
LTCS{Report

Aa
hen University of Te
hnology

Resear
h group for

Theoreti
al Computer S
ien
e

PSpa
e Reasoning for DLs with

Qualifying Number Restri
tions

Stephan Tobies

LTCS-Report 99-11

RWTH Aa
hen

LuFg Theoretis
he Informatik

http://www-lti.informatik.rwth-aa
hen.de

Ahornstr. 55

52074 Aa
hen

Germany

PSpa
e Reasoning for DLs with

Qualifying Number Restri
tions

Stephan Tobies

O
tober 11, 1999 - Revised Version

Abstra
t

The des
ription logi
 ALCQI extends the \standard" des
ription

logi
 ALC by qualifying number restri
tions and
onverse roles. We

show that
on
ept satis�ability for this DL is still de
idable in poly-

nomial spa
e. The presented algorithm
ombines te
hniques from

[Tob99a℄ to deal with qualifying number restri
tions and from [HST99℄

to deal with
onverse roles. Additionally, we extend the result to

ALCQIR, whi
h extends ALCQI by role interse
tions. This solves

an open problem from [DLNN97℄.

The result for ALCQI has already been presented in the seperate te
hni-

al report [Tob99b℄. In this report we use the same te
hniques to obtain

the stronger result for ALCQIR.

1 The Des
ription Logi
 ALCQI

Qualifying number restri
tions [HB91℄ are a
ommon generalisation of both

role-quanti�
ation and standard number restri
tions that are present in al-

most all implementations of DL systems. They provide an expressive means

to des
ribe obje
ts by the number of other obje
ts they are related to and

are ne
essary for reasoning with semanti
 data models [CLN94℄. In [Tob99a℄

we have shown that|at least for ALC|number restri
tions
an be repla
ed

by qualifying number restri
tions without in
reasing the (worst-
ase)
om-

plexity of the satis�ability problem. In this se
tion we extend this result to

onverse roles.

1

De�nition 1 (The DL ALCQI) Let N

C

be a set of atomi

on
epts and

N

R

a set of atomi
 roles. The set of ALCQI-roles N

R

is N

R

[fR

�

j R 2

N

R

g. Con
epts in ALCQI are built indu
tively using the following rules:

1. every A 2 N

C

is an ALCQI-
on
ept, and

2. if C;D

1

; D

2

are ALCQI-
on
epts, n 2 N and R 2 N

R

then :C, D

1

u

D

2

, D

1

tD

2

, (> n R C), and (6 n R C) are ALCQI-
on
epts.

For an interpretation I = (�

I

; �

I

), we extend the usual semanti
s of ALC-

on
epts to qualifying number restri
tions as follows:

(> n R C)

I

:= fx 2 �

I

j ℄fy j (x; y) 2 R

I

; y 2 C

I

g > ng;

(6 n R C)

I

:= fx 2 �

I

j ℄fy j (x; y) 2 R

I

; y 2 C

I

g 6 ng;

where ℄ denotes the
ardinality of a set. For
onverse roles we de�ne (R

�

)

I

:=

f(y; x) j (x; y) 2 R

I

g. With ALCQ we denote the fragment of ALCQ whi
h

does not
ontain
onverse roles. With Sat(ALCQ) and Sat(ALCQI) we

denote the set of all satis�able ALCQ-, resp., ALCQI-
on
epts.

In order to avoid
onsidering roles su
h as R

��

, we de�ne a fun
tion Inv

that returns the inverse of a role by setting

Inv(R) :=

(

R

�

if R 2 N

R

S if R = S

�

for some S 2 N

R

2 Reasoning for ALCQI

In [HB91℄ a tableaux algorithm is presented that de
ides Sat(ALCQ) in

polynomial spa
e, provided that unary
oding of numbers in the input is

assumed when
al
ulating the size of the input. In [dHR95℄ it is
onje
tured

that binary
oding of numbers would make Sat(ALCQ) ExpTime-
omplete.

Why does the
oding of numbers seem to be of su
h an importan
e for the

problem? The answer lies in the nature of the tableaux algorithms forALCQ:

They de
ide the satis�ability of a
on
ept C by trying to expli
itly
onstru
t

a model for it. For a
on
ept of the form (> n R C), the algorithm in

[HB91℄ generates n individuals, and the
orre
tness of the algorithms relies

on that fa
t that they are kept in memory simultaneously. Assuming unary

oding of numbers in the input, this is admissible be
ause the number n will

2

onsume n bits in the input and hen
e the amount of memory needed for the

n su

essors is polynomial in the size of the input. This
hanges if we assume

binary
oding of numbers: The number n
onsumes only log

2

n bits in the

input, making the amount of memory needed for n su

essors potentially

exponential in the size of the input.

In [Tob99a℄ we give an algorithm derived from the one presented in [HB91℄

that is
apable of de
iding Sat(ALCQ) in PSpa
e, even if binary
oding

of numbers in the input is allowed. While still generating n su

essors for a

on
ept (> n R C), non-deterministi
 guessing of an assignment of relevant

onstraints to newly generated nodes is used to be able to generate these

one after another re-using spa
e. This exa
tly determines the
omplexity of

Sat(ALCQ) as PSpa
e-
omplete. This rather surprising result shows that

augmenting ALC with qualifying number restri
tions does not in
rease the

(worst-
ase)
omplexity of the satis�ability problem.

In this paper we present an extension of the algorithm in [Tob99a℄ that

an additionally deal with
onverse roles and runs in polynomial spa
e. This

yields that also Sat(ALCQI) is PSpa
e-
omplete. The \reset-restart" te
h-

nique, whi
h is used to deal with
on
epts moving upwards in the
ompletion

tree, has already been used in [HST99℄ to deal with
onverse roles.

De�nition 2 An ALCQI-
on
ept C is in negation normal form (NNF) if

negation o

urs only in front of atomi

on
epts; we denote the NNF of :C

by �C. For a
on
ept C in NNF we de�ne
los(C) to be the smallest set of

ALCQI-
on
epts that
ontains C and is
losed under sub-
on
epts and �.

A
ompletion tree for an ALCQI-
on
ept D is a tree where ea
h node x of

the tree is labelled with a set L(x) �
los(D) and ea
h edge hx; yi is labelled

with a role name L(hx; yi) = R for a (possibly inverse) role o

urring in

los(D).

Given a
ompletion tree, a node y is
alled an R-su

essor of a node x i� y

is a su

essor of x and L(hx; yi) = R. A node y is
alled an R-neighbour of x

i� y is an R-su

essor of x, or if x is an Inv(R)-su

essor of y. Prede
essors

and an
estors are de�ned as usual.

A node x in T is said to
ontain a
lash if,

� for some atomi

on
ept A, fA;:Ag � L(x), or

� for some
on
ept C, role R, and n 2 N, (6 n R C) 2 L(x) while

℄R

T

(x; C) > n, where R

T

(x; C) := fy j y is R-neighbour of x in T and

C 2 L(y)g.

3

u-rule: if 1. C

1

u C

2

2 L(x) and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x) and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [fCg for some C 2 fC

1

; C

2

g

hoose-rule: if 1. (./ n R C) 2 L(x) and

2. there is an R-prede
essor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [fEg for some E 2 fC;�Cg

and delete all des
endants of y.

>-rule: if 1. (> n R C) 2 L(x), x is not blo
ked and no

non-generating rule is appli
able to x or any

of its an
estors, and

2. ℄R

T

(x;C) < n

then
reate a new node y with L(hx; yi) = R and

L(y) = fC;E

1

; : : : ; E

n

g where

fD

1

; : : : D

n

g = fD j (./ n R D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 1: Tableaux expansion rules for ALCQI

A
ompletion tree is
alled
lash-free i� none of its nodes
ontains a
lash;

it is
alled
omplete i� none of the expansion rules in Figure 1 is appli
able.

For an ALCQI-
on
ept D, the algorithm starts with a
ompletion tree

onsisting of a single node x with L(x) = fDg. It applies the expansion

rules, stopping when a
lash o

urs, and answers \D is satis�able" i� the

ompletion rules
an be applied in su
h a way that they yield a
omplete and

lash-free
ompletion tree.

2.1 Corre
tness of the Algorithm

In order to prove the
orre
tness of the algorithm we have to show termina-

tion, soundness, and
ompleteness.

Before we prove termination of the algorithm we will establish a bound

on the size of a
ompletion tree generated by the tableaux algorithm that

will also be used in the
omplexity analysis.

4

Lemma 3 Let D be an ALCQI-
on
ept in NNF and T a
ompletion tree

that is generated for D by the tableaux algorithm.

1. ℄
los(D) = O(jDj).

2. The length of a path in T is limited by jDj.

3. The out-degree of T is limited by ℄
los(D)� 2

jDj

.

Proof.

1. The �rst part of this Lemma
an easily be proved by observing that

for a
on
ept D in NNF

los(D) = sub(D) [f�C j C 2 sub(D)g

holds, where sub(D) denotes the set of all sub-
on
epts ofD. Obviously,

℄sub(D) � jDj and hen
e ℄
los(D) � O(jDj).

2. For a node x we de�ne `(x) as the maximum depth of nested number

restri
tions in L(x). Obviously, for the root x

0

of T, `(x

0

) � jDj holds.

Also, if y is a su

essor of x in T, then `(x) > `(y). Hen
e ea
h path

x

1

; : : : ; x

n

in T indu
es a stri
tly de
reasing sequen
e `(x

1

) > `(x

2

) >

� � � > `(x

k

) of natural numbers. Thus, the longest path in T starts at

x

0

and its length is bounded by jDj.

3. Su

essors in T are only generated by the >-rule. For a node x this rule

will generate at most n su

essors for ea
h (> n R C) 2 L(x). There

are at most ℄
los(D) su
h formulae in L(x). Hen
e the out-degree of

x is bounded by ℄
los(D) � 2

jDj

, where 2

jDj

is a limit for the biggest

number that may appear in D if binary
oding is used.

From this we
an follow termination of the algorithm.

Lemma 4 (Termination) For any ALCQI-
on
ept D the tableaux algo-

rithm terminates.

Proof. Termination of the algorithm is a
onsequen
e of the following fa
ts:

� Ea
h node is labelled with a subset of the �nite set
los(D). Con
epts

are never removed from the labels of the nodes.

5

� The size of the tree is bounded by Lemma 3.

� The rules either add
on
epts to the label of a node or add nodes to

the tree.

� Whenever a node is deleted from the tree the labels of one of its an
es-

tors grows.

Assume that algorithm does not terminate. Due to the mentioned fa
ts

this
an only be be
ause of an in�nite number of deletions of subtrees. Ea
h

node
an of
ourse only be deleted on
e, but the su

essors of a single node

may be deleted several times. The root of the
ompletion tree
annot be

deleted be
ause it has no prede
essor. Hen
e there are nodes whi
h are

never deleted. Choose one of these nodes x with maximum distan
e from

the root, i.e., whi
h has a maximum number of prede
essors. Suppose that

x's su

essors are deleted only �nitely many times. This
annot be the
ase

be
ause, after the last deletion of x's su

essors, the \new" su

essors were

never deleted and thus x would not have maximum distan
e from the root.

Hen
e x triggers the deletion of its su

essors in�nitely many times. However,

the
hoose-rule is the only rules that leads to a deletion, and it simultaneously

leads to an in
rease of L(x), namely by the missing
on
ept whi
h
aused

the deletion of x's su

essors. Sin
e we never remove any
on
epts from the

labels, this implies the existen
e of an in�nitely in
reasing
hain of subsets

of
los(D), whi
h is
learly impossible.

Lemma 5 (Soundness) If the expansion rules
an be applied to an ALCQI-

on
ept D su
h that they yield a
omplete and
lash-free
ompletion tree, then

D is satis�able.

Proof. Let T be su
h a
ompletion tree for D. A model I = (�

I

; �

I

) for D

an be de�ned by setting �

I

to be the nodes of T and by de�ning:

A

I

= fx j A 2 L(x)g for all
on
ept names A in
los(D)

R

I

= fhx; yi j L(hx; yi) = R or L(hy; xi) = Inv(R)g:

Indu
tively we will show for all x 2 �

I

and all C 2
los(D) that C 2 L(x)

implies x 2 C

I

. We
annot use indu
tion over the stru
ture of
on
epts due

to the >-rule that adds negated
on
epts to the tree. Instead we will use the

6

following norm k � k of a
on
ept C. The norm kCk for
on
ept in NNF is

indu
tively de�ned by:

kAk := k:Ak := 0 for A 2 N

C

kC

1

u C

2

k := kC

1

t C

2

k := 1 + kC

1

k+ kC

2

k

k(./ n S C)k := 1 + kCk

The two base
ases of the indu
tion are C = A or C = :A. If A 2 L(x), then

by de�nition x 2 A

I

. If :A 2 L(x), then A 62 L(x) be
ause T is
lash-free

and hen
e x 62 A

I

. For the indu
tion step we have to distinguish several

ases:

� C = C

1

u C

2

. Sin
e T is
omplete C 2 L(x) implies C

1

2 L(x) and

C

2

2 L(x). Hen
e, by indu
tion, we have x 2 C

I

1

and x 2 C

I

2

whi
h

yields x 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous
ase.

� C = (> n R E). For an x with C 2 L(x) we have ℄R

T

(x; E) >

n be
ause T is
omplete. Hen
e there are n distin
t R-neighbours

y

1

; : : : ; y

n

with E 2 L(y

i

) for all i. By indu
tion, we have y

i

2 E

I

and,

sin
e, for ea
h R-neighbour y

j

, hx; y

j

i 2 R

I

holds, also x 2 C

I

.

� C = (6 n R E). Let x be an individual with C 2 L(x). For any R-

neighbour y of x either E 2 L(y) of �E 2 L(y). This is guaranteed by

the
hoose-rule (for an R-prede
essor of x) and by the >-rule whi
h is

suspended until no other rules
an applied to x or any prede
essor of x

together with the reset-restart me
hanism that is triggered by
on
epts

\moving upwards" in the tree.

We show that ℄R

I

(x; E) 6 ℄R

T

(x; E): Assume ℄R

I

(x; E) > ℄R

T

(x; E).

This implies the existen
e of some y with hx; yi 2 R

I

with y 2 E

I

but E 62 L(y). This implies �E 2 L(y), whi
h, by indu
tion yields

y 2 (�E)

I

in
ontradi
tion to x 2 E

I

.

Sin
e D 2 L(x

0

) for the root x

0

of T this implies D

I

6= ; and hen
e I is

a model for D.

7

Lemma 6 (Completeness) Let D be an ALCQI-
on
ept: If D is satis�-

able, then the expansion rules
an be applied in su
h a way that they yield a

omplete and
lash-free
ompletion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the appli
ation of the non-deterministi

ompletion rules. For this we will

in
remently de�ne a fun
tion � mapping the nodes in T to elements of �

I

su
h that at any given stage the following holds:

1: L(x)) �(x) 2 C

I

2: if L(hx; yi) = R then h�(x); �(y)i 2 R

I

3: if y; z are two R-neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a fun
tion � and a rule is

appli
able to T then it
an be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hen
e the rule
an be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[C

I

2

. Hen
e the t-rule
an add a
on
ept E 2 fC

1

; C

2

g to

L(x) su
h that (�) still holds.

� The
hoose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Sin
e (�E)

I

= �

I

n E

I

the rule
an always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n R C) 2 L(x), then �(x) 2 (> n R C)

I

. This

implies ℄S

I

(�(x); C) > n. We
laim that there is an element t 2 �

I

su
h that

h�(x); ti 2 R

I

; t 2 C

I

; and t 62 f�(y) j y is an R-neighbour of x g (��)

We will
ome ba
k to this
laim later. Let D

1

; : : : ; D

n

be an enumer-

ation of the set fD j (./ n R D) 2 L(x)g. The >-rule
an add a new

node y with L(hx; yi) = R and L(y) = fCg [fD

i

j t 2 D

I

i

g [f�D

i

j

8

t 62 D

I

i

g. If we set �

0

:= �[y 7! t℄, then the modi�ed tree together with

�

0

satis�es (�).

Why does there exists an element t that satis�es (��)? It is obvi-

ous that there exists an element t with h�(x); ti 2 R

I

and t 2 C

I

su
h that t 62 f�(y) j y is an R-neighbour of x and C 2 L(y)g be
ause

℄R

T

(�(x); C) � n > ℄R

T

(x; C).

Assume t appears as an image of an R-neighbour y of x with C 62 L(y).

This implies �C 2 L(y) as follows: Either y is an R-prede
essor of x,

then in order for the >-rule to be appli
able, no non-generating rules

and espe
ially the
hoose-rule is not appli
able to x and its an
estor

whi
h implies fC;�Cg \ L(y) 6= ;. If y is an R-su

essor of x then

it must have been generated by an appli
ation of the >-rule to x. In

order for this rule to be appli
able no non-generating rule may have

been appli
able to x or any of its an
estors. This implies that at the

time of the generation of y already (> n R C) 2 L(x) held and hen
e

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any
ase �C 2 L(y) holds and together with (�) this implies t 62 C

I

whi
h
ontradi
ts t 2 C

I

. Hen
e C 2 L(y) must hold whi
h is a

ontradi
tion to the assumption C 62 L(y) and thus there must be an

element that satis�es (��).

This
on
ludes the proof of the
laim. The
laim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if we set �(x

0

) := s

0

for an element s

0

2 D

I

(su
h an element must exist

be
ause I is a model for D). The
laim yields that whenenver a rule is appli-

able then it
an be applied in a manner that maintains (�). Lemma 4 yields

that ea
h sequen
e of rule appli
ations must terminate, and also ea
h tree for

whi
h (�) holds is ne
essarily
lash-free. It
annot
ontain a
lash of the form

fA;:Ag � L(x) be
ause this would imply �(x) 2 A

I

and �(x) 62 A

I

. It
an

neither
ontain a
lash of the form (6 n R C) 2 L(x) and ℄R

T

(x; C) > n

be
ause � is an inje
tive fun
tion on the set of all R-neighbours of y and

hen
e ℄R

T

(x; C) > n implies ℄R

I

(x; C) > n and whi
h
annot be the
ase

sin
e �(x) 2 (6 n R C)

I

.

Summing up, from Lemmas 4, 5, and 6 we get the following:

9

Theorem 7 The tableaux algorithm is a non-deterministi
 de
ision pro
e-

dure for ALCQI-satis�ability.

2.2 Complexity of ALCQI

What remains to show is that the algorithm
an be implemented to run in

polynomial spa
e. This is stated in the following lemma.

Due to Savit
h's theorem [Sav70℄ that states that PSpa
e
oin
ides with

NPSpa
e we don't have to deal with the non-determinism in the rules. Nev-

ertheless, models for a ALCQI-
on
ept may be required to have exponential

size so we have to develop a method that fa
ilitates re-use of spa
e while

generating the
ompletion tree.

Lemma 8 The tableaux algorithm
an be implemented in PSpa
e.

Proof. Let D be the ALCQI-
on
ept to be tested for satis�ability. We
an

assume D to be in NNF be
ause the transformation of a formula to NNF
an

be performed in linear time and spa
e.

The key idea for a PSpa
e implementation is the tra
e te
hnique[SSS91℄,

i.e., it is suÆ
ient to keep only a single path (a tra
e) of T in memory at a

given stage if the
ompletion tree is generated in a depth-�rst manner. This

has already been the key to a PSpa
e upper bound for the propositional

modal logi
 K

m

and ALC in [Lad77, SSS91, HM92℄. To do this we need to

store the values for ℄R

T

(x; C) for ea
h node x in the path, ea
h R whi
h

appears in
los(D) and ea
h C 2
los(D). By storing these values in binary

form, we are able to keep information about exponentially many su

essors

in memory while storing only a single path at any stage.

Consider the algorithm in Fig. 2, where R

D

denotes the set of role names

that appear in
los(D) together with their inverses. It re-uses the spa
e

needed to
he
k the satis�ability of a su

essor y of x on
e the existen
e

of a
omplete and
lash-free \subtree" for the
onstraints on y has been

established. This is admissible sin
e the tableaux rules
an delete but will

never modify this subtree on
e is it
ompleted. This deletion is ne
essary

be
ause the
hoose-rule pushes
on
epts upwards in the tree whi
h might

have an in
uen
e of the subtrees of the e�e
ted node. Sin
e these have

already been dis
arded from memory they have to be regenerated.

Constraints in a subtree have no in
uen
e on the
ompleteness or the

existen
e of a
lash in the rest of the tree, with the ex
eption that a
on
ept

10

C 2 L(y) for an R-neighbour y of x
ontributes to the value of ℄R

T

(x; C).

These numbers play a role both in the de�nition of a
lash and for the

appli
ability of the >-rule. Hen
e, in order to re-use the spa
e o

upied by

the subtree for y, it is ne
essary and suÆ
ient to store these numbers.

An algorithm that works as previously des
ribed is shown in Fig. 2. Let

us examine the memoryusage of this algorithm. Let n = jDj. The algorithm

is designed to keep only a single path of T in memory at a given stage. For

ea
h node x on a path, L(x) �
los(D) and hen
e its size is bounded by

2n. Thus, for a single variable x, L(x)
an be stored in O(n) bits. For

ea
h variable, there are at most ℄R

D

� ℄
los(D) = O(n

2

)
ounters to be

stored. The numbers to be stored in these
ounters do not ex
eed the out-

degree of the tree, whi
h, by Lemma 3, is bounded by ℄
los(D)�2

jDj

. Hen
e

ea
h
ounter
an be stored using O(n

2

) bits when binary
oding is used to

represent the
ounters, and all
ounters for a single variable require O(n

4

)

bits. Due to Lemma 3, the length of a path is limited by n, whi
h yields an

overall memory
onsumption of O(n

5

+ n

2

) bits.

Obviously, satis�ability for ALCQI is at least as hard as for ALC. To-

gether with the previous lemma this yields the following.

Theorem 9 Sat(ALCQI) is PSpa
e-
omplete, even if numbers in the in-

put are represented in binary
oding.

11

ALCQI � SAT(D) := sat(x

0

; [x

0

7! fDg℄)

sat(x;L):

allo
ate
ounters ℄R

T

(x; C) for all R 2 R

D

and C 2
los(D).

restart:

for ea
h
ounter ℄R

T

(x; C):

if x has a prede
essor y and L(hy; xi) = Inv(R) and C 2 L(y)

then ℄R

T

(x; C) := 1 else ℄R

T

(x; C) := 0

while (the u- or the t-rule
an be applied at x) and (T is
lash-free)

do

apply the u- or the t-rule to x.

od

if T
ontains a
lash then return \not satis�able".

if the
hoose-rule is appli
able to x for (./ n R C) 2 L(x)

then return \restart with C"

while (the >-rule applies to a
on
ept (> n R C) 2 L(x))

do

C

new

:= fC;E

1

; : : : ; E

k

g

where

fD

1

; : : : ; D

k

g = fD j (./ m R D) 2 L(x), and

E

i

is
hosen non-deterministi
ally from fD

i

;�D

i

g

for ea
h D 2 C

new

do in
rease ℄R

T

(x;D)

if (6 m R D) 2 L(x) and ℄R

T

(x;D) > m

then return \not satis�able".

result := sat(y;L[y 7! C

new

; hx; yi 7! R℄)

where y is a fresh node

if result = \not satis�able" then return \not satis�able"

if result = \restart with D" then

L(x) := L(x) [fEg

where E is
hose non-deterministi
ally from fD;�Dg

goto restart

od

remove the
ounters for x from memory.

return \satis�able"

Figure 2: A NPSpa
e de
ision pro
edure for ALCQI-satis�ability.

12

3 Adding Role-Interse
tion

In this se
tion we will extend the PSpa
e result to the DL ALCQIR, whi
h

extends ALCQI by role interse
tion.

De�nition 10 (The DL ALCQIR) ALCQIR-
on
epts are de�ned sim-

ilar to ALCQI-
on
epts, with the di�eren
e that we allow role interse
tions

instead of roles in qualifying number restri
tions. This means that for an

ALCQIR-
on
ept C, n 2 N and ALCQI-roles R

1

; : : : ; R

m

2 N

R

(6 n (R

1

u � � � u R

m

) C); (> n (R

1

u � � � u R

m

) C)

are ALCQIR-
on
epts. We will use small Greek letters as pla
eholders for

interse
tion of roles and, by abuse of notation, we will sometimes identify

su
h an interse
tion of roles ! with the set of roles appearing in it and write

R 2 ! if ! = R

1

u � � � uR

m

and R = R

i

for some 1 � i � m. The semanti
s

are extended
anoni
ally:

(./ n ! C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 !

I

; y 2 C

I

g ./ ng

where for ! = R

1

u � � � u R

m

we de�ne

!

I

= R

I

1

\ � � � \ R

I

m

To de
ide satis�ability forALCQIR, we pro
eed pretty mu
h the same as

for ALCQI, the only di�eren
e is that we have to allow for multiple labels

on the edges to a

ount for role interse
tions and that we have to guess

additional role labels in the same manner as we had to guess additional

on
epts in the previous
ase to get an algorithm that does not rely on the

identi�
ation of nodes.

De�nition 11 NNF for ALCQIR is de�ned as for ALCQI.

A
ompletion tree for an ALCQIR-
on
ept D is a tree where ea
h node x

of the tree is labelled with a set L(x) �
los(D) and ea
h edge hx; yi is labelled

with a set of role names L(hx; yi) = fR

1

; : : : ; R

m

g for (possibly inverse)

roles o

urring in
los(D). We will denote the set of all roles o

uring in D

together with their inverses by R

D

Given a
ompletion tree, a node y is
alled an R-su

essor of a node x i� y

is a su

essor of x and R 2 L(hx; yi). A node y is
alled an R-neighbour of x

i� y is an R-su

essor of x, or if x is an Inv(R)-su

essor of y. Prede
essors

and an
estors are de�ned as usual.

A node x in T is said to
ontain a
lash if,

13

u-rule: see Fig. 1

t-rule: see Fig. 1

hoose-rule: if 1. (./ n ! C) 2 L(x) and

2. for some R 2 ! there is an R-prede
essor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [fEg for some E 2 fC;�Cg

and delete all des
endants of y.

>-rule: if 1. (> n ! C) 2 L(x) and no non-generating rule

is appli
able to x or any of its an
estors, and

2. ℄!

T

(x;C) < n

then
reate a new node y with

L(hx; yi) = ! [fS

1

; : : : ; S

k

g and

L(y) = fC;E

1

; : : : ; E

n

g where

fS

1

; : : : ; S

k

g � R

D

n !

fD

1

; : : : D

n

g = fD j (./ n � D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 3: The modi�ed expansion rules for ALCQIR

� for some atomi

on
ept A, fA;:Ag � L(x), or

� for some
on
ept C, role interse
tion !, and n 2 N, (6 n ! C) 2 L(x)

while ℄!

T

(x; C) > n, where !

T

(x; C) := fy j y is R-neighbour of x in

T for ea
h R 2 ! and C 2 L(y)g.

A
ompletion tree is
alled
lash-free i� none of its nodes
ontains a
lash;

it is
alled
omplete i� none of the expansion rules in Figure 3 is appli
able.

For an ALCQI-
on
ept D, the algorithm starts with a
ompletion tree

onsisting of a single node x

0

with L(x

0

) = fDg. It applies the expansion

rules, stopping when a
lash o

urs, and answers \D is satis�able" i� the

ompletion rules
an be applied in su
h a way that they yield a
omplete and

lash-free
ompletion tree.

Again we have to show termination, soundness and
ompleteness. Termi-

nation follows exa
tly as for ALCQI, all arguments of the proofof Lemma 4

are still valid. Hen
e we have:

Lemma 12 (Termination) For any ALCQIR-
on
ept D the tableaux al-

gorithm terminates.

14

The proof of soundness is also nearly identi
al to the proof of Lemma 5.

Lemma 13 (Soundness) If the expansion rules
an be applied to an ALCQIR-

on
ept D su
h that they yield a
omplete and
lash-free
ompletion tree, then

D is satis�able.

Proof. We
onstru
t a model from a
omplete and
lash-free tree as in the

ALCQI-
ase. The only di�eren
e in the proof is the
ase of quali�ed number

restri
tion in the indu
tion step:

� C = (> n ! E). For an x with C 2 L(x) we have ℄!

T

(x; E) > n

be
ause T is
omplete. Hen
e there are n distin
t individuals y

1

; : : : ; y

n

that are R-neighbours of x for ea
h R 2 ! and E 2 L(y

i

) for all

i. By indu
tion, we have y

i

2 E

I

and, sin
e R 2 L(hx; y

j

i) implies

hx; y

j

i 2 R

I

, also x 2 C

I

.

� C = (6 n ! E). Let x be an individual with C 2 L(x). For any

R 2 ! and any R-neighbour y of x either E 2 L(y) of �E 2 L(y).

This is guaranteed by the
hoose-rule (for an R-prede
essor of x) and

by the >-rule whi
h is suspended until no other rules
an applied to x

or any prede
essor of x together with the reset-restart me
hanism that

is triggered by
on
epts \moving upwards" in the tree.

We show that ℄!

I

(x; E) 6 ℄!

T

(x; E): Assume ℄!

I

(x; E) > ℄!

T

(x; E).

This implies the existen
e of some y with hx; yi 2 R

I

for ea
h R 2 !

and y 2 E

I

but E 62 L(y). This implies �E 2 L(y), whi
h, by

indu
tion yields y 2 (�E)

I

in
ontradi
tion to y 2 E

I

.

The proof of
ompleteness is more
ompli
ated then in the ALCQI-
ase,

although the ideas are the same.

Lemma 14 (Completeness) Let D be an ALCQIR-
on
ept: If D is sat-

is�able, then the expansion rules
an be applied in su
h a way that they yield

a
omplete and
lash-free
ompletion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the appli
ation of the non-deterministi

ompletion rules. Again we will use

an in
remently de�ned fun
tion �, but this time the
onstraints on � are

15

more restri
tive:

1: L(x)) �(x) 2 C

I

2: L(hx; yi) = fR 2 R

D

j h�(x); �(y)i 2 R

I

g

3: if y; z are two neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a fun
tion � and a rule is

appli
able to T then it
an be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hen
e the rule
an be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[C

I

2

. Hen
e the t-rule
an add a
on
ept E 2 fC

1

; C

2

g to

L(x) su
h that (�) still holds.

� The
hoose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Sin
e (�E)

I

= �

I

n E

I

the rule
an always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n ! C) 2 L(x), then �(x) 2 (> n ! C)

I

. This

implies ℄!

I

(�(x); C) > n. We
laim that there is an element t 2 �

I

su
h that

h�(x); ti 2 R

I

for ea
h R 2 ! and t 2 C

I

; and

t 62 f�(y) j y is a neighbour of x g

�

(��)

We will
ome ba
k to this
laim later. Let D

1

; : : : ; D

n

be an enu-

meration of the set fD j (./ n � D) 2 L(x)g. The >-rule
an add

a new node y with L(hx; yi) = fR 2 R

D

j h�(x); ti 2 R

I

g and

L(y) = fCg[fD

i

j t 2 D

I

i

g[f�D

i

j t 62 D

I

i

g. If we set �

0

:= �[y 7! t℄,

then the modi�ed tree together with �

0

satis�es (�).

Why does there exists an element t that satis�es (��)? Let s 2 �

I

be

an element with h�(x); si 2 !

I

and s 2 C

I

that appears as an image

of an arbitrary neighbour y of x. Condition 2 of (�) implies that y is

an R-neighbour for any R 2 ! and also C 2 L(y) must hold as follows:

Assume C 62 L(y). This implies�C 2 L(y): Either y is a prede
essor of

x, then in order for the >-rule to be appli
able, no non-generating rules

16

and espe
ially the
hoose-rule is not appli
able to x and its an
estor

whi
h implies fC;�Cg \ L(y) 6= ;. If y is an su

essor of x then it

must have been generated by an appli
ation of the >-rule to x. In

order for this rule to be appli
able no non-generating rule may have

been appli
able to x or any of its an
estors. This implies that at the

time of the generation of y already (> n ! C) 2 L(x) held and hen
e

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any
ase �C 2 L(y) holds and together with Condition 1 of (�) this

implies t 62 C

I

whi
h
ontradi
ts t 2 C

I

.

Sin
e the >-rule is appli
able we have ℄!

T

(x; C) < n. From the pre-

vious
onsiderations is follows that there must exist an element t with

h�(x); ti 2 !

I

and t 2 C

I

su
h that t 62 f�(y) j y is an neighbour of x

and C 2 L(y)g be
ause of
ondition 2 of (�).

This
on
ludes the proof of the
laim. The
laim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if

we set �(x) := s

0

for an element s

0

2 D

I

(su
h an element must exist be
ause

I is a model for D). The
laim implies that whenever a rule is appli
able

then it
an be applied in a manner that maintains (�). Lemma 12 yields

that ea
h sequen
e of rule appli
ations must terminate, and also ea
h tree

for whi
h (�) holds is ne
essarily
lash-free. It
annot
ontain a
lash of the

form fA;:Ag � L(x) be
ause this would imply �(x) 2 A

I

and �(x) 62 A

I

. It

an neither
ontain a
lash of the form (6 n ! C) 2 L(x) and ℄!

T

(x; C) > n

be
ause � is an inje
tive fun
tion on the set of all neighbours of x that

preserves all relations in R

D

and hen
e ℄!

T

(x; C) > n implies ℄!

I

(x; C) > n,

whi
h
annot be the
ase sin
e �(x) 2 (6 n ! C)

I

.

As a
onsequen
e from Lemma 12, 13, and 14, we have:

Theorem 15 The tableaux algorithm is a non-deterministi
 de
ision pro
e-

dure for ALCQIR-satis�ability.

Again, it remains to show that the algorithm
an be implemented to run in

only polynomial spa
e. The te
hnique used for this is similar to the ALCQI-

ase, but we have to deal with an additional problem: it is impossible to store

the numbers for all sequen
es R

1

u � � � uR

m

for all roles in R

D

, be
ause the

number of all sequen
es may grow exponentially in the size of the input

formula. On the other hand, not all of these sequen
es are of relevan
e, only

17

those that a
tually appear in the input
on
ept. Of
ourse, there are only

linearly many of those and hen
e, with a similar algorithm to the one given

in Figure 2, we have:

Lemma 16 The ALCQIR-tableau algorithm
an be implemented in PSpa
e.

Together with Theorem 15 this yields:

Theorem 17 Sat(ALCQIR) is PSpa
e-
omplete, even if numbers in the

input are represented in binary
oding.

This settles a open problem from [DLNN97℄, where it is stated:

Without this assumption [unary
oding of numbers in the input℄,

however, we would not have been able to prove that satis�ability

in ALCNR is in PSpa
e. It is open whether this upper bound

still holds if we allow for binary en
oding of numbers.

Sin
e ALCNR is stri
tly
ontained in ALCQIR, we
an now solve this

problem:

Corollary 18 Satis�ability for ALCNR is PSpa
e-
omplete, even if num-

bers in the input are represented in binary
oding.

Referen
es

[CLN94℄ D. Calvanese, M. Lenzerini, and D. Nardi. A uni�ed framework

for
lass based representation formalisms. In Pro
eedings of KR-

94, 1994.

[dHR95℄ Wiebe Van der Hoek and Maarten De Rijke. Counting obje
ts.

J. of Logi
 and Computation, 5(3):325{345, June 1995.

[DLNN97℄ Fran
es
o M. Donini, Maurizio Lenzerini, Daniele Nardi, and

Werner Nutt. The
omplexity of
on
ept languages. Informa-

tion and Computation, 134(1):1{58, 10 April 1997.

[HB91℄ B. Hollunder and F. Baader. Qualifying number restri
tions in

on
ept languages. In Pro
eedings of the Se
ond International

Conferen
e on Prin
iples of Knowledge Representation and Rea-

soning, KR-91, pages 335{346, Boston (USA), 1991.

18

[HM92℄ J. Y. Halpern and Y. Moses. A guide to
ompleteness and
om-

plexity for model logi
s of knowledge and belief. Arti�
ial Intel-

ligen
e, 54(3):319{379, April 1992.

[HST99℄ Ian Horro
ks, Ulrike Sattler, and Stephan Tobies. Pra
ti
al rea-

soning for des
ription logi
s with fun
tional restri
tions, inverse

and transitive roles, and role hierar
hies. In Pro
eedings of the

1999 Workshop Methods for Modalities (M4M-1), Amsterdam,

1999.

[Lad77℄ Ri
hard E. Ladner. The
omputational
omplexity of provabil-

ity in systems of modal propositional logi
. SIAM Journal on

Computing, 6(3):467{480, September 1977.

[Sav70℄ Walter J. Savit
h. Relationships between nondeterministi
 and

deterministi
 tape
omplexities. Journal of Computer and System

S
ien
es, 4(2):177{192, April 1970.

[SSS91℄ M. S
hmidt-S
hau� and G. Smolka. Attributive
on
ept des
rip-

tions with
omplements. Arti�
ial Intelligen
e, 48:1{26, 1991.

[Tob99a℄ S. Tobies. A PSpa
e algorithm for graded modal logi
. In

H. Ganzinger, editor, Automated Dedu
tion { CADE-16, 16th

International Conferen
e on Automated Dedu
tion, LNAI 1632,

pages 52{66, Trento, Italy, July 7{10, 1999. Springer-Verlag.

[Tob99b℄ Stephan Tobies. A PSPACE-algorithm for ALCQI-satis�ability.

LTCS-Report 99-09, LuFG Theoreti
al Computer S
i-

en
e, RWTH Aa
hen, Germany, 1999. See http://www-

lti.informatik.rwth-aa
hen.de/Fors
hung/Papers. html.

19

