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1 Introdu
tion

The Guarded Fragment of �rst-order logi
, introdu
ed by Andr�eka, van Benthem, and N�emeti [1℄,

has been a su

essful attempt to transfer many good properties of modal, temporal, and de-

s
ription logi
s to a larger fragment of predi
ate logi
. Among these are de
idability, the �nite

model property, invarian
e under an appropriate variant of bisimulation, and other ni
e model

theoreti
 properties [1, 4℄.

The Guarded Fragment (GF) is obtained from full �rst-order logi
 through relativisation of

quanti�ers by so-
alled guard formulas. Every appearan
e of a quanti�er in the GF must be of

the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is a positive atomi
 formula, the guard, that 
ontains all free variables of  . This

generalises quanti�
ation in modal and temporal logi
s, where quanti�
ation is restri
ted to

those elements rea
hable via some a

essibility relation.

By allowing for more general formulas as guards while preserving the idea of quanti�
ation

only over elements that are 
lose together in the model, one obtains generalisations of GF

whi
h are still well-behaved in the above sense. Most importantly, one 
an obtain the loosely

guarded fragment (LGF) [13℄ and the 
lique guarded fragment (CGF) [5℄, for whi
h de
idability,

invarian
e under 
lique guarded bisimulation, and some other properties have been shown in [5℄.

The question whether CGF and LGF have the �nite model property has been open until now.

GF, LGF, and CGF are de
idable and known to be 2-ExpTime 
omplete, whi
h is shown

in [4, 5℄ using game and automata-based approa
hes. While these approa
hes yield optimal

worst-
ase 
omplexity results for many logi
s, they appear to be unsuitable as a starting point for

an eÆ
ient implementation|their worst-
ase 
omplexity is a
tually their any-
ase 
omplexity.

Many de
idability results for modal or des
ription logi
s are based on tableau algorithms [11,

7, 2, 10℄. Some of the fastest implementations of modal satis�ability pro
edures are based on

tableaux 
al
uli [9℄. Unlike automata algorithms, the average-
ase behaviour in pra
ti
e is so
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good that �nding really hard problems to test these implementations has be
ome a problem

itself.

In this paper, we generalise the prin
iples usually found in tableau algorithms for modal logi
s

to develop a tableau algorithm for CGF. To the best of our knowledge, this is the �rst algorithm

for CGF that 
an be used as the basis for an eÆ
ient implementation

1

. As a 
orollary of the


onstru
tions used to show the soundness of our algorithm, we obtain that CGF, and hen
e

LGF and GF have the �nite model property. Also, we obtain an alternative proof for the fa
t

that every satis�able CGF formula of width k has a model of tree width at most k � 1 [5℄.

In the 
urrent version, there is still a gap in the proof Lemma 3.14, whi
h is ne
essary to establish

the �nite model property. This does not 
ause a gap in the proof of Theorem 3.5 be
ause it 
an

alternatively be established using Lemma 3.17.

2 Preliminaries

For the de�nitions of GF and LGF we refer the reader to [5℄. The 
lique guarded fragment CGF

of �rst-order logi
 
an be obtained in two equivalent ways, by either semanti
ally or synta
ti
ally

restri
ting the range of the �rst-order quanti�ers. In the following we will use bold letters to

refer to tuples of elements of the universe (a;b; : : : ) resp. tuples of variables (x;y; : : : ).

De�nition 2.1 (Semanti
 CGF). Let � be a relational vo
abulary. For a � -stru
ture A with

universe A, the Gaifman graph of A is de�ned as the undire
ted graph G(A) = (A;E

A

) with

E

A

= f(a; a

0

) j a 6= a

0

; there exists R 2 � anda 2 R

A

whi
h 
ontains both a and a

0

g:

Under 
lique guarded semanti
s we understand the modi�
ation of standard �rst order seman-

ti
s, where, instead of ranging over all elements of the universe, a quanti�er is restri
ted to

elements that form a 
lique in the Gaifman graph, in
luding the binding for the free variables of

the matrix formula. More pre
isely, let A be a �-stru
ture and � an environment mapping vari-

ables to elements of A. We de�ne the model relation indu
tively over the stru
ture of formulas

as the usual FO semanti
s with the ex
eption

A; � j= 8y:'(x; y) i� for all a 2 A su
h that �(x) [ fag forms a 
lique in G(A);A; �[x 7! a℄ j= ';

and a similar de�nition for the existential 
ase. With CGF we denote �rst order logi
 restri
ted

to 
lique guarded semanti
s.

De�nition 2.2 (Synta
ti
 CGF). Let � be a relational vo
abulary. A formula � is said to be

a 
lique-formula for a set x � free(�) if � is a 
onjun
tion of atoms su
h that ea
h two elements

from x 
oexist in at least one atom, ea
h atom 
ontains at least two element from x, and ea
h

element from free(�) n x o

urs exa
tly on
e in one atom. In the following, we will identify a


lique-formula � with the set of its 
onjun
ts.

The synta
ti
 CGF is indu
tively de�ned as follows.

1. Every relational atomi
 formula Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to CGF.

2. CGF is 
losed under boolean operations.

1

There are resolution based de
ision pro
edures for GF and LGF [3℄ that are readily implemented using the

saturation theorem prover SPASS [14℄. It is un
lear if this approa
h 
an be extended to CGF.
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3. If x;y; z are tuples of variables, �(x;y; z) is a 
lique-formula for x [ y and '(x;y) is a

formula in CGF su
h that free(') � x [ y, then

9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:(�(x;y; z))'(x;y) and (8yz:(�(x;y; z))'(x;y) as alternative notations for

9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) ! '(x;y)) respe
tively.

The following lemma 
an be shown by elementary manipulation.

Lemma 2.3. Let �(x;y; z) be a 
lique-formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y)) � 8y:(9z:�(x;y; z) ! '(x;y)):

The use of the name CGF both for the semanti
 and the synta
ti
 
lique guarded fragment is

justi�ed by the following Lemma.

Lemma 2.4. Over any �nite relational vo
abulary the synta
ti
 and semanti
 versions of the

CGF are equally expressive.

Proof sket
h: By some elementary equivalen
e transformations, every synta
ti
ally 
lique

guarded formula 
an be brought into a form where swit
hing from standard semanti
s to 
lique

guarded semanti
s does not 
hange its meaning. Conversely, for any �nite signature there is

a �nite disjun
tion 
lique(x; y; z) of 
lique-formulas for x; y su
h that a; b form a 
lique in

G(A) i� A j= 9z:
lique(a; b; z). By guarding every quanti�er with su
h a formula and applying

some elementary formula transformations and Lemma 2.3, we get, for every FO formula  , a

synta
ti
ally 
lique guarded formula that is equivalent to  under 
lique guarded semanti
s.

In the following we will only 
onsider the synta
ti
 variant of the 
lique guarded fragment.

At a �rst glan
e the expressiveness of CGF and the loosely guarded fragment LGF are in
ompa-

rable. While the auxiliary variables of the CGF allow additional expressiveness, there are also

LGF-formulas that are not (synta
ti
ally) 
lique guarded. In CGF, a guard � in Qyz:�(x;y; z)

ne
essarily 
ontains every pair from x[y in (at least) one atom. In LGF a guard � in Qy:�(x;y)

need only 
ontain all 
ombinations of a variable from x with one from x [ y in (at least) one

guard atom. An example for a loosely guarded formula that is not (synta
ti
ally) 
lique guarded

is

 = (9xy:Rxy)(8z:(Rxz ^Ryz))'(x; y; z)

be
ause x and y do not 
oexist in the guard of the universal quanti�er. Yet,  
an be turned into

a 
lique guarded formula by adding the guard Rxy of the existential quanti�er to the guard of

the universal quanti�er. This yields the guard Rxy^Rxz^Ryz, a 
lique formula for x; y; z. Sin
e

it is always possible to 
lique-guard a loosely guarded formula in this way, LGF is 
ontained in

CGF. It is also possible to show that CGF is stri
tly more expressive than LGF [5℄.

De�nition 2.5 (NNF, Closure, Width). Let  2 CGF be 
losed. In the following, we as-

sume all formulas to be in negation normal form (NNF), where negation o

urs only in front of

atomi
 formulas. Every formula in CGF 
an be transformed into NNF in linear time by pushing

negation inwards using DeMorgan's law and the duality of the quanti�ers.

3



For a formula  2 CGF in NNF, let 
l( ) be the smallest set that 
ontains  and is 
losed

under sub-formulas. Let C be a set of 
onstants. With 
l( ;C) we denote the set


l( ;C) = f'(a) j a � C;'(x) 2 
l( )g:

The width of a formula  2 CGF is de�ned by

width( ) := maxfjfree(')j j ' 2 
l( )g:

3 A Tableaux Algorithm for CGF

For various modal and des
ription logi
s, de
idability 
an be shown by means of tableaux algo-

rithms, where satis�ability of a formula  is de
ided by a synta
ti
ally guided sear
h for a model

for  . Examples for these kind of algorithms 
an be found, e.g., in [11, 12, 7, 10℄. Models are

usually represented by a graph in whi
h the nodes 
orrespond to worlds and the edges 
orrespond

to the a

essibility relations in the model. Ea
h node is labeled with a set formulas that this

node must satisfy, and new edges and nodes are 
reated as required by existential modalities.

Sin
e many modal and des
ription logi
s have the tree model property, the graphs generated

by these algorithms are trees, whi
h allows for simpler algorithms and easier implementation

and optimisation of these algorithms. Indeed, some of the fastest implementations of modal and

des
ription logi
s satis�ability algorithms are based on tableau 
al
uli [9℄.

For many modal or des
ription logi
s, e.g. K or ALC, termination of these algorithms is due

to the fa
t that the modal depth of the formulas appearing at a node stri
tly de
reases with

every step from the root of the tree. For other logi
s, e.g., K4, K with the universal modality,

or the expressive DL SHIQ, this is no longer true and termination has to be enfor
ed by other

means. One possibility for this is blo
king, i.e., stopping the 
reation of new su

essor nodes

below a node v if there already is an an
estor node w that is labeled with similar formulas as v.

Intuitively, in this 
ase the model 
an fold ba
k from the prede
essor of v to w, 
reating a 
y
le.

Unraveling of these 
y
les re
overs an (in�nite) tree model. Sin
e the algorithms guarantee that

the formulas o

urring in the label of the nodes stem from a �nite set (usually the sub-formulas

of the input formula), every growing path will eventually 
ontain a blo
ked node, preventing

further growth of this path and (together with a bound on the degree of the tree) ensuring

termination of the algorithm.

Our investigation of a tableaux algorithm for CGF starts with the observation that CGF also

has some kind of tree model property.

De�nition 3.1. Let � be a relational vo
abulary. A � -stru
ture A has tree width k if k 2 N is

minimal with the following property.

There exists a dire
ted tree T = (V;E) and a fun
tion f : V ! 2

A

su
h that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists v 2 V with a � f(v), and

� for every a 2 A, the set V

a

= fv 2 V j a 2 f(v)g indu
es a subtree of T .

Every node v of T indu
es a substru
ture F(v) � A of 
ardinality at most k+1. Sin
e f(v) may

be empty we, admit empty substru
tures. The tuple hT; (F(v))

v2T

i is 
alled a tree de
omposition

of A.
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Fa
t 3.2 (Tree Model Property). Every satis�able senten
e  2 CGF of width k has a


ountable model of tree width at most k � 1.

This is a simple 
orollary of [5℄, Theorem 4, where the same result is given for an extension of

CGF by least �xed point operators.

Fa
t 3.2 is the starting point for our de�nition of a 
ompletion tree for a formula  2 CGF. A

node v of su
h a tree no longer stands for a single element of the model as in the modal 
ase,

but rather for a substru
ture F(v) of a tree de
omposition of a model. To this purpose, we label

every node v with a set C(v) of 
onstants (the elements of the substru
ture) and a subset of


l( ;C(v)), re
e
ting the formulas that must hold true for these elements.

To deal with auxiliary elements|elements helping to form a 
lique in G(A) that are not part of

this 
lique themselves|we will use � as a pla
eholder for an unspe
i�ed element in atoms. The

following de�nitions are useful when dealing with these generalised atoms.

De�nition 3.3. Let K denote an in�nite set of 
onstants and � 62 K. For any set of 
onstants

C � K we set C

�

= C [ f�g. We use t

1

; t

2

; : : : to range over elements of K

�

. The relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ngeither t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de�ne � 2

�

� i� there is a �

0

2 � with � �

�

�

0

.

For a set of 
onstants C � K and an atom � = Rt

1

: : : t

n

, we de�ne

�j

�

C

= Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indi
ate that the tuple a

�


ontains �'s. Obviously, �

�

is transitive

and re
exive, and �j

�

C

�

�

� for all atoms � and sets of 
onstants C.

While these are all synta
ti
 notions, they have a semanti
 
ounterpart that 
lari�es the intuition

of � standing for an unspe
i�ed element. Let a

0

denote the tuple obtained from a tuple a

�

by

repla
ing every o

urren
e of � in a

�

with a distin
t fresh variable, and let z be pre
isely the

variables used for this repla
ement. For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

be
ause, if a�

�

b, then b is obtained from a by repla
ing some � with 
onstants, whi
h provide

witnesses for the existential quanti�er.

De�nition 3.4 (Completion Tree, Tableau). Let  2 CGF be a 
losed formula in NNF.

A 
ompletion tree T = (V;E;C;�;N) for  is a vertex labeled tree (V;E) with the labeling

fun
tion C labeling ea
h node v 2 V with a subset of K, � labeling ea
h node v 2 V with

a subset of 
l( ;C(v)

�

) su
h that � o

urs only in atoms (without equality) and the fun
tion

N : V ! N mapping ea
h node to a distin
t natural number, with the additional property that,

if v is an an
estor of w, then N(v) < N(w).

5



A 
onstant 
 2 K is 
alled shared between two nodes v

1

; v

2

2 V, if 
 2 C(v

1

) \ C(v

2

), and


 2 C(w) for all nodes w on the (unique, undire
ted, possibly empty) path 
onne
ting v

1

to v

2

.

A node v 2 V is 
alled dire
tly blo
ked by a node w 2 V, if w is not blo
ked, N(w) < N(v)

and there is an inje
tive mapping � from C(v) into C(w) su
h that, for all 
onstants 
 2 C(v)

that are shared between v and w, �(
) = 
, and �(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the 
onvention �(�) = � for every fun
tion � that veri�es a blo
king.

A node is 
alled blo
ked if it is dire
tly blo
ked or if its prede
essor is blo
ked.

A 
ompletion tree T 
ontains a 
lash if there is a node v 2 V su
h that

� for a 
onstant 
 2 C(v), 
 6= 
 2 �(v), or

� there is an atomi
 formula � and a tuple of 
onstants a � C(v) su
h that f�(a);:�(a)g �

�(v).

Otherwise, T is 
alled 
lash-free. A 
ompletion tree T is 
alled 
omplete if none of the 
om-

pletion rules given in Figure 1 
an be applied to T. A 
omplete and 
lash-free 
ompletion tree

for  is 
alled a tableau for  .

To test  for satis�ability, the tableau algorithm 
reates an initial tree with only a single node

v

0

, �(v

0

) = f g and C(v

0

) = ;. The rules from Figure 1 are su

esively applied until either a


lash o

urs, produ
ing output \ unsatisfiable", or the tree is 
omplete, in whi
h 
ase \ 

is satisfiable" is output.

R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [ f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [ f�g for � 2 f'; #g

R= : if a = b 2 �(v)

then for all w that share a with v;C(w) := (C(w) n fag) [ fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y)) 2 �(v); there exists a b � C(v) su
h that for all atoms

�(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v); and '(a;b) 62 �(v)

then �(v) := �(v) [ f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y)) 2 �(v) and for every b; 
 � C(v); f�(a;b; 
); '(a;b)g 6� �(v)

and there is no 
hild w of v with f�(a;b; 
); '(a;b)g � �(w) for some b; 
 � C(w)

and v is not blo
ked

then let b; 
 be sequen
es of distin
t and fresh 
onstants that mat
h the lengths of y; z;


reate a 
hild w of v with C(w) := a [ b [ 
 and �(w) := f�(a;b; 
); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi
; w is a neighbour of v with a

�

\C(w) 6= ;; and

�(a

�

)j

�

C(w)

62 �(w)

then �(w) := �(w) [ f�(a)j

�

C(w)

g

Rl8 : if '(a) 2 �(v); '(a) universal; and y is a neighbour of x with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [ f'(a)g

Figure 1: The Completion Rules for CGF
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While our notion of tableaux has many similarities to the tableaux appearing in [6℄, there are

two important di�eren
es that make the notion of tableaux here more suitable as basis for a

tableau algorithm.

We will see that every 
ompletion tree generated by the tableau algorithm is �nite. Conversely,

tableaux in [6℄, in general, 
an be in�nite.

Also, in [6℄ every node is labeled with a 
omplete ( ;C(v))-type, i.e., every formula ' 2


l( ;C(v)) is expli
itly asserted true of false at v. Conversely, a 
ompletion tree 
ontains

only assertions about relevant formulas. This implies a lower degree of non-determinism in the

algorithm, whi
h is important for an eÆ
ient implementation.

Theorem 3.5. The tableau algorithm is a (non-deterministi
) de
ision pro
edure for CGF-

satis�ability.

Proof: This is an immediate 
onsequen
e of the following fa
ts established in the subsequent

se
tions.

1. Every sequen
e of rule appli
ations terminates after a �nite number of steps. (Termination,

Lemma 3.8)

2. If the algorithm 
onstru
ts a tableau for  , then  is satis�able. (Soundness, Lemma 3.15)

3. If  is satis�able, then the rules 
an be applied to generate a tableau for  . (Completeness,

Lemma 3.16)

As a 
orollary, we get that CGF and hen
e also the loosely guarded fragment, and the guarded

fragment, have the �nite model property. For GF this was already known [4℄, whereas for LGF

and CGF this was still an open problem.

Corollary 3.6. Let  2 GF=LGF=CGF.  is satis�able i�  is �nitely satis�able.

Proof: If  is satis�able, the tableau algorithm generates a �nite tableau for  . The 
onstru
-

tion in the proof of Lemma 3.15 shows that su
h a tree indu
es a �nite model.

3.1 Termination

The folloing te
hni
al lemma is a simple 
onsequen
e of the 
ompletion rules and the blo
king


ondition.

Lemma 3.7. Let  2 CGF be a 
losed formula in NNF with j j = n, width( ) = m, and T a


ompletion tree generated for  by appli
ation of the rules in Figure 1. For every node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distin
t nodes in T 
ontain a blo
ked node.

Proof:

7



1. Nodes are only generated by the R9-rule and no 
onstants are added to a C(v) on
e v has

been generated (but some may be removed by appli
ation of the R=-rule).

When triggered by the formula (9yz:�(a;y; z))'(a;y), the R9-rule initializes C(w) su
h

that it 
ontains a and another 
onstant for every variable in x and y. Hen
e,

jC(w)j � ja [ y [ zj � jfree(�)j � width( ):

2. The set �(v) is a subset of 
l( ;C(v)

�

), for whi
h j
l( ;C(v))j � n � (m + 1)

m

holds

be
ause there are at most n formulas in 
l( ), ea
h of whi
h has at most m free variables.

There are at most (jC(v)j+1)

m

distin
t sequen
es of length m with 
onstants from C(v)

�

.

3. Let v

1

; : : : ; v

`

be ` > 2

n�(m+1)

m

distin
t nodes. For every v

i

, we will 
onstru
t a mapping

�

i

: C(v

i

) ! f1; : : : mg su
h that, if a 
onstant a is shared between two nodes v

i

; v

j

, then

�

i

(a) = �

j

(a).

Let u

1

; � � � ; u

k

denote the nodes of a subtree of T that 
ontains every node v

i

and that

is rooted at u

1

. By indu
tion over the distan
e to u

1

, we de�ne an inje
tive mapping

�

i

: C(u

i

) ! f1; : : : ;mg for every i 2 f1; : : : ; kg as follows. For �

1

we pi
k an arbitrary

inje
tive fun
tion from C(u

1

) to f1; : : : ;mg. For a node u

i

let u

j

be the prede
essor

of u

i

in T and �

j

the 
orresponding fun
tion, whi
h, sin
e u

j

has a smaller distan
e to

u

1

, has already been de�ned. For �

i

we 
hoose an arbitrary inje
tive fun
tion su
h that

�

i

(a) = �

j

(a) for all a 2 C(u

i

) \C(u

j

).

All mappings �

i

are inje
tive. For any 
onstant a the set V

a

:= fv 2 V j a 2 C(v)g indu
es

a subtree of T. If u

i

; u

j

2 V

a

are neighbours, the de�nition above ensures �

i

(a) = �

j

(a).

By indu
tion over the length of the 
onne
ting path we obtain the same for arbitrary

u

i

; u

j

2 V

a

.

For every node v

i

there is a j

i

su
h that v

i

= u

j

i

and we set �

i

= �

j

i

. There are at

most 2

n�(m+1)

m

distin
t subsets of 
l( ; f1; : : : ;m; �g). Hen
e, there must be two nodes

v

i

; v

j

su
h that �

i

(�(v

i

)) = �

j

(�(v

j

)) and, w.l.o.g., N(v

i

) < N(v

j

). We show that v

j

is

blo
ked by v

i

via � := �

�1

i

Æ �

j

. Note that for � to be well-de�ned, �

i

must be inje
tive.

By 
onstru
tion, � preserves shared 
onstants. It remains to be shown that �(�(v

j

)) =

�(v

i

)j

�(C(v

j

))

. Let '(a) 2 �(v

j

). Sin
e �

j

('(a)) 2 �

j

(�(v

j

)) = �

i

(�(v

i

)) there is a

b 2 C(v

i

) with '(b) 2 �(v

i

) and �

i

(b) = �

j

(a). By de�nition of � we have �(a) = b

and thus �('(a)) 2 �(v

i

)j

�(C(v

j

))

. Conversely, let '(b) 2 �(v

i

)j

�(C(v

j

))

. Sin
e �

i

('(b)) 2

�

i

(�(v

i

)) = �

j

(�(v

j

)) there is a a 2 C(v

j

) with '(a) 2 �(v

j

) and �

j

(a) = �

i

(b). By


onstru
tion of � this implies �(a) = b and hen
e '(b) 2 �(�(v

j

)).

Lemma 3.8 (Termination). Let  2 CGF be a 
losed formula in NNF. Any sequen
e of rule

appli
ation of the tableau algorithm starting from the initial tree terminates.

Proof: For any 
ompletion tree T generated by the tableau algorithm, we de�ne k � k : V 7! N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) j ' triggers the R9-r. for vgj):

The lexi
ographi
 order � on N is well-founded, i.e. it has no in�nite de
reasing 
hains. Any

rule appli
ation de
reases kvk w.r.t. � for at least one node v, and never in
reases kvk w.r.t. �

8



for an existing node v. However it may 
reate a new node w. Hen
e, there 
an only be a �nite

number of appli
ations of rules to every node in T and an in�nite sequen
e of rule appli
ations

would generate an in�nite tree. As a 
orollary of 3.7, we have that the depths of T is bounded

by 2

n�(m+1)

m

+ 1, sin
e, on any dire
ted path of that length, there must be a blo
ked node.

Rules are never applied to blo
ked nodes, so paths with blo
ked nodes 
an not grow in length.

Hen
e, T 
an only be in�nite due to an in�nite bran
hing in T. Any su

essor of a node v

is generated by appli
ation of the R9-rule to v. Ea
h su
h appli
ation generates exa
tly one

su

essor. Hen
e, for T to be ini�nite, there must be an in�nite number of appli
ations of the

R9-rule to a node v. As ea
h su
h appli
ation de
reases kvk we have a 
ontradi
tion.

3.2 Corre
tness

In order to prove the 
orre
tness of the tableau algorithm we have to show that the existen
e

of a tableau for  implies satis�ability of  . To this purpose, we will 
onstru
t a model from

a tableau. In the following, let  2 CGF[� ℄ and let T = (V;E;C;�;N) be a tableau for  .

W.l.o.g., we assume, for every node v 2 V and every a 2 C(v), a = a 2 �(v). For every blo
king

situation we �x a mapping � verifying this blo
king.

De�nition 3.9. We make the blo
king relation expli
it. For every blo
ked node v there is a

unique blo
king node w and we de�ne B as set of all su
h pairs (v; w).

Further de�ne C(V) :=

S

fC(v) : v 2 V; v not blo
kedg. The equivalen
e relation � on C(V)

is the re
exive and transitive 
losure of the set of all pairs of 
onstants (
; d), where 
 2 C(u)

and d 2 C(v) for two nodes u and v, (u; v) 2 B and the fun
tion � that veri�es the blo
king

maps d to 
.

We also use � as an operator that maps a 
onstant a to its �-
lass ~a. For tuples of 
onstants

a, this operation is performed 
omponentwise. We say that
~
a � C(v), if for ea
h a 2 a there is

an a

0

2 ~a \C(v).

De�nition 3.10. Let v; w 2 V and a 2 C(v), b 2 C(w). An (a; b)-path in T is a sequen
e

(s

1

; 


1

); : : : ; (s

k

; 


k

) in V � C(V) su
h that 


1

= a, 


k

= b and for all 1 � i < k one of the

following holds.

1. (s

i

; s

i+1

) 2 E and 


i

= 


i+1

2. (s

i

; s

i+1

) 2 B and �(


i+1

) = 


i

3. 1. and 2. for reversed roles of i and i+ 1.

That is, an (a; b)-path veri�es a � b. If p is su
h an (a; b)-path, the proje
tion of p, �(p) =

s

1

; : : : ; s

k

, is the sequen
e of nodes en
ountered along p.

The general idea in the 
onstru
tion of a model from a tableau, is to use C(V)=� as the universe

and de�ne the relations using the atomi
 
onstraints in the nodes. In general, there may be

two kinds of problemati
 situations in a tableau that make this 
onstru
tion impossible, namely

dormant 
lashes and evil 
liques.

De�nition 3.11 (Dormant Clash). Two distin
t nodes v; w 2 V, two tuples of 
onstants a;b

and a positive literal � form a dormant 
lash (v; w;a;b; �) in T, if a 2 C(v), b 2 C(w) and it

is the 
ase that a 6= b, but a � b and either �(a) 2 �(v) and �(b) 62 �(w) or �(a) 62 �(v) and

�(b) 2 �(w).
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Note that for ea
h dormant 
lash (v; w;a;b; �), the interse
tion of the sets P

i

= fp : p is an (a

i

; b

i

)-pathg,

1 � i � jaj, is empty. Any path in
luded in all P

i

would su

esively let the 
omplete atomi


information about a and b be propagated from v to w using Rl, either produ
ing a true 
lash

or 
ontradi
ting the de�nition of a dormant 
lash.

Further, there are 
onstants a

t

2 a and b

t

2 b, a

t

6= b

t

but a

t

� b

t

, su
h that for some

(s

i

; 


i

); (s

i+1

; 


i+1

) on every (a

t

; b

t

)-path, either s

i

is blo
ked by s

i+1

(or vi
e versa) and the

belonging inje
tion � maps 


i

to 


i+1

(


i+1

to 


i

), or there is a node s blo
king both s

i

and s

i+1

su
h that for the respe
tive inje
tions �

s

i

: C(s

i

) ! C(s) and �

s

i+1

: C(s

i+1

) ! C(s) we have

�

s

i

(


1

) = �

s

i+1

(


i+1

). It follows that B 
ontains (s

i

; s

i+1

) (or (s

i+1

; s

i

)) in the �rst and both

(s; s

i

) and (s; s

i+1

) in the se
ond 
ase.

De�nition 3.12 (Evil Clique). An evil 
lique (a;b; �) in T 
onsists of two sequen
es of 
on-

stants a and b and a guard � o

uring in some subformula '(x) = (8yz:�(x;y; z))�(x;y) of  

su
h that

� a and '(a) o

ur in the C resp. the �-label of some node in V,

� for ea
h � 2 � there are a node w, some 
onstants a

0

� a and b

0

� b su
h that

�(a

0

;b

0

; � � � � �) 2

�

�(w),

� there is no node v, 
onstants a

0

� a and b

0

� b su
h that '(a

0

) 2 �(v) and �(a

0

;b

0

; � � � � �)2

�

�(v) for all � 2 �.

2

Evil 
liques are also a side-e�e
t of folding ba
k the 
ompletion tree into itself via B-edges, but

are not required in the sense that all existential subformula of  
an be satis�ed elsewhere. To

see this, assume to the 
ontrary that we do not use B-edges and a is always 
hosen for a

0

and b

for b

0

in above de�nition. Sin
e � is a 
lique-formula, every pair of 
onstants from a [ b o

ur

in at least one atom, and hen
e o

ur together in the C-label of some node. So for any pair

of 
onstants 


1

; 


2

from a [ b the sets V




1

and V




2

are subtrees of (V;E), and do not require

B-edges for their 
onne
tedness. It is a well known result in graph theory, that any family of

pairwise overlapping trees has a 
ommon node|remember that V with only the E-edges is a

tree. Consequently a [ b is a subset of the C-label of this 
ommon node.

Therefore, given an evil 
lique C = (a;b; �), we 
an always �nd a set of 
onstants C

C

� a [ b

and a set of 
onstants D

C

� f
 : ~
 2
~
a [

~

bg n (a [ b) su
h that, if for ea
h 


C

2 C

C

and

d

C

2 D

C

where 


C

� d

C

we remove a set of B-edges su
h that no (


C

; d

C

)-path is left over,

(a;b; �) is no longer an evil 
lique.

We isolate a set of edges as responsible for the two types of problemati
 situations de�ned above.

De�nition 3.13. Given a tableau T, the set of 
riti
al edges of T, S = S(T), is a subset of B

de�ned as follows.

� For ea
h dormant 
lash C = (v; w;a;b; �) we 
hoose an index t su
h that for a

t

2 a and

b

t

2 b we have a

t

6= b

t

. Let S 
ontain the �rst B-edge from ea
h (a

t

; b

t

)-path.

� For ea
h evil 
lique C = (a;b; �) we 
onsider the 
onstants C

C

and D

C

. For ea
h 


C

2 C

C

and d

C

2 D

C

where 


C

� d

C

let S again 
ontain the �rst B-edge from every (


C

; d

C

)-path.

2

By abuse of notation we write �(a

0

;b

0

; � � � � �) and a

0

� a, even though not all elements of a

0

need to o

ur

in � and a

0

may in general be shorter than a. The same applies to b

0

.
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By making enough (but �nitely many) isomorphi
 
opies of all subtrees of the tableau below

the root, it is possible to redire
t all 
riti
al edges into di�erent 
opies in a manner that gets rid

of all (isomorphi
 
opies of) dormant 
lashes and evil 
liques.

Lemma 3.14. If there is a �nite tableau T for  , then there is also a �nite tableau T

0

for  

that does not 
ontain 
riti
al edges (and hen
e no dormant 
lashes or evil 
liques).

In both 
ases let S

C


ontain the edges introdu
ed into S by C.

Note that no B-edge 
an be in
ident to the root of T, sin
e all other nodes 
ontain at least one


onstant in their C-label.

Proof: Let � be the root of T and let n = jSj. We make an enlarged version T

0

of T where

all subtrees with roots that are dire
t E-su

essors of � are repla
ed by 2

n

isomorphi
 
opies.

More pre
isely

� V

0

= f�g [ fv

i

: v 2 V n f�gg,

� E

0

= f(�; v

i

) : (�; v) 2 Eg [ f(v

i

; w

i

) : (v; w) 2 Eg,

� C

0

(v

i

) = fa

i

: a 2 C(v)g, C

0

(�) = ;,

� �

0

(v

i

) = f'(a

i

) : '(a) 2 �(v)g, �

0

(�) = �(�),

� N

0

(v

i

) = 2

n

�N(v) + i, N

0

(�) = 0,

for all 0 � i < 2

n

. The blo
king relation B

0

is given by

� B

0

=

S

f(v

i

; w

i

) : (v; w) 2 B; 0 � i < 2

n

g.

This �rst step also 
reates 2

n


opies of our 
riti
al edges, namely all (r

i

; s

i

) for whi
h (r; s) 2 S.

We now modify B

0

as follows to eliminate all 
opies of our original 
riti
al edges. Let f(r

t

; s

t

) :

0 � t < ng be an enumerated version of S.

Now for all 0 � t < n and all 0 � `; j < 2

n

, if the binary representations of ` and j di�er exa
tly

at the t-th position we delete (r

`

t

; s

`

t

) and (r

j

t

; s

j

t

) from B

0

and add (r

`

t

; s

j

t

) and (r

j

t

; s

`

t

) in their

pla
e. Independent of the existen
e of 
riti
al edges in T

0

, let S

0

be the set of B

0

-edges indu
ed

by S, i.e. exa
tly the edges 
onne
ting some i-th and j-th 
opy of T in T

0

, i 6= j.

This hyper-
ube type of stru
ture 
reated by the S

0

-edges is 
ru
ial to the elimination of 
riti
al

edges. The notation forthwith uses the 
onvention that if X is an obje
t related to T, then X

0

is the 
orresponding obje
t related to T

0

and vi
e versa. Also for any obje
t X that was 
opied

in the transition from T to T

0

, the indexed version X

i

is assumed to be the 
opy related to T

i

.

Claim: T

0

is still a 
omplete and 
lash-free �nite 
ompletion tree for  .

Let T

i

be T

0

restri
ted to � and all i-th 
opies of the subtrees, i.e. T

0

restri
ted to fv

i

:

v 2 Vg [ f�g. Further let V

i

a

= fv

i

2 T

i

: a 2 C(v

i

)g and V

i

~a

= fv

i

: a

0

2 C

0

(v

i

); ex. p 2

P (a; a

0

) s.t. �(p) � T

i

g. When disregarding S

0

, ea
h T

i

is isomorphi
 toT. Further the de�nition

of B

0

implies that for any node v that is blo
ked by a node w in T, all 
opies v

i

are blo
ked

by some node w

j

in T

0

. Consequently T

0

is 
omplete. Sin
e ea
h �

0

-label in T

0

is identi
al to

some �-label in T, T

0

is also 
lash-free.

Note that for i 6= j there are exa
tly two B

0

-edges between T

i

and T

j

i� the binary repre-

sentations of i and j di�er at exa
tly one position. In all other 
ases there is no 
onne
ting

B

0

-edge.
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By 
onstru
tion, if (s

i

1

1

; 


i

1

1

) � � � (s

i

k

k

; 


i

k

k

) is an (a

i

; b

j

)-path in T

0

, then (s

1

; 


1

) � � � (s

k

; 


k

) is an

(a; b)-path in T. Consequently, if (v

i

; w

j

;a

i

;b

j

; �) is a dormant 
lash in T

0

, then (v; w;a;b; �)

is a dormant 
lash in T.

We 
an already note that if (
; d) was a pair of 
onstants giving rise to a set of 
riti
al edges S

C

,

and all (


i

; d

i

)-paths were subsequently modi�ed, then there 
an be no (


`

; d

`

)-path using only

nodes in T

`

. Any su
h path would have an isomorphi
 
opy in T leading to some edge being

in
luded in S.

Also, in the same 
ir
umstan
es, all (


i

; d

j

)-paths 
ontain S

0

C

0

-edges, even if i = j. We just

noted, that for any ` there never is a lo
al, i.e. restri
ted to T

`

, 
onne
tion between V

`




and V

`

d

.

For any in this sense non-lo
al (


i

; d

j

)-path p

0

, the isomorphi
 
opy p in T is a (
; d)-path. So

at least one edge along p belongs to S

C

and 
onsequently at least one edge along p

0

to S

0

C

0

.

Similarly, if C

0

= (a

i

;b

0

; �) is an evil 
lique in T

0

, then (a;b; �) already was an evil 
lique in T

and for all d

j

C

0

2 D

0

C

0

we have d

C

0

2 D

C

. We designate the �rst tuple of elements a

i

, be
ause

the de�nition of an evil 
lique requires all o

uring elements to 
o-exist at some node v = v

i

.

We do not have su
h an assumption for the se
ond tuple, hen
e the elements of b

0

may live only

at di�erent T

j

s.

Claim: T

0


ontains no dormant 
lash.

Assume that C

0

= (v

i

; w

j

;a

i

;b

j

; �) is a dormant 
lash in T

0

and t is the index for whi
h the

(a

i

t

; b

j

t

)-paths in T

0

were modi�ed. We need to show that a

i

6� b

j

.

We note that due to the modi�
ations in B

0

, any (a

i

t

; b

j

t

)-path has to use S

0

-edges, even in the


ase of i = j. Also as C

0

(�) = ; the root 
an not o

ur on any (�; �)-path. The 
onstru
tion of

B

0

further implies that the numbers of S

0

C

0

-edges on the paths verifying a

i

� b

j

are either all

even or all odd.

First suppose that all (a

i

t

; b

j

t

)-paths for C

0


ontain an even number of S

0

C

0

-edges. Let p be an

(a

i

t

; b

j

t

)-path in T

0

. Ea
h S

0

C

0

-edge leads from some V

`

a

`

t

to a V

`

0

~

b

`

0

t

or vi
e versa. The seeming

asymmetry of taking a for the �rst, and

~

b for the se
ond set of nodes, is due to the de�nition of


riti
al edges sele
ting the �rst B-edge from the (a

t

; b

t

)-paths for in
lusion in S.

We 
on
lude that if the last S

0

C

0

edge was taken from a V

`

a

`

t

to a V

`

0

~

b

`

0

t

, then the next S

0

C

0

-edge

along p has to be taken from a V

`

00

~

b

`

00

t

to a V

`

000

a

`

000

t

and vi
e versa. Otherwise there would be e.g.

a (a

`

0

t

; b

`

00

t

)-path in between. By previous observation this path would ne
essary 
ontain an

S

0

C

0

-edge, 
ontradi
ting the 
hoi
e of two S

0

C

0

above.

By a simple parity argument we observe that if p starts in V

i

a

it 
an only end in V

j

a

instead of

the required V

j

~

b

. This 
ontradi
ts the assumption that p is an (a

i

t

; b

j

t

)-path. Hen
e a

i

6� b

j

and

C

0

is not a dormant 
lash.

Now suppose that the (a

i

t

; b

j

t

)-paths for C

0


ontain an odd number of S

0

C

0

-edges. Let p be an

(a

i

t

; b

j

t

)-path 
ontaining an odd number of S

0

C

0

-edges. Then there is at least one a
tual edge

e

0

2 S

0

C

0

that o

urs an odd number of times. Suppose that e

0

is a 
opy of the edge e

`

, i.e. the

`-th edge in the enumeration of S. By the 
onstru
tion of T

0

we 
on
lude that bin(i) and bin(j)

di�er at position `. Consequently any (a

i

t

; b

j

t

)-path, and indeed any path from T

i

to T

j

(ignoring


onne
tions via �) has to 
ontain an odd number of edges that are 
opies of e

`

.

We 
an then �nd an index h 6= t su
h that any path using e

`

does not verify a

h

� b

h

. Now

assume that p

0

is an (a

i

h

; b

j

h

)-path in T

0

. As a

i

h

2 T

i

and b

j

h

2 T

j

, we know that p

0


ontains an

12



edge that is a 
opy of e

`

. Then the isomorphi
 
opy of p

0

in T would be an (a

h

; b

h

)-path in T,

a 
ontradi
tion.

Finally a

i

h

6� b

j

h

implies a 6� b, so C

0

is not a dormant 
lash.

Claim: T

0


ontains no evil 
lique.

This part of the proof has yet to be established in a 
on
ise way.

Lemma 3.15. Let  2 CGF[� ℄ and let T be a tableau for  . Then  is (�nitely) satis�able.

Proof: A

ording to Lemma 3.14 we assume T = (V;E;C;�;N) to be a tableau for  that

does not 
ontain 
riti
al edges.

Towards the �nite satis�ability we 
onstru
t a �nite stru
ture A = A(T) with universe A :=

C(V)=�. For ea
h relation R 2 � and ea
h tuple a 2 A of mat
hing arity let a 2 R

A

i� there

is a node v 2 V and a tuple of 
onstants b 2 C(v) su
h that all b

i

� a

i

and Rb 2 �(v). Note

that with Rl and the non-existen
e of dormant 
lashes, this is the 
ase i� the same holds true

independent of the spe
i�
 
hoi
e of b or v. Hen
e A is well de�ned.

Claim: A j=  .

This is implied by the stronger statement that for every 
losed formula ' using 
onstants from

a that appears in the �-label of some unblo
ked node v of T, '[a 7!
~
a℄ holds in A. Again ' is

assumed to be in NNF.

� For equality statements this is immediate. The R=-rule makes sure, that distin
t 
onstants

o

uring at a 
ommon node have distin
t �-
lasses. For inequality statments, assume

a 6= b 2 �(v), but a � b. Then we 
an �nd an (a; b)-path 
ontaing a node w 6= v and a


onstant 
 2 C(w) with a � 
 � b. Sin
e we have assumed 
 = 
 2 �(v), this would imply

the existen
e of the dormant 
lash (v; w; ab; 

; 
 = 
) in T.

� For an atomi
 senten
e Ra, we get A j= R
~
a immediately from the 
onstru
tion of A. In


ase of a negated atomi
 senten
e, assume '(a) = :Ra 2 �(v) but A j= R
~
a. This implies

the existen
e of a (dormant) 
lash in T.

� For positive Boolean 
ombinations the argument is immediate.

� Let '(a) = (9yz:�(a;y; z))�(a;y). If, for some b; 
 2 C(v), �(a;b; 
); �(a;b) 2 �(v), we

note that A j= �(
~
a;

~

b) and A j= �(
~
a;

~

b;
~

) for all � 2 � by indu
tion hypothesis for � and

�.

If there are no b; 
 2 C(v) with �(a;b; 
); �(a;b) 2 �(v), then appli
ation of the R9-Rule

yields a su

essor node w of v with 
onstants b; 
 2 C(w) su
h that �(a;b; 
); �(a;b) 2

�(w). If w is not blo
ked, the 
laim again follows by indu
tion hypothesis for � and �.

If however w is blo
ked, 
onsider the node u with (u;w) 2 B and the inje
tion � : C(w)!

C(u). Then �(�(a); �(b); �(
)) and �(�(a); �(b)) are in the �-label of u. Sin
e all pairs

of 
onstants (a; a

0

) where a

0

= �(a) are in the same �-
lass, it follows by indu
tion that

A j= �(
~
a;

~

b;
~

) ^ �(

~
a;

~

b), and hen
e '(
~
a) holds in A.

� Finally let '(a) = (8yz:�(a;y; z))�(a;y). Assume that there are tuples b; 
 su
h that

A j= �(
~
a;

~

b;
~

). Sin
e there are no evil 
liques in T, there is a node w where

~
a[

~

b � C(w),

13



i.e., there are tuples a

0

;b

0

� C(w) with a

0

� a and b

0

� b. Moreover, for all � 2 �,

�(a

0

;b

0

; � � � � �) 2

�

�(w) and '(a

0

) 2 �(w). Hen
e, the R8-rule is apppli
able for '(a

0

) at

w and must have been applied be
ause T is 
omplete. This yields �(a

0

;b

0

) 2 �(v), whi
h,

by indu
tion yields A j= �(a

0

;b

0

) and hen
e A j= �(a;b).

3.3 Completeness

Lemma 3.16. Let  2 CGF be a 
losed formula in NNF. If  is satis�able, then there is a

sequen
e of rule appli
ations starting from the initital tree that yields a tableau.

Proof: Sin
e  is satis�able, there is a model A of  . We will use A to guide the appli
ation

of the non-deterministi
 R_-rule. For this we in
remently de�ne a fun
tion g :

S

fC(v) j v 2

Vg ! A su
h that for all v 2 V : A j= g(�(v)). We refer to this property by (�).

The set �(v) 
an 
ontain atomi
 formulas �(a

�

) where � o

urs at some positions of a

�

and is

not mapped to an element of A by g. We deal with this as des
ribed under De�nition 3.3 by

setting

A j= g(�(a)) i� A j= 9z:g(�(a

0

)):

Claim 1: If for a 
ompletion tree T there exists a fun
tion g su
ht that (�) holds and a rule is

appli
able to T, then it 
an be applied in a way that maintains (�).

We distinguish the di�erent rules.

� If the R^-rule is appli
able to a node v 2 V with '^# 2 �(v) then, due to (�), A j= g('^#)

and hen
e A j= fg('); g(#)g. Hen
e, the R^-rule 
an be applied to v without violating (�).

� If the R_-rule is appli
able to a node v 2 V with '_# 2 �(v) then, due to (�), A j= g('_#)

and hen
e A j= g(�) for a � 2 f'; #g. Hen
e, the R_-rule 
an be applied to v without

violating (�).

� If the R=-rule is appli
able to a node v 2 V with a = b 2 �(v), then A j= g(b) = g(b)

implies g(a) = g(b). Hen
e, for every node w that shares a with v, g(�(w)) = g(�(w)[a 7!

b℄) and the rule 
an be applied without violating (�).

� If the R8-rule is appli
able to a node v 2 V with (8yz:�(a;y; z))'(a;y) 2 �(v), then there

is b � C(v) su
h that, for all atoms �(x;y; z) 2 �, �(a;b; � � � � �) 2

�

�(v). Hen
e, from

the de�nition of 2

�

, there is a tuple 
 � C(v) [ f�g su
h that �(a;b; � � � � �)�

�

�(a;b; 
)

and �(a;b; 
) 2 �(v). From (�) we get that A j= 9z:�(g(a); g(b); z) and sin
e every z

appears in exa
tly one atom in �, also A j= 9z:�(g(a); g(b); z). Hen
e, we have

fA j= f8y:(9z:�(g(a);y; z) ! '(g(a);y));

9z:�(g(a); g(b); z)g

whi
h, by Lemma 2.3, implies A j= '(g(a); g(b)) and hen
e '(a;b) 
an be added to �(v)

without violating (�).

� If the R9-rule is appli
able to a node v 2 V with (9yz:�(a;y; z))'(a;y), then this implies

A j= g((9yz:�(a;y; z))'(a;y)):

14



Hen
e, there are sequen
es b

0

; 


0

� A of elements su
h that A j= f�(g(a);b

0

; 


0

); '(g(a);b

0

)g.

If we de�ne g su
h that g(b) = b

0

and g(
) = 


0

, then obviouslyA j= fg(�(a;b; 
); g('(a;b))g.

Note, that this might involve setting g(b

1

) = g(b

2

) for some b

1

; b

2

2 b. With this 
on-

stru
tion the resulting extended 
ompletion-tree T and extended fun
tion g again satisfy

(�).

� If the Rl-rule is appli
able to a node v 2 V with �(a

�

) 2 �(v) and a neighbour w with

a

�

\ C(w) 6= ;, then it adds �(a

�

)j

�

C(w)

to �(w). From (�) get that A j= �(g(a

�

)), and

sin
e �(a

�

)j

�

C(w)

�

�

�(a

�

), whi
h implies A j= �(g(a

�

))j

�

C(w)

. Hen
e, adding �(a

�

)j

�

C(w)

to

�(w) does not violate (�).

� If the Rl8-rule is appli
able to a node v 2 V with a universal formula '(a) 2 �(v) and a

neighbour w whi
h shares a with v, (�) yields A j= '(g(a)). Hen
e, adding '(a) to �(w)

does not violate (�).

Claim 2: A 
ompletion-tree T for whi
h a fun
tion g exists su
h that (�) holds is 
lash free.

Assume that T 
ontains a 
lash, namely, there is a node v 2 V su
h that either a 6= a 2 V(v)|

implying A j= g(a) 6= g(a)|, or that there is a sequen
e a � C(v), and an atomi
 formula '

su
h that f�(a);:�(a)g � �(v). From (�) it would follow that A j= f�(g(a));:�(g(a))g, also a


ontradi
tion.

These 
laims yield Lemma 3.16 as follows. Let T be a tableau for  . Sin
e A j=  , (�) is

satis�ed for initial tree together with the empty fun
tion g. By Theorem 3.8, any sequen
e of

appli
ations is �nite, and from Claim 1 we get that there is a sequen
e of rule-appli
ations that

maintains (�). By Claim 2, this sequen
e results in a tableau.

Lemma 3.16 involves two di�erent kinds of non-determinism, namely, the 
hoi
e whi
h rule to

apply to whi
h 
onstraint (as several rules 
an be appli
able simultaneously), and whi
h disjun
t

to 
hoose in an appli
ation of the R_-rule. While the latter 
hoi
e is don't-know non-detemisti
,

i.e., for a satis�able formula only 
ertain 
hoi
es will lead to the dis
overy of a tableau, the

former 
hoi
e is don't-
are non-deterministi
. This means that arbitrary 
hoi
es of whi
h rule to

apply next will lead to the dis
overy of a tableau for a satis�able formula. For an implementation

of the tableau algorithm this has the following 
onsequen
es. Exhaustive sear
h is ne
essary to

deal with all possible expansions of the R_-rule, but arbitrary strategies of 
hoosing whi
h rule

to apply next and where will lead to a 
orre
t implementation, although the eÆ
ien
y of the

implementation will very mu
h depend on a suitable strategy.

3.4 Tree Model Property

The fa
t that every satis�able formula of width k has a model of width at most k � 1 was the

starting point for our 
onsiderations. Yet, this fa
t was never relied on to prove the 
orre
tness

of the tableaux algorithm. Indeed, it is possible to give an alternative proof for Fa
t 3.2 based

on our tableaux algorithm. This requires an alternative 
onstru
tion to the one used in the

proof of Lemma 3.15. Note that this proof is also an alternative proof for Lemma 3.15.

Theorem 3.17. Let  2 CGF with k = width( ).  is satis�able i�  has a model of width

at most k � 1.
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Proof: If  is satis�able, then the tableaux algorithm generates a tableau for  . Using an

unraveling 
onstru
tion, we will 
onstru
t a model for  of width at most k � 1 from T.

Let V

u

= fv 2 V j v is not indire
tly blo
ked g and Paths(T) � V

+

u

indu
tively de�ned by

3

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor of v

n

and w is not blo
ked, then [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2

Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor of v

n

blo
ked by the node u 2 V, then

[

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

being a su

essor of p if p

0

is obtained from p by 
on-


atenating one element

u

w

at the end. We de�ne the auxiliary fun
tions Tail;Tail

0

by setting

Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄. We further de�ne

C(T) = f(a; p) j p 2 Paths(T) ^ a 2 C(Tail(p))g

and the relation � as the smallest symmetri
 relation on C(T) satisfying

� (a; p) � (a; q) if Tail

0

(q) is an unblo
ked su

essor of Tail(p) and a 2 C(Tail(p))\C(Tail

0

(q)),

� (a; p) � (b; q) if Tail

0

(q) is a blo
ked su

essor of Tail(p), a 2 C(Tail(p)) \C(Tail

0

(q)) and

�(a) = b for the fun
tion � that veri�es that Tail

0

(q) is blo
ked by Tail(q).

With� we denote the re
exive, transitive 
losure of�. First we need to prove some te
hni
alities

for this unraveling.

Claim 1: Let p 2 Paths(T) and a; b 2 C(Tail(p)). Then (a; p) � (b; p) i� a = b.

Assume the 
laim does not hold and let a 6= b with (a; p) � (b; p). By de�nition of �, (a; p) 6�

(b; p) must hold. Hen
e, there must be a path (


1

; p

1

) � � � � � (


k

; p

k

) su
h that a = 


1

, b = 


k

,

and p = p

1

= p

k

. W.l.o.g., assume we have pi
ked a; b; p su
h that this path has minimal length

k. Su
h a minimal path must be of length k = 3, for if we assume a path of length k > 3, there

must be 2 � i < j � k � 1 su
h that p

i

= p

j

, be
ause the relation � is de�ned along paths in

the tree Paths(T). If 


i

= 


j

then we 
an shorten the path between position i and j and obtain

a shorter path. If 


i

6= 


j

, then the path (


i

; p

i

) � � � � � (


j

; p

j

) is also a shorter path with the

same properties. Hen
e, a minial path must be of the form (a; p) � (
; q) � (b; p). If Tail

0

(q) is

not blo
ked, by the de�nition of �, a = 
 = b must hold. Hen
e, sin
e a 6= b, Tail

0

(q) must be

blo
ked by Tail(q). From the de�nition of � we have a; b 2 C(Tail

0

(q)) and �(a) = 
 = �(b) for

the fun
tion � verifying that Tail

0

(q) is blo
ked by Tail(q). Sin
e � must be inje
tive, this is a


ontradi
tion.

Sin
e the set Paths(T) is a tree, and as a 
onsequen
e of Claim 1 we get the following:

Claim 2: Let p; p

0

2 Paths(T) with p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄, p

0

= [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄. If, for a 2 C(v

n

); b 2 C(w),

(a; p) � (b; p

0

) then (a; p) � (b; p

0

).

3

This 
ompli
ated for of unraveling, where we re
ord both blo
ked an blo
king node is ne
essary be
ause there

might be a situation where two su

essors v

1

; v

2

of a node are blo
ked by the same node w.
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If (a; p) � (b; p

0

) then there must be a path (


1

; p

1

) � � � � � (


k

; p

k

) su
h that a = 


1

, b = 


k

,

p = p

1

, and p

0

= p

k

. Sin
e � is only de�ned along paths in the tree Paths(T), there must be

a step from p to p

0

(or, dually, from p

0

to p) in this path, more pre
isely, there must be an

i 2 f1; : : : k � 1g su
h that p

i

= p and p

i+1

= p

0

holds. Hen
e, we have the situation

(a; p) � (


i

; p) � (


i+1

; p

0

) � (b; p

0

)

Now Claim 1 implies a = 


i

and b = 


i+1

and hen
e (a; p) � (b; p

0

).

Using Claim 2, we 
an show that the blo
king 
ondition and the Rl- and Rl8-rule work as

desired:

Claim 3: Let p; q 2 Paths(T), a � C(Tail(p));b � C(Tail(q))) and (a; p) � (b; q).

� For every atomi
 formula �, �(a; � � � � �) 2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universal formula ', '(a) 2 �(Tail(p)) i� '(b) 2 �(Tail(q)).

Equivalen
e 
lasses of � indu
e subtrees of the tree Paths(T), hen
e, if (a; p) � (b; q), then

there must be a path (


1

; p

1

) � � � � � (


k

; p

k

) with p

1

= p; p

k

= q, a = 


1

, b = 


m

, and p

i

is a

neighbour of p

i+1

in the tree Paths(T). From Claim 2, we get that any two neighbours p

i

; p

i

+1

in Paths(T), (


i

; p

i

) � (


i+1

; p

i+1

) implies (


i

; p

i

) � (


i+1

; p

i+1

).

W.o.l.g., assume p

i+1

is a su

essor of p

i

in the tree Paths(T) and set v = Tail(p

i

) and w =

Tail(p

i+1

). There are two possibilities:

� if Tail

0

(p

i+1

) is not blo
ked, then Tail(p

i+1

) = Tail

0

(p

i+1

) and by the de�nition of �,

Tail(p

i+1

) is a su

essor of Tail(p

i

) in T and 


i

= 


i+1

. Due to the Rl-rule, �(


i

; � � � � �)2

�

�(Tail(p

i

)) i� �(


i+1

; � � � � �) 2

�

�(Tail(p

i+1

)). Due to the Rl8-rule, '(


i

) 2 �(Tail(p

i

)) i�

'(


i+1

) 2 �(Tail

0

(p

i+1

)) = �(Tail(p

i+1

)).

� if Tail

0

(p

i+1

) is blo
ked by Tail(p

i+1

) and Tail

0

(p

i+1

) is a su

essor of Tail(p

i

) in T. Then,

by de�nition of � we have 


i

� C(Tail(p

i

)) \C(Tail

0

(p

i+1

)) and due to the Rl- and Rl8-

rule, for any atomi
 or universal formula ', '(


i

) 2 �(Tail(p

i

)) i� '(


i

) 2 �(Tail

0

(p

i+1

)).

Furthermore, for the fun
tion � verifying that Tail

0

(p

i+1

) is blo
ked by Tail(p

i+1

), we

have that �(�(Tail

0

(p

i+1

))) = �(Tail(p

i+1

))j

�(C(Tail

0

(p

i+1

)))

and hen
e for every formula ',

'(


i

) 2 �(Tail(p)), '(


i

) 2 �(Tail

0

(p

i+1

)) i� �('(


i

)) = '(


i+1

) 2 �(Tail(p

i+1

)).

Due to Claim 3, we 
an now de�ne a stru
ture A over the universe A = C(T)=� by setting, for

a relation R 2 � of arity m, ([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) 2 R

A

i� there is a path p 2 Paths(T) and


onstants 


1

; : : : 


m

su
h that (


i

; p) 2 [a

i

; p

i

℄

�

and R


1

: : : 


m

2 �(Tail(p)).

To simplify things we de�ne the following examples of \abuses of notation". Let a = a

1

; : : : ; a

n

be a sequen
e of 
onstants, p = p

1

; : : : ; p

n

a sequen
e of paths of mat
hing length, and q a single

path. We de�ne

[a;p℄

�

= ([a

1

; p

1

℄

�

; : : : ; [a

n

; p

n

℄

�

)

[a; q℄

�

= ([a

1

; q℄

�

; : : : ; [a

n

; q℄

�

)

It remains to show that this 
onstru
tion yields A j=  . This is a 
onsequen
e of the following


laim that 
an be shown by indu
tion over the stru
ture of the formula '.
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Claim 4: For every path p 2 Paths(T) and a � C(Tail(p)), if '(a) 2 �(Tail(p)), then A j=

'([a; p℄

�

).

We show this 
laim by indu
tion on the stru
ture of formulas '.

� If '(a) = Ra

1

: : : a

m

2 �(Tail(p)), then the 
laim holds immediately by 
onstru
tion of A.

� Assume '(a) = :Ra 2 �(Tail(p)), but [a; p℄

�

2 R

A

. Then, by the de�nition of A, there

must be a path p

0

and 
onstants 
 su
h that (a; p) � (
; p

0

) and R
 2 �(Tail(p

0

)). From

Claim 3 we have that (a; p) � (
; p

0

) implies Ra 2 �(Tail(p)) and hen
e T would 
ontain

the 
lash fRa;:Rag � �(Tail(p)).

� Assume '(a) = a 6= b 2 �(Tail(p)) but [a; p℄

�

= [b; p℄

�

. From Claim 1 we get that this

implies a = b and hen
e T 
ontains the 
lash a 6= a 2 �(Tail(p)).

� For Boolean 
ombinations the 
laim is immediate due to the R^- and R_-rule.

� Let '(a) = (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)) and b;p; 
;q su
h that

A j= �([a; p℄

�

; [b;p℄

�

; [
;q℄

�

): (1)

Every y

i

2 y 
oexists with every other variable y

j

2 y in at least one 
onjun
t �

(y

i

;y

j

)

2

�(a;y; z) and with every element a

`

2 a in at least one 
onjun
t �

(y

i

;a

`

)

2 �(a;y; z).

Sin
e (1), for every two elemts [b

i

; p

i

℄

�

; [b

j

; p

j

℄

�

2 [b;p℄

�

there is a path q

(i;j)

and 
onstants

d

(i;j)

; e

(i;j)

su
h that (b

i

; p

i

) � (


(i;j)

; q

(i;j)

) and (b

j

; p

j

) � (d

(i;j)

; q

(i;j)

). Similarly, for every

element [b

i

; p

i

℄

�

2 [b;p℄

�

and every element (a

`

; p) there exists a path r

(i;`)

and 
onstants

f

(i;j)

; g

(i;j)

su
h that (b

i

; p

i

) � (f

(i;`)

; r

(i;`)

) and (a

`

; p) � (g

(i;`)

; r

(i;`)

). Equivalen
e 
lasses

of � indu
e subtrees of Paths(T). Every subtree indu
ed by [b

i

; p

i

℄

�

overlaps with the

subtree indu
ed by [b

j

; p

j

℄

�

at q

(i;j)

and with the subtree indu
ed by [a

`

; p℄

�

at r

(i;`)

. It

is a well-known result in graph theory that this implies the existen
e of a single path s

whi
h lies on all of the indu
ed subtrees. Thus, there must be tuples a

0

, b

0

su
h that

(a; p) � (a

0

; s) and (b;p) � (b

0

; s): (2)

For every �(x;y; z) 2 �(x;y; z), Claim 3 implies �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)) as follows:

from (1,2) we get A j= �([a

0

; s℄

�

; [b

0

; s℄

�

; [
;q℄

�

). Sin
e � is an atom, this implies the

existen
e of a path t and tuples a

00

;b

00

; 


0

with

(a

0

; s) � (a

00

; t) and (b

0

; s) � (b

00

; t) and (
;q) � (


0

; t) and �(a

00

;b

00

; 


0

) 2 �(Tail(t)) (3)

Sin
e �(a

00

;b

00

; � � � � �)�

�

�(a

00

;b

00

; 


0

), Claim 3 yields �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)).

Sin
e this is true for every atom � and, also due to Claim 3(8yz:�(a

0

;y; z))�(a

0

;y) 2

�(Tail(s)), the 
ompleteness of T yields �(a

0

;b

0

) 2 �(Tail(s)). By indu
tion, this implies

A j= �([a

0

; s℄

�

; [b

0

; s℄

�

). Together with (2) this implies A j= �([a; p℄

�

; [b;p℄

�

) and hen
e

A j= '([a; p℄

�

).

� If '(a) = (9yz:�(a;y; z))�(a;y) 2 �(Tail(p)), there are two possibilities.

{ there are b; 
 � C(Tail(p)) su
h that f�(a;b; 
)g � �(Tail(p)) and �(a;b) 2 �(a;b).

Then, by indu
tion, we have

A j= f�([a; p℄

�

; [b; p℄

�

; [
; p℄

�

); �([a; p℄

�

; [b; p℄

�

)g

and hen
e A j= '([a; p℄

�

).
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{ there are no su
h b; 
 � C(Tail(p)), then there is a su

essor w of Tail(p) and a

sequen
e of 
onstants b; 
 � C(w) with f�(a;b; 
); �(a;b)g � �(w). The node w


an be blo
ked or not.

� If w is not blo
ked, then p

0

= [p;

w

w

℄ 2 Paths(T) and, by indu
tion,

A j= f�([a; p

0

℄

�

; [b; p

0

℄

�

; [
; p

0

℄

�

); �([a; p

0

℄

�

; [b; p

0

℄

�

)g

From the de�nition of � we have, (a; p

0

) � (a; p) and hen
e A j= '([a; p℄

�

).

� If w is blo
ked by a node u (with fun
tion �) then p

0

= [p;

u

w

℄ 2 Paths(T). From

the blo
king 
ondition, we have that u is unblo
ked and �f�(a;b; 
); �(a;b)g) �

�(u). Hen
e, by indu
tion,

A j= f�([�(a); p

0

℄

�

; [�(b); p

0

℄

�

; [�(
); p

0

℄

�

); �([�(a); p

0

℄

�

; [�(b); p

0

℄

�

)g:

By the de�nition of � we have that (a; p) � (�(a); p

0

) and hen
e, A j= '([a; p℄

�

).

As a spe
ial instan
e of Claim 4 we get that A j=  . Due to Lemma 3.7, for every node v 2 V,

jC(v)j � width( ) and hen
e A has width at most width( )� 1. Note, that we have also given

an alternative proof for Lemma 3.15

4 Con
lusion

We have developed a tableau algorithm for CGF, whi
h we hope 
an serve as basis for an eÆ
ient

implementation of a de
ision pro
edure for CGF. This hope is justi�ed by the fa
t that some of

the most eÆ
ient implementations of modal or des
ription logi
 reasoners are based on tableaux


al
uli similar to the one for CGF presented in this paper. As a 
orollary from the 
onstru
tions

used to prove the 
orre
tness of the tableaux algorithm, we show that CGF, and hen
e LGF and

GF, have the �nite model property. We also give a new proof of the fa
t that every satis�able

GF=LGF=CGF senten
e of width k has a model of tree width at most k � 1.
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