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Abstrat

Computing the most spei� onept (ms) is an inferene task that

an be used to support the \bottom-up" onstrution of knowledge bases

for KR systems based on desription logis. For desription logis that

allow for number restritions or existential restritions, the ms need not

exist, though. Previous work on this problem has onentrated on de-

sription logis that allow for universal value restritions and number

restritions, but not for existential restritions. The main new ontri-

bution of this paper is the treatment of desription logis with existential

restritions. More preisely, we show that, for the desription logi ALE

(whih allows for onjuntion, universal value restritions, existential re-

stritions, negation of atomi onepts, as well as the top and the bottom

onept), and its sublanguages EL (whih allows for onjuntion, exis-

tential restritions and the top-onept) and EL

:

(whih extends EL by

negation of atomi onepts) the ms of an ABox-individual only exists

in ase of ayli ABoxes. For yli ABoxes, we show how to ompute

an approximation of the ms.

Our approah for omputing the (approximation of the) ms is based

on representing onept desriptions by ertain trees and ABoxes by er-

tain graphs, and then haraterizing instane relationships by homomor-

phisms from trees into graphs. The ms/approximation operation then

mainly orresponds to unraveling the graphs into trees and translating

them bak into onept desriptions.
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1 Introdution

The most spei� onept (ms) of an individual b is a onept desription

that has b as instane and is the least onept desription (w.r.t. subsump-

tion) with this property. Roughly speaking, the ms is the onept desription

that, among all onept desriptions of a given DL, represents b best. Closely

related to the ms is the least ommon subsumer (ls), whih, given onept

desriptions C

1

; : : : ; C

n

, is the least onept desription (w.r.t. subsumption)

subsuming C

1

; : : : ; C

n

. Thus, where the ms generalizes an individual, the ls

generalizes a set of onept desriptions.

In [2, 3, 4℄, the ms (�rst introdued in [15℄) and the ls (�rst introdued in

[5℄) have been proposed to support the bottom-up onstrution of a knowledge

base. The motivation omes from an appliation in hemial proess engineering

[17℄, where the proess engineers onstrut the knowledge base (whih onsists

of desriptions of standard building bloks of proess models) as follows: First,

they introdue several \typial" examples of a standard building blok as indi-

viduals, and then they generalize (the desriptions of) these individuals into a

onept desription that (i) has all the individuals as instanes, and (ii) is the

most spei� desription satisfying property (i). The task of omputing onept

desriptions satisfying (i) and (ii) an be split into two subtasks: omputing the

ms of a single individual, and omputing the ls of a given �nite number of

onepts.

The ls has been thoroughly investigated for (sublanguages of) Classi

[5, 2, 13, 11℄, for DLs allowing for existential restritions like ALE [3℄, and most

reently, for ALEN , a DL allowing for both existential and number restritions

[14℄. For all these DLs, exept for Classi in ase attributes are interpreted

as total funtions [13℄, it has turned out that the ls always exists and that it

an e�etively be omputed. Prototypial implementations show that the ls

algorithms behave quite well in pratie [7, 4℄.

For the ms, the situation is not that rosy. For DLs allowing for number

restritions or existential restritions, the ms does not exist in general. Hene,

the �rst step in the bottom-up onstrution, namely omputing the ms, annot

be performed. In [2℄, it has been shown that for ALN , a sublanguage of Clas-

si, the existene of the ms an be guaranteed if one allows for yli onept

desriptions, i.e., onepts with yli de�nitions, interpreted by the greatest

�xed-point semantis. Most likely, suh onept desriptions would also guar-

antee the existene of the ms in DLs with existential restritions. However,

urrent DL-systems, like FaCT [10℄ and RACE [9℄, do not support yli on-

ept desriptions; although they allow for yli de�nitions of onepts, these

systems do not employ the greatest �xed-point semantis, but only desriptive

semantis. Consequently, yli onept desriptions returned by algorithms

omputing the ms annot be proessed by these systems.

In this paper, we therefore propose to approximate the ms. Roughly speak-

ing, for some given non-negative integer k, the k-approximation of the ms of

an individual b is the least onept desription (w.r.t. subsumption) among all

onept desriptions with b as instane and role depth at most k. That is, the
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set of potential ms's is restrited to the set of onept desriptions with role

depth bounded by k. For (sublanguages of) ALE we show that k-approximations

always exist and that they an e�etively be omputed. Thus, when replaing

\ms" by \k-approximation", the �rst step of the bottom-up onstrution an

always be arried out. Although the original outome of this step is only ap-

proximated, this might in fat suÆe as a �rst suggestion to the knowledge

engineer.

While for full ALE our k-approximation algorithm is of questionable pratial

use (sine it employs a simple enumeration argument), we propose improved

algorithms for the sublanguages EL and EL

:

of ALE . (EL allows for onjuntion

and existential restritions, and EL

:

additionally allows for a restrited form of

negation.) Our approah for omputing k-approximations in these sublanguages

is based on representing onept desriptions by ertain trees and ABoxes by

ertain (systems of) graphs, and then haraterizing instane relationships by

homomorphisms from trees into graphs. The k-approximation operation then

onsists in unraveling the graphs into trees and translating them bak into

onept desriptions. In ase the unraveling yields �nite trees, the orresponding

onept desriptions are \exat" ms's, showing that in this ase the ms exists.

Otherwise, pruning the in�nite trees on level k yields k-approximations of the

ms's.

The outline of the paper is as follows. In the next setion, we introdue the

basi notions and formally de�ne k-approximations. To get started, in Setion 3

we present the haraterization of instane relationships in EL and show how

this an be employed to ompute k-approximations or the ms (if it exists). In

the subsequent setion we extend the results to EL

:

, and �nally deal with ALE

in Setion 5. The paper onludes with some remarks on future work.

2 Preliminaries and known results

Conept desriptions are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names.

The onstrutors determine the expressive power of the DL. In this work, we

onsider onept desriptions built from the onstrutors shown in Table 1. In

the desription logi EL, onept desriptions are formed using the onstrutors

top-onept (>), onjuntion (C u D) and existential restrition (9r:C). The

desription logi EL

:

additionally provides us with primitive negation (:P ,

P 2 N

C

), and ALE allows for all the onstrutors shown in Table 1 exept

of number restritions. Finally, ALN allows for the top- and bottom-onept,

onept onjuntion, primitive negation, value restritions, and number restri-

tions.

The semantis of a onept desription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set of individuals and the

interpretation funtion �

I

maps eah onept name P 2 N

C

to a set P

I

� �

and eah role name r 2 N

R

to a binary relation r

I

� ���. The extension of

�

I

to arbitrary onept desriptions is indutively de�ned, as shown in the third
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Construt name Syntax Semantis

top-onept > �

onjuntion C uD C

I

\D

I

existential restritions 9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restritions 8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g

primitive negation :P � n P

I

bottom-onept ? ;

number restritions (� n r) fx 2 � j #fy j (x; y) 2 r

I

g � ng

number restritions (� n r) fx 2 � j #fy j (x; y) 2 r

I

g � ng

Table 1: Syntax and semantis of onept desriptions. P denotes a onept

name from N

C

, r a role name from N

R

, and n a nonnegative integer.

olumn of Table 1.

De�nition 1 (Subsumption, ls) Let C;D;E be onept desriptions of the

same DL L.

1. D subsumes C (for short C v D) i� C

I

� D

I

for all interpretations I.

C is equivalent to D (for short C � D) i� C v D and D v C.

2. The onept desription E is alled least ommon subsumer of C and D

i� C v E and D v E and for all E

0

with C v E

0

and D v E

0

, it is

E v E

0

.

For ALE , subsumption an be haraterized by means of homomorphisms

between ALE-desription trees [3℄.

De�nition 2 (ALE-desription trees) An ALE-desription tree is a tree of

the form G = (V;E; v

0

; `) with root v

0

where

� the edges in E are labeled with role names r 2 N

R

or 8r for some r 2 N

R

,

and

� the nodes v 2 V are labeled with sets `(v) = fP

1

; : : : ; P

n

g where eah P

i

,

1 � i � n, is of one of the following forms: P

i

2 N

C

, P

i

= :P for some

P 2 N

C

, or P

i

= ?.

The empty label orresponds to the top-onept.

Every ALE-onept desription an be written (modulo equivalene) as

C = Q

1

u : : : uQ

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

u 8s

1

:D

1

u : : : u 8s

k

:D

k

with Q

i

2 N

C

[ f:P j P 2 N

C

g [ f?;>g. The depth depth(C) of C is de�ned

as the maximal depth of nested quanti�ation in C. Now, the ALE-desription

tree G(C) := (V;E; v

0

; `) orresponding to the ALE-onept desription C is

indutively de�ned as follows:
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� If depth(C) = 0, then V := fv

0

g, E := ;, and `(v

0

) := fQ

1

; : : : ; Q

n

gnf>g;

� otherwise, let G

i

= (V

i

; E

i

; v

0i

; `

i

) be the reursively de�ned desription

trees orresponding to C

i

, 1 � i � m, and H

j

= (W

j

; F

j

; w

0j

; �

j

) the

reursively de�ned desription trees orresponding to D

j

, 1 � j � k suh

that the sets V

i

, W

j

and fv

0

g are pairwise disjoint; then

{ V := fv

0

g

S

1�i�m

V

i

[

S

1�j�k

W

j

,

{ E := fv

0

r

i

v

0i

j 1 � i � mg [

fv

0

8s

j

w

0j

j 1 � j � kg [

S

1�i�m

E

i

[

S

1�j�k

F

j

, and

{ `(v) :=

8

>

<

>

:

fQ

1

; : : : ; Q

n

g n f>g; v = v

0

`

i

(v); v 2 V

i

; 1 � i � m

�

j

(v); v 2W

j

; 1 � j � k:

The depth of a desription tree G is de�ned as the length of the longest path

in G. Now, eah ALE-desription tree G = (V;E; v

0

; `) is indutively translated

into an ALE -onept desription C

G

as follows:

� If depth(G) = 0, then V = fv

0

g and E = ;. De�ne

C

G

:=

(

Q

1

u : : : uQ

n

; `(v

0

) = fQ

1

; : : : ; Q

n

g

>; `(v

0

) = ;;

� otherwise, let `(v

0

) = fQ

1

; : : : ; Q

n

g, n � 0, and let fv

1

; : : : ; v

m

g be the

set of all suessors of v

0

with v

0

r

i

v

i

2 E and fw

1

; : : : ; w

k

g the set of

all suessors of v

0

with v

0

8s

j

w

j

2 E. Further, let C

i

(D

j

) denote the

reursively de�ned onept desriptions obtained from the subtrees with

root v

i

, 1 � i � m (w

j

, 1 � j � k). De�ne

C

G

:= Q

1

u : : : uQ

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

u 8s

1

:D

1

u : : : u 8s

k

:D

k

:

De�nition 3 (Homomorphisms between ALE-desription trees)

A homomorphism from an ALE-desription tree H = (V

H

; E

H

; w

0

; `

H

) to an

ALE-desription tree G = (V

G

; E

G

; v

0

; `

G

) is a mapping ' : V

H

�! V

G

suh that

1. '(w

0

) = v

0

,

2. for all v 2 V

H

we have `

H

(v) � `

G

('(v)) or `

G

('(v)) = f?g,

3. for all vrw 2 E

H

, either '(v)r'(w) 2 E

G

, or '(v) = '(w) and `

G

('(v)) =

f?g, and

4. for all v8rw 2 E

H

, either '(v)8r'(w) 2 E

G

, or '(v) = '(w) and

`

G

('(v)) = f?g.
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In order to obtain a sound and omplete haraterization of subsumption,

the onept desriptions must be transformed into ertain normal forms before

translating them into desription trees [3℄. The ALE-normal form of an ALE-

onept desription C is obtained from C by exhaustively applying the following

normalization rules (modulo ommutativity and assoiativity of onjuntion):

1. 8r:> �! >

2. E u > �! E

3. 8r:E u 8r:F �! 8r:(E u F )

4. 8r:E u 9r:F �! 8r:E u 9r:(E u F )

5. P u :P �! ?, for eah P 2 N

C

6. 9r:? �! ?

7. E u ? �! ?.

The >-normal form of C is obtained from C by exhaustively applying th nor-

malization rules 1: and 2: C is said to be in ALE -normal form (>-normal form)

if none of the rules (neither rule 1: nor 2:) is appliable to C. Note that the

ALE-normal form C

0

obtained from an ALE-onept desription C an be of ex-

ponential size w.r.t. the size of C (see [3℄ for an example). It is easy to see that

the ALE-/>-normal form of C is equivalent to C.

Now, subsumption C v D an be haraterized as follows:

Theorem 4 [3℄ Let C;D be ALE-onept desriptions, C

0

the ALE-normal form

of C, D

0

the >-normal form of D, and G(C

0

);G(D

0

) the orresponding ALE-

desription trees. Then C v D i� there exists a homomorphism from G(D

0

) to

G(C

0

).

Example 5 Consider the ALEonept desriptions

C := 8r:9r:(P u :P ) u 9s:(P u 9r:Q);

D := 8r:(9r:P u 9r::P ) u 9s:(8r:> u 9r:Q):

The >-normal form of D is given by D

0

= 8r:(9r:P u 9r::P ) u 9s: u 9r:Q, and

the ALE-normal form of C is C

0

:= 8r:? u 9s:(P u 9r:Q). The orresponding

ALE-desription trees G(C

0

) and G(D

0

) are depited in Figure 1.

If we de�ne the mapping ' suh that it maps w

0

onto v

0

; w

1

; w

2

, and w

3

onto v

1

; w

4

onto v

2

; and w

5

onto v

3

, then it is easy to see that ' yields a

homomorphism from G(D

0

) into G(C

0

). Thus, Theorem 4 implies C v D.

The inferene problem of omputing the ls of n � 2 onept desriptions

has thoroughly been investigated for the DLs ALE [3℄, ALN [5, 2℄, and Classi

[13, 11℄. As shown in [3℄, the ls of n � 2 ALE-onept desriptions always exists,

and it an be omputed in exponential time. The ls of n � 2 ALN -onept

desriptions also always exists, and it an be omputed in polynomial time [5℄.

Even in the presene of yli ALN -onept desriptions, the ls always exists,

and it an be omputed in double-exponential time [2℄. Things beome less rosy,

however, if we onsider the most spei� onept of ABox individuals.
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8r s

r

v

0

:;

v

1

:f?g v

2

:fPg

v

3

:fQg

G(C

0

):

8r s

w

0

:;G(D

0

):

w

1

:; w

4

:;

w

2

:fPg

r r

w

3

:f:Pg w

5

:fQg

r

Figure 1: An example for the haraterization of subsumption in ALE by homo-

morphisms and desription trees.

De�nition 6 (ABox) An ABox A is a �nite set of assertions of the form

(a; b) : r ( role assertions) or a : C ( onept assertions), where a; b are indi-

viduals from a set N

I

, r is a role name, and C is a onept desription. An

ABox is alled L-ABox if all onept desriptions ourring in A are L-onept

desriptions.

In the presene of an ABox, an interpretation I additionally assigns an

element a

I

2 � to eah individual a ourring in A suh that A 6= B implies

A

I

6= b

I

(unique name assumption). It is amodel ofA i� it satis�es (a

I

; b

I

) 2 r

I

for all role assertions (a; b) : r 2 A, and a

I

2 C

I

for all onept assertions

a : C 2 A.

De�nition 7 (Instane, ms) Let A be an L-ABox, a an individual in A,

and C an L-onept desription.

1. a is an instane of C w.r.t. A (a 2

A

C) i� a

I

2 C

I

for all models I of

A.

2. C is the most spei� onept for a w.r.t. A i� a 2

A

C and for all C

0

with a 2

A

C

0

, it is C v C

0

.

Depending on the expressive power of the underlying DL L, the ms of

an individual a w.r.t. an L-ABox A need not exist in general. Due to yli

dependenies between individuals, i.e., yles build by role assertions in the

ABox, it might be the ase that there exist in�nite many L-onept desriptions

a is an instane of, but none most spei� onept desription with this property.

The following example illustrates this situation for ALN and ALE .

Example 8 First, onsider the ALN -ABox A = fa : P; a : (� 1 r); (a; a) : rg.

In [2℄ it is shown that there does not exist the ms of a w.r.t. A: It is easy to

see that, for eah n � 0, a is an instane of the ALN -onept desription

C

n

:= 8r: � � � 8r

| {z }

n times

:(P u (� 1 r) u (� 1 r)):
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Intuitively, the ms is thus given as the in�nite onjuntion u

n�0

C

n

. Obviously,

this onjuntion annot be represented by an ALN -onept desription.

For ALE and its sublanguages EL and EL

:

, we enounter the same problem

for the even smaller ABox A

0

= fa : P; (a; a) : rg: It is easy to see that, for

eah n � 0, a is an instane of the ALE/-EL-/EL

:

-onept desription

C

n

:= 9r: � � � 9r

| {z }

n times

:P:

Assume that there exists an ALE-/EL-/EL

:

-onept desription C � ms

A

0

(a).

Let depth(C) = k, C

0

the ALE-normal form of C, and G(C

0

) the orresponding

ALE-desription tree. Obviously, there does not exist a homomorphism from

G(C

k+1

) into G(C

0

). Sine C

k+1

is in >-normal form, Theorem 4 implies C 6v

C

k+1

in ontradition to a 2

A

0

C

k+1

and C � ms

A

0

(a).

For yli ALN -ABoxes, the ms an be haraterized by yli ALN -onept

desriptions. Suh onepts are de�ned by means of a yli TBox, and they

are interpreted using the greatest �xed-point semantis [2, 12℄. In the above

example, the onept C de�ned by the yli ALN -TBox

T = fC

:

= P u (� 1 r) u (� 1 r) u 8r:Cg

yields the ms of a [2℄.

As already mentioned in the introdution, yli onept desriptions are not

yet well-investigated for DLs with existential restritions. Thus, in this work,

we onentrate on approximations of the ms in ALE (and the sublanguages EL

and EL

:

). The approximation of the ms by onept desriptions with limited

depth as introdued in [7℄ is formally de�ned as follows:

De�nition 9 Let A be an L-ABox, a an individual in A, C an L-onept de-

sription, and k 2 IN a nonnegative integer. C is alled k-approximation of a

w.r.t. A (C = ms

k;A

(a)) i�

1. a 2

A

C,

2. depth(C) � k, and

3. for all C

0

with a 2

A

C

0

and depth(C

0

) � k, it is C v C

0

.

For the ABox A

0

from Example 8, the ALE-onept desription C

k

yields the

k-approximation of a w.r.t. A for eah k � 0.

In the following setions, we will show that, for the DLs EL, EL

:

, and ALE ,

the k-approximation of an individual a w.r.t. A always exists. For ALE , however,

we only have a very ineÆient algorithm, sine the haraterization of instane

relationships underlying the more eÆient algorithms introdued for EL and EL

:

ould not be adapted to ALE .
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3 Most spei� onepts in EL

First, we introdue the haraterization of instane in EL that will be used to

prove soundness and ompleteness of the approximation algorithm presented in

Setion 3.2.

3.1 Charaterizing instane in EL

The haraterization of instane an be seen as an extension of the harateri-

zation of subsumption given in Theorem 4 (see also[3℄). Roughly speaking, the

idea is to translate the ABox A into a so-alled EL-desription graph G(A), and

then to haraterize a 2

A

C by the existene of a homomorphism ' from the

EL-desription tree G(C) into G(A) suh that the root of G(C) is mapped onto

a.

De�nition 10 (EL-desription tree/EL-desription graph)

An EL-desription tree (EL-desription graph) is a tree (graph) of the form

G = (V;E; v

0

; `) with root v

0

(G(V;E; `)) where

� the edges in E are labeled with role names r 2 N

R

, and

� the nodes v 2 V are labeled with subsets of N

C

, i.e., `(v) � N

C

for all

v 2 V .

The empty label orresponds to the top-onept.

Note that EL-onept desriptions trivially satisfy the onditions on the >-

and ALE-normal form. Thus, Theorem 4 yields

Corollary 11 Let C;D be EL-onept desriptions and G(C);G(D) the orre-

sponding EL-desription trees. Then, C v D i� there exists a homomorphism

' from G(D) into G(C).

The graphial representation of an EL-ABox A yields the starting point for

the de�nition of the EL-desription graph G(A) orresponding to A, i.e., the

individuals in A yield a subset of the nodes in G(A) and the role assertions in

A yield some of the edges in G(A). Conept assertions a : C 2 A are translated

as follows: the onept names ourring on the top-level of C yield the label

of a, and for eah existential restrition 9r:C

0

on the top-level of C, the EL-

desription tree G(C

0

) = (V

C

0

; E

C

0

; v

0C

0

; `

C

0

) is added to the graph together

with the edge arv

0C

0

. For example, the EL-ABox

A = fa : P u 9s:(Q u 9r:P u 9s:>); b : P uQ;  : 9r:P;

(a; b) : r; (a; ) : r; (b; ) : sg

yields the EL-desription graph depited in Figure 2. Formally, G(A) is de�ned

as follows:
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r

r

a : fPg

b : fP;Qg

 : ;

s

G

A

:

v

1

: fQg

v

2

: fPg v

3

: ; v

4

: fPg

s rr

s

Figure 2: The EL-desription graph of A.

De�nition 12 (EL-desription graph of an EL-ABox)

Let A be an EL-ABox and Ind(A) the set of individuals ourring in A. For eah

a 2 Ind(A), let C

a

:= u

a:D2A

D, if there exists a onept assertion a : D 2 A;

otherwise, C

a

:= >. Finally, G(C

a

) = (V

a

; E

a

; a; `

a

) denotes the EL-desription

trees orresponding to C

a

, a 2 Ind(A), where w.l.o.g. the sets V

a

are assumed to

be pairwise disjoint.

The EL-desription graph G(A) of A is de�ned by G(A) := (V;E; `) with

� V :=

S

a2Ind(A)

V

a

,

� E := farb j (a; b) : r 2 Ag [

S

a2Ind(A)

E

a

, and

� `(v) := `

a

(v) for all v 2 V

a

.

It remains to adapt the notion of a homomorphism to EL-desription graphs

and trees: A mapping ' : V

C

�! V is a homomorphism from the EL-desription

tree G(C) = (V

C

; E

C

; v

0

; `

C

) into the EL-desription graph G = (V;E; `) if

1. `

C

(v) � `('(v)) for all v 2 V

C

, and

2. '(v)r'(w) 2 E for all vrw 2 E

C

.

The �rst ondition of De�nition 3 is now diretly integrated into the harater-

ization of instane relationships in EL.

Theorem 13 Let A be an EL-ABox, a 2 Ind(A) an individual in A, and C an

EL-onept desription. Further, let G(A) = (V;E; `) denote the EL-desription

graph of A and G(C) = (V

C

; E

C

; v

0

; `

C

) the EL-desription tree orresponding

to C. Then, a 2

A

C i� there exists a homomorphism ' : V

C

�! V from G(C)

into G(A) with '(v

0

) = a.
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Proof of the if-diretion: As already mentioned in the introdution, this

haraterization of instane is also sound for ALE (using appropriate de�nitions

of ALE -desription graphs and homomorphisms from ALE-desription trees into

ALE-desription graphs). This soundness result will be formalized in Lemma 30

in Setion 5. The if-diretion of Theorem 13 is an immediate onsequene of

this lemma.

Proof of the only-if-diretion: For this poof, we need the anonial inter-

pretation indued by an EL-desription graph.

De�nition 14 (Canonial interpretation) Let G = (V;E; `) be an EL-desription

graph. The anonial interpretation I(G) is de�ned by I(G) := (�

I(G)

; �

I(G)

)

with

� �

I(G)

:= V ,

� P

I(G)

:= fv 2 V j P 2 `(v)g for all P 2 N

C

, and

� r

I(G)

:= f(v; w) 2 V � V j (vrw 2 E)g for all r 2 N

R

.

The following lemma formalizes the important property used in the proof

of ompleteness, namely that, for an EL-ABox, the anonial interpretation

I(G(A)) is a model of A.

Lemma 15 Let A be an EL-ABox and G(A) the orresponding EL-desription

graph. The anonial interpretation I(G(A)) is a model of A.

Proof: We have to show that I(G(A)) satis�es eah assertion in A.

By onstrution, I(G(A)) satis�es eah role assertion in A.

Let a : D 2 A where D = P

1

u : : : u P

n

u 9r

1

:D

1

u : : : u 9r

m

:D

m

, P

i

2 N

C

.

We show that

1. a

I(G(A))

2 P

I(G(A))

i

for all 1 � i � n, and

2. a

I(G(A))

2 (9r

j

:D

j

)

I(G(A))

for all 1 � j � m.

Ad (1): By de�nition of G(A), it is P

i

2 `(a), and by de�nition of I(G(A)), we

get a

I(G(A))

2 P

I(G(A))

i

for all 1 � i � n.

Ad (2): Let C

a

be de�ned as in De�nition 12. By de�nition of G(A), for eah

1 � j � m, there exists a node v

j

2 V suh that ar

j

v

j

2 E and D

j

� C

G(C

a

)(v

j

)

,

where G(C

a

)(v

j

) denotes the subtree with root v

j

of G(C

a

). By indution on the

depth of D

j

, it is easy to see that v

I(G(A))

j

2 (C

G(C

a

)(v

j

)

)

I(G(A))

. In addition, it

is (a

I(G(A))

; v

I(G(A))

j

) 2 r

I(G(A))

j

, and thus a

I(G(A))

2 (9r

j

:D

j

)

I(G(A))

.

Now, (1) and (2) imply a

I(G(A))

2 D

I(G(A))

. 2

In order to omplete the proof of the only-if-diretion, we will show the

following

Claim: Let v 2 V . If v 2 D

I(G(A))

, then there exists a homomorphism ' from

G(D) = (V

D

; E

D

; w

0

; `

D

) into G(A) with '(w

0

) = v.
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Sine a 2

A

C and I(G(A)) j= A, the laim implies that there exists a homo-

morphism ' from G(C) into G(A) with '(v

0

) = a.

We prove the laim by indution on depth(D).

depth(D) = 0, i.e., D = P

1

u : : : u P

n

. Then G(D) = (fw

0

g; ;; w

0

; `

D

) with

`

D

(w

0

) = fP

1

; : : : ; P

n

g. De�ne ' by '(w

0

) := v. Sine v 2 D

I(G(A))

, the

de�nition of I(G(A)) implies `

D

(w

0

) � `(v), i.e., ' is a homomorphism

from G(D) into G(A).

depth(D) > 0, i.e., D = P

1

u : : : u P

n

u 9r

1

:D

1

u : : : u 9r

m

:D

m

. As for

depth(D) =) we get fP

1

; : : : ; P

n

g � `(v). Now, v 2 D

I(G(A))

implies that,

for eah 1 � j � m, there exists a node v

i

2 V suh that (v; v

i

) 2 r

I(G(A))

and v

i

2 D

I(G(A))

m

. Let w

i

denote the r

i

-suessor of w

0

in G(D) with

D

i

= G(D)(w

i

), 1 � i � m. By indution, there exist homomorphisms

'

w

1

; : : : ; '

w

m

from G(D)(w

i

) into G(A) with '

w

i

(w

i

) = v

i

for all 1 � i �

m. De�ne ' by

' := fw

0

7! vg [

[

w

0

rw2E

D

'

w

:

Sine for eah w

0

rw 2 E

D

there exists an j 2 f1; : : : ;mg suh that w = w

j

,

' is well-de�ned, and by onstrution, it is a homomorphism from G(D)

into G(A) with '(w

0

) = v. 2

Whether there exists a homomorphism from a tree into a graph an be

deided in polynomial time [8℄. Sine G(C) and G(A) an be omputed in

polynomial time, we get

Proposition 16 The instane problem for EL an be deided in polynomial

time.

3.2 Computing k-approximations in EL

In this setion, we will show that, for an ELABox A and an individual a 2

Ind(A), the k-approximation of a w.r.t. A always exists and an be e�etively

omputed. The algorithm omputing ms

k;A

(a) introdued below works as fol-

lows: First, the desription graph G(A) is unraveled into a tree T (a;G(A)) with

root a, a �nite branhing fator, but possibly in�nite long paths. Trunating all

paths of length � k then yields an EL-desription tree T

k

(a;A) of depth � k.

Using the haraterization of subsumption introdued above, it is easy to show

that the EL-onept desription C

T

k

(G(A))

is equivalent to ms

k;A

(a). In ase

that A is ayli, T (a;G(A)) is an EL-desription tree and C

T (a;G(A))

yields the

ms of a w.r.t. A.

For the de�nition of the trees T (a;A) and T

k

(a;A), we need the following

notions: For an EL-desription graph G = (V;E; `), p = v

0

r

1

v

1

r

2

: : : r

n

v

n

is a

path from v

0

to v

n

of length jpj = n, if v

i�1

r

i

v

i

2 E for all 1 � i � n. The path p

will also be denoted as r

1

� � � r

n

-path from v

0

to v

n

, and the node v

n

as r

1

� � � r

n

-

suessor of v

0

, whereby eah node is assumed to be an "-suessor of itself.
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The path p ontains a yle, if v

i

= v

j

for two indies i; j with 0 � i < j � n.

A node v is reahable from v

0

, if there exists a path from v

0

to v.

De�nition 17 (Tree of a w.r.t. G (and k)) Let G = (V;E; `) and a 2 V .

The tree T (a;G) of a w.r.t. A is de�ned by T (a;G) := (V

t

; E

t

; a; `

t

) with

� V

t

:= far

1

v

1

r

2

: : : r

n

v

n

j ar

1

v

1

r

2

: : : r

n

v

n

is a path from a to v

n

in Gg,

� E

t

:= fprq j p; q 2 V

t

and p = ar

1

v

1

r

2

: : : r

n

v

n

and q = ar

1

v

1

r

2

: : : r

n

v

n

rwg,

� `

t

(p) := `(v) if p = ar

1

v

1

r

2

: : : r

n

v.

For a nonnegative integer k 2 IN the tree T

k

(a;G) of a w.r.t. G and k is de�ned

by T

k

(a;G) := (V

t

k

; E

t

k

; a; `

t

k

) with

� V

t

k

:= fp 2 V

t

j jpj � kg,

� E

t

k

:= E

t

\ (V

t

k

�N

R

� V

t

k

), and

� `

t

k

(p) := `

t

(p) if p 2 V

t

k

.

Sine by de�nition EL-desription graphs are �nite, T (a;G) has a �nite

branhing fator, i.e., T (a;G) is in�nite if and only if T (a;G) ontains a path

of in�nite length. This is the ase if and only if there exists a path p in G

suh that p ontains a yle. By de�nition, T

k

(a;G) is an EL-desription tree

of depth � k. If G is ayli, i.e., G does not exist a path p in G ontaining

a yle, T (a;G) is �nite and thus, an EL-desription tree. Now, the following

haraterization of the (k-approximation of the) ms is based on these trees,

whereby the EL-desription graph is obtained from an EL-ABox A, and the root

is assumed to be an individual from A.

Theorem 18 Let A be an EL-ABox, a 2 Ind(A), and k 2 IN. Then, C

T

k

(a;G(A))

is the k-approximation of a w.r.t. A. If, starting from a, no yli path in A an

be reahed (i.e., T (a;G(A)) is �nite), then C

T (a;G(A))

is the ms of a w.r.t. A;

otherwise no ms exists.

Proof: Let G(A) = (V

A

; E

A

; `

A

) and T

k

(a;G(A)) = (V

k

; E

k

; a; `

k

).

We �rst show a 2

A

C

T

k

(a;G(A))

. Let ' be the mapping obtained from map-

ping eah path p 2 V

k

onto the last node v ourring in p. It is easy to see that

' yields a homomorphism from T

k

(a;G(A)) into G(A) with '(a) = a. Sine,

for EL-desription trees G, it is G = G(C

G

) up to renaming nodes, Theorem 13

yields a 2

A

C

T

k

(a;G(A))

.

It remains to show that for all EL-onept desriptions C with a 2

A

C and

depth(C) � k also C

T

k

(a;A))

v C. Let C be suh an EL-onept desription.

By Theorem 13 we get that there exists a homomorphism ' from G(C) =

(V

C

; E

C

; v

0

; `

C

) into G(A) with '(v

0

) = a. Using ', we de�ne a homomorphism

 from G(C) into T

k

(a;G(A)). Then Theorem 4 implies C

T

k

(a;G(A))

v C.

For v 2 V

C

, let v

0

r

1

v

1

r

2

� � � r

n�1

v

n�1

r

n

v be the unique (!) path from v

0

to

v in G(C). De�ne p(v) := '(v

0

)r

1

'(v

1

)r

2

� � � r

n�1

'(v

n�1

)r

n

'(v). Sine ' is a
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homomorphism from G(C) into G(A), p(v) is well-de�ned and yields a path of

length n � k from '(v

0

) to '(v) in G(A). It is easy to see that the mapping

 : V

C

�! V

k

de�ned by  (v) := p(v) yields a homomorphism from G(C) into

T

k

(a;G(A)).

Now, assume that, starting from a, a yle an be reahed inA, i.e., T (a;G(A))

is in�nite. Then, we have a dereasing hain C

0

= C

1

= � � � of k-approximations

C

k

(� C

T

k

(a;G(A))

) with inreasing depth k, k � 0. From Theorem 11, we on-

lude that there does not exist an EL-onept desription subsumed by all of

these k-approximations (sine suh a onept desription only has a �xed and

�nite depth). Thus, a annot have an ms.

Conversely, if T (a;G(A)) is �nite, say with depth k, from the observation

that all k

0

-approximations, for k

0

� k, are equivalent, it immediately follows

that C

T (a;G(A))

is the ms of a. 2

Obviously, there exists a deterministi algorithm omputing the k-approxima-

tion (i.e., C

T

k

(a;G(A))

) in time O(jAj

k

). The size jAj of A is de�ned by

jAj := jInd(A)j+ jf(a; b) : r j (a; b) : r 2 Agj+

X

a:C2A

jCj;

where the size jCj of C is de�ned as the sum of the number of ourrenes of

onept names, role names, and onstrutors in C. Similarly, one obtains an

exponential omplexity upper bound for omputing the ms (if it exists).

Corollary 19 For an EL-ABox A, an individual a 2 Ind(A), and k 2 IN, the k-

approximation of a w.r.t. A always exists and an be omputed in time O(jAj

k

).

The ms of a exists i� starting from a no yle an be reahed in A. The

existene of the ms an be deided in polynomial time, and if the ms exists, it

an be omputed in time exponential in the size of A.

In the remainder of this setion, we prove that the exponential upper bounds

are tight. To this end, we show examples demonstrating that k-approximations

and the ms may grow exponentially.

Example 20 Let A = f(a; a) : r; (a; a) : sg. The EL-desription graph G(A)

as well as the EL-desription trees T

1

(a;G(A)) and T

2

(a;G(A)) are depited in

Figure 3. It is easy to see that, for k � 1, T

k

(a;G(A)) yields a full binary tree

of depth k where

� eah node is labeled with the empty set, and

� eah node exept the leaves has one r- and one s-suessor.

By Theorem 18, C

T

k

(a;G(A))

is the k-approximation of a w.r.t. A. The size of

C

T

k

(a;G(A))

is jAj

k

. Moreover, it is not hard to see that there does not exist an

EL-onept desription C whih is equivalent to but smaller than C

T

k

(a;G(A))

.

The following example illustrates that, if it exists, also the ms an be of expo-

nential size.
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T

2

(a;G(A)) :

r s r s

r s

a : ;

ara : ; asa : ;

arara : ; arasa : ; asara : ; asasa : ;

r s

T

1

(a;G(A)) :

a : ;

asa : ;ara : ;

r; s

G(A) :

a : ;

Figure 3: The EL-desription graph and the EL-desription trees from Exam-

ple 20.

Example 21 For n � 1, de�ne A

n

:= f(a

i

; a

i+1

) : r; (a

i

; a

i+1

) : s j 1 � i < ng.

Obviously, A

n

is ayli, and the size of A

n

is linear in n. By Theorem 18,

C

T (a

1

;A

n

)

is the ms of a

1

w.r.t. A

n

. It is easy to see that, for eah n, T (a

1

;A

n

)

oinides with the tree T

n

(a;G(A)) obtained in Example 20. As before we obtain

that

� C

T (a

1

;G(A))

is of size exponential in jA

n

j; and

� there does not exist an EL-onept desription C equivalent to but smaller

than C

T (a

1

;G(A))

.

Summarizing, we obtain the following lower bounds.

Proposition 22 Let A be an EL-ABox, a 2 Ind(A), and k 2 IN.

� The size of ms

A;k

(a) may grow with jAj

k

.

� If it exists, the size of ms

A

(a) may grow exponentially in jAj.

4 Most spei� onepts in EL

:

Our goal is to obtain a haraterization of the (k-approximation of the) ms in

EL

:

analogously to the one given in Theorem 18 for EL. To ahieve this goal,

�rst the notions desription graph and desription tree are extended from EL to

EL

:

by allowing for subsets of N

C

[f:P j P 2 N

C

g[f?g as node labels. Just as

for EL, there exists a 1{1 orrespondene between EL

:

-onept desriptions and

EL

:

-desription trees, and an EL

:

-ABox A is translated into an EL

:

-desription

graph G(A) as desribed for EL-ABoxes. The notion of a homomorphism also



16

G(C) :

r

r

w

0

: fPg

w

1

: fPg

w

2

: f:Pg

r

r

r

b

1

: fPg

a : fPg

b

2

: ;

r

G(A) :

b

3

: f:Pg

Figure 4: The EL

:

-desription graph and the EL

:

-desription tree from Exam-

ple 23.

remains unhanged for EL

:

, and the haraterization of subsumption extends to

EL

:

by just onsidering inonsistent EL

:

-onept desriptions as a speial ase:

C v D i� C � ? or there exists a homomorphism ' from G(D) into G(C).

Seond, we have to ope with inonsistent EL

:

-ABoxes as a speial ase: for

an inonsistent ABox A, a 2

A

C is valid for all onept desriptions C, and

hene, ms

A

(a) � ?. However, extending Theorem 13 with this speial ase

does not yield a sound and omplete haraterization of instane relationships

for EL

:

. If this was the ase, we would get that the instane problem for EL

:

is in P, in ontradition to omplexity results shown in [16℄, whih imply that

the instane problem for EL

:

is oNP-hard.

The following example is an abstrat version of an example given in [16℄; it

illustrates inompleteness of a na��ve extension of Theorem 13 from EL to EL

:

.

Example 23 Consider the EL

:

-onept desription C = P u 9r:(P u 9r::P )

and the EL

:

-ABox A = fa : P; b

1

: P; b

3

: :P; (a; b

1

) : r; (a; b

2

) : r; (b

1

; b

2

) :

r; (b

2

; b

3

) : rg; G(A) and G(C) are depited in Figure 4. Obviously, there does

not exist a homomorphism ' from G(C) into G(A) with '(w

0

) = a, beause

neither P 2 `(b

2

) nor :P 2 `(b

2

). For eah model I of A, however, either

b

I

2

2 P

I

or b

I

2

2 (:P )

I

, and in fat, a

I

2 C

I

. Thus, a is an instane of C

w.r.t. A though there does not exist a homomorphism ' from G(C) into G(A)

with '(w

0

) = a.

In the following setion, we give a sound and omplete haraterization of in-

stane relationships in EL

:

, whih again yields the basis for the haraterization

of k-approximations given in Setion 4.2.

4.1 Charaterizing instane in EL

:

The reason for the problem illustrated in Example 23 is that, in general, for

the individuals in the ABox it is not always �xed whether they are instanes of
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a given onept name or not. Thus, in order to obtain a sound and omplete

haraterization analogous to Theorem 13, instead of G(A), one has to onsider

all so-alled atomi ompletions of G(A).

De�nition 24 (Atomi ompletion) Let G = (V;E; `) be an EL

:

-desription

graph and N

�

C

:= fP 2 N

C

j exists v 2 V with P 2 `(v) or :P 2 `(v)g. An

EL

:

-desription graph G

�

= (V;E; `

�

) is an atomi ompletion of G if, for all

v 2 V ,

1. `(v) � `

�

(v),

2. for all onept names P 2 N

�

C

either P 2 `

�

(v) or :P 2 `

�

(v).

Note that by de�nition, all labels of nodes in ompletions do not ontain a

onit, i.e., the nodes are not labeled with a onept name and its negation.

In partiular, if G has a oniting node, then G does not have a ompletion.

It is easy to see that an EL-ABox A is inonsistent i� G(A) ontains a on-

iting node. For this reason, in the following haraterization of the instane

relationship, we do not need to distinguish between onsistent and inonsistent

ABoxes.

Theorem 25 Let A be an EL

:

-ABox, G(A) = (V;E; `) the orresponding de-

sription graph, C an EL

:

-onept desription, G(C) = (V

C

; E

C

; w

0

; `

C

) the

orresponding desription tree, and a 2 Ind(A). Then, a 2

A

C i� for eah

atomi ompletion G(A)

�

of G(A), there exists a homomorphism ' from G(C)

into G(A)

�

with '(w

0

) = a.

Proof of the if-diretion: For the haraterization of instane in EL (see

Theorem 13, the proof of the if-diretion ould be obtained trivially as a speial

ase of the soundness result given for ALE in Setion 5. For EL

:

, however,

things are not that easy: Sine for the if-diretion we only assume that there

exist homomorphisms from G(C) into primitive ompletions of G(A), and sine

a primitive ompletion of G(A) in general does not oinide with G(A), the

preonditions of Lemma 30 are not satis�ed.

The idea underlying the proof given below is as follows: For a onsistent

EL

:

-ABox A (for inonsistent ABoxes nothing has to be shown) and a model

I = (�

I

; �

I

) of A, we �rst de�ne a mapping  : V �! �

I

with

1.  (b) = b

I

for all b 2 Ind(A),

2. ( (v);  (w)) 2 r

I

for all vrw 2 E, and

3.  (v) 2 Q

I

for all Q 2 `(v) and v 2 V .

Using this mapping, we then de�ne a primitive ompletion G(A)

�

 

= (V;E; `

�

 

)

in suh a way that  also satis�es ondition

4.  (v) 2 Q

I

for all Q 2 `

�

 

(v) and v 2 V .
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By assumption, there exists a homomorphism ' from G(C) into G(A)

�

 

. By

indution on the depth of G(C)(w), we �nally show that for all w 2 V

C

 ('(w)) 2 C

G(C)(w)

I

: (1)

Sine '(w

0

) = a and  (a) = a

I

and C � C

G(C)(w

0

)

, this implies a

I

2 C

I

.

The de�nition of the mapping  : Let a 2 Ind(A), C

a

:= u

a:D2A

D, and

G(C

a

) = (V

a

; E

a

; a; `

a

). For v 2 V

a

, we de�ne  (v) by indution on the length

� of the unique (!) path from a to v in G(C

a

) suh that in addition  (v) 2

C

G(C

a

)(v)

I

.

� = 0: Then v = a. De�ne  (a) := a

I

. Sine I j= A, we get a

I

2 C

I

a

. In

partiular, a

I

2 Q

I

for all Q 2 `(a). Thus, onditions (1) and (3) are

satis�ed for all a 2 Ind(A).

� > 0: Then there exists a unique edge of the form v

0

rv 2 E

a

. By indution,

 (v

0

) is already de�ned, and it is  (v

0

) 2 C

G(C

a

)(v

0

)

I

. Sine v

0

rv 2 E

a

,

there exists an existential restrition of the form 9r:C

G(C

a

)(v)

on the top-

level of C

G(C

a

)(v

0

)

. Now,  (v

0

) 2 C

G(C

a

)(v

0

)

I

implies that there exists an

� 2 �

I

suh that ( (v

0

); �) 2 R

I

and � 2 C

G(C

a

)(v)

I

. De�ne  (v) := �.

Sine � 2 C

G(C

a

)(v)

I

and `(v) = `

a

(v), we get � 2 Q

I

for all Q 2 `(v),

i.e., ondition (3) is satis�ed for v.

By onstrution,  satis�es the onditions (1){(3).

The de�nition of the primitive ompletion G(A)

�

 

: Let N

�

C

be the set of all

onept names ourring in G(A). De�ne G( T )

�

 

:= (V;E; `

�

 

) by

`

�

 

(v) := fP 2 N

�

C

j  (v) 2 P

I

g [ f:P j P 2 N

�

C

and  (v) 62 P

I

g:

By ondition (3) we get `(v) � `

�

 

(v) for all v 2 V . Thus, G(A)

�

 

is a primitive

ompletion of G(A) that, by de�nition, satis�es ondition (4).

Now, the preondition of the if-diretion yields a homomorphism ' from

G(C) into G(A)

�

 

with '(w

0

) = a. We show Property (1) by indution on the

depth of G(C)(w):

depth(G(C)(w)) = 0: Then C

G(C)(w)

= u

Q2`

C

(w)

Q.

Sine `

C

(w) � `

�

 

('(w)), ondition (4) implies  ('(w)) 2 Q

I

for all Q 2

`

C

(w). Hene,  ('(w)) 2 C

G(C)(w)

I

.

depth(G(C)(w)) > 0: Then C

G(C)(w)

= u

Q2`

C

(w)

Q u u

wrw

0

2E

C

9r:C

G(C)(w

0

)

.

As before we get  ('(w)) 2 Q

I

for allQ 2 `

C

(w). Let wrw

0

2 E

C

. By def-

inition of  , and sine ' is a homomorphism, we get ( ('(w));  ('(w

0

))) 2

r

I

. By indution,  ('(w

0

)) 2 C

G(C)(w

0

)

I

, and hene  ('(w)) 2 (9r:C

G(C)(w

0

)

)

I

.

Summing up, we get  ('(w)) 2 C

G(C)(w)

I

.
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This ompletes the proof of the if-diretion.

Proof of the only-if-diretion: LetA be a onsistent EL

:

-ABox,N

�

C

:= fP 2

N

C

j 9v 2 V : P 2 `(v)_:P 2 `(v)g, and a 2

A

C. Let G(C) = (V

C

; E

C

; w

0

; `

C

),

G(A)

�

= (V;E; `

�

) an arbitrary primitive ompletion of G(A), and I(G(A)

�

) the

anonial interpretation indued by G(A)

�

. The anonial interpretation of an

EL

:

-ABox is de�ned just as for EL. Moreover, it is easy to see that the anonial

interpretation of an EL

:

-ABox A is a model of A. Sine

� r

I(G(A))

= r

I(G(A)

�

)

for all r 2 N

R

,

� P

I(G(A))

� P

I(G(A)

�

)

for all P 2 N

C

, and

� :P 2 `(v) =) P 62 `

�

(v) =) v 62 P

I(G(A)

�

)

,

I(G(A)

�

) is also a model of A. We �rst show that, for all onept names P

ourring in C, P 2 N

�

C

. Assume that there exists a onept name P ourring

in C with P 62 N

�

C

. Let w 2 V

C

be an r

1

: : : r

n

-suessor of w

0

in G(C) with

P 2 `

C

(w) or :P 2 `

C

(w). Assume P 2 `

C

(w). Then, for eah model I

of C and eah � 2 C

I

, there exists an (r

1

: : : r

n

)

I

-suessor � of � in I with

� 2 P

I

. Sine P 62 N

�

C

, however, P

I(G(A)

�

)

= ;, and hene, C

I(G(A)

�

)

= ; in

ontradition to a 2

A

C. If :P 2 `

C

(w), then for eah model I of C and eah

� 2 C

I

, there exists an (r

1

: : : r

n

)

I

-suessor � of � in I with � 62 P

I

. De�ne

J := (V; �

J

), where Q

J

:= Q

I(G(A)

�

)

for all Q 2 N

�

C

and P

J

:= V . Then J

is a model of A, beause the interpretation of onept names and role names

ourring in A remained unhanged w.r.t. I(G(A)

�

). But obviously, (:P )

J

= ;,

and hene C

J

6= ; in ontradition to a 2

A

C.

Thus, we have shown that, for a onsistent EL

:

-ABox A, a 2

A

C implies

P 2 N

�

C

for all onept names P ourring in C. Now, the only-if-diretion is

an easy onsequene of the following

Claim: If v 2 C

I(G(A)

�

)

and if all onept names ourring in C also our

in A, then there exists a homomorphism ' from G(C) into G(A)

�

with

'(w

0

) = v.

Proof by indution on depth(C):

depth(C) = 0: Then C = Q

1

u : : : uQ

n

, where Q

i

2 N

C

[ f:P j P 2 N

C

g.

De�ne ' by '(w

0

) := v. We know v 2 C

I(G(A)

�

)

. If Q

i

2 N

C

, then by

de�nition of I(G(A)

�

), it is Q

i

2 `(v). If Q

i

= :P for some P 2 N

C

,

v 2 Q

I(G(A)

�

)

i

implies P 62 `(v). The preondition on C yields P 2 N

�

C

.

Sine G(A)

�

is a primitive ompletion, we get :P 2 `(v). Summing up, it

is `

C

(w

0

) � `

�

(v), and hene ' is a homomorphism from G(C) into G(A)

�

.

depth(C) > 0: The indution step is shown as for EL.

This ompletes the proof of the only-if-diretion and hene of Theorem 25. 2

The problem of deiding whether there exists an atomi ompletion G(A)

�

suh that there exists no homomorphism from G(C) into G(A)

�

is in oNP.

Adding the oNP-hardness result obtained from [16℄, this shows
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Corollary 26 The instane problem for EL

:

is oNP-omplete.

4.2 Computing k-approximations in EL

:

Not surprisingly, the algorithm omputing the k-approximation/ms in EL does

not yield the desired result for EL

:

. For instane, in Example 23, we would

get C

T (a;G(A))

= P u 9r:9r:(:P ) u 9r:(P u 9r:9r:(:P )). But as we will see,

ms

A

(a) � P u 9r:(P u 9r::P ) u 9r:(P u 9r:9r::P ), i.e., ms

A

(a) < C

T (a;A)

.

As in the extension of the haraterization of instane relationships from

EL to EL

:

, we have to take into aount all atomi ompletions instead of the

single desription graph G(A). Intuitively, one has to ompute the least onept

desription for whih there exists a homomorphism into eah atomi ompletion

of G(A). In fat, this an be done by applying the ls operation on the set of all

onept desriptions C

T

k

(a;G(A)

�

)

obtained from the atomi ompletions G(A)

�

of G(A).

Theorem 27 Let A be an EL

:

-ABox, a 2 Ind(A), and k 2 IN. If A is inon-

sistent, then ms

k;A

(a) � ms

A

(a) � ?. Otherwise, let fG(A)

1

; : : : ;G(A)

n

g be

the set of all atomi ompletions of G(A).

Then, ls(C

T

k

(a;G(A)

1

)

; : : : ; C

T

k

(a;G(A)

n

)

) � ms

k;A

(a). If, starting from a,

no yle an be reahed in A, then ls(C

T (a;G(A)

1

)

; : : : ; C

T (a;G(A)

n

)

) � ms

A

(a);

otherwise the ms does not exist.

Proof sketh. Let A be a onsistent EL

:

-ABox and G(A)

1

; : : : ;G(A)

n

the atomi

ompletions of G(A). By de�nition of C

T

k

(a;G(A)

i

)

, there exists a homomorphism

�

i

from C

T

k

(a;G(A)

i

)

into G(A)

i

for all 1 � i � n. Let C

k

denote the ls of

fC

T

k

(a;G(A)

1

)

; : : : ; C

T

k

(a;G(A)

n

)

g. The haraterization of subsumption for EL

:

yields homomorphisms '

i

from G(C

k

) into G(C

T

k

(a;G(A)

i

)

) for all 1 � i � n.

Now it is easy to see that �

i

Æ '

i

yields a homomorphism from G(C

k

) into

G(A)

i

, 1 � i � n, eah mapping the root of G(C

k

) onto a. Hene, a 2

A

C

k

.

Assume C

0

with depth(C

0

) � k and a 2

A

C

0

. By Theorem 25, there exist

homomorphisms  

i

from G(C

0

) into G(A)

i

for all 1 � i � n, eah mapping the

root of G(C

0

) onto a. Sine depth(C

0

) � k, these homomorphisms immediately

yield homomorphisms  

0

i

from G(C

0

) into G(C

T

k

(a;G(A)

i

)

) for all 1 � i � n. Now

the haraterization of subsumption yields C

T

k

(a;G(A)

i

)

v C

0

for all 1 � i � n,

and hene C

k

v C

0

. Thus, C

k

� ms

k;A

(a).

Analogously, in ase starting from a, no yle an be reahed in A, we

onlude ls(C

T (a;G(A)

1

)

; : : : ; C

T (a;G(A)

n

)

) � ms

A

(a). Otherwise, with the same

argument as in the proof of Theorem 18, it follows that the ms does not exist.

2

In Example 23, we obtain two atomi ompletions, namely G(A)

1

with `

1

(b

2

) =

fPg, and G(A)

2

with `

2

(b

2

) = f:Pg. Now Theorem 27 implies ms

A

(a) �

ls(C

T (a;G(A)

1

)

; C

T (a;G(A)

2

)

), whih is equivalent to

P u 9r:(P u 9r::P ) u 9r:(P u 9r:9r::P ):
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The examples showing the exponential blow-up of the size of k-approximations

and ms's in EL an easily be adapted to EL

:

. However, we only have a double

exponential upper bound (though we strongly onjeture that the size an again

single-exponentially be bounded): the size of eah tree (and the orresponding

onept desriptions) obtained from an atomi ompletion is at most exponen-

tial, and the size of the ls of a sequene of EL

:

-onept desriptions an grow

exponentially in the size of the input desriptions [3℄.

Moreover, by an algorithm omputing the ls of the onept desriptions

obtained from the atomi ompletions, the k-approximation (the ms) an be

omputed in double exponential time.

Corollary 28 Let A be an EL

:

-ABox, a 2 Ind(A), and k 2 IN.

� The k-approximation of a always exists. It may be of size jAj

k

and an be

omputed in double-exponential time.

� The ms of a exists i� A is inonsistent, or starting from a, no yle an

be reahed in A. If the ms exists, its size may grow exponentially in jAj,

and it an be omputed in double-exponential time. The existene of the

ms an be deided in polynomial time.

5 Most Spei� Conepts in ALE

As already mentioned in the introdution, the haraterization of instane re-

lationships ould not yet be extended from EL

:

to ALE . Sine these strutural

haraterizations were ruial for the algorithms omputing the (k-approximation

of the) ms in EL and EL

:

, no similar algorithms for ALE an be presented here.

However, we show that

1. given that N

C

and N

R

are �nite sets, the ms

k;A

(a) always exists and an

e�etively be omputed (f. Theorem 29);

2. the haraterization of instane relationships in EL is also sound for ALE

(f. Lemma 30), whih allows for approximating the k-approximation; and

3. we illustrate the main problems enountered in the strutural harateri-

zation of instane relationships in ALE (f. Example 31).

The �rst result is ahieved by a rather generi argument. Given that the sig-

nature, i.e., the sets N

C

and N

R

, are �xed and �nite, it is easy to see that also

the set of ALE-onept desriptions of depth � k built using only names from

N

C

[N

R

is �nite (up to equivalene) and an e�etively be omputed. Sine the

instane problem for ALE is known to be deidable [16℄, enumerating this set

and retrieving the least onept desription whih has a as instane, obviously

yields an algorithm omputing ms

k;A

(a).

Theorem 29 Let N

C

and N

R

be �xed and �nite, and let A be an ALE-ABox

built over a set N

I

of individuals and N

C

[N

R

. Then, for k 2 IN and a 2 Ind(A),

the k-approximation of a w.r.t. A always exists and an e�etively be omputed.
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Note that the above argument annot be adapted to prove the existene

of the ms for ayli ALE -ABoxes unless the size of the ms an be bounded

appropriately. Finding suh a bound remains an open problem.

The algorithm skethed above is obviously not appliable in real appliations.

Thus, in the remainder of this setion, we fous on extending the improved

algorithms obtained for EL and EL

:

to ALE .

5.1 Approximating the k-approximation in ALE

We �rst have to extend the notions desription graph and desription tree from

EL

:

to ALE : In order to ope with value restritions ourring in ALE -onept

desriptions, we allow for two types of edges, namely those labeled with role

names r 2 N

R

(representing existential restritions of the form 9r:C) and those

labeled with 8r (representing value restritions of the form 8r:C). Again, there

is a 1{1 orrespondene between ALE-onept desriptions and ALE-desription

trees, and an ALE-ABox A is translated into an ALE-desription graph G(A)

just as desribed for EL-ABoxes. The notion of a homomorphism also extends

to ALE in a natural way. A homomorphism ' from an ALE-desription tree H =

(V

H

; E

H

; v

0

; `

H

) into an ALE-desription graph G = (V;E; `) is a mapping ' :

V

H

�! V satisfying the onditions (1) and (2) on homomorphisms between EL-

desription trees and EL-desription graphs, and additionally (3) '(v)8r'(w) 2

E for all v8rw 2 E

H

.

We are now equipped to formalize soundness of the haraterization of in-

stane relationships for ALE .

Lemma 30 Let A be an ALE-ABox, a 2 Ind(A) an individual in A, and C

an ALE-onept desription. Further, let G(A) = (V;E; `) denote the ALE-

desription graph of A and G(C) = (V

C

; E

C

; v

0

; `

C

) the ALE-desription tree of

C. If there exists a homomorphism ' from G(C) into G(A) with '(v

0

) = a,

then a 2

A

C.

Proof: If A is inonsistent, nothing has to be shown. Let A be a onsistent

ALE-ABox and I a model of A. Let C

a

= u

a:D2A

D and G(C

a

) = (V

a

; E

a

; a; `

a

).

Now, I j= A implies a

I

2 C

I

a

. We show a

I

2 C

I

by indution on depth(C):

depth(C) = 0: Then C = Q

1

u: : :uQ

n

with Q

i

2 N

C

[f:P j P 2 N

C

g[f>;?g.

We show a

I

2 Q

I

i

for all 1 � i � n.

For Q

i

= > nothing has to be shown.

Assume Q

i

= ?. This would imply C

a

� ? in ontradition to I j= A.

Assume Q

i

2 N

C

or Q

i

= :P for some P 2 N

C

. Then, P 2 `(a) or

:P 2 `(a). By de�nition of G(C

a

) and C

a

, we get C

a

v P or C

a

v :P ,

respetively, and hene a

I

2 P

I

or a

I

2 (:P )

I

.

depth(C) > 0: Then C = Q

1

u : : : u Q

n

u 9r

1

:C

1

u : : : u 9r

m

:C

m

u 8s

1

:D

1

u

: : : u 8s

k

:D

k

with Q

i

2 N

C

[ f:P j P 2 N

C

g [ f>?g. We show a

I

2 C

0

I

for all onjunts C

0

on the top-level of C.
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For C

0

= Q

i

, the laim follows as for depth(C) = 0.

Let C

0

= 8s

j

:D

j

and w 2 V

C

the 8s

j

-suessor of w

0

with G(C)(w) =

G(D

j

). Sine ' is a homomorphism, there exists a 8s

j

-suessor v of

a in G(A) with '(w) = v. By de�nition of G(A), this node v is the

root of a subtree of G(C

a

). In partiular, C

a

v 8s

j

:C

G(C

a

)(v)

. Thus,

a

I

2 C

I

a

implies a

I

2 (8s

j

:C

G(C

a

)(v)

)

I

. Obviously, restriting ' to the

nodes in G(C)(w) yields a homomorphism from G(C)(w) into G(C

a

)(v).

By Theorem 4, it follows C

G(C

a

)(v)

v C

G(C)(w)

, and hene a

I

2 (8s

j

:D

j

)

I

.

Let C

0

= 9r

j

:C

j

and w 2 V

C

the r

j

-suessor of w

0

with G(C)(w) = G(C

j

).

Sine ' is a homomorphism from G(C) into G(A), there exists an r

j

-

suessor v of a in G(A) with '(w) = v. If v 62 Ind(A), then y de�nition

of G(A), this node v is the root of a subtree of G(C

a

). As in the previous

ase, we get a

I

2 (9r

j

:C

j

)

I

. If v 2 Ind(A), then ' restrited to the

nodes in G(C)(w) yields a homomorphism  from G(C)(w) into G(A) with

 (w) = v. By indution, we get v 2

A

C

G(C)(w)

. Sine I j= A, it follows

v

I

2 C

I

G(C)(w)

, and sine C

j

� C

G(C)(w)

, this yields a

I

2 (9r

j

:C

j

)

I

. 2

As an immediate onsequene of this lemma, we get a 2

A

C

T

k

(a;G(A))

for all

k � 0, where the trees T (a;G(A)) and T

k

(a;G(A)) are de�ned just as for EL.

This in turn yields ms

k;A

(a) v C

T

k

(a;G(A))

and hene, an algorithm omputing

an approximation of the k-approximation for ALE . In fat, suh approximations

already turned out to be quite usable in our proess engineering appliation [4℄.

The following example now shows that the haraterization is not omplete

for ALE , and that, in general, C

T

k

(a;G(A))

6� ms

k;A

(a). In partiular, it demon-

strates the diÆulties one enounters in the presene of value restritions.

Example 31 Consider the ALE-ABox

A := fa : P; b

1

: P u 8s:P u 9r:P; b

2

: P u 9r:(P u 9s : P );

(a; b

1

) : r; (a; b

2

) : r; (b

1

; b

2

) : rg;

and the ALE-onept desription C = 9r:(8s:P u 9r:9s:>); G(A) and G(C) are

depited in Figure 5. Note that G(A) is the unique atomi ompletion of itself

(w.r.t. N

C

= fPg).

It is easy to see that there does not exist a homomorphism ' from G(C) into

G(A) with '(w

0

) = a. However, a 2

A

C: For eah model I of A, b

I

2

does not

have an s-suessor, or at least one s-suessor. In the �rst ase, b

I

2

2 8s:P ,

and hene b

I

2

yields the desired r-suessor of a

I

in (8s:P u 9r:9s:>)

I

. In the

seond ase, it is b

I

2

2 (9s:>)

I

, and hene b

I

1

yields the desired r-suessor of

a

I

. Thus, for eah model I of A, a

I

2 C

I

.

Moreover, for k = 4, C

T

4

(a;A)

is given by P u 9r:(P u 8s:P u 9r:P u 9r:(P u

9r:(P u 9s:P ))) u 9r:(P u 9r:(P u 9s:P )). It is easy to see that C

T

4

(a;A)

6v C.

Hene, C

T

4

(a;A)

u C < C

T

4

(a;A)

, whih implies ms

4;A

(a) < C

T

4

(a;A)

.

Intuitively, the above example suggests that, in the de�nition of atomi

ompletions, one should take into aount not only (negated) onept names
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G(C) :

w

0

: ;

w

1

: ;

r

w

2

: fPg w

3

: ;

s

w

4

: ;

r8s

b

2

: fPg

a : fPg

b

1

: fPg

v

1

: fPg v

2

: fPg

v

3

: fPg

v

0

: fPg

r r

r

r

s

8s r

G(A) :

Figure 5: The ALE-desription graph and the ALE-desription tree from Exam-

ple 31.

but also more omplex onept desriptions. However, it is not lear whether an

appropriate set of suh onept desriptions an be obtained just from the ABox

and how these onept desriptions need to be integrated in the ompletion in

order to obtain a sound and omplete strutural haraterization of instane

relationships in ALE .

6 Conlusion

Starting with the formal de�nition of the k-approximation of ms we showed

that, for ALE and a �nite signature (N

C

; N

R

), the k-approximation of the ms

of an individual b always exists and an e�etively be omputed. For the sublan-

guages EL and EL

:

, we gave sound and omplete haraterizations of instane

relationships that lead to pratial algorithms. As a by-produt, we obtained

a haraterization of the existene of the ms in EL-/EL

:

-ABoxes, and showed

that the ms an e�etively be omputed in ase it exists.

First experiments with manually omputed approximations of the ms in

the proess engineering appliation were quite enouraging [4℄: used as inputs

for the ls operation, i.e., the seond step in the bottom-up onstrution of the

knowledge base, they lead to desriptions of building bloks the engineers ould

use to re�ne their knowledge base. In next steps, the run-time behavior and the

quality of the output of the algorithms presented here is to be evaluated by a

prototype implementation in the proess engineering appliation.
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