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1 Introduction

The Guarded Fragment of first-order logic, introduced by Andréka, van Benthem, and Németi [1],
has been a successful attempt to transfer many good properties of modal, temporal, and de-
scription logics to a larger fragment of predicate logic. Among these are decidability, the finite
model property, invariance under an appropriate variant of bisimulation, and other nice model
theoretic properties [1, 4].

The Guarded Fragment (GF) is obtained from full first-order logic through relativisation of
quantifiers by so-called guard formulas. Every appearance of a quantifier in the GF must be of
the form

Jy(a(x,y) A p(x,y)) or Vy(a(x,y) — »(x,¥)),

where « is a positive atomic formula, the guard, that contains all free variables of . This
generalises quantification in modal and temporal logics, where quantification is restricted to
those elements reachable via some accessibility relation.

By allowing for more general formulas as guards while preserving the idea of quantification
only over elements that are close together in the model, one obtains generalisations of GF
which are still well-behaved in the above sense. Most importantly, one can obtain the loosely
guarded fragment (LGF) [13] and the clique guarded fragment (CGF) [5], for which decidability,
invariance under clique guarded bisimulation, and some other properties have been shown in [5].
The question whether CGF and LGF have the finite model property has been open until now.

GF, LGF, and CGF are decidable and known to be 2-EXPTIME complete, which is shown
in [4, 5] using game and automata-based approaches. While these approaches yield optimal
worst-case complexity results for many logics, they appear to be unsuitable as a starting point for
an efficient implementation—their worst-case complexity is actually their any-case complexity.
Many decidability results for modal or description logics are based on tableau algorithms [11,
7, 2, 10]. Some of the fastest implementations of modal satisfiability procedures are based on
tableaux calculi [9]. Unlike automata algorithms, the average-case behaviour in practice is so



good that finding really hard problems to test these implementations has become a problem
itself.

In this paper, we generalise the principles usually found in tableau algorithms for modal logics
to develop a tableau algorithm for CGF. To the best of our knowledge, this is the first algorithm
for CGF that can be used as the basis for an efficient implementation!. As a corollary of the
constructions used to show the soundness of our algorithm, we obtain that CGF, and hence
LGF and GF have the finite model property. Also, we obtain an alternative proof for the fact
that every satisfiable CGF formula of width & has a model of tree width at most & — 1 [5].

In the current version, there is still a gap in the proof Lemma 3.14, which is necessary to establish
the finite model property. This does not cause a gap in the proof of Theorem 3.5 because it can
alternatively be established using Lemma 3.17.

2 Preliminaries

For the definitions of GF and LGF we refer the reader to [5]. The clique guarded fragment CGF
of first-order logic can be obtained in two equivalent ways, by either semantically or syntactically
restricting the range of the first-order quantifiers. In the following we will use bold letters to
refer to tuples of elements of the universe (a,b,...) resp. tuples of variables (x,y,...).

Definition 2.1 (Semantic CGF). Let 7 be a relational vocabulary. For a T-structure A with
universe A, the Gaifman graph of A is defined as the undirected graph G(A) = (A, E®) with

E* ={(a,d") | a # d, there exists R € T anda € R® which contains both a and a'}.

Under clique guarded semantics we understand the modification of standard first order seman-
tics, where, instead of ranging over all elements of the universe, a quantifier is restricted to
elements that form a clique in the Gaifman graph, including the binding for the free variables of
the matriz formula. More precisely, let 2 be a o-structure and B an environment mapping vari-
ables to elements of A. We define the model relation inductively over the structure of formulas
as the usual FO semantics with the exception

A, B = Vy.o(x,y) iff for all a € A such that 3(x) U {a} forms a cliqgue in G(),2, Blz — a] = o,

and a similar definition for the existential case. With CGF we denote first order logic restricted
to clique guarded semantics.

Definition 2.2 (Syntactic CGF). Let T be a relational vocabulary. A formula o is said to be
a clique-formula for a set x C free(«) if a is a conjunction of atoms such that each two elements
from x coexist in at least one atom, each atom contains at least two element from x, and each
element from free(a) \ x occurs exactly once in one atom. In the following, we will identify a
clique-formula o with the set of its conjuncts.

The syntactic CGF is inductively defined as follows.

1. Every relational atomic formula Rx;, ...x;, or x; = x; belongs to CGF.

2. CGF is closed under boolean operations.

!There are resolution based decision procedures for GF and LGF [3] that are readily implemented using the
saturation theorem prover SPASS [14]. It is unclear if this approach can be extended to CGF.



3. If x,y,z are tuples of variables, a(x,y,z) is a clique-formula for x Uy and ¢(x,y) is a
formula in CGF such that free(p) C x Uy, then

dyz.(a(x,y,2) Ap(x,y))  and  Vyz.(a(x,y,2) = o(x,y))

belong to CGF.

We will use (Jyz.(a(x,y,2))e(x,y) and (Vyz.(a(x,y,z))p(x,y) as alternative notations for
Jyz.(a(x,y,2) A p(x,y)) and Vyz.(a(x,y,2z) = @(x,y)) respectively.

The following lemma, can be shown by elementary manipulation.

Lemma 2.3. Let a(x,y,z) be a clique-formula for x,y. Then
Vyz.(a(x,y,2) = ¢(x,y)) = Vy.(Fz.a(x,y,z) = o(x,y)).

The use of the name CGF both for the semantic and the syntactic clique guarded fragment is
justified by the following Lemma.

Lemma 2.4. Ouver any finite relational vocabulary the syntactic and semantic versions of the
CGF are equally expressive.

Proof sketch: By some elementary equivalence transformations, every syntactically clique
guarded formula can be brought into a form where switching from standard semantics to clique
guarded semantics does not change its meaning. Conversely, for any finite signature there is
a finite disjunction clique(x,y,z) of clique-formulas for x,y such that a,b form a clique in
G() iff A |= Jz.clique(a, b, z). By guarding every quantifier with such a formula and applying
some elementary formula transformations and Lemma 2.3, we get, for every FO formula 1, a
syntactically clique guarded formula that is equivalent to 1) under clique guarded semantics.

In the following we will only consider the syntactic variant of the clique guarded fragment.

At a first glance the expressiveness of CGF and the loosely guarded fragment LGF are incompa-
rable. While the auxiliary variables of the CGF allow additional expressiveness, there are also
LGF-formulas that are not (syntactically) clique guarded. In CGF, a guard a in Qyz.a(x,y,z)
necessarily contains every pair from xUy in (at least) one atom. In LGF a guard §in Qy.5(x,y)
need only contain all combinations of a variable from x with one from x Uy in (at least) one
guard atom. An example for a loosely guarded formula that is not (syntactically) clique guarded
is

Y = (Fzy.Rxy)(Vz.(Rzz A Ryz))p(z,y, 2)

because z and y do not coexist in the guard of the universal quantifier. Yet, ¢ can be turned into
a clique guarded formula by adding the guard Rzy of the existential quantifier to the guard of
the universal quantifier. This yields the guard RxyA RxzA Ryz, a clique formula for z, y, z. Since
it is always possible to clique-guard a loosely guarded formula in this way, LGF is contained in
CGF. Tt is also possible to show that CGF is strictly more expressive than LGF [5].

Definition 2.5 (NNF, Closure, Width). Let » € CGF be closed. In the following, we as-
sume all formulas to be in negation normal form (NNF), where negation occurs only in front of
atomic formulas. Every formula in CGF can be transformed into NNF in linear time by pushing
negation inwards using DeMorgan’s law and the duality of the quantifiers.



For a formula ¢ € CGF in NNF, let cl(¢)) be the smallest set that contains ¢ and is closed
under sub-formulas. Let C be a set of constants. With cl(i, C) we denote the set

cl(y,C) = {p(a) | a C C,p(x) € cl(¢)}.
The width of a formula ¢ € CGF is defined by

width(¢)) := max{|free(p)| | ¢ € cl(¢)}.

3 A Tableaux Algorithm for CGF

For various modal and description logics, decidability can be shown by means of tableaux algo-
rithms, where satisfiability of a formula 1) is decided by a syntactically guided search for a model
for ¢». Examples for these kind of algorithms can be found, e.g., in [11, 12, 7, 10]. Models are
usually represented by a graph in which the nodes correspond to worlds and the edges correspond
to the accessibility relations in the model. Each node is labeled with a set formulas that this
node must satisfy, and new edges and nodes are created as required by existential modalities.
Since many modal and description logics have the tree model property, the graphs generated
by these algorithms are trees, which allows for simpler algorithms and easier implementation
and optimisation of these algorithms. Indeed, some of the fastest implementations of modal and
description logics satisfiability algorithms are based on tableau calculi [9].

For many modal or description logics, e.g. K or ALC, termination of these algorithms is due
to the fact that the modal depth of the formulas appearing at a node strictly decreases with
every step from the root of the tree. For other logics, e.g., K4, K with the universal modality,
or the expressive DL SHZQ, this is no longer true and termination has to be enforced by other
means. One possibility for this is blocking, i.e., stopping the creation of new successor nodes
below a node v if there already is an ancestor node w that is labeled with similar formulas as v.
Intuitively, in this case the model can fold back from the predecessor of v to w, creating a cycle.
Unraveling of these cycles recovers an (infinite) tree model. Since the algorithms guarantee that
the formulas occurring in the label of the nodes stem from a finite set (usually the sub-formulas
of the input formula), every growing path will eventually contain a blocked node, preventing
further growth of this path and (together with a bound on the degree of the tree) ensuring
termination of the algorithm.

Our investigation of a tableaux algorithm for CGF starts with the observation that CGF also
has some kind of tree model property.

Definition 3.1. Let 7 be a relational vocabulary. A 7-structure A has tree width k if k € N is
minimal with the following property.

There exists a directed tree T = (V, E) and a function f:V — 24 such that
e for everyv eV, |f(v)| <k+1,

e for every R € 7 and a € R®, there exists v € V with a C f(v), and

e for every a € A, the set Vo ={v €V |a € f(v)} induces a subtree of T.

Every node v of T induces a substructure §(v) C 2 of cardinality at most k+ 1. Since f(v) may
be empty we, admit empty substructures. The tuple (T, (F(v))ver) is called a tree decomposition
of 2.



Fact 3.2 (Tree Model Property). Every satisfiable sentence v € CGF of width k has a
countable model of tree width at most k — 1.

This is a simple corollary of [5], Theorem 4, where the same result is given for an extension of
CGF by least fixed point operators.

Fact 3.2 is the starting point for our definition of a completion tree for a formula p € CGF. A
node v of such a tree no longer stands for a single element of the model as in the modal case,
but rather for a substructure §(v) of a tree decomposition of a model. To this purpose, we label
every node v with a set C(v) of constants (the elements of the substructure) and a subset of
cl(1p, C(v)), reflecting the formulas that must hold true for these elements.

To deal with auziliary elements—elements helping to form a clique in G(2l) that are not part of
this clique themselves—we will use * as a placeholder for an unspecified element in atoms. The
following definitions are useful when dealing with these generalised atoms.

Definition 3.3. Let K denote an infinite set of constants and x= &€ K. For any set of constants
C C K we set C* = CU{x}. We use t1,ta,... to range over elements of K*. The relation >*
is defined by

Rty...tn, >* Rt ...t iff for all i € {1...n}either t; =% or t; = t,.

For an atom 8 and a set of formulas ® we define 3 €* ® iff there is a ' € ® with 3>* 3.

For a set of constants C C K and an atom o = Rty ...t,, we define

t; ift,eC
ol = Rt ... t, where t, =" /i .
x  otherwise

We use the notation a* to indicate that the tuple a* contains *’s. Obviously, >* is transitive
and reflexive, and «|f, >* a for all atoms a and sets of constants C.

While these are all syntactic notions, they have a semantic counterpart that clarifies the intuition
of x standing for an unspecified element. Let a’ denote the tuple obtained from a tuple a* by
replacing every occurrence of x in a* with a distinct fresh variable, and let z be precisely the
variables used for this replacement. For an atom «, we define

A E a(a*) iff AETz.ald).
It is easy to see that

a(a) >* a(b) implies «a(b) = a(a)
a(a) €*® implies @ = «afa)

because, if a >* b, then b is obtained from a by replacing some * with constants, which provide
witnesses for the existential quantifier.

Definition 3.4 (Completion Tree, Tableau). Let 1p € CGF be a closed formula in NNF.
A completion tree T = (V,E,C,A,N) for 1 is a vertex labeled tree (V,E) with the labeling
function C labeling each node v € V with a subset of K, A labeling each node v € V with
a subset of cl(y,C(v)*) such that *x occurs only in atoms (without equality) and the function
N : V — N mapping each node to a distinct natural number, with the additional property that,
if v is an ancestor of w, then N(v) < N(w).



A constant ¢ € K is called shared between two nodes vi,v9 € V, if ¢ € C(v1) N C(vy), and
¢ € C(w) for all nodes w on the (unique, undirected, possibly empty) path connecting vi to vs.

A node v € V is called directly blocked by a node w € V, if w is not blocked, N(w) < N(v)
and there is an injective mapping 7 from C(v) into C(w) such that, for all constants ¢ € C(v)
that are shared between v and w, w(c) = ¢, and T(A(v)) = A(w)|z(c(w)+)- Here and throughout
this paper we use the convention ww(x) = x for every function 7 that verifies a blocking.

A node is called blocked if it is directly blocked or if its predecessor is blocked.

A completion tree T contains a clash if there is a node v € V such that

e for a constant c € C(v), ¢ #c € A(v), or

e there is an atomic formula o and a tuple of constants a C C(v) such that {a(a), ~a(a)} C

A(v).

Otherwise, T is called clash-free. A completion tree T is called complete if none of the com-
pletion rules given in Figure 1 can be applied to T. A complete and clash-free completion tree

for 1 is called a tableau for 1.

To test 1 for satisfiability, the tableau algorithm creates an initial tree with only a single node
vo, A(vg) = {9} and C(vg) = 0. The rules from Figure 1 are succesively applied until either a
clash occurs, producing output “) unsatisfiable”, or the tree is complete, in which case “ip
is satisfiable” is output.

RA: if e AN € Av) and {p,9} Z A(v)
then A(v) := A(v) U{p,d}

Rv: if VI eAw)and {p, 9} NA(w) =10
.then A(v) :== A(v) U{x} for x € {p,9}

then for all w that share a with v, C(w) := (C(w) \ {a}) U {b} and A(w) := A(w)[a > b]

Rv: if (Vyz.a(a,y,z))p(a,y)) € A(v), there exists a b C C(v) such that for all atoms
ﬂ(xa Yy, Z) € a, B(aa ba *oees *) S A(’U), and ‘P(aa b) g A(U)
then A(v) := A(v) U{¢p(a,b)}

R3: if (Fyz.a(a,y,z))e(a,y)) € A(v) and for every b,c C C(v),{a(a,b,c),p(a,b)} Z A(v)
and there is no child w of v with {a(a, b, c),¢(a,b)} C A(w) for some b,c C C(w)
and v is not blocked

then let b, ¢ be sequences of distinct and fresh constants that match the lengths of y, z,
create a child w of v with C(w) :=aUbUc and A(w) := {«(a,b,c),p(a,b)}, and
let N(w) =1+ max{N(v) : v e V\{w}}

Ry: if a(a*) € A(v), a atomic, w is a neighbour of v with a* N C(w) # 0, and
a(a*)|’(‘3(w) Z A(w)
then A(w):= A(w)U {a(a)|’é(w)}

RIV: if p(a) € A(v),p(a) universal, and y is a neighbour of x with a C C(w) and ¢(a) ¢ A(w)
then A(w):= A(w) U {p(a)}

Figure 1: The Completion Rules for CGF



While our notion of tableaux has many similarities to the tableaux appearing in [6], there are
two important differences that make the notion of tableaux here more suitable as basis for a
tableau algorithm.

We will see that every completion tree generated by the tableau algorithm is finite. Conversely,
tableaux in [6], in general, can be infinite.

Also, in [6] every node is labeled with a complete (i, C(v))-type, i.e., every formula ¢ €
cl(y, C(v)) is explicitly asserted true of false at v. Conversely, a completion tree contains
only assertions about relevant formulas. This implies a lower degree of non-determinism in the
algorithm, which is important for an efficient implementation.

Theorem 3.5. The tableau algorithm is a (non-deterministic) decision procedure for CGF-
satisfiability.

Proof: This is an immediate consequence of the following facts established in the subsequent
sections.

1. Every sequence of rule applications terminates after a finite number of steps. ( Termination,
Lemma 3.8)

2. If the algorithm constructs a tableau for v, then 1) is satisfiable. (Soundness, Lemma 3.15)

3. If 1) is satisfiable, then the rules can be applied to generate a tableau for 1. (Completeness,
Lemma 3.16) .

As a corollary, we get that CGF and hence also the loosely guarded fragment, and the guarded
fragment, have the finite model property. For GF this was already known [4], whereas for LGF
and CGF this was still an open problem.

Corollary 3.6. Let ¢ € GF/LGF/CGF. o is satisfiable iff 1 is finitely satisfiable.

Proof: If 4 is satisfiable, the tableau algorithm generates a finite tableau for 1. The construc-
tion in the proof of Lemma 3.15 shows that such a tree induces a finite model. "

3.1 Termination

The folloing technical lemma, is a simple consequence of the completion rules and the blocking
condition.

Lemma 3.7. Let 1) € CGF be a closed formula in NNF with || = n, width(¢)) =m, and T a
completion tree generated for v by application of the rules in Figure 1. For every node v € T,

1. |C(v)| <m
2. |[A(w)| <nx (m+1)™

3. Any £ > 2 +0)™ distinet nodes in T contain a blocked node.

Proof:



1. Nodes are only generated by the R3-rule and no constants are added to a C(v) once v has
been generated (but some may be removed by application of the R=-rule).

When triggered by the formula (Jyz.a(a,y,z))p(a,y), the R3-rule initializes C(w) such
that it contains a and another constant for every variable in x and y. Hence,

|IC(w)| < |aUyUz| < |free(a)| < width(t)).

2. The set A(v) is a subset of cl(¢, C(v)*), for which |cl(¢, C(v))] < n x (m + 1)™ holds
because there are at most n formulas in ¢l(1)), each of which has at most m free variables.
There are at most (|C(v)|+1)™ distinct sequences of length m with constants from C(v)*.

3. Let vq,...,v; be £ > 20<(m+D™ Jistinct nodes. For every v;, we will construct a mapping
m; : C(v;) — {1,...m} such that, if a constant a is shared between two nodes v;, v;, then
mi(a) = mj(a).

Let uy,--- ,u; denote the nodes of a subtree of T that contains every node v; and that
is rooted at uy. By induction over the distance to uy, we define an injective mapping
vi : Cu;) = {1,...,m} for every i € {1,...,k} as follows. For 14 we pick an arbitrary
injective function from C(ui) to {1,...,m}. For a node u; let u; be the predecessor
of u; in T and v; the corresponding function, which, since u; has a smaller distance to
u1, has already been defined. For v; we choose an arbitrary injective function such that
vi(a) = vj(a) for all a € C(u;) N C(u; ).

All mappings v; are injective. For any constant a the set V, := {v € V | a € C(v)} induces
a subtree of T. If u;,u; € V, are neighbours, the definition above ensures v;(a) = v;(a).
By induction over the length of the connecting path we obtain the same for arbitrary
Ui, Uj € V..

For every node v; there is a j; such that v; = u;, and we set m; = vj,. There are at
most 2"%(M+1)™ distinct subsets of ¢l(¢,{1,...,m,*}). Hence, there must be two nodes
v;,vj such that m;(A(v;)) = 7;(A(v;)) and, w.lo.g., N(v;) < N(v;). We show that v; is
blocked by v; via 7 := 7r{1 om;. Note that for m to be well-defined, 7; must be injective.
By construction, 7 preserves shared constants. It remains to be shown that 7(A(v;)) =
A(Ui)|7r(C(vj))- Let go(a) € A(’Uj). Since ﬂ'j((p(a)) € ﬂ'j(A(Uj)) = WZ(A(’UZ)) there is a
b € C(v;) with ¢(b) € A(v;) and 7;(b) = mj(a). By definition of m we have w(a) = b
and thus 7(p(a)) € A(v;)|x(c(v,))- Conversely, let p(b) € A(vi)|r(c(v;))- Since mi(p(b)) €
mi(A(v;)) = mj(A(vj)) there is a a € C(v;) with ¢(a) € A(v;) and 7;(a) = mi(b). By
construction of 7 this implies 7(a) = b and hence ¢(b) € 7(A(v;)).

Lemma 3.8 (Termination). Let ¢ € CGF be a closed formula in NNF. Any sequence of rule
application of the tableau algorithm starting from the initial tree terminates.

Proof: For any completion tree T generated by the tableau algorithm, we define ||-|| : V s N3
by
o]l := (IC(v)], nx(m+1)"—]|A(v)],
[{o € A(v) |  triggers the R3-r. for v}|).

The lexicographic order < on N is well-founded, i.e. it has no infinite decreasing chains. Any
rule application decreases ||v|| w.r.t. < for at least one node v, and never increases ||v|| w.r.t. <



for an existing node v. However it may create a new node w. Hence, there can only be a finite
number of applications of rules to every node in T and an infinite sequence of rule applications
would generate an infinite tree. As a corollary of 3.7, we have that the depths of T is bounded
by 27%(m+1™ 4 1, since, on any directed path of that length, there must be a blocked node.
Rules are never applied to blocked nodes, so paths with blocked nodes can not grow in length.
Hence, T can only be infinite due to an infinite branching in T. Any successor of a node v
is generated by application of the R3-rule to v. Each such application generates exactly one
successor. Hence, for T to be inifinite, there must be an infinite number of applications of the
R3-rule to a node v. As each such application decreases ||v|| we have a contradiction. .

3.2 Correctness

In order to prove the correctness of the tableau algorithm we have to show that the existence
of a tableau for 1 implies satisfiability of . To this purpose, we will construct a model from
a tableau. In the following, let ¢ € CGF|[r] and let T = (V,E,C,A,N) be a tableau for .
W.Lo.g., we assume, for every node v € V and every a € C(v), a = a € A(v). For every blocking
situation we fix a mapping 7 verifying this blocking.

Definition 3.9. We make the blocking relation explicit. For every blocked node v there is a
unique blocking node w and we define B as set of all such pairs (v, w).

Further define C(V) := [J{C(v) : v € V, v not blocked}. The equivalence relation ~ on C(V)
is the reflexive and transitive closure of the set of all pairs of constants (c,d), where ¢ € C(u)
and d € C(v) for two nodes u and v, (u,v) € B and the function 7 that verifies the blocking
maps d to c.

We also use ~ as an operator that maps a constant a to its ~-class a. For tuples of constants
a, this operation is performed componentwise. We say that a C C(v), if for each a € a there is
an a' € a N C(v).

Definition 3.10. Let v,w € V and a € C(v), b € C(w). An (a,b)-path in T is a sequence
(s1,€1), .-y (Sk,ck) in 'V x C(V) such that ¢; = a, ¢z = b and for all 1 < i < k one of the
following holds.

1. (Si, 8i+1) € Eand ¢; = Cit+1
2. (si,8i+1) € B and m(ciy1) = ¢

3. 1. and 2. for reversed roles of 7 and 7 + 1.

That is, an (a,b)-path verifies a ~ b. If p is such an (a,b)-path, the projection of p, p(p) =
81,.-., 8k, is the sequence of nodes encountered along p.

The general idea in the construction of a model from a tableau, is to use C(V)/~ as the universe
and define the relations using the atomic constraints in the nodes. In general, there may be
two kinds of problematic situations in a tableau that make this construction impossible, namely
dormant clashes and evil cliques.

Definition 3.11 (Dormant Clash). Two distinct nodes v,w € V, two tuples of constants a, b
and a positive literal B form a dormant clash (v,w,a,b,3) in T, if a € C(v), b € C(w) and it
is the case that a # b, but a ~ b and either B(a) € A(v) and B(b) € A(w) or B(a) & A(v) and
B(b) € A(w).



Note that for each dormant clash (v, w, a, b, 3), the intersection of the sets P, = {p : p is an (a;, b;)-path},
1 <i < |al, is empty. Any path included in all P; would succesively let the complete atomic
information about a and b be propagated from v to w using RJ, either producing a true clash

or contradicting the definition of a dormant clash.

Further, there are constants a; € a and by € b, a; # b but a; ~ b, such that for some
(8iy¢i)s (8ix1,¢i11) on every (a¢,by)-path, either s; is blocked by s;11 (or vice versa) and the
belonging injection m maps ¢; to ¢;+1 (ci+1 to ¢;), or there is a node s blocking both s; and s;41
such that for the respective injections 7, : C(s;) — C(s) and 75, : C(s;41) — C(s) we have
T, (c1) = 7, (cip1). It follows that B contains (s;, si+1) (or (si41,5;)) in the first and both
(s,si) and (s, s;11) in the second case.

Definition 3.12 (Evil Clique). An evil clique (a,b,«) in T consists of two sequences of con-
stants a and b and a guard « occuring in some subformula p(x) = (Vyz.a(x,y,2z))n(x,y) of ¢
such that

e a and ¢(a) occur in the C resp. the A-label of some node in 'V,

e for each 3 € « there are a node w, some constants a’ ~ a and b’ ~ b such that
ﬂ(alabla O *) Sh A(w)7

e there is no node v, constants a’' ~ a and b’ ~ b such that p(a’) € A(v) and f(a’,b’,*--- x)e*
A(v) for all B € a. 2

Evil cliques are also a side-effect of folding back the completion tree into itself via B-edges, but
are not required in the sense that all existential subformula of 1) can be satisfied elsewhere. To
see this, assume to the contrary that we do not use B-edges and a is always chosen for a’ and b
for b’ in above definition. Since « is a clique-formula, every pair of constants from a U b occur
in at least one atom, and hence occur together in the C-label of some node. So for any pair
of constants ¢1,cy from a U b the sets V., and V,, are subtrees of (V,E), and do not require
B-edges for their connectedness. It is a well known result in graph theory, that any family of
pairwise overlapping trees has a common node—remember that V with only the E-edges is a
tree. Consequently a U b is a subset of the C-label of this common node.

Therefore, given an evil clique C' = (a, b, «), we can always find a set of constants Co CaUDb
and a set of constants Do C {¢ : &€ aUb}\ (aUb) such that, if for each ¢c € C¢ and
do € Do where ¢ ~ do we remove a set of B-edges such that no (c¢¢, d¢)-path is left over,
(a,b,«) is no longer an evil clique.

We isolate a set of edges as responsible for the two types of problematic situations defined above.

Definition 3.13. Given a tableau T, the set of critical edges of T, S = S(T), is a subset of B
defined as follows.

e For each dormant clash C' = (v, w,a, b, ) we choose an index ¢ such that for a; € a and
b; € b we have a; # b;. Let S contain the first B-edge from each (ay, b;)-path.

e For each evil clique C' = (a, b, ) we consider the constants Cc and D¢. For each ¢ € Co
and dc € D¢ where ¢ ~ de let S again contain the first B-edge from every (c¢, deo)-path.

2By abuse of notation we write #(a’,b’,*---*) and a’ ~ a, even though not all elements of a’ need to occur
in 8 and a’ may in general be shorter than a. The same applies to b'.
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By making enough (but finitely many) isomorphic copies of all subtrees of the tableau below
the root, it is possible to redirect all critical edges into different copies in a manner that gets rid
of all (isomorphic copies of) dormant clashes and evil cliques.

Lemma 3.14. If there is a finite tableau T for 1), then there is also a finite tableau T’ for 1
that does not contain critical edges (and hence no dormant clashes or evil cliques).

In both cases let S contain the edges introduced into S by C.

Note that no B-edge can be incident to the root of T, since all other nodes contain at least one
constant in their C-label.

Proof: Let A be the root of T and let n = |S|. We make an enlarged version T of T where
all subtrees with roots that are direct E-successors of \ are replaced by 2" isomorphic copies.
More precisely

e V' ={NJU{v' : veV\{\},

o E'={(}v") : (\,v) € E}U{(v",v") : (v,w) € E},
o C'(v') ={a’ : a € Cv)}, C'(\) =0,

o A(v') ={p(a’) : p(a) € Av)}, A'(N) = A(N),

e N'(v') =2" - N(v) +4, N'(\) =0,

for all 0 < i < 2™. The blocking relation B’ is given by
e B'={J{(v,w') : (vw) €B, 0<i<2"}.

This first step also creates 2" copies of our critical edges, namely all (r?, s*) for which (r,s) € S.
We now modify B’ as follows to eliminate all copies of our original critical edges. Let {(r¢, s;) :
0 <t < n} be an enumerated version of S.

Now for all 0 <# <nand all 0 < /4,5 < 2", if the binary representations of £ and j differ exactly
at the t-th position we delete (rf,s) and (r/,s]) from B’ and add (rf,s]) and (r,s}) in their
place. Independent of the existence of critical edges in T’, let S’ be the set of B’-edges induced
by S, i.e. exactly the edges connecting some i-th and j-th copy of T in T', i # .

This hyper-cube type of structure created by the S’-edges is crucial to the elimination of critical
edges. The notation forthwith uses the convention that if X is an object related to T, then X'
is the corresponding object related to T and vice versa. Also for any object X that was copied
in the transition from T to T’, the indexed version X* is assumed to be the copy related to T".

Claim: T’ is still a complete and clash-free finite completion tree for ).

Let T% be T’ restricted to A and all i-th copies of the subtrees, i.e. T/ restricted to {vi

v € V}U{\}. Further let V/ = {v* € T* : a € C(v")} and V} = {v' : o' € C'(v'),ex. p €
P(a,a') s.t. p(p) C T*}. When disregarding ', each T" is isomorphic to T. Further the definition
of B’ implies that for any node v that is blocked by a node w in T, all copies v* are blocked
by some node w’ in T'. Consequently T’ is complete. Since each A’-label in T’ is identical to

some A-label in T, T is also clash-free.

Note that for i # j there are exactly two B’-edges between T and TY iff the binary repre-
sentations of 4 and j differ at exactly one position. In all other cases there is no connecting
B'-edge.
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By construction, if (s%,cl)- .- (si’“,qu)'is an _(ai,bj)—path in T/, then (s1,¢1) - (Sg,cx) is an
(a,b)-path in T. Consequently, if (v',w’,a’, b’,3) is a dormant clash in T', then (v, w,a, b, 3)
is a dormant clash in T.

We can already note that if (¢, d) was a pair of constants giving rise to a set of critical edges S¢,
and all (¢!, d’)-paths were subsequently modified, then there can be no (¢f, d*)-path using only
nodes in T¢. Any such path would have an isomorphic copy in T leading to some edge being
included in S.

Also, in the same circumstances, all (¢!, d’)-paths contain S¢a-edges, even if i = j. We just
noted, that for any £ there never is a local, i.e. restricted to T, connection between VCZ and Vf.
For any in this sense non-local (¢!, d”)-path p', the isomorphic copy p in T is a (¢, d)-path. So
at least one edge along p belongs to S and consequently at least one edge along p’ to Sl,.

Similarly, if C’ = (a’,b’, ) is an evil clique in T’, then (a, b, a) already was an evil clique in T
and for all d%, € D¢, we have dov € Dco. We designate the first tuple of elements a’, because
the definition of an evil clique requires all occuring elements to co-exist at some node v = v’.
We do not have such an assumption for the second tuple, hence the elements of b’ may live only
at different T7s.

Claim: T' contains no dormant clash.

Assume that O’ = (v',w’,a’, b’, 3) is a dormant clash in T’ and ¢ is the index for which the

(al, b{)—paths in T/ were modified. We need to show that a’ £ b/.

We note that due to the modifications in B, any (al,b])-path has to use S'-edges, even in the
case of 1 = j. Also as C'(A\) = () the root can not occur on any (-,-)-path. The construction of
B’ further implies that the numbers of Si,-edges on the paths verifying a' ~ b7 are either all
even or all odd.

First suppose that all (af, b{ )-paths for C’ contain an even number of Si,-edges. Let p be an
(at,b])-path in T'. Each Sl,-edge leads from some Vfl to a 1/})!;’, or vice versa. The seeming
¢ ¢

asymmetry of taking a for the first, and b for the second set of nodes, is due to the definition of
critical edges selecting the first B-edge from the (a;, b;)-paths for inclusion in S.

We conclude that if the last S7., edge was taken from a V‘fl to a V£, then the next S¢i-edge
t

by’
along p has to be taken from a V(if;’,,, to a Va[[’,’,l, and vice versa. Otherwise there would be e.g.
t t

a (afl,bf”)—path in between. By previous observation this path would necessary contain an
St.-edge, contradicting the choice of two Sy, above.

By a simple parity argument we observe that if p starts in Vi it can only end in Vi instead of
the required Vg . This contradicts the assumption that p is an (a}, b )-path. Hence a’ £ &’ and
C' is not a dormant clash.

Now suppose that the (a%,b{)—paths for C’ contain an odd number of Si,-edges. Let p be an
(ai,b{ )-path containing an odd number of Si,-edges. Then there is at least one actual edge
e’ € S, that occurs an odd number of times. Suppose that € is a copy of the edge ey, i.e. the
¢-th edge in the enumeration of S. By the construction of ¥ we conclude that bin(i) and bin(j)
differ at position £. Consequently any (ai, b])-path, and indeed any path from T* to 77 (ignoring
connections via \) has to contain an odd number of edges that are copies of ey.

We can then find an index h # t such that any path using e, does not verify a; ~ b,. Now
assume that p’ is an (a}, b} )-path in T'. As aj € T" and b), € T7, we know that p’ contains an
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edge that is a copy of ey. Then the isomorphic copy of p’ in T would be an (ay, by)-path in T,
a contradiction.

Finally a} b;l implies a £ b, so C' is not a dormant clash.
Claim: T’ contains no evil clique.

This part of the proof has yet to be established in a concise way.

Lemma 3.15. Let ¢ € CGF[7] and let T be a tableau for . Then v is (finitely) satisfiable.

Proof: According to Lemma 3.14 we assume T = (V,E, C, A,N) to be a tableau for v that
does not contain critical edges.

Towards the finite satisfiability we construct a finite structure A = A(T) with universe A :=
C(V)/~. For each relation R € 7 and each tuple a € A of matching arity let a € R® iff there
is a node v € V and a tuple of constants b € C(v) such that all b; ~ a; and Rb € A(v). Note
that with R} and the non-existence of dormant clashes, this is the case iff the same holds true
independent of the specific choice of b or v. Hence 2 is well defined.

Cram: A =1

This is implied by the stronger statement that for every closed formula ¢ using constants from
a that appears in the A-label of some unblocked node v of T, ¢[a +— a] holds in 2. Again ¢ is
assumed to be in NNF.

e For equality statements this is immediate. The R=-rule makes sure, that distinct constants
occuring at a common node have distinct ~-classes. For inequality statments, assume
a # b€ A(v), but a ~ b. Then we can find an (a,b)-path containg a node w # v and a
constant ¢ € C(w) with a ~ ¢ ~ b. Since we have assumed ¢ = ¢ € A(v), this would imply
the existence of the dormant clash (v, w,ab, cc,c = ¢) in T.

e For an atomic sentence Ra, we get 2 = Ra immediately from the construction of 2. In
case of a negated atomic sentence, assume p(a) = -Ra € A(v) but 2 = Ra. This implies
the existence of a (dormant) clash in T.

e For positive Boolean combinations the argument is immediate.

e Let p(a) = (Fyz.a(a,y,z))n(a,y). If, for some b,c € C(v), a(a,b,c),n(a,b) € A(v), we
note that A = n(a, b) and A = B(a, b, &) for all 8 € a by induction hypothesis for o and
7.

If there are no b, c € C(v) with a(a, b, c),n(a,b) € A(v), then application of the R3-Rule
yields a successor node w of v with constants b,¢ € C(w) such that «(a,b,c),n(a,b) €
A(w). If w is not blocked, the claim again follows by induction hypothesis for « and 7.

If however w is blocked, consider the node v with (u,w) € B and the injection 7 : C(w) —
C(u). Then a(m(a), (b),n(c)) and n(r(a), (b)) are in the A-label of u. Since all pairs
of constants (a,a’) where a’ = 7(a) are in the same ~-class, it follows by induction that
A = a(a, b, &) An(a,b), and hence ¢(a) holds in 2.

e Finally le

c)
et p(a) = (Vyz.a(a,y,z))n(a,y). Assume that there are tuples b, ¢ such that
A= a(a,b,e).

¥ K
¢). Since there are no evil cliques in T, there is a node w where aUb C C(w),
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i.e., there are tuples a’,b’ C C(w) with a’ ~ a and b’ ~ b. Moreover, for all § € «,
B(@’, b’ x---x) €* A(w) and p(a’) € A(w). Hence, the RV-rule is appplicable for ¢(a’) at
w and must have been applied because T is complete. This yields n(a’, b’) € A(v), which,
by induction yields 2 = n(a’, b’) and hence 2 = n(a,b). .

3.3 Completeness

Lemma 3.16. Let 1p € CGF be a closed formula in NNF. If ¢ is satisfiable, then there is a
sequence of rule applications starting from the initital tree that yields a tableau.

Proof: Since 1) is satisfiable, there is a model 2 of ¥. We will use 2 to guide the application
of the non-deterministic RV-rule. For this we incremently define a function g : |J{C(v) | v €
V} — A such that forallv € V : A |= g(A(v)). We refer to this property by (x).

The set A(v) can contain atomic formulas «(a*) where % occurs at some positions of a* and is
not mapped to an element of A by g. We deal with this as described under Definition 3.3 by
setting

A glala) if A Izgla(a)).

CrAM 1: If for a completion tree T there exists a function g sucht that (x) holds and a rule is
applicable to T, then it can be applied in a way that maintains (x).

We distinguish the different rules.

e If the RA-rule is applicable to a node v € V with oA € A(v) then, due to (x), 2 | g(@AD)
and hence 2 = {g(¢), g(?¥)}. Hence, the RA-rule can be applied to v without violating (x).

e If the RV-rule is applicable to a node v € V with V¥ € A(v) then, due to (x), A = g(eVY)
and hence 2 = g(x) for a x € {p,9}. Hence, the RV-rule can be applied to v without
violating (k).

e If the R=-rule is applicable to a node v € V with a = b € A(v), then A |= g(b) = g(b)
implies g(a) = g(b). Hence, for every node w that shares a with v, g(A(w)) = g(A(w)[a —
b]) and the rule can be applied without violating (x).

e If the RV-rule is applicable to a node v € V with (Vyz.a(a,y,z))p(a,y) € A(v), then there
is b C C(v) such that, for all atoms ((x,y,z) € a, f(a,b,*---x) €* A(v). Hence, from
the definition of €*, there is a tuple ¢ C C(v) U {*} such that S(a,b,*---*) >* 5(a,b,c)
and ((a,b,c) € A(v). From (x) we get that A = 3z.6(g(a),g(b),z) and since every z
appears in exactly one atom in «, also 2 = 3z.a(g(a), g(b),z). Hence, we have

{A = {Vy.(3z.a(g(a),y,2) = »(g(a),y)),
32.0(g(a), g(b), 7))

which, by Lemma 2.3, implies 2 |= ¢(g(a), g(b)) and hence ¢(a,b) can be added to A(v)
without violating (x).

e If the R3-rule is applicable to a node v € V with (Iyz.a(a,y,z))p(a,y), then this implies

A= g(Byz.alay,z)e(a,y)).
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Hence, there are sequences b’, ¢’ C A of elements such that 2 = {«(g(a),b’, c’), p(g(a),b’)}.
If we define g such that g(b) = b’ and g(c) = ¢, then obviously 2 = {g(a(a, b, ¢), g(¢(a,b))}.
Note, that this might involve setting g(b1) = g(b2) for some by,be € b. With this con-
struction the resulting extended completion-tree T and extended function g again satisfy

().

e If the R{-rule is applicable to a node v € V with «(a*) € A(v) and a neighbour w with
a* N C(w) # 0, then it adds a(a*)|’(‘3(w) to A(w). From (*) get that A E a(g(a*)), and
since oe(a*)|"é(w) >* a(a*), which implies 2 = a(g(a*))|"é(w). Hence, adding a(a*)|’(‘j(w) to
A(w) does not violate (k).

e If the R}V-rule is applicable to a node v € V with a universal formula p(a) € A(v) and a
neighbour w which shares a with v, (x) yields 2 = ¢(g(a)). Hence, adding p(a) to A(w)
does not violate (x).

CLAIM 2: A completion-tree T for which a function g exists such that (x) holds is clash free.

Assume that T contains a clash, namely, there is a node v € V such that either a # a € V(v)—
implying 2 = g(a) # g(a)—, or that there is a sequence a C C(v), and an atomic formula ¢
such that {a(a), ~a(a)} C A(v). From (x) it would follow that A = {a(g(a)), ~a(g(a))}, also a
contradiction.

These claims yield Lemma 3.16 as follows. Let T be a tableau for ¢. Since 2 = 1, (x) is
satisfied for initial tree together with the empty function g. By Theorem 3.8, any sequence of
applications is finite, and from Claim 1 we get that there is a sequence of rule-applications that
maintains (x). By Claim 2, this sequence results in a tableau. "

Lemma 3.16 involves two different kinds of non-determinism, namely, the choice which rule to
apply to which constraint (as several rules can be applicable simultaneously), and which disjunct
to choose in an application of the RV-rule. While the latter choice is don’t-know non-detemistic,
i.e., for a satisfiable formula only certain choices will lead to the discovery of a tableau, the
former choice is don’t-care non-deterministic. This means that arbitrary choices of which rule to
apply next will lead to the discovery of a tableau for a satisfiable formula. For an implementation
of the tableau algorithm this has the following consequences. Exhaustive search is necessary to
deal with all possible expansions of the RV-rule, but arbitrary strategies of choosing which rule
to apply next and where will lead to a correct implementation, although the efficiency of the
implementation will very much depend on a suitable strategy.

3.4 Tree Model Property

The fact that every satisfiable formula of width k& has a model of width at most £ — 1 was the
starting point for our considerations. Yet, this fact was never relied on to prove the correctness
of the tableaux algorithm. Indeed, it is possible to give an alternative proof for Fact 3.2 based
on our tableaux algorithm. This requires an alternative construction to the one used in the
proof of Lemma 3.15. Note that this proof is also an alternative proof for Lemma 3.15.

Theorem 3.17. Let p € CGF with k = width(y). 1 is satisfiable iff 1 has a model of width
at most k — 1.
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Proof: If ¢ is satisfiable, then the tableaux algorithm generates a tableau for ¢. Using an
unraveling construction, we will construct a model for ¢ of width at most £k — 1 from T.

Let V, = {v € V| v is not indirectly blocked } and Paths(T) C V! inductively defined by 3

e [*2] € Paths(T) for the root vy of T,
vo

o if [7+...r] € Paths(T), w is a successor of v, and w is not blocked, then [7}... 5] €
1 n 1

v
Paths(T),
o if [7... 7] € Paths(T), w is a successor of v, blocked by the node v € V, then
1 n

v

(% ... % 2] € Paths(T).

!
vy vy, w

The set Paths(T) forms a tree, with p’ being a successor of p if p’ is obtained from p by con-
catenating one element .- at the end. We define the auxiliary functions Tail, Tail' by setting
v

Tail(p) = v, and Tail'(p) = v}, for every path p = [% ... %]. We further define

C(T) = {(a,p) | p € Paths(T) A a € C(Tail(p))}

and the relation ~ as the smallest symmetric relation on C(T) satisfying

e (a,p) ~ (a,q) if Tail'(q) is an unblocked successor of Tail(p) and a € C(Tail(p))NC(Tail'(q)),

e (a,p) ~ (b,q) if Tail'(q) is a blocked successor of Tail(p), a € C(Tail(p)) N C(Tail'(¢)) and
n(a) = b for the function 7 that verifies that Tail'(¢) is blocked by Tail(q).

With =~ we denote the reflexive, transitive closure of ~. First we need to prove some technicalities
for this unraveling.

Claim 1: Let p € Paths(T) and a,b € C(Tail(p)). Then (a,p) = (b,p) iff a = .

Assume the claim does not hold and let a # b with (a,p) ~ (b,p). By definition of ~, (a,p) #
(b, p) must hold. Hence, there must be a path (¢1,p1) ~ -+ ~ (¢, pr) such that a = ¢1, b = ¢y,
and p = p1 = pg. W.l.o.g., assume we have picked a, b, p such that this path has minimal length
k. Such a minimal path must be of length k = 3, for if we assume a path of length k& > 3, there
must be 2 <4 < j <k — 1 such that p; = p;, because the relation ~ is defined along paths in
the tree Paths(T). If ¢; = ¢; then we can shorten the path between position 4 and j and obtain
a shorter path. If ¢; # ¢;, then the path (¢;,p;) ~ -+ ~ (¢j,p;) is also a shorter path with the
same properties. Hence, a minial path must be of the form (a,p) ~ (¢, q) ~ (b,p). If Tail'(q) is
not blocked, by the definition of ~, @ = ¢ = b must hold. Hence, since a # b, Tail'(g) must be
blocked by Tail(q). From the definition of ~ we have a,b € C(Tail'(q)) and 7(a) = ¢ = 7(b) for
the function 7 verifying that Tail'(q) is blocked by Tail(¢q). Since m must be injective, this is a
contradiction.

Since the set Paths(T) is a tree, and as a consequence of Claim 1 we get the following:

Claim 2: Let p,p' € Paths(T) withp = [Z... 2], p' = [Z ... 2= L] If, fora € C(vy),b € C(w),
1 n 1 n

(a,p) = (b,p) then (a,p) ~ (b,p').

3This complicated for of unraveling, where we record both blocked an blocking node is necessary because there
might be a situation where two successors v1,v2 of a node are blocked by the same node w.
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If (a,p) =~ (b,p') then there must be a path (c1,p1) ~ -+ ~ (ck,px) such that a = ¢1, b = ¢,
p = p1, and p' = pg. Since ~ is only defined along paths in the tree Paths(T), there must be
a step from p to p’ (or, dually, from p’ to p) in this path, more precisely, there must be an
i € {1,...k — 1} such that p; = p and p;31 = p’ holds. Hence, we have the situation

(aap) ~ (Ciap) ~ (Ci-l-lap,) ~ (bap,)
Now Claim 1 implies a = ¢; and b = ¢; 41 and hence (a,p) ~ (b,p').

Using Claim 2, we can show that the blocking condition and the R}- and R{V-rule work as
desired:

Claim 3: Let p,q € Paths(T), a C C(Tail(p)),b C C(Tail(g))) and (a,p) = (b, q).

e For every atomic formula (3, B(a,*---x) €* A(Tail(p)) iff B(b, x--- %) €* A(Tail(q)).

e For every universal formula ¢, p(a) € A(Tail(p)) iff p(b) € A(Tail(q)).

Equivalence classes of ~ induce subtrees of the tree Paths(T), hence, if (a,p) = (b,q), then
there must be a path (c1,p1) = -+ = (cg,pr) with p1 = p,pr = ¢, a=c¢y1, b =cy,, and p; is a
neighbour of p;;1 in the tree Paths(T). From Claim 2, we get that any two neighbours p;, p; + 1
in Paths(T), (¢;,pi) & (Cit1,pit1) implies (¢;,p;) ~ (€Cit1,Pit1).

W.o.l.g., assume p;11 is a successor of p; in the tree Paths(T) and set v = Tail(p;) and w =
Tail(p;11). There are two possibilities:

e if Tail'(p;11) is not blocked, then Tail(p;+1) = Tail'(p;+1) and by the definition of ~,
Tail(pit1) is a successor of Tail(p;) in T and ¢; = ¢;41. Due to the RJ-rule, 5(c;, *--- %) €*
A(Tail(p;)) iff B(Ciy1, -~ x) €° A(Tail(pit1)). Due to the R{V-rule, p(c;) € A(Tail(p;)) iff
p(cit1) € A(Tail' (piy1)) = A(Tail(pir1))-

e if Tail'(p;+1) is blocked by Tail(p;;1) and Tail'(p;y1) is a successor of Tail(p;) in T. Then,
by definition of ~ we have ¢; C C(Tail(p;)) N C(Tail'(p;11)) and due to the R}- and RJV-
rule, for any atomic or universal formula ¢, p(¢;) € A(Tail(p;)) iff p(c;) € A(Tail'(pit1))-
Furthermore, for the function 7 verifying that Tail'(p;11) is blocked by Tail(p;y1), we
have that 7(A(Tail'(pi11))) = A(Tail(pi+1))|x(c(Tait' (pi41))) and hence for every formula ¢,

o(ci) € A(Tail(p)), ¢(e;) € A(Tail'(pit1)) iff m(p(e:)) = p(cir1) € A(Tail(pit1)).-

Due to Claim 3, we can now define a structure 2 over the universe A = C(T)/~ by setting, for
a relation R € 7 of arity m, ([a1,p1]x,- - - [@m, Pm]~) € R¥ iff there is a path p € Paths(T) and
constants ci, ... ¢y, such that (¢;,p) € [ai,pil~ and Rey ... ¢y € A(Tail(p)).

To simplify things we define the following examples of “abuses of notation”. Let a = aq,...,a,
be a sequence of constants, p = p1, ..., p, a sequence of paths of matching length, and ¢ a single
path. We define

[av p]% = ([alapl]%v SRR [anapn]m)
[a,ql~ = ([a1,dl~, - - [an, qlx)

It remains to show that this construction yields 2 |= 4. This is a consequence of the following
claim that can be shown by induction over the structure of the formula ¢.
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Claim 4: For every path p € Paths(T) and a C C(Tail(p)), if p(a) € A(Tail(p)), then A =
o([a,pl~)-

We show this claim by induction on the structure of formulas ¢.

If p(a) = Ray ... an, € A(Tail(p)), then the claim holds immediately by construction of 2.

Assume ¢(a) = ~Ra € A(Tail(p)), but [a,p]~ € R*. Then, by the definition of 2, there
must be a path p’ and constants ¢ such that (a,p) ~ (¢,p’) and Re € A(Tail(p’)). From
Claim 3 we have that (a,p) = (c,p’) implies Ra € A(Tail(p)) and hence T would contain
the clash {Ra,~Ra} C A(Tail(p)).

Assume p(a) = a # b € A(Tail(p)) but [a,p|x = [b,p]~. From Claim 1 we get that this
implies @ = b and hence T contains the clash a # a € A(Tail(p)).

For Boolean combinations the claim is immediate due to the RA- and RV-rule.

Let p(a) = (Vyz.a(a,y,z))x(a,y) € A(Tail(p)) and b, p,c,q such that
A ):O‘([aap]wv[bap]wv[caq]w)' (1)

Every y; € y coexists with every other variable y; € y in at least one conjunct pUWiv) e
a(a,y,z) and with every element a; € a in at least one conjunct 3¥i%) € a(a,y,z).
Since (1), for every two elemts [b;, p;]~, [bj, pj]~ € [b, P]x there is a path ¢'"7) and constants
d(1) e(3) such that (b, p;) =~ (¢, ¢(7)) and (bj,pj) = (d01), q(57)). Similarly, for every
element [b;, p;]~ € [b, pl~ and every element (ag,p) there exists a path #(**) and constants
[0, gl1) such that (b, p;) ~ (f&9,r@G0) and (ag, p) ~ (g0, r(0)). Equivalence classes
of ~ induce subtrees of Paths(T). Every subtree induced by [b;, pi]~ overlaps with the
subtree induced by [bj,pj]~ at ¢™7) and with the subtree induced by [ag, p]~ at 7(#0. Tt
is a well-known result in graph theory that this implies the existence of a single path s
which lies on all of the induced subtrees. Thus, there must be tuples a’, b’ such that

(a,p) =~ (a’,s) and (b,p) = (b, s). (2)

For every B(x,y,z) € a(x,y,z), Claim 3 implies g(a’,b’, x--- x) €* A(Tail(s)) as follows:
from (1,2) we get A = B([@’, s]x, [b, 8]~ [€,q]x). Since B is an atom, this implies the
existence of a path ¢ and tuples a”,b”, ¢’ with

(a',s) = (a”,t) and (b',s) ~ (b",t) and (c,q) ~ (c’,t) and B(a",b",c') € A(Tail(t)) (3)

Since B(a",b" x---x) >* g(a”,b", '), Claim 3 yields g(a’, b’ x - - - x) €* A(Tail(s)).

Since this is true for every atom (3 and, also due to Claim 3(Vyz.a(a',y,z))x(a’,y) €
A(Tail(s)), the completeness of T yields x(a’,b’) € A(Tail(s)). By induction, this implies
2A = x([a', s]x, [P/, s]x). Together with (2) this implies 2 = x([a, p]~, [b, P]~) and hence
A= o(la, plx).

If p(a) = (Ayz.a(a,y,z))x(a,y) € A(Tail(p)), there are two possibilities.

— there are b,c¢ C C(Tail(p)) such that {a(a,b,¢)} C A(Tail(p)) and x(a,b) € A(a,b).
Then, by induction, we have

A = {a([a, pl~, [b, plas [e, Plx)s X([2, plx, b, pla) }

and hence A = ¢([a, plx).
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— there are no such b,c C C(Tail(p)), then there is a successor w of Tail(p) and a
sequence of constants b,c¢ C C(w) with {a(a,b,c), x(a,b)} C A(w). The node w
can be blocked or not.

 If w is not blocked, then p’ = [p, £] € Paths(T) and, by induction,

A {a(la,plx, [b,p]x [e, p']x), x([2,P]~ [b, p]x) }

From the definition of ~ we have, (a,p’) ~ (a,p) and hence 2 = ¢([a, p]x)-

+ If w is blocked by a node u (with function =) then p’ = [p, ;] € Paths(T). From
the blocking condition, we have that u is unblocked and w{a(a, b, c), x(a,b)}) C
A(u). Hence, by induction,

A = {a(r (@), p'lx: [7(b), plx, [7(c), p'lx), x([7(@), plx, [ (D), p'lx) }-

By the definition of &~ we have that (a,p) =~ (7(a),p’) and hence, 2 = ¢([a, p]x).

As a special instance of Claim 4 we get that 2 |= 1. Due to Lemma 3.7, for every node v € V,
|C(v)| < width(¢)) and hence 2 has width at most width(¢)) — 1. Note, that we have also given
an alternative proof for Lemma 3.15 "

4 Conclusion

We have developed a tableau algorithm for CGF, which we hope can serve as basis for an efficient
implementation of a decision procedure for CGF. This hope is justified by the fact that some of
the most efficient implementations of modal or description logic reasoners are based on tableaux
calculi similar to the one for CGF presented in this paper. As a corollary from the constructions
used to prove the correctness of the tableaux algorithm, we show that CGF, and hence LGF and
GF, have the finite model property. We also give a new proof of the fact that every satisfiable
GF/LGF/CGF sentence of width k£ has a model of tree width at most k£ — 1.
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