Aachen University of Technology
Research group for

Theoretical Computer Science
LTCS—Report

Interval-based Temporal Reasoning with General TBoxes
Carsten Lutz

LTCS-Report 00-06

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

Interval-based Temporal Reasoning with General TBoxes

Carsten Lutz
RWTH Aachen, LuFG Theoretical Computer Science
Ahornstr. 55, 52074 Aachen

September 7, 2001

Contents

1

2

Motivation
Syntax and Semantics

Temporal Reasoning with 7DL
3.1 An Interval-based Variant of TDL

3.2 A Representation Framework . . .
3.3 An Application Example

The Decision Procedure

4.1 Preliminaries

4.2 A TDL Normal Form
4.3 Defining Hintikka-trees
4.4 Defining looping automata

4.5 Connection to Tableau Algorithms

Conclusion

© oo oD

12
15
17
26
27

28

1 Motivation

Description Logics (DLs) are a family of formalisms well-suited for the representation
of and reasoning about knowledge. Whereas most Description Logics represent only
static aspects of the application domain, recent research resulted in the exploration
of various Description Logics that allow to, additionally, represent temporal infor-
mation, see [4] for an overview. The approaches to integrate time differ in at least
two important aspects: First, the basic temporal entity may be a time point or a
time interval. Second, the temporal structure may be part of the semantics (yielding
a multi-dimensional semantics) or it may be integrated as a so-called concrete do-
main. Examples for multi-dimensional point-based logics can be found in, e.g., [21;
29], while multi-dimensional interval-based logics are used in, e.g., [23; 2]. The con-
crete domain approach needs some more explanation. Concrete domains have been
proposed by Baader and Hanschke as an extension of Description Logics that allows
reasoning about “concrete qualities” of the entities of the application domain such as
sizes, length, or weights of real-worlds objects [5]. Description Logics with concrete
domains do usually not use a fixed concrete domain; instead the concrete domain
can be thought of as a parameter to the logic. As was first described in [16], if a
“temporal” concrete domain is employed, then concrete domains are very useful for
temporal reasoning. Temporal reasoning with concrete domains may be point-based,
interval-based, or both.

In this paper, we define a temporal Description Logic based on concrete domains
which uses points as its basic temporal entity, but which may also be used as a full-
fledged interval-based temporal DL. More precisely, the presented logic TDL extends
the basic Description Logic ALC [22] with a concrete domain that is based on the
rationals and predicates < and =. This allows to represent point-based temporal
knowledge, e.g., the TDL concept

Student M dgraduation, 21birthday.<

describes students who graduated before their 21’st birthday. For interval-based rea-
soning, the well-known Allen relations can be defined in terms of their endpoints [1].
Of course, point-based and interval-based temporal reasoning may be used in combi-
nation. Since it is an important feature of DLs that reasoning should be decidable,
we prove decidability of the standard reasoning tasks by using an automata-theoretic
approach which also yields a tight EXPTIME complexity bound.

Most DLs allow for some kind of TBox formalism that is used to represent termi-
nological knowledge as well as background knowledge about the application domain.
However, there exist various flavours of TBoxes with vast differences in expressivity
[17; 18; 14]. To the best of our knowledge, all interval-based DLs and all DLs with
concrete domains defined in the literature admit only a very restricted form of TBox,
i.e., sets of acyclic macro definitions. Compared to existing Description Logics that
are interval-based or include concrete domains, the distinguishing feature of our logic
is that it is equipped with a very general form of TBoxes that allows arbitrary equa-
tions over concepts. Thus, the presented work overcomes a major limitation of both
families of Description Logics.

Our results can be viewed from the perspective of interval-based temporal reason-
ing and from the perspective of concrete domains. For the temporal perspective, we
claim that the combination of general TBoxes and interval-based temporal reasoning
is important for many application areas. In this paper, we present process engineering
as an example. From the concrete domain perspective, our results can be viewed as
follows: In [15], it is shown that, even for very simple concrete domains, reasoning
with general TBoxes is undecidable. Obvious solutions, which include the restriction
of the concrete domain to unary predicates and the restriction of the concrete domain
concept constructor to features instead of feature chains, are not really convincing
since the expressive power of the resulting formalism is very limited (readers not fa-
miliar with these notions are referred to [5]). It was an open question whether there
exist interesting concrete domains for which reasoning with general TBoxes is decid-
able. The results presented in this paper answer this question to the affirmative. This
paper is accompanied by a technical report containing the proofs of theorems.

2 Syntax and Semantics

In this section, we introduce syntax and semantics of the Description Logic TDL. As
mentioned in the introduction, this logic is from the family of DLs with concrete do-
mains. However, since we only consider a single concrete domain, we do not explicitly
refer to concrete domains in the definition of 7DL. The exact connection between
concrete domains and our DL is discussed at the end of this section.

Definition 1. Let N¢, Ng, and N.r be mutually disjoint and countably infinite sets
of concept names, roles, and concrete features. Furthermore, let N,z be a countably
infinite subset of Nr. The elements of N, are called abstract features. A path u is
a composition fi--- f,g of n abstract features fi,...,f, (n > 0) and one concrete
feature g. The set of TDL-concepts is the smallest set such that

1. every concept name is a concept

2. if C' and D are concepts, R is a role, g is a concrete feature, uy,us are paths,
and P € {<,=}, then the following expressions are also concepts:

(a) -C,CND,CUD,
(b) 3R.C, VR.C,
(¢) Juyi,us.P, and g1.

An axiom is an expression of the form C' C D, where C and D are concepts. A finite
set of axioms is called a T'Boz.

Throughout this paper, we will denote atomic concepts by the letter A, (possibly
complex) concepts by the letters C, D, ..., roles by the letter R, abstract features by
the letter f, concrete features by the letter g, paths by the letter u, and elements of the
set {<,=} by the letter P. We defer a discussion of how 7 DL can be used for interval-
based temporal reasoning until Section 3. We will sometimes call the TBox formalism

introduced above general TBozes to distinguish it from other, weaker formalisms such
as the ones in [17; 14]. As most Description Logics, TDL is equipped with a Tarski-
style semantics which is introduced next.

Definition 2. An interpretation T is a pair (Az,-1), where Az is a set called the
domain and - is the interpretation function. The interpretation function maps

e each concept name C' to a subset CT of Az,

e each role name R to a subset RT of Az x A7,

e ecach abstract feature f to a partial function fZ from Az to Az, and
e each concrete feature g to a partial function g% from A7 to Q.

For paths u = f; --- fug, we set uZ(a) := ¢Z(f*(--- (ff(a))---)). The interpretation
function is extended to arbitrary concepts as follows:

(cnbD):=ctnD?
(CuD)t:=ctubD?

(-C)F == A7\ C*
(3R.C)T :={a e A7 | {b] (a,b) € RT} nCT # 0}
(VR.C)T :={a € Az | {b| (a,b) € RT} C C7}
(Fuy, up.P)t = {a € Az | uF(a) = z1,ud (a) = z3, and z,Pxy}
(g1)* :={a € Az | ¢*(a) undefined}

An interpretation 7 is a model of a TBox T iff it satisfies CT C DZ for all axioms
CLCDinT. Tisa model of a concept C w.r.t. a TBox 7 iff 7 is a model of 7 and
CT #0.

If g(a) = z for some a € Az and = € Q, then we call z a concrete successor of a in
Z. In what follows, we write T for ALI—-A and L for A —A, where A is a concept
name. Moreover, we write uf with u = f1--- frg for Vfi.---Vfr.gT.

How do TDL-models look like? It is not hard to see that 7DL does not have
the finite model property: The concept T is obviously satisfiable w.r.t. the TBox
{T C 3¢, fg. <}; however, it is not hard to see that there exists no finite model for
this concept and this TBox. Furthermore, 7TDL has the tree model property, i.e.,
if a concept C' is satisfiable w.r.t. a TBox 7, then there exists a tree-shaped model

= (Az,-T) of C and T where the elements of Az are the nodes of the tree and
Urc N R7” is the set of edges. The proof of this tree model property is a byproduct
of some results on Hintikka-trees obtained in Section 4.3.
In this paper, the following inference problems are considered.

Definition 3 (Inference Problems). Let C and D be concepts and T be a TBox.
C subsumes D w.r.t. T (written D Cy C) iff DT C C7 for all models Z of 7. C'is
satisfiable w.r.t. T iff there exists a model of both T and C'. Moreover, C' and D are
equivalent w.r.t. T (written C =7 D) if C C7 D and D Cy C.

We are primarily interested in deciding satisfiability and subsumption. It is well-known
that (un)satisfiability and subsumption can be mutually reduced to each other, i.e.,
C C7 D iff CN =D is unsatisfiable w.r.t. 7 and C' is satisfiable w.r.t. 7 iff we do not
have C C7 L. Sometimes, the inference problems are considered without reference to
a TBox. In this case, we omit the index 7.

The use of @Q in the semantics of 7D L-concepts and TBoxes is not crucial: Q may
be replaced by any set with a dense linear ordering “<” such as, e.g., R. Such a change
in the semantics does not affect the satisfiability and subsumption of concepts. Q may,
however, not be replaced by N since, on N, the usual “<” ordering is not dense, and,
as we will see later, there exist concepts which are satisfiable if @Q is employed in the
semantics but unsatisfiable if N is used.

We now discuss the relationship of 7DL and Description Logics with concrete
domains. To this end, let us introduce concrete domains formally.

Definition 4 (Concrete Domain). A concrete domain D is a pair (Ap, ®p), where
Ap is a set called the domain, and ®p is a set of predicate names. Each predicate
name P € ®p is associated with an arity n and an n-ary predicate PP C A

The concrete domain is usually integrated into the logic by a concept constructor
Juq, ..., up.P, where uy,...,u, are paths and P € ®p (there also exist other con-
structors, see, e.g., [10]). The semantics of this constructor is as follows:

(Fut, ..., un.P)r :={a € Az |ul(a) = z; for 1 <i<nand («F,...,25) € PP},

Hence, it is obvious that TDL can be viewed as being equipped with the concrete
domain D. := (Q,{<,=}), where < and = are binary predicates with the usual se-
mantics. For most DLs with concrete domains, it is required that the set of predicates
is closed under negation and contains a name T p for Ap. This property ensures that
every concept can be converted into an equivalent one in the so-called negation normal
form (NNF). The NNF of concepts, in turn, is used as a starting point for devising
satisfiability algorithms. It is not hard to see that D, is not admissible in this sense.
However, as we will see in Section 4.2, the conversion of T DL-concepts into equivalent
ones in NNF is nevertheless possible.

One technical difference between T DL and most Description Logics with concrete
domains such ALC(D), which is defined by Baader and Hanschke in [5], should be
mentioned: ALC(D) does not distinguish between abstract and concrete features,
but provides only one type of feature interpreted as a partial function from Az to
A7UAp. Obviously, using these “combined” features instead of separated ones slightly
increases expressive power. However, it seems rather hard to find any cases in which
the additional expressivity is crucial. Furthermore, separating concrete and abstract
features allows a clearer algorithmic treatment and clearer proofs. Apart from this
difference, TDL is just ALC(D.) enriched with general TBoxes, where ALC(D.) is
ALC(D) instantiated with the concrete domain D_.

{ 1 \ | black before gray

{ w 1 black meets gray

| | black overlaps gray

w | black during gray

| black starts gray

| i black finishes gray

Figure 1: The Allen relations (without equal and inverses).

3 Temporal Reasoning with 7DL

Although T DL does only provide the relations “=" and “<” on time points, it is not
hard to see that the remaining relations can be defined:

Jui, ue. > = Fug,uq.<
Jui,ue. < = Fup,ue.< U uy,us.=
Jui,uo. > = Fug,ur.< U Juy,us.=

However, we claim that 7 DL cannot only be used for point-based temporal reasoning
but also as a full-fledged interval-based temporal Description Logic. Reasoning with
time intervals has a considerable tradition in artificial intelligence, see, e.g., [1; 23; 28;
9; 12; 26; 2]. The foundation of interval-based reasoning in AI is Allen’s observation
that there are 13 possible relationships between two intervals [1] such as, for example,
the meets relation: Two intervals 4; and iy are related by meets iff the right endpoint
of i1 is identical to the left endpoint of i5. Figure 1 illustrates meets and the other
relations omitting equal and inverses. The inverse relations corresponding to the rela-
tions displayed in Figure 1 are called after, met-by, overlapped-by, contains, started-by,
and finished-by (from top to bottom).

In this section, we first introduce a variant of 7 DL that is purely interval-based,
then present a framework for mixed interval- and point-based reasoning in 7 DL itself
and finally apply this framework in the application area of process engineering

3.1 An Interval-based Variant of TDL

It is straightforward to define a variant of 7DL whose semantics is interval-based
instead of point-based and which offers Allen’s relations as predicates.

Definition 5 (7DL!). A TDL -concept is a TDL-concept in which each occurrence
of predicates < and = have been replaced by Allen relations equal, before, after, meets,
met-by, overlaps, overlapped-by, during, contains, starts, started-by, finishes, finished-by.
TDL'-TBoxes are defined analogously.

Let Iq be the set {(¢1,¢2) € Q? | 1 < q2}, i.e., the set of all intervals over Q. An
T DL -interpretation Z is a TDL-interpretation that maps each concrete feature g to
partial g7 functions from A7 to Ig. The extension to complex TDL" concepts is as
for TDL (now using Allen relations instead of the predicates < and =).

For example, the following is a TDL-concept:
3fg1,ge.during U IR.dgy, go.after

Just as TDL can (apart from some minor differences) be viewed as ALC (D<) enriched
with general TBoxes, TDL! can be seen as ALC(D;) enriched with general TBoxes,
where Dy is a concrete domain based on the set of intervals (over Q) and Allen’s
relations. Such a concrete domain has, e.g., been defined in [16).

We show that 7DL! is indeed just a variant of TDL by giving a very simple
translation of 7DL -concepts (resp. TBoxes) to corresponding 7DL concepts (resp.
TBoxes). W.lLo.g., we assume that the concrete features appearing in TDL -concepts
and TBoxes are called i1, 19, In the target language TDL, we use concrete features
l1,r1,02,72,..., where, intuitively, £;-successors in T DL represent the left endpoints
of the intervals represented by i;-successors in TDL! and rj-successors represent the
corresponding right endpoints of these intervals.

Definition 6 (7DL! translation). For each TDL -concept C, we define a corre-
sponding T DL-concept 7(C) that is obtained by exhaustively applying the following
rewrite rules to C:

3Fiy, Flig.equal ~ 3FV,F'ly.= N 3Fr, Fro.=
3AFiy, Flig.before ~» 3IFr, F'ly.<
JFi,, Flig.after ~ 3F'ry, Fl1.<
Fi,, F'ig.meets ~s 3Fry, F'ly.=
3AFiy, Flig.met-by ~» 3JFl;, F'ry.=
AFiy, Flig.overlaps ~» 3F¢, F'ly.< M AFYly, Fri.< 1 3Fr, F'ry.<
AFiy, F'ig.overlapped-by ~» IF'ly, Fl;.< N 3F4y, F'ro.< M 3F'ry, Fry.<
AFi, Flig.during ~» 3F'4y, Fly.< 11 3Fr;, F'ry.<
AFi, Flig.contains ~» 3IF4y, F'ly.< 11 3F'ry, Fri.<
AFiy, Flig.starts ~» JFl, F'ly.= 1 3AFr;, F'ry.<
IFiy, Flig.started-by ~» 3FLy, F'ly.— 1 3F'ry, Fry.<
AFiy, Flig finishes ~» 3IF'0y, Fl1.= 1 3Fr, F'ry.=
3Fiy, Flio finished-by ~» 3JF¢, F'ly.= M 3Fry, F'ry.=

where F,F' € (N,p)*, i.e., F and F' are words over the alphabet N,p. For each
TDL-TBox T, we define a corresponding TDL-TBox 7(7) analogously.

Using this translation, satisfiability (and hence also subsumption) of 7TDL-concepts
can be reduced to satisfiability of 7D L-concepts.

ATemporal = ttnétnrt

Temporal = Point U Interval
Point = dt,t.=m114111rt
Interval = A, r.<t

Interval 3 4, 4,=U4dr,r.=

Figure 2: Basic definitions of the framework 7*.

Proposition 7. A TDL! -concept C is satisfiable w.r.t. a TDL -TBox T iff 7(C) is
satisfiable w.r.t. 7(T)UT", where

T" = U {T C Hﬁi,n.<}.

1<i<k

Hence, the EXPTIME decidability result for 7DL obtained in Section 4 implies that
TDL' is also decidable in EXPTIME. Again, it is worth to view this result from the
concrete domain point of view: The above translation shows that the concrete do-
main Dr based on Allen’s relations (which is formally defined in [16]) is a concrete
domain for which reasoning with general TBoxes is decidable. Hence, we have shown
that, despite the discouraging results given in [15]—where it is shown that the com-
bination of general TBoxes and certain very simple concrete domains already leads
to undecidability—there exist interesting concrete domains for which reasoning with
general TBoxes is decidable.

3.2 A Representation Framework

As an alternative to using the logic 7DL! for interval-based temporal reasoning, one
can directly employ 7DL and represent intervals as pairs of endpoints. This has
the advantage that mixed point- and interval-based reasoning becomes possible. This
approach is pursued in the following section, where we give an application example. To
simplify presentation, in this section we introduce an abstract framework for temporal
reasoning with 7 DL that consists of several conventions and abbreviations.

We assume that each entity of the application domain is either temporal or atem-
poral. If it is temporal, its temporal extension may be a time point or an interval
but not both. We generally assume that left endpoints of intervals aree represented
by the concrete feature ¢, right endpoints of intervals are represented by the concrete
feature r, and time-points not related to intervals are represented by the concrete
feature ¢. All this can be expressed by the TBox 7* displayed in Figure 2. In the
figure, C = D is an abbreviation for C C D and D C C. The TBox implies that
the concepts ATemporal, Point, and Interval are mutually disjoint. To keep concepts
readable, we introduce abbreviations for Allen’s relations. For example,

3(F, F').contains

is an abbreviation for
dF¢, F't.< 1 3F'r, Fr.<

where F, F' € (N,r)*. Note that we have
3(F, F').contains C7~ 3F.Interval 1 3F".Interval.

Similar abbreviations are introduced for the other Allen relations, where the defining
concepts can be read off from Definition 6. For better readability, we use self to denote
the empty word. For example,

3(F, self).starts

is an abbreviation for
JF¢, 0= N JFrr.<.

Intuitively, self refers to the interval associated with the abstract object at which the
3(F, self).starts concept is “evaluated”.

Since we have intervals and points available, we should also be able to talk about
the relationship of points and intervals. More precisely, there exist 5 possible relations
between a point and an interval and we introduce the following abbreviations for them:

J(Fp, F').beforep for 3IFp, F'i.<
A(Fp, F').startsp for IFp, F'l.=
A(Fp, F').duringp for 3IF'¢,Fp.< N IFp, F'r.<
J(Fp, F') finishesp for IFp, F'r.=
A(Fp, F').afterp for 3IF'r, Fp.<

where again F,F’' € (N,r)* and p € N.p. We refrain from defining the inverses of
these relations. The usefulness of the introduced framework is demonstrated in the
next section.

3.3 An Application Example

Interval-based temporal Description Logics have been used in various application areas
such as disaster management [13] and reasoning about action and plans [4]. We claim
that 7TDL is a contribution to most of these application areas since, unlike existing
interval-based Description Logics, it admits general TBoxes. To substantiate this
claim, we motivate 7T DL as an appropriate tool for temporal reasoning in the area
of process engineering. In [19], Sattler describes how Description Logics can be used
for representation and reasoning in this application domain. However, in Sattler’s
approach, only static knowledge about process engineering is considered, i.e., there
is no explicit representation of the temporal relationships between described entities.
We use the framework presented in the previous section to show how the temporal
aspects of this application domain can be represented in 7 DL thus refining Sattler’s
model.

Assume that our goal is to represent information about an automated chemical
production process that is carried out by some complex technical device. The de-
vice operates each day for some time depending on the number of orders. It needs a

Week = Interval M
[T 3Iday,.Day
1<icy Py

3(day,, self).starts M
3(dayy, self).finishes M

IS|:|<7 3(day;, day; . ;).meets M

dnext.Week 1

I(self, next).meets

Figure 3: Weeks and days.

Day = IntervalTl
Jstart.Startup N
Jop.Operation N
dshut.Shutdown M
J(start, self).during N
J(start, op).meets M
3(op, shut).meets M
I(shut, self).during

Week C dmaint.Maintenance M

J(self, maint).contains

Interval 3O Startup LI Operation LI Shutdown LI Maintenance

Figure 4: Operation and maintenance.

complex startup and shutdown process before resp. after operation. Moreover, some
weekly maintenance is needed to keep the device functional. Let us first represent
the underlying temporal structure that, in our case, consists of weeks and days. The
corresponding TBox can be found in Figure 3. In the figure, concepts are written cap-
italized while roles (as well as predicates) start with a lowercase letter. The TBox in
the figure states that each week consists of seven days, where the i’th day is accessible
from the corresponding week via the abstract feature day,. The temporal relationship
between the days are as expected: Monday starts the week, Sunday finishes it, and
each day temporally meets the succeeding one. This implies that each of the seven
days is during the corresponding week although this is not explicitly stated. More-
over, each week has a successor week that it temporally meets. Note that the TBox is
cyclic, i.e., Week is defined in terms of itself. This is already more than simple, acyclic
TBoxes are able to express [18].

We can now describe the startup, operation, shutdown, and maintenance phases,

10

Day LC Jup-int.Operator-interaction M
Jdown-int.Operator-interaction 1
I(up-int o ¢, start).startsp
I(down-int o ¢, shut).startsp

Operator-interaction L Point

Figure 5: Operator interaction.

see Figure 4. Here start, op, shut, and maint are abstract features. The definition
implies that operation phases are temporally during the corresponding day. Our
current model does not say anything about the temporal relationship of maintenance
and operation. This may be inadequate, if, for example, maintenance and operation
are mutually exclusive since maintenance prevents operation or is too dangerous during
the operation phase. We can take this into account by using additional axioms

Week M IS17|§7El(ma|nt, day, oop).RELC L (%)

where (1) “o” is used for better readability (i.e., sequences of features fi--- fi are
written as fi o---o fx) and (2) REL is equal, overlaps, overlapped-by, during, contains,
starts, started-by, finishes, or finished-by.

We may view the knowledge modeled so far as the specification of a faultless
operation. To illustrate reasoning with 7DL in this application domain, we can now
check facts about specific weeks or days against the specification. For example, say
that in the 23rd calendar week, the maintenance took extremely long: it started on
Tuesday night and wasn’t finished until Thursday morning. This is expressed by the
axiom

Week23 C Week M 3(day;, maint).during.

The TDL reasoner can be used to check whether there was a problem in Week 23.
This is obviously the case if the concept Week23 is not satisfiable w.r.t. the TBox that
is obtained from the TBox expressing faultless operation by adding the definitorial
axiom for Week23. Tt is not hard to see that this TBox is indeed unsatisfiable: The
definition of Week23 implies that the operation phase of wednesday is during the
weekly maintenance phase which is a contradiction to (). Hence we can deduce that,
in the 23rd calendar week, the specification of faultless operation was not met.

In order to demonstrate mixed reasoning with time points and intervals, we pro-
pose a further refinement of our model. Assume that the production process is fully
automated except that an operator interaction is necessary to initiate the startup and
shutdown processes. These facts can be expressed using the axiom shown in Figure 5.
In the figure, up-int and down-int are abstract features. We may now check specific
weeks or days against our refined specification of faultless operation. For example, it
may be the case that, on November 13, the operation continued after the shutdown

11

interaction which is obviously not a faultless operation. This can be described by
Nov13 C Day M 3(down-int, op).duringp.

It is not hard to see that Nov13 is unsatisfiable: the shutdown interaction cannot
start the shutdown phase and simultaneously be during the operation phase since the
operation phase must meet the shutdown phase. As another example, assume that, in
calendar week 11, the shutdown interaction of some (unspecified) day occurred during
the weekly maintenance phase. Is this compatible with a faultless operation? To check
this, we can add the axiom

Week11l = Week N 1<|__|<7E|(dayi o down-int, maint).duringp

to our TBox. A close look reveals that Weekl1l is also unsatisfiable: The shutdown
interaction starts the shutdown phase that is met by the operation phase. Hence, if
the shutdown interaction of some day occurs during the weekly maintenance phase,
then the temporal relation between this day’s operation phase and the maintenance
phase is either during, overlaps, or starts. All three possibilities conflict with (x).

The discussed examples do not exploit all the expressive power of TDL because
of simplicity. Nevertheless, they demonstrate that 7DL is a powerful tool for repre-
senting temporal knowledge.

4 The Decision Procedure

In this section, we prove satisfiability of 7 DL-concepts w.r.t. TBoxes to be decid-
able and obtain a tight ExPTIME complexity bound for this problem. Decidability
is proved using an automata-theoretic approach: This is done using an automata-
theoretic approach: first, we abstract models to so-called Hintikka-trees such that
there exists a model for a concept C' and a TBox 7 iff there exists a Hintikka-tree
for C and 7. Then, we build, for each TDL-concept C' and TBox T, a looping au-
tomaton A (¢ 7) that accepts exactly the Hintikka-trees for (C, 7). In particular, this
implies that A, 7) accepts the empty (tree-) language iff C' is unsatisfiable w.r.t. 7.

4.1 Preliminaries

In this section, we introduce the basic notions needed for proving decidability of TDL
like trees, looping automata, and the language they accept.

Definition 8. Let M be a set and & > 1. A k-ary M-tree is a mapping T :
{1,...,k}* — M that labels each node « € {1,...,k}* with T(«a) € M. Intuitively,
the node «i is the i-th child of . We use € to denote the empty word (corresponding
to the root of the tree).

A looping automaton A = (Q,M,I,A) for k-ary M-trees is defined by a set Q
of states, an alphabet M, a subset I C (Q of initial states, and a transition relation
ACQxMxQF.

12

A run of A on an M-tree T is a mapping r: {1,...,k}* — Q with r(e) € I and
(r(a), T(a),r(al),...,r(ak)) € A

for each « € {1,...,k}*. A looping automaton accepts all those M-trees for which a
run exists, i.e., the language £(.A) of M-trees accepted by A is

L(A) = {T | there is a run of A on T}.

In [27], it is proved that the emptiness problem for looping automata, i.e., the problem
to decide whether the language L(A) accepted by a given looping automaton A is
empty, is decidable in polynomial time. A Hintikka-tree for C' and 7 corresponds
to a canonical model for C' and 7. Apart from describing the abstract domain Az
of the corresponding canonical model 7 together with the interpretation of concepts
and roles, each Hintikka-tree induces a directed graph whose edges are labelled with
predicates from {<,=}. These constraint graphs describe the “concrete part” of 7
(i.e., concrete successors of domain objects and their relationships) and are defined in
the following.

Definition 9. A constraint graph is a pair G = (V, E), where V is a countable set
of nodes and E C V x V x {=,<} a set of edges. We generally assume that con-
straint graphs are equality closed, i.e., that (vi,v9,=) € E implies (v9,v1,=) € E. A
constraint graph G = (V, E) is called satisfiable over M—where M is a set equipped
with a total ordering <—iff there exists a total mapping ¢ from V to M such that
d(v1) P d(ve) for all (vy,ve, P) € E. Such a mapping ¢ is called a solution for G.

A path @ in G is a finite non-empty sequence of nodes vy, ...,vp_1 € V such that,
for all 7 with 0 < 7 < k, we have (v;,v;11, P) € E, where P € {<,=}. Such a path
is also called a path from vg to vp_;. @ is called a =-path iff (v;,v;41,=) € E for
0<i<k-—1. A eycle O in G is a path vy, ...,v; 1, such that (vy_1,v9, P) € E for
some P € {<,=}. Ois a <-cycle iff O is a cycle such that (v;,vig,1,<) € E for some
1 with 0 <4 < k, where ®;, denotes addition modulo k.

The following theorem will be crucial for proving that, for every Hintikka-tree, there
exists a corresponding canonical model. More precisely, it will be used to ensure that
the constraint graph induced by a Hintikka-tree, which describes the concrete part of
the corresponding model, is satisfiable.

Theorem 10. A constraint graph G is satisfiable over M with M € {Q,R} iff G
does not contain a <-cycle.

Proof Since the “=" direction is trivial, we concentrate on the “<” direction. Let
G be a constraint graph not containing a <-cycle. Let ~ be the relation on V with
vy ~ vy iff v1 = vy or there exists a =-path between v; and vy. Since constraint graphs
are assumed to be equality closed, ~ is an equivalence relation. For v € V, denote the
equivalence class of v w.r.t. ~ with [v].. Define a new constraint graph G' = (V', E")
as follows:

Vo= {]e v eV}
E' = {([vi]~,[v2]~, <) | 0], vh € V such that
vll € ['Ul]N,'Ué € [U2]~7 and (0117’0127 <) € E}

13

U1 < <

< < < e o o

U2

Figure 6: A constraint graph containing no <-cycle that is unsatisfiable over N.

Using the fact that G' does not contain a <-cycle, it is straightforward to prove that G’
does not contain a <-cycle. Since G’ does not contain a <-cycle, E' induces a partial
order with domain V'. By Szpilrajn’s Theorem, every partial order can be extended
to a total order (on the same domain) [24]. Let <z be a total order obtained in
this way from the partial order induced by E’. In the following, we show that every
total order with a countable domain can be embedded into @ (resp. R) such that the
ordering is preserved. This suffices to complete the proof since it implies that that
there exists a total mapping o from V to @ (resp. R) such that v <g vy implies
o(v1) < o(ve). It is obvious that o is a solution for G' and it is straightforward to use
o to construct a solution for G.

Hence, it remains to show that every total order < with a countable domain D
can be embedded into @ (resp. R) such that the ordering is preserved. Let dg,dy, ...
be an enumeration of D. We use induction over this enumeration to define a function
o from D to @ (resp. R) such that di < dy implies o(dy) < o(ds) for all dy,dy € D.

1. For the induction start, set o(dy) to some g € Q.
2. Assume that o(d;) is defined for 0 <14 < k. We distinguish three cases:

(a) d; < dj for 0 < i < k. Since @ has no maximum, there exists a ¢ € Q such
that ¢ > o(d;) for 0 <i < k. Set o(dy) = q.

(b) dj < d; for 0 < i < k. Since @ has no minimum, there exists a ¢ € Q such
that ¢ < o(d;) for 0 <i < k. Set o(dg) :=gq.

(c) Neither of the previous two cases holds. Since @) is dense, there exists
a ¢ € Q such that max{o(d;) | 0 < i < kandd; < dy} < g and ¢ <
min{o(d;) |0 <i < k and dy < d;}. Set o(dy) :=q.

It is readily checked that o is as required. 0

In the succeeding sections, we deal with the satisfiability of constraint graphs over Q.
However, all obtained results also apply if we choose R instead. Note that Theorem 10
does not hold if satisfiability over N is considered due to the absence of density: If
there exist two nodes v; and vy such that the length of <-paths (which are defined in
the obvious way) between v and vs is unbounded, a constraint graph is unsatisfiable
over N even if it contains no <-cycle. Figure 6 shows such a constraint graph.

14

4.2 A 7DL Normal Form

The decidability procedure works on 7 DL-concepts and TBoxes of a certain syntactic
form. This greatly simplifies some constructions like defining Hintikka-trees. Let us
first introducing the well-known negation normal form.

Definition 11 (NNF). A concept C is in negation normal form (NNF) if negation
occurs only in front of concept names. Exhaustive application of the following rewrite
rules translates concepts to equivalent concepts in NNF.

-—C = C

-~(CnD) = -CUu-D -~(CuD) = -Cn-D
-(3R.C) = (VR.=(C) -(VR.C) = (3R.-C)
=(Juy,us.P) = Fuq,us.P U Jug,ur.< U urt U ugt =(¢1) = dg,9.=

where ~ denotes the exchange of predicates, i.e., < is = and = is <. With nnf(C),
we denote the equivalent of C' in NNF which can be obtained by applying the above
rules. Furthermore, we use ~C' as a shorthand for nnf(=C). A TBox 7T is in NNF iff
all concepts in T are in NNF.

We can now extend NNF to an even more convenient normal form.

Definition 12 (Path Normal Form). A 7TDL-concept C is in path normal form
(PNF) iff it is in NNF and, for all subconcepts Juq, us.P of C', we have either

1. u1 = ¢1 and ug = g9 for some g1, 92 € N.p,
2. w1 = fg1 and uy = go for some f € Ny and g1,g92 € N.p, or
3. u1 = g1 and uy = fgs for some f € Nyr and g1,92 € N¢p.

A TDL TBox T is in path normal form iff it is in NNF and all concepts appearing
in 7 are in PNF.

The following lemma shows that it is not a restriction to consider only concepts and
TBoxes in PNF.

Lemma 13. Satisfiability of TDL-concepts w.r.t. TDL-TBozxes can be reduced to sat-
isfiability of TDL-concepts in PNF w.r.t. TDL-TBozes in PNF.

Proof We start with defining a function p that converts 7 DL-concepts (resp. TDL-
TBoxes) to TDL-concepts (resp. TDL-TBoxes) containing only paths of a restricted
length. This mapping will then be used to convert 7TDL-concepts and TBoxes into
PNF.

Let C be a TDL-concept. For every path v = f1--- f,g used in C, we assume
that [g], [fng],---,[f1- - fng] are concrete features. We inductively define a mapping
A from paths u in C to concepts as follows:

Mg) = T
M fu) = Qlful, flu]l. =) 7 IfNu)

15

Now, p(C) is obtained from C by replacing all subconcepts Juy,us.P of C' with
A[uq], [ue].P T A (u1) M A(uz) and gt with [g]t. Moreover, if

is a TDL-TBox, then

p(T) = {p(C1) E p(D1), ..., p(Ck) E p(Dy)}-

Now let C' be a TDL-concept and T a TDL-TBox. By Definition 11, we can convert
C to a concept C’ in NNF and 7 to a concept 7' in NNF such that C is satisfiable
w.r.t. T iff C' is satisfiable w.r.t. 7’. Moreover, we can clearly translate C' to p(C")
and 7" to p(T") in polynomial time and, obviously, p(C’) and p(T") are in PNF. Hence,
it remains to show that C' is satisfiable w.r.t. 7' iff p(C") is satisfiable w.r.t. p(T").

First for the “if” direction. Let Z be a model for p(C’) and p(7"). We extend Z to
an interpretation J by setting g7 := [g]? for all concrete features ¢ used in C’ or 7.
It is not hard to show by structural induction that, for all subconcepts D of C' or T’
and all a € Az, we have a € p(D)f — a € D7. Since C" and 7" are in NNF, the only
non-trivial cases are:

e D = Fuy,uz.P. Then p(D) = J[uq], [ug].PMIA(u1)M A (uz). Fori € {1,2}, let u; =
fl(l), ... ,f,g:)gi. It is easy to show by induction on n that, for each i € {1,2} and
every n with 1 < n < k;, there exist by,...,b, € Az such that (a,b;) € (fl(i))z
and [u;]% (a) = [fQ(l), el ,f,gz)gi]z(bl), and, for each 1 < j < n, we have (b;_1,b;) €
(FNE and [f7,..., f,g:)gi]f(bj_l) = [0, £ g% (b)), Hence, for each
i € {1,2}, we have f{"(--- (f{"(a))-+) = by, and [u;]Z(a) = [g:]%(by,)- Since
3[u1], [uz].P is a conjunct of p(D), it is thus clear that [g1]7 (bg,) P [g2]* (bk,). Tt
is now immediate by definition of 7 that a € (Juy,us.P)7.

e D = gt. Then p(D) = [g]t. Obvious by definition of J.

It is easily seen that the claim just proved by induction implies that J is a model for
C’" and T".

Now for the “only if” direction. Let Z be a model for C’ and 7'. We extend Z to an
interpretation [J by, for each path u used in C’ and 7, and each postfix v’ = f - frg
of u, setting [f1--- frg]? := (u')L. It is not hard to show by structural induction that,
for all subconcepts D of C' or 7' and all a € Az, we have a € DT — a € p(D)7. The
only non-trivial cases are the same as in the “if” direction. However, both cases are
straightforward by definition of p and J. Thus, J is clearly a model for p(C’) and
p(T). O

Hence, it suffices to prove that satisfiability of concepts in PNF w.r.t. TBoxes in PNF
is decidable. In what follows, we generally assume that all concepts and TBoxes are
in path normal form. We will often refer to TBoxes T in their concept form C'y which is
defined as follows:

Cr = ngeTnnf(—nC U D).

16

4.3 Defining Hintikka-trees

In this section, we define Hintikka-trees for 7 DL-concepts C' and TBoxes 7 in path
normal form and show that there exists Hintikka-tree for C' and T iff there exists a
model for C and T.

Let C be a concept and T be a TBox. With cl(C,T), we denote the set of
subconcepts of C' and C'7. We assume that existential concepts IR.D in cl(C,T)
with R € Ng \ Ny are linearly ordered, and that £(C, T, i) yields the i-th existential
concept in cl(C, T). Furthermore, we assume the abstract features used in cl(C,T) to
be linearly ordered and use F(C,T,i) to denote the i-th abstract feature in cl(C,T).
The set of concrete features used in cl(C,T) is denoted with G(C,T).

We now define Hintikka-pairs which are used as labels of the nodes in Hintikka-
trees (recall that Hintikka-trees are abstractions of models).

Definition 14 (Hintikka-set, Hintikka-pair). Let C' be a concept and 7 be a
TBox. A set U C cl(C,T) is a Hintikka-set for (C,T) iff it satisfies the following
conditions:

(H1) Cr e,

(H2) if C; N Cy € ¥, then {Cy,C5} C U,

(H3) if C;1 UCy € ¥, then {C1,Co} N £ 0,

(H4) {A,—A} € ¥ for all concept names A € cl(C,T),

(H5) if g T€ U, then Juj,ue.P ¢ ¥ for all concepts Juy, us. P with uy = g or ug = g.

We say that f € N, is enforced by a Hintikka-set W iff either 4f.C' € U for some
concept C or {3fg1,92.P,3g1, fg2.P} NV # () for some ¢1,92 € N.p and P € {<,=}.
A Hintikka-pair (U, x) for (C,T) consists of a Hintikka-set ¥ for (C,7) and a set x
of tuples (g1, g2, P) with g1,g2 € G(C, T) such that

(H6) if (917927P) € X then {91T792T} nw= @

With T'(¢,7), we denote the set of all Hintikka-pairs for (C, 7). A path u is enforced
by (U, x) iff either u appears in x or {Ju,u'.P,3u',u.P} NV # (for some path »' and
Pe{<,=}1

Intuitively, each node « of a (yet to be defined) Hintikka-tree T corresponds to a
domain object a of the corresponding canonical model Z. The first component ¥,
of the Hintikka-pair labelling « is the set of concepts from cl(C,T) satisfied by a.
The second component x, states restrictions on the relationship between concrete
successors of a. If, for example, (g1,92,<) € Xa, then we must have gZ(a) < g2 (a).
Note that the restrictions in y, are independent from concepts dg1,gs.P € ¥U,. As
will become clear when Hintikka-trees are defined, the restrictions in y, are used to

!Note: by definition of Hintikka-pairs, the path u has length 1 if it appears in x, and, since all
concepts are in path normal form, u has length 1 or 2 if {Ju,'.P,3u’,u.P} N ¥ # for some v’
and P.

17

ensure that the constraint graph induced by the Hintikka-tree 7', which describes the
concrete part of the model Z, does not contain a <-cycle, i.e., that it is satisfiable.
This induced constraint graph can be thought of as the union of smaller constraint
graphs, each one being described by a Hintikka-pair labelling a node in 7. These
pair-graphs are defined next.

Definition 15 (Pair-graph). Let C' be a concept, 7 a TBox, and p = (¥, x) a
Hintikka-pair for (C,7). The pair-graph G(p) = (V,E) of p is a constraint graph
defined as follows:

1. V is the set of paths enforced by p
2. E=xU{(u1,us, P) | Jui,us.P € TU}.

An edge extension of G(p) isaset E' CV xV x{<,=} such that for all fg, fgo € V,
we have either (fg2, fg1,<) € E' or (fg1, fg2, P) € E' for some P € {<,=}. If ' is
an edge extension of G(p), then the graph (V, E U E') is a completion of G(p).

Note that, since all concepts are in path normal form and due to the definitions of
Hintikka-pairs and pair-graphs, we have E' N E = () for every edge extension E’ of
a pair-graph (V, E). As all constraint graphs, we assume pair-graphs to be equality
closed.

We briefly comment on the connection of completions and the y-component of
Hintikka-pairs. Let « and 8 be nodes in a Hintikka-tree T" and let ¢ and b be the
corresponding domain objects in the corresponding model Z. Edges in Hintikka-trees
represent role-relationships, i.e., if 8 is successor of o in T', then there exists an R € Ny
such that (a,b) € RZ. Assume f is successor of a and the edge between « and 3 rep-
resents relationship via the abstract feature f, i.e., we have fZ(a) = b. The second
component Xg of the Hintikka-pair labelling 3 fixes the relationships between all con-
crete successors of b that “a talks about”. For example, if (3fg1,92.=) € ¥, and
(3f93,92. <) € ¥, where ¥, is the firsto component of the Hintikka-pair labelling «,
then “a talks about” the concrete gi-successor and the concrete gs-successor of b.
Hence, x3 either contains (g3, g1, <) or (91,93, P) for some P € {<,=}. This is for-
malized by demanding that the pair-graph G(T'(«)) of the Hintikka-pair labelling «
together with all the edges from the y-components of the successors of a are a comple-
tion of G(T'(a)). Moreover, this completion has to be satisfiable, which is necessary
to ensure that the constraint graph induced by T' does not contain a <-cycle. An ap-
propriate way of thinking about the x-components is as follows: at «, a completion of
G(T(x)) is “guessed”. The additional edges are then “recorded” in the x-components
of the successor-nodes of &. We now define Hintikka-trees formally.

Definition 16 (Hintikka-tree). Let C' be a concept, 7 be a TBox, k the number
of existential subconcepts in cl(C,7), and £ be the number of abstract features in
c(C,T). A1+ k+ ¢-tuple of Hintikka-pairs (po,...,prre) with p; = (¥, x;) and
G(po) = (V, E) is called matching iff

(H7) if 3R.D € ¥y and £(C, T,i) = IR.D, then D € U;

18

(H8) if {3R.D,YR.E} C Uy and £(C,T,4) = IR.D, then E € ;

(H9) if 3/.D € Uy and F(C,T,i) = f, then D € Uy,..

(H10) if f is enforced by ¥y, F(C,T,i) = f, and Vf.D € Uy, then D € ¥y ;.
(H11) the constraint graph (V, E U E'), where

E = U {(fglaf927p) |‘7:(07T77’) :fa (917927P) € Xk-i—z}
1<i<t

is a satisfiable completion of G(py).

A k + l-ary T (¢)-tree T is a Hintikka-tree for (C,T) iff T(a) is a Hintikka-pair for
(C,T) for each node o in T, and T satisfies the following conditions:

(H12) C € ¥, where T'(€) = (U, Xe),

(H13) for all @ € {1,...,k+£}*, the tuple (T'(a),T(al),...,T(cj)) with j =k + ¢
is matching.

For a Hintikka-tree T" and node a € {1,...,k+ £}* with T(a) = (¥, x), we use T'q(«)
to denote ¥ and T} («) to denote x. Moreover, if G(a) = (V, E), we use cpl(T, @) to
denote the constraint graph (V, EU E') as defined in (H11).2

Whereas most properties of Hintikka-trees deal with concepts, roles, and abstract
features and are hardly surprising, (H11) ensures that constraint graphs induced by
Hintikka-trees contain no <-cycle. By “guessing” a completion as explained above,
possible <-cycles are anticipated and can be detected locally, i.e., it then suffices to
check that the completions cpl(T, a) are satisfiable as demanded by (H11). Indeed, it
is crucial that the cycle detection is done by a local condition since we need to define
an automaton which accepts exactly Hintikka-trees and automata work locally. Tt is
worth noting that the localization of cycle detection as expressed by (H11) crucially
depends on path normal form.

The following two lemmas show that Hintikka-trees are appropriate abstractions
of models. This lemma is central since, as we will see, defining looping automata
accepting exactly Hintikka-trees is a straightforward task.

Lemma 17. A concept C is satisfiable w.r.t. a TBox T if there exists a Hintikka-tree
for (C,T).

Proof Let C be a concept, 7 a TBox, and k and £ as in Definition 16. Moreover, let
T be a Hintikka-tree for (C, 7). We define an interpretation Z = (Az,-Z) as follows:

Ar = {1,...,k+0}
AT = {a|AeTy(a)} forall AcCy
R = {(a,p) | B=ciand E(C,T,i) = IR.E € To(a)} for all R € N\ Nur
fF= {(,B)|B=ai, F(C,T,i—k) = f, and f is enforced by T4(c)}
for all f € Ny

2more precisely its equality closure.

19

It remains to define the interpretation of concrete features. We define an (infinite)
constraint graph G(T') induced by T, show that G(T') is satisfiable, and define the
interpretation of concrete features from a solution of G(T'). The nodes of G(T) have
the form «|u, where « is a node in T and w is a path in C' or 7. More precisely, G(T')
is defined as (V, E), where

1. V=A{aulae{l,...,k+£}* uappears in C or T}

2 B= | {(efualu,P)| (uv,P) € cpl(T,)}
ac{l,...k+L}*

U{(alfg),ailg,=) | F(C,T,i—k) = f, fgis anodein cpl(T,a)}

As always, we assume that G(T') is equality closed. It is not hard to see that G(T)
really is a constraint graph, i.e., the node set of G(T') is countable. Next, we show the
following claim:

Claim 1: G(T) is satisfiable.

Proof: By Theorem 10, it suffices to show that G(T') contains no <-cycle. Assume to
the contrary that G(T') contains a <-cycle and that O = «aglug,. .., @, _1|up—1 is the
<-cycle in G(T') with minimal length. Fix a ¢ with 0 < ¢ < n such that

for each 7 with 0 <4 < n and each 8 € {1,...,k+¢}T, we have a; # ayf3, (%)

i.e., there exist no a; in O such that oy is a true prefix of «; (such a ¢ exists since O
is of finite length). Since O is a <-cycle, there exists an s with 0 < s < n such that
(as|us, asg,1|usgp,1, <) € E. We make a case distinction and derive a contradiction
in either case.

e «; # ay. Define a sequence of nodes O’ from O by deleting all nodes «;|u; with
a; = ag. O is non-empty since as # az. We show that O’ is a <-cycle in G(T))
which is a contradiction to the minimality of O. Let O" = agluy, ..., o, _4|ul, ;.
By definition of G(T'), the fact that (as|us, asg,1|use,1, <) € F implies agg,1 =
ag. Since ag # ay, aglus and agg, 1|usg, 1 are in O’ and it remains to show that
O'isacyclein G(T), i.e., for alli with 0 <4 < m, we have (o} |uj, &g, | |ujg 1, P)
E for some P € {<,=}.

Let of|ui and oy |ujs | benodes in O'. If these two nodes are already neigh-
bor nodes in O, we are obviously done. Hence, assume that this is not the case.
By construction of (', this implies the existence of a path

! ! * * /! !
ajlug, aglul, ... onlug, ai@m1|ui®m1

in G(T) which is a subpath of O.% Since o} # «; and g 1 F Qp, by construction
of G(T) and by (x), this implies that

1. there exists a 8 € {1,...,k + £}* such that o} = oj,, | =8,
2. there exists an f € Nyp such that oy = 35 where F(C,T,7 — k) = f,

*Where “subpath” is defined in the obvious way.

20

3. up = fg,uf =g, ul =g, and ug@ml = fg' for some g,¢' € G(C,T), and
4. (B|fg,Bilg,=) € E and (B|fg',Bilg',=) € E.

By definition of G(T) and by Point 4, both fg and fg' are nodes in cpl(T, 3) =
(V', E"). By definition of cpl, this implies that either

(a) (fg'sfg9,<) € E or
(b) (fg,fg',P) € E' for some P € {<,=}.

Together with Point 1 and 3 and the definition of G(T'), (b) obviously implies
(cfluj, gy 1|uje 1, P) € E and we are done. Moreover, in the following we
show that case (a) cannot occur.

Let cpl(B7) = (V",E"). In case (a), we have (¢’,9,<) € E": Let G(B8) =
(V!, E.); by definition of pair-graphs and since all concepts are in path normal
form, (f¢', fg,<) € E' implies (f¢’, fg,<) € E'\ E.; by definition of cpl and
by Point 2, this means that (¢’,9,<) € Tx(8). Hence, (¢',g9,<) € E". By
definition of G(T) and Point 1 and 3, (¢’,g9,<) € E” implies that we have
(a|ul, op|ui, <) € E. Hence, the path aqlu],...,op]ul is a <-cycle in G(T)
which contradicts the minimality of O since this path is a true subpath of O.

e a; = ay. Define a sequence of nodes O’ from O by deleting all nodes «;|u; with
a; # ap. O is non-empty since a; = ay. We show that O’ is a <-cycle in G(T))
which is a contradiction to the minimality of O. Let O' = a|uf, ..., a¢lul, ;.
By definition of G(T'), the fact that (as|us, asg,1|use,1, <) € F implies agg, 1 =
as = ay. Hence, it remains to show that O’ is a cycle in G(T), i.e., that, for all
i with 0 <4 < m, we have (a|uj, ay|ujg, 1, P) € E for some P € {<,=}.

Let ag|u} and ay|ujg, ; be nodes in O'. If these two nodes are already neighbor
nodes in O, we are obviously done. Hence, assume that this is not the case. By
construction of O', this implies the existence of a subpath

O‘t|u;a a)ﬂui{a s 7a;|u;7 a’t|u;@m1

of O in G(T) with of # oy for 1 <14 < z. By construction of G(T') and by (x),
this implies that

1. there exists a § € {1,...,k + £}* such that of = o, = 3,

2. there exists an f € N,p such that oy = 35 where F(C,T,7 — k) = f,

3. uj =g, ui = fg, u; = fg', and ujy, , =g’ for some g,¢' € G(C,T), and

4. (Bilg,Blfg,=) € E and (B|fg',Bjlg’,=) € E.
By definition of G(T) and by Point 4, both fg and fg¢' are nodes in cpl(T, 3) =
(V', E").* By definition of cpl, this implies that either

(a) (fg',f9,<) € E or

*Here we exploit that G(T) is equality closed.

21

(b) (fg,fg',P) € E' for some P € {<,=}.

Together with Point 1 and 3 and the definition of G(T'), (a) obviously implies
(o |uk, afluf, <) € E. Hence, the path of|ui,...,ak|ul is a <-cycle in G(T)
which contradicts the minimality of O since this path is a true subpath of O.

Hence, let us assume that (b) holds. Moreover, let cpl(87) = (V"”, E"). We have
(9,9',<) € E": Let G(B) = (V/, E.); by definition of pair-graphs and since all
concepts are in path normal form, (fg, f¢', P) € E' implies (fg, f¢', P) € E'\E.;
by definition of cpl and by Point 2, this means that (g,¢’, P) € T (8). Hence,
(9,9, P) € E". By definition of G(T) and Point 1 and 3, (g,¢', P) € E" implies
that we have (ay|uj, ailujy 1, P) € E what was to be shown.

This finishes the proof of Claim 1. We may now define the interpretation of concrete
features. Let 0 be a solution for G(T'). We set

g¢ = {(a,z)| g is enforced by T(a) and d(a|g) = z} for all g € N,p.

To show that there exists an a € A7 such that a € CZ, we prove the following claim:
Claim 2: D € T(«a) implies a € D? for all & € Az and D € cl(C, T).

Proof: The claim is proved by induction over the structure of D. The induction start,
i.e., the case that D is a concept name, is an immediate consequence of the definition
of Z. For the induction step, we make a case distinction according to the topmost
operator in D. Assume D € T4(a).

e D = —F. Since C is in NNF and by definition of cl(), D is in NNF. Hence, F
is a concept name. By definition of Z and since T'(«) is a Hintikka-set and thus
satisfies (H4), we have a € (—~E)Z.

e D =C1NCyor D = CUCs,. Straightforward by (H2) and (H3) of Hintikka-sets
and by induction hypothesis.

e D = 3R.E with R € Ng \ N,r. By definition of R?, we have (a, 3) € R for
B =aiand £(C,T,i) =3R.E. By (HT), we have E € T(f), and, by induction,
B e ET.

e D = 3f.F with f € N,r. Hence, f is enforced by T(«). By definition of fZ,
we have fZ(a) = 8 for B = ai and F(C,T,i — k) = f. By (H9), we have
E € T4(B), and, by induction, 3 € EZ.

e D =VR.E with R € Np \ Nor. Let (o,8) € RE. By definition of RZ, there
exists an ¢ such that £(C,T,47) = 3R.D € T4(«a) and § = ai. By (H8), we have
E € T4(B), and, by induction, B € EZ. Since this holds independently of the
choice of 3, we have a € (VR.E)L.

e D =Vf.E with f € Nyr. Let fZ(a) = B. By definition of fZ, we have 8 = ai,
F(C,T,i—k) = f,and f is enforced by T4(a). By (H10), we have E € T4(f3),
and, by induction, 8 € EL.

22

e D = Juy,uz.P. Let G(T) = (V,E) and cpl(T,) = (V', E'). By definition of
pair-graphs and cpl(), we have (u1,us, P) € E'. We show that there exist nodes
ny,ng € V such that (ny,ne, P) € E, uf (a) = §(n1), and ud(a) = §(ns). Since
§ is a solution for G(T'), this implies u? (o) Pul (c).

For i € {1,2}, set n; := a|u;. By definition of G(T) and since (u1,us, P) € F',
we have (n1,ng, P) € E. Fixani € {1,2}. We need to show that u! (a) = &(n;).
In the case u; = g, this is obvious by definition of g% (since g is obviously
enforced by T'(«)).

Hence let u; = fg and F(C,T,j — k) = f. Since fg is a node in cpl(T, a), we
have (a|fg,ajlg,=) € E. Hence, 6(ajlg) = 6(a|fg). By definition of fZ and
since f is clearly enforced by T (c), we have fZ(a) = aj. By definition of cpl
and of pair-graphs, fg € V' implies that g appears in T («j): Since cpl(T, @)
is both a completion of G(«) and satisfiable, fg € V' implies (fg, fg,=) € E';
due to the definition of pair graphs and since all concepts are in path normal
form, (fg, fg,=) is not an edge of G(«); hence, by definition of cpl and since
F(C, T,j—k)=f, we must have (g,9,=) € T (j), i.e., g appears in T (af).
Since g appears in T («j) and thus enforced by T'(«j), we have g% (aj) = §(aj|g)
by definition of g7. Summing up, (fg)%(a) = 6(ajlg) = §(|fg).

e D = gt. If ¢*(«) is defined, then g is enforced by T'(a). We show that this
implies g1 ¢ T4(«). If g is enforced by T'(«), then either (i) g appears in T} («)
or (ii) {3g,u.P,3u,g.P} N Ty(a) # O for some path v’ and P € {<,=}. In
case (i), (H6) yields gt ¢ T4(a). In case (ii), (H5) yields the same result.

This completes the proof of the claim. Since C' € T4(e) by (H12) and, for all « € Az,
we have Cr € T4(a) by (H1), it is an immediate consequence of the semantics and
Claim 2 that Z is a model of C' w.r.t. T. O

Lemma 18. A concept C is satisfiable w.r.t. a TBox T only if there exists a Hintikka-
tree for (C,T).

Proof Let C be a concept, T a TBox, and k and £ as in Definition 16. Moreover,
let Z = (Az,-T) be a model for C w.r.t. T, i.e., there exists an ag € Az such that
ap € CT and DT CEZ foral DC E € T. We inductively define a Hintikka-tree T
for (C,T), i.e., a k + f-ary T ¢ r)-tree that satisfies (H12) and (H13). Along with
T, we define a mapping 7 from {1,...,k + £}* to Az in such a way that

Tq(a) ={D € cl(C,T) | 7(a) € DT} (%)
For the induction start, set
7(€) == ag, Tq(€) :={D € cl(C,T) | ap € DI}, and Ty (e) := 0.

Now for the induction step. Let a € {1,...,k+ £}* such that 7(«) is already defined,
and let ¢ € {1,...,k 4+ ¢}. We make a case distinction as follows:

23

1. £(C,T,i) =3IR.D € T4(r). By (%), we have 7(«) € (IR.D)Z. By the semantics,
there exists some b € Az such that (7(a),b) € R and b € DX, Set 7(ai) := b,
To(ey) :={E € cl(C,T) | b€ E*}, and Ty (i) := 0.

2. F(C,T,i—k)=f,and f is enforced by 7(«). By (x), the semantics, and the
definition of “enforced”, fZ(r(«a)) is defined. Let fZ(r(a)) = b. Set 7(ci) := b,
To(ai) :={E € cl(C,T) | be ET}, and

Ts(ai) :== {(91,92,P) | fg1 and fgs are enforced by T'(«) and glI(b)PgQI(b)}

3. a, i do not match the above cases. Then set (i) := 7(¢) and T'(«i) := T'(e).

It is readily checked that the k + f-ary tree T just defined does satisfy (x). We need
to prove that T is a Hintikka-tree for (C, 7). From (*) together with the semantics
of concepts and TBoxes, it is clear that T4(«) is a Hintikka-set for (C,T) for each
a € {l,...,k+/¢}*. Let us show exemplarily that (H1) holds. Assume to the contrary
that there exists an a € {1,...,k 4+ £}* such that C7 ¢ T4(«). Since C1 € cl(C,T)
and by (x), we have 7(a) ¢ (C7)%, and, by the semantics, 7(a) € (~C7)%. By
definition of Cr and semantics, this implies the existence of D C E € T such that
7(a) € (-nnf(=D U E))%, ie., 7(a) € DT and 7(a) ¢ ET. Hence, we do not have
DT C ET and obtain a contradiction to the fact that Z is a model for 7.

We now show that T'(«) is a Hintikka-pair for each node «, i.e., that (H6) is
satisfied. The proofis by contradiction. Assume that there existsan o« € {1,..., k+£}*
such that (g1,g2,P) € T (a) and gjt € Tq(a) where j € {1,2}. Since (g1,92,P) €
Ts (), gJI(T(a)) is defined by definition of T}, . Since g;1 € Tq(«) and by (x), g]I(T(O[))
is undefined, which is a contradiction.

It remains to show that 7' satisfies (H12) and (H13), where the latter amounts
to showing that, for each @ € {1,...,k+£¢}*, the tuple (T'(«a), T(c1),...,T(cj)) with
j =k + ¢ satisfies (H7) to (H11).

(H7) Let 3R.D € T4(ex) and £(C, T,i) = IR.D. By definition of 7 (Case 1), we have
7(ad) = b for some b € Az with (7(),b) € R and b € DZ. By (x), we thus
have D € Tq(oi).

(H8) Let {3R.D,YR.E} C T4(a) and £(C, T,i) = IR.D. By definition of 7 (Case 1),
we have 7(ai) = b for some b € Az with (7(a),b) € RZ. By (%), we have
7(a) € (VR.E)E. The semantics implies b € ET, and, by (), we thus have
E € To(ai).

(H9) Let 3f.D € T4(«) and F(C,T,i) = f. Hence, f is enforced by T(«). By
definition of 7 (Case 2), we have 7(«j) = b for b = fZ(r(«)) and j = k + 4. The
semantics implies b € D%, and, by (), we thus have D € T4(aj).

(H10) Let f be enforced by T(«), F(C,T,i) = f, and Vf.D € T4(a). By definition
of 7 (Case 2), we have 7(aj) = b for b = fZ(7(a)) and j = k +i. The semantics
implies b € D%, and, by (%), we thus have D € T(cj).

24

(H11) Let G(T(«)) = (V,E) and cpl(T,) = (V, EU E'). To prove that (H11) is
satisfied, we show that

1. E' is an edge extension of G(T'(«)), i.e., (V,E U E') is a completion of
G(T(«)) and
2. (V,E U FE’) is satisfiable.

We first prove Point 1. It needs to be shown that, for each fgi,fgs € V,
either (fg2,fg1,<) € E" or (fg1,fge,P) € E' for some P € {<,=}. By
definition of G(T'(«)), fg1 and fgo are enforced by T(«). Since Tx () may
only contain paths of length 1, we have {3fg1,u.P',3u, fg1.P'} N Tq(a) # O
for some path u and P’ € {<,=} and similarly for fgs. By (x), this implies
that fZ(gZ(7(a))) and fZ(gZ(7())) are defined. By definition of T (Case 2)
and since f is obviously enforced by T(«), we have fZ(r(a)) = 7(ci) with
F(C,T,i—k) = f. Hence, g (r(ci)) and g% (7(ci)) are defined. By semantics,
we either have (i) g2 (7(ci)) < gf(7(ai)) or (ii) ¢f (7(ci))Pg (7(ai)) for some
P € {<,=}. By definition of T}, (i) implies (g2, g1, <) € Tt (i) and (ii) implies
(91,92, P) € Ts (). Hence, by definition of E’, we have either (fg2, fg1,<) € E’
or (f917f927p) €E.

We now prove point 2. Define a mapping § from V to Q as follows: 0(u) :=
u?(7(a)). This mapping is well-defined, which can be seen as follows. Fix a
u € V. Since u is enforced by T'(«), either

(i) w occurs in T (a) or

(it) {Fu, v’ .P,3/,u.P} NT4(a) # O for some path v’ and P € {<,=}.

In Case (i), we have u = g for some g € N.p. By definition of T, there exists a
predecessor 3 of « in T such that a = Gi, F(C,T,i—k) = f for some f € Ny,
and fg is enforced by T'(3). Since T (f) contains only paths of length 1, we
have {3fg,u.P,3u, fg.P}NT4(B) # 0 for some path v and P € {<,=}. By (x),
g*(fE(7(B))) is defined. Since, by definition of T, we have fZ(7(8))) = 7(«),
g*(r(@)) is defined. In Case (ii), definedness of uZ(7(a)) follows from (*) and
the semantics.

We show that ¢ is a solution for (V, EUE’) by distinguishing the following cases:

1. (u1,uq, P) € E and (uy,us, P) € Ty (). Then there exist g1, g2 € N.r such
that u; = g and uy = go. By definition of T}, we have g7 (7(a)) PgZ (7(a)),
and, by definition of 6, §(g1)Pd(g2)."

2. (u1,uz, P) € E and Juy,us.P € T4(a). By (%), we have 7(a) € (Fuq,ug.P)7.
Hence, uf(7(a))Pul (r(a)). By definition of §, we obtain & (u;)Pd(usz).

3. (u1,u2, P) € E'. By definition of E', we have u; = fg1, us = fgo, and
(91,92, P) € Ty (i) where g1,92 € Nep and F(C, T,k — i) = f. By defi-
nition of Ty, this implies that fg; and fgo are enforced by T'(«) and that

SWe need not consider the case “(u1,u2,=) € E and (u2,u1.=) € Ty (a)”

are assumed to be equality closed. A similar note applies to Case 2.

since constraint graphs

25

gt (1(i)) PgZ (7(ai)). From this and the definition of T' (Case 2), it follows
that fZ(7(a)) = 7(i). We conclude §(u1)Pd(us).

(H12) By definition of T' (induction start) and since ag € C* by assumption.
g

Note that Lemma 18 together with the proof of Lemma 17 implies that the PNF
fragment of TDL has the tree model property: By Lemma 18, the satisfiability of
a concept C' w.r.t. a TBox T implies the existence of a Hintikka-tree T for (C,T).
Using the construction from the proof of Lemma 17, we can construct a canonical
model from T'. Tt is not hard to see that this canonical model is a tree model in the
sense of Section 2. In view of Lemma 13 and its proof, it is not hard to show that
TDL also has the tree model property.

4.4 Defining looping automata

To prove decidability, it remains to define a looping automaton A 7 for each concept
C and TBox T such that A 1) accepts exactly the Hintikka-trees for (C,T). Using
the notion of matching tuples of Hintikka-pairs, this is rather straightforward.

Definition 19. Let C be a concept, T be a TBox, k£ the number of existential sub-
concepts in cl(C, T"), and £ be the number of abstract features in cl(C, 7). The looping
automaton Ay = (Q,T(c1), A, T) is defined as follows:

e Q=T(cm)
e I={(¥,x) €Q|C €T}

i ((\IJ,X), (\If’,X’), (\1117X1)7 ceey (\IlkHXk-l-Z)) € Aiff
(¥, x) = (¥',x') and
((\Ija X)7 (\Ijla Xl)a R (\Ijka Xk-l-ﬂ)) is ma‘tChing'

As a consequence of the following lemma and Lemmas 17 and 18, we can reduce
satisfiability of concepts w.r.t. TBoxes (in PNF) to the emptiness of the language
accepted by looping automata.

Lemma 20. T is a Hintikka-tree for (C,T) iff T € L(Ac,T).

Proof Let C' be a concept, T a TBox, and k, £, and A 7y as in Definition 19.

“=» It is straightforward to check that the function r defined by r(«a) := T'(a) is
a run of Ac7 on T: (i) By definition of Hintikka-trees and Ac 7, r(a) € Q for all
a€{l,...,k+£}* (ii) by (H12) and definition of I, we have r(e) € I; (iii) by (H13)
and by definition of r and of A, we have (r(«a),T(«),r(a1),...,r(ag)) € A.

26

“<” Let r be a run of A7) on T. Tt is straightforward to show that T is a
Hintikka-tree for (C,7): (i) by definition of runs and of @, r is a I' ¢ 7-tree; (ii) since,
by definition of runs, r(e) € I, (H12) is satisfied by definition of I; and (iii), by
definition of runs and of A, (H13) is satisfied. 0

It is an immediate consequence of Lemmas 13, 17, 18, and 20, and the decidability of
the emptiness problem of looping automata [27] that satisfiability of 7DL-concepts
w.r.t. TBoxes is decidable. However, the presented automata-based algorithm has the
nice property of additionally providing us with a tight complexity bound.

Theorem 21. Satisfiability and subsumption of T DL-concepts w.r.t. TBozes are de-
citdable in deterministic exponential time.

Proof The lower bound is an immediate consequence of the fact that ALC with
general TBoxes is EXPTIME-hard [20]. For the upper bound, we need to show that the
size of A1) = (Q, M, A, I) is exponential in the size of €' and T (it is then obvious
that A7) can be computed in exponential time).® Obviously, the cardinality of
cl(C,T) is linear in the size of C' and T. Hence, by definition of A 7 and Hintikka-
pairs, the cardinality of @ and M are exponential in the size of C' and 7. Again by
definition of A 1), this implies that the cardinalities of I and A are also exponential
in the size of C' and 7. Hence, the size of A 7y is exponential in the size of C and T
This fact together with Lemmas 13, 17, 18, and 20, and the fact that emptiness of the
language accepted by a looping automaton A7) can be tested in time polynomial
in the size of A7) [27], we have that satisfiability of 7DL-concepts w.r.t. TBoxes
is in ExpTime. It remains to remind the reader that subsumption can be reduced to
satisfiability. O

4.5 Connection to Tableau Algorithms

We conclude this section with some remarks on the connection of the presented al-
gorithm with so-called tableau algorithms. This informal discussion assumes some
familiarity with tableau algorithms, see, e.g., [6] for more information on this topic.

As empirical results have shown, tableau algorithms are amenable to optimizations
that allow for efficient implementations of these algorithms, see, e.g., [11]. To the con-
trary, efficient implementations of automata-based algorithms like the one presented
in this paper are—as of now—unknown. Hence, it would be interesting to define a
tableau algorithm for 7DL. We argue that there exists a close connection between
the results obtained in this paper and certain difficulties encountered in correctness
proofs for tableau algorithm for TDL.

Since TDL admits general TBoxes, a tableau algorithm for 7DL would have to
use a technique called blocking. This means that such an algorithm would not try to
directly construct a model for the input concept but it would try to construct a “pre-
model”, i.e., a finite representation of a “real” model. In the correctness proof, the real
model can then be obtained from the pre-model by a technique called unravelling. It

SWhen talking of the size of C' and 7, we refer to the sum of the lengths of C' and C.

27

is not hard to see that unravelling yields only models that are in some sense periodic.
Unfortunately, it is outside the scope of this paper to give a formal definition of
this kind of periodicity (or unravelling itself). Roughly spoken, unravelling yields
an infinite tree whose paths are built according to a specific pattern induced by the
blocking-relationships in the pre-model. The existence of this pattern is what is meant
by “periodic”. This implies that a tableau algorithm for 7DL does only construct
finite representations of periodic models (and not of arbitrary models).

This is not a problem for most Description Logics: Tt is a (usually unnoticed)
byproduct of the standard proof technique used for showing correctness of DL tableau
algorithms that, for most logics, satisfiability of a concept implies satisfiability in a
periodic model. However, in T DL, this issue cannot be treated “implicitly” because
of the global nature of the “concrete part” of models. Assume that we want to prove
that the existence of a model for a concept C' implies that a TDL tableau algorithm
reports satisfiable. To do this, we could, for example, fix a model Z for C' and use it
to “guide” the application of the completion rules. We will end up with a pre-model
that induces a model Z'. As we argued above, this model is periodic and so is its local
part. To complete our proof, we need to show that the concrete part of 7 is identical
to the concrete part of Z'. But this may not be the case since the concrete part of
7 may be aperiodic. Hence, we want to choose a periodic model of 7 to guide our
completion rules which can only be done safely if we first establish a “periodic model
property”. Summing up, in the case of TDL, the things are a little bit different than
usual: The periodic model property is not a byproduct of the correctness proof but
it needs to be proved in advance and is then used in the correctness proof. We claim
that this effect is not due to the specific proof technique sketched above but rather a
general problem. Unfortunately, it is not at all obvious how a periodic model property
can be established.

Fortunately, the periodic model property is a byproduct of the automata-based
approach presented in this paper: As is, e.g., noted by Thomas [25], there exists a
so-called “regular” tree in every nonempty Bichi-recognizable set of trees. Obviously,
the set of Hintikka-trees for a formula C' and a TBox 7 is such a set. The notion of
regularity of trees is very closely related to the periodicity of models. More precisely,
we conjecture that a proof of the periodic model property could work as follows: By
Lemma 20, the fact that C is satisfiable w.r.t. a TBox 7 implies that the set of
Hintikka-trees accepted by A(c, 7y is nonempty. Hence, it contains a regular tree T'. If
we construct a model of T as in the proof of Lemma 17, then this model is periodic. We
conclude that the algorithm presented in this paper provides an important building
block for proving the correctness of tableau algorithms for TDL.

5 Conclusion

In this paper, we presented the temporal Description Logic TDL that combines
interval-based reasoning with reasoning about general TBoxes. An automata-based
decision procedure was devised and a tight EXpTIME-complexity bound was obtained.
We demonstrated the usefulness of our logic by giving examples from the application

28

domain of process engineering. Since there exists a very close connection between
TDL and Description Logics with concrete domains, our results can also be viewed
from a different perspective: Despite the discouraging results given in [15], we were
able to show that there exist interesting concrete domains for which reasoning with
general TBoxes is decidable.

There are several perspectives for future work of which we highlight two rather
interesting ones: First, the presented decision procedure is only valid if a dense strict
linear order is assumed as the underlying temporal structure. For example, the concept
T is satisfiable w.r.t. the TBox

T:{T 23917927< M Elglafg17< r Elf927927<}

over the temporal structures @ and R (with the natural orderings) but not over IN.
To see this, note that 7 induces a constraint graph as in Figure 6. Hence, it would be
interesting to investigate how the presented algorithm has to be modified for reasoning
with the temporal structure N. We conjecture that a constraint graph G is satisfiable
over N iff there exists an upper bound on the length of <-paths between any two
nodes in G.” Tt is, however, not immediately clear how Hintikka-trees and automata
can be modified to account for this stronger condition.

Second, it would be interesting to extend 7DL to make it suitable for reason-
ing about entity relationship (ER) diagrams with temporal integrity constraints. As
demonstrated by Calvanese et al. in [7; 8], Description Logics are well-suited for rea-
soning about ER diagrams with integrity constraints and thus are a valuable tool for
database design. Artale and Franconi propose a temporalization of Calvanese’s ap-
proach that can be used for reasoning about temporal ER diagrams [3]. They use a
point-based logic and focus on temporal databases, i.e., they admit reference to previ-
ous database states in the ER model. By using an appropriate extension of TDL, one
should be able to capture a different kind of temporal reasoning with ER diagrams,
namely reasoning over ER diagrams with integrity constraints for databases that store
temporal data. Such an extension would allow to formulate temporal integrity con-
straints, i.e., integrity constraints that take into account the temporal semantics of
the data in the database. For example, a temporal integrity constraint could state
that employees birthdays should be before their employment date. But what is an
appropriate extension of 7DL for reasoning in this domain? Given the results in [7],
it is clear that we need (unqualified) number restrictions and inverse roles. For the
temporal aspects, we need a generalized version of the concrete domain constructor
Juq, uo. P that allows quantification over role paths instead of feature paths and has a
universal instead of an existential semantics. An extension of the presented automata-
theoretic decision procedure to this more complex logic seems possible.

Acknowledgements The author would like to thank Franz Baader, Ulrike Sattler,
and Stephan Tobies for fruitful discussions. The author was supported by the DFG
Project BA1122/3-1 “Combinations of Modal and Description Logics”.

"This also implies that G contains no <-cycle.

29

References

[1]

2]

[3]

J. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11), 1983.

A. Artale and E. Franconi. A temporal description logic for reasoning about
actions and plans. Journal of Artificial Intelligence Research (JAIR), (9), 1998.

A. Artale and E. Franconi. Temporal ER modeling with description logics. In
Proceedings of the International Conference on Conceptual Modeling (ER’99),
Paris, France, November 1999. Springer—Verlag.

A. Artale and E. Franconi. Temporal description logics. In D. Gabbay, M. Fisher,
and L. Vila, editors, Handbook of Time and Temporal Reasoning in Artificial
Intelligence. MIT Press, 2001. To appear.

F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In J. Mylopoulos and R. Reiter, editors, Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence IJCAI-91, pages
452-457, Sydney, Australia, August 24-30, 1991. Morgan Kaufmann Publ. Inc.,
San Mateo, CA, 1991.

F. Baader and U. Sattler. Tableau algorithms for description logics. In R. Dyck-
hoff, editor, Proceedings of the International Conference on Automated Reason-
ing with Tableauz and Related Methods (Tableaux 2000), volume 1847 of Lecture
Notes in Artificial Intelligence, pages 1-18, St Andrews, Scotland, UK, 2000.
Springer-Verlag.

D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Repre-
sentation Formalisms. Dottorato di ricerca in informatica, Universita degli Studi
di Roma “La Sapienza”, Italia, 1996.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual
data modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, pages 229-263. Kluwer Academic Publisher, 1998.

J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals.
Journal of ACM, 38(4):935-962, 1991.

P. Hanschke. Specifying role interaction in concept languages. In W. Nebel, Bern-
hard; Rich, Charles; Swartout, editor, Proceedings of the 3rd International Con-
ference on Principles of Knowledge Representation and Reasoning, pages 318—
329, Cambridge, MA, Oct. 1992. Morgan Kaufmann.

I. Horrocks, P. Patel-Schneider, and R. Sebastiani. An analysis of empirical
testing for modal decision procedures. Logic Journal of the IGPL, 8(3):293-323,
2000.

30

[12]

[14]

[22]

H. A. Kautz and P. B. Ladkin. Integrating metric and qualitative temporal
reasoning. In Proceedings of the Ninth National Conference on Artificial In-
telligence AAAI-91, pages 241-246, Anaheim, California, July 14 - 19, 1991.
AAAI-Press/The MIT Press, Menlo Park — Cambridge — London, 1991.

M. Kullmann, F. de Bertrand de Beuvron, and F. Rousselot. A description logic
model for reacting in a dynamic environment. In F. Baaer and U. Sattler, editors,
Proceedings of the 2000 International Workshop in Description Logics (DL2000),
number 33 in CEUR-WS, pages 203-212, Aachen, Germany, August 2000. RWTH
Aachen. Proceedings online available from http://SunSITE.Informatik. RWTH-
Aachen.DE/Publications/ CEUR-WS/Vol-33/.

C. Lutz. Complexity of terminological reasoning revisited. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proceedings of the 6th International
Conference on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 181-200. Springer-
Verlag, Sept. 1999.

C. Lutz. NExpTime-complete description logics with concrete domains. LTCS-
Report 00-01, LuFG Theoretical Computer Science, RWTH Aachen, Germany,
2000. See http://www-1ti.informatik.rwth-aachen.de/Forschung/Reports.html.

C. Lutz, V. Haarslev, and R. Moller. A concept language with role-forming pred-
icate restrictions. Technical Report FBI-HH-M-276/97, University of Hamburg,
Computer Science Department, Hamburg, 1997.

B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelli-
gence, 43:235-249, 1990.

B. Nebel. Terminological cycles: Semantics and computational properties. In
J. F. Sowa, editor, Principles of Semantic Networks: Ezxplorations in the Rep-
resentation of Knowledge, pages 331-361. Morgan Kaufmann Publishers, San
Mateo (CA), USA, 1991.

U. Sattler. Terminological knowledge representation systems in a process engi-
neering application. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, 1998.

K. D. Schild. A correspondence theory for terminological logics: Preliminary
report. In Proc. of the 13" IJCAI, pages 466-471, Sidney, Australia, 1991.

K. D. Schild. Combining terminological logics with tense logic. In M. Filgueiras
and L. Damas, editors, Progress in Artificial Intelligence — 6th Portuguese Confer-
ence on Artificial Intelligence, EPIA’93, Lecture Notes in Artificial Intelligence,
pages 105120, Porto, Portugal, Oct. 1993. Springer-Verlag.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1-26, 1991.

31

[23]

[24]

[25]

A. Schmiedel. Temporal terminological logic. In W. Dietterich, Tom; Swartout,
editor, Proceedings of the 8th National Conference on Artificial Intelligence, pages
640-645. MIT Press, July 29-Aug. 3 1990.

E. Szpilrajn. Sur 'extension de ’ordre partiel. Fundamenta Mathematica, 16:386—
389, 1930.

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, chapter 4, pages 133-191. Elsevier Science
Publishers B. V., 1990.

P. van Beek and D. W. Manchak. The design and experimental analysis of
algorithms for temporal reasoning. Journal of Artificial Intelligence Research
(JAIR), (4):1-18, 1996.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of
programs. Journal of Computer and System Sciences, 32:183-221, 1986.

M. Vilain, H. Kautz, and P. Van Beek. Constraint propagation algorithms for
temporal reasoning: A revised report. In D. S. Weld and J. de Kleer, editors,
Readings in Qualitative Reasoning about Physical Systems, pages 373-381. Kauf-
mann, San Mateo, CA, 1990.

F. Wolter and M. Zakharyaschev. Temporalizing description logic. In D. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems, pages 379 — 402.
Studies Press/Wiley, 1999.

32

