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Abstract

Computing the most specific concept (msc) is an inference task that
can be used to support the “bottom-up” construction of knowledge bases
for KR systems based on description logics. For description logics that
allow for number restrictions or existential restrictions, the msc need not
exist, though. Previous work on this problem has concentrated on de-
scription logics that allow for universal value restrictions and number
restrictions, but not for existential restrictions. The main new contri-
bution of this paper is the treatment of description logics with existential
restrictions. More precisely, we show that, for the description logic ALE
(which allows for conjunction, universal value restrictions, existential re-
strictions, negation of atomic concepts, as well as the top and the bottom
concept), and its sublanguages ££ (which allows for conjunction, exis-
tential restrictions and the top-concept) and EL- (which extends £C by
negation of atomic concepts) the msc of an ABox-individual only exists
in case of acyclic ABoxes. For cyclic ABoxes, we show how to compute
an approximation of the msc.

Our approach for computing the (approximation of the) msc is based
on representing concept descriptions by certain trees and ABoxes by cer-
tain graphs, and then characterizing instance relationships by homomor-
phisms from trees into graphs. The msc/approximation operation then
mainly corresponds to unraveling the graphs into trees and translating
them back into concept descriptions.



1 Introduction

The most specific concept (msc) of an individual b is a concept description
that has b as instance and is the least concept description (w.r.t. subsump-
tion) with this property. Roughly speaking, the msc is the concept description
that, among all concept descriptions of a given DL, represents b best. Closely
related to the msc is the least common subsumer (lcs), which, given concept
descriptions C,...,C,, is the least concept description (w.r.t. subsumption)
subsuming C1,...,C,. Thus, where the msc generalizes an individual, the lcs
generalizes a set of concept descriptions.

In [2, 3, 4], the msc (first introduced in [15]) and the les (first introduced in
[5]) have been proposed to support the bottom-up construction of a knowledge
base. The motivation comes from an application in chemical process engineering
[17], where the process engineers construct the knowledge base (which consists
of descriptions of standard building blocks of process models) as follows: First,
they introduce several “typical” examples of a standard building block as indi-
viduals, and then they generalize (the descriptions of) these individuals into a
concept description that (i) has all the individuals as instances, and (ii) is the
most specific description satisfying property (i). The task of computing concept
descriptions satisfying (i) and (ii) can be split into two subtasks: computing the
msc of a single individual, and computing the lcs of a given finite number of
concepts.

The lcs has been thoroughly investigated for (sublanguages of) CLASSIC
[5, 2, 13, 11], for DLs allowing for existential restrictions like ALE [3], and most
recently, for ACEN', a DL allowing for both existential and number restrictions
[14]. For all these DLs, except for CLASSIC in case attributes are interpreted
as total functions [13], it has turned out that the lcs always exists and that it
can effectively be computed. Prototypical implementations show that the lcs
algorithms behave quite well in practice [7, 4].

For the msc, the situation is not that rosy. For DLs allowing for number
restrictions or existential restrictions, the msc does not exist in general. Hence,
the first step in the bottom-up construction, namely computing the msc, cannot
be performed. In [2], it has been shown that for ACN, a sublanguage of CLAS-
sic, the existence of the msc can be guaranteed if one allows for cyclic concept
descriptions, i.e., concepts with cyclic definitions, interpreted by the greatest
fixed-point semantics. Most likely, such concept descriptions would also guar-
antee the existence of the msc in DLs with existential restrictions. However,
current DL-systems, like FaCT [10] and RACE [9], do not support cyclic con-
cept descriptions; although they allow for cyclic definitions of concepts, these
systems do not employ the greatest fixed-point semantics, but only descriptive
semantics. Consequently, cyclic concept descriptions returned by algorithms
computing the msc cannot be processed by these systems.

In this paper, we therefore propose to approximate the msc. Roughly speak-
ing, for some given non-negative integer k, the k-approzimation of the msc of
an individual b is the least concept description (w.r.t. subsumption) among all
concept descriptions with b as instance and role depth at most k. That is, the



set of potential msc’s is restricted to the set of concept descriptions with role
depth bounded by k. For (sublanguages of) ALE we show that k-approximations
always exist and that they can effectively be computed. Thus, when replacing
“msc” by “k-approximation”, the first step of the bottom-up construction can
always be carried out. Although the original outcome of this step is only ap-
proximated, this might in fact suffice as a first suggestion to the knowledge
engineer.

While for full ACE our k-approximation algorithm is of questionable practical
use (since it employs a simple enumeration argument), we propose improved
algorithms for the sublanguages € and EL—, of ALE. (EL allows for conjunction
and existential restrictions, and ££- additionally allows for a restricted form of
negation.) Our approach for computing k-approximations in these sublanguages
is based on representing concept descriptions by certain trees and ABoxes by
certain (systems of) graphs, and then characterizing instance relationships by
homomorphisms from trees into graphs. The k-approximation operation then
consists in unraveling the graphs into trees and translating them back into
concept descriptions. In case the unraveling yields finite trees, the corresponding
concept descriptions are “exact” msc’s, showing that in this case the msc exists.
Otherwise, pruning the infinite trees on level k yields k-approximations of the
msc’s.

The outline of the paper is as follows. In the next section, we introduce the
basic notions and formally define k-approximations. To get started, in Section 3
we present the characterization of instance relationships in ££ and show how
this can be employed to compute k-approximations or the msc (if it exists). In
the subsequent section we extend the results to ££-,, and finally deal with ALE
in Section 5. The paper concludes with some remarks on future work.

2 Preliminaries and known results

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set Ngo of concept names and a set Ny of role names.
The constructors determine the expressive power of the DL. In this work, we
consider concept descriptions built from the constructors shown in Table 1. In
the description logic EL, concept descriptions are formed using the constructors
top-concept (T), conjunction (C' M D) and existential restriction (Fr.C). The
description logic ££-, additionally provides us with primitive negation (=P,
P € N¢), and ALE allows for all the constructors shown in Table 1 except
of number restrictions. Finally, ACN" allows for the top- and bottom-concept,
concept, conjunction, primitive negation, value restrictions, and number restric-
tions.

The semantics of a concept description is defined in terms of an interpretation
7 = (A,-). The domain A of T is a non-empty set of individuals and the
interpretation function -Z maps each concept name P € N¢ to a set PT C A
and each role name r € Ny to a binary relation r’ C A xA. The extension of
T to arbitrary concept descriptions is inductively defined, as shown in the third



| Construct name | Syntax | Semantics |
top-concept T A
conjunction cnbD cT'nD’
existential restrictions | Ir.C {xeA]Ty:(z,y)erf AyeCT}
value restrictions Vr.C | {r€A|Vy:(z,y) €erl - yeCT}
primitive negation -P A\ P?
bottom-concept L ]
number restrictions >nr) | {zeAl#{y]| (z,y) €rl} >n}
number restrictions (<nr) | {zeAl#{y]| (z,y) €T} <n}

Table 1: Syntax and semantics of concept descriptions. P denotes a concept
name from N¢g, r a role name from Npg, and n a nonnegative integer.

column of Table 1.

Definition 1 (Subsumption, les) Let C, D, E be concept descriptions of the
same DL L.

1. D subsumes C' (for short C T D) iff CT C D' for all interpretations T.
C is equivalent to D (for short C = D) iff CC D and D C C.

2. The concept description E is called least common subsumer of C' and D
iff CC E and D C E and for all E' with C T E'" and D C E', it is
ECE.

For ALE, subsumption can be characterized by means of homomorphisms
between ALE -description trees [3].

Definition 2 (AL£-description trees) An ACE-description tree is a tree of
the form G = (V, E, vg, £) with root vg where

e the edges in E are labeled with role names r € Ng or Vr for somer € Ng,
and

e the nodes v € V are labeled with sets {(v) = {Py,...,P,} where each P;,
1 <i < n, is of one of the following forms: P; € N¢, P; = =P for some
P e Ng, or P,= 1.

The empty label corresponds to the top-concept.
Every ALE-concept description can be written (modulo equivalence) as
C = Ql |_|...|_|Qn|_|E|’I°1.Cl |_|...|_|E|’I°m.0m |_|V81.D1 |_|...|_|V8k.Dk

with @Q; € No U{=P | P € Nc} U{L, T}. The depth depth(C) of C is defined
as the maximal depth of nested quantification in C'. Now, the ALE-description
tree G(C) := (V,E,vp,£) corresponding to the ALE-concept description C' is
inductively defined as follows:



o If depth(C) =0, then V := {w}, E := 0, and £(vo) := {Q1,...,Qu}\{T};

e otherwise, let G; = (V;, E;, voi, £;) be the recursively defined description
trees corresponding to Cj, 1 < i < m, and H; = (W, F},woj, k;) the
recursively defined description trees corresponding to D;, 1 < j < k such
that the sets V;, W, and {vo} are pairwise disjoint; then

- V= {vo} Ulgigm Vid U1§j5k Wj,

— E = {vrijve; |1 <i<m}U
{voVsjwo; |1 < j <k} U
Ulgigm Eiuulsjgk Fj, and
{Q1,...,Qu}\{T}, v=1

— () := < Lliv), veV;,1<i<m
kj(v), veW;,1<j<k.

The depth of a description tree G is defined as the length of the longest path
in G. Now, each ALE-description tree G = (V, E, vy, £) is inductively translated
into an ALE-concept description Cg as follows:

o If depth(G) =0, then V = {wo} and E = (). Define

O o= Qll_l---l_lQna E(UO):{Qla"'aQn}
1T £(vo) = 0

e otherwise, let £(vg) = {Q1,...,Qn}, n > 0, and let {vy,...,v,} be the
set of all successors of vy with vor;v; € E and {wy,...,wr} the set of
all successors of vy with voVs;w; € E. Further, let C; (D;) denote the
recursively defined concept descriptions obtained from the subtrees with
root v;, 1 <i<m (wj, 1 <j <k). Define

Cg = Ql M ...|_|Qn|_|5|7"1.01 M ...I'IEIrm.Cm |_|V81.D1 M ...I'IVsk.Dk.
Definition 3 (Homomorphisms between A(E-description trees)

A homomorphism from an ALE-description tree H = Vi, Eg,wo,ly) to an
ALE -description tree G = (Va, Eq,vo, ) is a mapping ¢ : Vi — Vi such that

1. p(wo) = vy,
2. for all v € Vir we have Ly (v) C la(p(v)) or La(p(v)) = {1},

3. for allvrw € Eg, either p(v)ro(w) € Eq, or o(v) = p(w) and Lg(p(v)) =
{L}, and

4. for all Wrw € Ejg, either p(v)Vro(w) € Eg, or p(v) = p(w) and
lap(v) = {L}.



In order to obtain a sound and complete characterization of subsumption,
the concept descriptions must be transformed into certain normal forms before
translating them into description trees [3]. The ALE-normal form of an ALE-
concept description C' is obtained from C' by exhaustively applying the following
normalization rules (modulo commutativity and associativity of conjunction):

1. vr. T — T

2. ENT — E

3. VYr.ENVr.F — Vr(ENF)

4. Vr.ENIrF — Vr.EN3Ir(ENF)
3. Pn-P —» 1, foreach P € N¢
6. Hr.L — L

7. Ent — 1.

The T-normal form of C is obtained from C' by exhaustively applying th nor-
malization rules 1. and 2. C'is said to be in ACE-normal form (T-normal form)
if none of the rules (neither rule 1. nor 2.) is applicable to C. Note that the
ALE -normal form C’ obtained from an ALE-concept description C' can be of ex-
ponential size w.r.t. the size of C' (see [3] for an example). It is easy to see that
the ALE-/T-normal form of C' is equivalent to C.

Now, subsumption C' C D can be characterized as follows:

Theorem 4 [3] Let C, D be ALE -concept descriptions, C' the ALE -normal form
of C, D' the T-normal form of D, and G(C"),G(D') the corresponding ALE-
description trees. Then C T D iff there exists a homomorphism from G(D') to
Gg(ch.

Example 5 Consider the ALE concept descriptions

C = Vr3r.(PN-P)N3s.(PNIr.Q),
D := V¥Yr.(3r.PN3Ir-P)N3s.(Vr.T N 3Ir.Q).

The T-normal form of D is given by D' =Vr.(Ir.P N 3Ir~P)MN3Is. M Ir.Q, and
the ALE-normal form of C is C' := Vr.L. N 3s.(P N 3r.Q). The corresponding
ALE -description trees G(C') and G(D') are depicted in Figure 1.

If we define the mapping @ such that it maps wg onto vg; wy,ws, and w3

onto vy; wg onto ve; and ws onto vs, then it is easy to see that ¢ yields a
homomorphism from G(D') into G(C'). Thus, Theorem J implies C C D.

The inference problem of computing the Ics of n > 2 concept descriptions
has thoroughly been investigated for the DLs ALE [3], ACN [5, 2], and CLASSIC
[13, 11]. As shown in [3], the lcs of n > 2 ALE-concept descriptions always exists,
and it can be computed in exponential time. The lcs of n > 2 ALN-concept
descriptions also always exists, and it can be computed in polynomial time [5].
Even in the presence of cyclic ACN -concept descriptions, the lcs always exists,
and it can be computed in double-exponential time [2]. Things become less rosy,
however, if we consider the most specific concept of ABox individuals.



Gg(C: vo:0 G(D"): wo:0
Vi/\s Yr s
vi:{Ll} vo:{ P} wy:f waq:f

AT

vs{Q}  wor{P}  wy{-P}  ws{Q}

Figure 1: An example for the characterization of subsumption in ALE by homo-
morphisms and description trees.

Definition 6 (ABox) An ABox A is a finite set of assertions of the form
(a,b) : r (role assertions) or a : C' (concept assertions), where a,b are indi-
viduals from a set Ny, r is a role name, and C is a concept description. An
ABoz is called L-ABoz if all concept descriptions occurring in A are L-concept
descriptions.

In the presence of an ABox, an interpretation 7 additionally assigns an
element a’ € A to each individual a occurring in A such that A # B implies
AT # b? (unique name assumption). It is a model of A iff it satisfies (a”,b?) € r*
for all role assertions (a,b) : r € A, and a’ € C? for all concept assertions

a:Ce A.

Definition 7 (Instance, msc) Let A be an L-ABoz, a an individual in A,
and C an L-concept description.

1. a is an instance of C w.r.t. A (a €4 C) iff a* € CT for all models T of
A.

2. C is the most specific concept for a w.r.t. A iff a €4 C and for all C’
witha €4 C', itis CC C'.

Depending on the expressive power of the underlying DL £, the msc of
an individual a w.r.t. an £-ABox A need not exist in general. Due to cyclic
dependencies between individuals, i.e., cycles build by role assertions in the
ABox, it might be the case that there exist infinite many £-concept descriptions
a is an instance of, but none most specific concept description with this property.
The following example illustrates this situation for ACA and ALE.

Example 8 First, consider the ACN-ABox A= {a: P,a: (< 1r),(a,a):r}.
In [2] it is shown that there does not exist the msc of a w.r.t. A: It is easy to
see that, for each n > 0, a is an instance of the ACN -concept description
Cp = Vr.---Vr(PO(K1r)n(>1r)).
——

n times



Intuitively, the msc is thus given as the infinite conjunction |:|0 C. Obuviously,
n

this conjunction cannot be represented by an ACN -concept description.

For ACE and its sublanguages EL and EL-,, we encounter the same problem
for the even smaller ABox A’ = {a : P,(a,a) : r}: It is easy to see that, for
each n > 0, a is an instance of the ALE /-EL-/EL_-concept description

C, = Jr.---3r.P.
—

n times

Assume that there exists an ALE-/EL-/EL—.-concept description C = msc 4 (a).
Let depth(C) = k, C' the ALE-normal form of C, and G(C") the corresponding
ALE -description tree. Obuviously, there does not exist a homomorphism from
G(Cla1) into G(C"). Since Cry1 is in T-normal form, Theorem 4 implies C L
Clr41 in contradiction to a € g Cry1 and C = mscy (a).

For cyclic ACN-ABoxes, the msc can be characterized by cyclic ACN -concept
descriptions. Such concepts are defined by means of a cyclic TBox, and they
are interpreted using the greatest fixed-point semantics [2, 12]. In the above
example, the concept C' defined by the cyclic ACN-TBox

T={C=Pn((<1lrn(>1r)nvr.C}

yields the msc of a [2].

As already mentioned in the introduction, cyclic concept descriptions are not
yet well-investigated for DLs with existential restrictions. Thus, in this work,
we concentrate on approximations of the msc in ALE (and the sublanguages EL
and &L-). The approximation of the msc by concept descriptions with limited
depth as introduced in [7] is formally defined as follows:

Definition 9 Let A be an L-ABozx, a an individual in A, C' an L-concept de-
seription, and k € IN a nonnegative integer. C' is called k-approximation of a

w.r.t. A (C = mscy a(a)) iff
1. aey C,
2. depth(C) <k, and
3. for all C" with a € 4 C' and depth(C') <k, it is CC C".

For the ABox A’ from Example 8, the ALE-concept description Cy, yields the
k-approximation of a w.r.t. A for each k > 0.

In the following sections, we will show that, for the DLs £, ££-,, and ALE,
the k-approximation of an individual a w.r.t. A always exists. For ALE, however,
we only have a very inefficient algorithm, since the characterization of instance
relationships underlying the more efficient algorithms introduced for £C and ££-,
could not be adapted to ALE.



3 Most specific concepts in £C

First, we introduce the characterization of instance in £ that will be used to
prove soundness and completeness of the approximation algorithm presented in
Section 3.2.

3.1 Characterizing instance in £

The characterization of instance can be seen as an extension of the characteri-
zation of subsumption given in Theorem 4 (see also[3]). Roughly speaking, the
idea is to translate the ABox A into a so-called ££-description graph G(A), and
then to characterize a € 4 C by the existence of a homomorphism ¢ from the
EL-description tree G(C) into G(A) such that the root of G(C') is mapped onto
a.

Definition 10 (££-description tree/£L-description graph)
An EL-description tree (EL-description graph) is a tree (graph) of the form
G = (V,E,vo,£) with root vg (G(V,E,{)) where

e the edges in E are labeled with role names r € Ng, and

e the nodes v € V are labeled with subsets of N¢, i.e., £(v) C N¢ for all
veV.

The empty label corresponds to the top-concept.

Note that EL-concept descriptions trivially satisfy the conditions on the T-
and ALE-normal form. Thus, Theorem 4 yields

Corollary 11 Let C, D be EL-concept descriptions and G(C),G(D) the corre-
sponding EL-description trees. Then, C T D iff there exists a homomorphism
@ from G(D) into G(C).

The graphical representation of an ££-ABox A yields the starting point for
the definition of the £C-description graph G(A) corresponding to A, i.e., the
individuals in A yield a subset of the nodes in G(A) and the role assertions in
A yield some of the edges in G(A). Concept assertions a : C' € A are translated
as follows: the concept names occurring on the top-level of C' yield the label
of a, and for each existential restriction Ir.C’ on the top-level of C, the EL-
description tree G(C') = (Vor, Ecr,vocr, ber) is added to the graph together
with the edge arvocr. For example, the ££-ABox

A = {a:PN3s.(QNIr.PN3s.T),b: PNQ,c:Ir.P,

yields the £L-description graph depicted in Figure 2. Formally, G(A) is defined
as follows:
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o b: {P,Q}
a iP} s
v {Q} c:0

ve : {P} v3: 0 vy : {P}

Figure 2: The £L-description graph of A.

Definition 12 (££-description graph of an ££-ABox)
Let A be an EL-ABox and Ind(A) the set of individuals occurring in A. For each
a € Ind(A), let C, = a'[l)_éAD’ if there exists a concept assertion a : D € A;
otherwise, C, := T. Finally, G(Cy) = (Va, Ea,a,l,) denotes the EL-description
trees corresponding to Cy, a € Ind(A), where w.l.o.g. the sets V, are assumed to
be pairwise disjoint.

The EL-description graph G(A) of A is defined by G(A) := (V, E, () with

[ ] V = Uaelnd(A) Vg,,
o E:={arb| (a,b) : 7 € A} UU,cina(a) Ea, and
o ((v) :=L,(v) for allv € V,.

It remains to adapt the notion of a homomorphism to ££-description graphs
and trees: A mapping ¢ : Vo — V is a homomorphism from the EL-description
tree G(C) = (Vo, Ec, v, lc) into the EL-description graph G = (V, E, ¢) if

1. Le(v) CL(p(v)) for all v € Vi, and
2. p(v)re(w) € E for all vrw € E¢.

The first condition of Definition 3 is now directly integrated into the character-
ization of instance relationships in L.

Theorem 13 Let A be an EL-ABoz, a € Ind(A) an individual in A, and C an
EL-concept description. Further, let G(A) = (V, E,{) denote the EL-description
graph of A and G(C) = (Ve, Ec,vo,€c) the EL-description tree corresponding
to C. Then, a €4 C iff there exists a homomorphism ¢ : Vo — V' from G(C)
into G(A) with o(vo) = a.
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Proof of the if-direction: As already mentioned in the introduction, this
characterization of instance is also sound for ALE (using appropriate definitions
of ALE-description graphs and homomorphisms from ALE-description trees into
ALE-description graphs). This soundness result will be formalized in Lemma 30
in Section 5. The if-direction of Theorem 13 is an immediate consequence of
this lemma.

Proof of the only-if-direction: For this poof, we need the canonical inter-
pretation induced by an ££-description graph.

Definition 14 (Canonical interpretation) LetG = (V, E,{) be an EL-description
graph. The canonical interpretation Z(G) is defined by Z(G) := (Az(g),-I(g))
with

L] Az(g) = V,
e PT9) :={v eV |Peclv)} for all P € N¢, and
o 79 .= {(v,w) €V xV | (vrw € E)} for all r € Np.

The following lemma formalizes the important property used in the proof
of completeness, namely that, for an ££-ABox, the canonical interpretation

Z(G(A)) is a model of A.

Lemma 15 Let A be an EL-ABoz and G(A) the corresponding EL-description
graph. The canonical interpretation T(G(A)) is a model of A.

Proof: We have to show that Z(G(A)) satisfies each assertion in A.

By construction, Z(G(A)) satisfies each role assertion in A.

Leta:De Awhere D=P N...NMP,MN3r;.D;MN...M3r,.Dyy, P; € Nc.
We show that

1. a9 ¢ pHIA) for all 1 < i <, and
2. a”(9A) ¢ (Fr;.D;)T9A) for all 1 < j < m.

Ad (1): By definition of G(A), it is P; € £(a), and by definition of Z(G(A)), we
get aZ(9(A) ¢ PHOAD for a1l 1 < i < .

Ad (2): Let C, be defined as in Definition 12. By definition of G(A), for each
1 < j < m, there exists a node v; € V such that arjv; € E and D; = Cg(c,)(v;)>
where G(C,)(v;) denotes the subtree with root v; of G(C,). By induction on the

depth of Dy, it is easy to see that vf(g(A)) € (C’g(oa)(vj))f(g(f‘))_ In addition, it
is (aI(g(A)),U?(g(A))) c TZ(Q(A)), and thus aI(g(.A)) c (E'Tj.Dj)I(g(A))_
Now, (1) and (2) imply aZ(9(A) ¢ DTG(A), O

In order to complete the proof of the only-if-direction, we will show the
following

Claim: Let v € V. If v € DT(9(A) | then there exists a homomorphism ¢ from
G(D) = (Vp, Ep,wo, £p) into G(A) with p(wy) = v.
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Since a €4 C and Z(G(A)) = A, the claim implies that there exists a homo-
morphism ¢ from G(C) into G(A) with ¢(vg) = a.
We prove the claim by induction on depth(D).

depth(D) = 0, i.e., D = P, ...M P,. Then G(D) = ({wo}, 0, wo,lp) with
(p(wo) = {Py,...,P,}. Define ¢ by p(wp) := v. Since v € DT(GA) | the
definition of Z(G(A)) implies £p(wy) C £(v), i.e., ¢ is a homomorphism
from G(D) into G(A).

depth(D) > 0, ie, D = PPN ...N P, N3ry.Dy N...MN Iry.Dy. As for
depth(D) =) we get {P,...,P,} C {(v). Now, v € DZ(9(4) implies that,
for each 1 < j < m, there exists a node v; € V such that (v,v;) € rZ(9(A)
and v; € D%g(A)). Let w; denote the r;-successor of wy in G(D) with
D; = G(D)(w;), 1 < i < m. By induction, there exist homomorphisms
Gwis- -y Puw,, rom G(D)(w;) into G(A) with ¢, (w;) = v; for all 1 <4 <

m. Define p by
v :={wy— v}U U Puw-
worweEp
Since for each worw € Ep thereexistsan j € {1,...,m} such that w = wy,
¢ is well-defined, and by construction, it is a homomorphism from G(D)
into G(A) with ¢(wg) = v. O

Whether there exists a homomorphism from a tree into a graph can be
decided in polynomial time [8]. Since G(C) and G(A) can be computed in
polynomial time, we get

Proposition 16 The instance problem for EL can be decided in polynomial
time.

3.2 Computing k-approximations in ££

In this section, we will show that, for an ELABox A and an individual a €
Ind(A), the k-approximation of a w.r.t. A always exists and can be effectively
computed. The algorithm computing mscy, 4(a) introduced below works as fol-
lows: First, the description graph G(A) is unraveled into a tree 7 (a, G(A)) with
root a, a finite branching factor, but possibly infinite long paths. Truncating all
paths of length < k then yields an ££-description tree Ty (a, A) of depth < k.
Using the characterization of subsumption introduced above, it is easy to show
that the £L-concept description C'r; (g(4)) is equivalent to mscg 4(a). In case
that A is acyclic, T (a,G(A)) is an EL-description tree and C(4,g(.4)) yields the
msc of a w.r.t. A.

For the definition of the trees T (a,.A) and T (a, A), we need the following
notions: For an £L-description graph G = (V, E,{), p = vorivira ...Txvy iS a
path from vy to vy, of length |p| = n, if v;_1r;v; € E forall 1 <i < n. The path p
will also be denoted as rq - - - 7, -path from vg to vy, and the node v, asry - --ry,-
successor of vy, whereby each node is assumed to be an e-successor of itself.



13

The path p contains a cycle, if v; = v; for two indices i,j with 0 < i < 7 <.
A node v is reachable from vg, if there exists a path from vy to v.

Definition 17 (Tree of a w.r.t. G (and k)) Let G = (V,E,{) and a € V.
The tree T (a,G) of a w.r.t. A is defined by T (a,G) := (Vt, Et, a,t) with

o Vi:={arivirs...rpv, | arivirs ... 70, is a path from a to v, in G},
e Bt :={prq|p,q eVt and p=aryviry...ryv, and ¢ = aryvire ... TRV TW Y,
o (i(p) :=L(v) if p=ariviry...TpV.

For a nonnegative integer k € IN the tree Tr(a,G) of a w.r.t. G and k is defined
by Tr(a,G) := (V{, EL, a,0L) with

o Vi={peV'|Ipl <k},
e El :=E'Nn(V{ x NgxV}), and
o li(p):=1'(p) if pE V.

Since by definition £L-description graphs are finite, 7 (a,G) has a finite
branching factor, i.e., 7 (a,G) is infinite if and only if 7 (a,G) contains a path
of infinite length. This is the case if and only if there exists a path p in G
such that p contains a cycle. By definition, Ti(a,G) is an EL-description tree
of depth < k. If G is acyclic, i.e., G does not exist a path p in G containing
a cycle, T(a,G) is finite and thus, an £L-description tree. Now, the following
characterization of the (k-approximation of the) msc is based on these trees,
whereby the EL-description graph is obtained from an ££-ABox A, and the root
is assumed to be an individual from A.

Theorem 18 Let A be an EL-ABox, a € Ind(A), and k € N. Then, Cr; (a,6(A))
is the k-approzimation of a w.r.t. A. If, starting from a, no cyclic path in A can
be reached (i.e., T (a,G(A)) is finite), then Cr(q,g(a)) is the msc of a w.r.t. A;
otherwise no msc exists.

Proof: Let G(A) = (Va,Ea,l4) and Tg(a,G(A)) = (Vi, Ek, a, ).

We first show a €4 C'r; (4,6(4))- Let ¢ be the mapping obtained from map-
ping each path p € V}, onto the last node v occurring in p. It is easy to see that
¢ yields a homomorphism from 7 (a,G(A)) into G(A) with p(a) = a. Since,
for EL-description trees G, it is G = G(Cg) up to renaming nodes, Theorem 13
yields a € 4 Cr (a,(4)) -

It remains to show that for all ££-concept descriptions C' with a € 4 C and
depth(C) < k also C7;(q,4)) T C. Let C be such an £L-concept description.
By Theorem 13 we get that there exists a homomorphism ¢ from G(C) =
(Ve, Ec,v0, L) into G(A) with ¢(vg) = a. Using ¢, we define a homomorphism
¢ from G(C) into Ti.(a,G(A)). Then Theorem 4 implies C'r; (a,(4)) E C.

For v € Vi, let voryvire - - - 7p_1Up—17,v be the unique (!) path from vg to
v in G(C). Define p(v) := p(vo)rip(vi)ra - rp—1p(Vn-1)rne(v). Since p is a
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homomorphism from G(C) into G(A), p(v) is well-defined and yields a path of
length n < k from ¢(vg) to ¢(v) in G(A). It is easy to see that the mapping
Y : Vo — Vi, defined by ¢ (v) := p(v) yields a homomorphism from G(C') into
Ti(a,G(A)).

Now, assume that, starting from a, a cycle can be reached in A, i.e., T (a, G(A))
is infinite. Then, we have a decreasing chain Cy J Cy 1 - - - of k-approximations
Cr (= Cri(a,9(4))) With increasing depth &, £ > 0. From Theorem 11, we con-
clude that there does not exist an EL-concept description subsumed by all of
these k-approximations (since such a concept description only has a fixed and
finite depth). Thus, a cannot have an msc.

Conversely, if T (a,G(A)) is finite, say with depth k, from the observation
that all k'-approximations, for ¥’ > k, are equivalent, it immediately follows
that C'r(q,g(4)) is the msc of a. |

Obviously, there exists a deterministic algorithm computing the k-approxima-
tion (i.e., Cr (a,g(4))) in time O(|A[*). The size |A| of A is defined by

A := [Ind(A)| + [{(a,b) : 7| (a,b) s € A} + > |C,
a:CeA

where the size |C] of C' is defined as the sum of the number of occurrences of
concept names, role names, and constructors in C'. Similarly, one obtains an
exponential complexity upper bound for computing the msc (if it exists).

Corollary 19 For an EL-ABox A, an individual a € Ind(A), and k € IN, the k-
approzimation of a w.r.t. A always exists and can be computed in time O(|A|*).

The msc of a exists iff starting from a no cycle can be reached in A. The
ezistence of the msc can be decided in polynomial time, and if the msc exists, it
can be computed in time exponential in the size of A.

In the remainder of this section, we prove that the exponential upper bounds
are tight. To this end, we show examples demonstrating that k-approximations
and the msc may grow exponentially.

Example 20 Let A = {(a,a) : r,(a,a) : s}. The EL-description graph G(A)
as well as the EL-description trees Ti(a,G(A)) and Tz2(a,G(A)) are depicted in
Figure 3. It is easy to see that, for k > 1, Ti(a,G(A)) yields a full binary tree
of depth k where

e cach node is labeled with the empty set, and
e cach node except the leaves has one r- and one s-successor.

By Theorem 18, C7,(a,6(A)) 5 the k-approzimation of a w.r.t. A. The size of
CTi(a,g(a)) i |A|*. Moreover, it is not hard to see that there does not exist an
EL-concept description C which is equivalent to but smaller than Cr, (4,6(A))-

The following example illustrates that, if it exists, also the msc can be of expo-
nential size.
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G(A) : ﬂ(a,g(A))a::w

Q N

ara: asa: ()

T2(a,G(A)) :

/\

ara: asa :

arara : () arasa : () asara : () asasa : |

Figure 3: The &L-description graph and the £L-description trees from Exam-
ple 20.

Example 21 For n > 1, define Ay, := {(a;,a;11) : 7, (@i, ai41) 18| 1 <i<n}.
Obviously, A, is acyclic, and the size of A, is linear in n. By Theorem 18,
CT(a1,A,) 18 the msc of ay w.r.t. A,. It is easy to see that, for eachn, T (a1, An)
coincides with the tree T, (a, G(A)) obtained in Ezample 20. As before we obtain
that

o C7(a1,6(A)) 18 of size exponential in |Ay|; and

e there does not exist an EL-concept description C equivalent to but smaller
than C7(a1,6(4)-

Summarizing, we obtain the following lower bounds.
Proposition 22 Let A be an EL-ABoz, a € Ind(A), and k € N.
e The size of msc 4 (a) may grow with |Al*.

o If it exists, the size of msc4(a) may grow exponentially in |A|.

4 Most specific concepts in £L_

Our goal is to obtain a characterization of the (k-approximation of the) msc in
&L, analogously to the one given in Theorem 18 for ££. To achieve this goal,
first the notions description graph and description tree are extended from EC to
EL_, by allowing for subsets of NoU{—P | P € No}U{L} as node labels. Just as
for £L, there exists a 1-1 correspondence between EL_-concept descriptions and
EL_-description trees, and an EL--ABox A is translated into an EL_-description
graph G(A) as described for ££-ABoxes. The notion of a homomorphism also
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G(A): b (P} Gg(C): wo - {P)
a:{P} r "

r wy : {P}
ba @—T>53 {=P} r

w2 {"P}

Figure 4: The £L_-description graph and the ££_-description tree from Exam-
ple 23.

remains unchanged for ££-,, and the characterization of subsumption extends to
EL_ by just considering inconsistent EL_-concept descriptions as a special case:
C C D iff C = L or there exists a homomorphism ¢ from G(D) into G(C).

Second, we have to cope with inconsistent ££_-ABoxes as a special case: for
an inconsistent ABox A, a € 4 C is valid for all concept descriptions C, and
hence, msc4(a) = L. However, extending Theorem 13 with this special case
does not yield a sound and complete characterization of instance relationships
for £L_. If this was the case, we would get that the instance problem for ££_,
is in P, in contradiction to complexity results shown in [16], which imply that
the instance problem for ££_ is coNP-hard.

The following example is an abstract version of an example given in [16]; it
illustrates incompleteness of a naive extension of Theorem 13 from EL to EC-.

Example 23 Consider the EL--concept description C = P M 3r.(P N 3r.—P)
and the EL.-ABox A = {a : P,by : P,bs : =P, (a,b1) : r,(a,bs) : r,(b1,b2) :
r, (ba2,b3) : r}; G(A) and G(C) are depicted in Figure 4. Obuviously, there does
not exist a homomorphism ¢ from G(C) into G(A) with p(wo) = a, because
neither P € £(b2) nor =P € £(by). For each model T of A, however, either
bl € PT or bl € (=P)T, and in fact, a* € CT. Thus, a is an instance of C
w.r.t. A though there does not exist a homomorphism ¢ from G(C) into G(A)
with @(wp) = a.

In the following section, we give a sound and complete characterization of in-
stance relationships in ££-, which again yields the basis for the characterization
of k-approximations given in Section 4.2.

4.1 Characterizing instance in £

The reason for the problem illustrated in Example 23 is that, in general, for
the individuals in the ABox it is not always fixed whether they are instances of
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a given concept name or not. Thus, in order to obtain a sound and complete
characterization analogous to Theorem 13, instead of G(.A), one has to consider
all so-called atomic completions of G(A).

Definition 24 (Atomic completion) Let G = (V, E, ) be an EL.-description
graph and N§ = {P € N¢ | ezistsv € V with P € {(v) or =P € L(v)}. An
EL_.-description graph G* = (V, E,£*) is an atomic completion of G if, for all
vevV,

1. £(v) C £*(v),

2. for all concept names P € N} either P € £*(v) or =P € {*(v).

Note that by definition, all labels of nodes in completions do not contain a
conflict, i.e., the nodes are not labeled with a concept name and its negation.
In particular, if G has a conflicting node, then G does not have a completion.
It is easy to see that an ££-ABox A is inconsistent iff G(A) contains a con-
flicting node. For this reason, in the following characterization of the instance
relationship, we do not need to distinguish between consistent and inconsistent
ABoxes.

Theorem 25 Let A be an EL_-ABoz, G(A) = (V, E, ) the corresponding de-
scription graph, C an EL_-concept description, G(C) = (Vo,Ec,wo,lc) the
corresponding description tree, and a € Ind(A). Then, a €4 C iff for each
atomic completion G(A)* of G(A), there exists a homomorphism ¢ from G(C)
into G(A)* with p(wy) = a.

Proof of the if-direction: For the characterization of instance in L (see
Theorem 13, the proof of the if-direction could be obtained trivially as a special
case of the soundness result given for ALE in Section 5. For £L-, however,
things are not that easy: Since for the if-direction we only assume that there
exist homomorphisms from G(C) into primitive completions of G(A), and since
a primitive completion of G(A) in general does not coincide with G(A), the
preconditions of Lemma 30 are not satisfied.

The idea underlying the proof given below is as follows: For a consistent
EL_-ABox A (for inconsistent ABoxes nothing has to be shown) and a model
T = (Az,-1) of A, we first define a mapping ¢ : V — Az with

1. (b) = b* for all b € Ind(A),
2. (¥(v),(w)) € rt for all vrw € E, and
3. Y(v) € QF for all Q € £(v) and v € V.

Using this mapping, we then define a primitive completion G(A);, = (V, E, ¢;)
in such a way that ¢ also satisfies condition

4. (v) € QT for all Q € £y, (v) and v € V.
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By assumption, there exists a homomorphism ¢ from G(C) into Q(A)fp. By
induction on the depth of G(C)(w), we finally show that for all w € Vi

P(p(w)) € Cg(cyw)”- (1)

Since ¢(wp) = a and ¥(a) = a” and C = Cg(c)(uy), this implies a” € CT.

The definition of the mapping ¢: Let a € Ind(A), C, = .[QAD, and
G(C,) = (Vo, Eqa,a,b,). For v € V,,, we define ¢(v) by induction on the length
A of the unique (!) path from a to v in G(C,) such that in addition ¢(v) €
Co(caym

A=0: Then v = a. Define ¢(a) := a’. Since T | A, we get a € CZ. In
particular, aZ € QZ for all Q € ¢(a). Thus, conditions (1) and (3) are
satisfied for all a € Ind(A).

A > 0: Then there exists a unique edge of the form v'rv € E,. By induction,
P (v') is already defined, and it is ¢ (v') € Cg(ca)(v/)z. Since v'rv € E,,
there exists an existential restriction of the form 3r.Cg(c,)() on the top-
level of Cg(c,)v)- Now, ¢(v') € Cg(ca)(v/)z implies that there exists an
a € Az such that (¢(v'),a) € RT and a € Og(oa)(v)z. Define ¥ (v) := a.
Since a € C’g(oa)(v)l and £(v) = €,(v), we get a € QT for all Q € £(v),
i.e., condition (3) is satisfied for v.

By construction, 1 satisfies the conditions (1)—(3).
The definition of the primitive completion G(A)y,: Let N¢ be the set of all
concept names occurring in G(A). Define G( T, := (V, E,(;)) by

05, (v) :=={P € N& | ¢¥(v) € PP} U{=P | P € N and ¢(v) ¢ P}.

By condition (3) we get £(v) C £} (v) for all v € V. Thus, G(A)}, is a primitive
completion of G(A) that, by definition, satisfies condition (4).

Now, the precondition of the if-direction yields a homomorphism ¢ from
G(C) into G(A)j, with p(wp) = a. We show Property (1) by induction on the
depth of G(C)(w):

depth(G(C =0: Then C wy = 1
pth(G(C)(w)) n Corw) = optn
Since Le(w) C £ (o(w)), conditionI(4) implies 1 (p(w)) € Q* for all Q €
lc(w). Hence, ¢(p(w)) € Cg(c)(w)” -

depth(Q(C) (w)) > 0: Then CQ(C)(w) = Qelrcl(w) QN wrwl’_éEc HT.CQ(C)(W).

As before we get 1 (¢(w)) € QT for all Q € lo(w). Let wrw' € Eo. By def-
inition of 1), and since ¢ is a homomorphism, we get (¢¥(p(w)), ¥ (p(w'))) €
rZ. By induction, 9 (p(w')) € C’g(c)(w/)z, and hence ¢ (¢(w)) € (Ir.Cocyw)*

Summing up, we get ¥ (p(w)) € C'Q’(C')(w)z'
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This completes the proof of the if-direction.

Proof of the only-if-direction: Let A be a consistent E£-ABox, N := {P €
Ne |Fw eV :Pel(v)V-P el(v)},anda €4 C. Let G(C) = (Vo Ec,wo, Lo),
G(A)* = (V, E, £*) an arbitrary primitive completion of G(A), and Z(G(A)*) the
canonical interpretation induced by G(A)*. The canonical interpretation of an
EL_-ABox is defined just as for EL. Moreover, it is easy to see that the canonical
interpretation of an ££_-ABox A is a model of A. Since

o rZ(G(A) = pZG(A) for all r € Npg,
o PTG(A) C PTUA) for all P € N¢, and
o ~Pcl(v) = P¢v) = vg PTEA),

Z(G(A)*) is also a model of A. We first show that, for all concept names P
occurring in C, P € N{. Assume that there exists a concept name P occurring
in C with P ¢ N&. Let w € Vo be an rq ...7p-successor of wy in G(C') with
P € lo(w) or =P € Lo(w). Assume P € lo(w). Then, for each model 7
of C' and each a € CZ, there exists an (ry ...r,)%-successor B of « in Z with
B € PT. Since P ¢ N, however, P7(9(A7) = {§, and hence, CZ(9(A7) = § in
contradiction to a € 4 C. If =P € {c(w), then for each model Z of C' and each
a € C7, there exists an (ry ..., ) -successor 3 of o in T with § & PZ. Define
J = (V,-7), where Q7 := Q79 for all Q € N} and P7 := V. Then J
is a model of A, because the interpretation of concept names and role names
occurring in A remained unchanged w.r.t. Z(G(A)*). But obviously, (=P)7 =0,
and hence C7 # ) in contradiction to a € 4 C.

Thus, we have shown that, for a consistent ££_-ABox A, a €4 C implies
P € Ng for all concept names P occurring in C'. Now, the only-if-direction is
an easy consequence of the following

Claim: If v € C7(9(A7) and if all concept names occurring in C' also occur
in A, then there exists a homomorphism ¢ from G(C) into G(A)* with
p(wo) = v.

Proof by induction on depth(C):

depth(C') =0: Then C = Q1 M...MQy, where Q; € No U{-P | P € N¢}.
Define ¢ by ¢(wp) := v. We know v € CT9A")_ If Q; € N¢, then by
definition of Z(G(A)*), it is @Q; € £(v). If Q; = =P for some P € Ng,
v E Qiz(g(A) ) implies P ¢ {(v). The precondition on C yields P € Ng.
Since G(A)* is a primitive completion, we get =P € £(v). Summing up, it
is o (wo) C £*(v), and hence ¢ is a homomorphism from G(C') into G(.A)*.
depth(C) > 0: The induction step is shown as for EL.
This completes the proof of the only-if-direction and hence of Theorem 25. O

The problem of deciding whether there exists an atomic completion G(.A)*
such that there exists no homomorphism from G(C) into G(A)* is in coNP.
Adding the coNP-hardness result obtained from [16], this shows
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Corollary 26 The instance problem for EL_, is coNP-complete.

4.2 Computing k-approximations in &L_

Not surprisingly, the algorithm computing the k-approximation/msc in £ does
not yield the desired result for ££_. For instance, in Example 23, we would
get Cra,gay = PN 3Ir3r(=P) N 3Ir.(P N 3Ir3r(-P)). But as we will see,
msc4(a) = PN 3r.(PN3Ir.~P) N 3Ir.(PN3Ir.3r.-P), ie., mscy(a) T Crq,4)-
As in the extension of the characterization of instance relationships from
EL to EL-, we have to take into account all atomic completions instead of the
single description graph G(.A). Intuitively, one has to compute the least concept
description for which there exists a homomorphism into each atomic completion
of G(A). In fact, this can be done by applying the lcs operation on the set of all
concept descriptions Cr; (4,6(.4)+) obtained from the atomic completions G(A)*

of G(A).

Theorem 27 Let A be an EL.-ABoz, a € Ind(A), and k € N. If A is incon-
sistent, then mscy 4(a) = msca(a) = L. Otherwise, let {G(A)Y,...,G(A)"} be
the set of all atomic completions of G(A).

Then, |CS(C7-k(a,g(_A)1), ey CTk(a,g(.A)")) = msck,A(a). If, starting from a,
no cycle can be reached in A, then Ics(Cra.g(a)1), - - Cr(a,g(a)m)) = msca(a);
otherwise the msc does not ezist.

Proof sketch. Let A be a consistent ££_-ABox and G(A)!, ..., G(A)™ the atomic
completions of G(A). By definition of Cr, (4,(4)¢), there exists a homomorphism
m; from Cry (q,6(a)) into G(A)* for all 1 < i < n. Let Cp denote the lcs of
{Cr,(a,6(4)1)s - -+ CTy (a,6(4)m) }- The characterization of subsumption for £,
yields homomorphisms ¢; from G(Cy) into G(Cry,(a,g(a)i)) for all 1 < i < n.
Now it is easy to see that m; o p; yields a homomorphism from G(Cj) into
G(A)!, 1 <i < n, each mapping the root of G(C}) onto a. Hence, a € 4 C.

Assume C' with depth(C') < k and a €4 C'. By Theorem 25, there exist
homomorphisms v; from G(C") into G(A)? for all 1 < i < n, each mapping the
root of G(C") onto a. Since depth(C’) < k, these homomorphisms immediately
yield homomorphisms v; from G(C") into G(C'7; (4,6(4)7)) for all 1 < < n. Now
the characterization of subsumption yields Cr; (4,g(4)i) E C'foralll <i<mn,
and hence Cy, C C’. Thus, Cy = mscy, 4(a).

Analogously, in case starting from a, no cycle can be reached in A, we
conclude Ics(C'r(a,6(A4)1)s - - - » CT(a,g(4))) = msca(a). Otherwise, with the same
argument as in the proof of Theorem 18, it follows that the msc does not exist.

|

In Example 23, we obtain two atomic completions, namely G(A)! with ¢*(by)
{P}, and G(A)? with ¢*>(by) = {=P}. Now Theorem 27 implies msc4(a)
lCS(C'T((Lg(.A)l))CT((LQ(.A)Z))) which is equivalent to

P 3r.(PN3r.—-P)N3r.(PN3Ir3r-P).
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The examples showing the exponential blow-up of the size of k-approximations
and msc’s in EL can easily be adapted to £E£-. However, we only have a double
exponential upper bound (though we strongly conjecture that the size can again
single-exponentially be bounded): the size of each tree (and the corresponding
concept descriptions) obtained from an atomic completion is at most exponen-
tial, and the size of the lcs of a sequence of EL_-concept descriptions can grow
exponentially in the size of the input descriptions [3].

Moreover, by an algorithm computing the lcs of the concept descriptions
obtained from the atomic completions, the k-approximation (the msc) can be
computed in double exponential time.

Corollary 28 Let A be an EL-ABox, a € Ind(A), and k € N.

e The k-approzimation of a always exists. It may be of size |A|F and can be
computed in double-exponential time.

e The msc of a exists iff A is inconsistent, or starting from a, no cycle can
be reached in A. If the msc exists, its size may grow exponentially in |Al,
and it can be computed in double-exponential time. The existence of the
msc can be decided in polynomial time.

5 Most Specific Concepts in ALE

As already mentioned in the introduction, the characterization of instance re-

lationships could not yet be extended from EL- to ALE. Since these structural

characterizations were crucial for the algorithms computing the (k-approximation
of the) msc in EC and EL-,, no similar algorithms for ALE can be presented here.

However, we show that

1. given that N¢ and Np are finite sets, the msci 4(a) always exists and can
effectively be computed (cf. Theorem 29);

2. the characterization of instance relationships in £L is also sound for ALE
(cf. Lemma 30), which allows for approximating the k-approximation; and

3. we illustrate the main problems encountered in the structural characteri-
zation of instance relationships in ALE (cf. Example 31).

The first result is achieved by a rather generic argument. Given that the sig-
nature, i.e., the sets No and Npg, are fixed and finite, it is easy to see that also
the set of ALE-concept descriptions of depth < k built using only names from
N¢cUNp is finite (up to equivalence) and can effectively be computed. Since the
instance problem for ALE is known to be decidable [16], enumerating this set
and retrieving the least concept description which has a as instance, obviously
yields an algorithm computing mscy 4(a).

Theorem 29 Let No and Ng be fized and finite, and let A be an ALE-ABox
built over a set Ny of individuals and NoeUNg. Then, for k € N and a € Ind(A),
the k-approximation of a w.r.t. A always exists and can effectively be computed.
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Note that the above argument cannot be adapted to prove the existence
of the msc for acyclic ACE-ABoxes unless the size of the msc can be bounded
appropriately. Finding such a bound remains an open problem.

The algorithm sketched above is obviously not applicable in real applications.
Thus, in the remainder of this section, we focus on extending the improved
algorithms obtained for £C and L, to ALE.

5.1 Approximating the k-approximation in ALE

We first have to extend the notions description graph and description tree from
EL- to ALE: In order to cope with value restrictions occurring in ALE-concept
descriptions, we allow for two types of edges, namely those labeled with role
names r € Ng (representing existential restrictions of the form 3r.C") and those
labeled with Vr (representing value restrictions of the form Vr.C'). Again, there
is a 1-1 correspondence between ALE-concept descriptions and ALE-description
trees, and an ALE-ABox A is translated into an ALE-description graph G(A)
just as described for ££-ABoxes. The notion of a homomorphism also extends
to ALE in a natural way. A homomorphism ¢ from an ALE-description tree H =
(Vir, Emr,vo,Lm) into an ALE-description graph G = (V, E, £) is a mapping ¢ :
Vi — V satisfying the conditions (1) and (2) on homomorphisms between EL-
description trees and EL-description graphs, and additionally (3) ¢(v)Vre(w) €
FE for all vWrw € Ey.

We are now equipped to formalize soundness of the characterization of in-
stance relationships for ALE.

Lemma 30 Let A be an ACE-ABox, a € Ind(A) an individual in A, and C
an ALE-concept description. Further, let G(A) = (V,E,{) denote the ALE-
description graph of A and G(C) = (Vo, Ec,vo, be) the ACE-description tree of
C. If there exists a homomorphism ¢ from G(C) into G(A) with p(vo) = a,
then a €4 C.

Proof: If A is inconsistent, nothing has to be shown. Let A be a consistent
ACE-ABox and Z a model of 4. Let C, = .[QAD and G(C,) = (Vu, Eq, a,£,).

Now, Z = A implies a’ € CZ. We show a’ € C7 by induction on depth(C):
depth(C) = 0: Then C = QM...NQ, with Q; € NoU{~P | P € No}U{T, L}.
We show af € QF for all 1 <i < n.
For @; = T nothing has to be shown.
Assume @; = L. This would imply C, = L in contradiction to Z = A.

Assume Q; € N¢ or Q; = =P for some P € No. Then, P € {(a) or
—P € {(a). By definition of G(C,) and C,, we get C, C P or C, C =P,
respectively, and hence a” € P? or a” € (-P)7.

depth(C) > 0: Then C = QM ...NQ, N IAr.C1 N ...MNIry,.Cp, MVs1.Dy M
...MVs;.Dy, with Q; € No U{=P | P € Noc}U{TL}. We show a” € C'*
for all conjuncts C’ on the top-level of C.
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For C" = Q;, the claim follows as for depth(C') = 0.

Let C' = Vs;.D; and w € Vi the Vsj-successor of wy with G(C)(w) =
G(D;). Since ¢ is a homomorphism, there exists a Vs;-successor v of
a in G(A) with p(w) = v. By definition of G(A), this node v is the
root of a subtree of G(C,). In particular, C, E Vs;.Cg(c,)w)- Thus,
a’ € CF implies a” € (Vs;.Cg(c,)(v))*- Obviously, restricting ¢ to the
nodes in G(C)(w) yields a homomorphism from G(C)(w) into G(C,)(v)-
By Theorem 4, it follows CQ(C’,,)(D) C Cg(c)(w), and hence a” € (VS]'.D]')I.

Let C' = 3r;.C; and w € Vi the rj-successor of wo with G(C)(w) = G(C}).
Since ¢ is a homomorphism from G(C) into G(A), there exists an r;-
successor v of a in G(A) with p(w) = v. If v & Ind(A), then y definition
of G(A), this node v is the root of a subtree of G(C,). As in the previous
case, we get a’ € (Ir;.C;)T. If v € Ind(A), then ¢ restricted to the
nodes in G(C)(w) yields a homomorphism ¢ from G(C)(w) into G(A) with
Y(w) = v. By induction, we get v €4 Cg(cy(w)- Since T |= A, it follows
vl € Cg(c)(w), and since Cj = Cg(c)(w), this yields o € (3r;.C;)T. O

As an immediate consequence of this lemma, we get a € 4 C7; (4,6(4)) for all
k > 0, where the trees T (a,G(A)) and Ti(a,G(A)) are defined just as for EC.
This in turn yields mscg, 4(a) E C7; (a,6(4)) and hence, an algorithm computing
an approximation of the k-approximation for ALE. In fact, such approximations
already turned out to be quite usable in our process engineering application [4].

The following example now shows that the characterization is not complete
for ACE, and that, in general, C7, (4,6(4)) Z Msck,4(a). In particular, it demon-
strates the difficulties one encounters in the presence of value restrictions.

Example 31 Consider the ALE-ABoz

A = {a:Pb: PNVs.PN3r.Pby: PN3r.(PN3s: P),
(a,by) 27, (a,b2) : 7, (b1, b2) s 7},

and the ALE-concept description C = Jr.(Vs.P M Ir.3s.T); G(A) and G(C) are
depicted in Figure 5. Note that G(A) is the unique atomic completion of itself
(w.r.t. No = {P}).

It is easy to see that there does not exist a homomorphism ¢ from G(C) into
G(A) with o(wo) = a. However, a €4 C: For each model T of A, bl does not
have an s-successor, or at least one s-successor. In the first case, by € Vs.P,
and hence bl yields the desired r-successor of a® in (Vs.P M 3r.3s.T)L. In the
second case, it is b5 € (35.T)Z, and hence b yields the desired r-successor of
a®. Thus, for each model T of A, o € CT.

Moreover, for k =4, C1,(,,4) s given by PN 3r.(PNVs.PN3r.PN3r.(PN
Ir.(PMN3s.P))) NIr.(PNIr.(PN3s.P)). It is easy to see that Cr,(q,4) L C.
Hence, C7,(q,4) N C T Cr,(a,4), which implies mscy a(a) T Cr,(q,4)-

Intuitively, the above example suggests that, in the definition of atomic
completions, one should take into account not only (negated) concept names
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G(A): a:{P} G(C): wo : 0
bli{P} b2{P} w1 @
Vs r r Vs r
vo : {P} vy : {P} ve : {P} wy : {P} ws : 0
v3 : {P} wy : 0

Figure 5: The ALE-description graph and the ALE-description tree from Exam-
ple 31.

but also more complex concept descriptions. However, it is not clear whether an
appropriate set of such concept descriptions can be obtained just from the ABox
and how these concept descriptions need to be integrated in the completion in
order to obtain a sound and complete structural characterization of instance
relationships in ALE.

6 Conclusion

Starting with the formal definition of the k-approximation of msc we showed
that, for ACE and a finite signature (N¢, Ng), the k-approximation of the msc
of an individual b always exists and can effectively be computed. For the sublan-
guages EL and EL-,, we gave sound and complete characterizations of instance
relationships that lead to practical algorithms. As a by-product, we obtained
a characterization of the existence of the msc in ££-/EL--ABoxes, and showed
that the msc can effectively be computed in case it exists.

First experiments with manually computed approximations of the msc in
the process engineering application were quite encouraging [4]: used as inputs
for the lcs operation, i.e., the second step in the bottom-up construction of the
knowledge base, they lead to descriptions of building blocks the engineers could
use to refine their knowledge base. In next steps, the run-time behavior and the
quality of the output of the algorithms presented here is to be evaluated by a
prototype implementation in the process engineering application.
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