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Abstra
t

The des
ription logi
 ALCQI extends the \standard" des
ription

logi
 ALC by qualifying number restri
tions and 
onverse roles. We

show that 
on
ept satis�ability for this DL is still de
idable in poly-

nomial spa
e. The presented algorithm 
ombines te
hniques from

[Tob99a℄ to deal with qualifying number restri
tions and from [HST99℄

to deal with 
onverse roles. Additionally, we extend the result to

ALCQIR, whi
h extends ALCQI by role interse
tions. This solves

an open problem from [DLNN97℄.

The result for ALCQI has already been presented in the seperate te
hni-


al report [Tob99b℄. In this report we use the same te
hniques to obtain

the stronger result for ALCQIR.

1 The Des
ription Logi
 ALCQI

Qualifying number restri
tions [HB91℄ are a 
ommon generalisation of both

role-quanti�
ation and standard number restri
tions that are present in al-

most all implementations of DL systems. They provide an expressive means

to des
ribe obje
ts by the number of other obje
ts they are related to and

are ne
essary for reasoning with semanti
 data models [CLN94℄. In [Tob99a℄

we have shown that|at least for ALC|number restri
tions 
an be repla
ed

by qualifying number restri
tions without in
reasing the (worst-
ase) 
om-

plexity of the satis�ability problem. In this se
tion we extend this result to


onverse roles.
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De�nition 1 (The DL ALCQI) Let N

C

be a set of atomi
 
on
epts and

N

R

a set of atomi
 roles. The set of ALCQI-roles N

R

is N

R

[ fR

�

j R 2

N

R

g. Con
epts in ALCQI are built indu
tively using the following rules:

1. every A 2 N

C

is an ALCQI-
on
ept, and

2. if C;D

1

; D

2

are ALCQI-
on
epts, n 2 N and R 2 N

R

then :C, D

1

u

D

2

, D

1

tD

2

, (> n R C), and (6 n R C) are ALCQI-
on
epts.

For an interpretation I = (�

I

; �

I

), we extend the usual semanti
s of ALC-


on
epts to qualifying number restri
tions as follows:

(> n R C)

I

:= fx 2 �

I

j ℄fy j (x; y) 2 R

I

; y 2 C

I

g > ng;

(6 n R C)

I

:= fx 2 �

I

j ℄fy j (x; y) 2 R

I

; y 2 C

I

g 6 ng;

where ℄ denotes the 
ardinality of a set. For 
onverse roles we de�ne (R

�

)

I

:=

f(y; x) j (x; y) 2 R

I

g. With ALCQ we denote the fragment of ALCQ whi
h

does not 
ontain 
onverse roles. With Sat(ALCQ) and Sat(ALCQI) we

denote the set of all satis�able ALCQ-, resp., ALCQI-
on
epts.

In order to avoid 
onsidering roles su
h as R

��

, we de�ne a fun
tion Inv

that returns the inverse of a role by setting

Inv(R) :=

(

R

�

if R 2 N

R

S if R = S

�

for some S 2 N

R

2 Reasoning for ALCQI

In [HB91℄ a tableaux algorithm is presented that de
ides Sat(ALCQ) in

polynomial spa
e, provided that unary 
oding of numbers in the input is

assumed when 
al
ulating the size of the input. In [dHR95℄ it is 
onje
tured

that binary 
oding of numbers would make Sat(ALCQ) ExpTime-
omplete.

Why does the 
oding of numbers seem to be of su
h an importan
e for the

problem? The answer lies in the nature of the tableaux algorithms forALCQ:

They de
ide the satis�ability of a 
on
ept C by trying to expli
itly 
onstru
t

a model for it. For a 
on
ept of the form (> n R C), the algorithm in

[HB91℄ generates n individuals, and the 
orre
tness of the algorithms relies

on that fa
t that they are kept in memory simultaneously. Assuming unary


oding of numbers in the input, this is admissible be
ause the number n will
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onsume n bits in the input and hen
e the amount of memory needed for the

n su

essors is polynomial in the size of the input. This 
hanges if we assume

binary 
oding of numbers: The number n 
onsumes only log

2

n bits in the

input, making the amount of memory needed for n su

essors potentially

exponential in the size of the input.

In [Tob99a℄ we give an algorithm derived from the one presented in [HB91℄

that is 
apable of de
iding Sat(ALCQ) in PSpa
e, even if binary 
oding

of numbers in the input is allowed. While still generating n su

essors for a


on
ept (> n R C), non-deterministi
 guessing of an assignment of relevant


onstraints to newly generated nodes is used to be able to generate these

one after another re-using spa
e. This exa
tly determines the 
omplexity of

Sat(ALCQ) as PSpa
e-
omplete. This rather surprising result shows that

augmenting ALC with qualifying number restri
tions does not in
rease the

(worst-
ase) 
omplexity of the satis�ability problem.

In this paper we present an extension of the algorithm in [Tob99a℄ that


an additionally deal with 
onverse roles and runs in polynomial spa
e. This

yields that also Sat(ALCQI) is PSpa
e-
omplete. The \reset-restart" te
h-

nique, whi
h is used to deal with 
on
epts moving upwards in the 
ompletion

tree, has already been used in [HST99℄ to deal with 
onverse roles.

De�nition 2 An ALCQI-
on
ept C is in negation normal form (NNF) if

negation o

urs only in front of atomi
 
on
epts; we denote the NNF of :C

by �C. For a 
on
ept C in NNF we de�ne 
los(C) to be the smallest set of

ALCQI-
on
epts that 
ontains C and is 
losed under sub-
on
epts and �.

A 
ompletion tree for an ALCQI-
on
ept D is a tree where ea
h node x of

the tree is labelled with a set L(x) � 
los(D) and ea
h edge hx; yi is labelled

with a role name L(hx; yi) = R for a (possibly inverse) role o

urring in


los(D).

Given a 
ompletion tree, a node y is 
alled an R-su

essor of a node x i� y

is a su

essor of x and L(hx; yi) = R. A node y is 
alled an R-neighbour of x

i� y is an R-su

essor of x, or if x is an Inv(R)-su

essor of y. Prede
essors

and an
estors are de�ned as usual.

A node x in T is said to 
ontain a 
lash if,

� for some atomi
 
on
ept A, fA;:Ag � L(x), or

� for some 
on
ept C, role R, and n 2 N, (6 n R C) 2 L(x) while

℄R

T

(x; C) > n, where R

T

(x; C) := fy j y is R-neighbour of x in T and

C 2 L(y)g.
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u-rule: if 1. C

1

u C

2

2 L(x) and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x) and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some C 2 fC

1

; C

2

g


hoose-rule: if 1. (./ n R C) 2 L(x) and

2. there is an R-prede
essor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [ fEg for some E 2 fC;�Cg

and delete all des
endants of y.

>-rule: if 1. (> n R C) 2 L(x), x is not blo
ked and no

non-generating rule is appli
able to x or any

of its an
estors, and

2. ℄R

T

(x;C) < n

then 
reate a new node y with L(hx; yi) = R and

L(y) = fC;E

1

; : : : ; E

n

g where

fD

1

; : : : D

n

g = fD j (./ n R D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 1: Tableaux expansion rules for ALCQI

A 
ompletion tree is 
alled 
lash-free i� none of its nodes 
ontains a 
lash;

it is 
alled 
omplete i� none of the expansion rules in Figure 1 is appli
able.

For an ALCQI-
on
ept D, the algorithm starts with a 
ompletion tree


onsisting of a single node x with L(x) = fDg. It applies the expansion

rules, stopping when a 
lash o

urs, and answers \D is satis�able" i� the


ompletion rules 
an be applied in su
h a way that they yield a 
omplete and


lash-free 
ompletion tree.

2.1 Corre
tness of the Algorithm

In order to prove the 
orre
tness of the algorithm we have to show termina-

tion, soundness, and 
ompleteness.

Before we prove termination of the algorithm we will establish a bound

on the size of a 
ompletion tree generated by the tableaux algorithm that

will also be used in the 
omplexity analysis.
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Lemma 3 Let D be an ALCQI-
on
ept in NNF and T a 
ompletion tree

that is generated for D by the tableaux algorithm.

1. ℄
los(D) = O(jDj).

2. The length of a path in T is limited by jDj.

3. The out-degree of T is limited by ℄
los(D)� 2

jDj

.

Proof.

1. The �rst part of this Lemma 
an easily be proved by observing that

for a 
on
ept D in NNF


los(D) = sub(D) [ f�C j C 2 sub(D)g

holds, where sub(D) denotes the set of all sub-
on
epts ofD. Obviously,

℄sub(D) � jDj and hen
e ℄
los(D) � O(jDj).

2. For a node x we de�ne `(x) as the maximum depth of nested number

restri
tions in L(x). Obviously, for the root x

0

of T, `(x

0

) � jDj holds.

Also, if y is a su

essor of x in T, then `(x) > `(y). Hen
e ea
h path

x

1

; : : : ; x

n

in T indu
es a stri
tly de
reasing sequen
e `(x

1

) > `(x

2

) >

� � � > `(x

k

) of natural numbers. Thus, the longest path in T starts at

x

0

and its length is bounded by jDj.

3. Su

essors in T are only generated by the >-rule. For a node x this rule

will generate at most n su

essors for ea
h (> n R C) 2 L(x). There

are at most ℄
los(D) su
h formulae in L(x). Hen
e the out-degree of

x is bounded by ℄
los(D) � 2

jDj

, where 2

jDj

is a limit for the biggest

number that may appear in D if binary 
oding is used.

From this we 
an follow termination of the algorithm.

Lemma 4 (Termination) For any ALCQI-
on
ept D the tableaux algo-

rithm terminates.

Proof. Termination of the algorithm is a 
onsequen
e of the following fa
ts:

� Ea
h node is labelled with a subset of the �nite set 
los(D). Con
epts

are never removed from the labels of the nodes.
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� The size of the tree is bounded by Lemma 3.

� The rules either add 
on
epts to the label of a node or add nodes to

the tree.

� Whenever a node is deleted from the tree the labels of one of its an
es-

tors grows.

Assume that algorithm does not terminate. Due to the mentioned fa
ts

this 
an only be be
ause of an in�nite number of deletions of subtrees. Ea
h

node 
an of 
ourse only be deleted on
e, but the su

essors of a single node

may be deleted several times. The root of the 
ompletion tree 
annot be

deleted be
ause it has no prede
essor. Hen
e there are nodes whi
h are

never deleted. Choose one of these nodes x with maximum distan
e from

the root, i.e., whi
h has a maximum number of prede
essors. Suppose that

x's su

essors are deleted only �nitely many times. This 
annot be the 
ase

be
ause, after the last deletion of x's su

essors, the \new" su

essors were

never deleted and thus x would not have maximum distan
e from the root.

Hen
e x triggers the deletion of its su

essors in�nitely many times. However,

the 
hoose-rule is the only rules that leads to a deletion, and it simultaneously

leads to an in
rease of L(x), namely by the missing 
on
ept whi
h 
aused

the deletion of x's su

essors. Sin
e we never remove any 
on
epts from the

labels, this implies the existen
e of an in�nitely in
reasing 
hain of subsets

of 
los(D), whi
h is 
learly impossible.

Lemma 5 (Soundness) If the expansion rules 
an be applied to an ALCQI-


on
ept D su
h that they yield a 
omplete and 
lash-free 
ompletion tree, then

D is satis�able.

Proof. Let T be su
h a 
ompletion tree for D. A model I = (�

I

; �

I

) for D


an be de�ned by setting �

I

to be the nodes of T and by de�ning:

A

I

= fx j A 2 L(x)g for all 
on
ept names A in 
los(D)

R

I

= fhx; yi j L(hx; yi) = R or L(hy; xi) = Inv(R)g:

Indu
tively we will show for all x 2 �

I

and all C 2 
los(D) that C 2 L(x)

implies x 2 C

I

. We 
annot use indu
tion over the stru
ture of 
on
epts due

to the >-rule that adds negated 
on
epts to the tree. Instead we will use the

6



following norm k � k of a 
on
ept C. The norm kCk for 
on
ept in NNF is

indu
tively de�ned by:

kAk := k:Ak := 0 for A 2 N

C

kC

1

u C

2

k := kC

1

t C

2

k := 1 + kC

1

k+ kC

2

k

k(./ n S C)k := 1 + kCk

The two base 
ases of the indu
tion are C = A or C = :A. If A 2 L(x), then

by de�nition x 2 A

I

. If :A 2 L(x), then A 62 L(x) be
ause T is 
lash-free

and hen
e x 62 A

I

. For the indu
tion step we have to distinguish several


ases:

� C = C

1

u C

2

. Sin
e T is 
omplete C 2 L(x) implies C

1

2 L(x) and

C

2

2 L(x). Hen
e, by indu
tion, we have x 2 C

I

1

and x 2 C

I

2

whi
h

yields x 2 (C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous 
ase.

� C = (> n R E). For an x with C 2 L(x) we have ℄R

T

(x; E) >

n be
ause T is 
omplete. Hen
e there are n distin
t R-neighbours

y

1

; : : : ; y

n

with E 2 L(y

i

) for all i. By indu
tion, we have y

i

2 E

I

and,

sin
e, for ea
h R-neighbour y

j

, hx; y

j

i 2 R

I

holds, also x 2 C

I

.

� C = (6 n R E). Let x be an individual with C 2 L(x). For any R-

neighbour y of x either E 2 L(y) of �E 2 L(y). This is guaranteed by

the 
hoose-rule (for an R-prede
essor of x) and by the >-rule whi
h is

suspended until no other rules 
an applied to x or any prede
essor of x

together with the reset-restart me
hanism that is triggered by 
on
epts

\moving upwards" in the tree.

We show that ℄R

I

(x; E) 6 ℄R

T

(x; E): Assume ℄R

I

(x; E) > ℄R

T

(x; E).

This implies the existen
e of some y with hx; yi 2 R

I

with y 2 E

I

but E 62 L(y). This implies �E 2 L(y), whi
h, by indu
tion yields

y 2 (�E)

I

in 
ontradi
tion to x 2 E

I

.

Sin
e D 2 L(x

0

) for the root x

0

of T this implies D

I

6= ; and hen
e I is

a model for D.

7



Lemma 6 (Completeness) Let D be an ALCQI-
on
ept: If D is satis�-

able, then the expansion rules 
an be applied in su
h a way that they yield a


omplete and 
lash-free 
ompletion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the appli
ation of the non-deterministi
 
ompletion rules. For this we will

in
remently de�ne a fun
tion � mapping the nodes in T to elements of �

I

su
h that at any given stage the following holds:

1: L(x)) �(x) 2 C

I

2: if L(hx; yi) = R then h�(x); �(y)i 2 R

I

3: if y; z are two R-neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a fun
tion � and a rule is

appli
able to T then it 
an be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hen
e the rule 
an be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[ C

I

2

. Hen
e the t-rule 
an add a 
on
ept E 2 fC

1

; C

2

g to

L(x) su
h that (�) still holds.

� The 
hoose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Sin
e (�E)

I

= �

I

n E

I

the rule 
an always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n R C) 2 L(x), then �(x) 2 (> n R C)

I

. This

implies ℄S

I

(�(x); C) > n. We 
laim that there is an element t 2 �

I

su
h that

h�(x); ti 2 R

I

; t 2 C

I

; and t 62 f�(y) j y is an R-neighbour of x g (��)

We will 
ome ba
k to this 
laim later. Let D

1

; : : : ; D

n

be an enumer-

ation of the set fD j (./ n R D) 2 L(x)g. The >-rule 
an add a new

node y with L(hx; yi) = R and L(y) = fCg [ fD

i

j t 2 D

I

i

g [ f�D

i

j

8



t 62 D

I

i

g. If we set �

0

:= �[y 7! t℄, then the modi�ed tree together with

�

0

satis�es (�).

Why does there exists an element t that satis�es (��)? It is obvi-

ous that there exists an element t with h�(x); ti 2 R

I

and t 2 C

I

su
h that t 62 f�(y) j y is an R-neighbour of x and C 2 L(y)g be
ause

℄R

T

(�(x); C) � n > ℄R

T

(x; C).

Assume t appears as an image of an R-neighbour y of x with C 62 L(y).

This implies �C 2 L(y) as follows: Either y is an R-prede
essor of x,

then in order for the >-rule to be appli
able, no non-generating rules

and espe
ially the 
hoose-rule is not appli
able to x and its an
estor

whi
h implies fC;�Cg \ L(y) 6= ;. If y is an R-su

essor of x then

it must have been generated by an appli
ation of the >-rule to x. In

order for this rule to be appli
able no non-generating rule may have

been appli
able to x or any of its an
estors. This implies that at the

time of the generation of y already (> n R C) 2 L(x) held and hen
e

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any 
ase �C 2 L(y) holds and together with (�) this implies t 62 C

I

whi
h 
ontradi
ts t 2 C

I

. Hen
e C 2 L(y) must hold whi
h is a


ontradi
tion to the assumption C 62 L(y) and thus there must be an

element that satis�es (��).

This 
on
ludes the proof of the 
laim. The 
laim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if we set �(x

0

) := s

0

for an element s

0

2 D

I

(su
h an element must exist

be
ause I is a model for D). The 
laim yields that whenenver a rule is appli-


able then it 
an be applied in a manner that maintains (�). Lemma 4 yields

that ea
h sequen
e of rule appli
ations must terminate, and also ea
h tree for

whi
h (�) holds is ne
essarily 
lash-free. It 
annot 
ontain a 
lash of the form

fA;:Ag � L(x) be
ause this would imply �(x) 2 A

I

and �(x) 62 A

I

. It 
an

neither 
ontain a 
lash of the form (6 n R C) 2 L(x) and ℄R

T

(x; C) > n

be
ause � is an inje
tive fun
tion on the set of all R-neighbours of y and

hen
e ℄R

T

(x; C) > n implies ℄R

I

(x; C) > n and whi
h 
annot be the 
ase

sin
e �(x) 2 (6 n R C)

I

.

Summing up, from Lemmas 4, 5, and 6 we get the following:
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Theorem 7 The tableaux algorithm is a non-deterministi
 de
ision pro
e-

dure for ALCQI-satis�ability.

2.2 Complexity of ALCQI

What remains to show is that the algorithm 
an be implemented to run in

polynomial spa
e. This is stated in the following lemma.

Due to Savit
h's theorem [Sav70℄ that states that PSpa
e 
oin
ides with

NPSpa
e we don't have to deal with the non-determinism in the rules. Nev-

ertheless, models for a ALCQI-
on
ept may be required to have exponential

size so we have to develop a method that fa
ilitates re-use of spa
e while

generating the 
ompletion tree.

Lemma 8 The tableaux algorithm 
an be implemented in PSpa
e.

Proof. Let D be the ALCQI-
on
ept to be tested for satis�ability. We 
an

assume D to be in NNF be
ause the transformation of a formula to NNF 
an

be performed in linear time and spa
e.

The key idea for a PSpa
e implementation is the tra
e te
hnique[SSS91℄,

i.e., it is suÆ
ient to keep only a single path (a tra
e) of T in memory at a

given stage if the 
ompletion tree is generated in a depth-�rst manner. This

has already been the key to a PSpa
e upper bound for the propositional

modal logi
 K

m

and ALC in [Lad77, SSS91, HM92℄. To do this we need to

store the values for ℄R

T

(x; C) for ea
h node x in the path, ea
h R whi
h

appears in 
los(D) and ea
h C 2 
los(D). By storing these values in binary

form, we are able to keep information about exponentially many su

essors

in memory while storing only a single path at any stage.

Consider the algorithm in Fig. 2, where R

D

denotes the set of role names

that appear in 
los(D) together with their inverses. It re-uses the spa
e

needed to 
he
k the satis�ability of a su

essor y of x on
e the existen
e

of a 
omplete and 
lash-free \subtree" for the 
onstraints on y has been

established. This is admissible sin
e the tableaux rules 
an delete but will

never modify this subtree on
e is it 
ompleted. This deletion is ne
essary

be
ause the 
hoose-rule pushes 
on
epts upwards in the tree whi
h might

have an in
uen
e of the subtrees of the e�e
ted node. Sin
e these have

already been dis
arded from memory they have to be regenerated.

Constraints in a subtree have no in
uen
e on the 
ompleteness or the

existen
e of a 
lash in the rest of the tree, with the ex
eption that a 
on
ept

10



C 2 L(y) for an R-neighbour y of x 
ontributes to the value of ℄R

T

(x; C).

These numbers play a role both in the de�nition of a 
lash and for the

appli
ability of the >-rule. Hen
e, in order to re-use the spa
e o

upied by

the subtree for y, it is ne
essary and suÆ
ient to store these numbers.

An algorithm that works as previously des
ribed is shown in Fig. 2. Let

us examine the memoryusage of this algorithm. Let n = jDj. The algorithm

is designed to keep only a single path of T in memory at a given stage. For

ea
h node x on a path, L(x) � 
los(D) and hen
e its size is bounded by

2n. Thus, for a single variable x, L(x) 
an be stored in O(n) bits. For

ea
h variable, there are at most ℄R

D

� ℄
los(D) = O(n

2

) 
ounters to be

stored. The numbers to be stored in these 
ounters do not ex
eed the out-

degree of the tree, whi
h, by Lemma 3, is bounded by ℄
los(D)�2

jDj

. Hen
e

ea
h 
ounter 
an be stored using O(n

2

) bits when binary 
oding is used to

represent the 
ounters, and all 
ounters for a single variable require O(n

4

)

bits. Due to Lemma 3, the length of a path is limited by n, whi
h yields an

overall memory 
onsumption of O(n

5

+ n

2

) bits.

Obviously, satis�ability for ALCQI is at least as hard as for ALC. To-

gether with the previous lemma this yields the following.

Theorem 9 Sat(ALCQI) is PSpa
e-
omplete, even if numbers in the in-

put are represented in binary 
oding.

11



ALCQI � SAT(D) := sat(x

0

; [x

0

7! fDg℄)

sat(x;L):

allo
ate 
ounters ℄R

T

(x; C) for all R 2 R

D

and C 2 
los(D).

restart:

for ea
h 
ounter ℄R

T

(x; C):

if x has a prede
essor y and L(hy; xi) = Inv(R) and C 2 L(y)

then ℄R

T

(x; C) := 1 else ℄R

T

(x; C) := 0

while (the u- or the t-rule 
an be applied at x) and (T is 
lash-free)

do

apply the u- or the t-rule to x.

od

if T 
ontains a 
lash then return \not satis�able".

if the 
hoose-rule is appli
able to x for (./ n R C) 2 L(x)

then return \restart with C"

while (the >-rule applies to a 
on
ept (> n R C) 2 L(x))

do

C

new

:= fC;E

1

; : : : ; E

k

g

where

fD

1

; : : : ; D

k

g = fD j (./ m R D) 2 L(x), and

E

i

is 
hosen non-deterministi
ally from fD

i

;�D

i

g

for ea
h D 2 C

new

do in
rease ℄R

T

(x;D)

if (6 m R D) 2 L(x) and ℄R

T

(x;D) > m

then return \not satis�able".

result := sat(y;L[y 7! C

new

; hx; yi 7! R℄)

where y is a fresh node

if result = \not satis�able" then return \not satis�able"

if result = \restart with D" then

L(x) := L(x) [ fEg

where E is 
hose non-deterministi
ally from fD;�Dg

goto restart

od

remove the 
ounters for x from memory.

return \satis�able"

Figure 2: A NPSpa
e de
ision pro
edure for ALCQI-satis�ability.
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3 Adding Role-Interse
tion

In this se
tion we will extend the PSpa
e result to the DL ALCQIR, whi
h

extends ALCQI by role interse
tion.

De�nition 10 (The DL ALCQIR) ALCQIR-
on
epts are de�ned sim-

ilar to ALCQI-
on
epts, with the di�eren
e that we allow role interse
tions

instead of roles in qualifying number restri
tions. This means that for an

ALCQIR-
on
ept C, n 2 N and ALCQI-roles R

1

; : : : ; R

m

2 N

R

(6 n (R

1

u � � � u R

m

) C); (> n (R

1

u � � � u R

m

) C)

are ALCQIR-
on
epts. We will use small Greek letters as pla
eholders for

interse
tion of roles and, by abuse of notation, we will sometimes identify

su
h an interse
tion of roles ! with the set of roles appearing in it and write

R 2 ! if ! = R

1

u � � � uR

m

and R = R

i

for some 1 � i � m. The semanti
s

are extended 
anoni
ally:

(./ n ! C)

I

= fx 2 �

I

j ℄fy j (x; y) 2 !

I

; y 2 C

I

g ./ ng

where for ! = R

1

u � � � u R

m

we de�ne

!

I

= R

I

1

\ � � � \ R

I

m

To de
ide satis�ability forALCQIR, we pro
eed pretty mu
h the same as

for ALCQI, the only di�eren
e is that we have to allow for multiple labels

on the edges to a

ount for role interse
tions and that we have to guess

additional role labels in the same manner as we had to guess additional


on
epts in the previous 
ase to get an algorithm that does not rely on the

identi�
ation of nodes.

De�nition 11 NNF for ALCQIR is de�ned as for ALCQI.

A 
ompletion tree for an ALCQIR-
on
ept D is a tree where ea
h node x

of the tree is labelled with a set L(x) � 
los(D) and ea
h edge hx; yi is labelled

with a set of role names L(hx; yi) = fR

1

; : : : ; R

m

g for (possibly inverse)

roles o

urring in 
los(D). We will denote the set of all roles o

uring in D

together with their inverses by R

D

Given a 
ompletion tree, a node y is 
alled an R-su

essor of a node x i� y

is a su

essor of x and R 2 L(hx; yi). A node y is 
alled an R-neighbour of x

i� y is an R-su

essor of x, or if x is an Inv(R)-su

essor of y. Prede
essors

and an
estors are de�ned as usual.

A node x in T is said to 
ontain a 
lash if,

13



u-rule: see Fig. 1

t-rule: see Fig. 1


hoose-rule: if 1. (./ n ! C) 2 L(x) and

2. for some R 2 ! there is an R-prede
essor y of x

with fC;�Cg \ L(x) = ;

then L(y) �! L(y) [ fEg for some E 2 fC;�Cg

and delete all des
endants of y.

>-rule: if 1. (> n ! C) 2 L(x) and no non-generating rule

is appli
able to x or any of its an
estors, and

2. ℄!

T

(x;C) < n

then 
reate a new node y with

L(hx; yi) = ! [ fS

1

; : : : ; S

k

g and

L(y) = fC;E

1

; : : : ; E

n

g where

fS

1

; : : : ; S

k

g � R

D

n !

fD

1

; : : : D

n

g = fD j (./ n � D) 2 L(x)g

and E

i

2 fD

i

;�D

i

g.

Figure 3: The modi�ed expansion rules for ALCQIR

� for some atomi
 
on
ept A, fA;:Ag � L(x), or

� for some 
on
ept C, role interse
tion !, and n 2 N, (6 n ! C) 2 L(x)

while ℄!

T

(x; C) > n, where !

T

(x; C) := fy j y is R-neighbour of x in

T for ea
h R 2 ! and C 2 L(y)g.

A 
ompletion tree is 
alled 
lash-free i� none of its nodes 
ontains a 
lash;

it is 
alled 
omplete i� none of the expansion rules in Figure 3 is appli
able.

For an ALCQI-
on
ept D, the algorithm starts with a 
ompletion tree


onsisting of a single node x

0

with L(x

0

) = fDg. It applies the expansion

rules, stopping when a 
lash o

urs, and answers \D is satis�able" i� the


ompletion rules 
an be applied in su
h a way that they yield a 
omplete and


lash-free 
ompletion tree.

Again we have to show termination, soundness and 
ompleteness. Termi-

nation follows exa
tly as for ALCQI, all arguments of the proofof Lemma 4

are still valid. Hen
e we have:

Lemma 12 (Termination) For any ALCQIR-
on
ept D the tableaux al-

gorithm terminates.

14



The proof of soundness is also nearly identi
al to the proof of Lemma 5.

Lemma 13 (Soundness) If the expansion rules 
an be applied to an ALCQIR-


on
ept D su
h that they yield a 
omplete and 
lash-free 
ompletion tree, then

D is satis�able.

Proof. We 
onstru
t a model from a 
omplete and 
lash-free tree as in the

ALCQI-
ase. The only di�eren
e in the proof is the 
ase of quali�ed number

restri
tion in the indu
tion step:

� C = (> n ! E). For an x with C 2 L(x) we have ℄!

T

(x; E) > n

be
ause T is 
omplete. Hen
e there are n distin
t individuals y

1

; : : : ; y

n

that are R-neighbours of x for ea
h R 2 ! and E 2 L(y

i

) for all

i. By indu
tion, we have y

i

2 E

I

and, sin
e R 2 L(hx; y

j

i) implies

hx; y

j

i 2 R

I

, also x 2 C

I

.

� C = (6 n ! E). Let x be an individual with C 2 L(x). For any

R 2 ! and any R-neighbour y of x either E 2 L(y) of �E 2 L(y).

This is guaranteed by the 
hoose-rule (for an R-prede
essor of x) and

by the >-rule whi
h is suspended until no other rules 
an applied to x

or any prede
essor of x together with the reset-restart me
hanism that

is triggered by 
on
epts \moving upwards" in the tree.

We show that ℄!

I

(x; E) 6 ℄!

T

(x; E): Assume ℄!

I

(x; E) > ℄!

T

(x; E).

This implies the existen
e of some y with hx; yi 2 R

I

for ea
h R 2 !

and y 2 E

I

but E 62 L(y). This implies �E 2 L(y), whi
h, by

indu
tion yields y 2 (�E)

I

in 
ontradi
tion to y 2 E

I

.

The proof of 
ompleteness is more 
ompli
ated then in the ALCQI-
ase,

although the ideas are the same.

Lemma 14 (Completeness) Let D be an ALCQIR-
on
ept: If D is sat-

is�able, then the expansion rules 
an be applied in su
h a way that they yield

a 
omplete and 
lash-free 
ompletion tree for D.

Proof. Let I = (�

I

; �

I

) be a model for D. We will use this model to guide

the appli
ation of the non-deterministi
 
ompletion rules. Again we will use

an in
remently de�ned fun
tion �, but this time the 
onstraints on � are
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more restri
tive:

1: L(x)) �(x) 2 C

I

2: L(hx; yi) = fR 2 R

D

j h�(x); �(y)i 2 R

I

g

3: if y; z are two neighbours of x then �(y) 6= �(z)

9

=

;

(�)

Claim: Whenever (�) holds for a tree T and a fun
tion � and a rule is

appli
able to T then it 
an be applied in a way that maintains (�).

� The u-rule: if C

1

u C

2

2 L(x), then �(x) 2 (C

1

u C

2

)

I

. This implies

�(x) 2 C

I

1

\ C

I

2

, and hen
e the rule 
an be applied without violating

(�).

� The t-rule: if C

1

t C

2

2 L(x), then �(x) 2 (C

1

t C

2

)

I

. This implies

�(x) 2 C

I

1

[ C

I

2

. Hen
e the t-rule 
an add a 
on
ept E 2 fC

1

; C

2

g to

L(x) su
h that (�) still holds.

� The 
hoose-rule: obviously, either �(y) 2 E

I

or �(y) 62 E

I

for any

node y of the tree. Sin
e (�E)

I

= �

I

n E

I

the rule 
an always be

applied in a way that maintains (�). Deletion of nodes does not violate

(�)

� The >-rule: if (> n ! C) 2 L(x), then �(x) 2 (> n ! C)

I

. This

implies ℄!

I

(�(x); C) > n. We 
laim that there is an element t 2 �

I

su
h that

h�(x); ti 2 R

I

for ea
h R 2 ! and t 2 C

I

; and

t 62 f�(y) j y is a neighbour of x g

�

(��)

We will 
ome ba
k to this 
laim later. Let D

1

; : : : ; D

n

be an enu-

meration of the set fD j (./ n � D) 2 L(x)g. The >-rule 
an add

a new node y with L(hx; yi) = fR 2 R

D

j h�(x); ti 2 R

I

g and

L(y) = fCg[fD

i

j t 2 D

I

i

g[f�D

i

j t 62 D

I

i

g. If we set �

0

:= �[y 7! t℄,

then the modi�ed tree together with �

0

satis�es (�).

Why does there exists an element t that satis�es (��)? Let s 2 �

I

be

an element with h�(x); si 2 !

I

and s 2 C

I

that appears as an image

of an arbitrary neighbour y of x. Condition 2 of (�) implies that y is

an R-neighbour for any R 2 ! and also C 2 L(y) must hold as follows:

Assume C 62 L(y). This implies�C 2 L(y): Either y is a prede
essor of

x, then in order for the >-rule to be appli
able, no non-generating rules
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and espe
ially the 
hoose-rule is not appli
able to x and its an
estor

whi
h implies fC;�Cg \ L(y) 6= ;. If y is an su

essor of x then it

must have been generated by an appli
ation of the >-rule to x. In

order for this rule to be appli
able no non-generating rule may have

been appli
able to x or any of its an
estors. This implies that at the

time of the generation of y already (> n ! C) 2 L(x) held and hen
e

the >-rule ensures fC;�Cg \ L(y) 6= ;.

In any 
ase �C 2 L(y) holds and together with Condition 1 of (�) this

implies t 62 C

I

whi
h 
ontradi
ts t 2 C

I

.

Sin
e the >-rule is appli
able we have ℄!

T

(x; C) < n. From the pre-

vious 
onsiderations is follows that there must exist an element t with

h�(x); ti 2 !

I

and t 2 C

I

su
h that t 62 f�(y) j y is an neighbour of x

and C 2 L(y)g be
ause of 
ondition 2 of (�).

This 
on
ludes the proof of the 
laim. The 
laim yields the lemma as

follows: Obviously, (�) holds for the initial tree with only a single node x

0

if

we set �(x) := s

0

for an element s

0

2 D

I

(su
h an element must exist be
ause

I is a model for D). The 
laim implies that whenever a rule is appli
able

then it 
an be applied in a manner that maintains (�). Lemma 12 yields

that ea
h sequen
e of rule appli
ations must terminate, and also ea
h tree

for whi
h (�) holds is ne
essarily 
lash-free. It 
annot 
ontain a 
lash of the

form fA;:Ag � L(x) be
ause this would imply �(x) 2 A

I

and �(x) 62 A

I

. It


an neither 
ontain a 
lash of the form (6 n ! C) 2 L(x) and ℄!

T

(x; C) > n

be
ause � is an inje
tive fun
tion on the set of all neighbours of x that

preserves all relations in R

D

and hen
e ℄!

T

(x; C) > n implies ℄!

I

(x; C) > n,

whi
h 
annot be the 
ase sin
e �(x) 2 (6 n ! C)

I

.

As a 
onsequen
e from Lemma 12, 13, and 14, we have:

Theorem 15 The tableaux algorithm is a non-deterministi
 de
ision pro
e-

dure for ALCQIR-satis�ability.

Again, it remains to show that the algorithm 
an be implemented to run in

only polynomial spa
e. The te
hnique used for this is similar to the ALCQI-


ase, but we have to deal with an additional problem: it is impossible to store

the numbers for all sequen
es R

1

u � � � uR

m

for all roles in R

D

, be
ause the

number of all sequen
es may grow exponentially in the size of the input

formula. On the other hand, not all of these sequen
es are of relevan
e, only
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those that a
tually appear in the input 
on
ept. Of 
ourse, there are only

linearly many of those and hen
e, with a similar algorithm to the one given

in Figure 2, we have:

Lemma 16 The ALCQIR-tableau algorithm 
an be implemented in PSpa
e.

Together with Theorem 15 this yields:

Theorem 17 Sat(ALCQIR) is PSpa
e-
omplete, even if numbers in the

input are represented in binary 
oding.

This settles a open problem from [DLNN97℄, where it is stated:

Without this assumption [unary 
oding of numbers in the input℄,

however, we would not have been able to prove that satis�ability

in ALCNR is in PSpa
e. It is open whether this upper bound

still holds if we allow for binary en
oding of numbers.

Sin
e ALCNR is stri
tly 
ontained in ALCQIR, we 
an now solve this

problem:

Corollary 18 Satis�ability for ALCNR is PSpa
e-
omplete, even if num-

bers in the input are represented in binary 
oding.
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