-

ligene, 54(3):319{379, April 1992.

[HST99℄ Ian Horroks, Ulrike Sattler, and Stephan Tobies. Pratial rea-

soning for desription logis with funtional restritions, inverse

and transitive roles, and role hierarhies. In Proeedings of the

1999 Workshop Methods for Modalities (M4M-1), Amsterdam,

1999.

[Lad77℄ Rihard E. Ladner. The omputational omplexity of provabil-

ity in systems of modal propositional logi. SIAM Journal on

Computing, 6(3):467{480, September 1977.

[Sav70℄ Walter J. Savith. Relationships between nondeterministi and

deterministi tape omplexities. Journal of Computer and System

Sienes, 4(2):177{192, April 1970.

[SSS91℄ M. Shmidt-Shau� and G. Smolka. Attributive onept desrip-

tions with omplements. Arti�ial Intelligene, 48:1{26, 1991.

[Tob99a℄ S. Tobies. A PSpae algorithm for graded modal logi. In

H. Ganzinger, editor, Automated Dedution { CADE-16, 16th

International Conferene on Automated Dedution, LNAI 1632,

pages 52{66, Trento, Italy, July 7{10, 1999. Springer-Verlag.

[Tob99b℄ Stephan Tobies. A PSPACE-algorithm for ALCQI-satis�ability.

LTCS-Report 99-09, LuFG Theoretial Computer Si-

ene, RWTH Aahen, Germany, 1999. See http://www-

lti.informatik.rwth-aahen.de/Forshung/Papers. html.

19

