
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

Revised Version of LTCS-Report 99-12:

Rewriting Concepts Using Terminologies -

Revisited

Franz Baader, Ralf K�usters, and Ralf Molitor

LTCS-Report 00-04

This is a revised version of LTCS-Report 99-12 containing re-

vised proofs of the technical results.

An abridged version of the original report appeared in the Pro-

cedings of the International Conference on Knowledge Repre-

sentation and Reasoning (KR'2000).

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

Rewriting Concepts Using Terminologies

|

Revisited

Franz Baader, Ralf K�usters, and Ralf Molitor

LuFg Theoretical Computer Science, RWTH Aachen

email: fbaader,kuesters,molitorg@informatik.rwth-aachen.de

Abstract

The problem of rewriting a concept given a terminology can informally

be stated as follows: given a terminology T (i.e., a set of concept de�ni-

tions) and a concept description C that does not contain concept names

de�ned in T , can this description be rewritten into a \related better"

description E by using (some of) the names de�ned in T ?

In this paper, we �rst introduce a general framework for the rewrit-

ing problem in description logics, and then concentrate on one speci�c

instance of the framework, namely the minimal rewriting problem (where

\better" means shorter, and \related" means equivalent). We investigate

the complexity of the decision problem induced by the minimal rewriting

problem for the languages FL

0

, ALN , ALE , and ALC, and then introduce

an algorithm for computing (minimal) rewritings for the languages ALE

and ALN . Finally, we sketch other interesting instances of the framework.

Our interest for the minimal rewriting problem stems from the fact

that algorithms for non-standard inferences, such as computing least com-

mon subsumers and matchers, usually produce concept descriptions not

containing de�ned names. Consequently, these descriptions are rather

large and hard to read and comprehend. First experiments in a chemical

process engineering application show that rewriting can reduce the size of

concept descriptions obtained as least common subsumers by almost two

orders of magnitude.

1

1 Motivation

In description logics (DL), the standard inference problems, like the subsump-

tion and the instance problem, are now well-investigated. More recently, new

types of inference problems have been introduced and investigated, like match-

ing [11, 5, 3] and computing the least common subsumer [13, 14, 2, 7]. In

contrast to the standard inferences, algorithms that solve these nonstandard

problems produce concept descriptions as output, which are then returned to

the user for inspection. For example, in an application in chemical process en-

gineering [9, 22] we try to support the bottom-up construction of knowledge

bases by computing most speci�c concepts (msc) of individuals and least com-

mon subsumers (lcs) of concepts: instead of directly de�ning a new concept, the

knowledge engineer introduces several typical examples as individuals, which

are then generalized into a concept description by using the msc and the lcs

operation [2, 7]. This description is then o�ered to the knowledge engineer as a

possible candidate for a de�nition of the concept.

In such a framework, it is important that the returned description is as

readable and comprehensible as possible. Unfortunately, the descriptions that

are produced by the known algorithms for solving the nonstandard inference

problems in general do not satisfy this requirement. The reason is that { like

most algorithms for the standard inference problems { these algorithms work

on unfolded descriptions, i.e., concept descriptions that do not contain names

de�ned in the underlying terminology (TBox). Consequently, the descriptions

that they produce also do not use de�ned names, which makes them large and

hard to read and comprehend. One possibility to overcome this problem would

be to modify the known algorithms for the nonstandard inference problems

such that they can take de�ned names into account. In order to avoid having to

modify all these algorithms separately, we propose not to change the algorithms

themselves, but to add rewriting as a post-processing step to them.

Informally, the problem of rewriting a concept given a terminology can be

stated as follows: given a TBox T (i.e., a set of concept de�nitions) and a

concept description C that does not contain concept names de�ned in T , can

this description be rewritten into a \related better" descriptionE by using (some

of) the names de�ned in T ? In this paper, related will mean equivalent, and

better will mean shorter (but one can also imagine other optimality criteria).

For example, if T contains the de�nition Parent

:

= Human u 9has-child:Human,

then the concept description Human u 9has-child:(Human u 9has-child:Human)

can be rewritten into the two smaller descriptions Humanu9has-child:Parent and

Parentu9has-child:Parent, which are both equivalent to the original description.

The formal framework for rewriting that will be introduced in Section 3 en-

compasses this type of rewriting (called the minimal rewriting problem in the

following), but also has other interesting instances (see Section 8). In Section 4,

we investigate the complexity of the decision problem induced by the minimal

rewriting problem for the DLs FL

0

, ALN , ALE , and ALC. This will show that

(unless P=NP) minimal rewritings cannot be computed in polynomial time,

even for DLs with a polynomial subsumption problem. In Section 5 and Sec-

2

Construct name Syntax Semantics

Top > �

Bottom ? ;

primitive negation (P 2 N

C

) :P � n P

I

negation :C � n C

I

conjunction C uD C

I

\D

I

disjunction C tD C

I

[D

I

existential restriction 9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restriction 8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

number restriction (� n r) fx 2 � j #fy 2 � j (x; y) 2 r

I

g � ng

number restriction (� n r) fx 2 � j #fy 2 � j (x; y) 2 r

I

g � ng

Table 1: Syntax and semantics of concept descriptions.

tion 6, we then introduce an algorithm for computing (minimal) rewritings for

the DL ALE and ALN , respectively. Finally, we describe a heuristic approach

for computing (not necessarily minimal) rewritings in ALE in Section 7.

2 Preliminaries

We �rst formally introduce syntax and semantics of the description logics consid-

ered in this work as well as the inference problems subsumption and equivalence

modulo TBox.

Concept descriptions are inductively de�ned with the help of a set of con-

structors, starting with a set N

C

of concept names and a set N

R

of role names.

In this work, we consider concept descriptions built from the constructors shown

in Table 1. The concept descriptions in the description logics FL

0

, ALN , ALE ,

and ALC are built using certain subsets of these constructors as shown in Ta-

ble 2. When talking about an arbitrary DL, we will usually employ the letter

L (possibly with subscript).

The size jCj of a concept description C is de�ned to be the number of

occurrences of concept and role names in C, where > and ? are not counted.

Formally, jCj is inductively de�ned as follows.

De�nition 1 (Size of concept descriptions) Let C be a concept descrip-

tion built using a set N

C

of concept names, a set N

R

of role names, and

the constructors introduced in Table 1. The size jCj is inductively de�ned by

3

Construct name FL

0

ALE ALC ALN

Top x x x

Bottom x x x

primitive negation x x x

negation x

conjunction x x x x

disjunction x

existential restrictions x x

value restrictions x x x x

number restrictions x

Table 2: The description logics FL

0

, ALE , ALC, and ALN .

j>j := 0;

j?j := 0;

jP j := 1;

j(� n r)j := n+ 1;

j(� n r)j := n+ 1;

jC uDj := jCj+ jDj;

jC tDj := jCj+ jDj;

j:Cj := jCj;

j9r:Cj := 1 + jCj;

j8r:Cj := 1 + jCj;

where P 2 N

C

denotes a concept name, r 2 N

R

denotes a role name, and n 2 IN

is a nonnegative integer.

The semantics of a concept description is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation function �

I

maps each primitive concept P 2 N

C

to a set P

I

� �

and each primitive role r 2 N

R

to a binary relation r

I

� ���. The extension

of �

I

to arbitrary concept descriptions is inductively de�ned, as shown in the

third column of Table 1.

One of the most important inference services provided by DL systems is

deciding the subsumption relation between concept descriptions.

De�nition 2 (Subsumption and equivalence) Let C;D be concept descrip-

tions.

D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent to D (for short C � D) i� C v D and D v C, i.e., C

I

= D

I

for all interpretations I.

In this paper, we are interested in the non-standard inference task of rewrit-

ing concept descriptions using a TBox T .

De�nition 3 (TBox) A concept de�nition is of the form A

:

= C, where A 2

N

C

is a concept name and C is a concept description. A TBox is a �nite set

T of concept de�nitions. The concept name A is called de�ned name i� it

occurs on the left-hand side of a concept de�nition in T ; otherwise, A is called

4

primitive name. The concept description C in A

:

= C is called the de�ning

concept of A.

Throughout the paper, we assume TBoxes to be (1) without multiple de�-

nitions, i.e., for each de�ned name A, there exists a unique concept de�nition

of the form A

:

= C in T ; and (2) acyclic, i.e., the de�ning concept of a de�ned

name must not, directly or indirectly, refer to this name (see [20] for exact def-

initions). The TBox T is called unfolded i� all de�ning concepts in T do not

contain de�ned names [20]. Because of our assumptions on TBoxes, a given

TBox T can always be transformed into an equivalent unfolded TBox T by

exhaustively substituting de�ned names A occurring on the right hand side of

a concept de�nition by their de�ning concept. However, this unfolding process

can lead to an exponential blow-up of the TBox [21].

The interpretation I is a model of a TBox T i� it satis�es A

I

= C

I

for all

concept de�nitions A

:

= C 2 T . For a DL L, we talk about L-concept descrip-

tions and L-TBoxes, if all constructors occurring in the concept descriptions

and concept de�nitions belong to L. The set of primitive names occurring in T

is denoted by N

P

and the set of de�ned names by N

D

.

De�nition 4 (Subsumption and equivalence modulo TBox) Let C;D be

two concept descriptions and T a TBox. D subsumes C modulo T (for short

C v

T

D) i� C

I

� D

I

for all models I of T . D is equivalent to C modulo T

i� C v

T

D and D v

T

C, i.e., C

I

= D

I

for all models I of T .

3 A general framework for rewriting

In this section, we introduce the general framework for rewriting using ter-

minologies as well as the minimal rewriting problem that will be discussed in

detail in the next two sections. A comparison of the framework to the problem

of rewriting queries using views [10] and a description of another interesting

instance of the framework can be found in the last section.

De�nition 5 (Rewriting) Let N

R

be a set of role names and N

P

a set of

primitive names, and let L

s

, L

d

, and L

t

be three DLs (the source-, destination,

and TBox-DL, respectively). A rewriting problem is given by

� an L

t

-TBox T containing only role names from N

R

and primitive names

from N

P

; the set of de�ned names occurring in T is denoted by N

D

;

� an L

s

-concept description C using only the names from N

R

and N

P

;

� a binary relation � � L

s

� L

d

between L

s

- and L

d

-concept descriptions.

An L

d

-rewriting of C using T is an L

d

-concept description E built using names

from N

R

and N

P

[N

D

such that C�E.

Given an appropriate ordering � on L

d

-concepts, a rewriting E is called

�-minimal i� there does not exist a rewriting E

0

such that E

0

� E.

5

As an example, consider the instance of the framework where all three DLs

are the language ALN , the relation � is instantiated by equivalence modulo T ,

and the ordering � is induced by the size of the concept descriptions. Let

C = Male u Rich u (� 1 has-child) u 8has-child:(Male u Rich); and

T = fFather

:

= Male u (� 1 has-child);

RichParent

:

= Rich u 8has-child:Rich u (� 1 has-child);

FatherOfSons

:

= Father u 8has-child:Maleg:

It is easy to see that the concept description FatherOfSons u RichParent is an

ALN -rewriting of C using T , and that its size is minimal.

This was an example of what we will call the minimal rewriting problem, i.e.,

the instance of the framework where (i) all three DLs are the same language

L; (ii) the binary relation � corresponds to equivalence modulo TBox; and (iii)

L-concept descriptions are ordered by size, i.e., E � E

0

i� jEj � jE

0

j.

Note that in contrast to inference tasks like subsumption or consistency, de-

cidability results for the rewriting problem for DLs L

s

;L

d

;L

t

cannot be trans-

ferred to sublanguages L

0

s

;L

0

d

;L

0

t

. For example, C = P t :P is a rewriting in

ALC using the empty TBox of itself, but there does not exist a rewriting of C

in FL

0

using the empty TBox.

Other instances of the framework

Rewriting queries using views The problem of rewriting queries using

views in DLs, as considered in [10], can be seen as another instance of our general

framework. As source and TBox-DL, that paper considers the language ALN

and its extension ALCNR, i.e., L

s

= L

t

= ALN and L

s

= L

t

= ALCNR, and

as destination DL L

d

= fu;tg. The rewritings to be computed are maximally

contained rewritings, i.e., the relation � is subsumption v, and the ordering � is

inverse subsumption w. More precisely, [10] is concerned with total rewritings,

i.e., the rewriting E should no longer contain primitive names. In our frame-

work, total rewritings can be taken into account by modifying the optimality

ordering � as follows: E � E

0

i� (a) E does not contain primitive names and

E

0

contains primitive names, or (b) E and E

0

do not contain de�ned names and

E w E

0

. If there exists at least one total rewriting E of C using T , then each

minimal (w.r.t. the modi�ed ordering �) rewriting of C is total.

Section 3 of [10] contains the following two results:

� For L

s

= L

t

= ALCNR

1

and L

d

= fu;tg, a maximally contained total

rewriting is computable. Using the subsumption algorithm for ALCNR,

this can be used to decide whether there exists a total rewriting equivalent

to the input concept C.

� If ALCNR is replaced by ALN , then one can compute a maximally con-

tained total rewriting in exponential time, and existence of a total rewrit-

ing equivalent to C can also be decided in exponential time.

1

In addition to the constructors in ALC, ALCNR allows for number restrictions and role

conjunction (r

1

u r

2

).

6

It should be noted that in [10], the authors claim in the conclusion that for ALN

a maximally contained rewriting can be computed in polynomial time, but the

complexity bound given in [10], Theorem 3.2 actually yields an exponential time

bound. This result coincides with our complexity results given in Section 4.

Translation of concept descriptions Another instance of the framework,

which we intend to investigate in the future, is the translation of concept de-

scriptions from one DL into another, i.e., the instance where (i) L

s

and L

d

are

di�erent DLs; (ii) the TBox is assumed to be empty; and (iii) the binary relation

� is given as �, v, or w. By trying to rewrite an L

s

-concept C into an equivalent

L

d

-concept E, one can �nd out whether C is expressible in L

d

. In many cases,

such an exact rewriting may not exist. In this case, one can try to approximate

C by an L

d

-concept from above (below), i.e., �nd a minimal (maximal) concept

description E in L

d

such that C v E (E v C). An inference service that can

compute such rewritings could, for example, support the transfer of knowledge

bases between di�erent systems.

4 The minimal rewriting decision problem

In order to determine the complexity of the minimal rewriting problem, we �rst

consider the decision problem induced by this optimization problem:

Given: An L-concept description C, an L-TBox T , and a nonnegative integer

�.

Question: Does there exists an L-rewriting E in L of C using T such that

jEj � �?

Since this decision problem can obviously be reduced to the problem of comput-

ing a minimal rewriting of C using T , hardness results for the decision problem

carry over to the optimization problem. In the sequel, we give lower and upper

bounds for the complexity of the minimal rewriting decision problem for the

DLs FL

0

, ALN , ALE , and ALC.

4.1 NP-Hardness for FL

0

, ALE, and ALN

We give a reduction of the NP-complete problem SETCOVER [16] to the min-

imal rewriting decision problem in FL

0

. From this, we obtain NP-hardness for

the DLs ALN and ALE by simply arguing that the reduction still holds in the

presence of the additional constructors.

An instance of the SETCOVER problem is of the following form:

Instance: A �nite set U = fu

1

; : : : ; u

n

g, a family F = fF

i

� U j 1 � i � mg

of subsets of U , and a nonnegative integer �.

Question: Does there exist a subset fF

i

1

; : : : ; F

i

�

g of F of size k � � such that

F

i

1

[: : : [F

i

�

= U?

7

Obviously, we can restrict our attention to instances of the problem where at

least F itself covers U , i.e., F

1

[: : : [F

m

= U .

For a given instance (U ;F ; �) of the SETCOVER problem, we view U as

set of primitive names, and de�ne the corresponding instance of the minimal

rewriting decision problem in FL

0

as follows:

C

U

:= u

1

u : : : u u

n

T

F

:= fA

j

:

= u

u2F

j

u j 1 � j � mg:

Obviously, C

U

and T

F

are polynomial in the size of (U ;F ; �). NP-hardness for

the minimal rewriting decision problem in FL

0

is an immediate consequence of

the following lemma.

Lemma 6 There exists a minimal rewriting D of C

U

using T

F

with jDj � � i�

there exists a cover of U with k � � sets F

i

1

; : : : ; F

i

k

from F .

Proof: A rewriting of C

U

of size k � � is of the form D = A

i

1

u : : : u A

i

l

u

v

l+1

u : : : u v

k

for some 1 � l � k and v

j

2 U (for l + 1 � j � k).

First, we show that we can (w.l.o.g.) assume that l = k, i.e., D does not

contain primitive names. Since F covers U , we know that for each v

j

, l + 1 �

j � k, there exists F

i

j

2 F with v

j

2 F

i

j

. Thus, replacing each v

j

by A

i

j

yields a rewriting D

0

of C

U

such that D

0

does not contain primitive names, and

jD

0

j � jDj.

Now, let D = A

i

1

u : : : u A

i

k

be a rewriting of C

U

that does not contain

primitive names. Then C �

T

D implies that, for each u 2 U there exists a

de�ned name A

i

j

such that u occurs in the right-hand side of the de�nition of

A

i

j

. Hence, F

i

1

[: : : [F

i

k

is a cover of U of size k � �.

Conversely, let F

i

1

[: : : [F

i

k

be a cover of U of size k � �. Then D :=

A

i

1

u : : : uA

i

k

is a rewriting of C

U

of size k � �. 2

The reduction of the SETCOVER problem is still valid if we consider the

concept C

U

as ALN - or ALE-concept description and the TBox T

F

as ALN - or

ALE-TBox:

� In ALE , a rewriting E of C

U

is of the form E = A

i

1

u : : : u A

i

l

u v

l+1

u

: : :u v

k

uE

0

, where E

0

� >, e.g., E

0

= 8r:>; otherwise, C

U

6�

T

E. In this

case, E

00

:= A

i

1

u : : :uA

i

l

u v

l+1

u : : :u v

k

is also a rewriting of C

U

of the

desired form with size jE

00

j � jEj � �.

� In ALN , a rewriting E of C

U

is of the form E = A

i

1

u : : : u A

i

l

u v

l+1

u

: : : u v

k

u E

0

, where E

0

� >, e.g., E

0

= (� 0 r); otherwise, C

U

6�

T

E. In

this case, E

00

:= A

i

1

u : : : u A

i

l

u v

l+1

u : : : u v

k

is also a rewriting of C

U

of the desired form with size jE

00

j � jEj � �.

To sum up, we get the following

Proposition 7 The minimal rewriting decision problem is NP-hard for FL

0

,

ALN , and ALE .

8

4.2 PSPACE-Hardness for ALC

The following Lemma 9 yields a reduction of subsumption in ALC to the minimal

rewriting decision problem for ALC. Since subsumption in ALC is PSPACE-

complete [23], this yields

Proposition 8 The minimal rewriting decision problem is PSPACE-hard for

ALC.

Lemma 9 Let C;D be two ALC-concept descriptions, and A;P

1

; P

2

three dif-

ferent concept names not occurring in C;D. Then C v D i� there exists a

minimal rewriting E of size � 1 of the ALC-concept description P

1

u P

2

u C

using the TBox T := fA

:

= P

1

u P

2

u C uDg.

Proof: First assume C v D. This implies C � C u D and P

1

u P

2

u C �

P

1

u P

2

u C uD. Hence, A is a rewriting of size 1 of P

1

u P

2

u C w.r.t. T .

Conversely, let E be a rewriting of size � 1 of P

1

u P

2

u C w.r.t. T . We

distinguish several cases.

1. E = A: Then P

1

uP

2

uC � P

1

uP

2

uCuD. Since P

1

and P

2

are primitive

concept names not occurring in C or D, we get C � C u D, and hence

C v D.

2. E = ?: Then P

1

uP

2

uC � ?. Since P

1

; P

2

are primitive concept names,

we get C � ?, and hence C v D.

3. E = >: Then P

1

u P

2

u C � > in contradiction to P

1

u P

2

< >.

4. E = Q for a concept name Q not equal A:

(a) Q 2 fP

1

; P

2

g: W.l.o.g. let Q = P

1

. Then P

1

� P

1

u P

2

u C. This

implies P

1

v P

1

u P

2

u C and hence P

1

v P

2

in contradiction to the

fact that P

1

and P

2

are di�erent primitive concept names.

(b) Q 62 fA;P

1

; P

2

g: Then Q � P

1

uP

2

uC. This implies Q v P

1

uP

2

uC

and hence Q v P

1

in contradiction to the fact that Q and P

1

are

di�erent primitive concept names.

5. E = 8r:E

0

with jE

0

j = 0: Then E

0

�

T

? or E

0

�

T

>. Assume E

0

�

T

>. This yields E �

T

> in contradiction to minimality of E. Assume

E

0

�

T

?. This implies 8r:? �

T

P

1

u P

2

u C, and hence 8r:? v P

1

in

contradiction to the fact that P

1

is a primitive concept name.

6. E = 9r:E

0

with jE

0

j = 0: Then E

0

�

T

? or E

0

�

T

>. Assume E

0

�

T

?. This yields E �

T

? in contradiction to minimality of E. Assume

E

0

�

T

>. This implies 9r:> �

T

P

1

u P

2

u C, and hence 9r:> v P

1

in

contradiction to the fact that P

1

is a primitive name.

7. E = E

0

uE

00

or E = E

0

tE

00

or E = :E

0

. We prove the claim by induction

ont the number of occurences of the constructors u;t, and :.

9

(a) E = E

0

u E

00

. Since jEj � 1, it follows jE

0

j = 0 or jE

00

j = 0. Let,

w.l.o.g., jE

0

j = 0. Then E

0

�

T

? or E

0

�

T

>. Assume E

0

�

T

?.

This implies E �

T

? and we get C v D (see 2). Assume E

0

�

T

>.

Then E

00

is a minimal rewriting of P

1

u P

2

u C using T of size � 1.

By induction, we get C v D.

(b) E = E

0

t E

00

. Since jEj � 1, it follows jE

0

j = 0 or jE

00

j = 0. Let,

w.l.o.g., jE

0

j = 0. Then E

0

�

T

? or E

0

�

T

>. Assume E

0

�

T

>.

This implies E �

T

> and we get a contradiction to E is a rewriting

of C using T (see 3). Assume E

0

�

T

?. Then E

00

is a minimal

rewriting of P

1

u P

2

u C using T of size � 1. By induction, we get

C v D.

(c) E = :E

0

with jE

0

j � 1. Since E �

T

:(:E), let, w.l.o.g., E

0

be

not of the form :E

00

, i.e., E

0

is > or ?, a concept name, a value- or

existential restriction, or a conjunction or disjunction.

i. For E

0

= >, we get C v D as in 2.

ii. For E

0

= ? we get a contradiction as in 3.

iii. For E

0

= Q and Q 62 fA;P

1

; P

2

g we get a contradiction as in

case 4(b).

iv. For E

0

2 fP

1

; P

2

g, let w.l.o.g. E

0

= P

1

. Then we get P

1

uP

2

u �

:P

1

. This yields a contradiction due to :P

1

v P

1

.

v. For E

0

= A, we get :(P

1

u P

2

u C u D) � P

1

u P

2

u C. Since

:(P

1

uP

2

uCuD) � :P

1

t:P

2

t:Ct:D, we get :P

1

uP

1

uP

2

uC.

This yields a contradiction due to :P

1

v P

1

.

vi. For E

0

= 9r:E

00

it is E � 8r::E

00

, where j:E

00

j = 0. This case

has already been treated in 5.

vii. For E

0

= 8r:E

00

it is E � 9r::E

00

, where j:E

00

j = 0. This case

has already been treated in 6.

viii. For E

0

= E

1

u E

2

, jEj � 1 implies jE

1

j = 0 or jE

2

j = 0. Let

w.l.o.g. jE

1

j = 0, i.e. E

1

� > or E

1

� ?. If E

1

� >, we get

E � :E

2

, where :E

2

contains less Boolean constructors than

E. Thus, we get by induction C v D. Otherwise, E

1

� ? yields

E � > and thus, a contradiction as in 3.

ix. For E

0

= E

1

t E

2

, jEj � 1 implies jE

1

j = 0 or jE

2

j = 0. Let

w.l.o.g. jE

1

j = 0, i.e. E

1

� > or E

1

� ?. If E

1

� >, we get

E � ? and thus, C v D (see 2). Otherwise, E

1

� ? implies

E � :E

2

. Since :E

2

contains less Boolean constructors than E,

we get by induction C v D. 2

The above reduction of subsumption to the minimal rewriting decision prob-

lem also works for sublanguages of ALC (if they allow for conjunction) as well as

for extensions of ALC known from the literature. This shows that, for all such

DLs, the minimal rewriting decision problem is at least as hard as the subsump-

tion problem. Note that this yields an alternative proof of NP-hardness of the

minimal rewriting decision problem for ALE , but not for FL

0

and ALN (since

subsumption is polynomial for these languages).

10

TBox unfolded not unfolded

FL

0

NP-complete NP-complete

ALN NP-complete in �

p

2

, NP-hard

ALE NP-complete in PSPACE, NP-hard

ALC PSPACE-complete PSPACE-complete

Table 3: Complexity results for the minimal rewriting decision problem.

4.3 A general upper bound

The following simple algorithm decides whether there exists a rewriting of C

using T of size � � in non-deterministic polynomial time, using an oracle for

deciding equivalence modulo TBox: First, non-deterministically compute a con-

cept description E of size � �; then test whether E �

T

C.

Note that testing E �

T

C is a special case of the general equivalence problem

modulo TBox: C does not contain de�ned names. In fact, we get the following

complexity results for this restricted equivalence problem:

FL

0

: For FL

0

, the restricted equivalence problem can be decided in polynomial

time (see Appendix A, Theorem 45).

ALN : If the ALN -TBox is unfolded, then the equivalence problem modulo TBox

is decidable in polynomial time (see [12]).

If the TBox is not unfolded, the equivalence problem modulo TBox is

in �

p

2

(= coNP

NP

), (see Appendix B, Theorem 49) and the restricted

equivalence problem is in �

p

2

(= P

NP

) (see Appendix B, Theorem 50).

ALE: If the ALE-TBox is unfolded, then the equivalence problem modulo TBox

is NP-complete [15].

If the TBox is not unfolded, the complexity of the equivalence problem

modulo TBox is, to the best of our knowledge, an open problem. On

the one hand, the (restricted) equivalence problem is NP-hard (because

subsumption in ALE is NP-hard [15]). On the other hand, since ALE is

a sublanguage of ALC, the (restricted) equivalence problem modulo TBox

in ALE is in PSPACE.

ALC: Equivalence in ALC is PSPACE-complete [23], even modulo TBoxes [19].

The complexity results for the minimal rewriting decision problem for the

DLs under consideration are summarized in Table 3. The upper bounds are

obtained from the simple algorithm described above and the complexity results

for the restricted equivalence problem.

It should be noted that there are two independent sources of complexity for

the minimal rewriting problem. On the one hand, we have to decide equivalence

modulo TBox in order to test whether a computed concept description is a

rewriting. On the other hand, in order to compute a minimal rewriting, we have

11

to solve an optimization problem. Since the restricted equivalence problem for

FL

0

can be decided in polynomial time, the hardness result for FL

0

implies

that this optimization problem is hard, independently of the complexity of the

equivalence problem.

5 The minimal rewriting computation problem

for ALE

Whereas the previous section was concerned with deciding whether there exists a

(minimal) rewriting within a given size bound, this section considers the problem

of actually computing (minimal) rewritings for the DL ALE . The results are

adapted to ALN in the next section. For a given instance (C; T) of the minimal

rewriting computation problem, one is interested in either computing (1) one

minimal rewriting of C using T , or (2) all minimal rewritings of C using T .

The hardness results of the previous section imply that computing one mini-

mal rewriting is a hard problem. In addition, the following example shows that,

for the DLs under consideration, the number of minimal rewritings of a concept

description C using a TBox T can be exponential in the size of C and T .

Example 10 For a nonnegative integer n, let

C

n

:= P

1

u : : : u P

n

T

n

:= fA

i

:

= P

i

j 1 � i � ng

For each vector i = (i

1

; : : : ; i

n

) 2 f0; 1g

n

, we de�ne

E

i

:= u

1�j�n;i

j

=0

P

j

u u

1�j�n;i

j

=1

A

j

:

It is easy to see that for all i 2 f0; 1g

n

, it is jE

i

j = n = jC

n

j, and that there does

not exist a smaller rewriting of C

n

using T

n

. Hence, there exists an exponential

number of di�erent minimal rewritings of C

n

using T

n

. 2

A na��ve algorithm for computing one minimal rewriting would enumerate

all concept descriptions E of size k = 1, then k = 2, etc., until a rewriting E

0

of C using T is encountered. By construction, this rewriting is minimal, and

since C is a rewriting of itself, one need not consider sizes larger than jCj. If

one is interested in computing all minimal rewritings, it remains to enumerate

all concept descriptions of size jE

0

j, and test for each of them whether they are

equivalent to C modulo T .

Obviously, this na��ve algorithm is very ine�cient. Its main drawback is

that it is not source-oriented: the candidate rewritings are computed without

using the input C. The main contribution of this paper is a nondeterministic

rewriting algorithm that computes rewritings by directly modifying the input

concept C. More precisely, the algorithm will work on the 8-normal form of the

input concept, i.e., the normal form obtained from C by exhaustively applying

12

Input: An ALE-concept description C in 8-normal form and an ALE-TBox T .

Algorithm:

Compute an extension C

�

of C.

Compute a reduction

b

C of C

�

w.r.t. T .

Return

b

C.

Figure 1: The rewriting algorithm for ALE .

the rule 8r:E u 8r:F �! 8r:(E u F). This normal form can be computed in

polynomial time.

The idea underlying the improved algorithm depicted in Figure 1 is to split

the computation of a rewritingE into two steps: First, an extension of C w.r.t. T

is computed.

De�nition 11 (Extension w.r.t. T) Let C be an ALE -concept description

and T an ALE-TBox. The ALE-concept description C

�

is an extension of C

w.r.t. T i� C

�

�

T

C and C

�

can be obtained from C by conjoining de�ned

names at some position in C.

In the second step, a so-called reduction of C

�

w.r.t. T is computed, i.e., a

concept description

b

C that is (i) equivalent to C

�

modulo T , (ii) obtained from

C

�

by eliminating all the redundancies in C

�

. The main technical problem to

be solved is to give an appropriate formal de�nition of reduction, and to show

how reductions can be computed. This problem will be solved in Section 5.1.

Before, we

� give an example illustrating the algorithm, and

� explain what the algorithm actually computes.

Example 12 Consider the ALE-concept description

C = P uQ u 8r:P u 9r:(P u 9r:Q) u 9r:(P u 8r:(Q u :Q));

and the ALE-TBox

T = f A

1

:

= 9r:Q; A

2

:

= P u 8r:P; A

3

:

= 8r:P g:

The concept description

C

�

= P uQ u A

2

u 8r:P u 9r:(A

1

u P u 9r:Q) u 9r:(P u 8r:(Q u :Q))

is an extension of C w.r.t. T . A reduction of C

�

can be obtained by eliminating

� P and 8r:P on the top-level of C

�

, because they are redundant w.r.t. A

2

;

� P in both of the existential restrictions on the top-level of C

�

, because it

is redundant due to the value restriction 8r:P ;

13

� the existential restriction 9r:Q, because it is redundant w.r.t. A

1

;

and substituting Q u :Q by ?, since ? is the minimal inconsistent concept

description. The resulting concept description

b

C = QuA

2

u 9r:A

1

u 9r:8r:? is

equivalent to C modulo T , i.e.,

b

C is a rewriting of C using T . Furthermore, it

is easy to see that

b

C is a minimal rewriting of C using T . 2

On the correctness of the improved algorithm

The following examples show that, on the one hand, there may exist exponen-

tially many essentially di�erent (i.e., not equivalent w.r.t. the empty TBox)

extensions of C. On the other hand, for one extension there may exist expo-

nentially many di�erent reductions.

Example 13 Consider Example 10 again. For each vector i = (i

1

; : : : ; i

n

) 2

f0; 1g

n

, the concept description

C

�

i

:= C

n

u u

1�j�n;i

j

=1

A

j

yields an essentially di�erent extension of C

n

.

Example 14 For a nonnegative integer n, let

C

n

:= u

1�i�n

9r:(A

i

u 9r:P

i

) u 9r:(P

i

u 9r:A

i

);

T

n

:= fA

i

:

= P

i

j 1 � i � ng:

Further, for 1 � j � n, let C

1

j

:= 9r:(A

j

u9r:P

j

) and C

2

j

:= 9r:(P

j

u9r:A

j

). It is

easy to see that, for all vectors i = (i

1

; : : : ; i

n

) 2 f1; 2g

n

, the concept description

C

i

:= u

1�j�n

C

i

j

j

yields a reduction of C

n

w.r.t. T

n

. 2

As a consequence, the algorithm in Figure 1 should be viewed as a non-

deterministic algorithm (with an oracle for the equivalence problem) that �rst

guesses an extension of C w.r.t. T and then one reduction. We will show that

it is correct in the following sense:

Theorem 15 1. Every possible output of the algorithm is a rewriting of the

input concept description C using the input TBox T .

2. The set of all rewritings computed by the algorithm contains all minimal

rewritings of C using T (modulo associativity, commutativity and idem-

potence of conjunction, and the equivalence C u > � C).

14

If we compute just one extension and then one reduction of this extension, then

we have an algorithm (with an oracle for equivalence modulo TBox) for com-

puting one rewriting; however, the computed rewriting need not be minimal.

Nevertheless, this opens the way for a heuristic approach to compute \small"

(rather than minimal) rewritings in deterministic polynomial time using an ora-

cle for equivalence modulo TBox (cf Section 7). We will also show the following:

if we compute all extensions and then just one reduction of each extension, then

the set of all rewritings computed this way always contains at least one minimal

rewriting.

Remark 16 One might think that considering concept descriptions computed by

the improved rewriting algorithm and minimal rewritings modulo commutativity

and associativity of conjunction should be su�cient, since a minimal rewriting

should not contain conjuncts of the form C u C. This is not true, however,

since we do not count any constructor occurring in C. Hence, ?u? is as well

a minimal rewriting of an inconsistent concept C as ?, whereby a \reasonable"

rewriting algorithm would only compute ? as a (minimal) rewriting. Thus, we

have to consider concept descriptions also modulo idempotence of conjunction

(since jF u : : : u F j = jF j = 0 for F 2 f>;?g), and the equivalence C � C u >

(since jC u >j = jCj for all concept descriptions C).

5.1 Reduction of ALE-concept descriptions

A reduction of a concept description C w.r.t. a TBox T has been informally

introduced above as a concept description that (i) is equivalent to C modulo

T , and (ii) can be obtained from C by removing all redundancies in C. The

removal of parts of F will be formalized using the notion of a subdescription.

Intuitively, D is a subdescription of C, if D can be obtained from C by

� replacing inconsistencies by ?,

� removing some primitive concept names, value and existential restrictions

on top-level of C, and

� recursively substituting concept descriptions C

0

occurring in the remaining

value and existential restrictions 8r:C

0

=9r:C

0

by subdescriptions of C

0

.

In the �rst item, we only allow for substitutions of inconsistent concepts by

? in order to make sure that subdescriptions of C always subsume C. This

property will be crucial in the proof of completeness of the reduction algorithm

introduced below. Unfortunately, if in the formal de�nition just testing C �

T

?

is not su�cient to describe all subdescriptions that conform to this intuitive

de�nition. For instance, consider the TBox T = fA

1

:

= 8r::Pg and the concept

description C = A

1

u 8r:P . Obviously, for D = A

1

u 8r:? it is C �

T

D,

i.e. the concept description occurring in the value restriction on top-level of C

is inconsistent in the context of the value restriction occurring on the top-level

of the de�ning concept of A

1

. Thus, D should intuitively be a subdescription

of C w.r.t. T . However, D would not be a subdescription of C according to the

15

de�nition described above, because ? would not be a subdescription of P and

hence, the de�nition does not allow for substituting P by ? in order to obtain

D from C. In the formal de�nition given below, this problem is solved by taking

into account the context F in which C occurs when testing C on inconsistency.

In the above example, the context, in which we have to recursively compute a

subdescription of P , is given by :P . Since P u :P �

T

?, we get that ? is a

valid subdescription of P w.r.t. T and the context :P .

For the formal de�nition of a subdescription as well as the formal speci�ca-

tion of the reduction algorithm, we need the following notations: Let T be an

ALE-TBox and C an ALE-concept description that may contain de�ned names

from T . The unfolded concept description T (C) is de�ned as the concept de-

scription obtained from C by exhaustively substituting de�ned names in C by

their de�ning concepts in T .

2

The set of all de�ned names occurring on the

top-level of C is denoted by def(C), and the set of all (negated) primitive names

occurring on the top-level of C is denoted by prim(C). For an ALE -concept

description C and a role name r,

� val

r

(C) denotes the concept description occurring in the unique value

restriction on the top-level of the 8-normal form of C, where val

r

(C) := >

if there is no such value restriction; and

� exr

r

(C) denotes the set fC

1

; : : : ; C

n

g of concept descriptions occurring in

existential restrictions of the form 9r:C

i

on the top-level of C.

De�nition 17 (ALE-Subdescription w.r.t. T and F) Let T be an ALE-TBox,

F an ALE-concept description, and C an ALE-concept description in 8-normal

form that may contain de�ned names from T . The ALE -concept description

b

C

is a subdescription of C w.r.t. T and F i�

1.

b

C = C, or

2.

b

C = ? and C u F �

T

?; or

3.

b

C is obtained from C by

(a) removing some (negated) primitive names, value restrictions, and

existential restrictions on the top-level of C,

(b) substituting all concept descriptions D occurring in the remaining

value restrictions 8r:D by subdescriptions D

0

of D w.r.t. T and val

r

(Fu

T (F

1

u : : : u F

m

u A

1

: : : u A

n

)), where def(F) = fF

1

; : : : ; F

m

g and

def(C) = fA

1

; : : : ; A

n

g, and

(c) substituting all concept descriptions D occurring in the remaining

existential restrictions 9r:D by subdescriptions of D

0

of D w.r.t. T

and val

r

(C u F u T (F

1

u : : : u F

m

u A

1

: : : u A

n

)), where def(F) =

fF

1

; : : : ; F

m

g and def(C) = fA

1

; : : : ; A

n

g.

2

Note that T (C) is well-de�ned due to our assumptions on TBoxes. However, just as for

unfolding TBoxes, this step may lead to an exponential blow-up.

16

Now, in order to formalize that all redundancies have to be eliminated to

obtain a reduction of C w.r.t. T , we require subdescriptions to be of minimal

size.

De�nition 18 (ALE-Reduction w.r.t. T) Let C be an ALE -concept descrip-

tion in 8-normal form and T an ALE-TBox. An ALE-concept description

b

C is

called reduction of C w.r.t. T i�

b

C is a minimal (w.r.t. j � j) subdescription of

C w.r.t. T and > such that C �

T

b

C.

Consider Example 12 again. The concept description

b

C is a subdescription of

the concept description C, whereas the concept description Qu9r:A

1

u9r:8r:?

is not since we do not allow for removing de�ned names in C (unless they occur

within value or existential restrictions that are removed as a whole).

Disallowing the removal of de�ned names in the de�nition of the notion

\subdescription" makes sense since in the rewriting algorithm the reduction

step is always applied after the extension step. It is possible that removal of

de�ned names could yield a smaller rewriting, but this rewriting is obtained

when considering the extension where these names have not been added in the

�rst place. Allowing the removal of de�ned names would thus only increase the

amount of nondeterminism without creating additional rewritings.

In the sequel, we describe an algorithm that computes a reduction of C

�

w.r.t. T in nondeterministic polynomial time (using an oracle for deciding equiv-

alence modulo T). Intuitively, a reduction

b

C of C is computed in a top-down

manner. If C �

T

?, then

b

C := ?. Otherwise, let 8r:C

0

be the (unique!) value

restriction on the top-level of C, and A

1

u: : :uA

m

the conjunction of the de�ned

names on the top-level of C. Basically,

b

C is obtained form C as follows:

1. Remove the (negated) primitive concepts Q occurring on the top-level of

C, if A

1

u : : : u A

m

v

T

Q.

2. Remove 9r:C

1

occurring on the top-level of C, if (a) A

1

u : : : u A

m

u

8r:C

0

v

T

9r:C

1

, or (b) there is another existential restriction 9r:C

2

on

top-level such that A

1

u : : : u A

m

u 8r:C

0

u 9r:C

2

v

T

9r:C

1

.

3. Remove 8r:C

0

if A

1

u : : : uA

m

v

T

8r:C

0

.

4. Finally, all concept descriptions D occurring in the remaining value and

existential restrictions are reduced recursively.

The formal speci�cation of the reduction algorithm is more complex than the

intuitive description given above mainly for two reasons. First, in (2b) it could

be the case that the subsumption relation also holds if the rôles of 9r:C

1

and

9r:C

2

are exchanged. In this case, one has a choice of which concept to remove.

If the (recursive) reduction of C

2

yields a smaller description than the reduction

of C

1

, we still remove 9r:C

1

. If the reductions are of equal size, then we must

make a nondeterministic choice between removing the one or the other (see

Example 14). This choice is a don't care nondeterministic choice, if one is

interested in computing just one minimal rewriting, i.e., just one reduction for

17

each extension. If one is interested in computing all minimal rewritings, it

is a don't know nondeterministic choice, since all possible choices have to be

considered.

Second, in (4) we cannot really reduce the descriptionsD without considering

the context in which they occur. The reduction of these concepts must take into

account the concept C

0

as well as all concepts D

0

occurring in value restrictions

of the form 8r:D

0

on the top-level of the de�ning concepts for A

1

; : : : ; A

n

. For

instance, consider Example 12, where the removal of P within the existential

restrictions on the top-level of C

�

was justi�ed by the presence of 8r:P on the

top-level of C

�

. Since we want to apply the reduction algorithm recursively, we

need a third input parameter to take care of the context. To be more precise,

the reduction algorithm described in Figure 2 computes a reduction of an ALE-

concept description C w.r.t. an ALE-TBox T and an ALE-concept description

F .

De�nition 19 (ALE-Reduction w.r.t. T and F) Let C be an ALE-concept

description in 8-normal form, T an ALE-TBox, and F an ALE-concept descrip-

tion. An ALE-concept description

b

C is called reduction of C w.r.t. T and F

i�

b

C is a minimal (w.r.t. j � j) subdescription of C w.r.t. T and F such that

C u F �

T

b

C u F .

The formal speci�cation of the reduction algorithm is given in Figure 2.

In order to prove soundness and completeness of the reduction algorithm,

we need the following characterization of subsumption (modulo TBox) in ALE .

Proposition 20 1. Let C;D be two ALE-concept descriptions in 8-normal

form without de�ned names. It holds that C v D i� C � ? or D � > or

� prim(D) � prim(C),

� val

r

(C) v val

r

(D) for all role names r 2 N

R

, and

� for all 9r:D

i

2 exr

r

(D) there exists 9r:C

j

2 exr

r

(C) such that C

j

u

val

r

(C) v D

i

.

2. Let T be an ALE-TBox and C;D be two ALE-concept descriptions that

may contain de�ned names from T . Let fA

1

; : : : ; A

n

g = def(C) and

fB

1

; : : : ; B

m

g = def(D). It holds that C v

T

D i� C �

T

? or D �

T

> or

� prim(D u T (B

1

u : : : u B

m

)) � prim(C u T (A

1

u : : : u A

n

)),

� val

r

(C u T (A

1

u : : : u A

n

)) v

T

val

r

(D u T (B

1

u : : : u B

m

)) for all

role names r 2 N

R

, and

� for all 9r:D

i

2 exr

r

(D u T (B

1

u : : : u B

m

)) there exists 9r:C

j

2

exr

r

(CuT (A

1

u: : :uA

n

)) such that C

j

uval

r

(CuT (A

1

u: : :uA

n

)) v

T

D

i

.

Proof sketch: Proposition 20(1) is an easy consequence of the characterization

of subsumption for ALE given in [7]. The second part can be reduced to (1)

applying the equivalence C v

T

D i� T (C) v T (D). 2

18

Input: An ALE-concept description C in 8-normal form, an ALE-TBox T , and an

ALE-concept description F .

Algorithm: reduce(C; T ; F)

If C u F �

T

?, then

b

C := ?;

Otherwise,

Let fA

1

; : : : ; A

m

g = def(C);

Let fQ

1

; : : : ; Q

`

g = prim(C) n prim(T (F uA

1

u : : : u A

m

));

For each role name r 2 N

R

If val

r

(T (F uA

1

u : : : uA

m

)) v

T

val

r

(C)

then D

r

:= >

else D

r

:= reduce(val

r

(C); T ; val

r

(T (F uA

1

u : : : u A

m

));

Let D

r

be a subset of the set

C

r

:= freduce(C

j

; T ; val

r

(C u T (F u A

1

u : : : uA

m

))) j C

j

2 exr

r

(C)g

such that

1. there does not exist D

1

; D

2

2 D

r

, D

1

6= D

2

, with

D

1

u val

r

(C u T (F uA

1

u : : : u A

m

)) v

T

D

2

,

2. there does not existD 2 D

r

with FuA

1

u: : :uA

m

u8r:val

r

(C) v

T

9r:D,

3. for each C

i

2 exr

r

(C), F u A

1

u : : : u A

m

u 8r:val

r

(C) v

T

9r:C

i

; or

there exists D 2 D

r

with

9r:D u 8r:val(C u T (F uA

1

u : : : u A

m

)) v

T

9r:C

i

, and

4. the size

P

D2D

r

(jDj + 1) of the set is minimal among the sizes of all

subsets of C

r

satisfying (1){(3).

De�ne

b

C := Q

1

u : : : uQ

`

u

A

1

u : : : uA

m

u

u

r2N

R

8r:D

r

u u

D2D

r

9r:D,

where each value restriction 8r:D

r

is omitted if D

r

= >;

Return

b

C.

Figure 2: The reduction algorithm for ALE .

In addition, we will need the following lemma. It can easily be proved by

induction on the depth of the subdescription.

Lemma 21 Let T be an ALE -TBox, C an ALE-concept description in 8-normal

form, and F an ALE -concept description. Then, for each subdescription

b

C of C

w.r.t. T and F , it holds that C u F v

T

b

C.

We now prove soundness and completeness of the reduction algorithm, i.e. we

show that each result is a subdescription of C w.r.t. T and F , and conversely,

that each reduction of C w.r.t. T and F is computed by the algorithm (if

F 6�

T

?). Note that formally, for F �

T

?, also > would be a reduction of C

w.r.t. T and F , which is actually not returned by the algorithm. For this, one

19

would have to introduce a special case in the algorithm, which is omitted here

for the sake of simplicity.

Lemma 22 Each output

b

C obtained from reduce(C; T ; F) is a reduction of C

w.r.t. T and F . Conversely, for each reduction E of C w.r.t. T and F , there

exists an output

b

C of reduce(C; T ; F) that is equal to E.

Proof of completeness: We show by induction on depth(E) that, for each

reduction E of C w.r.t. T and F , there exists an output

b

C of reduce(C; T ; F)

such that

b

C = E (modulo the given equivalences).

Assume E = ?. Then C u F �

T

?, and hence ? is the unique result of

reduce(C; T ; F).

Assume E 6= ?. Then C u F 6�

T

?; otherwise, since j?j = 0, E would

not be minimal. Thus,

b

C is computed according to the otherwise-part of the

algorithm (see Figure 2).

We show that

1. For all results

b

C of reduce(C; T ; F) it is def(

b

C) = def(E) and prim(

b

C) =

prim(E).

2. If there exists a value restriction 8r:E

r

on the top-level of E, then there

exists a value restriction 8r:C

r

on the top-level of C and a result

c

C

r

of the

recursive call of the reduction algorithm such that

c

C

r

= E

r

(modulo the

given equivalences). If there exists no value restriction of the form 8r:E

r

on the top-level of E, then there exists a result

b

C with no value restriction

of the form 8r:C

r

on the top-level.

3. If exr

r

(E) = fE

1

; : : : ; E

�

g, � > 0, then exr

r

(C) = fC

1

; : : : ; C

�

g, � �

�, and there exist results

c

C

i

j

, 1 � j � �, of the recursive calls of the

reduction algorithm such that

c

C

i

j

= E

j

for all 1 � j � � and the set

f

c

C

i

j

j 1 � j � �g satis�es the conditions (1){(4) in the algorithm. If

exr

r

(E) = ;, then there exists a result

b

C with exr

r

(

b

C) = ;.

The items (1){(3) imply that there exists a result

b

C of reduce(C; T ; F) such that

b

C = E (modulo the given equivalences).

Ad (1): By de�nition of subdescription, def(C) = def(E), and hence def(

b

C) =

def(E) for each result

b

C of reduce(C; T ; F).

Let prim(E) = fQ

0

1

; : : : ; Q

0

`

g and def(C) = fA

1

; : : : ; A

m

g. It is prim(E) �

prim(C) n prim(T (F u A

1

u : : : u A

m

)); otherwise, E would not be minimal.

Conversely, by Proposition 20 E u F v

T

C u F implies prim(C) n prim(T (F u

A

1

u : : :uA

m

)) � prim(E). Thus, we get prim(E) = prim(

b

C) for each result

b

C

of reduce(C; T ; F).

Ad (2): Let r 2 N

R

. Proposition 20 implies

val

r

(C u T (F u A

1

u : : : u A

m

)) �

T

val

r

(E u T (F u A

1

u : : : u A

m

)):

20

Since val

r

(D

1

uD

2

) � val

r

(D

1

) u val

r

(D

2

), we get

val

r

(C)u val

r

(T (F uA

1

u : : :uA

m

)) �

T

val

r

(E)u val

r

(T (F uA

1

u : : :uA

m

)):

If val

r

(E) = >, it is val

r

(T (F uA

1

u : : :uA

m

)) v

T

val

r

(C) and for each result

b

C there does not exist a value restriction of the form 8r:D

r

on the top-level.

If val

r

(E) 6= >, i.e. there exists a unique value restriction of the form 8r:E

r

on the top-level of E, then by de�nition of subdescription, there exists a unique

value restriction of the form 8r:C

r

on the top-level of C. Further, E

r

is a

subdescription of C

r

w.r.t. T and val

r

(F uT (F

1

u: : :uF

n

uA

1

u: : :uA

m

)), where

def(F) = fF

1

; : : : ; F

n

g. Let F

r

:= val

r

(T (F uA

1

u : : :uA

m

)). Minimality of E

implies that E

r

is a minimal subdescription of C

r

such that E

r

uF

r

�

T

C

r

uF

r

.

Thus, E

r

is a reduction of C

r

w.r.t. T and F

r

.

In order to be able to apply the induction hypothesis, it remains to show that

F

r

6�

T

?. Assume F

r

�

T

?. Then E would not be minimal due to j8r:E

r

j � 1,

because removing 8r:E

r

on top-level of E would yield a subdescription E

0

of C

with E

0

u F �

T

C u F and jE

0

j < jEj. Thus, F

r

6�

T

? and by induction, there

exists a result

c

C

r

of reduce(C

r

; T ; F

r

) with

c

C

r

= E

r

.

Ad (3): Let r 2 N

R

, def(F) = fF

1

; : : : ; F

n

g and F

r

:= val

r

(C u T (F uA

1

u

: : : u A

m

)).

If exr

r

(E) = ;, then by Proposition 20 E u F v

T

C u F implies that for all

C

i

2 exr

r

(E), there exists a D

0

2 exr

r

(F u T (F

1

u : : : u F

n

u A

1

u : : : u A

m

))

such that D

0

u val

r

(E u F u T (F

1

u : : :u F

n

uA

1

u : : :uA

m

)) v

T

C

i

. It is easy

to see that the empty set satis�es the conditions (1){(4) on the set D

r

in the

algorithm, i.e. there exists a result

b

C of reduce(C; T ; F) with exr

r

(

b

C) = ;.

If exr

r

(E) = fE

1

; : : : ; E

�

g, � � 1, then by de�nition of a subdescription

exr

r

(C) = fC

1

; : : : ; C

�

g, � � �. In addition, it is F

r

6�

T

?, because otherwise,

C u F �

T

? in contradiction to our assumption C u F 6�

T

?.

We have to show that, for all 1 � i � �, there exists a C

j

i

2 exr

r

(C) such

that E

i

is a reduction of C

j

i

w.r.t. T and F

r

, i.e. E

i

is a subdescription of

C

j

i

w.r.t. T and F

r

with E

i

u F

r

�

T

C

j

i

u F

r

and E

i

is minimal among the

subdescriptions satisfying this condition.

Let C

i

:= fC

0

2 exr

r

(C) j E

i

is a subdescription of C

0

g. Since E is a sub-

description of C, it is C

i

6= ;. Lemma 21 implies C

0

u F

r

v

T

E

i

u F

r

for all

C

0

2 C

i

. The converse subsumption relationship E

i

u F

r

v

T

C

0

u F

r

also holds

for all C

0

2 C

i

. To see this, assume E

i

uF

r

6v

T

C

0

uF

r

for some C

0

2 C

i

. Then

by Proposition 20 E u F v

T

C u F , E u F 6�

T

?, and C u F 6�

T

> imply that

there exists a D

0

2 exr

r

(E u F u T (F

1

u : : : u F

n

u A

1

u : : : uA

m

)) such that

D

0

u val

r

(E u F u T (F

1

u : : : u F

n

u A

1

u : : : u A

m

)) u

T

C

0

:

By (2) we already know that

val

r

(E u F u T (F

1

u : : : u F

n

u A

1

u : : : u A

m

)) �

T

F

r

:

This implies

(*) D

0

u F

r

v

T

C

0

u F

r

v

T

E

i

u F

r

.

21

Due to our assumption E

i

u F

r

6v

T

C

0

u F

r

, it is D

0

6= E

i

. This yields a

contradiction to minimality of E: removing 9r:E

i

from the top-level of E would

yield an equivalent but smaller subdescription of C, i.e. E would not be a

reduction of C w.r.t. T and F .

Thus, we get that there exists a C

j

i

2 exr

r

(C) with C

j

i

u F

r

�

T

E

i

u F

r

and E

i

is a subdescription of C

j

i

w.r.t. T and F

r

. In addition, E

i

is minimal:

Assume, E

i

would not be a minimal subdescription satisfying the equivalence

condition. Then there exists a subdescription D

0

of C

j

i

w.r.t. T and F

r

with

C

j

i

u F

r

�

T

D

0

u F

r

and jD

0

j < jE

i

j. Now, substituting E

i

by D

0

would yield

a subdescription E

0

of C w.r.t. T and F with C u F �

T

E u F and jE

0

j < jEj

in contradiction to the assumption that E is a reduction of C w.r.t. T and F .

By induction, we get that there exists a result

c

C

j

i

of reduce(C

j

i

; T ; F

r

) with

c

C

j

i

= E

i

.

It remains to show that the set fC

j

1

; : : : ; C

j

�

g obtained this way satis�es

the conditions (1){(4) in the algorithm.

� Conditions (1) and (2) are satis�ed, because otherwise, E would not be a

minimal subdescription of C with E u F �

T

C u F : removing a redun-

dant existential restriction would yield a smaller subdescription, because

j9r:Dj � 1 for all concept descriptions D.

� The third condition is also satis�ed; otherwise, by Proposition 20, E u

F 6�

T

C u F .

� Condition (4) is satis�ed, because otherwise, again E would not be a

minimal subdescription of C with E u F �

T

C u F .

This completes the proof of completeness.

Proof of soundness: Let

b

C be an output of reduce(C; T ; F). By construction,

b

C is a subdescription of C w.r.t. T and F . It remains to show that

1.

b

C u F �

T

C u F , and

2.

b

C is a minimal subdescription satisfying (1).

Ad (1): Assume

b

C = ?. Then, by construction, C u F �

T

?, and hence,

b

C u F �

T

C u F .

Let

b

C 6= ?. We show

a)

b

C v

T

C u F and

b)

b

C u F w

T

C u F .

The subsumption relationship b) is an immediate consequence of Lemma 21.

Because of def(E) = def(

b

C), the subsumption relationship a) is an immediate

consequence of the following three items:

(i) for all (negated) primitive concept names Q 2 prim(C) it is

b

C u F v

T

Q;

(ii) for all role names r 2 N

R

it is

b

C u F v

T

8r:val

r

(C);

22

(iii) for all role names r 2 N

R

and all C

i

2 exr

r

(C) it is

b

C u F v

T

9r:C

i

.

We show (i){(iii) by induction on depth(C).

Ad (i): Let Q 2 prim(C). If Q 2 prim(

b

C), then

b

C u F v

T

Q. Otherwise, Q

has been removed from the top-level of C. By the de�nition of

b

C we get that

Q occurs on the top-level of T (F uA

1

u : : :uA

m

). Since def(C) = def(

b

C), this

implies

b

C u F v

T

Q.

Ad (ii): Let r 2 N

R

and val

r

(C) 6= >. If there exists no value restric-

tion of the form 8r:C

0

on the top-level of

b

C, then by the de�nition of

b

C,

we get that val

r

(T (F u A

1

u : : : u A

m

)) v

T

val

r

(C). If there exists a value

restriction of the form 8r:C

0

on the top-level of

b

C, then C

0

is a result of

reduce(val

r

(C); T ; val

r

(T (F u A

1

u : : : u A

m

))). By induction, we get

C

0

u val

r

(T (F u A

1

u : : : u A

m

)) v

T

val

r

(C) u val

r

(T (F u A

1

u : : : uA

m

)):

This implies

8r:C

0

u val

r

(T (F u A

1

u : : : u A

m

)) v

T

val

r

(C)

and thus,

b

C u F v

T

8r:val

r

(C).

Ad (iii): Let r 2 N

R

and C

i

2 exr

r

(C). By condition (3) on the set D

r

we

get that either F uA

1

u : : :uA

m

8r:val

r

(C) v

T

9r:C

i

or there exists D 2 exr

r

(

b

C)

such that 9r:D u 8r:val

r

(C u T (F u A

1

u : : : u A

m

)) v

T

9r:C

i

. In both cases

b

C u F v

T

9r:C

i

.

This completes the proof of (1), i.e. we have shown that C u F �

T

b

C u F .

Ad (2): If F �

T

?, then C u F �

T

? and ? is the unique result of

reduce(C; T ; F). Obviously, ? is a minimal subdescription of C w.r.t. T and F

satisfying C u F �

T

?.

If F 6�

T

?, we prove the claim using the completeness of the reduction algo-

rithm. By induction on depth(C), we get that each result of reduce(val

r

(C); T ; val

r

(T (Fu

A

1

u: : :uA

m

))) is a reduction of val

r

(C) w.r.t. T and val

r

(T (F uA

1

u: : :uA

m

)).

In particular, all results have the same minimal size. Condition (4) on the set

D

r

ensures that all sets satisfying conditions (1){(3) have the same minimal size.

Thus, all results of reduce(C; T ; F) have the same size. Given that F 6�

T

?, we

already know that for each reduction E of C w.r.t. T and F there exists a result

b

C of reduce(C; T ; F) with

b

C = E. Thus, all results have the same minimal size

jE.

This completes the proof of Lemma 22. 2

Remark 23 It should be noted that the de�nition of the size of concept de-

scriptions is crucial for completeness of the improved rewriting algorithm: by

j?j := 0, we enforce that whenever possible, concept descriptions are substituted

by ?. Otherwise, the algorithm depicted in Figure 1 would not compute all

minimal rewritings. To be more precise, if we would count ? as concept name,

i.e., j?j = 1, then the set of all rewritings computed by the algorithm would not

contain all minimal rewritings. For instance, consider the concept description

23

C = Q u 8r:(P u :P) and the TBox T = fA

:

= Q u 8r::Pg. The reduction

algorithm as described in Figure 2 would always substitute P u :P by ?, i.e.,

the only rewritings computed by the minimal rewriting algorithm are Q u 8r:?

and A u 8r:?. However, the minimal rewriting A u 8r:P of C using T would

not be computed by the algorithm.

Thus, neither the reduction algorithm nor the rewriting algorithm would be

complete. As a consequence, for other de�nitions of the size of concept descrip-

tions, we would have to

� weaken the claim of Theorem 15(2): The set of all rewritings computed by

the algorithm contains at least one minimal rewriting; or

� modify the reduction algorithm appropriately: In case that C u F �

T

?,

not only ? must be returned, but also each concept description D such

that jDj = j?j, D uF �

T

?, and D is a subdescription of C w.r.t. T and

F .

Not only the de�nition of the size of concept descriptions is crucial for com-

pleteness of the algorithm, but also taking into account the context in the def-

inition of a subdescription. The de�nition of a subdescription of ALE -concept

descriptions not containing de�ned names given in [4] does not restrict the sub-

stitution of C by ? by some test on inconsistency. If we would replace (2) in

De�nition 17 by

2.'

b

C = ?;

i.e., we would allow for replacing any concept description by ? in order to obtain

a subdescription, then the reduction algorithm would not be complete as shown

in the following example.

Example 24 Consider

T = fA

1

:

= 8r:P;A

2

:

= 8r::Pg;

C = 9r:(A

2

u 8r:P) u 9r:(A

1

u 8r:Q);

E = 9r:(A

1

u 8r:?); and

E

0

= 9r:(A

2

u 8r:?):

It is easy to see that C �

T

E and C �

T

E

0

. Furthermore, E and E

0

are

subdescriptions of C w.r.t. T and > with respect to the modi�ed de�nition of

subdescription. The reduction algorithm, however, would only return E

0

. Due

to 9r:(A

2

u 8r:P) v

T

9r:(A

1

u 8r:Q), the set D

r

= fA

2

u 8r:?g is the unique

subset of C

r

= fA

2

u 8r:?; A

1

u 8r:Qg satisfying the conditions (1){(4). This is

due to the fact that, in the recursion step, the concept description Q is computed

w.r.t. the context P and thus is not substituted by ?.

Hence, the reduction algorithm depicted in Figure 2 would not be complete

w.r.t. the modi�ed de�nition of a subdescription. However, this example is not a

counterexample on completeness of the rewriting algorithm, because since C 6�

T

9r:P u9r:Q, C cannot be obtained as an extension of an ALE-concept description

w.r.t. T .

24

Proof of Theorem 15 for ALE

The �rst item of Theorem 15 is a direct consequence of the de�nition of exten-

sions and reductions. In order to prove the second item, let E be a minimal

rewriting of C using T . The main point is now that we can de�ne an extension

C

�

of C induced by E such that E is a subdescription of C

�

.

Intuitively, C

�

can be obtained from C as follows:

1. conjoin to C all de�ned names occurring on the top-level of E;

2. if there exists a value restriction 8r:E

0

on the top-level of E, then there

also exists a value restriction 8r:C

0

on the top-level of C (otherwise, C

would not be equivalent to E modulo T): substitute C

0

by the recursively

de�ned extension of C

0

induced by E

0

;

3. for each existential restriction 9r:E

i

on the top-level of E, there exists a

corresponding existential restriction 9r:C

i

on the top-level of C such that

C

i

u val

r

(C) �

T

E

i

u val

r

(C) (otherwise, C would not be equivalent to

E modulo T): substitute C

i

by the recursively de�ned extension of C

i

induced by E

i

.

In the formal de�nition of C

�

, we must, just as for the reduction algorithm,

take into account the context in which a concept description occurs. To this

purpose, we extend the notion \extension w.r.t. T " to \extension w.r.t. T and

F": C

�

is an extension of C w.r.t. T and F i� C

�

uF �

T

C uF and C

�

can be

obtained from C by conjoining de�ned names from T at some positions in C. In

addition, we need the notion \reduced w.r.t. T and F": a concept description

E is called reduced w.r.t. T and F if E is a reduction w.r.t. T and F of itself.

The recursive de�nition of an extension C

�

of C induced by E w.r.t. T and

F is depicted in Figure 3. This de�nition makes sense since (i) for the recursive

de�nitions, the premise is satis�ed, and (ii) there always exists a permutation

of exr

r

(C) of the desired form.

Lemma 25 Under the premise of the recursive de�nition of extensions w.r.t. T

and F induced by E, let, for r 2 N

R

, exr

r

(C) = fC

1

; : : : ; C

m

g and exr

r

(E) =

fE

1

; : : : ; E

`

g. Then

1. D

r

can be recursively de�ned, i.e., it holds that val

r

(C) is in 8-normal

form, val

r

(E) is reduced w.r.t. T and val

r

(F u T (A

1

u : : : u A

n

)), and

val

r

(C)uval

r

(F uT (A

1

u: : :uA

n

)) �

T

val

r

(E)uval

r

(F uT (A

1

u: : :uA

n

));

and

2. there exists a permutation fj

1

; : : : ; j

m

g of f1; : : : ;mg such that, for 1 �

i � `,

C

j

i

u val

r

(C u F) �

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

)):

Proof: Ad(1): We have to show

25

Given: An ALE-TBox T , and ALE-concept description C;F;E, where

� C is in 8-normal form and does not contain de�ned names,

� F does not contain de�ned names,

� E is reduced w.r.t. T and F , and

� C u F �

T

E u F .

Recursive de�nition of the extension C

�

of C w.r.t. T and F induced by E:

If E u F �

T

?, then C

�

:= C;

Otherwise,

Let fQ

1

; : : : ; Q

k

g := prim(C);

Let fA

1

; : : : ; A

n

g := def(E);

For each role name r 2 N

R

Let D

r

be the recursively de�ned extension of

val

r

(C) w.r.t. T and val

r

(F u T (A

1

u : : : u A

n

))) induced by val

r

(E);

Let exr

r

(C) = fC

1

; : : : ; C

m

g and exr

r

(E) = fE

1

; : : : ; E

`

g;

Let fj

1

; : : : ; j

m

g be a permutation of f1; : : : ;mg

such that, for all 1 � i � `,

C

j

i

u val

r

(C u F) �

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

));

For 1 � i � `, let C

�

j

i

be the recursively de�ned extension of

C

j

i

w.r.t. T and val

r

(C u F) induced by E

i

;

Then C

�

is de�ned by

C

�

:= Q

1

u : : : uQ

k

uA

1

u : : : uA

n

u

8r:D

r

u u

1�i�`

9r:C

�

j

i

u u

`+1�i�m

9r:C

j

i

;

where the value restriction 8r:D

r

is omitted if there does not exist

a value restriction of the form 8r:C

0

on the top-level of C.

Figure 3: The recursive de�nition of extensions w.r.t. T and F induced by E.

(i) val

r

(C) is in 8-normal form and does not contain de�ned names;

(ii) val

r

(F u T (A

1

u : : : u A

n

)) does not contain de�ned names;

(iii) val

r

(E) is reduced w.r.t. T and val

r

(F u T (A

1

u : : : uA

n

)); and

(iv) val

r

(C)uval

r

(FuT (A

1

u: : :uA

n

)) �

T

val

r

(E)uval

r

(FuT (A

1

u: : :uA

n

)).

Ad (i): If there exists no value restriction on the top-level of C, then val

r

(C) = >

and val

r

(C) is in 8-normal form. Otherwise, since C is in 8-normal form, there

exists a unique value restriction of the form 8r:C

r

on the top-level of C and

C

r

is in 8-normal form. Since C does not contain de�ned names, C

r

does not

contain de�ned names either.

26

Ad (ii): Since F does not contain de�ned names and since an unfolded

concept description does not contain de�ned names, val

r

(F uT (A

1

u : : :uA

n

))

does not contain de�ned names.

Ad (iii): val

r

(E) is reduced w.r.t. T and val

r

(F u T (A

1

u : : : u A

n

)), since

otherwise, E would not be reduced w.r.t.T and F .

Ad (iv): By Proposition 20, C u F �

T

E u F implies

(*) val

r

(C u F) �

T

val

r

(E u F u T (A

1

u : : : uA

n

)).

Since val

r

(C

1

uC

2

) �

T

val

r

(C

1

)uval

r

(C

2

) and C

1

�

T

C

2

uC

3

=) C

1

uC

3

�

T

C

2

u C

3

, this implies

val

r

(C) u val

r

(F u T (A

1

u : : : uA

n

)) �

T

val

r

(E) u val

r

(F u T (A

1

u : : : uA

n

)):

Thus, the preconditions of the recursive de�nition are satis�ed by val

r

(C),

val

r

(F u T (A

1

u : : : u A

n

)), and val

r

(E), and by induction, D

r

is well-de�ned.

Ad (2): The permutation can be obtained as follows. Let i 2 f1; : : : ; `g. By

Proposition 20, there exists C

k

2 exr

r

(CuF) such that C

k

uval

r

(CuF) v

T

E

i

.

It is C

k

2 exr

r

(C); otherwise, we would get F u 8r:val

r

(C u F) v

T

9r:E

i

. By

(iv) from the �rst part of this proof, this would imply F u 8r:val

r

(E u F u

T (A

1

u : : : u A

n

)) v

T

9r:E

i

. But then removing 9r:E

i

from the top-level of E

would yield a concept description E

0

with E

0

u F �

T

E u F and jE

0

j < jEj in

contradiction to E is reduced w.r.t. T and F .

Thus, there exists C

k

2 exr

r

(C) with

(**) C

j

u val

r

(C u F) v

T

E

i

.

We de�ne j

i

:= j. Since i 2 f1; : : : ; `g has been chosen arbitrarily, this should

yield the �rst ` elements of the permutation. To see this, it remains to show

that for i; k 2 f1; : : : ; `g with i 6= k it is j

i

6= j

k

. We show

(+) C

j

i

u val

r

(C u F) �

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

)).

By (*) and (**), we get

(++) C

j

i

u val

r

(C u F) v

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

)).

Assume, C

j

i

u val

r

(C u F) 6w

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

)). By

Proposition 20, C u F w

T

E u F implies that there exists D 2 exr

r

(E u F u

T (A

1

u : : : u A

n

)) with D u val

r

(E u F u T (A

1

u : : : u A

n

)) v

T

C

j

i

. It even

holds D 2 exr

r

(E). Otherwise, we would get

A

1

u : : : u A

n

u F u 8r:val

r

(E u F u T (A

1

u : : : u A

n

)) v

T

9r:C

j

i

:

Then (*) would imply

A

1

u : : :uA

n

uF u8r:val

r

(EuF uT (A

1

u : : :uA

n

)) v

T

9r:C

j

i

u8r:val

r

(C uF);

from which (++) implies

A

1

u : : : u A

n

u F u 8r:val

r

(E u F u T (A

1

u : : : u A

n

)) v

T

9r:E

i

:

27

As above, this yields a contradiction to E is reduced w.r.t. T and F .

Thus, there existsD 2 exr

r

(E) with Duval

r

(EuF uT (A

1

u: : :uA

n

))u

T

C

j

i

.

It is D = E

i

, because otherwise, we again would get a contradiction to E is

reduced w.r.t. T and F . This implies (+). Using (+), assuming j

i

= j

k

for

some i 6= k again would yield a contradiction. Hence, we have shown j

i

6= j

k

for all i 6= k from f1; : : : ; `g.

Now, let fj

`+1

; : : : ; j

m

g be an arbitrary permutation of f1; : : : ;mgnfj

1

; : : : ; j

`

g.

Then j

1

; : : : ; j

m

g is a permutation of f1; : : : ;mg. In order to show that C

r;�

j

i

is

well-de�ned, it remains to show that

(i) C

j

i

is in 8-normal form and does not contain de�ned names;

(ii) val

r

(C u F) does not contain de�ned names;

(iii) E

i

is reduced w.r.t. T and val

r

(C u F); and

(iv) C

j

i

u val

r

(F u C) �

T

E

i

u val

r

(E u F u T (A

1

u : : : u A

n

)).

Ad (i): Since C is in 8-normal form and does not contain de�ned names, C

j

i

is

in 8-normal form and does not contain de�ned names.

Ad (ii): Since C and F do not contain de�ned names, val

r

(C u F) does not

contain de�ned names.

Ad (iii): E

i

is reduced w.r.t. T and val

r

(E uF uT (A

1

u : : :uA

n

)), because

otherwise, E would not be reduced w.r.t. T and F . By (*) we get that E

i

is

also reduced w.r.t. T and val

r

(C u F).

Ad (iv): This is an immediate consequence of (+).

This completes the proof of Lemma 25. 2

In order to complete the proof of Theorem 15, we have to show that each

induced extension is an extension of the input concept description, and that the

minimal rewriting is a subdescription of the induced extension.

Lemma 26 Let T be an ALE-TBox, C;F;E ALE-concept descriptions such that

C is in 8-normal form and does not contain de�ned names, F does not contain

de�ned names, E is reduced w.r.t. T and F , and E u F �

T

C uF . If C

�

is the

concept description de�ned in Figure 3, then

1. C

�

is an extension of C w.r.t. T and F , and

2. E is a subdescription of C

�

.

Proof: Ad (1): By construction, C

�

is obtained from C by conjoining de�ned

names. In particular, for each de�ned name A conjoined to C, it is CuF v

T

A,

and hence C uA u F �

T

C u F . Consequently, C

�

u F �

T

C u F .

Ad (2): By induction on the role depth of E.

If E = ?, then E is a subdescription of C

�

.

Otherwise, we get by de�nition of C

�

that def(E) = def(C

�

).

We show prim(E) � prim(C): Let Q 2 prim(E). Since CuF �

T

EuF , and

C and F do not contain de�ned names, Proposition 20 implies Q 2 prim(CuF).

28

It is Q 62 prim(F), since otherwise, E would not be reduced w.r.t. T and F .

Hence, Q 2 prim(C).

Assume val

r

(E) 6= >, i.e., there exists a value restriction of the form 8r:E

r

on the top-level of E. Since E is reduced, 8r:E

r

is unique. There exists a

unique (!) value restriction 8r:C

r

on the top-level of C; otherwise, since C and

F do not contain de�ned names, Proposition 20 implies val

r

(F) v

T

val

r

(E) in

contradiction to the minimality of E. It is C

r

u val

r

(F u T (A

1

u : : :uA

n

)) �

T

E

r

u val

r

(F u T (A

1

u : : : u A

n

)) (see the proof of Lemma 25). Let D

r

be the

recursively de�ned extension of C

r

w.r.t. T and val

r

(F u (T (A

1

u : : : u A

n

)).

By induction, E

r

is a subdescription of D

r

.

Let exr

r

(E) = fE

1

; : : : ; E

`

g, exr

r

(C) = fC

1

; : : : ; C

m

g, and fj

1

; : : : ; j

m

g the

permutation chosen in the de�nition of C

�

. Since val

r

(C u F) �

T

val

r

(E u F u

T (A

1

u : : :uA

n

)), we get by induction that, for 1 � i � `, E

i

is a subdescription

of C

�

j

i

.

Thus, E can be obtained from C

�

by removing some (negated) primitive

names, value restrictions and existential restrictions, and substituting concept

descriptions D occurring in remaining value/existential restrictions 8r:D/9r:D

by subdescriptions of D, i.e., E is a subdescription of C

�

. 2

Proof of Theorem 15(2): Let E be a minimal rewriting of C using T . Then

E is reduced w.r.t. T and > since otherwise E would not be a minimal rewriting

of C w.r.t. T . Let C

�

be the extension of C w.r.t. T and > induced by E. By

Lemma 26, we know that E is a subdescription of C

�

. In fact, E is a reduction

of C

�

w.r.t. T and >. Assume, E would not be a reduction of C

�

w.r.t. T and

>. Since we already know C

�

�

T

C and E is a subdescription of C

�

, E would

not be minimal among the subdescriptions D of C

�

satisfying D �

T

C

�

. Then,

there exists a subdescription E

0

of C

�

with E

0

�

T

C

�

�

T

C and jE

0

j < jEj.

This yields a contradiction to E is a minimal rewriting of C w.r.t. T . Thus, E is

a reduction of C

�

w.r.t. T and >. By Lemma 22 we get that there exists a result

b

C of reduce(C

�

; T ;>) with

b

C = E. Thus, the rewriting algorithm computes a

rewriting

b

C with

b

C = E.

Complexity of the minimal rewriting computation problem for ALE

Using the improved rewriting algorithm for ALE described in Figure 1, we can

show the following complexity results.

Proposition 27 1. One minimal rewriting of C using T can be computed

using polynomial space.

2. The set of all minimal rewritings of C using T can be computed in expo-

nential time.

Proof: Each extension of C is polynomial (modulo idempotence) in the size of C

and T . Furthermore, there are \only" exponentially many (essentially di�erent)

extensions of C. Since equivalence modulo TBox in ALE can be decided in

29

PSPACE [19], the set of all extensions can be enumerated using polynomial

space. For each extension C

�

, the reductions

b

C can again be enumerated in

polynomial space. Thus, if we are interested in just one minimal rewriting, it

is su�cient always to store the smallest rewriting encountered so far. Hence,

we can compute one minimal rewriting of C using polynomial space. Since

the number of minimal rewritings may be exponential, the set of all minimal

rewritings can only be computed in exponential time. 2

6 The minimal rewriting computation problem

for ALN

In this section, we adapt the results of the previous section to ALN : we will

show that the minimal rewriting algorithm depicted in Figure 1 applied to an

ALN -concept description C and an ALN -TBox T is correct in the sense of

Theorem 15.

In ALN , instead of existential restrictions we have to consider number re-

strictions, which in fact can be treated like primitive names. For the sake of

simplicity, we assume that each conjunction occurring in an ALN -concept de-

scription C contains, for each role name r 2 N

R

, at most one number restriction

of the form (� n r) resp. (� m r). Note that this is without loss of generality

due to the equivalences

(� n r) u (� m r) � (� n r) if n � m; and

(� n r) u (� m r) � (� n r) if n � m:

For technical reasons, we do not allow for number restrictions of the form (�

0 r). On the one hand, this is w.l.o.g. due to the equivalence (� 0 r) � 8r:?.

On the other hand, since j(� 0 r)j = 1 = j8r:?j, we would have to consider

(� 0 r) as a minimal rewriting of ALN -concept descriptions 8r:C with C � ?.

As a consequence, each rewriting obtained from the above normal form yields

a set of rewritings by replacing 8r:? by (� 0 r). This set is exponential in

the number of occurences of concept descriptions of the form 8r:?. But since

we already know that the number of minimal rewritings of an ALN -concept

description w.r.t. an ALN -TBox T may be exponential in the size of C and T

independently of this syntactical restrictions (see Example 10), this syntactical

restriction does not have any impact on the complexity of the minimal rewriting

computation problem in ALN .

In addition to the notations prim(C), def(C), val

r

(C), and T (C), we will

need the following notation for ALN -concept descriptions: min

r

(C) denotes the

minimum of numbers occurring in number restrictions of the form (� n r) on the

top-level of C, where min

r

(C) =1 if there does not exist a number restriction

of the form (� n r) on the top-level of C; and max

r

(C) denotes the maximum

of numbers occurring in number restrictions of the form (� n r) on the top-level

of C, where max

r

(C) := 0 if there does not exist a number restriction (� n r)

on the top-level of C.

30

The de�nition of extension is obtained from De�nition 11 by just substituting

ALE by ALN .

De�nition 28 (Extension w.r.t. T) Let C be an ALN -concept description

and T an ALN -TBox. The ALN -concept description C

�

is an extension of C

w.r.t. T i� C

�

�

T

C and C

�

can be obtained from C by conjoining de�ned

names at some position in C.

The notion \subdescription" has to be slightly modi�ed.

De�nition 29 (Subdescription w.r.t. T and F) Let T be an ALN -TBox,

F an ALN -concept description, and C an ALN -concept description in 8-normal

form that may contain de�ned names from T . The ALN -concept description

b

C

is a subdescription of C w.r.t. T and F i�

1.

b

C = C, or

2.

b

C = ? and C u F �

T

?; or

3.

b

C is obtained from C by

(a) removing some (negated) primitive names, value restrictions, and

number restrictions on the top-level of C, and

(b) substituting all concept descriptions D occurring in the remaining

value restrictions 8r:D by subdescriptions D

0

of D w.r.t. T and val

r

(Fu

T (F

1

u : : : u F

m

u A

1

: : : u A

n

)), where def(F) = fF

1

; : : : ; F

m

g and

def(C) = fA

1

; : : : ; A

n

g.

Now, the de�nition of a reduction

b

C of an ALN -concept description C

w.r.t. an ALN -TBox T is obtained from De�nition 18 by just substituting ALE

by ALN .

De�nition 30 (ALN -Reduction w.r.t. T (and F)) Let C be an ALN -concept

description in 8-normal form and T an ALN -TBox. An ALN -concept descrip-

tion

b

C is called reduction of C w.r.t. T i�

b

C is a minimal subdescription of C

w.r.t. T and > such that

b

C �

T

C.

For an ALN -concept description F ,

b

C is called reduction of C w.r.t. T and F

i�

b

C is a minimal subdescription of C w.r.t. T and F such that CuF �

T

b

CuF .

The algorithm for computing a reduction of an ALN -concept description C

w.r.t. an ALN -TBox T is simpler due to the fact that we now have to consider

number restrictions instead of existential restrictions. More precisely, there is

no non-deterministic choice between di�erent possible sets of subdescriptions.

An intuitive description of the reduction algorithm for ALN is obtained from

the intuitive description for ALE by substituting the second item by

2.' Remove the number restriction (� � r) resp. (� � r) occurring on the top-

level of C, if A

1

u : : : u A

m

v

T

(� � r) resp. A

1

u : : : u A

m

v

T

(� � r).

31

Input: An ALN -concept description C in 8-normal form, an ALN -TBox T and an

ALN -concept description F .

Algorithm: reduce(C; T ; F)

If C u F �

T

?, then

b

C := ?;

Otherwise,

Let fA

1

; : : : ; A

m

g := def(C);

Let fQ

1

; : : : ; Q

`

g := prim(C) n prim(F u T (A

1

u : : : uA

m

));

For each role name r 2 N

R

If val

r

(T (F uA

1

u : : : uA

m

)) v

T

val

r

(C)

then D

r

:= >

else D

r

:= reduce(val

r

(C); T ; val(T (F uA

1

u : : : uA

m

)));

De�ne

b

C := Q

1

u : : : uQ

`

u

A

1

u : : : uA

m

u

u

r2N

R

8r:D

r

u (� max

r

(C) r) u (� min

r

(C) r),

where each value restriction 8r:D

r

is omitted if D

r

= >,

each number restriction (� max

r

(C) r) is omitted if

max

r

(T (F uA

1

u : : : u A

m

)) � max

r

(C), and

each number restriction (� min

r

(C) r) is omitted if

min

r

(T (F u A

1

u : : : uA

m

)) � min

r

(C) or D

r

= ?.

Return

b

C.

Figure 4: The reduction algorithm for ALN .

Note that A

1

u : : : u A

m

v

T

(� � r) i� max

r

(T (A

1

u : : : u A

m

)) � max

r

(C),

and A

1

u : : : u A

m

v

T

(� � r) i� min

r

(T (A

1

u : : : u A

m

)) � min

r

(C).

Just as for ALE , we have to consider each concept description w.r.t. the con-

text F in which it occurs. The resulting reduction algorithm for ALN is depicted

in Figure 4. Obviously, the reduction algorithm for ALN is deterministic, i.e.,

for an ALN -TBox T and ALN -concept descriptions C and F , the result

b

C of

reduce(C; T ; F) is unique. For the proof of soundness and completeness we again

need an appropriate characterization of subsumption (modulo TBox) in ALN

and a lemma on the subsumption relationships between concept descriptions

and their subdescriptions.

Proposition 31 1. Let C;D be two ALN -concept descriptions without de-

�ned names. It holds that C v D i� C � ? or D � > or

� prim(D) � prim(C),

� max

r

(D) � max

r

(C) for all role names r 2 N

R

,

� min

r

(D) � min

r

(C) or val

r

(C) � ? for all role names r 2 N

R

, and

� val

r

(C) v val

r

(D) for all role names r 2 N

R

.

2. Let T be an ALN -TBox, C;D two ALN -concept descriptions that may con-

tain de�ned names from T . Let fA

1

; : : : ; A

n

g = def(C) and fB

1

; : : : ; B

m

g =

def(D). It holds that C v

T

D i� C �

T

? or D �

T

> or

32

� prim(D u T (B

1

u : : : u B

m

)) � prim(C u T (A

1

u : : : u A

n

)),

� max

r

(D u T (B

1

u : : : u B

m

)) � max

r

(C u T (A

1

u : : : u A

n

)) for all

role names r 2 N

R

,

� min

r

(DuT (B

1

u : : :uB

m

)) � min

r

(CuT (A

1

u : : :uA

n

)) or val

r

(Cu

T (A

1

u : : : uA

n

)) �

T

? for all role names r 2 N

R

, and

� val

r

(C u T (A

1

u : : : u A

n

)) v

T

val

r

(D u T (B

1

u : : : u B

m

)) for all

role names r 2 N

R

.

Proof sketch: Proposition 31(1) is an easy consequence of the characterization

of subsumption for Classic given in [12] (ALN is sublanguage of Classic; a

more convenient characterization of subsumption for ALN can be found in [6]).

Note that the characterization is complete since we do not allow for number

restrictions of the form (� 0 r).

The second part can be reduced to (1) applying the equivalence C v

T

D i�

T (C) v T (D). 2

The following lemma can easily be proved by induction on the depth of the

subdescription.

Lemma 32 Let T be an ALN -TBox, C an ALN -concept description in 8-

normal form, and F an ALN -concept description. Then, for each subdescription

b

C of C w.r.t. T and F , it holds that C u F v

T

b

C.

We are now equipped to proof soundness and completeness of the reduction

algorithm for ALN .

Lemma 33 Let C be an ALN -concept description in 8-normal form, T an

ALN -TBox, and F an ALN -concept description. Let

b

C be the concept descrip-

tion computed by reduce(C; T ; F). If F 6�

T

?, then

b

C is the unique reduction

of C w.r.t. T and F .

Proof: We show that

1.

b

C is a subdescription of C,

2.

b

C u F �

T

C u F , and

3.

b

C is minimal among the concept descriptions satisfying (2).

In order to prove (3), we show that

4: for a reduction E of C w.r.t. T and F , it is E =

b

C.

Since the algorithm is deterministic, i.e., the algorithm always computes a

unique result

b

C, (4) implies that, for F 6�

T

?, reductions of ALN -concept

descriptions w.r.t. T and F are unique.

Ad (1): By construction,

b

C is a subdescription of C.

Ad(2): We show

b

C u F �

T

C u F by induction on the role depth of

b

C.

Assume

b

C = ?. By construction, C u F �

T

? and hence, C u F �

T

b

C uF .

33

Assume

b

C 6= ?. We show

b

C u F v

T

C u F and

b

C u F w

T

C u F .

The latter subsumption relationship is an immediate consequence of Lemma 32.

It remains to show that

b

C u F v

T

C u F . We show

(i) for all (negated) primitive names Q 2 prim(C):

b

C u F v

T

Q;

(ii) for all role names r 2 N

R

:

b

C u F v

T

8r:val

r

(C); and

(iii) for all role names r 2 N

R

: max

r

(

b

C u T (F uA

1

u : : : uA

m

)) � max

r

(C u

T (F uA

1

u : : :uA

m

)), and min

r

(

b

C u T (F uA

1

u : : :uA

m

)) � min

r

(C u

T (F u A

1

u : : : u A

m

)).

where fA

1

; : : : ; A

m

g = def(C). Since def(C) = def(

b

C), this implies

b

C u F v

T

C u F (Proposition 31).

Items (i) and (ii) can be shown in exactly the same way as in the proof of

Lemma 22. It remains to show the third item.

Let r 2 N

R

andmax

r

(

b

CuT (FuA

1

u: : :uA

m

)) > 0, i.e., there exists a number

restriction (� max

r

(

b

C) r) on the top-level of

b

C . Since

b

C is a subdescription

of C, (� max

r

(

b

C) r) also occurs on the top-level of C and hence, max

r

(

b

C u

T (F u A

1

u : : : u A

m

)) � max

r

(C u T (F u A

1

u : : : u A

m

)). If there exists

a number restriction of the form (� max

r

(C) r) on the top-level of C that

has been removed in

b

C, then by construction, max

r

(T (F u A

1

u : : : u A

m

)) �

max

r

(C uT (F uA

1

u : : :uA

m

)), and hence max

r

(

b

C uT (F uA

1

u : : :uA

m

)) �

max

r

(C u T (F u A

1

u : : : uA

m

)).

The last claimmin

r

(

b

CuT (FuA

1

u: : :uA

m

)) � min

r

(CuT (FuA

1

u: : :uA

m

))

can be shown analogously.

Ad (4): We have to show that for a reduction E of C w.r.t. T and F , it is

b

C = E.

Just as in the proof of Lemma 22 we get that

� def(E) = def(

b

C) and prim(E) = prim(

b

C), and

� for each value restriction 8r:E

r

on the top-level of E, there exists a value

restriction 8r:C

r

on the top-level of

b

C such that E

r

= C

r

.

It remains to consider number restrictions occurring on the top-level of E. Since

E is a subdescription of C, these number restrictions also occur on the top-level

of C. Since E is a reduction w.r.t. T and F , we get, for number restrictions

(� � r)/(� � r) on the top-level of E, F u A

1

u : : : u A

m

6v

T

(� � r) and F u

A

1

u : : :uA

m

6v

T

(� � r). Thus, max

r

(T (F uA

1

u : : :uA

m

)) 6� max

r

(CuT (F u

A

1

u : : : u A

m

)), and hence, (� � r) occurs on the top-level of

b

C. Analogously,

we get that also (� � r) occurs on the top-level of

b

C.

This completes the proof of Lemma 33. 2

Proof of Theorem 15 for ALN

The proof of Theorem 15 for ALN works in exactly the same way as for ALE ,

i.e., we show that for a minimal rewriting E of an ALN -concept description C

34

Given: An ALN -TBox, and ALN -concept descriptions C;F;E, where

- C is in 8-normal form and does not contain de�ned names,

- F does not contain de�ned names,

- E is reduced w.r.t. T and F , and C u F �

T

E u F .

Recursive de�nition of the extension C

�

of C w.r.t. T and F induced by E:

If E u F �

T

?, then C

�

:= C;

Otherwise,

Let fQ

1

; : : : ; Q

k

g := prim(C);

Let fA

1

; : : : ; A

n

g := def(E);

For r 2= NR

let D

r

be the recursively de�ned extension of val

r

(C)

w.r.t. T and val

r

(F u T (A

1

u : : : uA

n

) induced by val

r

(E);

Then C

�

is de�ned by

C

�

:= Q

1

u : : : uQ

k

u A

1

u : : : u A

n

u

u

r2N

R

�

8r:D

r

u (� max

r

(C) r) u (� min

r

(C) r)

�

,

where the value restriction 8r:D

r

(the number restriction (� max

r

(C) r)/(�

min

r

(C) r)) is omitted if there does not exist such a value restriction (number

restriction) on the top-level of C.

Figure 5: Extensions w.r.t. T and F induced by E in ALN .

using an ALN -TBox T , we can de�ne an extension C

�

of C such that E is a

reduction of C

�

and hence can be computed using the reduction algorithm for

ALN .

The idea underlying the recursive de�nition of the induced is extension is

exactly the same as for ALE . The notions \extension w.r.t. T and F" and

\reduced w.r.t. T and F" are adopted to ALN .

Just as for ALE , one can show that this de�nition makes sense, since for

the recursive de�nition of D

r

, the premise of the de�nition is satis�ed. The

following lemma states the properties of an extension induced by E needed in

the proof of Theorem 15. Its proof can be easily adapted from the proof of

Lemma 26.

Lemma 34 Let T an ALN -TBox, C an ALN -concept description in 8-normal

form that does not contain de�ned names, F an ALN -concept description that

does not contain de�ned names, and E an ALN -concept description that is

reduced w.r.t. T and F with E u F �

T

C u F . If C

�

is the concept description

de�ned in Figure 5, then

1. C

�

is an extension of C w.r.t. T and F , and

2. E is a subdescription of C

�

.

Now, using the modi�ed notions and results for ALN , the proof of soundness

35

and completeness of the minimal rewriting algorithm for ALN works in exactly

the same way as for ALE .

Complexity of the minimal rewriting computation problem for ALN

Using the improved rewriting algorithm described in Figure 1 for ALN , we get

the following complexity results.

Proposition 35 1. One minimal rewriting of C using T can be computed

using polynomial space.

2. The set of all minimal rewritings of C using T can be computed in expo-

nential time.

Proof: Each extension C is polynomial (modulo idempotence) in the size of

C and T . Since the restricted equivalence problem modulo TBox in ALN can

be decided in �

p

2

(see Appendix B, Theorem 49), the set of all (essentially dif-

ferent) extensions of C w.r.t. T can be enumerated using polynomial space.

For each extension C

�

, the unique reduction w.r.t. T can again be computed

using polynomial space. Hence, by always storing only the smallest rewriting

encountered so far, we can compute on minimal rewriting of C using polynomial

space. Since, just as for ALE , the number of minimal rewritings may be expo-

nential, the set of all minimal rewritings of C using T can only be computed in

exponential time. 2

7 A heuristic algorithm for ALE

In this section, we present an algorithm that computes a small, but not necessar-

ily minimal, rewriting of an ALE-concept description C using an ALE-TBox T in

deterministic polynomial time using an oracle for deciding equivalence modulo

T . The idea underlying the algorithm can be described as follows. Instead of

�rst computing an extension of C and then the reduction of this extension, we

interleave these two steps in a single pass through the concept. Both, for the

extension and the reduction, we employ a greedy heuristics. To be more precise,

the concept description C is processed recursively. In each recursion step, we

build a local extension by conjoining to the top level of C the set fA

1

; : : : ; A

n

g

of all minimal (w.r.t. v

T

) de�ned names in T subsuming C. Then we remove

all (negated) primitive names, value restrictions, and existential restrictions on

the top-level of C that are redundant w.r.t. A

1

; : : : ; A

n

, and the context in

which they occur, i.e., the value restrictions obtained from previous recursion

steps. Finally, the concept descriptions in the remaining value and existential

restrictions are rewritten recursively. Like the reduction algorithm, the heuris-

tic rewriting algorithm thus takes as inputs the concept C to be rewritten, the

underlying TBox T , and a concept description F describing the context C has

to be considered in.

36

Input: An ALE-concept description C in 8-normal form,

an ALE-TBox T ,

and an ALE-concept description F .

Algorithm: rewrite(C; T ; F)

If C u F �

T

?, then

b

C := ?;

If F v

T

C, then

b

C := >;

Otherwise,

Let fA

1

; : : : ; A

n

g be the set of all minimal (w.r.t. v

T

)

de�ned names A

i

with C u F v

T

A

i

;

Let fQ

1

; : : : ; Q

`

g = prim(C) n prim(T

�

(F u A

1

u : : : uA

n

));

For r 2 N

R

do

D

r

:= rewrite(val

r

(C); T ; val

r

(T

�

(F u A

1

u : : : uA

n

)));

Let fD

1

; : : : ; D

m

g := exr

r

(C) and D

r

:= fD

1

; : : : ; D

m

g;

For i = 1; : : : ;m do

if (1) there exists D 2 D

r

n fD

i

g withD u val

r

(C u T

�

(F)) v D

i

, or

(2) A

1

u : : : u A

n

u F u val

r

(C) v 9r:D

i

then D

r

:= D

r

n fD

i

g;

De�ne

b

C := Q

1

u : : : uQ

`

u A

1

u : : : u A

n

u

u

r2N

R

8r:D

r

u u

D2D

r

9r:rewrite(D; T ; val

r

(C u T

�

(F)))

where 8r:D

r

is omitted if D

r

= >;

Return

b

C.

Figure 6: A rewriting algorithm for ALE using a greedy heuristics.

The formal speci�cation requires an additional notation. For anALE -concept

description C that may contain de�ned names, T

�

(C) denotes the concept de-

scription obtained from C by exhaustively substituting de�ned names on the

top-level of C by their de�ning concepts from the underlying TBox T . In con-

trast to T (C), the size of T

�

(C) is always polynomial in the size of C and

T . The following theorem states correctness and complexity of the rewriting

algorithm for ALE depicted in Figure 6.

Theorem 36 Let T be an ALE-TBox, C;F ALE-concept descriptions without

de�ned names, and let

b

C be the result of rewrite(C; T ; F).

1.

b

C u F �

T

C u F .

2.

b

C is computed in deterministic polynomial time using an oracle for decid-

ing subsumption modulo TBox in ALE .

Proof: The �rst claim can easily be shown by induction on the role depth of

C using Proposition 20(2). The second claim is obvious. 2

37

The �rst item of Theorem 36 implies that each concept description computed

by rewrite(C; T ;>) is a rewriting of C w.r.t. T . This rewriting, however, need

not be minimal as shown in the following example.

Example 37 For a nonnegative integer n > 2, we consider the ALE -concept

description C

n

= 8r:(P

1

u : : : u P

n

) and the ALE-TBox

T

n

:= f A

i

:

= 8r:P

i

j 1 � i � ng [

fA

n+1

:

= P

1

u : : : u P

n

g:

The heuristic rewriting algorithm of Figure 6 produces the rewriting

b

C

n

:= A

1

u

: : :uA

n

of size n. The unique minimal rewriting of C

n

using T

n

is E

n

:= 8r:A

n+1

,

which is of size 2. Hence, this example even shows that the di�erence between

the size of the rewriting produced by the heuristic algorithm and the size of the

minimal rewritings can become arbitrarily large.

The reason why the heuristic algorithm does not �nd the minimal rewriting

in the above example is that it introduces too many de�ned names on the top

level. These names allow for the removal of all the value restrictions on the

top level, which makes it impossible to recognize that at a lower level a more

promising extension could have been found.

Another di�erence between a minimal and heuristically computed rewriting

is due to the fact that we only consider minimal (w.r.t. subsumption) de�ned

names when adding de�ned names in the heuristic algorithm.

Example 38 Let T = fA

1

:

= P

1

u P

2

; A

2

:

= P

1

u P

3

; A

3

:

= P

3

g and C =

P

1

u P

2

u P

3

. The heuristic algorithm computes the rewriting

b

C = A

1

u A

2

.

Obviously, this is a minimal rewriting. Compared to the minimal rewriting

E = A

1

u A

3

,

b

C does not contain more de�ned names, but instead of A

3

,

b

C

contains the more speci�c de�ned name A

2

.

In principle, the two di�erences illustrated in the above examples are the

only di�erences between a minimal rewriting and a rewriting computed by the

heuristic algorithm. These di�erences are formally captured by the notion quasi-

subdescription. This notion di�ers from the notion `subdescription' in three

aspects: on the one hand, in a quasi-subdescription, we do not allow for substi-

tuting a concept description by ?. On the other hand, we allow for conjoining

de�ned names and substituting de�ned names by more speci�c de�ned names.

De�nition 39 (Quasi-subdescription) Let T be an ALE-TBox and C an

ALE-concept description that may contain de�ned names from T . The ALE-

concept description

b

C is a quasi-subdescription of C w.r.t. T i�

b

C is obtained

from C by

� removing some (negated) primitive names, value and existential restric-

tions on the top-level of C,

� adding some de�ned names on top-level of C,

38

� substituting some de�ned names on top-level of C by more speci�c de�ned

names from T , and

� substituting all concept descriptions D occurring in the remaining value/existential

restrictions 8r:D/9r:D on the top-level of C by quasi-subdescriptions

b

D

of D w.r.t. T .

Consider Example 37 and Example 38 again. It is easy to see that

c

C

n

(

b

C)

is a quasi-subdescription of E

n

(E). Example 37 illustrated that, in order to

obtain a rewriting

b

C computed by the algorithm as a quasi-subdescription of a

minimal rewriting E, some value restrictions must be removed. The following

example shows that one might also have to remove some existential restrictions

in

b

C in order to obtain E.

Example 40 Let C = 8r:P u 9r:P and T = fA

:

= 9r:Pg. The rewriting

computed by the heuristic algorithm is given by

b

C = 8r:P u A. Since j9r:>j =

jAj = 1, the concept description E = 8r:P u 9r:> is also a minimal rewriting of

C using T . Obviously,

b

C is a quasi-subdescription of E, since

b

C can be obtained

from E by (i) adding A on the top-level of E, and (ii) removing 9r:> from the

top-level of E.

We can now formalize the relationship between a minimal rewriting and the

rewriting obtained from the rewriting algorithm described in Figure 6.

Theorem 41 Let T be an ALE -TBox, C an ALE-concept description not con-

taining de�ned names, and E a minimal rewriting of C using T . Then the result

b

C of rewrite(C; T ;>) is a quasi-subdescription of E.

Proof: The theorem is an easy consequence of the following

claim: Let T be an ALE-TBox and C;E; F

1

; F

2

;

b

C ALE-concept descriptions

such that

� C is in 8-normal form and does not contain de�ned names,

� F

1

v

T

F

2

,

� E does not contain redundant de�ned names, i.e., if E

0

is obtained

from E by removing some de�ned names in E, then E

0

uF

2

6�

T

EuF

2

,

� C u F

1

�

T

E u F

2

, and

�

b

C is the result of rewrite(C; T ; F

1

).

Then either

b

C = >,

b

C = ?, or

1. prim(

b

C) � prim(E),

2. for all A 2 def(E), there exists A

0

2 def(

b

C) with A

0

v

T

A,

3. for each value restriction 8r:

b

C

0

on the top-level of

b

C, there exists a

value restriction 8r:E

0

on the top-level of E such that

b

C

0

is a quasi-

subdescription of E

0

, and

39

4. for each existential restriction 9r:

b

C

i

on the top-level of

b

C, there exists

an existential restriction 9r:E

j

on the top-level of E such that

c

C

i

is

a quasi-subdescription of E

j

.

Since E is a minimal rewriting of C w.r.t. T , E is reduced w.r.t. T and > and

does not contain redundant de�ned names. With F

1

= F

2

= > the claim implies

either

b

C = >,

b

C = ?, or the items (1){(4) hold for

b

C. If

b

C = >, then C �

T

b

C

implies E �

T

>, and since E is minimal, it is E = > (modulo idempotence of

conjunction). Analogously, we get E = ? in case that

b

C = ?. Otherwise, the

items (1){(4) ensure that

b

C is a quasi-subdescription of E.

Thus, it remains to prove the claim. If

b

C = > or

b

C = ?, nothing has to be

shown. Let

b

C 62 f>;?g.

Ad (1): Let Q 2 prim(

b

C). Assume Q 62 prim(E). Since

b

CuF

1

�

T

EuF

2

, we

get by Proposition 20 that Q occurs on the top-level of T (F

2

) or T (A) for some

A 2 def(E). Because of F

1

u

T

F

2

and item (2), either case yields a contradiction

to the de�nition of the set fQ

1

; : : : ; Q

`

g of (negated) primitive names occurring

on the top-level of

b

C .

Ad (2): Let A 2 def(E). Then C u F

1

�

T

E u F

2

implies C u F v

T

A. If

A 2 def(

b

C), nothing has to be shown. If A 62 def(

b

C), then A is not a minimal

de�ned name satisfying C u F

1

v

T

A. But then, there exists A

0

2 def(

b

C) with

A

0

<

T

A.

Ad (3): Let 8r:

C

r

be a value restriction on the top-level of

b

C. By construc-

tion,

c

C

r

6= > and there exists a value restriction 8r:C

r

on the top-level of C such

that

c

C

r

= rewrite(C

r

; T ; val

r

(T

�

(F

1

u A

1

u : : : u A

n

))), where fA

1

; : : : ; A

n

g =

def(

b

C). We show that

(a) there exists a value restriction 8r:E

r

on the top-level of E,

(b) E

r

is reduced w.r.t. T and val

r

(T

�

(F

2

uB

1

u: : :uB

m

)), where fB

1

; : : : ; B

m

g =

def(E),

(c) C

r

u val

r

(T

�

(F

1

uA

1

u : : :uA

n

)) �

T

E

r

u val

r

(T

�

(F

2

uB

1

u : : : uB

m

)),

and

(d) val

r

(T

�

(F

1

u A

1

u : : : u A

n

)) v

T

val

r

(T

�

(F

2

u B

1

u : : : uB

m

))

From these four items, we get by induction that either

c

C

r

= >,

c

C

r

= ? or

the conditions (1){(4) are satis�ed for

c

C

r

. Now

c

C

r

yields a contradiction to

the construction of

b

C . If

c

C

r

= ?, then (a) and (c) and the precondition that

E is reduced w.r.t. T and F

2

imply that E

r

= ?. Hence,

c

C

r

is a quasi-

subdescription of E

r

. Finally, given that the conditions (1){(4) are satis�ed

for

c

C

r

and E

r

, we get that

c

C

r

is a quasi-subdescription of E

r

w.r.t.T and

val

r

(T

�

(F

1

u A

1

u : : : u A

n

)). Thus, in order to prove (3), it remains to show

(a){(d).

Ad (a): Assume that there does not exist a value restriction of the form

8r:E

r

on the top-level of E. Then C u F

1

�

T

E u F

2

implies that val

r

(T

�

(F

2

u

40

B

1

u : : : u B

m

)) �

T

C

r

u val

r

(T

�

(F

1

u A

1

u : : : u A

n

)). Because of F

1

v

T

F

2

and item (2), this yields val

r

(T

�

(F

1

u A

1

u : : : u A

n

)) v

T

C

r

in contradiction

to the construction of

b

C and the fact that there exists a value restriction 8r:

c

C

r

on the top-level of

b

C .

Ad (b): E

r

is reduced w.r.t. T and val

r

(T

�

(F

2

u B

1

u : : : u B

m

)), since

otherwise, E would not be reduced w.r.t. T and F

2

.

Ad (c): This equivalence is a consequence from C u F

1

�

T

E u F

2

by

Proposition 20.

Ad (d): This subsumption relationship is an immediate consequence of

F

1

v

T

F

2

and item (2).

In order to complete the proof of Theorem 41 it remains to show item (4).

Ad (4): Let 9r:

c

C

i

be an existential restriction on the top-level of

b

C. By

construction there exists an existential restriction 9r:C

i

on the top-level of C

such that

c

C

i

= rewrite(C

i

; T ; val

r

(T

�

(F

1

uA

1

u : : :uA

n

))). We show that there

exists an existential restriction 9r:E

j

on the top-level of E such that

(a) E

j

is reduced w.r.t. T and val

r

(T

�

(E u F

2

)),

(b) C

i

u val

r

(C u T

�

(F

1

)) �

T

E

j

u val

r

(T

�

(E u F

2

)), and

(c) val

r

(C u T

�

(F

1

)) �

T

val

r

(T

�

(E u F

2

)).

By induction, these items imply that either

c

C

i

= >,

c

C

i

= ? or that the items

(1){(4) are satis�ed for

c

C

i

and E

j

. Now,

c

C

i

= ? yields a contradiction to our

assumption

b

C 6�

T

?. If

c

C

i

= >, then val

r

(C u T

�

(F

1

u A

1

u : : : u A

n

)) v

T

C

i

.

Hence, (b) implies

val

r

(C u T

�

(F

1

)) v

T

E

j

u val

r

(T

�

(E u F

2

)):

By (c), we get val

r

(T

�

(E u F

2

)) u

T

E

j

. Then E

j

only contains de�ned names,

because otherwise, E would not be reduced w.r.t. T and F

2

. But this yields

a contradiction to the precondition that E does not contain redundant de�ned

names, because if we remove the de�ned names from E

j

, we would obtain a

concept description E

0

with E

0

u F

2

� E u F

2

and jE

0

j < jEj. Thus, also

c

C

i

= > yields a contradiction and the conditions (1){(4) must be satis�ed for

c

C

i

and E

j

. These imply that

c

C

i

is a quasi-subdescription of E

j

w.r.t. T and

val

r

(T

�

(F

1

u A

1

u : : : u A

n

)). In order to prove (4), it remains to show items

(a){(c).

It is easy to see that val

r

(C u T

�

(F

1

)) v

T

val

r

(T

�

(A

1

u : : : u A

n

)). Using

this subsumption relationship, item (c) is an easy consequence of item (c) in the

proof of item (3).

It remains to show (a) and (b). By Proposition 20, CuF

1

�

T

EuF

2

implies

that there exists D 2 exr

r

(T

�

(E u F

2

)) with D u val

r

(T

�

(E u F

2

)) v

T

C

i

.

Assume, D 62 exr

r

(E), i.e. D 2 exr

r

(T

�

(F

2

u B

1

u : : : u B

m

)), where

fB

1

; : : : ; B

m

g = def(E). Then item (2) and F

1

v

T

F

2

imply that there ex-

ists D

0

2 exr

r

(T

�

(F

1

u A

1

u : : : u A

n

)) with D

0

v

T

D. By construction, C

i

would have been removed from D

r

in contradiction to

c

C

i

2 exr

r

(

b

C).

Thus, we get D = E

j

for some E

j

2 exr

r

(E). Now, (c) implies

41

(*) E

j

u val

r

(C u T

�

(F

1

)) v

T

C

i

u val

r

(C u T

�

(F

1

)).

By Proposition 20, C u F

1

�

T

E u F

2

implies that there exists D 2 exr

r

(C u

T

�

(F

1

)) with

D u val

r

(C u T

�

(F

1

)) v

T

E

j

.

Now, (*) implies D u val

r

(C u T

�

(F

1

)) v

T

C

i

u val

r

(C u T

�

(F

1

)). Assume,

D u val

r

(C u T

�

(F

1

)) <

T

C

i

u val

r

(C u T

�

(F

1

)). Then C

i

would have been

removed from D

r

in contradiction to

c

C

i

2 exr

r

(

b

C). Thus, we get D u val

r

(C u

T

�

(F

1

)) �

T

C

i

u val

r

(C u T

�

(F

1

)). Item (c) implies C

i

u val

r

(C u T

�

(F

1

)) �

T

E

j

u val

r

(T

�

(E uF

2

)), i.e. item (b). Now, (a) follows in the same way as (b) in

the proof of item (3).

This completes the proof of Theorem 41. 2

Intuitively, if we view concept descriptions as trees where edges are due to

existential and value restrictions, and nodes are labeled with (negated) concept

names, then the above result can be interpreted as follows. The rewriting

b

C

produced by the heuristic algorithm may have a tree structure that is smaller

than the one of the minimal rewriting E. The labels of the nodes in the tree cor-

responding to

b

C may contain less (negated) primitive names, but more de�ned

names.

First experimental results

In order to study the usefulness of our minimal rewriting approach, we have

implemented a prototype of the rewriting algorithm depicted in Figure 6. First

results obtained in our process engineering application are encouraging: for a

TBox with about 65 de�ned and 55 primitive names, 128 source descriptions of

size about 800 (obtained as results of the lcs computation) were rewritten into

descriptions of size about 10.

For each of these rewritings, the set of de�ned names computed in each

recursion step, i.e., the set fA

1

; : : : ; A

n

g in Figure 6, had size one, i.e., there

existed just one (minimal) de�ned name subsuming C u F . Thus, the negative

e�ect (illustrated by the above example) that too many de�ned names were

conjoined did not occur in our experiments. For the future, we are planning

a more thorough empirical evaluation, also comparing the heuristic algorithm

with one that actually computes (all) minimal rewritings.

8 Conclusion

In this work, we �rst introduced a general framework for the rewriting problem.

We then investigated the instance of the framework in which one is interested

in computing minimal rewritings of concept descriptions using de�ned concepts

from a TBox, where all parts are given in the same DL. We showed that the

corresponding decision problem is NP-hard for FL

0

, ALE , and ALN and even

42

PSPACE-hard for ALC. Finally, we introduced a non-deterministic algorithm

for computing (minimal) rewritings in ALN and ALE .

In order to study the usefulness of our minimal rewriting approach, we have

implemented a prototype of the rewriting algorithm for ALE introduced in Sec-

tion 5 which computes one (possibly non-minimal) rewriting using a greedy

heuristics for determining the extension.

References

[1] F. Baader. Using automata theory for characterizing the semantics of termi-

nological cycles. Annals of Mathematic and Arti�cial Intelligence, 18:175{

219, 1996.

[2] F. Baader and R. K�usters. Computing the least common subsumer and the

most speci�c concept in the presence of cyclic ALN -concept descriptions. In

O. Herzog and A. G�unter, editors, Proceedings of the 22nd Annual German

Conference on Arti�cial Intelligence (KI'98), volume 1504 of Lecture Notes

in Computer Science, pages 129{140. Springer-Verlag, 1998.

[3] F. Baader and R. K�usters. Matching in description logics with

existential restrictions. In P. Lambrix, A. Borgida, M. Lenz-

erini, R. M�oller, and P. Patel-Schneider, editors, Proceedings of

the International Workshop on Description Logics 1999 (DL'99),

number 22 in CEUR-WS, Sweden, 1999. Link�oping University.

Proceedings online available from http://SunSITE.Informatik.RWTH-

Aachen.DE/Publications/CEUR-WS/Vol-22/.

[4] F. Baader and R. K�usters. Matching in description logics with existential

restrictions. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Prin-

ciples of Knowledge Representation and Reasoning: Proceedings of the 7th

International Conference (KR2000), pages 261{272. Morgan Kaufmann,

2000.

[5] F. Baader, R. K�usters, A. Borgida, and D. McGuinness. Matching in

description logics. Journal of Logic and Computation, 9(3):411{447, 1999.

[6] F. Baader, R. K�usters, and R. Molitor. Structural subsumption considered

from an automata theoretic point of view. In E. Franconi, G. De Giacomo,

R.M. MacGregor, W. Nutt, and C.A. Welty, editors, Proceedings of the 1998

International Workshop on Description Logics (DL'98), Trento, Italy, 1998.

Proceedings online available from http://SunSITE.Informatik.RWTH-

Aachen.DE/Publications/CEUR-WS/Vol-11/.

[7] F. Baader, R. K�usters, and R. Molitor. Computing least common sub-

sumers in description logics with existential restrictions. In T. Dean, ed-

itor, Proceedings of the 16th International Joint Conference on Arti�cial

Intelligence 1999 (IJCAI'99), pages 96{101. Morgan Kaufmann, 1999.

43

[8] F. Baader and P. Narendran. Uni�cation of concept terms in description

logics. In H. Prade, editor, Proceedings of the 13th European Conference on

Arti�cial Intelligence (ECAI-98), pages 331{335. John Wiley & Sons Ltd,

1998.

[9] F. Baader and U. Sattler. Knowledge representation in process engineering.

In L. Padgham, E. Franconi, M. Gehrke, D. McGuinness, and P. Patel-

Schneider, editors, Proceedings of the 1996 International Workshop on De-

scription Logic (DL'96), pages 74{78. AAAI Press, 1996.

[10] C. Beeri, A.Y. Levy, and M.-C. Rousset. Rewriting queries using views

in description logics. In L. Yuan, editor, Proceedings of the 16th ACM

SIG-SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS'97), pages 99{108, New York, NY 10036, USA, 1997. ACM Press.

[11] A. Borgida and D.L. McGuinness. Asking queries about frames. In L.C.

Aiello, J. Doyle, and S. Shapiro, editors, Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the 5th International Conference

(KR'96), pages 340{349. Morgan Kaufmann, 1996.

[12] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm

for subsumption in the classic description logic. Journal of Arti�cial

Intelligence Research, 1:277{308, 1994.

[13] W.W. Cohen, A. Borgida, and H. Hirsh. Computing least common sub-

sumers in description logics. In W. Swartout, editor, Proceedings of the

10th National Conference on Arti�cial Intelligence, pages 754{760. MIT

Press, 1992.

[14] W.W. Cohen and H. Hirsh. Learning the classic description logic: Theo-

retical and experimental results. In J. Doyle, E. Sandewall, and P. Torasso,

editors, Principles of Knowledge Representation and Reasoning: Proceed-

ings of the 4th International Conference (KR'94), pages 121{132. Morgan

Kaufmann, 1994.

[15] F.M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and A.M.

Spaccamela. The complexity of existential quanti�cation in concept lan-

guages. Arti�cial Intelligence, 53:309{327, 1992.

[16] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, 1979.

[17] R. K�usters. Characterizing the semantics of terminological cycles in

ALN using �nite automata. LTCS-Report 97-04, LuFG Theoretical Com-

puter Science, RWTH Aachen, 1997. See http://www-lti.informatik.rwth-

aachen.de/Forschung/Reports.html.

[18] R. K�usters. Characterizing the semantics of terminological cycles in ALN

using �nite automata. In A.G. Cohn, L. Schubert, and S.C. Shapiro, edi-

tors, Principles of Knowledge Representation and Reasoning: Proceedings

44

of 6th International Conference (KR'98), pages 499{510. Morgan Kauf-

mann, 1998.

[19] C. Lutz. Complexity of terminological reasoning revisited. In Proceedings

of the 6th International Conference on Logic for Programming and Auto-

mated Reasoning (LPAR'99), volume 1705 of Lecture Notes in Arti�cial

Intelligence, pages 181{200. Springer-Verlag, 1999.

[20] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, vol-

ume 422 of Lecture Notes in Arti�cial Intelligence. Springer Verlag, 1990.

[21] B. Nebel. Terminological reasoning is inherently intractable. Arti�cial

Intelligence, 43(2):235{249, 1990.

[22] U. Sattler. Terminological knowledge representation systems in a pro-

cess engineering application. PhD thesis, RWTH Aachen, 1998. Siehe

http://www-lti.informatik.rwth-aachen.de/Forschung/Papers.html.

[23] M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with

complements. Arti�cial Intelligence, 48(1):1{26, 1991.

45

A Equivalence modulo TBox for FL

0

Motivated by the minimal rewriting problem, we consider the special case of

equivalence modulo TBox in FL

0

in which one concept does not contain de�ned

concepts. It is well-known [21] that in general subsumption (and hence equiv-

alence) modulo TBox in FL

0

is coNP-complete. In the special case, however,

deciding equivalence turned out to be still tractable.

In order to show the new complexity result, we use a concept-centered normal

form [8]: any FL

0

-concept description can be written in the form 8L

1

:P

1

u : : :u

8L

k

:P

k

, where P

1

; : : : ; P

k

are concept names and the L

i

are �nite sets of words

over the alphabet of primitive roles. This normal form can be obtained by

1. distributing value restrictions over conjunctions, i.e., by exhaustively ap-

plying the rule

8r:(D u E) �! 8r:D u 8r:E;

2. writing 8r

1

: : : r

n

:P

i

instead of 8r

1

: � � � 8r

n

:P

i

; and �nally

3. collecting the words w occurring in a value restrictions ending with P

i

in

the set L

i

.

Example 42 Consider the FL

0

-concept description

P u 8r:(8r:P u 8r:Q):

The corresponding normal form is given by

8f"; rrg:P u 8frrg:Q:

Using this normal form, equivalence of FL

0

-concept descriptions can be char-

acterized using the formal languages L

i

[8].

Theorem 43 Let C;D be FL

0

-concept descriptions with normal forms C �

8L

1

:P

1

u : : : u 8L

k

:P

k

and D � 8M

1

:P

1

u : : : u 8M

k

:P

k

. Then C � D i�

L

i

=M

i

for i = 1; : : : ; k.

As an easy consequence we get that equivalence of FL

0

-concept descriptions

C;D can be decided in time polynomial in the size of C and D.

In the presence of an FL

0

-TBox, however, the equivalence problem C �

T

D

for FL

0

becomes coNP-complete [21]: In this case C and D may contain prim-

itive concepts as well as de�ned concepts. Thus, in order to test the condition

from Theorem 43, one must �rst unfold the concept descriptions C;D w.r.t. T

and then test the condition L

C

(P) = L

D

(P) for all primitive concepts P . As

shown in [21], unfolding an FL

0

-TBox T may yield a TBox T

0

of size exponential

in the size of T .

In the minimal rewriting problem for FL

0

, we are interested in deciding

wether a concept description D is equivalent to C w.r.t. T where

46

1. C is an FL

0

-concept description of the form

8L

1

:P

1

u : : : u 8L

k

:P

k

;

containing only primitive concepts P

i

2 N

P

, and

2. D is an FL

0

-concept description of the form

D � 8M

1

:A

1

u : : : u 8M

`

:A

`

u 8K

1

:P

1

u : : : u 8K

k

:P

k

;

where fA

1

; : : : ; A

`

g = N

D

and fP

1

; : : : ; P

k

g = N

P

.

It turned out that in this special case the equivalence C �

T

D can be decided

in time polynomial in the size of C, D, and T . This tractability result is based

on the automata-theoretic characterization of equivalence for FL

0

given in [1].

The TBox T is translated into a �nite automaton A

T

(with "-transitions). The

concept names in T are the states of A

T

and the transitions in A

T

are induced

by the value restrictions in T (see [1] for details). For a de�ned concept A from

T and a primitive concept P , the language L

A

T

(A;P) denotes the set of all

words labeling paths from A to P in A

T

. The languages L

A

T

(A;P) represent

all value restrictions that must be satis�ed by instances of the concept A, i.e.,

A can be equivalently written as

8L

A

T

(A;P

1

):P

1

u : : : u 8L

A

T

(A;P

k

):P

k

:

Example 44 Consider the FL

0

-TBox

T := fA

1

:

= P

1

u 8r:8s:8s:P

2

; A

2

:

= 8r:P

1

; A

3

:

= 8r:8r:P

2

u 8r:A

2

g:

The resulting automaton A

T

is depicted in Figure 7. The states q

1

; : : : ; q

3

are

introduced as intermediate states on the paths from A

1

respectively A

3

to P

2

.

We have

L

A

T

(A

1

; P

1

)=f"g L

A

T

(A

1

; P

2

)=frssg

L

A

T

(A

2

; P

1

)=frg L

A

T

(A

2

; P

2

)=;

L

A

T

(A

3

; P

1

)=frrg L

A

T

(A

3

; P

2

)=frrg

Theorem 45 Let T be an FL

0

-TBox, let N

P

= fP

1

; : : : ; P

k

g be the primitive

concepts in T , and N

D

= fA

1

; : : : ; A

`

g the de�ned concepts from T . Further,

let

C = 8L

1

:P

1

u : : : u 8L

k

:P

k

;

D = 8M

1

:A

1

u : : : u 8M

`

:A

`

u 8K

1

:P

1

u : : : u 8K

k

:P

k

be two FL

0

-concept descriptions in normal form.

1. It holds that C �

T

D i� L

C

(P

i

) =

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

for all

1 � i � k.

47

A

1

A

2

A

T

:

P

1

r

r

"

A

3

r

r

q

1

s

P

2

r

s

q

2

q

3

Figure 7: The �nite automaton corresponding to T .

2. Deciding wether C �

T

D takes time polynomial in the size of C, D and

T .

Proof: The characterization of equivalence is a direct consequence of the

results in [1].

It remains to prove the complexity result. In order to decide C �

T

D,

we have to decide L

C

(P

i

) =

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

for all 1 � i � k.

Obviously, it is su�cient to show that we can test validity of the equation for a

�xed primitive concept P

i

in polynomial time.

By the results in [6] we get that for each FL

0

-concept description of the form

8L

C

(P

i

):P

i

there exists a deterministic �nite automaton A

C

such that (a) the

size of A

C

is polynomial in the size of L

C

(P

i

); and (b) L(A

C

) = L

C

(P

i

).

In order to complete the proof, we now de�ne a (non-deterministic) au-

tomaton A of size polynomial in the size of D and T with L(A) = L :=

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

.

Let A

T

= (Q

T

; N

R

;�

T

) be the automaton corresponding to T with "-

transitions. We �rst de�ne an automaton A

�

:= (Q;N

R

; q

0

;�; F) with "-

transitions as follows. Let q

0

be a new state, i.e., q

0

62 Q

T

. Let F := fP

i

g.

Q and � are obtained from Q

T

respectively �

T

as follows. For each j, if

" 2 M

j

, then introduce the transition (q

0

; "; A

j

); for each word r

1

: : : r

n

2 M

j

,

n � 1, introduce n� 1 new states q

1

; : : : ; q

n�1

and transitions (q

��1

; r

�

; q

�

) for

1 � � < n, and (q

n�1

; r

n

; A

j

). Further, if " 2 K

i

, then introduce the transition

(q

0

; "; P

i

); for each word r

1

: : : r

n

, n � 1, introduce n�1 new states q

1

; : : : ; q

n�1

and transitions (q

��1

; r

�

; q

�

) for 1 � � < n, and (q

n�1

; r

n

; P

i

).

Now, let A be the non-deterministic �nite automaton without "-transitions

obtained from A

�

. The automaton A

�

has size polynomial in the size of M

j

,

1 � j � `; K

i

; and A

T

. So, the size of A

�

, and hence of A, is polynomial in

the size of D and T . Further, it is not hard to see that L(A

�

) = L, and thus,

L(A) = L.

Using the automata A and A

C

, we can decide validity of the equation

L

C

(P

i

) =

S

1�j�`

M

j

� L

A

T

(A

j

; P

i

) [K

i

as follows:

1. Testing L

C

(P

i

) � L(A) can be done in polynomial time by just testing

w 2 L(A) for all w 2 L

C

(P

i

).

48

P

1

:P

2

C

A

C

:

(� 1 s)

q

0

3

q

0

1

q

0

2

P

2

"

r

r

r

q

0

5

s

s

s

r; s

s

s

q

0

4

Figure 8: The �nite automaton corresponding to C.

2. Conversely, testing L(A

C

) � L(A) is reduced to testing L(A

C

)\L(A) = ;.

Since A

C

is a deterministic automaton, an automaton B with L(B) =

L(A

C

) \ L(A) can be determined in polynomial time. For a �nite au-

tomaton B the emptiness problem can be decided in time polynomial in

the size of B.

This shows that equivalence of C and D w.r.t. T can be decided in polynomial

time. 2

B Equivalence modulo TBox for ALN

We will now consider problem of deciding equivalence modulo TBox in ALN .

In [18]it is shown that subsumption modulo cyclic TBoxes in ALN is PSPACE-

complete. With respect to acyclic TBoxes, however, the exact complexity of

the subsumption problem is, to our knowledge, an open problem.

In the sequel, we present an improved upper bound for equivalence modulo

an acyclic TBox as well as an even more improved upper bound for the special

case in which one concept does not contain de�ned concepts. The result is, just

as for FL

0

, based on the automata theoretic characterization of subsumption in

ALN [18]. Number restrictions and negated primitive concepts are treated like

new primitive concepts. They give rise to new states in the automaton of T and

to additional inclusion conditions in the characterization of subsumption.

Example 46 The ALN -concept description C := 8f"g:P

1

u 8fr; s; rssg:P

2

u

8frssg: 6= P

2

u 8frsg:(� 1 s)) yields the automaton A

C

shown in Figure 8.

For the concept description A

1

uA

2

�

T

8fr; rssg:P

1

u8fr; sg:P

2

(see Exam-

ple) we have C v

T

A

1

uA

2

, even though (1) rss 2 L

A

T

(A

1

; P

1

)\L

P(A

C

)

(C;P

1

),

i.e., the automata-theoretic approach does not detect the subsumption relation-

ship.

For an FL

0

-concept C, the language L

A

C

(C;P) represents exactly those

value restrictions on P that subsume the concept C, i.e., C v

T

8W:P i� W 2

49

L

A

C

(C;P). Since the inconsistent concept ? is expressible in ALN , the language

L

A

C

(C;P) is no longer su�cient to capture all these value restrictions. In

addition, one must consider so-called C-excluding words, i.e., words W such

that C v 8W:?. A formal de�nition of the set E(C) of C-excluding words

can be found in [18]. Here, we just illustrate it using our example. Obviously,

rss 2 E(C) since this word leads to both states P

2

and :P

2

, i.e., any rss-

successor of an individual in C must belong both to P

2

and :P

2

, which is

impossible. In addition, rssu 2 E(C) for all words u, since the existence of an

rssu-successor would imply the existence of an rss-successor. Finally, at-least

restrictions can also force pre�xes of rss to belong to E(C): since rs leads to

a state containing (� 1 s), every rs-successor of an individual in C also has an

rss-successor; however, since rss 2 E(C) means that individuals in C cannot

have rss-successors, this implies that they cannot have rs-successors.

Since 8W:? is subsumed by 8W:P , C-excluding words yield additional value

restrictions that are not explicitly represented by L

A

C

(C;P). Thus, in order to

represent all value restrictions that are satis�ed by instances of C, we consider

L

A

C

(C;P) [E(C) instead of L

A

C

(C;P). In our example, the inclusion con-

dition \L

A

T

(A

1

; P

1

) � L

P(A

C

)

(C;P

1

)" for P

1

is replaced by \L

A

T

(A

1

; P

1

) �

L

P(A

C

)

(C;P

1

) [E(C)." Consequently, rs no longer violates the inclusion con-

dition for P

1

.

The following characterization of subsumption modulo acyclic TBoxes is an

easy consequence of the results in [18].

Theorem 47 Let T be an acyclic ALN -TBox and C;D two de�ned concepts in

T . Then C v

T

D i�

1. E(D) � E(C),

2. L

A

T

(D;Q) � L

A

T

(C;Q)[E(C) for all (negated) primitive concepts Q in

T ,

3. L

A

T

(D; (� n r)) �

S

n

0

�n

L

A

T

(C; (� n

0

r)) [E(C) for all �-number

restrictions (� n r) in T , and

4. L

A

T

(D; (� m r)) �

S

m

0

�m

L

A

T

(C; (� m

0

r)) [E(C) � r

�1

for all �-

number restrictions (� m r) in T .

3

As an immediate consequence from previous complexity results, we get the

following

Lemma 48 Subsumption modulo TBox in ALN is coNP-hard and NP-hard.

Proof: Subsumption modulo TBox in FL

0

is coNP-complete [21]. Hence, sub-

sumption modulo TBox in ALN is coNP-hard.

In [18] it is shown that for acyclic ALN -TBoxes T the problem wether a

given concept C is inconsistent w.r.t. T is NP-complete. Since C is inconsistent

w.r.t. T i� C v

T

?, we get that subsumption modulo TBox is also NP-hard. 2

3

With E(C) � r

�1

we denote the set fw j wr 2 E(C)g.

50

As a consequence of Lemma 48 we get that, unless NP=coNP, subsumption

modulo TBoxes in ALN is neither in NP nor in coNP. We now show that sub-

sumption modulo TBox in ALN is in coNP

NP

. The corresponding hardness

result, however, remains an open problem.

Theorem 49 Subsumption modulo acyclic TBox in ALN is in coNP

NP

.

Proof: Let T be an ALN -TBox and C;D two de�ned concepts in T . We

introduce an algorithm

� deciding C 6v

T

D, and

� that is in NP

coNP

.

Hence, deciding C v

T

D is in coNP

NP

.

By Theorem 47 we get that C 6v

T

D i� one of the four conditions is not

satis�ed. For each of the four conditions, one can decide wether it is satis�ed in

non-deterministic polynomial time using a coNP-oracle for deciding w 62 E(C)

using the following non-deterministic algorithm:

1. Guess a word w of length � jA

T

j.

2. Test w 2 E(D) (resp. w 2 L

A

T

(D;Q), L

A

T

(D; (� n r)), L

A

T

(D; (�

m r))).

3. Test w 62 E(C) (resp. w 62 L

A

T

(C;Q) [E(C),

S

n

0

�n

L

A

T

(C; (� n

0

r)) [

E(C),

S

m

0

�m

L

A

T

(C; (� m

0

r)) [E(C) � r

�1

).

Since A

T

is acyclic, it is su�cient to consider words of length � jA

T

j. Hence,

the �rst step takes time polynomial in the size of T .

The second step takes non-deterministic polynomial time in the �rst case

(see [17], Theorem 29), and polynomial time in the other cases.

Finally, in order to test w 62 E(C), we have to employ the NP-algorithm

deciding w 2 E(C) as an oracle (in contrast to the �rst case in step 2, where the

application of the NP-algorithm introduced in [17] still yields an NP-algorithm).

Testing w 62 L

A

T

(C;Q) [E(C) resp. w 62

S

n

0

�n

L

A

T

(C; (� n

0

r)) resp. w 62

S

m

0

�m

L

A

T

(C; (� m

0

r)) takes polynomial time.

To sum up, deciding wether one of the four conditions of Theorem 47 is

not satis�ed takes non-deterministic polynomial time using a coNP-oracle for

deciding w 62 E(C). Hence, deciding C v

T

D is in coNP

NP

. 2

In the minimal rewriting problem, we are interested in the equivalence C �

T

D, where the subsumee C does not contain de�ned concepts from T . Since C �

T

D i� C v

T

D and D v

T

C, we can reduce our attention to the special cases of

subsumption modulo TBox in which either the subsumee or the subsumer does

not contain de�ned concepts.

Theorem 50 Let C be an ALN -concept description, T an ALN -TBox and D

a de�ned concept in T . If C does not contain de�ned concepts from T , then

C �

T

D can be decided in polynomial time using an NP-oracle for deciding

w 2 E(D).

51

Proof: Since C does not contain de�ned concepts, the corresponding normal

form can be computed in polynomial time. Further, E(C) is of the form L

0

��

�

,

where L

0

is obtained from the subconcept 8L

0

:? on top-level of the normal

form of C. We show that

a D v

T

C can be decided in polynomial time using an NP-oracle for deciding

w 2 E(D), and

b C 6v

T

D can be decided in non-deterministic polynomial time.

By 2. we get that C v

T

D is in coNP. Since coNP � P

NP

, this implies the

theorem.

ad a): In order to prove a), we show that each of the four conditions of Theo-

rem 47, can be decided in polynomial time using an NP-oracle.

1. We have to show E(C) � E(D). It is L

0

��

�

� E(D) i� w 2 E(D) for

all w 2 L

0

. Since jL

0

j is polynomial in the size of C, E(C) � E(D)

can be decided in time polynomial in the size of C and T using an

NP-oracle for deciding w 2 E(D).

2. -4. Just as in the �rst case, L

A

C

(C;Q) (resp. L

A

C

(C; (� n r)),

L

A

C

(C; (� m r))) has size polynomial in the size of C, and hence,

the condition can be tested in polynomial time using an NP-oracle

for deciding w 2 E(D).

ad b): Assume C 6v

T

D. Then one of the four set inclusions in Theorem 47 is

violated. In order to test wether one of these conditions is not satis�ed, it

is su�cient to guess a word w that is contained in the left hand side but

not in the right hand side.

1. Guessing a word w of size � jA

T

j and testing w 2 E(D) takes non-

deterministic polynomial time; w 62 L

0

� �

�

can be tested in polyno-

mial time. Hence, E(D) 6� E(C) can be decided in non-deterministic

polynomial time.

2. -4. Just as in the �rst case, guessing a wordw in L

A

T

(D;Q) (resp. L

A

T

(D; (�

n r)), L

A

T

(D; (� m r))) of size � jA

T

j takes non-deterministic

polynomial time; w 62 L

A

C

(C;Q) [L

0

� �

�

(resp.

S

n

0

�n

L

A

C

(C; (�

n

0

r)) [L

0

� �

a

st,

S

m

0

�m

L

A

C

(C; (� m

0

r)) [(L

0

� �

�

) � r

�1

) can be

tested in polynomial time.

52

