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Abstra
t

Computing the most spe
i�
 
on
ept (ms
) is an inferen
e task that


an be used to support the \bottom-up" 
onstru
tion of knowledge bases

for KR systems based on des
ription logi
s. For des
ription logi
s that

allow for number restri
tions or existential restri
tions, the ms
 need not

exist, though. Previous work on this problem has 
on
entrated on de-

s
ription logi
s that allow for universal value restri
tions and number

restri
tions, but not for existential restri
tions. The main new 
ontri-

bution of this paper is the treatment of des
ription logi
s with existential

restri
tions. More pre
isely, we show that, for the des
ription logi
 ALE

(whi
h allows for 
onjun
tion, universal value restri
tions, existential re-

stri
tions, negation of atomi
 
on
epts, as well as the top and the bottom


on
ept), and its sublanguages EL (whi
h allows for 
onjun
tion, exis-

tential restri
tions and the top-
on
ept) and EL

:

(whi
h extends EL by

negation of atomi
 
on
epts) the ms
 of an ABox-individual only exists

in 
ase of a
y
li
 ABoxes. For 
y
li
 ABoxes, we show how to 
ompute

an approximation of the ms
.

Our approa
h for 
omputing the (approximation of the) ms
 is based

on representing 
on
ept des
riptions by 
ertain trees and ABoxes by 
er-

tain graphs, and then 
hara
terizing instan
e relationships by homomor-

phisms from trees into graphs. The ms
/approximation operation then

mainly 
orresponds to unraveling the graphs into trees and translating

them ba
k into 
on
ept des
riptions.
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1 Introdu
tion

The most spe
i�
 
on
ept (ms
) of an individual b is a 
on
ept des
ription

that has b as instan
e and is the least 
on
ept des
ription (w.r.t. subsump-

tion) with this property. Roughly speaking, the ms
 is the 
on
ept des
ription

that, among all 
on
ept des
riptions of a given DL, represents b best. Closely

related to the ms
 is the least 
ommon subsumer (l
s), whi
h, given 
on
ept

des
riptions C

1

; : : : ; C

n

, is the least 
on
ept des
ription (w.r.t. subsumption)

subsuming C

1

; : : : ; C

n

. Thus, where the ms
 generalizes an individual, the l
s

generalizes a set of 
on
ept des
riptions.

In [2, 3, 4℄, the ms
 (�rst introdu
ed in [15℄) and the l
s (�rst introdu
ed in

[5℄) have been proposed to support the bottom-up 
onstru
tion of a knowledge

base. The motivation 
omes from an appli
ation in 
hemi
al pro
ess engineering

[17℄, where the pro
ess engineers 
onstru
t the knowledge base (whi
h 
onsists

of des
riptions of standard building blo
ks of pro
ess models) as follows: First,

they introdu
e several \typi
al" examples of a standard building blo
k as indi-

viduals, and then they generalize (the des
riptions of) these individuals into a


on
ept des
ription that (i) has all the individuals as instan
es, and (ii) is the

most spe
i�
 des
ription satisfying property (i). The task of 
omputing 
on
ept

des
riptions satisfying (i) and (ii) 
an be split into two subtasks: 
omputing the

ms
 of a single individual, and 
omputing the l
s of a given �nite number of


on
epts.

The l
s has been thoroughly investigated for (sublanguages of) Classi


[5, 2, 13, 11℄, for DLs allowing for existential restri
tions like ALE [3℄, and most

re
ently, for ALEN , a DL allowing for both existential and number restri
tions

[14℄. For all these DLs, ex
ept for Classi
 in 
ase attributes are interpreted

as total fun
tions [13℄, it has turned out that the l
s always exists and that it


an e�e
tively be 
omputed. Prototypi
al implementations show that the l
s

algorithms behave quite well in pra
ti
e [7, 4℄.

For the ms
, the situation is not that rosy. For DLs allowing for number

restri
tions or existential restri
tions, the ms
 does not exist in general. Hen
e,

the �rst step in the bottom-up 
onstru
tion, namely 
omputing the ms
, 
annot

be performed. In [2℄, it has been shown that for ALN , a sublanguage of Clas-

si
, the existen
e of the ms
 
an be guaranteed if one allows for 
y
li
 
on
ept

des
riptions, i.e., 
on
epts with 
y
li
 de�nitions, interpreted by the greatest

�xed-point semanti
s. Most likely, su
h 
on
ept des
riptions would also guar-

antee the existen
e of the ms
 in DLs with existential restri
tions. However,


urrent DL-systems, like FaCT [10℄ and RACE [9℄, do not support 
y
li
 
on-


ept des
riptions; although they allow for 
y
li
 de�nitions of 
on
epts, these

systems do not employ the greatest �xed-point semanti
s, but only des
riptive

semanti
s. Consequently, 
y
li
 
on
ept des
riptions returned by algorithms


omputing the ms
 
annot be pro
essed by these systems.

In this paper, we therefore propose to approximate the ms
. Roughly speak-

ing, for some given non-negative integer k, the k-approximation of the ms
 of

an individual b is the least 
on
ept des
ription (w.r.t. subsumption) among all


on
ept des
riptions with b as instan
e and role depth at most k. That is, the
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set of potential ms
's is restri
ted to the set of 
on
ept des
riptions with role

depth bounded by k. For (sublanguages of) ALE we show that k-approximations

always exist and that they 
an e�e
tively be 
omputed. Thus, when repla
ing

\ms
" by \k-approximation", the �rst step of the bottom-up 
onstru
tion 
an

always be 
arried out. Although the original out
ome of this step is only ap-

proximated, this might in fa
t suÆ
e as a �rst suggestion to the knowledge

engineer.

While for full ALE our k-approximation algorithm is of questionable pra
ti
al

use (sin
e it employs a simple enumeration argument), we propose improved

algorithms for the sublanguages EL and EL

:

of ALE . (EL allows for 
onjun
tion

and existential restri
tions, and EL

:

additionally allows for a restri
ted form of

negation.) Our approa
h for 
omputing k-approximations in these sublanguages

is based on representing 
on
ept des
riptions by 
ertain trees and ABoxes by


ertain (systems of) graphs, and then 
hara
terizing instan
e relationships by

homomorphisms from trees into graphs. The k-approximation operation then


onsists in unraveling the graphs into trees and translating them ba
k into


on
ept des
riptions. In 
ase the unraveling yields �nite trees, the 
orresponding


on
ept des
riptions are \exa
t" ms
's, showing that in this 
ase the ms
 exists.

Otherwise, pruning the in�nite trees on level k yields k-approximations of the

ms
's.

The outline of the paper is as follows. In the next se
tion, we introdu
e the

basi
 notions and formally de�ne k-approximations. To get started, in Se
tion 3

we present the 
hara
terization of instan
e relationships in EL and show how

this 
an be employed to 
ompute k-approximations or the ms
 (if it exists). In

the subsequent se
tion we extend the results to EL

:

, and �nally deal with ALE

in Se
tion 5. The paper 
on
ludes with some remarks on future work.

2 Preliminaries and known results

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names.

The 
onstru
tors determine the expressive power of the DL. In this work, we


onsider 
on
ept des
riptions built from the 
onstru
tors shown in Table 1. In

the des
ription logi
 EL, 
on
ept des
riptions are formed using the 
onstru
tors

top-
on
ept (>), 
onjun
tion (C u D) and existential restri
tion (9r:C). The

des
ription logi
 EL

:

additionally provides us with primitive negation (:P ,

P 2 N

C

), and ALE allows for all the 
onstru
tors shown in Table 1 ex
ept

of number restri
tions. Finally, ALN allows for the top- and bottom-
on
ept,


on
ept 
onjun
tion, primitive negation, value restri
tions, and number restri
-

tions.

The semanti
s of a 
on
ept des
ription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation fun
tion �

I

maps ea
h 
on
ept name P 2 N

C

to a set P

I

� �

and ea
h role name r 2 N

R

to a binary relation r

I

� ���. The extension of

�

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in the third
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Constru
t name Syntax Semanti
s

top-
on
ept > �


onjun
tion C uD C

I

\D

I

existential restri
tions 9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restri
tions 8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation :P � n P

I

bottom-
on
ept ? ;

number restri
tions (� n r) fx 2 � j #fy j (x; y) 2 r

I

g � ng

number restri
tions (� n r) fx 2 � j #fy j (x; y) 2 r

I

g � ng

Table 1: Syntax and semanti
s of 
on
ept des
riptions. P denotes a 
on
ept

name from N

C

, r a role name from N

R

, and n a nonnegative integer.


olumn of Table 1.

De�nition 1 (Subsumption, l
s) Let C;D;E be 
on
ept des
riptions of the

same DL L.

1. D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent to D (for short C � D) i� C v D and D v C.

2. The 
on
ept des
ription E is 
alled least 
ommon subsumer of C and D

i� C v E and D v E and for all E

0

with C v E

0

and D v E

0

, it is

E v E

0

.

For ALE , subsumption 
an be 
hara
terized by means of homomorphisms

between ALE-des
ription trees [3℄.

De�nition 2 (ALE-des
ription trees) An ALE-des
ription tree is a tree of

the form G = (V;E; v

0

; `) with root v

0

where

� the edges in E are labeled with role names r 2 N

R

or 8r for some r 2 N

R

,

and

� the nodes v 2 V are labeled with sets `(v) = fP

1

; : : : ; P

n

g where ea
h P

i

,

1 � i � n, is of one of the following forms: P

i

2 N

C

, P

i

= :P for some

P 2 N

C

, or P

i

= ?.

The empty label 
orresponds to the top-
on
ept.

Every ALE-
on
ept des
ription 
an be written (modulo equivalen
e) as

C = Q

1

u : : : uQ

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

u 8s

1

:D

1

u : : : u 8s

k

:D

k

with Q

i

2 N

C

[ f:P j P 2 N

C

g [ f?;>g. The depth depth(C) of C is de�ned

as the maximal depth of nested quanti�
ation in C. Now, the ALE-des
ription

tree G(C) := (V;E; v

0

; `) 
orresponding to the ALE-
on
ept des
ription C is

indu
tively de�ned as follows:



5

� If depth(C) = 0, then V := fv

0

g, E := ;, and `(v

0

) := fQ

1

; : : : ; Q

n

gnf>g;

� otherwise, let G

i

= (V

i

; E

i

; v

0i

; `

i

) be the re
ursively de�ned des
ription

trees 
orresponding to C

i

, 1 � i � m, and H

j

= (W

j

; F

j

; w

0j

; �

j

) the

re
ursively de�ned des
ription trees 
orresponding to D

j

, 1 � j � k su
h

that the sets V

i

, W

j

and fv

0

g are pairwise disjoint; then

{ V := fv

0

g

S

1�i�m

V

i

[

S

1�j�k

W

j

,

{ E := fv

0

r

i

v

0i

j 1 � i � mg [

fv

0

8s

j

w

0j

j 1 � j � kg [

S

1�i�m

E

i

[

S

1�j�k

F

j

, and

{ `(v) :=

8

>

<

>

:

fQ

1

; : : : ; Q

n

g n f>g; v = v

0

`

i

(v); v 2 V

i

; 1 � i � m

�

j

(v); v 2W

j

; 1 � j � k:

The depth of a des
ription tree G is de�ned as the length of the longest path

in G. Now, ea
h ALE-des
ription tree G = (V;E; v

0

; `) is indu
tively translated

into an ALE -
on
ept des
ription C

G

as follows:

� If depth(G) = 0, then V = fv

0

g and E = ;. De�ne

C

G

:=

(

Q

1

u : : : uQ

n

; `(v

0

) = fQ

1

; : : : ; Q

n

g

>; `(v

0

) = ;;

� otherwise, let `(v

0

) = fQ

1

; : : : ; Q

n

g, n � 0, and let fv

1

; : : : ; v

m

g be the

set of all su

essors of v

0

with v

0

r

i

v

i

2 E and fw

1

; : : : ; w

k

g the set of

all su

essors of v

0

with v

0

8s

j

w

j

2 E. Further, let C

i

(D

j

) denote the

re
ursively de�ned 
on
ept des
riptions obtained from the subtrees with

root v

i

, 1 � i � m (w

j

, 1 � j � k). De�ne

C

G

:= Q

1

u : : : uQ

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

u 8s

1

:D

1

u : : : u 8s

k

:D

k

:

De�nition 3 (Homomorphisms between ALE-des
ription trees)

A homomorphism from an ALE-des
ription tree H = (V

H

; E

H

; w

0

; `

H

) to an

ALE-des
ription tree G = (V

G

; E

G

; v

0

; `

G

) is a mapping ' : V

H

�! V

G

su
h that

1. '(w

0

) = v

0

,

2. for all v 2 V

H

we have `

H

(v) � `

G

('(v)) or `

G

('(v)) = f?g,

3. for all vrw 2 E

H

, either '(v)r'(w) 2 E

G

, or '(v) = '(w) and `

G

('(v)) =

f?g, and

4. for all v8rw 2 E

H

, either '(v)8r'(w) 2 E

G

, or '(v) = '(w) and

`

G

('(v)) = f?g.
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In order to obtain a sound and 
omplete 
hara
terization of subsumption,

the 
on
ept des
riptions must be transformed into 
ertain normal forms before

translating them into des
ription trees [3℄. The ALE-normal form of an ALE-


on
ept des
ription C is obtained from C by exhaustively applying the following

normalization rules (modulo 
ommutativity and asso
iativity of 
onjun
tion):

1. 8r:> �! >

2. E u > �! E

3. 8r:E u 8r:F �! 8r:(E u F )

4. 8r:E u 9r:F �! 8r:E u 9r:(E u F )

5. P u :P �! ?, for ea
h P 2 N

C

6. 9r:? �! ?

7. E u ? �! ?.

The >-normal form of C is obtained from C by exhaustively applying th nor-

malization rules 1: and 2: C is said to be in ALE -normal form (>-normal form)

if none of the rules (neither rule 1: nor 2:) is appli
able to C. Note that the

ALE-normal form C

0

obtained from an ALE-
on
ept des
ription C 
an be of ex-

ponential size w.r.t. the size of C (see [3℄ for an example). It is easy to see that

the ALE-/>-normal form of C is equivalent to C.

Now, subsumption C v D 
an be 
hara
terized as follows:

Theorem 4 [3℄ Let C;D be ALE-
on
ept des
riptions, C

0

the ALE-normal form

of C, D

0

the >-normal form of D, and G(C

0

);G(D

0

) the 
orresponding ALE-

des
ription trees. Then C v D i� there exists a homomorphism from G(D

0

) to

G(C

0

).

Example 5 Consider the ALE
on
ept des
riptions

C := 8r:9r:(P u :P ) u 9s:(P u 9r:Q);

D := 8r:(9r:P u 9r::P ) u 9s:(8r:> u 9r:Q):

The >-normal form of D is given by D

0

= 8r:(9r:P u 9r::P ) u 9s: u 9r:Q, and

the ALE-normal form of C is C

0

:= 8r:? u 9s:(P u 9r:Q). The 
orresponding

ALE-des
ription trees G(C

0

) and G(D

0

) are depi
ted in Figure 1.

If we de�ne the mapping ' su
h that it maps w

0

onto v

0

; w

1

; w

2

, and w

3

onto v

1

; w

4

onto v

2

; and w

5

onto v

3

, then it is easy to see that ' yields a

homomorphism from G(D

0

) into G(C

0

). Thus, Theorem 4 implies C v D.

The inferen
e problem of 
omputing the l
s of n � 2 
on
ept des
riptions

has thoroughly been investigated for the DLs ALE [3℄, ALN [5, 2℄, and Classi


[13, 11℄. As shown in [3℄, the l
s of n � 2 ALE-
on
ept des
riptions always exists,

and it 
an be 
omputed in exponential time. The l
s of n � 2 ALN -
on
ept

des
riptions also always exists, and it 
an be 
omputed in polynomial time [5℄.

Even in the presen
e of 
y
li
 ALN -
on
ept des
riptions, the l
s always exists,

and it 
an be 
omputed in double-exponential time [2℄. Things be
ome less rosy,

however, if we 
onsider the most spe
i�
 
on
ept of ABox individuals.
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8r s

r

v

0

:;

v

1

:f?g v

2

:fPg

v

3

:fQg

G(C

0

):

8r s

w

0

:;G(D

0

):

w

1

:; w

4

:;

w

2

:fPg

r r

w

3

:f:Pg w

5

:fQg

r

Figure 1: An example for the 
hara
terization of subsumption in ALE by homo-

morphisms and des
ription trees.

De�nition 6 (ABox) An ABox A is a �nite set of assertions of the form

(a; b) : r ( role assertions) or a : C ( 
on
ept assertions), where a; b are indi-

viduals from a set N

I

, r is a role name, and C is a 
on
ept des
ription. An

ABox is 
alled L-ABox if all 
on
ept des
riptions o

urring in A are L-
on
ept

des
riptions.

In the presen
e of an ABox, an interpretation I additionally assigns an

element a

I

2 � to ea
h individual a o

urring in A su
h that A 6= B implies

A

I

6= b

I

(unique name assumption). It is amodel ofA i� it satis�es (a

I

; b

I

) 2 r

I

for all role assertions (a; b) : r 2 A, and a

I

2 C

I

for all 
on
ept assertions

a : C 2 A.

De�nition 7 (Instan
e, ms
) Let A be an L-ABox, a an individual in A,

and C an L-
on
ept des
ription.

1. a is an instan
e of C w.r.t. A (a 2

A

C) i� a

I

2 C

I

for all models I of

A.

2. C is the most spe
i�
 
on
ept for a w.r.t. A i� a 2

A

C and for all C

0

with a 2

A

C

0

, it is C v C

0

.

Depending on the expressive power of the underlying DL L, the ms
 of

an individual a w.r.t. an L-ABox A need not exist in general. Due to 
y
li


dependen
ies between individuals, i.e., 
y
les build by role assertions in the

ABox, it might be the 
ase that there exist in�nite many L-
on
ept des
riptions

a is an instan
e of, but none most spe
i�
 
on
ept des
ription with this property.

The following example illustrates this situation for ALN and ALE .

Example 8 First, 
onsider the ALN -ABox A = fa : P; a : (� 1 r); (a; a) : rg.

In [2℄ it is shown that there does not exist the ms
 of a w.r.t. A: It is easy to

see that, for ea
h n � 0, a is an instan
e of the ALN -
on
ept des
ription

C

n

:= 8r: � � � 8r

| {z }

n times

:(P u (� 1 r) u (� 1 r)):
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Intuitively, the ms
 is thus given as the in�nite 
onjun
tion u

n�0

C

n

. Obviously,

this 
onjun
tion 
annot be represented by an ALN -
on
ept des
ription.

For ALE and its sublanguages EL and EL

:

, we en
ounter the same problem

for the even smaller ABox A

0

= fa : P; (a; a) : rg: It is easy to see that, for

ea
h n � 0, a is an instan
e of the ALE/-EL-/EL

:

-
on
ept des
ription

C

n

:= 9r: � � � 9r

| {z }

n times

:P:

Assume that there exists an ALE-/EL-/EL

:

-
on
ept des
ription C � ms


A

0

(a).

Let depth(C) = k, C

0

the ALE-normal form of C, and G(C

0

) the 
orresponding

ALE-des
ription tree. Obviously, there does not exist a homomorphism from

G(C

k+1

) into G(C

0

). Sin
e C

k+1

is in >-normal form, Theorem 4 implies C 6v

C

k+1

in 
ontradi
tion to a 2

A

0

C

k+1

and C � ms


A

0

(a).

For 
y
li
 ALN -ABoxes, the ms
 
an be 
hara
terized by 
y
li
 ALN -
on
ept

des
riptions. Su
h 
on
epts are de�ned by means of a 
y
li
 TBox, and they

are interpreted using the greatest �xed-point semanti
s [2, 12℄. In the above

example, the 
on
ept C de�ned by the 
y
li
 ALN -TBox

T = fC

:

= P u (� 1 r) u (� 1 r) u 8r:Cg

yields the ms
 of a [2℄.

As already mentioned in the introdu
tion, 
y
li
 
on
ept des
riptions are not

yet well-investigated for DLs with existential restri
tions. Thus, in this work,

we 
on
entrate on approximations of the ms
 in ALE (and the sublanguages EL

and EL

:

). The approximation of the ms
 by 
on
ept des
riptions with limited

depth as introdu
ed in [7℄ is formally de�ned as follows:

De�nition 9 Let A be an L-ABox, a an individual in A, C an L-
on
ept de-

s
ription, and k 2 IN a nonnegative integer. C is 
alled k-approximation of a

w.r.t. A (C = ms


k;A

(a)) i�

1. a 2

A

C,

2. depth(C) � k, and

3. for all C

0

with a 2

A

C

0

and depth(C

0

) � k, it is C v C

0

.

For the ABox A

0

from Example 8, the ALE-
on
ept des
ription C

k

yields the

k-approximation of a w.r.t. A for ea
h k � 0.

In the following se
tions, we will show that, for the DLs EL, EL

:

, and ALE ,

the k-approximation of an individual a w.r.t. A always exists. For ALE , however,

we only have a very ineÆ
ient algorithm, sin
e the 
hara
terization of instan
e

relationships underlying the more eÆ
ient algorithms introdu
ed for EL and EL

:


ould not be adapted to ALE .
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3 Most spe
i�
 
on
epts in EL

First, we introdu
e the 
hara
terization of instan
e in EL that will be used to

prove soundness and 
ompleteness of the approximation algorithm presented in

Se
tion 3.2.

3.1 Chara
terizing instan
e in EL

The 
hara
terization of instan
e 
an be seen as an extension of the 
hara
teri-

zation of subsumption given in Theorem 4 (see also[3℄). Roughly speaking, the

idea is to translate the ABox A into a so-
alled EL-des
ription graph G(A), and

then to 
hara
terize a 2

A

C by the existen
e of a homomorphism ' from the

EL-des
ription tree G(C) into G(A) su
h that the root of G(C) is mapped onto

a.

De�nition 10 (EL-des
ription tree/EL-des
ription graph)

An EL-des
ription tree (EL-des
ription graph) is a tree (graph) of the form

G = (V;E; v

0

; `) with root v

0

(G(V;E; `)) where

� the edges in E are labeled with role names r 2 N

R

, and

� the nodes v 2 V are labeled with subsets of N

C

, i.e., `(v) � N

C

for all

v 2 V .

The empty label 
orresponds to the top-
on
ept.

Note that EL-
on
ept des
riptions trivially satisfy the 
onditions on the >-

and ALE-normal form. Thus, Theorem 4 yields

Corollary 11 Let C;D be EL-
on
ept des
riptions and G(C);G(D) the 
orre-

sponding EL-des
ription trees. Then, C v D i� there exists a homomorphism

' from G(D) into G(C).

The graphi
al representation of an EL-ABox A yields the starting point for

the de�nition of the EL-des
ription graph G(A) 
orresponding to A, i.e., the

individuals in A yield a subset of the nodes in G(A) and the role assertions in

A yield some of the edges in G(A). Con
ept assertions a : C 2 A are translated

as follows: the 
on
ept names o

urring on the top-level of C yield the label

of a, and for ea
h existential restri
tion 9r:C

0

on the top-level of C, the EL-

des
ription tree G(C

0

) = (V

C

0

; E

C

0

; v

0C

0

; `

C

0

) is added to the graph together

with the edge arv

0C

0

. For example, the EL-ABox

A = fa : P u 9s:(Q u 9r:P u 9s:>); b : P uQ; 
 : 9r:P;

(a; b) : r; (a; 
) : r; (b; 
) : sg

yields the EL-des
ription graph depi
ted in Figure 2. Formally, G(A) is de�ned

as follows:
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r

r

a : fPg

b : fP;Qg


 : ;

s

G

A

:

v

1

: fQg

v

2

: fPg v

3

: ; v

4

: fPg

s rr

s

Figure 2: The EL-des
ription graph of A.

De�nition 12 (EL-des
ription graph of an EL-ABox)

Let A be an EL-ABox and Ind(A) the set of individuals o

urring in A. For ea
h

a 2 Ind(A), let C

a

:= u

a:D2A

D, if there exists a 
on
ept assertion a : D 2 A;

otherwise, C

a

:= >. Finally, G(C

a

) = (V

a

; E

a

; a; `

a

) denotes the EL-des
ription

trees 
orresponding to C

a

, a 2 Ind(A), where w.l.o.g. the sets V

a

are assumed to

be pairwise disjoint.

The EL-des
ription graph G(A) of A is de�ned by G(A) := (V;E; `) with

� V :=

S

a2Ind(A)

V

a

,

� E := farb j (a; b) : r 2 Ag [

S

a2Ind(A)

E

a

, and

� `(v) := `

a

(v) for all v 2 V

a

.

It remains to adapt the notion of a homomorphism to EL-des
ription graphs

and trees: A mapping ' : V

C

�! V is a homomorphism from the EL-des
ription

tree G(C) = (V

C

; E

C

; v

0

; `

C

) into the EL-des
ription graph G = (V;E; `) if

1. `

C

(v) � `('(v)) for all v 2 V

C

, and

2. '(v)r'(w) 2 E for all vrw 2 E

C

.

The �rst 
ondition of De�nition 3 is now dire
tly integrated into the 
hara
ter-

ization of instan
e relationships in EL.

Theorem 13 Let A be an EL-ABox, a 2 Ind(A) an individual in A, and C an

EL-
on
ept des
ription. Further, let G(A) = (V;E; `) denote the EL-des
ription

graph of A and G(C) = (V

C

; E

C

; v

0

; `

C

) the EL-des
ription tree 
orresponding

to C. Then, a 2

A

C i� there exists a homomorphism ' : V

C

�! V from G(C)

into G(A) with '(v

0

) = a.
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Proof of the if-dire
tion: As already mentioned in the introdu
tion, this


hara
terization of instan
e is also sound for ALE (using appropriate de�nitions

of ALE -des
ription graphs and homomorphisms from ALE-des
ription trees into

ALE-des
ription graphs). This soundness result will be formalized in Lemma 30

in Se
tion 5. The if-dire
tion of Theorem 13 is an immediate 
onsequen
e of

this lemma.

Proof of the only-if-dire
tion: For this poof, we need the 
anoni
al inter-

pretation indu
ed by an EL-des
ription graph.

De�nition 14 (Canoni
al interpretation) Let G = (V;E; `) be an EL-des
ription

graph. The 
anoni
al interpretation I(G) is de�ned by I(G) := (�

I(G)

; �

I(G)

)

with

� �

I(G)

:= V ,

� P

I(G)

:= fv 2 V j P 2 `(v)g for all P 2 N

C

, and

� r

I(G)

:= f(v; w) 2 V � V j (vrw 2 E)g for all r 2 N

R

.

The following lemma formalizes the important property used in the proof

of 
ompleteness, namely that, for an EL-ABox, the 
anoni
al interpretation

I(G(A)) is a model of A.

Lemma 15 Let A be an EL-ABox and G(A) the 
orresponding EL-des
ription

graph. The 
anoni
al interpretation I(G(A)) is a model of A.

Proof: We have to show that I(G(A)) satis�es ea
h assertion in A.

By 
onstru
tion, I(G(A)) satis�es ea
h role assertion in A.

Let a : D 2 A where D = P

1

u : : : u P

n

u 9r

1

:D

1

u : : : u 9r

m

:D

m

, P

i

2 N

C

.

We show that

1. a

I(G(A))

2 P

I(G(A))

i

for all 1 � i � n, and

2. a

I(G(A))

2 (9r

j

:D

j

)

I(G(A))

for all 1 � j � m.

Ad (1): By de�nition of G(A), it is P

i

2 `(a), and by de�nition of I(G(A)), we

get a

I(G(A))

2 P

I(G(A))

i

for all 1 � i � n.

Ad (2): Let C

a

be de�ned as in De�nition 12. By de�nition of G(A), for ea
h

1 � j � m, there exists a node v

j

2 V su
h that ar

j

v

j

2 E and D

j

� C

G(C

a

)(v

j

)

,

where G(C

a

)(v

j

) denotes the subtree with root v

j

of G(C

a

). By indu
tion on the

depth of D

j

, it is easy to see that v

I(G(A))

j

2 (C

G(C

a

)(v

j

)

)

I(G(A))

. In addition, it

is (a

I(G(A))

; v

I(G(A))

j

) 2 r

I(G(A))

j

, and thus a

I(G(A))

2 (9r

j

:D

j

)

I(G(A))

.

Now, (1) and (2) imply a

I(G(A))

2 D

I(G(A))

. 2

In order to 
omplete the proof of the only-if-dire
tion, we will show the

following

Claim: Let v 2 V . If v 2 D

I(G(A))

, then there exists a homomorphism ' from

G(D) = (V

D

; E

D

; w

0

; `

D

) into G(A) with '(w

0

) = v.
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Sin
e a 2

A

C and I(G(A)) j= A, the 
laim implies that there exists a homo-

morphism ' from G(C) into G(A) with '(v

0

) = a.

We prove the 
laim by indu
tion on depth(D).

depth(D) = 0, i.e., D = P

1

u : : : u P

n

. Then G(D) = (fw

0

g; ;; w

0

; `

D

) with

`

D

(w

0

) = fP

1

; : : : ; P

n

g. De�ne ' by '(w

0

) := v. Sin
e v 2 D

I(G(A))

, the

de�nition of I(G(A)) implies `

D

(w

0

) � `(v), i.e., ' is a homomorphism

from G(D) into G(A).

depth(D) > 0, i.e., D = P

1

u : : : u P

n

u 9r

1

:D

1

u : : : u 9r

m

:D

m

. As for

depth(D) =) we get fP

1

; : : : ; P

n

g � `(v). Now, v 2 D

I(G(A))

implies that,

for ea
h 1 � j � m, there exists a node v

i

2 V su
h that (v; v

i

) 2 r

I(G(A))

and v

i

2 D

I(G(A))

m

. Let w

i

denote the r

i

-su

essor of w

0

in G(D) with

D

i

= G(D)(w

i

), 1 � i � m. By indu
tion, there exist homomorphisms

'

w

1

; : : : ; '

w

m

from G(D)(w

i

) into G(A) with '

w

i

(w

i

) = v

i

for all 1 � i �

m. De�ne ' by

' := fw

0

7! vg [

[

w

0

rw2E

D

'

w

:

Sin
e for ea
h w

0

rw 2 E

D

there exists an j 2 f1; : : : ;mg su
h that w = w

j

,

' is well-de�ned, and by 
onstru
tion, it is a homomorphism from G(D)

into G(A) with '(w

0

) = v. 2

Whether there exists a homomorphism from a tree into a graph 
an be

de
ided in polynomial time [8℄. Sin
e G(C) and G(A) 
an be 
omputed in

polynomial time, we get

Proposition 16 The instan
e problem for EL 
an be de
ided in polynomial

time.

3.2 Computing k-approximations in EL

In this se
tion, we will show that, for an ELABox A and an individual a 2

Ind(A), the k-approximation of a w.r.t. A always exists and 
an be e�e
tively


omputed. The algorithm 
omputing ms


k;A

(a) introdu
ed below works as fol-

lows: First, the des
ription graph G(A) is unraveled into a tree T (a;G(A)) with

root a, a �nite bran
hing fa
tor, but possibly in�nite long paths. Trun
ating all

paths of length � k then yields an EL-des
ription tree T

k

(a;A) of depth � k.

Using the 
hara
terization of subsumption introdu
ed above, it is easy to show

that the EL-
on
ept des
ription C

T

k

(G(A))

is equivalent to ms


k;A

(a). In 
ase

that A is a
y
li
, T (a;G(A)) is an EL-des
ription tree and C

T (a;G(A))

yields the

ms
 of a w.r.t. A.

For the de�nition of the trees T (a;A) and T

k

(a;A), we need the following

notions: For an EL-des
ription graph G = (V;E; `), p = v

0

r

1

v

1

r

2

: : : r

n

v

n

is a

path from v

0

to v

n

of length jpj = n, if v

i�1

r

i

v

i

2 E for all 1 � i � n. The path p

will also be denoted as r

1

� � � r

n

-path from v

0

to v

n

, and the node v

n

as r

1

� � � r

n

-

su

essor of v

0

, whereby ea
h node is assumed to be an "-su

essor of itself.
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The path p 
ontains a 
y
le, if v

i

= v

j

for two indi
es i; j with 0 � i < j � n.

A node v is rea
hable from v

0

, if there exists a path from v

0

to v.

De�nition 17 (Tree of a w.r.t. G (and k)) Let G = (V;E; `) and a 2 V .

The tree T (a;G) of a w.r.t. A is de�ned by T (a;G) := (V

t

; E

t

; a; `

t

) with

� V

t

:= far

1

v

1

r

2

: : : r

n

v

n

j ar

1

v

1

r

2

: : : r

n

v

n

is a path from a to v

n

in Gg,

� E

t

:= fprq j p; q 2 V

t

and p = ar

1

v

1

r

2

: : : r

n

v

n

and q = ar

1

v

1

r

2

: : : r

n

v

n

rwg,

� `

t

(p) := `(v) if p = ar

1

v

1

r

2

: : : r

n

v.

For a nonnegative integer k 2 IN the tree T

k

(a;G) of a w.r.t. G and k is de�ned

by T

k

(a;G) := (V

t

k

; E

t

k

; a; `

t

k

) with

� V

t

k

:= fp 2 V

t

j jpj � kg,

� E

t

k

:= E

t

\ (V

t

k

�N

R

� V

t

k

), and

� `

t

k

(p) := `

t

(p) if p 2 V

t

k

.

Sin
e by de�nition EL-des
ription graphs are �nite, T (a;G) has a �nite

bran
hing fa
tor, i.e., T (a;G) is in�nite if and only if T (a;G) 
ontains a path

of in�nite length. This is the 
ase if and only if there exists a path p in G

su
h that p 
ontains a 
y
le. By de�nition, T

k

(a;G) is an EL-des
ription tree

of depth � k. If G is a
y
li
, i.e., G does not exist a path p in G 
ontaining

a 
y
le, T (a;G) is �nite and thus, an EL-des
ription tree. Now, the following


hara
terization of the (k-approximation of the) ms
 is based on these trees,

whereby the EL-des
ription graph is obtained from an EL-ABox A, and the root

is assumed to be an individual from A.

Theorem 18 Let A be an EL-ABox, a 2 Ind(A), and k 2 IN. Then, C

T

k

(a;G(A))

is the k-approximation of a w.r.t. A. If, starting from a, no 
y
li
 path in A 
an

be rea
hed (i.e., T (a;G(A)) is �nite), then C

T (a;G(A))

is the ms
 of a w.r.t. A;

otherwise no ms
 exists.

Proof: Let G(A) = (V

A

; E

A

; `

A

) and T

k

(a;G(A)) = (V

k

; E

k

; a; `

k

).

We �rst show a 2

A

C

T

k

(a;G(A))

. Let ' be the mapping obtained from map-

ping ea
h path p 2 V

k

onto the last node v o

urring in p. It is easy to see that

' yields a homomorphism from T

k

(a;G(A)) into G(A) with '(a) = a. Sin
e,

for EL-des
ription trees G, it is G = G(C

G

) up to renaming nodes, Theorem 13

yields a 2

A

C

T

k

(a;G(A))

.

It remains to show that for all EL-
on
ept des
riptions C with a 2

A

C and

depth(C) � k also C

T

k

(a;A))

v C. Let C be su
h an EL-
on
ept des
ription.

By Theorem 13 we get that there exists a homomorphism ' from G(C) =

(V

C

; E

C

; v

0

; `

C

) into G(A) with '(v

0

) = a. Using ', we de�ne a homomorphism

 from G(C) into T

k

(a;G(A)). Then Theorem 4 implies C

T

k

(a;G(A))

v C.

For v 2 V

C

, let v

0

r

1

v

1

r

2

� � � r

n�1

v

n�1

r

n

v be the unique (!) path from v

0

to

v in G(C). De�ne p(v) := '(v

0

)r

1

'(v

1

)r

2

� � � r

n�1

'(v

n�1

)r

n

'(v). Sin
e ' is a
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homomorphism from G(C) into G(A), p(v) is well-de�ned and yields a path of

length n � k from '(v

0

) to '(v) in G(A). It is easy to see that the mapping

 : V

C

�! V

k

de�ned by  (v) := p(v) yields a homomorphism from G(C) into

T

k

(a;G(A)).

Now, assume that, starting from a, a 
y
le 
an be rea
hed inA, i.e., T (a;G(A))

is in�nite. Then, we have a de
reasing 
hain C

0

= C

1

= � � � of k-approximations

C

k

(� C

T

k

(a;G(A))

) with in
reasing depth k, k � 0. From Theorem 11, we 
on-


lude that there does not exist an EL-
on
ept des
ription subsumed by all of

these k-approximations (sin
e su
h a 
on
ept des
ription only has a �xed and

�nite depth). Thus, a 
annot have an ms
.

Conversely, if T (a;G(A)) is �nite, say with depth k, from the observation

that all k

0

-approximations, for k

0

� k, are equivalent, it immediately follows

that C

T (a;G(A))

is the ms
 of a. 2

Obviously, there exists a deterministi
 algorithm 
omputing the k-approxima-

tion (i.e., C

T

k

(a;G(A))

) in time O(jAj

k

). The size jAj of A is de�ned by

jAj := jInd(A)j+ jf(a; b) : r j (a; b) : r 2 Agj+

X

a:C2A

jCj;

where the size jCj of C is de�ned as the sum of the number of o

urren
es of


on
ept names, role names, and 
onstru
tors in C. Similarly, one obtains an

exponential 
omplexity upper bound for 
omputing the ms
 (if it exists).

Corollary 19 For an EL-ABox A, an individual a 2 Ind(A), and k 2 IN, the k-

approximation of a w.r.t. A always exists and 
an be 
omputed in time O(jAj

k

).

The ms
 of a exists i� starting from a no 
y
le 
an be rea
hed in A. The

existen
e of the ms
 
an be de
ided in polynomial time, and if the ms
 exists, it


an be 
omputed in time exponential in the size of A.

In the remainder of this se
tion, we prove that the exponential upper bounds

are tight. To this end, we show examples demonstrating that k-approximations

and the ms
 may grow exponentially.

Example 20 Let A = f(a; a) : r; (a; a) : sg. The EL-des
ription graph G(A)

as well as the EL-des
ription trees T

1

(a;G(A)) and T

2

(a;G(A)) are depi
ted in

Figure 3. It is easy to see that, for k � 1, T

k

(a;G(A)) yields a full binary tree

of depth k where

� ea
h node is labeled with the empty set, and

� ea
h node ex
ept the leaves has one r- and one s-su

essor.

By Theorem 18, C

T

k

(a;G(A))

is the k-approximation of a w.r.t. A. The size of

C

T

k

(a;G(A))

is jAj

k

. Moreover, it is not hard to see that there does not exist an

EL-
on
ept des
ription C whi
h is equivalent to but smaller than C

T

k

(a;G(A))

.

The following example illustrates that, if it exists, also the ms
 
an be of expo-

nential size.
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T

2

(a;G(A)) :

r s r s

r s

a : ;

ara : ; asa : ;

arara : ; arasa : ; asara : ; asasa : ;

r s

T

1

(a;G(A)) :

a : ;

asa : ;ara : ;

r; s

G(A) :

a : ;

Figure 3: The EL-des
ription graph and the EL-des
ription trees from Exam-

ple 20.

Example 21 For n � 1, de�ne A

n

:= f(a

i

; a

i+1

) : r; (a

i

; a

i+1

) : s j 1 � i < ng.

Obviously, A

n

is a
y
li
, and the size of A

n

is linear in n. By Theorem 18,

C

T (a

1

;A

n

)

is the ms
 of a

1

w.r.t. A

n

. It is easy to see that, for ea
h n, T (a

1

;A

n

)


oin
ides with the tree T

n

(a;G(A)) obtained in Example 20. As before we obtain

that

� C

T (a

1

;G(A))

is of size exponential in jA

n

j; and

� there does not exist an EL-
on
ept des
ription C equivalent to but smaller

than C

T (a

1

;G(A))

.

Summarizing, we obtain the following lower bounds.

Proposition 22 Let A be an EL-ABox, a 2 Ind(A), and k 2 IN.

� The size of ms


A;k

(a) may grow with jAj

k

.

� If it exists, the size of ms


A

(a) may grow exponentially in jAj.

4 Most spe
i�
 
on
epts in EL

:

Our goal is to obtain a 
hara
terization of the (k-approximation of the) ms
 in

EL

:

analogously to the one given in Theorem 18 for EL. To a
hieve this goal,

�rst the notions des
ription graph and des
ription tree are extended from EL to

EL

:

by allowing for subsets of N

C

[f:P j P 2 N

C

g[f?g as node labels. Just as

for EL, there exists a 1{1 
orresponden
e between EL

:

-
on
ept des
riptions and

EL

:

-des
ription trees, and an EL

:

-ABox A is translated into an EL

:

-des
ription

graph G(A) as des
ribed for EL-ABoxes. The notion of a homomorphism also
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G(C) :

r

r

w

0

: fPg

w

1

: fPg

w

2

: f:Pg

r

r

r

b

1

: fPg

a : fPg

b

2

: ;

r

G(A) :

b

3

: f:Pg

Figure 4: The EL

:

-des
ription graph and the EL

:

-des
ription tree from Exam-

ple 23.

remains un
hanged for EL

:

, and the 
hara
terization of subsumption extends to

EL

:

by just 
onsidering in
onsistent EL

:

-
on
ept des
riptions as a spe
ial 
ase:

C v D i� C � ? or there exists a homomorphism ' from G(D) into G(C).

Se
ond, we have to 
ope with in
onsistent EL

:

-ABoxes as a spe
ial 
ase: for

an in
onsistent ABox A, a 2

A

C is valid for all 
on
ept des
riptions C, and

hen
e, ms


A

(a) � ?. However, extending Theorem 13 with this spe
ial 
ase

does not yield a sound and 
omplete 
hara
terization of instan
e relationships

for EL

:

. If this was the 
ase, we would get that the instan
e problem for EL

:

is in P, in 
ontradi
tion to 
omplexity results shown in [16℄, whi
h imply that

the instan
e problem for EL

:

is 
oNP-hard.

The following example is an abstra
t version of an example given in [16℄; it

illustrates in
ompleteness of a na��ve extension of Theorem 13 from EL to EL

:

.

Example 23 Consider the EL

:

-
on
ept des
ription C = P u 9r:(P u 9r::P )

and the EL

:

-ABox A = fa : P; b

1

: P; b

3

: :P; (a; b

1

) : r; (a; b

2

) : r; (b

1

; b

2

) :

r; (b

2

; b

3

) : rg; G(A) and G(C) are depi
ted in Figure 4. Obviously, there does

not exist a homomorphism ' from G(C) into G(A) with '(w

0

) = a, be
ause

neither P 2 `(b

2

) nor :P 2 `(b

2

). For ea
h model I of A, however, either

b

I

2

2 P

I

or b

I

2

2 (:P )

I

, and in fa
t, a

I

2 C

I

. Thus, a is an instan
e of C

w.r.t. A though there does not exist a homomorphism ' from G(C) into G(A)

with '(w

0

) = a.

In the following se
tion, we give a sound and 
omplete 
hara
terization of in-

stan
e relationships in EL

:

, whi
h again yields the basis for the 
hara
terization

of k-approximations given in Se
tion 4.2.

4.1 Chara
terizing instan
e in EL

:

The reason for the problem illustrated in Example 23 is that, in general, for

the individuals in the ABox it is not always �xed whether they are instan
es of
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a given 
on
ept name or not. Thus, in order to obtain a sound and 
omplete


hara
terization analogous to Theorem 13, instead of G(A), one has to 
onsider

all so-
alled atomi
 
ompletions of G(A).

De�nition 24 (Atomi
 
ompletion) Let G = (V;E; `) be an EL

:

-des
ription

graph and N

�

C

:= fP 2 N

C

j exists v 2 V with P 2 `(v) or :P 2 `(v)g. An

EL

:

-des
ription graph G

�

= (V;E; `

�

) is an atomi
 
ompletion of G if, for all

v 2 V ,

1. `(v) � `

�

(v),

2. for all 
on
ept names P 2 N

�

C

either P 2 `

�

(v) or :P 2 `

�

(v).

Note that by de�nition, all labels of nodes in 
ompletions do not 
ontain a


on
i
t, i.e., the nodes are not labeled with a 
on
ept name and its negation.

In parti
ular, if G has a 
on
i
ting node, then G does not have a 
ompletion.

It is easy to see that an EL-ABox A is in
onsistent i� G(A) 
ontains a 
on-


i
ting node. For this reason, in the following 
hara
terization of the instan
e

relationship, we do not need to distinguish between 
onsistent and in
onsistent

ABoxes.

Theorem 25 Let A be an EL

:

-ABox, G(A) = (V;E; `) the 
orresponding de-

s
ription graph, C an EL

:

-
on
ept des
ription, G(C) = (V

C

; E

C

; w

0

; `

C

) the


orresponding des
ription tree, and a 2 Ind(A). Then, a 2

A

C i� for ea
h

atomi
 
ompletion G(A)

�

of G(A), there exists a homomorphism ' from G(C)

into G(A)

�

with '(w

0

) = a.

Proof of the if-dire
tion: For the 
hara
terization of instan
e in EL (see

Theorem 13, the proof of the if-dire
tion 
ould be obtained trivially as a spe
ial


ase of the soundness result given for ALE in Se
tion 5. For EL

:

, however,

things are not that easy: Sin
e for the if-dire
tion we only assume that there

exist homomorphisms from G(C) into primitive 
ompletions of G(A), and sin
e

a primitive 
ompletion of G(A) in general does not 
oin
ide with G(A), the

pre
onditions of Lemma 30 are not satis�ed.

The idea underlying the proof given below is as follows: For a 
onsistent

EL

:

-ABox A (for in
onsistent ABoxes nothing has to be shown) and a model

I = (�

I

; �

I

) of A, we �rst de�ne a mapping  : V �! �

I

with

1.  (b) = b

I

for all b 2 Ind(A),

2. ( (v);  (w)) 2 r

I

for all vrw 2 E, and

3.  (v) 2 Q

I

for all Q 2 `(v) and v 2 V .

Using this mapping, we then de�ne a primitive 
ompletion G(A)

�

 

= (V;E; `

�

 

)

in su
h a way that  also satis�es 
ondition

4.  (v) 2 Q

I

for all Q 2 `

�

 

(v) and v 2 V .
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By assumption, there exists a homomorphism ' from G(C) into G(A)

�

 

. By

indu
tion on the depth of G(C)(w), we �nally show that for all w 2 V

C

 ('(w)) 2 C

G(C)(w)

I

: (1)

Sin
e '(w

0

) = a and  (a) = a

I

and C � C

G(C)(w

0

)

, this implies a

I

2 C

I

.

The de�nition of the mapping  : Let a 2 Ind(A), C

a

:= u

a:D2A

D, and

G(C

a

) = (V

a

; E

a

; a; `

a

). For v 2 V

a

, we de�ne  (v) by indu
tion on the length

� of the unique (!) path from a to v in G(C

a

) su
h that in addition  (v) 2

C

G(C

a

)(v)

I

.

� = 0: Then v = a. De�ne  (a) := a

I

. Sin
e I j= A, we get a

I

2 C

I

a

. In

parti
ular, a

I

2 Q

I

for all Q 2 `(a). Thus, 
onditions (1) and (3) are

satis�ed for all a 2 Ind(A).

� > 0: Then there exists a unique edge of the form v

0

rv 2 E

a

. By indu
tion,

 (v

0

) is already de�ned, and it is  (v

0

) 2 C

G(C

a

)(v

0

)

I

. Sin
e v

0

rv 2 E

a

,

there exists an existential restri
tion of the form 9r:C

G(C

a

)(v)

on the top-

level of C

G(C

a

)(v

0

)

. Now,  (v

0

) 2 C

G(C

a

)(v

0

)

I

implies that there exists an

� 2 �

I

su
h that ( (v

0

); �) 2 R

I

and � 2 C

G(C

a

)(v)

I

. De�ne  (v) := �.

Sin
e � 2 C

G(C

a

)(v)

I

and `(v) = `

a

(v), we get � 2 Q

I

for all Q 2 `(v),

i.e., 
ondition (3) is satis�ed for v.

By 
onstru
tion,  satis�es the 
onditions (1){(3).

The de�nition of the primitive 
ompletion G(A)

�

 

: Let N

�

C

be the set of all


on
ept names o

urring in G(A). De�ne G( T )

�

 

:= (V;E; `

�

 

) by

`

�

 

(v) := fP 2 N

�

C

j  (v) 2 P

I

g [ f:P j P 2 N

�

C

and  (v) 62 P

I

g:

By 
ondition (3) we get `(v) � `

�

 

(v) for all v 2 V . Thus, G(A)

�

 

is a primitive


ompletion of G(A) that, by de�nition, satis�es 
ondition (4).

Now, the pre
ondition of the if-dire
tion yields a homomorphism ' from

G(C) into G(A)

�

 

with '(w

0

) = a. We show Property (1) by indu
tion on the

depth of G(C)(w):

depth(G(C)(w)) = 0: Then C

G(C)(w)

= u

Q2`

C

(w)

Q.

Sin
e `

C

(w) � `

�

 

('(w)), 
ondition (4) implies  ('(w)) 2 Q

I

for all Q 2

`

C

(w). Hen
e,  ('(w)) 2 C

G(C)(w)

I

.

depth(G(C)(w)) > 0: Then C

G(C)(w)

= u

Q2`

C

(w)

Q u u

wrw

0

2E

C

9r:C

G(C)(w

0

)

.

As before we get  ('(w)) 2 Q

I

for allQ 2 `

C

(w). Let wrw

0

2 E

C

. By def-

inition of  , and sin
e ' is a homomorphism, we get ( ('(w));  ('(w

0

))) 2

r

I

. By indu
tion,  ('(w

0

)) 2 C

G(C)(w

0

)

I

, and hen
e  ('(w)) 2 (9r:C

G(C)(w

0

)

)

I

.

Summing up, we get  ('(w)) 2 C

G(C)(w)

I

.
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This 
ompletes the proof of the if-dire
tion.

Proof of the only-if-dire
tion: LetA be a 
onsistent EL

:

-ABox,N

�

C

:= fP 2

N

C

j 9v 2 V : P 2 `(v)_:P 2 `(v)g, and a 2

A

C. Let G(C) = (V

C

; E

C

; w

0

; `

C

),

G(A)

�

= (V;E; `

�

) an arbitrary primitive 
ompletion of G(A), and I(G(A)

�

) the


anoni
al interpretation indu
ed by G(A)

�

. The 
anoni
al interpretation of an

EL

:

-ABox is de�ned just as for EL. Moreover, it is easy to see that the 
anoni
al

interpretation of an EL

:

-ABox A is a model of A. Sin
e

� r

I(G(A))

= r

I(G(A)

�

)

for all r 2 N

R

,

� P

I(G(A))

� P

I(G(A)

�

)

for all P 2 N

C

, and

� :P 2 `(v) =) P 62 `

�

(v) =) v 62 P

I(G(A)

�

)

,

I(G(A)

�

) is also a model of A. We �rst show that, for all 
on
ept names P

o

urring in C, P 2 N

�

C

. Assume that there exists a 
on
ept name P o

urring

in C with P 62 N

�

C

. Let w 2 V

C

be an r

1

: : : r

n

-su

essor of w

0

in G(C) with

P 2 `

C

(w) or :P 2 `

C

(w). Assume P 2 `

C

(w). Then, for ea
h model I

of C and ea
h � 2 C

I

, there exists an (r

1

: : : r

n

)

I

-su

essor � of � in I with

� 2 P

I

. Sin
e P 62 N

�

C

, however, P

I(G(A)

�

)

= ;, and hen
e, C

I(G(A)

�

)

= ; in


ontradi
tion to a 2

A

C. If :P 2 `

C

(w), then for ea
h model I of C and ea
h

� 2 C

I

, there exists an (r

1

: : : r

n

)

I

-su

essor � of � in I with � 62 P

I

. De�ne

J := (V; �

J

), where Q

J

:= Q

I(G(A)

�

)

for all Q 2 N

�

C

and P

J

:= V . Then J

is a model of A, be
ause the interpretation of 
on
ept names and role names

o

urring in A remained un
hanged w.r.t. I(G(A)

�

). But obviously, (:P )

J

= ;,

and hen
e C

J

6= ; in 
ontradi
tion to a 2

A

C.

Thus, we have shown that, for a 
onsistent EL

:

-ABox A, a 2

A

C implies

P 2 N

�

C

for all 
on
ept names P o

urring in C. Now, the only-if-dire
tion is

an easy 
onsequen
e of the following

Claim: If v 2 C

I(G(A)

�

)

and if all 
on
ept names o

urring in C also o

ur

in A, then there exists a homomorphism ' from G(C) into G(A)

�

with

'(w

0

) = v.

Proof by indu
tion on depth(C):

depth(C) = 0: Then C = Q

1

u : : : uQ

n

, where Q

i

2 N

C

[ f:P j P 2 N

C

g.

De�ne ' by '(w

0

) := v. We know v 2 C

I(G(A)

�

)

. If Q

i

2 N

C

, then by

de�nition of I(G(A)

�

), it is Q

i

2 `(v). If Q

i

= :P for some P 2 N

C

,

v 2 Q

I(G(A)

�

)

i

implies P 62 `(v). The pre
ondition on C yields P 2 N

�

C

.

Sin
e G(A)

�

is a primitive 
ompletion, we get :P 2 `(v). Summing up, it

is `

C

(w

0

) � `

�

(v), and hen
e ' is a homomorphism from G(C) into G(A)

�

.

depth(C) > 0: The indu
tion step is shown as for EL.

This 
ompletes the proof of the only-if-dire
tion and hen
e of Theorem 25. 2

The problem of de
iding whether there exists an atomi
 
ompletion G(A)

�

su
h that there exists no homomorphism from G(C) into G(A)

�

is in 
oNP.

Adding the 
oNP-hardness result obtained from [16℄, this shows
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Corollary 26 The instan
e problem for EL

:

is 
oNP-
omplete.

4.2 Computing k-approximations in EL

:

Not surprisingly, the algorithm 
omputing the k-approximation/ms
 in EL does

not yield the desired result for EL

:

. For instan
e, in Example 23, we would

get C

T (a;G(A))

= P u 9r:9r:(:P ) u 9r:(P u 9r:9r:(:P )). But as we will see,

ms


A

(a) � P u 9r:(P u 9r::P ) u 9r:(P u 9r:9r::P ), i.e., ms


A

(a) < C

T (a;A)

.

As in the extension of the 
hara
terization of instan
e relationships from

EL to EL

:

, we have to take into a

ount all atomi
 
ompletions instead of the

single des
ription graph G(A). Intuitively, one has to 
ompute the least 
on
ept

des
ription for whi
h there exists a homomorphism into ea
h atomi
 
ompletion

of G(A). In fa
t, this 
an be done by applying the l
s operation on the set of all


on
ept des
riptions C

T

k

(a;G(A)

�

)

obtained from the atomi
 
ompletions G(A)

�

of G(A).

Theorem 27 Let A be an EL

:

-ABox, a 2 Ind(A), and k 2 IN. If A is in
on-

sistent, then ms


k;A

(a) � ms


A

(a) � ?. Otherwise, let fG(A)

1

; : : : ;G(A)

n

g be

the set of all atomi
 
ompletions of G(A).

Then, l
s(C

T

k

(a;G(A)

1

)

; : : : ; C

T

k

(a;G(A)

n

)

) � ms


k;A

(a). If, starting from a,

no 
y
le 
an be rea
hed in A, then l
s(C

T (a;G(A)

1

)

; : : : ; C

T (a;G(A)

n

)

) � ms


A

(a);

otherwise the ms
 does not exist.

Proof sket
h. Let A be a 
onsistent EL

:

-ABox and G(A)

1

; : : : ;G(A)

n

the atomi



ompletions of G(A). By de�nition of C

T

k

(a;G(A)

i

)

, there exists a homomorphism

�

i

from C

T

k

(a;G(A)

i

)

into G(A)

i

for all 1 � i � n. Let C

k

denote the l
s of

fC

T

k

(a;G(A)

1

)

; : : : ; C

T

k

(a;G(A)

n

)

g. The 
hara
terization of subsumption for EL

:

yields homomorphisms '

i

from G(C

k

) into G(C

T

k

(a;G(A)

i

)

) for all 1 � i � n.

Now it is easy to see that �

i

Æ '

i

yields a homomorphism from G(C

k

) into

G(A)

i

, 1 � i � n, ea
h mapping the root of G(C

k

) onto a. Hen
e, a 2

A

C

k

.

Assume C

0

with depth(C

0

) � k and a 2

A

C

0

. By Theorem 25, there exist

homomorphisms  

i

from G(C

0

) into G(A)

i

for all 1 � i � n, ea
h mapping the

root of G(C

0

) onto a. Sin
e depth(C

0

) � k, these homomorphisms immediately

yield homomorphisms  

0

i

from G(C

0

) into G(C

T

k

(a;G(A)

i

)

) for all 1 � i � n. Now

the 
hara
terization of subsumption yields C

T

k

(a;G(A)

i

)

v C

0

for all 1 � i � n,

and hen
e C

k

v C

0

. Thus, C

k

� ms


k;A

(a).

Analogously, in 
ase starting from a, no 
y
le 
an be rea
hed in A, we


on
lude l
s(C

T (a;G(A)

1

)

; : : : ; C

T (a;G(A)

n

)

) � ms


A

(a). Otherwise, with the same

argument as in the proof of Theorem 18, it follows that the ms
 does not exist.

2

In Example 23, we obtain two atomi
 
ompletions, namely G(A)

1

with `

1

(b

2

) =

fPg, and G(A)

2

with `

2

(b

2

) = f:Pg. Now Theorem 27 implies ms


A

(a) �

l
s(C

T (a;G(A)

1

)

; C

T (a;G(A)

2

)

), whi
h is equivalent to

P u 9r:(P u 9r::P ) u 9r:(P u 9r:9r::P ):
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The examples showing the exponential blow-up of the size of k-approximations

and ms
's in EL 
an easily be adapted to EL

:

. However, we only have a double

exponential upper bound (though we strongly 
onje
ture that the size 
an again

single-exponentially be bounded): the size of ea
h tree (and the 
orresponding


on
ept des
riptions) obtained from an atomi
 
ompletion is at most exponen-

tial, and the size of the l
s of a sequen
e of EL

:

-
on
ept des
riptions 
an grow

exponentially in the size of the input des
riptions [3℄.

Moreover, by an algorithm 
omputing the l
s of the 
on
ept des
riptions

obtained from the atomi
 
ompletions, the k-approximation (the ms
) 
an be


omputed in double exponential time.

Corollary 28 Let A be an EL

:

-ABox, a 2 Ind(A), and k 2 IN.

� The k-approximation of a always exists. It may be of size jAj

k

and 
an be


omputed in double-exponential time.

� The ms
 of a exists i� A is in
onsistent, or starting from a, no 
y
le 
an

be rea
hed in A. If the ms
 exists, its size may grow exponentially in jAj,

and it 
an be 
omputed in double-exponential time. The existen
e of the

ms
 
an be de
ided in polynomial time.

5 Most Spe
i�
 Con
epts in ALE

As already mentioned in the introdu
tion, the 
hara
terization of instan
e re-

lationships 
ould not yet be extended from EL

:

to ALE . Sin
e these stru
tural


hara
terizations were 
ru
ial for the algorithms 
omputing the (k-approximation

of the) ms
 in EL and EL

:

, no similar algorithms for ALE 
an be presented here.

However, we show that

1. given that N

C

and N

R

are �nite sets, the ms


k;A

(a) always exists and 
an

e�e
tively be 
omputed (
f. Theorem 29);

2. the 
hara
terization of instan
e relationships in EL is also sound for ALE

(
f. Lemma 30), whi
h allows for approximating the k-approximation; and

3. we illustrate the main problems en
ountered in the stru
tural 
hara
teri-

zation of instan
e relationships in ALE (
f. Example 31).

The �rst result is a
hieved by a rather generi
 argument. Given that the sig-

nature, i.e., the sets N

C

and N

R

, are �xed and �nite, it is easy to see that also

the set of ALE-
on
ept des
riptions of depth � k built using only names from

N

C

[N

R

is �nite (up to equivalen
e) and 
an e�e
tively be 
omputed. Sin
e the

instan
e problem for ALE is known to be de
idable [16℄, enumerating this set

and retrieving the least 
on
ept des
ription whi
h has a as instan
e, obviously

yields an algorithm 
omputing ms


k;A

(a).

Theorem 29 Let N

C

and N

R

be �xed and �nite, and let A be an ALE-ABox

built over a set N

I

of individuals and N

C

[N

R

. Then, for k 2 IN and a 2 Ind(A),

the k-approximation of a w.r.t. A always exists and 
an e�e
tively be 
omputed.
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Note that the above argument 
annot be adapted to prove the existen
e

of the ms
 for a
y
li
 ALE -ABoxes unless the size of the ms
 
an be bounded

appropriately. Finding su
h a bound remains an open problem.

The algorithm sket
hed above is obviously not appli
able in real appli
ations.

Thus, in the remainder of this se
tion, we fo
us on extending the improved

algorithms obtained for EL and EL

:

to ALE .

5.1 Approximating the k-approximation in ALE

We �rst have to extend the notions des
ription graph and des
ription tree from

EL

:

to ALE : In order to 
ope with value restri
tions o

urring in ALE -
on
ept

des
riptions, we allow for two types of edges, namely those labeled with role

names r 2 N

R

(representing existential restri
tions of the form 9r:C) and those

labeled with 8r (representing value restri
tions of the form 8r:C). Again, there

is a 1{1 
orresponden
e between ALE-
on
ept des
riptions and ALE-des
ription

trees, and an ALE-ABox A is translated into an ALE-des
ription graph G(A)

just as des
ribed for EL-ABoxes. The notion of a homomorphism also extends

to ALE in a natural way. A homomorphism ' from an ALE-des
ription tree H =

(V

H

; E

H

; v

0

; `

H

) into an ALE-des
ription graph G = (V;E; `) is a mapping ' :

V

H

�! V satisfying the 
onditions (1) and (2) on homomorphisms between EL-

des
ription trees and EL-des
ription graphs, and additionally (3) '(v)8r'(w) 2

E for all v8rw 2 E

H

.

We are now equipped to formalize soundness of the 
hara
terization of in-

stan
e relationships for ALE .

Lemma 30 Let A be an ALE-ABox, a 2 Ind(A) an individual in A, and C

an ALE-
on
ept des
ription. Further, let G(A) = (V;E; `) denote the ALE-

des
ription graph of A and G(C) = (V

C

; E

C

; v

0

; `

C

) the ALE-des
ription tree of

C. If there exists a homomorphism ' from G(C) into G(A) with '(v

0

) = a,

then a 2

A

C.

Proof: If A is in
onsistent, nothing has to be shown. Let A be a 
onsistent

ALE-ABox and I a model of A. Let C

a

= u

a:D2A

D and G(C

a

) = (V

a

; E

a

; a; `

a

).

Now, I j= A implies a

I

2 C

I

a

. We show a

I

2 C

I

by indu
tion on depth(C):

depth(C) = 0: Then C = Q

1

u: : :uQ

n

with Q

i

2 N

C

[f:P j P 2 N

C

g[f>;?g.

We show a

I

2 Q

I

i

for all 1 � i � n.

For Q

i

= > nothing has to be shown.

Assume Q

i

= ?. This would imply C

a

� ? in 
ontradi
tion to I j= A.

Assume Q

i

2 N

C

or Q

i

= :P for some P 2 N

C

. Then, P 2 `(a) or

:P 2 `(a). By de�nition of G(C

a

) and C

a

, we get C

a

v P or C

a

v :P ,

respe
tively, and hen
e a

I

2 P

I

or a

I

2 (:P )

I

.

depth(C) > 0: Then C = Q

1

u : : : u Q

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

u 8s

1

:D

1

u

: : : u 8s

k

:D

k

with Q

i

2 N

C

[ f:P j P 2 N

C

g [ f>?g. We show a

I

2 C

0

I

for all 
onjun
ts C

0

on the top-level of C.
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For C

0

= Q

i

, the 
laim follows as for depth(C) = 0.

Let C

0

= 8s

j

:D

j

and w 2 V

C

the 8s

j

-su

essor of w

0

with G(C)(w) =

G(D

j

). Sin
e ' is a homomorphism, there exists a 8s

j

-su

essor v of

a in G(A) with '(w) = v. By de�nition of G(A), this node v is the

root of a subtree of G(C

a

). In parti
ular, C

a

v 8s

j

:C

G(C

a

)(v)

. Thus,

a

I

2 C

I

a

implies a

I

2 (8s

j

:C

G(C

a

)(v)

)

I

. Obviously, restri
ting ' to the

nodes in G(C)(w) yields a homomorphism from G(C)(w) into G(C

a

)(v).

By Theorem 4, it follows C

G(C

a

)(v)

v C

G(C)(w)

, and hen
e a

I

2 (8s

j

:D

j

)

I

.

Let C

0

= 9r

j

:C

j

and w 2 V

C

the r

j

-su

essor of w

0

with G(C)(w) = G(C

j

).

Sin
e ' is a homomorphism from G(C) into G(A), there exists an r

j

-

su

essor v of a in G(A) with '(w) = v. If v 62 Ind(A), then y de�nition

of G(A), this node v is the root of a subtree of G(C

a

). As in the previous


ase, we get a

I

2 (9r

j

:C

j

)

I

. If v 2 Ind(A), then ' restri
ted to the

nodes in G(C)(w) yields a homomorphism  from G(C)(w) into G(A) with

 (w) = v. By indu
tion, we get v 2

A

C

G(C)(w)

. Sin
e I j= A, it follows

v

I

2 C

I

G(C)(w)

, and sin
e C

j

� C

G(C)(w)

, this yields a

I

2 (9r

j

:C

j

)

I

. 2

As an immediate 
onsequen
e of this lemma, we get a 2

A

C

T

k

(a;G(A))

for all

k � 0, where the trees T (a;G(A)) and T

k

(a;G(A)) are de�ned just as for EL.

This in turn yields ms


k;A

(a) v C

T

k

(a;G(A))

and hen
e, an algorithm 
omputing

an approximation of the k-approximation for ALE . In fa
t, su
h approximations

already turned out to be quite usable in our pro
ess engineering appli
ation [4℄.

The following example now shows that the 
hara
terization is not 
omplete

for ALE , and that, in general, C

T

k

(a;G(A))

6� ms


k;A

(a). In parti
ular, it demon-

strates the diÆ
ulties one en
ounters in the presen
e of value restri
tions.

Example 31 Consider the ALE-ABox

A := fa : P; b

1

: P u 8s:P u 9r:P; b

2

: P u 9r:(P u 9s : P );

(a; b

1

) : r; (a; b

2

) : r; (b

1

; b

2

) : rg;

and the ALE-
on
ept des
ription C = 9r:(8s:P u 9r:9s:>); G(A) and G(C) are

depi
ted in Figure 5. Note that G(A) is the unique atomi
 
ompletion of itself

(w.r.t. N

C

= fPg).

It is easy to see that there does not exist a homomorphism ' from G(C) into

G(A) with '(w

0

) = a. However, a 2

A

C: For ea
h model I of A, b

I

2

does not

have an s-su

essor, or at least one s-su

essor. In the �rst 
ase, b

I

2

2 8s:P ,

and hen
e b

I

2

yields the desired r-su

essor of a

I

in (8s:P u 9r:9s:>)

I

. In the

se
ond 
ase, it is b

I

2

2 (9s:>)

I

, and hen
e b

I

1

yields the desired r-su

essor of

a

I

. Thus, for ea
h model I of A, a

I

2 C

I

.

Moreover, for k = 4, C

T

4

(a;A)

is given by P u 9r:(P u 8s:P u 9r:P u 9r:(P u

9r:(P u 9s:P ))) u 9r:(P u 9r:(P u 9s:P )). It is easy to see that C

T

4

(a;A)

6v C.

Hen
e, C

T

4

(a;A)

u C < C

T

4

(a;A)

, whi
h implies ms


4;A

(a) < C

T

4

(a;A)

.

Intuitively, the above example suggests that, in the de�nition of atomi



ompletions, one should take into a

ount not only (negated) 
on
ept names
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G(C) :

w

0

: ;

w

1

: ;

r

w

2

: fPg w

3

: ;

s

w

4

: ;

r8s

b

2

: fPg

a : fPg

b

1

: fPg

v

1

: fPg v

2

: fPg

v

3

: fPg

v

0

: fPg

r r

r

r

s

8s r

G(A) :

Figure 5: The ALE-des
ription graph and the ALE-des
ription tree from Exam-

ple 31.

but also more 
omplex 
on
ept des
riptions. However, it is not 
lear whether an

appropriate set of su
h 
on
ept des
riptions 
an be obtained just from the ABox

and how these 
on
ept des
riptions need to be integrated in the 
ompletion in

order to obtain a sound and 
omplete stru
tural 
hara
terization of instan
e

relationships in ALE .

6 Con
lusion

Starting with the formal de�nition of the k-approximation of ms
 we showed

that, for ALE and a �nite signature (N

C

; N

R

), the k-approximation of the ms


of an individual b always exists and 
an e�e
tively be 
omputed. For the sublan-

guages EL and EL

:

, we gave sound and 
omplete 
hara
terizations of instan
e

relationships that lead to pra
ti
al algorithms. As a by-produ
t, we obtained

a 
hara
terization of the existen
e of the ms
 in EL-/EL

:

-ABoxes, and showed

that the ms
 
an e�e
tively be 
omputed in 
ase it exists.

First experiments with manually 
omputed approximations of the ms
 in

the pro
ess engineering appli
ation were quite en
ouraging [4℄: used as inputs

for the l
s operation, i.e., the se
ond step in the bottom-up 
onstru
tion of the

knowledge base, they lead to des
riptions of building blo
ks the engineers 
ould

use to re�ne their knowledge base. In next steps, the run-time behavior and the

quality of the output of the algorithms presented here is to be evaluated by a

prototype implementation in the pro
ess engineering appli
ation.
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