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1 Introdution

The Guarded Fragment of �rst-order logi, introdued by Andr�eka, van Benthem, and N�emeti [1℄,

has been a suessful attempt to transfer many good properties of modal, temporal, and de-

sription logis to a larger fragment of prediate logi. Among these are deidability, the �nite

model property, invariane under an appropriate variant of bisimulation, and other nie model

theoreti properties [1, 4℄.

The Guarded Fragment (GF) is obtained from full �rst-order logi through relativisation of

quanti�ers by so-alled guard formulas. Every appearane of a quanti�er in the GF must be of

the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is a positive atomi formula, the guard, that ontains all free variables of  . This

generalises quanti�ation in modal and temporal logis, where quanti�ation is restrited to

those elements reahable via some aessibility relation.

By allowing for more general formulas as guards while preserving the idea of quanti�ation

only over elements that are lose together in the model, one obtains generalisations of GF

whih are still well-behaved in the above sense. Most importantly, one an obtain the loosely

guarded fragment (LGF) [13℄ and the lique guarded fragment (CGF) [5℄, for whih deidability,

invariane under lique guarded bisimulation, and some other properties have been shown in [5℄.

The question whether CGF and LGF have the �nite model property has been open until now.

GF, LGF, and CGF are deidable and known to be 2-ExpTime omplete, whih is shown

in [4, 5℄ using game and automata-based approahes. While these approahes yield optimal

worst-ase omplexity results for many logis, they appear to be unsuitable as a starting point for

an eÆient implementation|their worst-ase omplexity is atually their any-ase omplexity.

Many deidability results for modal or desription logis are based on tableau algorithms [11,

7, 2, 10℄. Some of the fastest implementations of modal satis�ability proedures are based on

tableaux aluli [9℄. Unlike automata algorithms, the average-ase behaviour in pratie is so
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good that �nding really hard problems to test these implementations has beome a problem

itself.

In this paper, we generalise the priniples usually found in tableau algorithms for modal logis

to develop a tableau algorithm for CGF. To the best of our knowledge, this is the �rst algorithm

for CGF that an be used as the basis for an eÆient implementation

1

. As a orollary of the

onstrutions used to show the soundness of our algorithm, we obtain that CGF, and hene

LGF and GF have the �nite model property. Also, we obtain an alternative proof for the fat

that every satis�able CGF formula of width k has a model of tree width at most k � 1 [5℄.

In the urrent version, there is still a gap in the proof Lemma 3.14, whih is neessary to establish

the �nite model property. This does not ause a gap in the proof of Theorem 3.5 beause it an

alternatively be established using Lemma 3.17.

2 Preliminaries

For the de�nitions of GF and LGF we refer the reader to [5℄. The lique guarded fragment CGF

of �rst-order logi an be obtained in two equivalent ways, by either semantially or syntatially

restriting the range of the �rst-order quanti�ers. In the following we will use bold letters to

refer to tuples of elements of the universe (a;b; : : : ) resp. tuples of variables (x;y; : : : ).

De�nition 2.1 (Semanti CGF). Let � be a relational voabulary. For a � -struture A with

universe A, the Gaifman graph of A is de�ned as the undireted graph G(A) = (A;E

A

) with

E

A

= f(a; a

0

) j a 6= a

0

; there exists R 2 � anda 2 R

A

whih ontains both a and a

0

g:

Under lique guarded semantis we understand the modi�ation of standard �rst order seman-

tis, where, instead of ranging over all elements of the universe, a quanti�er is restrited to

elements that form a lique in the Gaifman graph, inluding the binding for the free variables of

the matrix formula. More preisely, let A be a �-struture and � an environment mapping vari-

ables to elements of A. We de�ne the model relation indutively over the struture of formulas

as the usual FO semantis with the exeption

A; � j= 8y:'(x; y) i� for all a 2 A suh that �(x) [ fag forms a lique in G(A);A; �[x 7! a℄ j= ';

and a similar de�nition for the existential ase. With CGF we denote �rst order logi restrited

to lique guarded semantis.

De�nition 2.2 (Syntati CGF). Let � be a relational voabulary. A formula � is said to be

a lique-formula for a set x � free(�) if � is a onjuntion of atoms suh that eah two elements

from x oexist in at least one atom, eah atom ontains at least two element from x, and eah

element from free(�) n x ours exatly one in one atom. In the following, we will identify a

lique-formula � with the set of its onjunts.

The syntati CGF is indutively de�ned as follows.

1. Every relational atomi formula Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to CGF.

2. CGF is losed under boolean operations.

1

There are resolution based deision proedures for GF and LGF [3℄ that are readily implemented using the

saturation theorem prover SPASS [14℄. It is unlear if this approah an be extended to CGF.
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3. If x;y; z are tuples of variables, �(x;y; z) is a lique-formula for x [ y and '(x;y) is a

formula in CGF suh that free(') � x [ y, then

9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:(�(x;y; z))'(x;y) and (8yz:(�(x;y; z))'(x;y) as alternative notations for

9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) ! '(x;y)) respetively.

The following lemma an be shown by elementary manipulation.

Lemma 2.3. Let �(x;y; z) be a lique-formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y)) � 8y:(9z:�(x;y; z) ! '(x;y)):

The use of the name CGF both for the semanti and the syntati lique guarded fragment is

justi�ed by the following Lemma.

Lemma 2.4. Over any �nite relational voabulary the syntati and semanti versions of the

CGF are equally expressive.

Proof sketh: By some elementary equivalene transformations, every syntatially lique

guarded formula an be brought into a form where swithing from standard semantis to lique

guarded semantis does not hange its meaning. Conversely, for any �nite signature there is

a �nite disjuntion lique(x; y; z) of lique-formulas for x; y suh that a; b form a lique in

G(A) i� A j= 9z:lique(a; b; z). By guarding every quanti�er with suh a formula and applying

some elementary formula transformations and Lemma 2.3, we get, for every FO formula  , a

syntatially lique guarded formula that is equivalent to  under lique guarded semantis.

In the following we will only onsider the syntati variant of the lique guarded fragment.

At a �rst glane the expressiveness of CGF and the loosely guarded fragment LGF are inompa-

rable. While the auxiliary variables of the CGF allow additional expressiveness, there are also

LGF-formulas that are not (syntatially) lique guarded. In CGF, a guard � in Qyz:�(x;y; z)

neessarily ontains every pair from x[y in (at least) one atom. In LGF a guard � in Qy:�(x;y)

need only ontain all ombinations of a variable from x with one from x [ y in (at least) one

guard atom. An example for a loosely guarded formula that is not (syntatially) lique guarded

is

 = (9xy:Rxy)(8z:(Rxz ^Ryz))'(x; y; z)

beause x and y do not oexist in the guard of the universal quanti�er. Yet,  an be turned into

a lique guarded formula by adding the guard Rxy of the existential quanti�er to the guard of

the universal quanti�er. This yields the guard Rxy^Rxz^Ryz, a lique formula for x; y; z. Sine

it is always possible to lique-guard a loosely guarded formula in this way, LGF is ontained in

CGF. It is also possible to show that CGF is stritly more expressive than LGF [5℄.

De�nition 2.5 (NNF, Closure, Width). Let  2 CGF be losed. In the following, we as-

sume all formulas to be in negation normal form (NNF), where negation ours only in front of

atomi formulas. Every formula in CGF an be transformed into NNF in linear time by pushing

negation inwards using DeMorgan's law and the duality of the quanti�ers.
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For a formula  2 CGF in NNF, let l( ) be the smallest set that ontains  and is losed

under sub-formulas. Let C be a set of onstants. With l( ;C) we denote the set

l( ;C) = f'(a) j a � C;'(x) 2 l( )g:

The width of a formula  2 CGF is de�ned by

width( ) := maxfjfree(')j j ' 2 l( )g:

3 A Tableaux Algorithm for CGF

For various modal and desription logis, deidability an be shown by means of tableaux algo-

rithms, where satis�ability of a formula  is deided by a syntatially guided searh for a model

for  . Examples for these kind of algorithms an be found, e.g., in [11, 12, 7, 10℄. Models are

usually represented by a graph in whih the nodes orrespond to worlds and the edges orrespond

to the aessibility relations in the model. Eah node is labeled with a set formulas that this

node must satisfy, and new edges and nodes are reated as required by existential modalities.

Sine many modal and desription logis have the tree model property, the graphs generated

by these algorithms are trees, whih allows for simpler algorithms and easier implementation

and optimisation of these algorithms. Indeed, some of the fastest implementations of modal and

desription logis satis�ability algorithms are based on tableau aluli [9℄.

For many modal or desription logis, e.g. K or ALC, termination of these algorithms is due

to the fat that the modal depth of the formulas appearing at a node stritly dereases with

every step from the root of the tree. For other logis, e.g., K4, K with the universal modality,

or the expressive DL SHIQ, this is no longer true and termination has to be enfored by other

means. One possibility for this is bloking, i.e., stopping the reation of new suessor nodes

below a node v if there already is an anestor node w that is labeled with similar formulas as v.

Intuitively, in this ase the model an fold bak from the predeessor of v to w, reating a yle.

Unraveling of these yles reovers an (in�nite) tree model. Sine the algorithms guarantee that

the formulas ourring in the label of the nodes stem from a �nite set (usually the sub-formulas

of the input formula), every growing path will eventually ontain a bloked node, preventing

further growth of this path and (together with a bound on the degree of the tree) ensuring

termination of the algorithm.

Our investigation of a tableaux algorithm for CGF starts with the observation that CGF also

has some kind of tree model property.

De�nition 3.1. Let � be a relational voabulary. A � -struture A has tree width k if k 2 N is

minimal with the following property.

There exists a direted tree T = (V;E) and a funtion f : V ! 2

A

suh that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists v 2 V with a � f(v), and

� for every a 2 A, the set V

a

= fv 2 V j a 2 f(v)g indues a subtree of T .

Every node v of T indues a substruture F(v) � A of ardinality at most k+1. Sine f(v) may

be empty we, admit empty substrutures. The tuple hT; (F(v))

v2T

i is alled a tree deomposition

of A.
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Fat 3.2 (Tree Model Property). Every satis�able sentene  2 CGF of width k has a

ountable model of tree width at most k � 1.

This is a simple orollary of [5℄, Theorem 4, where the same result is given for an extension of

CGF by least �xed point operators.

Fat 3.2 is the starting point for our de�nition of a ompletion tree for a formula  2 CGF. A

node v of suh a tree no longer stands for a single element of the model as in the modal ase,

but rather for a substruture F(v) of a tree deomposition of a model. To this purpose, we label

every node v with a set C(v) of onstants (the elements of the substruture) and a subset of

l( ;C(v)), reeting the formulas that must hold true for these elements.

To deal with auxiliary elements|elements helping to form a lique in G(A) that are not part of

this lique themselves|we will use � as a plaeholder for an unspei�ed element in atoms. The

following de�nitions are useful when dealing with these generalised atoms.

De�nition 3.3. Let K denote an in�nite set of onstants and � 62 K. For any set of onstants

C � K we set C

�

= C [ f�g. We use t

1

; t

2

; : : : to range over elements of K

�

. The relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ngeither t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de�ne � 2

�

� i� there is a �

0

2 � with � �

�

�

0

.

For a set of onstants C � K and an atom � = Rt

1

: : : t

n

, we de�ne

�j

�

C

= Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indiate that the tuple a

�

ontains �'s. Obviously, �

�

is transitive

and reexive, and �j

�

C

�

�

� for all atoms � and sets of onstants C.

While these are all syntati notions, they have a semanti ounterpart that lari�es the intuition

of � standing for an unspei�ed element. Let a

0

denote the tuple obtained from a tuple a

�

by

replaing every ourrene of � in a

�

with a distint fresh variable, and let z be preisely the

variables used for this replaement. For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

beause, if a�

�

b, then b is obtained from a by replaing some � with onstants, whih provide

witnesses for the existential quanti�er.

De�nition 3.4 (Completion Tree, Tableau). Let  2 CGF be a losed formula in NNF.

A ompletion tree T = (V;E;C;�;N) for  is a vertex labeled tree (V;E) with the labeling

funtion C labeling eah node v 2 V with a subset of K, � labeling eah node v 2 V with

a subset of l( ;C(v)

�

) suh that � ours only in atoms (without equality) and the funtion

N : V ! N mapping eah node to a distint natural number, with the additional property that,

if v is an anestor of w, then N(v) < N(w).
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A onstant  2 K is alled shared between two nodes v

1

; v

2

2 V, if  2 C(v

1

) \ C(v

2

), and

 2 C(w) for all nodes w on the (unique, undireted, possibly empty) path onneting v

1

to v

2

.

A node v 2 V is alled diretly bloked by a node w 2 V, if w is not bloked, N(w) < N(v)

and there is an injetive mapping � from C(v) into C(w) suh that, for all onstants  2 C(v)

that are shared between v and w, �() = , and �(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the onvention �(�) = � for every funtion � that veri�es a bloking.

A node is alled bloked if it is diretly bloked or if its predeessor is bloked.

A ompletion tree T ontains a lash if there is a node v 2 V suh that

� for a onstant  2 C(v),  6=  2 �(v), or

� there is an atomi formula � and a tuple of onstants a � C(v) suh that f�(a);:�(a)g �

�(v).

Otherwise, T is alled lash-free. A ompletion tree T is alled omplete if none of the om-

pletion rules given in Figure 1 an be applied to T. A omplete and lash-free ompletion tree

for  is alled a tableau for  .

To test  for satis�ability, the tableau algorithm reates an initial tree with only a single node

v

0

, �(v

0

) = f g and C(v

0

) = ;. The rules from Figure 1 are suesively applied until either a

lash ours, produing output \ unsatisfiable", or the tree is omplete, in whih ase \ 

is satisfiable" is output.

R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [ f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [ f�g for � 2 f'; #g

R= : if a = b 2 �(v)

then for all w that share a with v;C(w) := (C(w) n fag) [ fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y)) 2 �(v); there exists a b � C(v) suh that for all atoms

�(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v); and '(a;b) 62 �(v)

then �(v) := �(v) [ f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y)) 2 �(v) and for every b;  � C(v); f�(a;b; ); '(a;b)g 6� �(v)

and there is no hild w of v with f�(a;b; ); '(a;b)g � �(w) for some b;  � C(w)

and v is not bloked

then let b;  be sequenes of distint and fresh onstants that math the lengths of y; z;

reate a hild w of v with C(w) := a [ b [  and �(w) := f�(a;b; ); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi; w is a neighbour of v with a

�

\C(w) 6= ;; and

�(a

�

)j

�

C(w)

62 �(w)

then �(w) := �(w) [ f�(a)j

�

C(w)

g

Rl8 : if '(a) 2 �(v); '(a) universal; and y is a neighbour of x with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [ f'(a)g

Figure 1: The Completion Rules for CGF
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While our notion of tableaux has many similarities to the tableaux appearing in [6℄, there are

two important di�erenes that make the notion of tableaux here more suitable as basis for a

tableau algorithm.

We will see that every ompletion tree generated by the tableau algorithm is �nite. Conversely,

tableaux in [6℄, in general, an be in�nite.

Also, in [6℄ every node is labeled with a omplete ( ;C(v))-type, i.e., every formula ' 2

l( ;C(v)) is expliitly asserted true of false at v. Conversely, a ompletion tree ontains

only assertions about relevant formulas. This implies a lower degree of non-determinism in the

algorithm, whih is important for an eÆient implementation.

Theorem 3.5. The tableau algorithm is a (non-deterministi) deision proedure for CGF-

satis�ability.

Proof: This is an immediate onsequene of the following fats established in the subsequent

setions.

1. Every sequene of rule appliations terminates after a �nite number of steps. (Termination,

Lemma 3.8)

2. If the algorithm onstruts a tableau for  , then  is satis�able. (Soundness, Lemma 3.15)

3. If  is satis�able, then the rules an be applied to generate a tableau for  . (Completeness,

Lemma 3.16)

As a orollary, we get that CGF and hene also the loosely guarded fragment, and the guarded

fragment, have the �nite model property. For GF this was already known [4℄, whereas for LGF

and CGF this was still an open problem.

Corollary 3.6. Let  2 GF=LGF=CGF.  is satis�able i�  is �nitely satis�able.

Proof: If  is satis�able, the tableau algorithm generates a �nite tableau for  . The onstru-

tion in the proof of Lemma 3.15 shows that suh a tree indues a �nite model.

3.1 Termination

The folloing tehnial lemma is a simple onsequene of the ompletion rules and the bloking

ondition.

Lemma 3.7. Let  2 CGF be a losed formula in NNF with j j = n, width( ) = m, and T a

ompletion tree generated for  by appliation of the rules in Figure 1. For every node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distint nodes in T ontain a bloked node.

Proof:

7



1. Nodes are only generated by the R9-rule and no onstants are added to a C(v) one v has

been generated (but some may be removed by appliation of the R=-rule).

When triggered by the formula (9yz:�(a;y; z))'(a;y), the R9-rule initializes C(w) suh

that it ontains a and another onstant for every variable in x and y. Hene,

jC(w)j � ja [ y [ zj � jfree(�)j � width( ):

2. The set �(v) is a subset of l( ;C(v)

�

), for whih jl( ;C(v))j � n � (m + 1)

m

holds

beause there are at most n formulas in l( ), eah of whih has at most m free variables.

There are at most (jC(v)j+1)

m

distint sequenes of length m with onstants from C(v)

�

.

3. Let v

1

; : : : ; v

`

be ` > 2

n�(m+1)

m

distint nodes. For every v

i

, we will onstrut a mapping

�

i

: C(v

i

) ! f1; : : : mg suh that, if a onstant a is shared between two nodes v

i

; v

j

, then

�

i

(a) = �

j

(a).

Let u

1

; � � � ; u

k

denote the nodes of a subtree of T that ontains every node v

i

and that

is rooted at u

1

. By indution over the distane to u

1

, we de�ne an injetive mapping

�

i

: C(u

i

) ! f1; : : : ;mg for every i 2 f1; : : : ; kg as follows. For �

1

we pik an arbitrary

injetive funtion from C(u

1

) to f1; : : : ;mg. For a node u

i

let u

j

be the predeessor

of u

i

in T and �

j

the orresponding funtion, whih, sine u

j

has a smaller distane to

u

1

, has already been de�ned. For �

i

we hoose an arbitrary injetive funtion suh that

�

i

(a) = �

j

(a) for all a 2 C(u

i

) \C(u

j

).

All mappings �

i

are injetive. For any onstant a the set V

a

:= fv 2 V j a 2 C(v)g indues

a subtree of T. If u

i

; u

j

2 V

a

are neighbours, the de�nition above ensures �

i

(a) = �

j

(a).

By indution over the length of the onneting path we obtain the same for arbitrary

u

i

; u

j

2 V

a

.

For every node v

i

there is a j

i

suh that v

i

= u

j

i

and we set �

i

= �

j

i

. There are at

most 2

n�(m+1)

m

distint subsets of l( ; f1; : : : ;m; �g). Hene, there must be two nodes

v

i

; v

j

suh that �

i

(�(v

i

)) = �

j

(�(v

j

)) and, w.l.o.g., N(v

i

) < N(v

j

). We show that v

j

is

bloked by v

i

via � := �

�1

i

Æ �

j

. Note that for � to be well-de�ned, �

i

must be injetive.

By onstrution, � preserves shared onstants. It remains to be shown that �(�(v

j

)) =

�(v

i

)j

�(C(v

j

))

. Let '(a) 2 �(v

j

). Sine �

j

('(a)) 2 �

j

(�(v

j

)) = �

i

(�(v

i

)) there is a

b 2 C(v

i

) with '(b) 2 �(v

i

) and �

i

(b) = �

j

(a). By de�nition of � we have �(a) = b

and thus �('(a)) 2 �(v

i

)j

�(C(v

j

))

. Conversely, let '(b) 2 �(v

i

)j

�(C(v

j

))

. Sine �

i

('(b)) 2

�

i

(�(v

i

)) = �

j

(�(v

j

)) there is a a 2 C(v

j

) with '(a) 2 �(v

j

) and �

j

(a) = �

i

(b). By

onstrution of � this implies �(a) = b and hene '(b) 2 �(�(v

j

)).

Lemma 3.8 (Termination). Let  2 CGF be a losed formula in NNF. Any sequene of rule

appliation of the tableau algorithm starting from the initial tree terminates.

Proof: For any ompletion tree T generated by the tableau algorithm, we de�ne k � k : V 7! N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) j ' triggers the R9-r. for vgj):

The lexiographi order � on N is well-founded, i.e. it has no in�nite dereasing hains. Any

rule appliation dereases kvk w.r.t. � for at least one node v, and never inreases kvk w.r.t. �

8



for an existing node v. However it may reate a new node w. Hene, there an only be a �nite

number of appliations of rules to every node in T and an in�nite sequene of rule appliations

would generate an in�nite tree. As a orollary of 3.7, we have that the depths of T is bounded

by 2

n�(m+1)

m

+ 1, sine, on any direted path of that length, there must be a bloked node.

Rules are never applied to bloked nodes, so paths with bloked nodes an not grow in length.

Hene, T an only be in�nite due to an in�nite branhing in T. Any suessor of a node v

is generated by appliation of the R9-rule to v. Eah suh appliation generates exatly one

suessor. Hene, for T to be ini�nite, there must be an in�nite number of appliations of the

R9-rule to a node v. As eah suh appliation dereases kvk we have a ontradition.

3.2 Corretness

In order to prove the orretness of the tableau algorithm we have to show that the existene

of a tableau for  implies satis�ability of  . To this purpose, we will onstrut a model from

a tableau. In the following, let  2 CGF[� ℄ and let T = (V;E;C;�;N) be a tableau for  .

W.l.o.g., we assume, for every node v 2 V and every a 2 C(v), a = a 2 �(v). For every bloking

situation we �x a mapping � verifying this bloking.

De�nition 3.9. We make the bloking relation expliit. For every bloked node v there is a

unique bloking node w and we de�ne B as set of all suh pairs (v; w).

Further de�ne C(V) :=

S

fC(v) : v 2 V; v not blokedg. The equivalene relation � on C(V)

is the reexive and transitive losure of the set of all pairs of onstants (; d), where  2 C(u)

and d 2 C(v) for two nodes u and v, (u; v) 2 B and the funtion � that veri�es the bloking

maps d to .

We also use � as an operator that maps a onstant a to its �-lass ~a. For tuples of onstants

a, this operation is performed omponentwise. We say that
~
a � C(v), if for eah a 2 a there is

an a

0

2 ~a \C(v).

De�nition 3.10. Let v; w 2 V and a 2 C(v), b 2 C(w). An (a; b)-path in T is a sequene

(s

1

; 

1

); : : : ; (s

k

; 

k

) in V � C(V) suh that 

1

= a, 

k

= b and for all 1 � i < k one of the

following holds.

1. (s

i

; s

i+1

) 2 E and 

i

= 

i+1

2. (s

i

; s

i+1

) 2 B and �(

i+1

) = 

i

3. 1. and 2. for reversed roles of i and i+ 1.

That is, an (a; b)-path veri�es a � b. If p is suh an (a; b)-path, the projetion of p, �(p) =

s

1

; : : : ; s

k

, is the sequene of nodes enountered along p.

The general idea in the onstrution of a model from a tableau, is to use C(V)=� as the universe

and de�ne the relations using the atomi onstraints in the nodes. In general, there may be

two kinds of problemati situations in a tableau that make this onstrution impossible, namely

dormant lashes and evil liques.

De�nition 3.11 (Dormant Clash). Two distint nodes v; w 2 V, two tuples of onstants a;b

and a positive literal � form a dormant lash (v; w;a;b; �) in T, if a 2 C(v), b 2 C(w) and it

is the ase that a 6= b, but a � b and either �(a) 2 �(v) and �(b) 62 �(w) or �(a) 62 �(v) and

�(b) 2 �(w).

9



Note that for eah dormant lash (v; w;a;b; �), the intersetion of the sets P

i

= fp : p is an (a

i

; b

i

)-pathg,

1 � i � jaj, is empty. Any path inluded in all P

i

would suesively let the omplete atomi

information about a and b be propagated from v to w using Rl, either produing a true lash

or ontraditing the de�nition of a dormant lash.

Further, there are onstants a

t

2 a and b

t

2 b, a

t

6= b

t

but a

t

� b

t

, suh that for some

(s

i

; 

i

); (s

i+1

; 

i+1

) on every (a

t

; b

t

)-path, either s

i

is bloked by s

i+1

(or vie versa) and the

belonging injetion � maps 

i

to 

i+1

(

i+1

to 

i

), or there is a node s bloking both s

i

and s

i+1

suh that for the respetive injetions �

s

i

: C(s

i

) ! C(s) and �

s

i+1

: C(s

i+1

) ! C(s) we have

�

s

i

(

1

) = �

s

i+1

(

i+1

). It follows that B ontains (s

i

; s

i+1

) (or (s

i+1

; s

i

)) in the �rst and both

(s; s

i

) and (s; s

i+1

) in the seond ase.

De�nition 3.12 (Evil Clique). An evil lique (a;b; �) in T onsists of two sequenes of on-

stants a and b and a guard � ouring in some subformula '(x) = (8yz:�(x;y; z))�(x;y) of  

suh that

� a and '(a) our in the C resp. the �-label of some node in V,

� for eah � 2 � there are a node w, some onstants a

0

� a and b

0

� b suh that

�(a

0

;b

0

; � � � � �) 2

�

�(w),

� there is no node v, onstants a

0

� a and b

0

� b suh that '(a

0

) 2 �(v) and �(a

0

;b

0

; � � � � �)2

�

�(v) for all � 2 �.

2

Evil liques are also a side-e�et of folding bak the ompletion tree into itself via B-edges, but

are not required in the sense that all existential subformula of  an be satis�ed elsewhere. To

see this, assume to the ontrary that we do not use B-edges and a is always hosen for a

0

and b

for b

0

in above de�nition. Sine � is a lique-formula, every pair of onstants from a [ b our

in at least one atom, and hene our together in the C-label of some node. So for any pair

of onstants 

1

; 

2

from a [ b the sets V



1

and V



2

are subtrees of (V;E), and do not require

B-edges for their onnetedness. It is a well known result in graph theory, that any family of

pairwise overlapping trees has a ommon node|remember that V with only the E-edges is a

tree. Consequently a [ b is a subset of the C-label of this ommon node.

Therefore, given an evil lique C = (a;b; �), we an always �nd a set of onstants C

C

� a [ b

and a set of onstants D

C

� f : ~ 2
~
a [

~

bg n (a [ b) suh that, if for eah 

C

2 C

C

and

d

C

2 D

C

where 

C

� d

C

we remove a set of B-edges suh that no (

C

; d

C

)-path is left over,

(a;b; �) is no longer an evil lique.

We isolate a set of edges as responsible for the two types of problemati situations de�ned above.

De�nition 3.13. Given a tableau T, the set of ritial edges of T, S = S(T), is a subset of B

de�ned as follows.

� For eah dormant lash C = (v; w;a;b; �) we hoose an index t suh that for a

t

2 a and

b

t

2 b we have a

t

6= b

t

. Let S ontain the �rst B-edge from eah (a

t

; b

t

)-path.

� For eah evil lique C = (a;b; �) we onsider the onstants C

C

and D

C

. For eah 

C

2 C

C

and d

C

2 D

C

where 

C

� d

C

let S again ontain the �rst B-edge from every (

C

; d

C

)-path.

2

By abuse of notation we write �(a

0

;b

0

; � � � � �) and a

0

� a, even though not all elements of a

0

need to our

in � and a

0

may in general be shorter than a. The same applies to b

0

.
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By making enough (but �nitely many) isomorphi opies of all subtrees of the tableau below

the root, it is possible to rediret all ritial edges into di�erent opies in a manner that gets rid

of all (isomorphi opies of) dormant lashes and evil liques.

Lemma 3.14. If there is a �nite tableau T for  , then there is also a �nite tableau T

0

for  

that does not ontain ritial edges (and hene no dormant lashes or evil liques).

In both ases let S

C

ontain the edges introdued into S by C.

Note that no B-edge an be inident to the root of T, sine all other nodes ontain at least one

onstant in their C-label.

Proof: Let � be the root of T and let n = jSj. We make an enlarged version T

0

of T where

all subtrees with roots that are diret E-suessors of � are replaed by 2

n

isomorphi opies.

More preisely

� V

0

= f�g [ fv

i

: v 2 V n f�gg,

� E

0

= f(�; v

i

) : (�; v) 2 Eg [ f(v

i

; w

i

) : (v; w) 2 Eg,

� C

0

(v

i

) = fa

i

: a 2 C(v)g, C

0

(�) = ;,

� �

0

(v

i

) = f'(a

i

) : '(a) 2 �(v)g, �

0

(�) = �(�),

� N

0

(v

i

) = 2

n

�N(v) + i, N

0

(�) = 0,

for all 0 � i < 2

n

. The bloking relation B

0

is given by

� B

0

=

S

f(v

i

; w

i

) : (v; w) 2 B; 0 � i < 2

n

g.

This �rst step also reates 2

n

opies of our ritial edges, namely all (r

i

; s

i

) for whih (r; s) 2 S.

We now modify B

0

as follows to eliminate all opies of our original ritial edges. Let f(r

t

; s

t

) :

0 � t < ng be an enumerated version of S.

Now for all 0 � t < n and all 0 � `; j < 2

n

, if the binary representations of ` and j di�er exatly

at the t-th position we delete (r

`

t

; s

`

t

) and (r

j

t

; s

j

t

) from B

0

and add (r

`

t

; s

j

t

) and (r

j

t

; s

`

t

) in their

plae. Independent of the existene of ritial edges in T

0

, let S

0

be the set of B

0

-edges indued

by S, i.e. exatly the edges onneting some i-th and j-th opy of T in T

0

, i 6= j.

This hyper-ube type of struture reated by the S

0

-edges is ruial to the elimination of ritial

edges. The notation forthwith uses the onvention that if X is an objet related to T, then X

0

is the orresponding objet related to T

0

and vie versa. Also for any objet X that was opied

in the transition from T to T

0

, the indexed version X

i

is assumed to be the opy related to T

i

.

Claim: T

0

is still a omplete and lash-free �nite ompletion tree for  .

Let T

i

be T

0

restrited to � and all i-th opies of the subtrees, i.e. T

0

restrited to fv

i

:

v 2 Vg [ f�g. Further let V

i

a

= fv

i

2 T

i

: a 2 C(v

i

)g and V

i

~a

= fv

i

: a

0

2 C

0

(v

i

); ex. p 2

P (a; a

0

) s.t. �(p) � T

i

g. When disregarding S

0

, eah T

i

is isomorphi toT. Further the de�nition

of B

0

implies that for any node v that is bloked by a node w in T, all opies v

i

are bloked

by some node w

j

in T

0

. Consequently T

0

is omplete. Sine eah �

0

-label in T

0

is idential to

some �-label in T, T

0

is also lash-free.

Note that for i 6= j there are exatly two B

0

-edges between T

i

and T

j

i� the binary repre-

sentations of i and j di�er at exatly one position. In all other ases there is no onneting

B

0

-edge.
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By onstrution, if (s

i

1

1

; 

i

1

1

) � � � (s

i

k

k

; 

i

k

k

) is an (a

i

; b

j

)-path in T

0

, then (s

1

; 

1

) � � � (s

k

; 

k

) is an

(a; b)-path in T. Consequently, if (v

i

; w

j

;a

i

;b

j

; �) is a dormant lash in T

0

, then (v; w;a;b; �)

is a dormant lash in T.

We an already note that if (; d) was a pair of onstants giving rise to a set of ritial edges S

C

,

and all (

i

; d

i

)-paths were subsequently modi�ed, then there an be no (

`

; d

`

)-path using only

nodes in T

`

. Any suh path would have an isomorphi opy in T leading to some edge being

inluded in S.

Also, in the same irumstanes, all (

i

; d

j

)-paths ontain S

0

C

0

-edges, even if i = j. We just

noted, that for any ` there never is a loal, i.e. restrited to T

`

, onnetion between V

`



and V

`

d

.

For any in this sense non-loal (

i

; d

j

)-path p

0

, the isomorphi opy p in T is a (; d)-path. So

at least one edge along p belongs to S

C

and onsequently at least one edge along p

0

to S

0

C

0

.

Similarly, if C

0

= (a

i

;b

0

; �) is an evil lique in T

0

, then (a;b; �) already was an evil lique in T

and for all d

j

C

0

2 D

0

C

0

we have d

C

0

2 D

C

. We designate the �rst tuple of elements a

i

, beause

the de�nition of an evil lique requires all ouring elements to o-exist at some node v = v

i

.

We do not have suh an assumption for the seond tuple, hene the elements of b

0

may live only

at di�erent T

j

s.

Claim: T

0

ontains no dormant lash.

Assume that C

0

= (v

i

; w

j

;a

i

;b

j

; �) is a dormant lash in T

0

and t is the index for whih the

(a

i

t

; b

j

t

)-paths in T

0

were modi�ed. We need to show that a

i

6� b

j

.

We note that due to the modi�ations in B

0

, any (a

i

t

; b

j

t

)-path has to use S

0

-edges, even in the

ase of i = j. Also as C

0

(�) = ; the root an not our on any (�; �)-path. The onstrution of

B

0

further implies that the numbers of S

0

C

0

-edges on the paths verifying a

i

� b

j

are either all

even or all odd.

First suppose that all (a

i

t

; b

j

t

)-paths for C

0

ontain an even number of S

0

C

0

-edges. Let p be an

(a

i

t

; b

j

t

)-path in T

0

. Eah S

0

C

0

-edge leads from some V

`

a

`

t

to a V

`

0

~

b

`

0

t

or vie versa. The seeming

asymmetry of taking a for the �rst, and

~

b for the seond set of nodes, is due to the de�nition of

ritial edges seleting the �rst B-edge from the (a

t

; b

t

)-paths for inlusion in S.

We onlude that if the last S

0

C

0

edge was taken from a V

`

a

`

t

to a V

`

0

~

b

`

0

t

, then the next S

0

C

0

-edge

along p has to be taken from a V

`

00

~

b

`

00

t

to a V

`

000

a

`

000

t

and vie versa. Otherwise there would be e.g.

a (a

`

0

t

; b

`

00

t

)-path in between. By previous observation this path would neessary ontain an

S

0

C

0

-edge, ontraditing the hoie of two S

0

C

0

above.

By a simple parity argument we observe that if p starts in V

i

a

it an only end in V

j

a

instead of

the required V

j

~

b

. This ontradits the assumption that p is an (a

i

t

; b

j

t

)-path. Hene a

i

6� b

j

and

C

0

is not a dormant lash.

Now suppose that the (a

i

t

; b

j

t

)-paths for C

0

ontain an odd number of S

0

C

0

-edges. Let p be an

(a

i

t

; b

j

t

)-path ontaining an odd number of S

0

C

0

-edges. Then there is at least one atual edge

e

0

2 S

0

C

0

that ours an odd number of times. Suppose that e

0

is a opy of the edge e

`

, i.e. the

`-th edge in the enumeration of S. By the onstrution of T

0

we onlude that bin(i) and bin(j)

di�er at position `. Consequently any (a

i

t

; b

j

t

)-path, and indeed any path from T

i

to T

j

(ignoring

onnetions via �) has to ontain an odd number of edges that are opies of e

`

.

We an then �nd an index h 6= t suh that any path using e

`

does not verify a

h

� b

h

. Now

assume that p

0

is an (a

i

h

; b

j

h

)-path in T

0

. As a

i

h

2 T

i

and b

j

h

2 T

j

, we know that p

0

ontains an

12



edge that is a opy of e

`

. Then the isomorphi opy of p

0

in T would be an (a

h

; b

h

)-path in T,

a ontradition.

Finally a

i

h

6� b

j

h

implies a 6� b, so C

0

is not a dormant lash.

Claim: T

0

ontains no evil lique.

This part of the proof has yet to be established in a onise way.

Lemma 3.15. Let  2 CGF[� ℄ and let T be a tableau for  . Then  is (�nitely) satis�able.

Proof: Aording to Lemma 3.14 we assume T = (V;E;C;�;N) to be a tableau for  that

does not ontain ritial edges.

Towards the �nite satis�ability we onstrut a �nite struture A = A(T) with universe A :=

C(V)=�. For eah relation R 2 � and eah tuple a 2 A of mathing arity let a 2 R

A

i� there

is a node v 2 V and a tuple of onstants b 2 C(v) suh that all b

i

� a

i

and Rb 2 �(v). Note

that with Rl and the non-existene of dormant lashes, this is the ase i� the same holds true

independent of the spei� hoie of b or v. Hene A is well de�ned.

Claim: A j=  .

This is implied by the stronger statement that for every losed formula ' using onstants from

a that appears in the �-label of some unbloked node v of T, '[a 7!
~
a℄ holds in A. Again ' is

assumed to be in NNF.

� For equality statements this is immediate. The R=-rule makes sure, that distint onstants

ouring at a ommon node have distint �-lasses. For inequality statments, assume

a 6= b 2 �(v), but a � b. Then we an �nd an (a; b)-path ontaing a node w 6= v and a

onstant  2 C(w) with a �  � b. Sine we have assumed  =  2 �(v), this would imply

the existene of the dormant lash (v; w; ab; ;  = ) in T.

� For an atomi sentene Ra, we get A j= R
~
a immediately from the onstrution of A. In

ase of a negated atomi sentene, assume '(a) = :Ra 2 �(v) but A j= R
~
a. This implies

the existene of a (dormant) lash in T.

� For positive Boolean ombinations the argument is immediate.

� Let '(a) = (9yz:�(a;y; z))�(a;y). If, for some b;  2 C(v), �(a;b; ); �(a;b) 2 �(v), we

note that A j= �(
~
a;

~

b) and A j= �(
~
a;

~

b;
~
) for all � 2 � by indution hypothesis for � and

�.

If there are no b;  2 C(v) with �(a;b; ); �(a;b) 2 �(v), then appliation of the R9-Rule

yields a suessor node w of v with onstants b;  2 C(w) suh that �(a;b; ); �(a;b) 2

�(w). If w is not bloked, the laim again follows by indution hypothesis for � and �.

If however w is bloked, onsider the node u with (u;w) 2 B and the injetion � : C(w)!

C(u). Then �(�(a); �(b); �()) and �(�(a); �(b)) are in the �-label of u. Sine all pairs

of onstants (a; a

0

) where a

0

= �(a) are in the same �-lass, it follows by indution that

A j= �(
~
a;

~

b;
~
) ^ �(

~
a;

~

b), and hene '(
~
a) holds in A.

� Finally let '(a) = (8yz:�(a;y; z))�(a;y). Assume that there are tuples b;  suh that

A j= �(
~
a;

~

b;
~
). Sine there are no evil liques in T, there is a node w where

~
a[

~

b � C(w),
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i.e., there are tuples a

0

;b

0

� C(w) with a

0

� a and b

0

� b. Moreover, for all � 2 �,

�(a

0

;b

0

; � � � � �) 2

�

�(w) and '(a

0

) 2 �(w). Hene, the R8-rule is apppliable for '(a

0

) at

w and must have been applied beause T is omplete. This yields �(a

0

;b

0

) 2 �(v), whih,

by indution yields A j= �(a

0

;b

0

) and hene A j= �(a;b).

3.3 Completeness

Lemma 3.16. Let  2 CGF be a losed formula in NNF. If  is satis�able, then there is a

sequene of rule appliations starting from the initital tree that yields a tableau.

Proof: Sine  is satis�able, there is a model A of  . We will use A to guide the appliation

of the non-deterministi R_-rule. For this we inremently de�ne a funtion g :

S

fC(v) j v 2

Vg ! A suh that for all v 2 V : A j= g(�(v)). We refer to this property by (�).

The set �(v) an ontain atomi formulas �(a

�

) where � ours at some positions of a

�

and is

not mapped to an element of A by g. We deal with this as desribed under De�nition 3.3 by

setting

A j= g(�(a)) i� A j= 9z:g(�(a

0

)):

Claim 1: If for a ompletion tree T there exists a funtion g suht that (�) holds and a rule is

appliable to T, then it an be applied in a way that maintains (�).

We distinguish the di�erent rules.

� If the R^-rule is appliable to a node v 2 V with '^# 2 �(v) then, due to (�), A j= g('^#)

and hene A j= fg('); g(#)g. Hene, the R^-rule an be applied to v without violating (�).

� If the R_-rule is appliable to a node v 2 V with '_# 2 �(v) then, due to (�), A j= g('_#)

and hene A j= g(�) for a � 2 f'; #g. Hene, the R_-rule an be applied to v without

violating (�).

� If the R=-rule is appliable to a node v 2 V with a = b 2 �(v), then A j= g(b) = g(b)

implies g(a) = g(b). Hene, for every node w that shares a with v, g(�(w)) = g(�(w)[a 7!

b℄) and the rule an be applied without violating (�).

� If the R8-rule is appliable to a node v 2 V with (8yz:�(a;y; z))'(a;y) 2 �(v), then there

is b � C(v) suh that, for all atoms �(x;y; z) 2 �, �(a;b; � � � � �) 2

�

�(v). Hene, from

the de�nition of 2

�

, there is a tuple  � C(v) [ f�g suh that �(a;b; � � � � �)�

�

�(a;b; )

and �(a;b; ) 2 �(v). From (�) we get that A j= 9z:�(g(a); g(b); z) and sine every z

appears in exatly one atom in �, also A j= 9z:�(g(a); g(b); z). Hene, we have

fA j= f8y:(9z:�(g(a);y; z) ! '(g(a);y));

9z:�(g(a); g(b); z)g

whih, by Lemma 2.3, implies A j= '(g(a); g(b)) and hene '(a;b) an be added to �(v)

without violating (�).

� If the R9-rule is appliable to a node v 2 V with (9yz:�(a;y; z))'(a;y), then this implies

A j= g((9yz:�(a;y; z))'(a;y)):

14



Hene, there are sequenes b

0

; 

0

� A of elements suh that A j= f�(g(a);b

0

; 

0

); '(g(a);b

0

)g.

If we de�ne g suh that g(b) = b

0

and g() = 

0

, then obviouslyA j= fg(�(a;b; ); g('(a;b))g.

Note, that this might involve setting g(b

1

) = g(b

2

) for some b

1

; b

2

2 b. With this on-

strution the resulting extended ompletion-tree T and extended funtion g again satisfy

(�).

� If the Rl-rule is appliable to a node v 2 V with �(a

�

) 2 �(v) and a neighbour w with

a

�

\ C(w) 6= ;, then it adds �(a

�

)j

�

C(w)

to �(w). From (�) get that A j= �(g(a

�

)), and

sine �(a

�

)j

�

C(w)

�

�

�(a

�

), whih implies A j= �(g(a

�

))j

�

C(w)

. Hene, adding �(a

�

)j

�

C(w)

to

�(w) does not violate (�).

� If the Rl8-rule is appliable to a node v 2 V with a universal formula '(a) 2 �(v) and a

neighbour w whih shares a with v, (�) yields A j= '(g(a)). Hene, adding '(a) to �(w)

does not violate (�).

Claim 2: A ompletion-tree T for whih a funtion g exists suh that (�) holds is lash free.

Assume that T ontains a lash, namely, there is a node v 2 V suh that either a 6= a 2 V(v)|

implying A j= g(a) 6= g(a)|, or that there is a sequene a � C(v), and an atomi formula '

suh that f�(a);:�(a)g � �(v). From (�) it would follow that A j= f�(g(a));:�(g(a))g, also a

ontradition.

These laims yield Lemma 3.16 as follows. Let T be a tableau for  . Sine A j=  , (�) is

satis�ed for initial tree together with the empty funtion g. By Theorem 3.8, any sequene of

appliations is �nite, and from Claim 1 we get that there is a sequene of rule-appliations that

maintains (�). By Claim 2, this sequene results in a tableau.

Lemma 3.16 involves two di�erent kinds of non-determinism, namely, the hoie whih rule to

apply to whih onstraint (as several rules an be appliable simultaneously), and whih disjunt

to hoose in an appliation of the R_-rule. While the latter hoie is don't-know non-detemisti,

i.e., for a satis�able formula only ertain hoies will lead to the disovery of a tableau, the

former hoie is don't-are non-deterministi. This means that arbitrary hoies of whih rule to

apply next will lead to the disovery of a tableau for a satis�able formula. For an implementation

of the tableau algorithm this has the following onsequenes. Exhaustive searh is neessary to

deal with all possible expansions of the R_-rule, but arbitrary strategies of hoosing whih rule

to apply next and where will lead to a orret implementation, although the eÆieny of the

implementation will very muh depend on a suitable strategy.

3.4 Tree Model Property

The fat that every satis�able formula of width k has a model of width at most k � 1 was the

starting point for our onsiderations. Yet, this fat was never relied on to prove the orretness

of the tableaux algorithm. Indeed, it is possible to give an alternative proof for Fat 3.2 based

on our tableaux algorithm. This requires an alternative onstrution to the one used in the

proof of Lemma 3.15. Note that this proof is also an alternative proof for Lemma 3.15.

Theorem 3.17. Let  2 CGF with k = width( ).  is satis�able i�  has a model of width

at most k � 1.
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Proof: If  is satis�able, then the tableaux algorithm generates a tableau for  . Using an

unraveling onstrution, we will onstrut a model for  of width at most k � 1 from T.

Let V

u

= fv 2 V j v is not indiretly bloked g and Paths(T) � V

+

u

indutively de�ned by

3

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a suessor of v

n

and w is not bloked, then [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2

Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a suessor of v

n

bloked by the node u 2 V, then

[

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

being a suessor of p if p

0

is obtained from p by on-

atenating one element

u

w

at the end. We de�ne the auxiliary funtions Tail;Tail

0

by setting

Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄. We further de�ne

C(T) = f(a; p) j p 2 Paths(T) ^ a 2 C(Tail(p))g

and the relation � as the smallest symmetri relation on C(T) satisfying

� (a; p) � (a; q) if Tail

0

(q) is an unbloked suessor of Tail(p) and a 2 C(Tail(p))\C(Tail

0

(q)),

� (a; p) � (b; q) if Tail

0

(q) is a bloked suessor of Tail(p), a 2 C(Tail(p)) \C(Tail

0

(q)) and

�(a) = b for the funtion � that veri�es that Tail

0

(q) is bloked by Tail(q).

With� we denote the reexive, transitive losure of�. First we need to prove some tehnialities

for this unraveling.

Claim 1: Let p 2 Paths(T) and a; b 2 C(Tail(p)). Then (a; p) � (b; p) i� a = b.

Assume the laim does not hold and let a 6= b with (a; p) � (b; p). By de�nition of �, (a; p) 6�

(b; p) must hold. Hene, there must be a path (

1

; p

1

) � � � � � (

k

; p

k

) suh that a = 

1

, b = 

k

,

and p = p

1

= p

k

. W.l.o.g., assume we have piked a; b; p suh that this path has minimal length

k. Suh a minimal path must be of length k = 3, for if we assume a path of length k > 3, there

must be 2 � i < j � k � 1 suh that p

i

= p

j

, beause the relation � is de�ned along paths in

the tree Paths(T). If 

i

= 

j

then we an shorten the path between position i and j and obtain

a shorter path. If 

i

6= 

j

, then the path (

i

; p

i

) � � � � � (

j

; p

j

) is also a shorter path with the

same properties. Hene, a minial path must be of the form (a; p) � (; q) � (b; p). If Tail

0

(q) is

not bloked, by the de�nition of �, a =  = b must hold. Hene, sine a 6= b, Tail

0

(q) must be

bloked by Tail(q). From the de�nition of � we have a; b 2 C(Tail

0

(q)) and �(a) =  = �(b) for

the funtion � verifying that Tail

0

(q) is bloked by Tail(q). Sine � must be injetive, this is a

ontradition.

Sine the set Paths(T) is a tree, and as a onsequene of Claim 1 we get the following:

Claim 2: Let p; p

0

2 Paths(T) with p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄, p

0

= [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄. If, for a 2 C(v

n

); b 2 C(w),

(a; p) � (b; p

0

) then (a; p) � (b; p

0

).

3

This ompliated for of unraveling, where we reord both bloked an bloking node is neessary beause there

might be a situation where two suessors v

1

; v

2

of a node are bloked by the same node w.
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If (a; p) � (b; p

0

) then there must be a path (

1

; p

1

) � � � � � (

k

; p

k

) suh that a = 

1

, b = 

k

,

p = p

1

, and p

0

= p

k

. Sine � is only de�ned along paths in the tree Paths(T), there must be

a step from p to p

0

(or, dually, from p

0

to p) in this path, more preisely, there must be an

i 2 f1; : : : k � 1g suh that p

i

= p and p

i+1

= p

0

holds. Hene, we have the situation

(a; p) � (

i

; p) � (

i+1

; p

0

) � (b; p

0

)

Now Claim 1 implies a = 

i

and b = 

i+1

and hene (a; p) � (b; p

0

).

Using Claim 2, we an show that the bloking ondition and the Rl- and Rl8-rule work as

desired:

Claim 3: Let p; q 2 Paths(T), a � C(Tail(p));b � C(Tail(q))) and (a; p) � (b; q).

� For every atomi formula �, �(a; � � � � �) 2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universal formula ', '(a) 2 �(Tail(p)) i� '(b) 2 �(Tail(q)).

Equivalene lasses of � indue subtrees of the tree Paths(T), hene, if (a; p) � (b; q), then

there must be a path (

1

; p

1

) � � � � � (

k

; p

k

) with p

1

= p; p

k

= q, a = 

1

, b = 

m

, and p

i

is a

neighbour of p

i+1

in the tree Paths(T). From Claim 2, we get that any two neighbours p

i

; p

i

+1

in Paths(T), (

i

; p

i

) � (

i+1

; p

i+1

) implies (

i

; p

i

) � (

i+1

; p

i+1

).

W.o.l.g., assume p

i+1

is a suessor of p

i

in the tree Paths(T) and set v = Tail(p

i

) and w =

Tail(p

i+1

). There are two possibilities:

� if Tail

0

(p

i+1

) is not bloked, then Tail(p

i+1

) = Tail

0

(p

i+1

) and by the de�nition of �,

Tail(p

i+1

) is a suessor of Tail(p

i

) in T and 

i

= 

i+1

. Due to the Rl-rule, �(

i

; � � � � �)2

�

�(Tail(p

i

)) i� �(

i+1

; � � � � �) 2

�

�(Tail(p

i+1

)). Due to the Rl8-rule, '(

i

) 2 �(Tail(p

i

)) i�

'(

i+1

) 2 �(Tail

0

(p

i+1

)) = �(Tail(p

i+1

)).

� if Tail

0

(p

i+1

) is bloked by Tail(p

i+1

) and Tail

0

(p

i+1

) is a suessor of Tail(p

i

) in T. Then,

by de�nition of � we have 

i

� C(Tail(p

i

)) \C(Tail

0

(p

i+1

)) and due to the Rl- and Rl8-

rule, for any atomi or universal formula ', '(

i

) 2 �(Tail(p

i

)) i� '(

i

) 2 �(Tail

0

(p

i+1

)).

Furthermore, for the funtion � verifying that Tail

0

(p

i+1

) is bloked by Tail(p

i+1

), we

have that �(�(Tail

0

(p

i+1

))) = �(Tail(p

i+1

))j

�(C(Tail

0

(p

i+1

)))

and hene for every formula ',

'(

i

) 2 �(Tail(p)), '(

i

) 2 �(Tail

0

(p

i+1

)) i� �('(

i

)) = '(

i+1

) 2 �(Tail(p

i+1

)).

Due to Claim 3, we an now de�ne a struture A over the universe A = C(T)=� by setting, for

a relation R 2 � of arity m, ([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) 2 R

A

i� there is a path p 2 Paths(T) and

onstants 

1

; : : : 

m

suh that (

i

; p) 2 [a

i

; p

i

℄

�

and R

1

: : : 

m

2 �(Tail(p)).

To simplify things we de�ne the following examples of \abuses of notation". Let a = a

1

; : : : ; a

n

be a sequene of onstants, p = p

1

; : : : ; p

n

a sequene of paths of mathing length, and q a single

path. We de�ne

[a;p℄

�

= ([a

1

; p

1

℄

�

; : : : ; [a

n

; p

n

℄

�

)

[a; q℄

�

= ([a

1

; q℄

�

; : : : ; [a

n

; q℄

�

)

It remains to show that this onstrution yields A j=  . This is a onsequene of the following

laim that an be shown by indution over the struture of the formula '.
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Claim 4: For every path p 2 Paths(T) and a � C(Tail(p)), if '(a) 2 �(Tail(p)), then A j=

'([a; p℄

�

).

We show this laim by indution on the struture of formulas '.

� If '(a) = Ra

1

: : : a

m

2 �(Tail(p)), then the laim holds immediately by onstrution of A.

� Assume '(a) = :Ra 2 �(Tail(p)), but [a; p℄

�

2 R

A

. Then, by the de�nition of A, there

must be a path p

0

and onstants  suh that (a; p) � (; p

0

) and R 2 �(Tail(p

0

)). From

Claim 3 we have that (a; p) � (; p

0

) implies Ra 2 �(Tail(p)) and hene T would ontain

the lash fRa;:Rag � �(Tail(p)).

� Assume '(a) = a 6= b 2 �(Tail(p)) but [a; p℄

�

= [b; p℄

�

. From Claim 1 we get that this

implies a = b and hene T ontains the lash a 6= a 2 �(Tail(p)).

� For Boolean ombinations the laim is immediate due to the R^- and R_-rule.

� Let '(a) = (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)) and b;p; ;q suh that

A j= �([a; p℄

�

; [b;p℄

�

; [;q℄

�

): (1)

Every y

i

2 y oexists with every other variable y

j

2 y in at least one onjunt �

(y

i

;y

j

)

2

�(a;y; z) and with every element a

`

2 a in at least one onjunt �

(y

i

;a

`

)

2 �(a;y; z).

Sine (1), for every two elemts [b

i

; p

i

℄

�

; [b

j

; p

j

℄

�

2 [b;p℄

�

there is a path q

(i;j)

and onstants

d

(i;j)

; e

(i;j)

suh that (b

i

; p

i

) � (

(i;j)

; q

(i;j)

) and (b

j

; p

j

) � (d

(i;j)

; q

(i;j)

). Similarly, for every

element [b

i

; p

i

℄

�

2 [b;p℄

�

and every element (a

`

; p) there exists a path r

(i;`)

and onstants

f

(i;j)

; g

(i;j)

suh that (b

i

; p

i

) � (f

(i;`)

; r

(i;`)

) and (a

`

; p) � (g

(i;`)

; r

(i;`)

). Equivalene lasses

of � indue subtrees of Paths(T). Every subtree indued by [b

i

; p

i

℄

�

overlaps with the

subtree indued by [b

j

; p

j

℄

�

at q

(i;j)

and with the subtree indued by [a

`

; p℄

�

at r

(i;`)

. It

is a well-known result in graph theory that this implies the existene of a single path s

whih lies on all of the indued subtrees. Thus, there must be tuples a

0

, b

0

suh that

(a; p) � (a

0

; s) and (b;p) � (b

0

; s): (2)

For every �(x;y; z) 2 �(x;y; z), Claim 3 implies �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)) as follows:

from (1,2) we get A j= �([a

0

; s℄

�

; [b

0

; s℄

�

; [;q℄

�

). Sine � is an atom, this implies the

existene of a path t and tuples a

00

;b

00

; 

0

with

(a

0

; s) � (a

00

; t) and (b

0

; s) � (b

00

; t) and (;q) � (

0

; t) and �(a

00

;b

00

; 

0

) 2 �(Tail(t)) (3)

Sine �(a

00

;b

00

; � � � � �)�

�

�(a

00

;b

00

; 

0

), Claim 3 yields �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)).

Sine this is true for every atom � and, also due to Claim 3(8yz:�(a

0

;y; z))�(a

0

;y) 2

�(Tail(s)), the ompleteness of T yields �(a

0

;b

0

) 2 �(Tail(s)). By indution, this implies

A j= �([a

0

; s℄

�

; [b

0

; s℄

�

). Together with (2) this implies A j= �([a; p℄

�

; [b;p℄

�

) and hene

A j= '([a; p℄

�

).

� If '(a) = (9yz:�(a;y; z))�(a;y) 2 �(Tail(p)), there are two possibilities.

{ there are b;  � C(Tail(p)) suh that f�(a;b; )g � �(Tail(p)) and �(a;b) 2 �(a;b).

Then, by indution, we have

A j= f�([a; p℄

�

; [b; p℄

�

; [; p℄

�

); �([a; p℄

�

; [b; p℄

�

)g

and hene A j= '([a; p℄

�

).
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{ there are no suh b;  � C(Tail(p)), then there is a suessor w of Tail(p) and a

sequene of onstants b;  � C(w) with f�(a;b; ); �(a;b)g � �(w). The node w

an be bloked or not.

� If w is not bloked, then p

0

= [p;

w

w

℄ 2 Paths(T) and, by indution,

A j= f�([a; p

0

℄

�

; [b; p

0

℄

�

; [; p

0

℄

�

); �([a; p

0

℄

�

; [b; p

0

℄

�

)g

From the de�nition of � we have, (a; p

0

) � (a; p) and hene A j= '([a; p℄

�

).

� If w is bloked by a node u (with funtion �) then p

0

= [p;

u

w

℄ 2 Paths(T). From

the bloking ondition, we have that u is unbloked and �f�(a;b; ); �(a;b)g) �

�(u). Hene, by indution,

A j= f�([�(a); p

0

℄

�

; [�(b); p

0

℄

�

; [�(); p

0

℄

�

); �([�(a); p

0

℄

�

; [�(b); p

0

℄

�

)g:

By the de�nition of � we have that (a; p) � (�(a); p

0

) and hene, A j= '([a; p℄

�

).

As a speial instane of Claim 4 we get that A j=  . Due to Lemma 3.7, for every node v 2 V,

jC(v)j � width( ) and hene A has width at most width( )� 1. Note, that we have also given

an alternative proof for Lemma 3.15

4 Conlusion

We have developed a tableau algorithm for CGF, whih we hope an serve as basis for an eÆient

implementation of a deision proedure for CGF. This hope is justi�ed by the fat that some of

the most eÆient implementations of modal or desription logi reasoners are based on tableaux

aluli similar to the one for CGF presented in this paper. As a orollary from the onstrutions

used to prove the orretness of the tableaux algorithm, we show that CGF, and hene LGF and

GF, have the �nite model property. We also give a new proof of the fat that every satis�able

GF=LGF=CGF sentene of width k has a model of tree width at most k � 1.
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