
LTCS{Report

Aa
hen University of Te
hnology

Resear
h group for

Theoreti
al Computer S
ien
e

A Tableau Algorithm for the Clique Guarded Fragment

Preliminary Version

Colin Hirs
h

Mathematis
he Grundlagen der Informatik, RWTH Aa
hen

hirs
h�informatik.rwth-aa
hen.de

Stephan Tobies

LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen

tobies�informatik.rwth-aa
hen.de

LTCS-Report 00-03

RWTH Aa
hen

LuFg Theoretis
he Informatik

http://www-lti.informatik.rwth-aa
hen.de

Ahornstr. 55

52074 Aa
hen

Germany

A Tableau Algorithm for the Clique Guarded Fragment

Preliminary Version

Colin Hirs
h

Mathematis
he Grundlagen der Informatik, RWTH Aa
hen

hirs
h�informatik.rwth-aa
hen.de

Stephan Tobies

LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen

tobies�informatik.rwth-aa
hen.de

May 19, 2000

1 Introdu
tion

The Guarded Fragment of �rst-order logi
, introdu
ed by Andr�eka, van Benthem, and N�emeti [1℄,

has been a su

essful attempt to transfer many good properties of modal, temporal, and de-

s
ription logi
s to a larger fragment of predi
ate logi
. Among these are de
idability, the �nite

model property, invarian
e under an appropriate variant of bisimulation, and other ni
e model

theoreti
 properties [1, 4℄.

The Guarded Fragment (GF) is obtained from full �rst-order logi
 through relativisation of

quanti�ers by so-
alled guard formulas. Every appearan
e of a quanti�er in the GF must be of

the form

9y(�(x;y) ^ '(x;y)) or 8y(�(x;y) ! '(x;y));

where � is a positive atomi
 formula, the guard, that
ontains all free variables of . This

generalises quanti�
ation in modal and temporal logi
s, where quanti�
ation is restri
ted to

those elements rea
hable via some a

essibility relation.

By allowing for more general formulas as guards while preserving the idea of quanti�
ation

only over elements that are
lose together in the model, one obtains generalisations of GF

whi
h are still well-behaved in the above sense. Most importantly, one
an obtain the loosely

guarded fragment (LGF) [13℄ and the
lique guarded fragment (CGF) [5℄, for whi
h de
idability,

invarian
e under
lique guarded bisimulation, and some other properties have been shown in [5℄.

The question whether CGF and LGF have the �nite model property has been open until now.

GF, LGF, and CGF are de
idable and known to be 2-ExpTime
omplete, whi
h is shown

in [4, 5℄ using game and automata-based approa
hes. While these approa
hes yield optimal

worst-
ase
omplexity results for many logi
s, they appear to be unsuitable as a starting point for

an eÆ
ient implementation|their worst-
ase
omplexity is a
tually their any-
ase
omplexity.

Many de
idability results for modal or des
ription logi
s are based on tableau algorithms [11,

7, 2, 10℄. Some of the fastest implementations of modal satis�ability pro
edures are based on

tableaux
al
uli [9℄. Unlike automata algorithms, the average-
ase behaviour in pra
ti
e is so

1

good that �nding really hard problems to test these implementations has be
ome a problem

itself.

In this paper, we generalise the prin
iples usually found in tableau algorithms for modal logi
s

to develop a tableau algorithm for CGF. To the best of our knowledge, this is the �rst algorithm

for CGF that
an be used as the basis for an eÆ
ient implementation

1

. As a
orollary of the

onstru
tions used to show the soundness of our algorithm, we obtain that CGF, and hen
e

LGF and GF have the �nite model property. Also, we obtain an alternative proof for the fa
t

that every satis�able CGF formula of width k has a model of tree width at most k � 1 [5℄.

In the
urrent version, there is still a gap in the proof Lemma 3.14, whi
h is ne
essary to establish

the �nite model property. This does not
ause a gap in the proof of Theorem 3.5 be
ause it
an

alternatively be established using Lemma 3.17.

2 Preliminaries

For the de�nitions of GF and LGF we refer the reader to [5℄. The
lique guarded fragment CGF

of �rst-order logi

an be obtained in two equivalent ways, by either semanti
ally or synta
ti
ally

restri
ting the range of the �rst-order quanti�ers. In the following we will use bold letters to

refer to tuples of elements of the universe (a;b; : : :) resp. tuples of variables (x;y; : : :).

De�nition 2.1 (Semanti
 CGF). Let � be a relational vo
abulary. For a � -stru
ture A with

universe A, the Gaifman graph of A is de�ned as the undire
ted graph G(A) = (A;E

A

) with

E

A

= f(a; a

0

) j a 6= a

0

; there exists R 2 � anda 2 R

A

whi
h
ontains both a and a

0

g:

Under
lique guarded semanti
s we understand the modi�
ation of standard �rst order seman-

ti
s, where, instead of ranging over all elements of the universe, a quanti�er is restri
ted to

elements that form a
lique in the Gaifman graph, in
luding the binding for the free variables of

the matrix formula. More pre
isely, let A be a �-stru
ture and � an environment mapping vari-

ables to elements of A. We de�ne the model relation indu
tively over the stru
ture of formulas

as the usual FO semanti
s with the ex
eption

A; � j= 8y:'(x; y) i� for all a 2 A su
h that �(x) [fag forms a
lique in G(A);A; �[x 7! a℄ j= ';

and a similar de�nition for the existential
ase. With CGF we denote �rst order logi
 restri
ted

to
lique guarded semanti
s.

De�nition 2.2 (Synta
ti
 CGF). Let � be a relational vo
abulary. A formula � is said to be

a
lique-formula for a set x � free(�) if � is a
onjun
tion of atoms su
h that ea
h two elements

from x
oexist in at least one atom, ea
h atom
ontains at least two element from x, and ea
h

element from free(�) n x o

urs exa
tly on
e in one atom. In the following, we will identify a

lique-formula � with the set of its
onjun
ts.

The synta
ti
 CGF is indu
tively de�ned as follows.

1. Every relational atomi
 formula Rx

i

1

: : : x

i

m

or x

i

= x

j

belongs to CGF.

2. CGF is
losed under boolean operations.

1

There are resolution based de
ision pro
edures for GF and LGF [3℄ that are readily implemented using the

saturation theorem prover SPASS [14℄. It is un
lear if this approa
h
an be extended to CGF.

2

3. If x;y; z are tuples of variables, �(x;y; z) is a
lique-formula for x [y and '(x;y) is a

formula in CGF su
h that free(') � x [y, then

9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) ! '(x;y))

belong to CGF.

We will use (9yz:(�(x;y; z))'(x;y) and (8yz:(�(x;y; z))'(x;y) as alternative notations for

9yz:(�(x;y; z) ^ '(x;y)) and 8yz:(�(x;y; z) ! '(x;y)) respe
tively.

The following lemma
an be shown by elementary manipulation.

Lemma 2.3. Let �(x;y; z) be a
lique-formula for x;y. Then

8yz:(�(x;y; z) ! '(x;y)) � 8y:(9z:�(x;y; z) ! '(x;y)):

The use of the name CGF both for the semanti
 and the synta
ti

lique guarded fragment is

justi�ed by the following Lemma.

Lemma 2.4. Over any �nite relational vo
abulary the synta
ti
 and semanti
 versions of the

CGF are equally expressive.

Proof sket
h: By some elementary equivalen
e transformations, every synta
ti
ally
lique

guarded formula
an be brought into a form where swit
hing from standard semanti
s to
lique

guarded semanti
s does not
hange its meaning. Conversely, for any �nite signature there is

a �nite disjun
tion
lique(x; y; z) of
lique-formulas for x; y su
h that a; b form a
lique in

G(A) i� A j= 9z:
lique(a; b; z). By guarding every quanti�er with su
h a formula and applying

some elementary formula transformations and Lemma 2.3, we get, for every FO formula , a

synta
ti
ally
lique guarded formula that is equivalent to under
lique guarded semanti
s.

In the following we will only
onsider the synta
ti
 variant of the
lique guarded fragment.

At a �rst glan
e the expressiveness of CGF and the loosely guarded fragment LGF are in
ompa-

rable. While the auxiliary variables of the CGF allow additional expressiveness, there are also

LGF-formulas that are not (synta
ti
ally)
lique guarded. In CGF, a guard � in Qyz:�(x;y; z)

ne
essarily
ontains every pair from x[y in (at least) one atom. In LGF a guard � in Qy:�(x;y)

need only
ontain all
ombinations of a variable from x with one from x [y in (at least) one

guard atom. An example for a loosely guarded formula that is not (synta
ti
ally)
lique guarded

is

 = (9xy:Rxy)(8z:(Rxz ^Ryz))'(x; y; z)

be
ause x and y do not
oexist in the guard of the universal quanti�er. Yet,
an be turned into

a
lique guarded formula by adding the guard Rxy of the existential quanti�er to the guard of

the universal quanti�er. This yields the guard Rxy^Rxz^Ryz, a
lique formula for x; y; z. Sin
e

it is always possible to
lique-guard a loosely guarded formula in this way, LGF is
ontained in

CGF. It is also possible to show that CGF is stri
tly more expressive than LGF [5℄.

De�nition 2.5 (NNF, Closure, Width). Let 2 CGF be
losed. In the following, we as-

sume all formulas to be in negation normal form (NNF), where negation o

urs only in front of

atomi
 formulas. Every formula in CGF
an be transformed into NNF in linear time by pushing

negation inwards using DeMorgan's law and the duality of the quanti�ers.

3

For a formula 2 CGF in NNF, let
l() be the smallest set that
ontains and is
losed

under sub-formulas. Let C be a set of
onstants. With
l(;C) we denote the set

l(;C) = f'(a) j a � C;'(x) 2
l()g:

The width of a formula 2 CGF is de�ned by

width() := maxfjfree(')j j ' 2
l()g:

3 A Tableaux Algorithm for CGF

For various modal and des
ription logi
s, de
idability
an be shown by means of tableaux algo-

rithms, where satis�ability of a formula is de
ided by a synta
ti
ally guided sear
h for a model

for . Examples for these kind of algorithms
an be found, e.g., in [11, 12, 7, 10℄. Models are

usually represented by a graph in whi
h the nodes
orrespond to worlds and the edges
orrespond

to the a

essibility relations in the model. Ea
h node is labeled with a set formulas that this

node must satisfy, and new edges and nodes are
reated as required by existential modalities.

Sin
e many modal and des
ription logi
s have the tree model property, the graphs generated

by these algorithms are trees, whi
h allows for simpler algorithms and easier implementation

and optimisation of these algorithms. Indeed, some of the fastest implementations of modal and

des
ription logi
s satis�ability algorithms are based on tableau
al
uli [9℄.

For many modal or des
ription logi
s, e.g. K or ALC, termination of these algorithms is due

to the fa
t that the modal depth of the formulas appearing at a node stri
tly de
reases with

every step from the root of the tree. For other logi
s, e.g., K4, K with the universal modality,

or the expressive DL SHIQ, this is no longer true and termination has to be enfor
ed by other

means. One possibility for this is blo
king, i.e., stopping the
reation of new su

essor nodes

below a node v if there already is an an
estor node w that is labeled with similar formulas as v.

Intuitively, in this
ase the model
an fold ba
k from the prede
essor of v to w,
reating a
y
le.

Unraveling of these
y
les re
overs an (in�nite) tree model. Sin
e the algorithms guarantee that

the formulas o

urring in the label of the nodes stem from a �nite set (usually the sub-formulas

of the input formula), every growing path will eventually
ontain a blo
ked node, preventing

further growth of this path and (together with a bound on the degree of the tree) ensuring

termination of the algorithm.

Our investigation of a tableaux algorithm for CGF starts with the observation that CGF also

has some kind of tree model property.

De�nition 3.1. Let � be a relational vo
abulary. A � -stru
ture A has tree width k if k 2 N is

minimal with the following property.

There exists a dire
ted tree T = (V;E) and a fun
tion f : V ! 2

A

su
h that

� for every v 2 V , jf(v)j � k + 1,

� for every R 2 � and a 2 R

A

, there exists v 2 V with a � f(v), and

� for every a 2 A, the set V

a

= fv 2 V j a 2 f(v)g indu
es a subtree of T .

Every node v of T indu
es a substru
ture F(v) � A of
ardinality at most k+1. Sin
e f(v) may

be empty we, admit empty substru
tures. The tuple hT; (F(v))

v2T

i is
alled a tree de
omposition

of A.

4

Fa
t 3.2 (Tree Model Property). Every satis�able senten
e 2 CGF of width k has a

ountable model of tree width at most k � 1.

This is a simple
orollary of [5℄, Theorem 4, where the same result is given for an extension of

CGF by least �xed point operators.

Fa
t 3.2 is the starting point for our de�nition of a
ompletion tree for a formula 2 CGF. A

node v of su
h a tree no longer stands for a single element of the model as in the modal
ase,

but rather for a substru
ture F(v) of a tree de
omposition of a model. To this purpose, we label

every node v with a set C(v) of
onstants (the elements of the substru
ture) and a subset of

l(;C(v)), re
e
ting the formulas that must hold true for these elements.

To deal with auxiliary elements|elements helping to form a
lique in G(A) that are not part of

this
lique themselves|we will use � as a pla
eholder for an unspe
i�ed element in atoms. The

following de�nitions are useful when dealing with these generalised atoms.

De�nition 3.3. Let K denote an in�nite set of
onstants and � 62 K. For any set of
onstants

C � K we set C

�

= C [f�g. We use t

1

; t

2

; : : : to range over elements of K

�

. The relation �

�

is de�ned by

Rt

1

: : : t

n

�

�

Rt

0

1

: : : t

0

n

i� for all i 2 f1 : : : ngeither t

i

= � or t

i

= t

0

i

:

For an atom � and a set of formulas � we de�ne � 2

�

� i� there is a �

0

2 � with � �

�

�

0

.

For a set of
onstants C � K and an atom � = Rt

1

: : : t

n

, we de�ne

�j

�

C

= Rt

0

1

: : : t

0

n

where t

0

i

=

(

t

i

if t

i

2 C

� otherwise

We use the notation a

�

to indi
ate that the tuple a

�

ontains �'s. Obviously, �

�

is transitive

and re
exive, and �j

�

C

�

�

� for all atoms � and sets of
onstants C.

While these are all synta
ti
 notions, they have a semanti

ounterpart that
lari�es the intuition

of � standing for an unspe
i�ed element. Let a

0

denote the tuple obtained from a tuple a

�

by

repla
ing every o

urren
e of � in a

�

with a distin
t fresh variable, and let z be pre
isely the

variables used for this repla
ement. For an atom �, we de�ne

A j= �(a

�

) i� A j= 9z:�(a

0

):

It is easy to see that

�(a)�

�

�(b) implies �(b) j= �(a)

�(a) 2

�

� implies � j= �(a)

be
ause, if a�

�

b, then b is obtained from a by repla
ing some � with
onstants, whi
h provide

witnesses for the existential quanti�er.

De�nition 3.4 (Completion Tree, Tableau). Let 2 CGF be a
losed formula in NNF.

A
ompletion tree T = (V;E;C;�;N) for is a vertex labeled tree (V;E) with the labeling

fun
tion C labeling ea
h node v 2 V with a subset of K, � labeling ea
h node v 2 V with

a subset of
l(;C(v)

�

) su
h that � o

urs only in atoms (without equality) and the fun
tion

N : V ! N mapping ea
h node to a distin
t natural number, with the additional property that,

if v is an an
estor of w, then N(v) < N(w).

5

A
onstant
 2 K is
alled shared between two nodes v

1

; v

2

2 V, if
 2 C(v

1

) \ C(v

2

), and

 2 C(w) for all nodes w on the (unique, undire
ted, possibly empty) path
onne
ting v

1

to v

2

.

A node v 2 V is
alled dire
tly blo
ked by a node w 2 V, if w is not blo
ked, N(w) < N(v)

and there is an inje
tive mapping � from C(v) into C(w) su
h that, for all
onstants
 2 C(v)

that are shared between v and w, �(
) =
, and �(�(v)) = �(w)j

�(C(v)

�

)

. Here and throughout

this paper we use the
onvention �(�) = � for every fun
tion � that veri�es a blo
king.

A node is
alled blo
ked if it is dire
tly blo
ked or if its prede
essor is blo
ked.

A
ompletion tree T
ontains a
lash if there is a node v 2 V su
h that

� for a
onstant
 2 C(v),
 6=
 2 �(v), or

� there is an atomi
 formula � and a tuple of
onstants a � C(v) su
h that f�(a);:�(a)g �

�(v).

Otherwise, T is
alled
lash-free. A
ompletion tree T is
alled
omplete if none of the
om-

pletion rules given in Figure 1
an be applied to T. A
omplete and
lash-free
ompletion tree

for is
alled a tableau for .

To test for satis�ability, the tableau algorithm
reates an initial tree with only a single node

v

0

, �(v

0

) = f g and C(v

0

) = ;. The rules from Figure 1 are su

esively applied until either a

lash o

urs, produ
ing output \ unsatisfiable", or the tree is
omplete, in whi
h
ase \

is satisfiable" is output.

R^ : if ' ^ # 2 �(v) and f'; #g 6� �(v)

then �(v) := �(v) [f'; #g

R_ : if ' _ # 2 �(v) and f'; #g \�(v) = ;

then �(v) := �(v) [f�g for � 2 f'; #g

R= : if a = b 2 �(v)

then for all w that share a with v;C(w) := (C(w) n fag) [fbg and �(w) := �(w)[a 7! b℄

R8 : if (8yz:�(a;y; z))'(a;y)) 2 �(v); there exists a b � C(v) su
h that for all atoms

�(x;y; z) 2 �; �(a;b; � � � � �) 2

�

�(v); and '(a;b) 62 �(v)

then �(v) := �(v) [f'(a;b)g

R9 : if (9yz:�(a;y; z))'(a;y)) 2 �(v) and for every b;
 � C(v); f�(a;b;
); '(a;b)g 6� �(v)

and there is no
hild w of v with f�(a;b;
); '(a;b)g � �(w) for some b;
 � C(w)

and v is not blo
ked

then let b;
 be sequen
es of distin
t and fresh
onstants that mat
h the lengths of y; z;

reate a
hild w of v with C(w) := a [b [
 and �(w) := f�(a;b;
); '(a;b)g; and

let N(w) = 1 +maxfN(v) : v 2 V n fwgg

Rl : if �(a

�

) 2 �(v); � atomi
; w is a neighbour of v with a

�

\C(w) 6= ;; and

�(a

�

)j

�

C(w)

62 �(w)

then �(w) := �(w) [f�(a)j

�

C(w)

g

Rl8 : if '(a) 2 �(v); '(a) universal; and y is a neighbour of x with a � C(w) and '(a) 62 �(w)

then �(w) := �(w) [f'(a)g

Figure 1: The Completion Rules for CGF

6

While our notion of tableaux has many similarities to the tableaux appearing in [6℄, there are

two important di�eren
es that make the notion of tableaux here more suitable as basis for a

tableau algorithm.

We will see that every
ompletion tree generated by the tableau algorithm is �nite. Conversely,

tableaux in [6℄, in general,
an be in�nite.

Also, in [6℄ every node is labeled with a
omplete (;C(v))-type, i.e., every formula ' 2

l(;C(v)) is expli
itly asserted true of false at v. Conversely, a
ompletion tree
ontains

only assertions about relevant formulas. This implies a lower degree of non-determinism in the

algorithm, whi
h is important for an eÆ
ient implementation.

Theorem 3.5. The tableau algorithm is a (non-deterministi
) de
ision pro
edure for CGF-

satis�ability.

Proof: This is an immediate
onsequen
e of the following fa
ts established in the subsequent

se
tions.

1. Every sequen
e of rule appli
ations terminates after a �nite number of steps. (Termination,

Lemma 3.8)

2. If the algorithm
onstru
ts a tableau for , then is satis�able. (Soundness, Lemma 3.15)

3. If is satis�able, then the rules
an be applied to generate a tableau for . (Completeness,

Lemma 3.16)

As a
orollary, we get that CGF and hen
e also the loosely guarded fragment, and the guarded

fragment, have the �nite model property. For GF this was already known [4℄, whereas for LGF

and CGF this was still an open problem.

Corollary 3.6. Let 2 GF=LGF=CGF. is satis�able i� is �nitely satis�able.

Proof: If is satis�able, the tableau algorithm generates a �nite tableau for . The
onstru
-

tion in the proof of Lemma 3.15 shows that su
h a tree indu
es a �nite model.

3.1 Termination

The folloing te
hni
al lemma is a simple
onsequen
e of the
ompletion rules and the blo
king

ondition.

Lemma 3.7. Let 2 CGF be a
losed formula in NNF with j j = n, width() = m, and T a

ompletion tree generated for by appli
ation of the rules in Figure 1. For every node v 2 T,

1. jC(v)j � m

2. j�(v)j � n� (m+ 1)

m

3. Any ` > 2

n�(m+1)

m

distin
t nodes in T
ontain a blo
ked node.

Proof:

7

1. Nodes are only generated by the R9-rule and no
onstants are added to a C(v) on
e v has

been generated (but some may be removed by appli
ation of the R=-rule).

When triggered by the formula (9yz:�(a;y; z))'(a;y), the R9-rule initializes C(w) su
h

that it
ontains a and another
onstant for every variable in x and y. Hen
e,

jC(w)j � ja [y [zj � jfree(�)j � width():

2. The set �(v) is a subset of
l(;C(v)

�

), for whi
h j
l(;C(v))j � n � (m + 1)

m

holds

be
ause there are at most n formulas in
l(), ea
h of whi
h has at most m free variables.

There are at most (jC(v)j+1)

m

distin
t sequen
es of length m with
onstants from C(v)

�

.

3. Let v

1

; : : : ; v

`

be ` > 2

n�(m+1)

m

distin
t nodes. For every v

i

, we will
onstru
t a mapping

�

i

: C(v

i

) ! f1; : : : mg su
h that, if a
onstant a is shared between two nodes v

i

; v

j

, then

�

i

(a) = �

j

(a).

Let u

1

; � � � ; u

k

denote the nodes of a subtree of T that
ontains every node v

i

and that

is rooted at u

1

. By indu
tion over the distan
e to u

1

, we de�ne an inje
tive mapping

�

i

: C(u

i

) ! f1; : : : ;mg for every i 2 f1; : : : ; kg as follows. For �

1

we pi
k an arbitrary

inje
tive fun
tion from C(u

1

) to f1; : : : ;mg. For a node u

i

let u

j

be the prede
essor

of u

i

in T and �

j

the
orresponding fun
tion, whi
h, sin
e u

j

has a smaller distan
e to

u

1

, has already been de�ned. For �

i

we
hoose an arbitrary inje
tive fun
tion su
h that

�

i

(a) = �

j

(a) for all a 2 C(u

i

) \C(u

j

).

All mappings �

i

are inje
tive. For any
onstant a the set V

a

:= fv 2 V j a 2 C(v)g indu
es

a subtree of T. If u

i

; u

j

2 V

a

are neighbours, the de�nition above ensures �

i

(a) = �

j

(a).

By indu
tion over the length of the
onne
ting path we obtain the same for arbitrary

u

i

; u

j

2 V

a

.

For every node v

i

there is a j

i

su
h that v

i

= u

j

i

and we set �

i

= �

j

i

. There are at

most 2

n�(m+1)

m

distin
t subsets of
l(; f1; : : : ;m; �g). Hen
e, there must be two nodes

v

i

; v

j

su
h that �

i

(�(v

i

)) = �

j

(�(v

j

)) and, w.l.o.g., N(v

i

) < N(v

j

). We show that v

j

is

blo
ked by v

i

via � := �

�1

i

Æ �

j

. Note that for � to be well-de�ned, �

i

must be inje
tive.

By
onstru
tion, � preserves shared
onstants. It remains to be shown that �(�(v

j

)) =

�(v

i

)j

�(C(v

j

))

. Let '(a) 2 �(v

j

). Sin
e �

j

('(a)) 2 �

j

(�(v

j

)) = �

i

(�(v

i

)) there is a

b 2 C(v

i

) with '(b) 2 �(v

i

) and �

i

(b) = �

j

(a). By de�nition of � we have �(a) = b

and thus �('(a)) 2 �(v

i

)j

�(C(v

j

))

. Conversely, let '(b) 2 �(v

i

)j

�(C(v

j

))

. Sin
e �

i

('(b)) 2

�

i

(�(v

i

)) = �

j

(�(v

j

)) there is a a 2 C(v

j

) with '(a) 2 �(v

j

) and �

j

(a) = �

i

(b). By

onstru
tion of � this implies �(a) = b and hen
e '(b) 2 �(�(v

j

)).

Lemma 3.8 (Termination). Let 2 CGF be a
losed formula in NNF. Any sequen
e of rule

appli
ation of the tableau algorithm starting from the initial tree terminates.

Proof: For any
ompletion tree T generated by the tableau algorithm, we de�ne k � k : V 7! N

3

by

kvk := (jC(v)j; n� (m+ 1)

m

� j�(v)j;

jf' 2 �(v) j ' triggers the R9-r. for vgj):

The lexi
ographi
 order � on N is well-founded, i.e. it has no in�nite de
reasing
hains. Any

rule appli
ation de
reases kvk w.r.t. � for at least one node v, and never in
reases kvk w.r.t. �

8

for an existing node v. However it may
reate a new node w. Hen
e, there
an only be a �nite

number of appli
ations of rules to every node in T and an in�nite sequen
e of rule appli
ations

would generate an in�nite tree. As a
orollary of 3.7, we have that the depths of T is bounded

by 2

n�(m+1)

m

+ 1, sin
e, on any dire
ted path of that length, there must be a blo
ked node.

Rules are never applied to blo
ked nodes, so paths with blo
ked nodes
an not grow in length.

Hen
e, T
an only be in�nite due to an in�nite bran
hing in T. Any su

essor of a node v

is generated by appli
ation of the R9-rule to v. Ea
h su
h appli
ation generates exa
tly one

su

essor. Hen
e, for T to be ini�nite, there must be an in�nite number of appli
ations of the

R9-rule to a node v. As ea
h su
h appli
ation de
reases kvk we have a
ontradi
tion.

3.2 Corre
tness

In order to prove the
orre
tness of the tableau algorithm we have to show that the existen
e

of a tableau for implies satis�ability of . To this purpose, we will
onstru
t a model from

a tableau. In the following, let 2 CGF[� ℄ and let T = (V;E;C;�;N) be a tableau for .

W.l.o.g., we assume, for every node v 2 V and every a 2 C(v), a = a 2 �(v). For every blo
king

situation we �x a mapping � verifying this blo
king.

De�nition 3.9. We make the blo
king relation expli
it. For every blo
ked node v there is a

unique blo
king node w and we de�ne B as set of all su
h pairs (v; w).

Further de�ne C(V) :=

S

fC(v) : v 2 V; v not blo
kedg. The equivalen
e relation � on C(V)

is the re
exive and transitive
losure of the set of all pairs of
onstants (
; d), where
 2 C(u)

and d 2 C(v) for two nodes u and v, (u; v) 2 B and the fun
tion � that veri�es the blo
king

maps d to
.

We also use � as an operator that maps a
onstant a to its �-
lass ~a. For tuples of
onstants

a, this operation is performed
omponentwise. We say that
~
a � C(v), if for ea
h a 2 a there is

an a

0

2 ~a \C(v).

De�nition 3.10. Let v; w 2 V and a 2 C(v), b 2 C(w). An (a; b)-path in T is a sequen
e

(s

1

;

1

); : : : ; (s

k

;

k

) in V � C(V) su
h that

1

= a,

k

= b and for all 1 � i < k one of the

following holds.

1. (s

i

; s

i+1

) 2 E and

i

=

i+1

2. (s

i

; s

i+1

) 2 B and �(

i+1

) =

i

3. 1. and 2. for reversed roles of i and i+ 1.

That is, an (a; b)-path veri�es a � b. If p is su
h an (a; b)-path, the proje
tion of p, �(p) =

s

1

; : : : ; s

k

, is the sequen
e of nodes en
ountered along p.

The general idea in the
onstru
tion of a model from a tableau, is to use C(V)=� as the universe

and de�ne the relations using the atomi

onstraints in the nodes. In general, there may be

two kinds of problemati
 situations in a tableau that make this
onstru
tion impossible, namely

dormant
lashes and evil
liques.

De�nition 3.11 (Dormant Clash). Two distin
t nodes v; w 2 V, two tuples of
onstants a;b

and a positive literal � form a dormant
lash (v; w;a;b; �) in T, if a 2 C(v), b 2 C(w) and it

is the
ase that a 6= b, but a � b and either �(a) 2 �(v) and �(b) 62 �(w) or �(a) 62 �(v) and

�(b) 2 �(w).

9

Note that for ea
h dormant
lash (v; w;a;b; �), the interse
tion of the sets P

i

= fp : p is an (a

i

; b

i

)-pathg,

1 � i � jaj, is empty. Any path in
luded in all P

i

would su

esively let the
omplete atomi

information about a and b be propagated from v to w using Rl, either produ
ing a true
lash

or
ontradi
ting the de�nition of a dormant
lash.

Further, there are
onstants a

t

2 a and b

t

2 b, a

t

6= b

t

but a

t

� b

t

, su
h that for some

(s

i

;

i

); (s

i+1

;

i+1

) on every (a

t

; b

t

)-path, either s

i

is blo
ked by s

i+1

(or vi
e versa) and the

belonging inje
tion � maps

i

to

i+1

(

i+1

to

i

), or there is a node s blo
king both s

i

and s

i+1

su
h that for the respe
tive inje
tions �

s

i

: C(s

i

) ! C(s) and �

s

i+1

: C(s

i+1

) ! C(s) we have

�

s

i

(

1

) = �

s

i+1

(

i+1

). It follows that B
ontains (s

i

; s

i+1

) (or (s

i+1

; s

i

)) in the �rst and both

(s; s

i

) and (s; s

i+1

) in the se
ond
ase.

De�nition 3.12 (Evil Clique). An evil
lique (a;b; �) in T
onsists of two sequen
es of
on-

stants a and b and a guard � o

uring in some subformula '(x) = (8yz:�(x;y; z))�(x;y) of

su
h that

� a and '(a) o

ur in the C resp. the �-label of some node in V,

� for ea
h � 2 � there are a node w, some
onstants a

0

� a and b

0

� b su
h that

�(a

0

;b

0

; � � � � �) 2

�

�(w),

� there is no node v,
onstants a

0

� a and b

0

� b su
h that '(a

0

) 2 �(v) and �(a

0

;b

0

; � � � � �)2

�

�(v) for all � 2 �.

2

Evil
liques are also a side-e�e
t of folding ba
k the
ompletion tree into itself via B-edges, but

are not required in the sense that all existential subformula of
an be satis�ed elsewhere. To

see this, assume to the
ontrary that we do not use B-edges and a is always
hosen for a

0

and b

for b

0

in above de�nition. Sin
e � is a
lique-formula, every pair of
onstants from a [b o

ur

in at least one atom, and hen
e o

ur together in the C-label of some node. So for any pair

of
onstants

1

;

2

from a [b the sets V

1

and V

2

are subtrees of (V;E), and do not require

B-edges for their
onne
tedness. It is a well known result in graph theory, that any family of

pairwise overlapping trees has a
ommon node|remember that V with only the E-edges is a

tree. Consequently a [b is a subset of the C-label of this
ommon node.

Therefore, given an evil
lique C = (a;b; �), we
an always �nd a set of
onstants C

C

� a [b

and a set of
onstants D

C

� f
 : ~
 2
~
a [

~

bg n (a [b) su
h that, if for ea
h

C

2 C

C

and

d

C

2 D

C

where

C

� d

C

we remove a set of B-edges su
h that no (

C

; d

C

)-path is left over,

(a;b; �) is no longer an evil
lique.

We isolate a set of edges as responsible for the two types of problemati
 situations de�ned above.

De�nition 3.13. Given a tableau T, the set of
riti
al edges of T, S = S(T), is a subset of B

de�ned as follows.

� For ea
h dormant
lash C = (v; w;a;b; �) we
hoose an index t su
h that for a

t

2 a and

b

t

2 b we have a

t

6= b

t

. Let S
ontain the �rst B-edge from ea
h (a

t

; b

t

)-path.

� For ea
h evil
lique C = (a;b; �) we
onsider the
onstants C

C

and D

C

. For ea
h

C

2 C

C

and d

C

2 D

C

where

C

� d

C

let S again
ontain the �rst B-edge from every (

C

; d

C

)-path.

2

By abuse of notation we write �(a

0

;b

0

; � � � � �) and a

0

� a, even though not all elements of a

0

need to o

ur

in � and a

0

may in general be shorter than a. The same applies to b

0

.

10

By making enough (but �nitely many) isomorphi

opies of all subtrees of the tableau below

the root, it is possible to redire
t all
riti
al edges into di�erent
opies in a manner that gets rid

of all (isomorphi

opies of) dormant
lashes and evil
liques.

Lemma 3.14. If there is a �nite tableau T for , then there is also a �nite tableau T

0

for

that does not
ontain
riti
al edges (and hen
e no dormant
lashes or evil
liques).

In both
ases let S

C

ontain the edges introdu
ed into S by C.

Note that no B-edge
an be in
ident to the root of T, sin
e all other nodes
ontain at least one

onstant in their C-label.

Proof: Let � be the root of T and let n = jSj. We make an enlarged version T

0

of T where

all subtrees with roots that are dire
t E-su

essors of � are repla
ed by 2

n

isomorphi

opies.

More pre
isely

� V

0

= f�g [fv

i

: v 2 V n f�gg,

� E

0

= f(�; v

i

) : (�; v) 2 Eg [f(v

i

; w

i

) : (v; w) 2 Eg,

� C

0

(v

i

) = fa

i

: a 2 C(v)g, C

0

(�) = ;,

� �

0

(v

i

) = f'(a

i

) : '(a) 2 �(v)g, �

0

(�) = �(�),

� N

0

(v

i

) = 2

n

�N(v) + i, N

0

(�) = 0,

for all 0 � i < 2

n

. The blo
king relation B

0

is given by

� B

0

=

S

f(v

i

; w

i

) : (v; w) 2 B; 0 � i < 2

n

g.

This �rst step also
reates 2

n

opies of our
riti
al edges, namely all (r

i

; s

i

) for whi
h (r; s) 2 S.

We now modify B

0

as follows to eliminate all
opies of our original
riti
al edges. Let f(r

t

; s

t

) :

0 � t < ng be an enumerated version of S.

Now for all 0 � t < n and all 0 � `; j < 2

n

, if the binary representations of ` and j di�er exa
tly

at the t-th position we delete (r

`

t

; s

`

t

) and (r

j

t

; s

j

t

) from B

0

and add (r

`

t

; s

j

t

) and (r

j

t

; s

`

t

) in their

pla
e. Independent of the existen
e of
riti
al edges in T

0

, let S

0

be the set of B

0

-edges indu
ed

by S, i.e. exa
tly the edges
onne
ting some i-th and j-th
opy of T in T

0

, i 6= j.

This hyper-
ube type of stru
ture
reated by the S

0

-edges is
ru
ial to the elimination of
riti
al

edges. The notation forthwith uses the
onvention that if X is an obje
t related to T, then X

0

is the
orresponding obje
t related to T

0

and vi
e versa. Also for any obje
t X that was
opied

in the transition from T to T

0

, the indexed version X

i

is assumed to be the
opy related to T

i

.

Claim: T

0

is still a
omplete and
lash-free �nite
ompletion tree for .

Let T

i

be T

0

restri
ted to � and all i-th
opies of the subtrees, i.e. T

0

restri
ted to fv

i

:

v 2 Vg [f�g. Further let V

i

a

= fv

i

2 T

i

: a 2 C(v

i

)g and V

i

~a

= fv

i

: a

0

2 C

0

(v

i

); ex. p 2

P (a; a

0

) s.t. �(p) � T

i

g. When disregarding S

0

, ea
h T

i

is isomorphi
 toT. Further the de�nition

of B

0

implies that for any node v that is blo
ked by a node w in T, all
opies v

i

are blo
ked

by some node w

j

in T

0

. Consequently T

0

is
omplete. Sin
e ea
h �

0

-label in T

0

is identi
al to

some �-label in T, T

0

is also
lash-free.

Note that for i 6= j there are exa
tly two B

0

-edges between T

i

and T

j

i� the binary repre-

sentations of i and j di�er at exa
tly one position. In all other
ases there is no
onne
ting

B

0

-edge.

11

By
onstru
tion, if (s

i

1

1

;

i

1

1

) � � � (s

i

k

k

;

i

k

k

) is an (a

i

; b

j

)-path in T

0

, then (s

1

;

1

) � � � (s

k

;

k

) is an

(a; b)-path in T. Consequently, if (v

i

; w

j

;a

i

;b

j

; �) is a dormant
lash in T

0

, then (v; w;a;b; �)

is a dormant
lash in T.

We
an already note that if (
; d) was a pair of
onstants giving rise to a set of
riti
al edges S

C

,

and all (

i

; d

i

)-paths were subsequently modi�ed, then there
an be no (

`

; d

`

)-path using only

nodes in T

`

. Any su
h path would have an isomorphi

opy in T leading to some edge being

in
luded in S.

Also, in the same
ir
umstan
es, all (

i

; d

j

)-paths
ontain S

0

C

0

-edges, even if i = j. We just

noted, that for any ` there never is a lo
al, i.e. restri
ted to T

`

,
onne
tion between V

`

and V

`

d

.

For any in this sense non-lo
al (

i

; d

j

)-path p

0

, the isomorphi

opy p in T is a (
; d)-path. So

at least one edge along p belongs to S

C

and
onsequently at least one edge along p

0

to S

0

C

0

.

Similarly, if C

0

= (a

i

;b

0

; �) is an evil
lique in T

0

, then (a;b; �) already was an evil
lique in T

and for all d

j

C

0

2 D

0

C

0

we have d

C

0

2 D

C

. We designate the �rst tuple of elements a

i

, be
ause

the de�nition of an evil
lique requires all o

uring elements to
o-exist at some node v = v

i

.

We do not have su
h an assumption for the se
ond tuple, hen
e the elements of b

0

may live only

at di�erent T

j

s.

Claim: T

0

ontains no dormant
lash.

Assume that C

0

= (v

i

; w

j

;a

i

;b

j

; �) is a dormant
lash in T

0

and t is the index for whi
h the

(a

i

t

; b

j

t

)-paths in T

0

were modi�ed. We need to show that a

i

6� b

j

.

We note that due to the modi�
ations in B

0

, any (a

i

t

; b

j

t

)-path has to use S

0

-edges, even in the

ase of i = j. Also as C

0

(�) = ; the root
an not o

ur on any (�; �)-path. The
onstru
tion of

B

0

further implies that the numbers of S

0

C

0

-edges on the paths verifying a

i

� b

j

are either all

even or all odd.

First suppose that all (a

i

t

; b

j

t

)-paths for C

0

ontain an even number of S

0

C

0

-edges. Let p be an

(a

i

t

; b

j

t

)-path in T

0

. Ea
h S

0

C

0

-edge leads from some V

`

a

`

t

to a V

`

0

~

b

`

0

t

or vi
e versa. The seeming

asymmetry of taking a for the �rst, and

~

b for the se
ond set of nodes, is due to the de�nition of

riti
al edges sele
ting the �rst B-edge from the (a

t

; b

t

)-paths for in
lusion in S.

We
on
lude that if the last S

0

C

0

edge was taken from a V

`

a

`

t

to a V

`

0

~

b

`

0

t

, then the next S

0

C

0

-edge

along p has to be taken from a V

`

00

~

b

`

00

t

to a V

`

000

a

`

000

t

and vi
e versa. Otherwise there would be e.g.

a (a

`

0

t

; b

`

00

t

)-path in between. By previous observation this path would ne
essary
ontain an

S

0

C

0

-edge,
ontradi
ting the
hoi
e of two S

0

C

0

above.

By a simple parity argument we observe that if p starts in V

i

a

it
an only end in V

j

a

instead of

the required V

j

~

b

. This
ontradi
ts the assumption that p is an (a

i

t

; b

j

t

)-path. Hen
e a

i

6� b

j

and

C

0

is not a dormant
lash.

Now suppose that the (a

i

t

; b

j

t

)-paths for C

0

ontain an odd number of S

0

C

0

-edges. Let p be an

(a

i

t

; b

j

t

)-path
ontaining an odd number of S

0

C

0

-edges. Then there is at least one a
tual edge

e

0

2 S

0

C

0

that o

urs an odd number of times. Suppose that e

0

is a
opy of the edge e

`

, i.e. the

`-th edge in the enumeration of S. By the
onstru
tion of T

0

we
on
lude that bin(i) and bin(j)

di�er at position `. Consequently any (a

i

t

; b

j

t

)-path, and indeed any path from T

i

to T

j

(ignoring

onne
tions via �) has to
ontain an odd number of edges that are
opies of e

`

.

We
an then �nd an index h 6= t su
h that any path using e

`

does not verify a

h

� b

h

. Now

assume that p

0

is an (a

i

h

; b

j

h

)-path in T

0

. As a

i

h

2 T

i

and b

j

h

2 T

j

, we know that p

0

ontains an

12

edge that is a
opy of e

`

. Then the isomorphi

opy of p

0

in T would be an (a

h

; b

h

)-path in T,

a
ontradi
tion.

Finally a

i

h

6� b

j

h

implies a 6� b, so C

0

is not a dormant
lash.

Claim: T

0

ontains no evil
lique.

This part of the proof has yet to be established in a
on
ise way.

Lemma 3.15. Let 2 CGF[� ℄ and let T be a tableau for . Then is (�nitely) satis�able.

Proof: A

ording to Lemma 3.14 we assume T = (V;E;C;�;N) to be a tableau for that

does not
ontain
riti
al edges.

Towards the �nite satis�ability we
onstru
t a �nite stru
ture A = A(T) with universe A :=

C(V)=�. For ea
h relation R 2 � and ea
h tuple a 2 A of mat
hing arity let a 2 R

A

i� there

is a node v 2 V and a tuple of
onstants b 2 C(v) su
h that all b

i

� a

i

and Rb 2 �(v). Note

that with Rl and the non-existen
e of dormant
lashes, this is the
ase i� the same holds true

independent of the spe
i�

hoi
e of b or v. Hen
e A is well de�ned.

Claim: A j= .

This is implied by the stronger statement that for every
losed formula ' using
onstants from

a that appears in the �-label of some unblo
ked node v of T, '[a 7!
~
a℄ holds in A. Again ' is

assumed to be in NNF.

� For equality statements this is immediate. The R=-rule makes sure, that distin
t
onstants

o

uring at a
ommon node have distin
t �-
lasses. For inequality statments, assume

a 6= b 2 �(v), but a � b. Then we
an �nd an (a; b)-path
ontaing a node w 6= v and a

onstant
 2 C(w) with a �
 � b. Sin
e we have assumed
 =
 2 �(v), this would imply

the existen
e of the dormant
lash (v; w; ab;

;
 =
) in T.

� For an atomi
 senten
e Ra, we get A j= R
~
a immediately from the
onstru
tion of A. In

ase of a negated atomi
 senten
e, assume '(a) = :Ra 2 �(v) but A j= R
~
a. This implies

the existen
e of a (dormant)
lash in T.

� For positive Boolean
ombinations the argument is immediate.

� Let '(a) = (9yz:�(a;y; z))�(a;y). If, for some b;
 2 C(v), �(a;b;
); �(a;b) 2 �(v), we

note that A j= �(
~
a;

~

b) and A j= �(
~
a;

~

b;
~

) for all � 2 � by indu
tion hypothesis for � and

�.

If there are no b;
 2 C(v) with �(a;b;
); �(a;b) 2 �(v), then appli
ation of the R9-Rule

yields a su

essor node w of v with
onstants b;
 2 C(w) su
h that �(a;b;
); �(a;b) 2

�(w). If w is not blo
ked, the
laim again follows by indu
tion hypothesis for � and �.

If however w is blo
ked,
onsider the node u with (u;w) 2 B and the inje
tion � : C(w)!

C(u). Then �(�(a); �(b); �(
)) and �(�(a); �(b)) are in the �-label of u. Sin
e all pairs

of
onstants (a; a

0

) where a

0

= �(a) are in the same �-
lass, it follows by indu
tion that

A j= �(
~
a;

~

b;
~

) ^ �(

~
a;

~

b), and hen
e '(
~
a) holds in A.

� Finally let '(a) = (8yz:�(a;y; z))�(a;y). Assume that there are tuples b;
 su
h that

A j= �(
~
a;

~

b;
~

). Sin
e there are no evil
liques in T, there is a node w where

~
a[

~

b � C(w),

13

i.e., there are tuples a

0

;b

0

� C(w) with a

0

� a and b

0

� b. Moreover, for all � 2 �,

�(a

0

;b

0

; � � � � �) 2

�

�(w) and '(a

0

) 2 �(w). Hen
e, the R8-rule is apppli
able for '(a

0

) at

w and must have been applied be
ause T is
omplete. This yields �(a

0

;b

0

) 2 �(v), whi
h,

by indu
tion yields A j= �(a

0

;b

0

) and hen
e A j= �(a;b).

3.3 Completeness

Lemma 3.16. Let 2 CGF be a
losed formula in NNF. If is satis�able, then there is a

sequen
e of rule appli
ations starting from the initital tree that yields a tableau.

Proof: Sin
e is satis�able, there is a model A of . We will use A to guide the appli
ation

of the non-deterministi
 R_-rule. For this we in
remently de�ne a fun
tion g :

S

fC(v) j v 2

Vg ! A su
h that for all v 2 V : A j= g(�(v)). We refer to this property by (�).

The set �(v)
an
ontain atomi
 formulas �(a

�

) where � o

urs at some positions of a

�

and is

not mapped to an element of A by g. We deal with this as des
ribed under De�nition 3.3 by

setting

A j= g(�(a)) i� A j= 9z:g(�(a

0

)):

Claim 1: If for a
ompletion tree T there exists a fun
tion g su
ht that (�) holds and a rule is

appli
able to T, then it
an be applied in a way that maintains (�).

We distinguish the di�erent rules.

� If the R^-rule is appli
able to a node v 2 V with '^# 2 �(v) then, due to (�), A j= g('^#)

and hen
e A j= fg('); g(#)g. Hen
e, the R^-rule
an be applied to v without violating (�).

� If the R_-rule is appli
able to a node v 2 V with '_# 2 �(v) then, due to (�), A j= g('_#)

and hen
e A j= g(�) for a � 2 f'; #g. Hen
e, the R_-rule
an be applied to v without

violating (�).

� If the R=-rule is appli
able to a node v 2 V with a = b 2 �(v), then A j= g(b) = g(b)

implies g(a) = g(b). Hen
e, for every node w that shares a with v, g(�(w)) = g(�(w)[a 7!

b℄) and the rule
an be applied without violating (�).

� If the R8-rule is appli
able to a node v 2 V with (8yz:�(a;y; z))'(a;y) 2 �(v), then there

is b � C(v) su
h that, for all atoms �(x;y; z) 2 �, �(a;b; � � � � �) 2

�

�(v). Hen
e, from

the de�nition of 2

�

, there is a tuple
 � C(v) [f�g su
h that �(a;b; � � � � �)�

�

�(a;b;
)

and �(a;b;
) 2 �(v). From (�) we get that A j= 9z:�(g(a); g(b); z) and sin
e every z

appears in exa
tly one atom in �, also A j= 9z:�(g(a); g(b); z). Hen
e, we have

fA j= f8y:(9z:�(g(a);y; z) ! '(g(a);y));

9z:�(g(a); g(b); z)g

whi
h, by Lemma 2.3, implies A j= '(g(a); g(b)) and hen
e '(a;b)
an be added to �(v)

without violating (�).

� If the R9-rule is appli
able to a node v 2 V with (9yz:�(a;y; z))'(a;y), then this implies

A j= g((9yz:�(a;y; z))'(a;y)):

14

Hen
e, there are sequen
es b

0

;

0

� A of elements su
h that A j= f�(g(a);b

0

;

0

); '(g(a);b

0

)g.

If we de�ne g su
h that g(b) = b

0

and g(
) =

0

, then obviouslyA j= fg(�(a;b;
); g('(a;b))g.

Note, that this might involve setting g(b

1

) = g(b

2

) for some b

1

; b

2

2 b. With this
on-

stru
tion the resulting extended
ompletion-tree T and extended fun
tion g again satisfy

(�).

� If the Rl-rule is appli
able to a node v 2 V with �(a

�

) 2 �(v) and a neighbour w with

a

�

\ C(w) 6= ;, then it adds �(a

�

)j

�

C(w)

to �(w). From (�) get that A j= �(g(a

�

)), and

sin
e �(a

�

)j

�

C(w)

�

�

�(a

�

), whi
h implies A j= �(g(a

�

))j

�

C(w)

. Hen
e, adding �(a

�

)j

�

C(w)

to

�(w) does not violate (�).

� If the Rl8-rule is appli
able to a node v 2 V with a universal formula '(a) 2 �(v) and a

neighbour w whi
h shares a with v, (�) yields A j= '(g(a)). Hen
e, adding '(a) to �(w)

does not violate (�).

Claim 2: A
ompletion-tree T for whi
h a fun
tion g exists su
h that (�) holds is
lash free.

Assume that T
ontains a
lash, namely, there is a node v 2 V su
h that either a 6= a 2 V(v)|

implying A j= g(a) 6= g(a)|, or that there is a sequen
e a � C(v), and an atomi
 formula '

su
h that f�(a);:�(a)g � �(v). From (�) it would follow that A j= f�(g(a));:�(g(a))g, also a

ontradi
tion.

These
laims yield Lemma 3.16 as follows. Let T be a tableau for . Sin
e A j= , (�) is

satis�ed for initial tree together with the empty fun
tion g. By Theorem 3.8, any sequen
e of

appli
ations is �nite, and from Claim 1 we get that there is a sequen
e of rule-appli
ations that

maintains (�). By Claim 2, this sequen
e results in a tableau.

Lemma 3.16 involves two di�erent kinds of non-determinism, namely, the
hoi
e whi
h rule to

apply to whi
h
onstraint (as several rules
an be appli
able simultaneously), and whi
h disjun
t

to
hoose in an appli
ation of the R_-rule. While the latter
hoi
e is don't-know non-detemisti
,

i.e., for a satis�able formula only
ertain
hoi
es will lead to the dis
overy of a tableau, the

former
hoi
e is don't-
are non-deterministi
. This means that arbitrary
hoi
es of whi
h rule to

apply next will lead to the dis
overy of a tableau for a satis�able formula. For an implementation

of the tableau algorithm this has the following
onsequen
es. Exhaustive sear
h is ne
essary to

deal with all possible expansions of the R_-rule, but arbitrary strategies of
hoosing whi
h rule

to apply next and where will lead to a
orre
t implementation, although the eÆ
ien
y of the

implementation will very mu
h depend on a suitable strategy.

3.4 Tree Model Property

The fa
t that every satis�able formula of width k has a model of width at most k � 1 was the

starting point for our
onsiderations. Yet, this fa
t was never relied on to prove the
orre
tness

of the tableaux algorithm. Indeed, it is possible to give an alternative proof for Fa
t 3.2 based

on our tableaux algorithm. This requires an alternative
onstru
tion to the one used in the

proof of Lemma 3.15. Note that this proof is also an alternative proof for Lemma 3.15.

Theorem 3.17. Let 2 CGF with k = width(). is satis�able i� has a model of width

at most k � 1.

15

Proof: If is satis�able, then the tableaux algorithm generates a tableau for . Using an

unraveling
onstru
tion, we will
onstru
t a model for of width at most k � 1 from T.

Let V

u

= fv 2 V j v is not indire
tly blo
ked g and Paths(T) � V

+

u

indu
tively de�ned by

3

� [

v

0

v

0

℄ 2 Paths(T) for the root v

0

of T,

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor of v

n

and w is not blo
ked, then [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

℄ 2

Paths(T),

� if [

v

1

v

0

1

: : :

v

n

v

0

n

℄ 2 Paths(T), w is a su

essor of v

n

blo
ked by the node u 2 V, then

[

v

1

v

0

1

: : :

v

n

v

0

n

u

w

℄ 2 Paths(T).

The set Paths(T) forms a tree, with p

0

being a su

essor of p if p

0

is obtained from p by
on-

atenating one element

u

w

at the end. We de�ne the auxiliary fun
tions Tail;Tail

0

by setting

Tail(p) = v

n

and Tail

0

(p) = v

0

n

for every path p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄. We further de�ne

C(T) = f(a; p) j p 2 Paths(T) ^ a 2 C(Tail(p))g

and the relation � as the smallest symmetri
 relation on C(T) satisfying

� (a; p) � (a; q) if Tail

0

(q) is an unblo
ked su

essor of Tail(p) and a 2 C(Tail(p))\C(Tail

0

(q)),

� (a; p) � (b; q) if Tail

0

(q) is a blo
ked su

essor of Tail(p), a 2 C(Tail(p)) \C(Tail

0

(q)) and

�(a) = b for the fun
tion � that veri�es that Tail

0

(q) is blo
ked by Tail(q).

With� we denote the re
exive, transitive
losure of�. First we need to prove some te
hni
alities

for this unraveling.

Claim 1: Let p 2 Paths(T) and a; b 2 C(Tail(p)). Then (a; p) � (b; p) i� a = b.

Assume the
laim does not hold and let a 6= b with (a; p) � (b; p). By de�nition of �, (a; p) 6�

(b; p) must hold. Hen
e, there must be a path (

1

; p

1

) � � � � � (

k

; p

k

) su
h that a =

1

, b =

k

,

and p = p

1

= p

k

. W.l.o.g., assume we have pi
ked a; b; p su
h that this path has minimal length

k. Su
h a minimal path must be of length k = 3, for if we assume a path of length k > 3, there

must be 2 � i < j � k � 1 su
h that p

i

= p

j

, be
ause the relation � is de�ned along paths in

the tree Paths(T). If

i

=

j

then we
an shorten the path between position i and j and obtain

a shorter path. If

i

6=

j

, then the path (

i

; p

i

) � � � � � (

j

; p

j

) is also a shorter path with the

same properties. Hen
e, a minial path must be of the form (a; p) � (
; q) � (b; p). If Tail

0

(q) is

not blo
ked, by the de�nition of �, a =
 = b must hold. Hen
e, sin
e a 6= b, Tail

0

(q) must be

blo
ked by Tail(q). From the de�nition of � we have a; b 2 C(Tail

0

(q)) and �(a) =
 = �(b) for

the fun
tion � verifying that Tail

0

(q) is blo
ked by Tail(q). Sin
e � must be inje
tive, this is a

ontradi
tion.

Sin
e the set Paths(T) is a tree, and as a
onsequen
e of Claim 1 we get the following:

Claim 2: Let p; p

0

2 Paths(T) with p = [

v

1

v

0

1

: : :

v

n

v

0

n

℄, p

0

= [

v

1

v

0

1

: : :

v

n

v

0

n

w

w

0

℄. If, for a 2 C(v

n

); b 2 C(w),

(a; p) � (b; p

0

) then (a; p) � (b; p

0

).

3

This
ompli
ated for of unraveling, where we re
ord both blo
ked an blo
king node is ne
essary be
ause there

might be a situation where two su

essors v

1

; v

2

of a node are blo
ked by the same node w.

16

If (a; p) � (b; p

0

) then there must be a path (

1

; p

1

) � � � � � (

k

; p

k

) su
h that a =

1

, b =

k

,

p = p

1

, and p

0

= p

k

. Sin
e � is only de�ned along paths in the tree Paths(T), there must be

a step from p to p

0

(or, dually, from p

0

to p) in this path, more pre
isely, there must be an

i 2 f1; : : : k � 1g su
h that p

i

= p and p

i+1

= p

0

holds. Hen
e, we have the situation

(a; p) � (

i

; p) � (

i+1

; p

0

) � (b; p

0

)

Now Claim 1 implies a =

i

and b =

i+1

and hen
e (a; p) � (b; p

0

).

Using Claim 2, we
an show that the blo
king
ondition and the Rl- and Rl8-rule work as

desired:

Claim 3: Let p; q 2 Paths(T), a � C(Tail(p));b � C(Tail(q))) and (a; p) � (b; q).

� For every atomi
 formula �, �(a; � � � � �) 2

�

�(Tail(p)) i� �(b; � � � � �) 2

�

�(Tail(q)).

� For every universal formula ', '(a) 2 �(Tail(p)) i� '(b) 2 �(Tail(q)).

Equivalen
e
lasses of � indu
e subtrees of the tree Paths(T), hen
e, if (a; p) � (b; q), then

there must be a path (

1

; p

1

) � � � � � (

k

; p

k

) with p

1

= p; p

k

= q, a =

1

, b =

m

, and p

i

is a

neighbour of p

i+1

in the tree Paths(T). From Claim 2, we get that any two neighbours p

i

; p

i

+1

in Paths(T), (

i

; p

i

) � (

i+1

; p

i+1

) implies (

i

; p

i

) � (

i+1

; p

i+1

).

W.o.l.g., assume p

i+1

is a su

essor of p

i

in the tree Paths(T) and set v = Tail(p

i

) and w =

Tail(p

i+1

). There are two possibilities:

� if Tail

0

(p

i+1

) is not blo
ked, then Tail(p

i+1

) = Tail

0

(p

i+1

) and by the de�nition of �,

Tail(p

i+1

) is a su

essor of Tail(p

i

) in T and

i

=

i+1

. Due to the Rl-rule, �(

i

; � � � � �)2

�

�(Tail(p

i

)) i� �(

i+1

; � � � � �) 2

�

�(Tail(p

i+1

)). Due to the Rl8-rule, '(

i

) 2 �(Tail(p

i

)) i�

'(

i+1

) 2 �(Tail

0

(p

i+1

)) = �(Tail(p

i+1

)).

� if Tail

0

(p

i+1

) is blo
ked by Tail(p

i+1

) and Tail

0

(p

i+1

) is a su

essor of Tail(p

i

) in T. Then,

by de�nition of � we have

i

� C(Tail(p

i

)) \C(Tail

0

(p

i+1

)) and due to the Rl- and Rl8-

rule, for any atomi
 or universal formula ', '(

i

) 2 �(Tail(p

i

)) i� '(

i

) 2 �(Tail

0

(p

i+1

)).

Furthermore, for the fun
tion � verifying that Tail

0

(p

i+1

) is blo
ked by Tail(p

i+1

), we

have that �(�(Tail

0

(p

i+1

))) = �(Tail(p

i+1

))j

�(C(Tail

0

(p

i+1

)))

and hen
e for every formula ',

'(

i

) 2 �(Tail(p)), '(

i

) 2 �(Tail

0

(p

i+1

)) i� �('(

i

)) = '(

i+1

) 2 �(Tail(p

i+1

)).

Due to Claim 3, we
an now de�ne a stru
ture A over the universe A = C(T)=� by setting, for

a relation R 2 � of arity m, ([a

1

; p

1

℄

�

; : : : ; [a

m

; p

m

℄

�

) 2 R

A

i� there is a path p 2 Paths(T) and

onstants

1

; : : :

m

su
h that (

i

; p) 2 [a

i

; p

i

℄

�

and R

1

: : :

m

2 �(Tail(p)).

To simplify things we de�ne the following examples of \abuses of notation". Let a = a

1

; : : : ; a

n

be a sequen
e of
onstants, p = p

1

; : : : ; p

n

a sequen
e of paths of mat
hing length, and q a single

path. We de�ne

[a;p℄

�

= ([a

1

; p

1

℄

�

; : : : ; [a

n

; p

n

℄

�

)

[a; q℄

�

= ([a

1

; q℄

�

; : : : ; [a

n

; q℄

�

)

It remains to show that this
onstru
tion yields A j= . This is a
onsequen
e of the following

laim that
an be shown by indu
tion over the stru
ture of the formula '.

17

Claim 4: For every path p 2 Paths(T) and a � C(Tail(p)), if '(a) 2 �(Tail(p)), then A j=

'([a; p℄

�

).

We show this
laim by indu
tion on the stru
ture of formulas '.

� If '(a) = Ra

1

: : : a

m

2 �(Tail(p)), then the
laim holds immediately by
onstru
tion of A.

� Assume '(a) = :Ra 2 �(Tail(p)), but [a; p℄

�

2 R

A

. Then, by the de�nition of A, there

must be a path p

0

and
onstants
 su
h that (a; p) � (
; p

0

) and R
 2 �(Tail(p

0

)). From

Claim 3 we have that (a; p) � (
; p

0

) implies Ra 2 �(Tail(p)) and hen
e T would
ontain

the
lash fRa;:Rag � �(Tail(p)).

� Assume '(a) = a 6= b 2 �(Tail(p)) but [a; p℄

�

= [b; p℄

�

. From Claim 1 we get that this

implies a = b and hen
e T
ontains the
lash a 6= a 2 �(Tail(p)).

� For Boolean
ombinations the
laim is immediate due to the R^- and R_-rule.

� Let '(a) = (8yz:�(a;y; z))�(a;y) 2 �(Tail(p)) and b;p;
;q su
h that

A j= �([a; p℄

�

; [b;p℄

�

; [
;q℄

�

): (1)

Every y

i

2 y
oexists with every other variable y

j

2 y in at least one
onjun
t �

(y

i

;y

j

)

2

�(a;y; z) and with every element a

`

2 a in at least one
onjun
t �

(y

i

;a

`

)

2 �(a;y; z).

Sin
e (1), for every two elemts [b

i

; p

i

℄

�

; [b

j

; p

j

℄

�

2 [b;p℄

�

there is a path q

(i;j)

and
onstants

d

(i;j)

; e

(i;j)

su
h that (b

i

; p

i

) � (

(i;j)

; q

(i;j)

) and (b

j

; p

j

) � (d

(i;j)

; q

(i;j)

). Similarly, for every

element [b

i

; p

i

℄

�

2 [b;p℄

�

and every element (a

`

; p) there exists a path r

(i;`)

and
onstants

f

(i;j)

; g

(i;j)

su
h that (b

i

; p

i

) � (f

(i;`)

; r

(i;`)

) and (a

`

; p) � (g

(i;`)

; r

(i;`)

). Equivalen
e
lasses

of � indu
e subtrees of Paths(T). Every subtree indu
ed by [b

i

; p

i

℄

�

overlaps with the

subtree indu
ed by [b

j

; p

j

℄

�

at q

(i;j)

and with the subtree indu
ed by [a

`

; p℄

�

at r

(i;`)

. It

is a well-known result in graph theory that this implies the existen
e of a single path s

whi
h lies on all of the indu
ed subtrees. Thus, there must be tuples a

0

, b

0

su
h that

(a; p) � (a

0

; s) and (b;p) � (b

0

; s): (2)

For every �(x;y; z) 2 �(x;y; z), Claim 3 implies �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)) as follows:

from (1,2) we get A j= �([a

0

; s℄

�

; [b

0

; s℄

�

; [
;q℄

�

). Sin
e � is an atom, this implies the

existen
e of a path t and tuples a

00

;b

00

;

0

with

(a

0

; s) � (a

00

; t) and (b

0

; s) � (b

00

; t) and (
;q) � (

0

; t) and �(a

00

;b

00

;

0

) 2 �(Tail(t)) (3)

Sin
e �(a

00

;b

00

; � � � � �)�

�

�(a

00

;b

00

;

0

), Claim 3 yields �(a

0

;b

0

; � � � � �) 2

�

�(Tail(s)).

Sin
e this is true for every atom � and, also due to Claim 3(8yz:�(a

0

;y; z))�(a

0

;y) 2

�(Tail(s)), the
ompleteness of T yields �(a

0

;b

0

) 2 �(Tail(s)). By indu
tion, this implies

A j= �([a

0

; s℄

�

; [b

0

; s℄

�

). Together with (2) this implies A j= �([a; p℄

�

; [b;p℄

�

) and hen
e

A j= '([a; p℄

�

).

� If '(a) = (9yz:�(a;y; z))�(a;y) 2 �(Tail(p)), there are two possibilities.

{ there are b;
 � C(Tail(p)) su
h that f�(a;b;
)g � �(Tail(p)) and �(a;b) 2 �(a;b).

Then, by indu
tion, we have

A j= f�([a; p℄

�

; [b; p℄

�

; [
; p℄

�

); �([a; p℄

�

; [b; p℄

�

)g

and hen
e A j= '([a; p℄

�

).

18

{ there are no su
h b;
 � C(Tail(p)), then there is a su

essor w of Tail(p) and a

sequen
e of
onstants b;
 � C(w) with f�(a;b;
); �(a;b)g � �(w). The node w

an be blo
ked or not.

� If w is not blo
ked, then p

0

= [p;

w

w

℄ 2 Paths(T) and, by indu
tion,

A j= f�([a; p

0

℄

�

; [b; p

0

℄

�

; [
; p

0

℄

�

); �([a; p

0

℄

�

; [b; p

0

℄

�

)g

From the de�nition of � we have, (a; p

0

) � (a; p) and hen
e A j= '([a; p℄

�

).

� If w is blo
ked by a node u (with fun
tion �) then p

0

= [p;

u

w

℄ 2 Paths(T). From

the blo
king
ondition, we have that u is unblo
ked and �f�(a;b;
); �(a;b)g) �

�(u). Hen
e, by indu
tion,

A j= f�([�(a); p

0

℄

�

; [�(b); p

0

℄

�

; [�(
); p

0

℄

�

); �([�(a); p

0

℄

�

; [�(b); p

0

℄

�

)g:

By the de�nition of � we have that (a; p) � (�(a); p

0

) and hen
e, A j= '([a; p℄

�

).

As a spe
ial instan
e of Claim 4 we get that A j= . Due to Lemma 3.7, for every node v 2 V,

jC(v)j � width() and hen
e A has width at most width()� 1. Note, that we have also given

an alternative proof for Lemma 3.15

4 Con
lusion

We have developed a tableau algorithm for CGF, whi
h we hope
an serve as basis for an eÆ
ient

implementation of a de
ision pro
edure for CGF. This hope is justi�ed by the fa
t that some of

the most eÆ
ient implementations of modal or des
ription logi
 reasoners are based on tableaux

al
uli similar to the one for CGF presented in this paper. As a
orollary from the
onstru
tions

used to prove the
orre
tness of the tableaux algorithm, we show that CGF, and hen
e LGF and

GF, have the �nite model property. We also give a new proof of the fa
t that every satis�able

GF=LGF=CGF senten
e of width k has a model of tree width at most k � 1.

Referen
es

[1℄ H. Andr�eka, J. van Benthem, and I. N�emeti. Modal languages and bounded fragments of

predi
ate logi
. Journal of Philosophi
al Logi
, 27:217{274, 1998.

[2℄ F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
omplexity of
on
ept languages.

Information and Computation, 134(1):1{58, 1997.

[3℄ H. Ganzinger and H. de Nivelle. A superposition de
ision pro
edure for the guarded frag-

ment with equality. In Pro
. 14th IEEE Symp. on Logi
 in Computer S
ien
e, 1999.

[4℄ E. Gr�adel. On the restraining power of guards. Journal of Symboli
 Logi
. To appear.

[5℄ E. Gr�adel. De
ision pro
edures for guarded logi
s. In Automated Dedu
tion - CADE16. Pro-

eedings of 16th International Conferen
e on Automated Dedu
tion, Trento, 1999, volume

1632 of Le
ture Notes in Arti�
ial Intelligen
e. Springer-Verlag, 1999.

[6℄ E. Gr�adel and I. Walukiewi
z. Guarded �xed point logi
. In Pro
. 14th IEEE Symp. on

Logi
 in Computer S
ien
e, 1999.

19

[7℄ J. Y. Halpern and Y. Moses. A guide to
ompleteness and
omplexity for model logi
s of

knowledge and belief. Arti�
ial Intelligen
e, 54(3):319{379, April 1992.

[8℄ C. Hirs
h and S. Tobies. A tableaux algorithm for the
lique guarded fragment. LTCS-

Report 00-03, LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen, Germany, 2000. See

http://www-lti.informatik.rwth-aa
hen.de/Fors
hung/Reports.html.

[9℄ I. Horro
ks, P. F. Patel-S
hneider, and R. Sebastiani. An analysis of empiri
al testing for

modal de
ision pro
edures. Logi
 Journal of the IGPL, 8(3):293{323, 2000.

[10℄ I. Horro
ks, U. Sattler, and S. Tobies. Pra
ti
al reasoning for expressive des
ription logi
s.

In H. Ganzinger, D. M
Allester, and A .Voronkov, editors, Pro
eedings of the 6th Interna-

tional Conferen
e on Logi
 for Programming and Automated Reasoning (LPAR'99), number

1705 in Le
ture Notes in Arti�
ial Intelligen
e, pages 161{180. Springer-Verlag, September

1999.

[11℄ R. Ladner. The
omputational
omplexity of provability in systems of propositional modal

logi
. SIAM Journal on Computing, 6:467{480, 1977.

[12℄ M. S
hmidt-S
hau� and G. Smolka. Attributive
on
ept des
riptions with
omplements.

Arti�
ial Intelligen
e, 48:1{26, 1991.

[13℄ J. van Benthem. Dynami
 bits and pie
es. ILLC resear
h report, University of Amsterdam,

1997.

[14℄ C. Weidenba
h. SPASS|version 0.49. J. of Automated Reasoning, 18(2):247{252, April

1997.

20

