
LTCS{Report

Aachen University of Technology

Research group for

Theoretical Computer Science

Computing Least Common Subsumers in ALEN

Ralf K�usters

Institute for Computer Science

and Applied Mathematics

Christian-Albrechts-University of Kiel

kuesters@ti.informatik.uni-kiel.de

Ralf Molitor

�

Swiss Life

IT Research and Development Group

8022 Z�urich, Switzerland

ralf.molitor@swisslife.ch

LTCS-Report 00-07

(�) This research was carried out while the second author was still at the LuFG

Theoretical Computer Science, RWTH Aachen.

RWTH Aachen

LuFg Theoretische Informatik

http://www-lti.informatik.rwth-aachen.de

Ahornstr. 55

52074 Aachen

Germany

Abstract

Computing the least common subsumer (lcs) in description logics is an inference task �rst

introduced for sublanguages of CLASSIC. Roughly speaking, the lcs of a set of concept descriptions

is the most speci�c concept description that subsumes all of the input descriptions. As such, the

lcs allows to extract the commonalities from given concept descriptions, a task essential for several

applications like, e.g., inductive learning, information retrieval, or the bottom-up construction of

KR-knowledge bases.

Previous work on the lcs has concentrated on description logics that either allow for number

restrictions or for existential restrictions. Many applications, however, require to combine these

constructors. In this work, we present an lcs algorithm for the description logic ALEN , which allows

for both constructors (as well as concept conjunction, primitive negation, and value restrictions).

The proof of correctness of our lcs algorithm is based on an appropriate structural characterization

of subsumption in ALEN also introduced in this paper.

1 Introduction

Computing the least common subsumer (lcs) in description logics (DLs) is an inference task �rst

introduced by Cohen, Borgida, and Hirsh [4] for sublanguages of Classic. Since then, it has found

several applications: as a key operation in inductive learning algorithms [5], as a means to measure

the similarity of concepts for information retrieval [11], and as an operation to support the bottom-up

construction of DL-knowledge bases [1, 2]. Roughly speaking, the lcs of a set of concepts is the most

speci�c concept description (among a possibly in�nite number of concept descriptions) that subsumes

all of the input descriptions, and as such allows to extract the commonalities from given concept

descriptions, a task essential for all the mentioned applications.

The �rst lcs algorithms proposed in the literature were applicable to sublanguages of Classic, more

precisely, DLs that in particular allow for number restrictions [4, 5]. More recently, motivated by the

bottom-up construction of knowledge bases in a chemical engineering application [12, 13], the lcs has

been investigated for the DL ALE [2], which allows for existential restrictions instead of number restric-

tions. Although �rst empirical results are encouraging [3], they also show that this application asks

for a more expressive DL, one that allows to combine number restrictions and existential restrictions.

Such a logic can, for example, be used to describe a reactor with cooling jacket and exactly two inlet

valves by Reactor u 9is-coupled-to.Cooling-Jacket u (=2 has-inlet) u 8has-inlet.Valve.

In this work, we propose an algorithm for computing the lcs of ALEN -concept descriptions. The DL

ALEN allows for conjunction, a restricted form of negation, value restrictions, existential restrictions,

and number restrictions. Similar to previous approaches [4, 1, 2], our lcs algorithm builds on a structural

characterization of subsumption.

Typically, such a characterization works in two steps. First, concept descriptions are turned into a

structural normal form, which makes all facts implicitly represented in the description explicit. Second,

the subsumer and the subsumee, given in structural normal form, are compared syntactically. A sound

and complete characterization then ensures that the structural normal form indeed contains all implied

facts.

Now, given that the structural normal form of concept descriptions can be computed e�ectively, the

lcs of concept descriptions can be obtained by �rst computing their structural normal forms and then

extracting the \common facts" present in these normal forms.

ForALEN , however, computing the structural normal form already requires to (inductively) compute

the lcs (see our running example in Section 3). Consequently, the proof of correctness of the lcs

1

Construct name Syntax Semantics

top-concept > �

I

bottom-concept ? ;

concept name P 2 N

C

P P

I

� �

I

primitive negation, P 2 N

C

:P �

I

n P

I

conjunction C uD C

I

\D

I

existential restrictions, r 2 N

R

9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restrictions, r 2 N

R

8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

number restrictions (� nr) fx 2 �

I

j #fy : (x; y) 2 r

I

g � ng,

r 2 N

R

, n 2 IN (� nr) fx 2 �

I

j #fy : (x; y) 2 r

I

g � ng

Table 1: Syntax and semantics of ALEN -concept descriptions.

algorithm needs to be interleaved with the proof of soundness and completeness of the characterization

of subsumption, making the proofs quite involved. In [10], this approach is in fact pursued. However,

in an attempt to avoid these interleaving proofs, the author made unproved assumptions concerning

the existence and other properties of the lcs. Moreover, the lcs algorithm presented there is incorrect

in that the computed concept description not necessarily subsumes the input descriptions.

In this work, we devise a more relaxed notion of structural normal form, which does not involve

the lcs computation and therefore allows to decouple the characterization of subsumption from the

lcs computation. Instead of a single ALEN -concept description, our normal form consists of a set of

ALEN -concept descriptions, where some of the implicit facts are not made explicit.

The outline of our paper is as follows: In Section 2, we formally introduce the language ALEN and

the lcs operation. Section 3 contains a running example and a discussion of the main di�culties that

occur when computing the lcs. In subsequent sections, this example is used to illustrate the notions

introduced. Section 4 then covers the characterization of subsumption and Section 5 the lcs algorithm.

Finally, in Section 6, we briey discuss the results obtained.

2 Preliminaries

Concept descriptions are inductively de�ned with the help of a set of constructors, starting with a

set N

C

of concept names and a set N

R

of role names. In this work, we consider the DL ALEN , i.e.,

concept descriptions built from the constructors shown in Table 1, subsequently called ALEN -concept

descriptions. Later on we will need the notion of the (role) depth of a concept description. Given an

ALEN -concept description C its depth, depth(C), is inductively de�ned as follows:

� depth(?) := depth(>) := depth(P) := depth(:P) := 0;

� depth(�n r) := depth(�n r) := 1;

� depth(9r:C) := depth(8r:C) := 1 + depth(C); and

� depth(C uD) := max(depth(C); depth(D)).

The semantics of a concept description is de�ned in terms of an interpretation I = (�

I

; �

I

). The

domain �

I

of I is a non-empty set of individuals and the interpretation function �

I

maps each concept

2

name P 2 N

C

to a set P

I

� �

I

and each role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The

extension of �

I

to arbitrary concept descriptions is inductively de�ned, as shown in the third column

of Table 1.

One of the most important traditional inference services provided by DL systems is computing the

subsumption hierarchy. The concept description C is subsumed by the description D (C v D) i�

C

I

� D

I

holds for all interpretations I. The concept descriptions C and D are equivalent (C � D) i�

they subsume each other.

In this paper, we are interested in the computation of least common subsumers.

De�nition 1 Given n � 2 ALEN -concept descriptions C

1

; : : : ; C

n

, the ALEN -concept description C is

the least common subsumer (lcs) of C

1

; : : : ; C

n

(C = lcs(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all

1 � i � n, and (ii) C is the least concept description with this property, i.e., if C

0

satis�es C

i

v C

0

for

all 1 � i � n, then C v C

0

.

Depending on the DL under consideration, the lcs of two or more descriptions need not always exist,

but if it exists, then it is unique up to equivalence. The main contribution of this paper is to show that

in ALEN the lcs always exists and that it can be computed e�ectively.

For the sake of simplicity, we consider ALEN -concept descriptions over a set N

C

of concept names

and assume N

R

to be the singleton frg. However, all de�nitions and results can easily be generalized

to arbitrary sets of role names. Furthermore, w.l.o.g., we assume all ALEN -concept descriptions to be

in the following normal form: Each conjunction in an ALEN -concept description contains

1. at most one number restriction of the form (� n r)

(this is w.l.o.g. due to (� m r) u (� n r) � (� n r) if n � m);

2. at most one number restriction of the form (� n r)

(this is w.l.o.g. due to (� m r) u (� n r) � (� n r) if n � m);

3. at most one value restriction of the form 8r:C

(this is w.l.o.g. due to 8r:C u 8r:D � 8r:(C uD).

3 Running example

In order to highlight the main problems to be solved in the structural characterization of subsumption

and the computation of the lcs in ALEN , we will use the following ALEN -concept descriptions:

C

ex

:= 9r:(P u A

1

) u 9r:(P u A

2

) u 9r:(:P u A

1

) u

9r:(Q u A

3

) u 9r:(:Q u A

3

) u (� 2 r); and

D

ex

:= (� 3 r) u 8r:(A

1

u A

2

u A

3

):

The key point in the characterization of subsumption and the lcs computation is to describe the \non-

trivial" concept descriptions, say C

0

, subsuming a given concept description, say C, where \non-trivial"

means that C

0

does not occur as a conjunct on the top-level of C. Subsequently, these concept de-

scriptions are called induced. It su�ces to only consider induced concept description that are minimal

w.r.t. subsumption.

In what follows, we describe the concept descriptions induced by C

ex

and D

ex

. It turns out that

some of the concept descriptions induced by C

ex

correspond to the lcs of certain subdescriptions in

C

ex

. As we will see, given the induced concept descriptions of C

ex

and D

ex

, it is easy to determine the

lcs of C

ex

and D

ex

. We start with the concept descriptions induced by C

ex

.

3

Number restrictions: Because of the existential restrictions on the top-level of C

ex

, e.g. 9r:(P uA

1

)

and 9r:(:P uA

1

), we know C

ex

v (� 2 r), i.e., (� 2 r) is induced by C

ex

. Conversely, there is no induced

�-restriction, i.e., the most speci�c �-restriction subsuming C

ex

is the �-restriction explicitly present

on the top-level of C

ex

.

Existential restrictions: Due to the �-restriction (� 2 r) on the top-level of C

ex

, each instance of

C

ex

has at most two r-successors. Consequently, some existential restrictions have to be \merged" to a

single existential restriction, where \merging" means conjoining the concept descriptions occurring in

the existential restrictions. For C

ex

, there are several ways to merge the �ve existential restrictions on

the top-level of C

ex

into two existential restrictions. The merging process gives rise to new (derived)

concept descriptions, where the only consistent ones are:

C

1

ex

:= 9r:(P uQ u A

1

u A

2

u A

3

) u

9r:(:P u :Q u A

1

u A

3

) u (� 2 r); and

C

2

ex

:= 9r:(P u :Q uA

1

u A

2

u A

3

) u

9r:(:P uQ uA

1

u A

3

) u (� 2 r):

It is clear that C

ex

� C

1

ex

tC

2

ex

. The existential restrictions 9r:(P uA

1

uA

2

uA

3

), 9r:(:P uA

1

uA

3

),

9r:(Q u A

1

u A

3

), and 9r:(:Q u A

1

u A

3

) subsume both C

1

ex

and C

2

ex

. From this it can be concluded

that these restrictions are induced by C

ex

.

As we will see, the induced existential restrictions can be obtained by picking one existential restric-

tion from each of the (consistent) derived concept descriptions and applying the lcs operation to them.

In our example, we have, for instance, P uA

1

uA

2

uA

3

� lcs(PuQuA

1

uA

2

uA

3

; P u:QuA

1

uA

2

uA

3

).

However, as explained below, our characterization of subsumption avoids to explicitly use the lcs by

employing the fact that

lcs(C

1

; : : : ; C

n

) v D i� C

i

v D for all 1 � i � n: (1)

Value restrictions: In view of C

ex

� C

1

ex

t C

2

ex

, it not only follows that every instance of C

ex

has

exactly two r-successors but that these r-successors must satisfy the existential restrictions given in C

1

ex

and C

2

ex

. In either case, all r-successors belong to A

1

uA

3

, and thus, the value restriction 8r:(A

1

uA

3

)

is induced by C

ex

.

There are two things that should be pointed out here: First, note that there is an induced value

restriction only if the number of successors induced by existential restrictions coincides with the number

in the �-restriction, because only in this case, we have \full" information about all r-successors of an

instance of C. For example, if we consider the concept description E

ex

:= (� 2 r) u 9r:(A

1

u A

2

) u

9r:(A

1

uA

3

), no value restriction is induced.

1

Second, if 8r:C

0

is the most speci�c value restriction induced by C, then C

0

corresponds to the lcs

of all concept descriptions occurring in the merged existential restrictions. In the example, A

1

u A

3

�

lcs(P uQuA

1

uA

2

uA

3

;:P u:QuA

1

uA

2

uA

3

; P u:QuA

1

uA

2

uA

3

;:P uQuA

1

uA

2

uA

3

). Again,

using the equivalence (1), we avoid to compute the lcs explicitly in the characterization of subsumption.

It is easy to see that the only (minimal) concept description induced by D

ex

is 9r:(A

1

u A

2

u A

3

).

1

The structural subsumption algorithm introduced in [10], however, computes 8r:A

1

as a value restriction induced by

E

ex

and thus, is incorrect. For the same reason, the lcs-algorithm presented in [10] is incorrect: although the lcs of E

ex

and 8r:A

1

is >, the algorithm returns 8r:A

1

.

4

Now, given the concept descriptions induced by C

ex

and D

ex

it is not hard to verify that the lcs of

C

ex

and D

ex

can be stated as

(� 2 r) u 8r:(A

1

u A

3

) u 9r:(A

1

u A

2

uA

3

):

4 A structural characterization of subsumption in ALEN

In what follows, let C, D be ALEN -concept descriptions in the normal form introduced in Section 2.

Since both C � ? and D � > trivially imply C v D, our characterization of subsumption explicitly

checks these equivalences. Otherwise, roughly speaking, each conjunct in D, i.e., each (negated) concept

name, number restriction, existential restriction, and value restriction occurring on the top-level of D, is

compared with the corresponding conjuncts in C. For the existential restrictions and value restrictions,

however, it will be necessary to resort to the concept descriptions derived from C by merging existential

restrictions (C

1

ex

and C

2

ex

in the example). If all the comparisons have succeeded, it follows C v D. In

the remainder of this section, the structural comparison between C and D is further explained. Finally,

Theorem 2 establishes the complete characterization of subsumption.

We �rst need some notation to access the di�erent parts of the concept descriptions.

� prim(C) denotes the set of all (negated) concept names occurring on the top-level of C;

� min

r

(C) := maxfk j C v (� k r)g (Note that min

r

(C) is always �nite);

� max

r

(C) := minfk j C v (� k r)g; if there exists no k with C v (� k r), then max

r

(C) :=1;

� if there exists a value restriction of the form 8r:C

0

on the top-level of C, then val

r

(C) := C

0

;

otherwise, val

r

(C) := >;

� exr

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg;

Although the values min

r

(C) and max

r

(C) need not be explicitly present in number restrictions of C,

they can be computed in polynomial time in the size of C using an oracle for subsumption of ALEN -

concept descriptions. For min

r

(C), if there exists a �-restriction (�mr) on the top-level of C, then

m � min

r

(C) � maxfm; jexr

r

(C)jg. Thus, min

r

(C) is the maximum k withm � k � maxfm; jexr

r

(C)jg

and C v (� k r). Otherwise, if C does not have a �-restriction as top-level conjunct, it su�ces to check

the k's between 0 and jexr

r

(C)j. For max

r

(C), it holds that if val

r

(C) � ?, then max

r

(C) = 0; otherwise

if there exists a �-restriction (�mr) on the top-level of C, then max

r

(C) = m, else max

r

(C) =1. In

our example, we get min

r

(C

ex

) = 2, max

r

(C

ex

) = 2, min

r

(D

ex

) = 3, and max

r

(D

ex

) =1.

The structural comparison between the di�erent parts of C and D can now be stated as follows

(assuming C 6� ? and D 6� >):

(Negated) concept names and number restrictions: (cf Theorem 2, 1.{3.) In order for C v D

to hold, it is obvious that the following conditions need to be satis�ed: prim(D) � prim(C), max

r

(C) �

max

r

(D), min

r

(C) � min

r

(D). Otherwise, it is easy to construct a counter-model for C v D.

5

Existential restrictions: (cf Theorem 2, 4.) Given D

0

2 exr

r

(D), then for C v D to hold one at

�rst might expect that there need to exist a C

0

2 exr

r

(C) with val

r

(C)uC

0

v D

0

. Although this works

for ALE-concept descriptions, it fails for ALEN , as C

ex

v 9r:(P u A

1

uA

2

u A

3

) shows (see Section 3).

The reason is that in ALEN �-restrictions may require to merge existential restrictions, yielding new

(implicit) existential restrictions. To deal with this phenomenon, sets of derived concept descriptions

are considered with certain existential restrictions merged (see C

1

ex

and C

2

ex

in our running example).

The result of merging existential restrictions is described by so-called existential mappings

� : f1; : : : ; ng �! 2

f1;:::;mg

;

where n := minfmax

r

(C); jexr

r

(C)jg andm := jexr

r

(C)j. We require � to obey the following conditions:

1. �(i) 6= ; for all 1 � i � n;

2.

S

1�i�n

�(i) = f1; : : : ;mg and �(i) \ �(j) = ; for all

1 � i < j � n.

3. u

j2�(i)

C

j

u val

r

(C) 6� ? for all 1 � i � n.

Although the �rst two conditions are not essential for soundness and completeness of the characteriza-

tion of subsumption, they reduce the number of existential mappings that need to be considered.

Given exr

r

(C) = fC

1

; : : : ; C

m

g, � yields an ALEN -concept description C

�

obtained from C by

substituting all existential restrictions on the top-level of C with

u

1�i�n

9r: u

j2�(i)

C

j

:

The set of all existential mappings on C satisfying the conditions (1){(3) is denoted by �

r

(C), where

�

r

(C) := ; if exr

r

(C) = ;. It is in fact su�cient to consider �

r

(C) modulo permutations, i.e., modulo

the equivalence

�

�

=

�

0

i� there exists a permutation � on f1; : : : ; ng

s.t. �(i) = �

0

(�(i)) for all 1 � i � n.

In the sequel, for the sake of simplicity, we stay with � 2 �

r

(C) instead of [�]

�

=

2 �

r

(C)=

�

=

, though.

In our running example, let exr

r

(C

ex

) = fC

ex

;1

; : : : ; C

ex

;5

g with C

ex

;1

= P u A

1

, C

ex

;2

= P u A

2

,

etc. Then, �

r

(C

ex

) consists of the two mappings

�

1

= f1 7! f1; 2; 4g; 2 7! f3; 5gg;

�

2

= f1 7! f1; 2; 5g; 2 7! f3; 4gg;

and it is C

�

i

ex

= C

i

ex

, i = 1; 2 (see Section 3).

For the characterization of subsumption, we will use the following notation:

exr

r

(C)

�

:= f u

j2�(i)

C

j

j 1 � i � ng:

Now, in case exr

r

(C) 6= ;, C v D implies that for each D

0

2 exr

r

(D) the following holds: for each

� 2 �

r

(C), there exists C

0

�

2 exr

r

(C)

�

such that C

0

�

uval

r

(C) v D

0

. This is what is stated in Theorem 2,

4. Note that, using the equivalence (1) and provided that the lcs of ALEN -concept descriptions always

6

exists, this condition could be rewritten as: there exists a set M := fC

0

�

2 exr

r

(C)

�

j � 2 �

r

(C)g with

lcs(fC

0

u val

r

(C) j C

0

2 Mg) v D

0

. However, since the existence of the lcs is not guaranteed a priori,

the lcs cannot be used in the structural characterization of subsumption, unless the characterization

and the lcs computation are interleaved.

If exr

r

(C) = ;, then for all D

0

2 exr

r

(D) it must hold, min

r

(C) � 1 and val

r

(C) v D

0

.

In our running example, C

ex

v 9r:(P u A

1

u A

2

u A

3

) illustrates the case where exr

r

(C) 6= ; and

D

ex

v 9r:(A

1

u A

2

u A

3

) illustrates exr

r

(C) = ;.

Value restrictions: (cf Theorem 2, 5.) Value restrictions can only be induced for two reasons. First,

if max

r

(C) = 0, then C v 8r:?, and thus, C v 8r:C

0

for all concept descriptions C

0

.

Second, the merging of existential restrictions may induce value restrictions. In contrast to in-

duced existential restrictions, however, one further needs to take into account �-restrictions induced

by \incompatible" existential restrictions:

�

r

(C) := min

r

(8r:val

r

(C) uu

C

0

2exr

r

(C)

9r:C

0

):

If exr

r

(C) = ;, we de�ne �

r

(C) := 0. In our example, �

r

(C

ex

) = 2, �

r

(D

ex

) = 0, and �

r

(E

ex

) = 1.

Now, only if �

r

(C) = max

r

(C), value restrictions can be induced, since only then we \know" all

the r-successors of instances of C. In our example, �

r

(C

ex

) = max

r

(C

ex

) = 2, which accounts for

C

ex

v 8r:(A

1

u A

3

). Conversely, E

ex

6v 8r:A

1

since 1 = �

r

(E

ex

) < max

r

(E

ex

) = 2.

To formally state the comparison between value restrictions of C and D, we use the following

notation:

exr

r

(C)

�

:=

[

�2�

r

(C)

exr

r

(C)

�

:

One can show that C v D implies val

r

(C) v val

r

(D) provided that �

r

(C) < max

r

(C). In case

0 < �(C) = max

r

(C), however, it su�ces if the value restriction on the top-level of D satis�es val

r

(C)u

C

0

v val

r

(D) for all C

0

2 exr

r

(C)

�

. Again, using the equivalence (1) and provided that the lcs of ALEN -

concept descriptions always exists, this condition can be restated as val

r

(C) u lcs(exr

r

(C)

�

) v D

0

. For

reasons already mentioned, we have not employed this variant.

We are now equipped for the structural characterization of subsumption in ALEN .

Theorem 2 Let C;D be two ALEN -concept descriptions with exr

r

(C) = fC

1

; : : : ; C

m

g. Then C v D

i� C � ?, D � >, or the following holds:

1. prim(D) � prim(C);

2. max

r

(C) � max

r

(D);

3. min

r

(C) � min

r

(D);

4. for all D

0

2 exr

r

(D) it holds that

(a) exr

r

(C) = ;, min

r

(C) � 1, and val

r

(C) v D

0

; or

(b) exr

r

(C) 6= ; and for each � 2 �

r

(C), there exists C

0

2 exr

r

(C)

�

such that C

0

uval

r

(C) v D

0

;

and

5. if val

r

(D) 6� >, then

7

(a) max

r

(C) = 0; or

(b) �

r

(C) < max

r

(C) and val

r

(C) v val

r

(D); or

(c) 0 < �

r

(C) = max

r

(C) and val

r

(C) u C

0

v val

r

(D) for all C

0

2 exr

r

(C)

�

.

In the remainder of this section, we provide a formal proof of the above theorem. For the proof of

soundness, i.e., the if-direction of Theorem 2, we need the following lemma.

Lemma 3 Let C be an ALEN -concept description with exr

r

(C) 6= ;. Then, for each model I of C

and each x 2 C

I

, there exists � 2 �

r

(C) such that for each C

0

2 exr

r

(C)

�

, there exists y 2 �

I

with

(x; y) 2 r

I

and y 2 C

0

I

.

Proof: By induction on n := jexr

r

(C)j �max

r

(C).

Let n � 0: Then w.l.o.g. �

r

(C) is given by the singleton fidg, where id denotes the mapping id(i) :=

fig, 1 � i � m. We get exr

r

(C)

id

= exr

r

(C). Since x 2 C

I

, for each C

0

2 exr

r

(C) there exists an

r-successor y of x in I with y 2 C

0

I

.

Let n > 0: Since x 2 C

I

, there exist at most max

r

(C) r-successors of x in I. Let exr

r

(C) =

fC

1

; : : : ; C

m

g. Since jexr

r

(C)j > max

r

(C), there exist C

i

1

; C

i

2

2 exr

r

(C), i

1

6= i

2

, such that

there exists an r-successor y of x in I with y 2 C

I

i

1

and y 2 C

I

i

2

. W.l.o.g. let i

1

= m � 1 and

i

2

= m.

Now, let D be the ALEN -concept description obtained from C by removing 9r:C

m�1

and 9r:C

m

from the top-level of C and conjoining 9r:(C

m�1

u C

m

) instead. Again w.l.o.g., let exr

r

(D) =

fD

1

; : : : ; D

m�1

g with D

m�1

= C

m�1

u C

m

and D

i

= C

i

for all 1 � i � m� 2. Since jexr

r

(D)j �

max

r

(D) < n, we get by induction that there exists a � 2 �

r

(D) such that

for each D

0

2 exr

r

(D)

�

, there exists y 2 �

I

with (x; y) 2 r

I

and y 2 D

0

I

. (*)

We extend � to a mapping � 2 �

r

(C) as follows:

�(i) :=

�

�(i); if m� 1 62 �(i);

�(i) [fmg; if m� 1 2 �(i):

It is easy to see that � 2 �

r

(C). Now let C

0

2 exr

r

(C)

�

. Then there exists i

0

2 f1; : : : ;max

r

(C)g

with C

0

= u

j2�(i

0

)

C

j

. If m 62 �(i

0

), then �(i

0

) = �(i

0

) and by (*), we get that there exists

an r-successor y of x in I with y 2 C

0

I

. If m 2 �(i

0

), then by de�nition of �, we get that

m� 1 2 �(i

0

). Since D

m�1

= C

m�1

u C

m

, we get u

j2�(i

0

)

C

j

� u

j2�(i

0

)

D

j

. Thus, (*) implies that

there exists an r-successor y of x in I with y 2 C

0

I

. 2

Proof of the if-direction of Theorem 2: If C � ? or D � >, then C v D. Assume C 6� ? and

D 6� >, and (1)��(5) are satis�ed. In order to show C v D, we show that for any model I of C with

x 2 C

I

also x 2 D

I

. Obviously, it is su�cient to show x 2 D

0

I

for each conjunct D

0

occurring on the

top-level of D.

Let D

0

2 prim(D): Since prim(D) � prim(C) and x 2 C

I

, we obtain x 2 D

0

I

.

8

Let D

0

= (�n r): By condition (2), it is max

r

(C) � max

r

(D) � n. Since x 2 C

I

, it follows x 2

(�max

r

(C) r)

I

� (�n r)

I

.

Let D

0

= (�n r): By condition (3), it is min

r

(C) � min

r

(D) � m. Since x 2 C

I

, it follows x 2

(�min

r

(C) r)

I

� (�mr)

I

.

Let D

0

= 9r:D

1

: Assume exr

r

(C) = ;. Then (4:a) implies min

r

(C) � 1 and val

r

(C) v D

1

. Hence,

there exists an r-successor y of x in I with y 2 val

r

(C)

I

� D

I

1

. Thus, x 2 (9r:D

1

)

I

.

Assume exr

r

(C) 6= ;. By Lemma 3, there exists �

0

2 �

r

(C) such that for each C

0

2 exr

r

(C)

�

0

there exists an r-successor y of x in I with y 2 C

0

I

. By condition (4:b), there exists C

0

2 exr

r

(C)

�

0

with C

0

uval

r

(C) v D

1

. Thus, there is an r-successor y

0

of x in I with y

0

2 (C

0

uval

r

(C))

I

� D

I

1

.

Hence, x 2 (9r:D

1

)

I

.

Let D

0

= 8r:D

1

: If max

r

(C) = 0, then there exists no r-successor of x in I, and hence, x 2 (8r:D

1

)

I

.

Assume �

r

(C) < max

r

(C). Let y be an arbitrary r-successor of x 2 I. Then x 2 C

I

implies

y 2 val

r

(C)

I

and since val

r

(C) v val

r

(D), we get y 2 val

r

(D)

I

. Thus, x 2 (8r:D

1

)

I

.

Finally, assume 0 < �

r

(C) = max

r

(C). Let y be an arbitrary r-successor of x in I. De�ne

C(y) := fC

0

2 exr

r

(C) j y 2 C

0

I

g. Since 0 < �

r

(C) = max

r

(C), we know that there exist exactly

�

r

(C) r-successors of x in I, and since there exist �

r

(C) disjoint existential restrictions on the

top-level of C, we get C(y) 6= ;. We even get u

E2C(y)

E v C

0

for some C

0

2 exr

r

(C), because

otherwise, I would not be a model of C. Now, val

r

(C) u C

0

v val

r

(D) implies y 2 val

r

(D)

I

and

hence, x 2 (8r:D

1

)

I

. 2

For the proof of completeness of the characterization of subsumption we will have to construct certain

models of ALEN -concept descriptions. The following lemma ensures the existence of these models. It

easily follows from the de�nition of min

r

(C) and the (�nite) tree model property of ALEN -concept

descriptions [8].

Lemma 4 Let C be an ALEN -concept description, C 6� ?. Then there exists a tree model I with root

x

0

of C such that x

0

2 C

I

and x

0

has exactly min

r

(C) di�erent r-successors in I.

Proof of the only-if-direction of Theorem 2: If C � ? or D � >, nothing has to be shown.

Assume C v D, C 6� ?, and D 6� >. Then we have to show that C;D satisfy items (1){(5) in

Theorem 2.

Ad (1): Assume that there exists Q 2 prim(D) n prim(C). Let I = (�

I

; �

I

) be a tree model with root

x

0

of C with x

0

2 C

I

(see Lemma 4).

If Q 2 N

C

, then de�ne J := (�

J

; �

J

) with

� P

J

:=

�

P

I

n fx

0

g; P = Q;

P

I

; P 6= Q;

� r

J

:= r

I

.

If Q = :P

0

for some P

0

2 N

C

, then de�ne J := (�

J

; �

J

) with

� P

J

:=

�

P

I

[fx

0

g; P = P

0

;

P

I

; P 6= P

0

;

9

� r

J

:= r

I

.

In either case, J is a model of C with x

0

2 C

J

, but x

0

62 D

J

in contradiction to C v D.

Thus, prim(D) � prim(C).

Ad (2): Assume max

r

(C) > max

r

(D). In particular, max

r

(D) is some nonnegative integer. By the

de�nition of max

r

(C) there exists a model I and x

0

2 �

I

with x

0

2 C

I

such that x

0

has

max

r

(D) + 1 r-successors; otherwise we would have max

r

(C) � max(D). Obviously, x

0

62 D

I

.

Thus, max

r

(C) � max

r

(D).

Ad (3): Assume min

r

(C) < min

r

(D). By Lemma 4, there exists a (tree) model I with x

0

2 C

I

having

exactly min

r

(C) r-successors. Obviously, x

0

62 D

I

.

Ad (4): Let D

0

2 exr

r

(D) and assume exr

r

(C) = ;. If min

r

(C) = 0, then there exists a tree model

I = (�

I

; �

I

) with root x

0

of C with x

0

2 C

I

and x

0

has 0 r-successors in I, i.e., r

I

= ;. Obviously,

this implies x

0

62 D

I

in contradiction to C v D. Hence, min

r

(C) � 1. Let I = (�

I

; �

I

) be a

tree model of C with root x

0

and x

0

2 C

I

. Assume val

r

(C) 6v D

0

, i.e., there exists a tree model

I

0

= (�

I

0

; �

I

0

) with root y

0

such that y

0

2 val

r

(C)

I

0

and y

0

62 D

0

I

0

. Let I

i

, 1 � i � min

r

(C),

be pairwise disjoint copies of I

0

with roots y

i

, which are also pairwise disjoint with I. De�ne

J := (�

J

; �

J

) as follows:

� �

J

:= �

I

[

S

1�i�min

r

(C)

�

I

i

;

� P

J

:= P

I

[

S

1�i�min

r

(C)

P

I

i

for all P 2 N

C

;

� r

J

:=

S

1�i�min

r

(C)

r

I

i

[f(x

0

; y

i

) j 1 � i � min

r

(C)g.

It is easy to see that I is a model of C with x

0

2 C

I

, but since there does not exist an r-successor

y of x

0

with y 2 D

0

J

, it is x

0

62 D

I

in contradiction to C v D. Thus, val

r

(C) v D

0

.

Now assume exr

r

(C) 6= ;. We have to show that for each � 2 �

r

(C), there exists C

0

2 exr

r

(C)

�

with C

0

u val

r

(C) v D

0

. Assume that there exists an � 2 �

r

(C) such that C

0

u val

r

(C) 6v D

0

for all C

0

2 exr

r

(C)

�

. Let C

�

be the ALEN -concept description obtained from C by removing

all existential restrictions from the top-level of C and conjoining all existential restrictions from

exr

r

(C)

�

. We de�ne a tree model I with root x

0

such that x

0

2 C

I

�

� C

I

and x

0

62 D

I

as follows:

� De�ne I

0

:= (fx

0

g; �

I

0

) with

{ P

I

0

:=

�

fx

0

g; P 2 prim(C);

;; P 62 prim(C)

for all P 2 N

C

;

{ r

I

0

:= ;.

� For each C

0

2 exr

r

(C)

�

, let I(C

0

) := (�

I(C

0

)

; �

I(C

0

)

) be a tree model with root y(C

0

) such

that y(C

0

) 2 (C

0

u val

r

(C))

I(C

0

)

and y(C

0

) 62 D

0

I(C

0

)

.

� If min

r

(C) > jexr

r

(C)

�

j, then let I

1

; : : : ; I

k

, k := min

r

(C) � jexr

r

(C)

�

j, be copies of I(C

0

),

as de�ned above, for some C

0

with root y

i

, 1 � i � k.

W.l.o.g. let all these interpretations be pairwise disjoint. Now, de�ne I = (�

I

; �

I

) by

� �

I

:= fx

0

g [

S

1�i�k

�

I

i

[

S

C

0

2exr

r

(C)

�

�

I(C

0

)

;

10

� P

I

:= P

I

0

[

S

1�i�k

P

I

i

[

S

C

0

2exr

r

(C

0

)

�

P

I(C

0

)

for all P 2 N

C

;

� r

I

:= f(x

0

; y(C

0

)) j C

0

2 exr

r

(C)

�

g[f(x

0

; y

i

) j 1 � i � kg[

S

1�i�k

r

I

i

[

S

C

0

2exr

r

(C)

�

r

I(C

0

)

.

By construction, I is a model of C

�

and hence of C with x

0

2 C

I

. But since there does not exist

an r-successor y of x

0

with y 2 D

0

I

, it follows x

0

62 D

I

in contradiction to C v D. Thus, for

each � 2 �

r

(C) there exists C

0

2 exr

r

(C)

�

with C

0

u val

r

(C) v D

0

.

Ad (5): Assume val

r

(D) 6� > and max

r

(C) > 0 (otherwise, nothing has to be shown). We have to

distinguish two cases:

1. �

r

(C) < max

r

(C). We have to show val

r

(C) v val

r

(D). Proof by contraposition: assuming

val

r

(C) 6v val

r

(D), we de�ne a tree model I with root x

0

of C such that x

0

2 C

I

and

x

0

62 D

I

.

In order to de�ne I, we distinguish two cases:

(a) there exists a �-restriction of the form (�mr) on the top-level of C with m > �

r

(C),

and

(b) there exists no such number restriction.

Ad (a): Consider the ALEN -concept description C

0

obtained from C by removing (�mr)

from the top-level of C. Obviously, it is �

r

(C) = �

r

(C

0

). Let I

0

be a tree model of C

0

with

root x

0

such that x

0

2 C

0

I

and x

0

has exactly �

r

(C

0

) r-successors in I

0

(see Lemma 4). By

assumption, there exists a model I

00

of val

r

(C) with root y

0

such that y

0

2 val

r

(C)

I

00

and

y

0

62 val

r

(D)

I

00

. Let I

i

, 1 � i � m� �

r

(C), be disjoint copies of I

00

with roots y

i

, which are

w.l.o.g. also pairwise disjoint with I

0

. De�ne I := (�

I

; �

I

) with

� �

I

:= �

0

I

[

S

1�i�m��

r

(C)

�

I

i

;

� P

I

:= P

I

0

[

S

1�i�m��

r

(C)

P

I

i

for all P 2 N

C

;

� r

I

:= r

I

0

[

S

1�i�m��

r

(C)

r

I

i

[f(x

0

; y

i

) j 1 � i � m� �

r

(C)g.

It is easy to see that I is a model of C with x

0

2 C

I

, but since x

0

has at least the r-successor

y

1

with y

1

62 val

r

(D)

I

, we get x

0

62 D

I

in contradiction to C v D. Thus, val

r

(C) v val

r

(D).

Ad (b): Let I

0

be a tree model of C

0

with root x

0

such that x

0

2 C

I

and x

0

has exactly

�

r

(C) r-successors in I

0

(see Lemma 4). By assumption, there exists a model I

00

of val

r

(C)

with root y

0

such that y

0

2 val

r

(C)

I

00

and y

0

62 val

r

(D)

I

00

. De�ne I := (�

I

; �

I

) with

� �

I

:= �

0

I

[�

I

00

;

� P

I

:= P

I

0

[P

I

00

for all P 2 N

C

;

� r

I

:= r

I

0

[r

I

00

[f(x

0

; y

0

)g.

Since by assumption, �

r

(C) < max

r

(C), I is a model of C with x

0

2 C

I

, but since x

0

has

at least the r-successor y

0

with y

0

62 val

r

(D)

I

, we get x

0

62 D

I

in contradiction to C v D.

Thus, val

r

(C) v val

r

(D).

2. �

r

(C) = max

r

(C). Assume that there exists C

0

2 exr

r

(C)

�

with val

r

(C) u C

0

6v val

r

(D).

Then there exists �

0

2 �

r

(C) such that C

0

2 exr

r

(C)

�

0

. Let C

�

0

be the ALEN -concept

description obtained from C by removing all existential restrictions from the top-level of C

and conjoining all existential restrictions from exr

r

(C)

�

0

. Obviously, C

�

0

v C. Since, using

C 6� ?, from the de�nition of existential mappings it immediately follows that C

�

0

6� ?,

11

Let C;D be two ALEN -concept descriptions.

If C v D, then c-lcs(C;D) := D, and if D v C, then c-lcs(C;D) := C.

Otherwise, let �

r

(C) = f�

C

1

; : : : ; �

C

n(C)

g and �

r

(D) = f�

D

1

; : : : ; �

D

n(D)

g, and de�ne for E 2 fC;Dg

C

r

(E) :=

8

<

:

fc-lcs(fE

1

u val

r

(E); : : : ; E

n(E)

u val

r

(E)g) j E

i

2 exr

r

(E)

�

E

i

; 1 � i � n(E)g; �

r

(E) 6= ;;

fval

r

(E)g; �

r

(E) = ; ^min

r

(E) � 1;

;; min

r

(E) = 0;

E

�

r

:=

(

val

r

(E); 0 � �

r

(E) < max

r

(E);

?; max

r

(E) = 0;

c-lcs(fval

r

(E) u E

0

j E

0

2 exr

r

(E)

�

g); 0 < �

r

(E) = max

r

(E):

De�ne

c-lcs(C;D) := u

Q2prim(C)\prim(D)

Q u

(�maxfmax

r

(C);max

r

(D)g r) u (�minfmin

r

(C);min

r

(D)g r) u

u

C

0

2C

r

(C);D

0

2C

r

(D)

9r:c-lcs(C

0

; D

0

) u

8r:c-lcs(C

�

r

; D

�

r

);

where

� (� maxfmax

r

(C);max

r

(D)g r) is omitted if max

r

(C) =1 or max

r

(D) =1, and

� u

C

0

2C

r

(C);D

0

2C

r

(D)

9r:c-lcs(C

0

; D

0

) := > if C

r

(C) = ; or C

r

(D) = ;.

Figure 1: The recursive computation of the lcs in ALEN .

there exists a tree model I of C

�

0

with root x

0

2 C

I

�

0

. Moreover, since max

r

(C) = �

r

(C),

for every C

00

2 exr

r

(C)

�

0

, there exists exactly one r-successor y of x

0

in I with y 2 C

00

I

;

x

0

has no other r-successors. In particular, there exists an r-successor y of x

0

such that

y 2 (val

r

(C) u C

0

)

I

. By assumption, there exists a tree model I

0

= (�

I

0

; �

I

0

) with root y

0

such that y

0

2 (val

r

(C) u C

0

)

I

0

and y

0

62 val

r

(D)

I

0

. De�ne J = (�

J

; �

J

) with

� �

J

:= �

I

[�

I

0

;

� P

J

:= P

I

[P

I

0

for all P 2 N

C

;

� r

J

:= (r

I

n f(x

0

; yg) [r

I

0

[f(x

0

; y

0

)g.

Then J is a model of C with x

0

2 C

J

. But since the r-successor y

0

of x

0

in J is not an

instance of val

r

(D)

J

, it follows x

0

62 D

J

in contradiction to C v D. Thus, val

r

(C) u C

0

v

val

r

(D) for all C

0

2 exr

r

(C)

�

. 2

For the sake of completeness, we should mention that, as shown by Hemaspaandra, [7], subsumption

checking in ALEN is PSPACE-complete. However, our characterization is not intended to yield a

PSPACE-algorithm. It rather provides a formal basis for the lcs algorithm presented in the next

section.

12

5 Computing the LCS in ALEN

We now present a recursive algorithm computing the lcs of two ALEN -concept descriptions C and D.

It is depicted in Figure 1 and called c-lcs. Although, the algorithm is presented as binary operation

(working on C and D), it can be generalized to be applicable to (arbitrary) sets of concept description

in the obvious way: c-lcs(C

1

; : : : ; C

n

) := c-lcs(C

1

; c-lcs(C

2

; � � � ; c-lcs(C

n�1

; C

n

) � � �)). In fact, within

the algorithm this is used. Since the maximum role depth of the concept descriptions occurring in

the recursive invocations of the algorithm decreases, c-lcs always terminates. The following theorem

states correctness of the lcs algorithm depicted in Figure 1. Its proof is by induction on the maximum

role depth of the input concept descriptions and makes heavy use of the structural characterization

of subsumption given in Theorem 2. As an immediate consequence, we obtain that the lcs of two

ALEN -concept descriptions always exists.

Theorem 5 Let C;D be ALEN -concept descriptions. Then, c-lcs(C;D) � lcs(C;D).

Before we prove Theorem 5, we illustrate the de�nition of c-lcs(C;D) in case that C 6v D and

D 6v C (since the special cases C v D, D v C are trivial), using our running example introduced in

Section 3. The conjuncts occurring on the top-level of c-lcs(C;D) can, as before, be divided into three

parts, namely (1) (negated) concept names and number restrictions, (2) the existential restrictions, and

(3) the value restriction. These conjuncts are de�ned in such a way that

(a) the conditions 1.{5. in Theorem 2 for C v c-lcs(C;D) and D v c-lcs(C;D) are satis�ed, and

(b) c-lcs(C;D) is the least concept description (w.r.t. v) satisfying (a).

For the conditions 1.{3., this is quite obvious, since, for E 2 fC;Dg, we obtain

� prim(c-lcs(C;D)) = prim(C) \ prim(D) � prim(E),

� min

r

(c-lcs(C;D)) = minfmin

r

(C);min

r

(D)g � min

r

(E), and

� max

r

(c-lcs(C;D)) = maxfmax

r

(C);max

r

(D)g � max

r

(E).

In our running example, we obtain prim(c-lcs(C

ex

; D

ex

)) = ;, min

r

(c-lcs(C

ex

; D

ex

)) = 2, as well as

max

r

(c-lcs(C

ex

; D

ex

)) =1.

Things are more complicated for existential and value restrictions. Let us �rst consider the def-

inition of exr

r

(c-lcs(C;D)), i.e., the existential restrictions obtained from the sets C

r

(C) and C

r

(D).

Roughly speaking, if �

r

(E) 6= ;, then C

r

(E) contains all (minimal) concept descriptions occurring in

an existential restriction induced by E for E 2 fC;Dg. Each such concept description is obtained as

the recursively computed lcs of a set of concept descriptions consisting of one concept description from

exr

r

(E)

�

(conjoined with val

r

(E)) for each � 2 �

r

(E). In our running example, each pair of concept

descriptions occurring in the existential restrictions on the top-level of C

1

ex

and C

2

ex

, respectively, yields

such an lcs, and thus C

r

(C

ex

) = fP u A

1

u A

2

u A

3

; Q u A

1

u A

3

;:Q u A

1

u A

3

;:P u A

1

u A

3

g (see

Section 3).

If min

r

(E) = 1 and �

r

(E) = ;, we set C

r

(E) = fval

r

(E)g since then exr

r

(E) = ;, and 9r:val

r

(E) is

the unique minimal existential restriction induced by E. This case is illustrated by D

ex

in our running

example, where min

r

(D

ex

) = 3, exr

r

(D

ex

) = ;, and C

r

(D

ex

) = fA

1

u A

2

u A

3

g.

Finally, if min

r

(E) = 0, i.e., there exists no existential restriction subsuming E, then obviously, no

existential restriction can occur on the top-level of a common subsumer of C and D. Therefore, we set

C

r

(E) := ;.

13

Given C

r

(C) and C

r

(D), the lcs of each pair C

0

2 C

r

(C) and D

0

2 C

r

(D) gives rise to an existential

restriction on the top-level of the lcs of C and D. In our example, we obtain exr

r

(c-lcs(C

ex

; D

ex

)) =

fA

1

uA

2

uA

3

; A

1

uA

3

g, giving rise to the existential restrictions 9r:(A

1

u A

2

uA

3

) and 9r:(A

1

uA

3

)

(where the latter one can be omitted).

It remains to comment on 8r:c-lcs(C

�

r

; D

�

r

). Intuitively, 8r:E

�

r

is the most speci�c value restriction

subsuming E for E 2 fC;Dg. (Thus, 8r:c-lcs(C

�

r

; D

�

r

) is the most speci�c value restriction subsuming

both C and D.) If E has no induced value restriction, E

�

r

coincides with val

r

(E). This is the case for

D

ex

, where (D

ex

)

�

r

= val

r

(D

ex

) = A

1

u A

2

u A

3

. If max

r

(E) = 0, the fact that E v 8r:? is made

explicit by de�ning E

�

r

:= ?. Finally, if 0 < �

r

(E) = max

r

(E), then the induced value restriction

is again made explicit by recursively computing the lcs of the merged existential restrictions (each

conjoined with val

r

(E)). In our running example, this case is illustrated by C

ex

: there, val

r

(C

ex

) = >,

but since �

r

(C

ex

) = max

r

(C

ex

) = 2, we obtain (C

ex

)

�

r

= A

1

uA

3

which is the recursively computed lcs

of exr

r

(C

ex

)

�

= exr

r

(C

1

ex

) [exr

r

(C

2

ex

) (see Section 3).

Proof of Theorem 5: It is su�cient to show that

i) C v c-lcs(C;D) and D v c-lcs(C;D), and

ii) for all E with C;D v E, it follows c-lcs(C;D) v E.

Proof by induction on maxfdepth(C); depth(D)g. Let L := c-lcs(C;D).

Ad i): Obviously, it is su�cient to show C v c-lcs(C;D). If C v D, C � ? or L � >, nothing

has to be shown. Assume C 6� ? and L 6� >. We show that C and L satisfy the conditions (1){(5) in

Theorem 2.

By de�nition of L,

(1) prim(L) � prim(C),

(2) min

r

(C) � min

r

(L), and

(3) max

r

(C) � max

r

(L).

To show (5), assume val

r

(L) 6� >. If max

r

(C) = 0, nothing has to be shown. If �

r

(C) < max

r

(C),

then C

�

r

= val

r

(C). By induction, val

r

(C) v val

r

(L). Assume 0 < �

r

(C) = max

r

(C). Then, C

�

r

=

c-lcs(fval

r

(C) u C

0

j C

0

2 exr

r

(C)

�

g). By induction, val

r

(C) uC

0

v C

�

r

for all C

0

2 exr

r

(C)

�

, as well as

C

�

r

v val

r

(L) = c-lcs(C

�

r

:D

�

r

). This implies val

r

(C) u C

0

v val

r

(L) for all C

0

2 exr

r

(C)

�

.

It remains to show (4). Let L

0

2 exr

r

(L). This implies C

r

6= ; and D

r

6= ;.

Assume exr

r

(C) = ;. Then C

r

6= ; implies C

r

= ffval

r

(C)gg and hence, min

r

(C) � 1. By induction,

val

r

(C) v L

0

.

Assume exr

r

(C) 6= ;. Let L

0

be obtained from fC

1

u val

r

(C); : : : ; C

k

u val

r

(C)g 2 C

r

and some

D 2 D

r

. Then, for each � 2 �

r

(C), there exists i 2 f1; : : : ; kg such that C

i

2 exr

r

(C)

�

. By induction,

C

i

u val

r

(C) v L

0

.

Thus, we have shown C v L.

Ad ii): Let E be an ALEN -concept description with C;D v E. If C v D or D v C, we get

c-lcs(C;D) v E. Assume C 6v D and D 6v C. In particular, this implies C 6� ? and D 6� ?, and hence,

L 6� ?.

If E � >, nothing has to be shown. Assume E 6� >. We show that L and E satisfy the conditions

(1){(5) in Theorem 2. By assumption, C 6� ?, D 6� ?, and E 6� >. Thus, by Theorem 2, C v E

14

(D v E) implies that C (D) and E satisfy the conditions (1){(5) in Theorem 2. In the following, we

will use this fact without referring to Theorem 2 each time.

Ad (1): Since prim(E) � prim(C) and prim(E) � prim(D), it follows prim(E) � prim(C)\prim(D) =

prim(L).

Ad (2): Since max

r

(C) � max

r

(E) and max

r

(D) � max

r

(E), it follows max

r

(L) = minfmax

r

(C),

max

r

(D)g � max

r

(E).

Ad (3): Since min

r

(C) � min

r

(E) and min

r

(D) � min

r

(E), it follows min

r

(L) = maxfmin

r

(C),

min

r

(D)g � min

r

(E).

Ad (5): Assume val

r

(E) 6� >. If max

r

(L) = 0, nothing has to be shown. According to condition

(5) we have to distinguish two cases:

1. Assume �

r

(L) < max

r

(L). We have to show val

r

(L) v val

r

(E). We show C

�

r

v val

r

(E). Anal-

ogously, we can show D

�

r

v val

r

(E). It also holds that depth(C

�

r

) < depth(C), and analogously,

depth(D

�

r

) < depth(D): For the cases where 0 < �

r

(C) < max(C) or max

r

(C) = 0 this is obvious.

For 0 < �

r

(C) = max

r

(C), we use that depth(c-lcsfE

1

; : : : ; E

k

g) � maxfdepth(E

i

) j 1 � i � ng.

This easily follows by an inductive argument from the de�nition of c-lcs. Consequently, we

can then apply the induction hypothesis on c-lcs(C

�

r

; D

�

r

) and obtain val

r

(L) = c-lcs(C

�

r

; D

�

r

) v

val

r

(E).

It remains to show C

�

r

v val

r

(E).

Assume max

r

(C) = 0. Then C

�

r

= ? and hence, C

�

r

v val

r

(E).

Assume �

r

(C) < max

r

(C). Then val

r

(C) v val

r

(E) and, since C

�

r

= val

r

(C), we obtain C

�

r

v

val

r

(E).

Finally, assume 0 < �

r

(C) = max

r

(C). Then val

r

(C) u C

0

v val

r

(E) for all C

0

2 exr

r

(C)

�

. By

induction, C

�

r

= c-lcs(fval

r

(C) u C

0

j C

0

2 exr

r

(C)

�

g) v val

r

(E).

2. Assume 0 < �

r

(L) = max

r

(L). We have to show val

r

(L) u L

0

v val

r

(E) for all L

0

2 exr

r

(L)

�

.

As in the previous case we show C

�

r

v val

r

(E). Analogously, we also obtain D

�

r

v val

r

(E).

Then again, by induction we can conclude val

r

(L) = c-lcs(C

�

r

; D

�

r

) v val

r

(E). In particular,

val

r

(L) u L

0

v val

r

(E).

Note that �

r

(L) > 0 implies exr

r

(L) 6= ;, and thus, C

r

(C) 6= ;.

Let us �rst assume exr

r

(C) = ;. Together with C

r

(C) 6= ;, we know min

r

(C) � 1. Because C 6� ?

it also follows max

r

(C) � min

r

(C) � 1. Moreover, exr

r

(C) = ; yields �

r

(C) = 0. In particular,

�

r

(C) < max

r

(C). Then, val

r

(E) 6� > and C v E imply val

r

(C) v val

r

(E). Since C

�

r

= val

r

(C),

it follows C

�

r

v val

r

(E).

We now assume exr

r

(C) 6= ;. Then, for all L

0

2 exr

r

(L), there exist a tuple (C

1

; : : : ; C

k

) 2

�2�

r

(C)

exr

r

(C)

�

such that L

0

is obtained from this tuple, which implies C

i

u val

r

(C) v L

0

for

all 1 � i � k. Since there exist �

r

(L) disjoint existential restrictions on the top-level of L, these

subsumption relationships imply that there also exist at least �

r

(L) disjoint existential restrictions

on the top-level of C. In particular, �

r

(C) � �

r

(L). Since C is consistent, it is max

r

(C) � �

r

(C).

By de�nition, it is max

r

(L) � max

r

(C). Thus, max

r

(C) � �

r

(C) � �

r

(L) = max

r

(L) � max

r

(C),

i.e., max

r

(C) = �

r

(C). Now, C v E implies C

0

u val

r

(C) v val

r

(E) for all C

0

2 exr

r

(C)

�

. By

induction, it follows C

�

r

v val

r

(E).

Ad (4): Let E

0

2 exr

r

(E).

15

Assume exr

r

(L) = ;. This implies C

r

= ; or D

r

= ;. W.l.o.g. let C

r

= ;. This would imply

min

r

(C) = 0 and exr

r

(C) = ; in contradiction to C v E. Thus, it is exr

r

(L) 6= ; and we have to show

that, for each 2 �

r

(L), there exists L

0

2 exr

r

(L)

with L

0

u val

r

(L) v E

0

.

Since C v E, it holds

(1) exr

r

(C) = ;, min

r

(C) � 1, and val

r

(C) v E

0

; or

(2) for each � 2 �

r

(C), there exists C

0

2 exr

r

(C)

�

with C

0

u val

r

(C) v E

0

;

and since D v E, it holds

(1)' exr

r

(D) = ;, min

r

(D) � 1, and val

r

(D) v E

0

; or

(2)' for each � 2 �

r

(D), there exists D

0

2 exr

r

(D)

�

with D

0

u val

r

(D) v E

0

.

We have to consider the possible combinations of cases from f(1); (2)g and f(1)

0

; (2)

0

g.

Assume (1) and (1)': Then C

�

r

= val

r

(C) and D

�

r

= val

r

(D), i.e., val

r

(L) = c-lcs(val

r

(C); val

r

(D)).

By induction, we get val

r

(L) v E

0

and hence, for all 2 �

r

(L), we can choose an arbitrary

L

0

2 exr

r

(L)

and get L

0

u val

r

(L) v E

0

.

2

Assume (1) and (2)': Then there exists (D

1

; : : : ; D

`

) 2

�2�

r

(D)

exr

r

(D)

�

such that D

j

u val

r

(D) v

E

0

for all 1 � j � `, and

L

0

:= c-lcs(val

r

(C); c-lcs(fD

j

u val

r

(D) j 1 � j � `g)) 2 exr

r

(L):

By induction, L

0

v E

0

.

Now, for each 2 �

r

(L), there exists L

0

2 exr

r

(L)

such that L

0

v L

0

v E

0

; in particular,

L

0

u val

r

(L) v E

0

.

Assume (2) and (1)': Analogously to the previous case.

Assume (2) and (2)': Again, there exists (D

1

; : : : ; D

`

) 2

�2�

r

(D)

exr

r

(D)

�

such that D

j

uval

r

(D) v

E

0

for all 1 � j � `. In addition, there exists (C

1

; : : : ; C

k

) 2

�2�

r

(C)

exr

r

(C)

�

such that

C

i

u val

r

(C) v E

0

for all 1 � i � k. Then,

L

0

:= c-lcs(c-lcs(fC

i

u val

r

(C) j 1 � i � kg); c-lcs(fD

j

u val

r

(D) j 1 � j � `g)) 2 exr

r

(L):

By induction, L

0

v E

0

. As above, we get that, for each 2 �

r

(L), there exists L

0

2 exr

r

(L)

such that L

0

v L

0

and hence, L

0

u val

r

(L) v E

0

.

This completes the proof of Theorem 5. 2

2

Note that if (1) and (1)

0

holds, then �

r

(C) = �

r

(D) = ;; hence, C

r

(C) = fval

r

(C)g, C

r

(D) = fval

r

(D)g, and

exr

r

(L) = fc-lcs(val

r

(C); val

r

(D))g.

16

Complexity of the lcs algorithm: For the complexity analysis of our lcs algorithm, the algorithm is

slightly modi�ed: When computing c-lcs(C

0

; D

0

) (see the de�nition of c-lcs(C;D) in Figure 1), C

0

, and

analogously D

0

, might be the result of applying c-lcs to the set S := fC

1

uval

r

(C); : : : ; C

n(C)

uval

r

(C)g

as speci�ed in C

r

(C). However, using the fact that lcs(lcs(C;D); E) � lcs(C;D;E), we can omit the

application of c-lcs to S. Thus, instead of C

0

= c-lcs(S), we simply take the set S. In particular,

when computing c-lcs(C

0

; D

0

), c-lcs is merely applied to a set of subdescriptions of C and D. The

same argument works for the concept description C

�

r

(and D

�

r

). Instead of C

�

r

= c-lcs(fval

r

(C) u

C

0

j C

0

2 exr

r

(C)

�

g), we just take the set fval

r

(C)uC

0

j C

0

2 exr

r

(C)

�

g. Then again, when computing

c-lcs(C

�

r

; D

�

r

), c-lcs is only applied to subdescriptions of C and D, or ?. Throughout the remainder of

this section, whenever we refer to c-lcs, we mean the algorithm modi�ed as just explained.

We will show that c-lcs runs in double exponential time in the size of the input concept descriptions.

We �rst investigate the size of the sets, involved in the computation.

Let E be an ALEN -concept description. It is clear that j�

r

(E)j can be bounded exponentially in

the size of E; jexr

r

(E)

�

j as well as the size of the concept descriptions in exr

r

(E)

�

are bounded by the

size of E; jexr

r

(E)

�

j can be bounded exponentially in the size of E; �nally, jC

r

(E)j has an upper bound

double exponential in the size of E.

Now, we look at c-lcs(C;D) when recursively expanding its de�nition. Such an expansion can be

viewed as a labeled tree, where every node is labeled by the conjunction of (negated) concept names

and number restriction, and the edges of the tree are labeled with 9r and 8r. (Note that every node

has exactly one edge labeled 8r, but there may be several edges labeled 9r.) Clearly, the depth of the

tree is bounded by m := maxfdepth(C); depth(D)g.

It is obvious that on every level, c-lcs is only applied to subdescriptions of C and D of the form

val

r

(E), E u val

r

(E), or ?.

Let us consider the number of these concept descriptions, i.e., the number of arguments c-lcs is

applied to on each level. We �rst concentrate on the invocation of c-lcs for computing existential

restrictions. It is su�cient to only consider the case where �

r

(E) 6= ;, since this produces the largest

number of concept descriptions. We know that the cardinality of the sets C

0

2 C

r

(C) and D

0

2 C

r

(D)

is bounded exponentially in the size of C and D. (Recall that we work with sets S instead of c-lcs(S).)

Thus, on the �rst level, for computing c-lcs(C

0

; D

0

), c-lcs is only applied to an exponential number

of concept descriptions. But then, on the second level, an exponential number of sets C

r

(E) need to

be considered, where E is of the form explained above. Every element in C

r

(E) might be a set of

exponential cardinality. Hence, the number of arguments of c-lcs on the second level is the product of

two exponential functions, thus still exponential. Analogously, on the third level, we obtain a product

of three exponential functions. Iterating this argument, and since the depth of the tree is bounded by

m, the number of arguments c-lcs is applied is exponential on every level of the tree. A similar, even

simpler argument, works for the invocations of c-lcs for value restrictions.

Summing up, so far, we know that every invocation of c-lcs is applied to a set of concept descriptions

with cardinality exponentially bounded in the size of C and D. Moreover, every concept description in

such a set is a subdescription of C or D, or ?. Thus, for every node of the tree, the (negated) concept

names as well as the number restrictions can be computed in exponential time.

It remains to count the number of nodes of the tree. Of course, it su�ces to only consider those nodes

reached by edges labeled with 9r, since every node of the tree has only one outgoing edge labeled 8r.

On the �rst level, since the cardinality of C

r

(C) and C

r

(D) is bounded double exponentially in the size

of C and D, the number of outgoing edges from the root is at most double exponential. As explained

above, on every other level, the number of sets C

r

(E) to be considered is bounded exponentially in

the size of C and D. Since the cardinality of all these sets can be bounded double exponentially, the

17

outdegree of every node of the tree can be bounded double exponentially as well. Thus, since the depth

of the tree is bounded by m, the number of its nodes is at most double exponential in the size of C and

D.

Altogether, we have shown the following upper bound for computing the lcs in ALEN .

Corollary 6 The lcs of (a set of) ALEN -concept descriptions can be computed in double exponential

time.

It is an open problem whether there also exists an exponential time algorithm, or whether the double

exponential blow-up is unavoidable.

6 Conclusion and future work

We have presented an algorithm for computing the lcs in ALEN . Its proof of correctness is based on

the structural characterization of subsumption introduced in Section 4. In this characterization, we

avoided to explicitly use the lcs in order to be able to decouple the characterization of subsumption

and the lcs computation. Interleaving these two tasks caused previous work on the lcs in ALEN to

be incorrect. Still, due to the interaction between number restrictions and existential restrictions the

characterization of subsumption and the lcs computation became much more involved than for the

sublanguages ALE [2] and ALN [5, 1].

For the size of the lcs of two ALE-concept descriptions a tight exponential lower bound was shown

in [2]. The same argument yields an exponential lower bound for ALEN -concept descriptions. However,

as yet it is not known whether this lower bound is tight. Nevertheless, since our lcs algorithm runs in

double exponential time, we at least obtain a double exponential upper bound for the size of the lcs.

Since a prototype implementation of the exponential-time lcs algorithm for ALE behaves quite well

in the chemical process engineering application [3], we believe that the lcs algorithm for ALEN proposed

here will also work in realistic application situations. For evaluation, continuing the work on ALE , a

prototype of the algorithm for ALEN will be implemented using the DL-system FaCT [9] for deciding

subsumption in ALEN , which then is to be applied to the chemical engineering knowledge base.

References

[1] F. Baader and R. K�usters. Computing the least common subsumer and the most speci�c concept in

the presence of cyclic ALN -concept descriptions. In O. Herzog and A. G�unter, editors, Proceedings

of the 22nd Annual German Conference on Arti�cial Intelligence (KI'98), volume 1504 of Lecture

Notes in Computer Science, pages 129{140. Springer-Verlag, 1998.

[2] F. Baader, R. K�usters, and R. Molitor. Computing least common subsumers in description log-

ics with existential restrictions. In T. Dean, editor, Proceedings of the 16th International Joint

Conference on Arti�cial Intelligence 1999 (IJCAI'99), pages 96{101. Morgan Kaufmann, 1999.

[3] F. Baader and R. Molitor. Building and structuring description logic knowledge bases using least

common subsumers and concept analysis. In B. Ganter and G. Mineau, editors, Proceedings of the

8th International Conference on Conceptual Structures (ICCS2000), volume 1867 of Lecture Notes

in Arti�cial Intelligence, pages 292{305. Springer-Verlag, 2000.

18

[4] W.W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in description logics.

In W. Swartout, editor, Proceedings of the 10th National Conference on Arti�cial Intelligence,

pages 754{760. MIT Press, 1992.

[5] W.W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical and experimental

results. In J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representation

and Reasoning: Proceedings of the 4th International Conference (KR'94), pages 121{132. Morgan

Kaufmann, 1994.

[6] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In G. Brewka,

editor, Foundation of Knowledge Representation, pages 191{236. CSLI-Publications, 1996.

[7] E. Hemaspaandra. The complexity of pure man's logic. In Essays dedicated to Johan van Benthem

on the occasion of his 50th birthday, 1999.

[8] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In Principles

of Knowledge Representation and Reasoning: Proceedings of the 2nd International Conference

(KR'91), pages 335{346. Morgan Kaufmann, 1991.

[9] I. Horrocks. Using an expressive description logic: FaCT or �ction? In A.G. Cohn, L. Schubert,

and S.C. Shapiro, editors, Principles of Knowledge Representation and Reasoning: Proceedings of

6th International Conference (KR'98), pages 636{647. Morgan Kaufmann, 1998.

[10] T. Mantay. Computing least common subsumers in expressive description logics. In N. Foo, editor,

Advanced Topis in Arti�cial Intelligence: Proceedings of the 12th Australian Joint Conference on

Arti�cial Intelligence (AI'99), volume 1747 of Lecture Notes in Arti�cial Intelligence, pages 218{

230. Springer-Verlag, 1999.

[11] R. M�oller, V. Haaslev, and B. Neumann. Semantics-based information retrieval. In Pro-

ceedings of the International Conference on Information Technology and Knowledge Systems

(IT&KNOWS'98), 1998.

[12] U. Sattler. Terminological knowledge representation systems in a process engineering appli-

cation. PhD thesis, RWTH Aachen, 1998. Available at http://www-lti.informatik.rwth-

aachen.de/Forschung/Papers.html.

[13] L. von Wedel and W. Marquardt. ROME: A repository to support the integration of models over

the lifecycle of model-based engineering processes. In Proceedings of ESCAPE-10, 2000.

19

