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1 Motivation

Des
ription Logi
s (DLs) are a family of formalisms well-suited for the representation

of and reasoning about knowledge. Whereas most Des
ription Logi
s represent only

stati
 aspe
ts of the appli
ation domain, re
ent resear
h resulted in the exploration

of various Des
ription Logi
s that allow to, additionally, represent temporal infor-

mation, see

[

4

℄

for an overview. The approa
hes to integrate time di�er in at least

two important aspe
ts: First, the basi
 temporal entity may be a time point or a

time interval. Se
ond, the temporal stru
ture may be part of the semanti
s (yielding

a multi-dimensional semanti
s) or it may be integrated as a so-
alled 
on
rete do-

main. Examples for multi-dimensional point-based logi
s 
an be found in, e.g.,

[

21;

29

℄

, while multi-dimensional interval-based logi
s are used in, e.g.,

[

23; 2

℄

. The 
on-


rete domain approa
h needs some more explanation. Con
rete domains have been

proposed by Baader and Hans
hke as an extension of Des
ription Logi
s that allows

reasoning about \
on
rete qualities" of the entities of the appli
ation domain su
h as

sizes, length, or weights of real-worlds obje
ts

[

5

℄

. Des
ription Logi
s with 
on
rete

domains do usually not use a �xed 
on
rete domain; instead the 
on
rete domain


an be thought of as a parameter to the logi
. As was �rst des
ribed in

[

16

℄

, if a

\temporal" 
on
rete domain is employed, then 
on
rete domains are very useful for

temporal reasoning. Temporal reasoning with 
on
rete domains may be point-based,

interval-based, or both.

In this paper, we de�ne a temporal Des
ription Logi
 based on 
on
rete domains

whi
h uses points as its basi
 temporal entity, but whi
h may also be used as a full-


edged interval-based temporal DL. More pre
isely, the presented logi
 T DL extends

the basi
 Des
ription Logi
 ALC

[

22

℄

with a 
on
rete domain that is based on the

rationals and predi
ates < and =. This allows to represent point-based temporal

knowledge, e.g., the T DL 
on
ept

Student u 9graduation; 21birthday:<

des
ribes students who graduated before their 21'st birthday. For interval-based rea-

soning, the well-known Allen relations 
an be de�ned in terms of their endpoints

[

1

℄

.

Of 
ourse, point-based and interval-based temporal reasoning may be used in 
ombi-

nation. Sin
e it is an important feature of DLs that reasoning should be de
idable,

we prove de
idability of the standard reasoning tasks by using an automata-theoreti


approa
h whi
h also yields a tight ExpTime 
omplexity bound.

Most DLs allow for some kind of TBox formalism that is used to represent termi-

nologi
al knowledge as well as ba
kground knowledge about the appli
ation domain.

However, there exist various 
avours of TBoxes with vast di�eren
es in expressivity

[

17; 18; 14

℄

. To the best of our knowledge, all interval-based DLs and all DLs with


on
rete domains de�ned in the literature admit only a very restri
ted form of TBox,

i.e., sets of a
y
li
 ma
ro de�nitions. Compared to existing Des
ription Logi
s that

are interval-based or in
lude 
on
rete domains, the distinguishing feature of our logi


is that it is equipped with a very general form of TBoxes that allows arbitrary equa-

tions over 
on
epts. Thus, the presented work over
omes a major limitation of both

families of Des
ription Logi
s.
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Our results 
an be viewed from the perspe
tive of interval-based temporal reason-

ing and from the perspe
tive of 
on
rete domains. For the temporal perspe
tive, we


laim that the 
ombination of general TBoxes and interval-based temporal reasoning

is important for many appli
ation areas. In this paper, we present pro
ess engineering

as an example. From the 
on
rete domain perspe
tive, our results 
an be viewed as

follows: In

[

15

℄

, it is shown that, even for very simple 
on
rete domains, reasoning

with general TBoxes is unde
idable. Obvious solutions, whi
h in
lude the restri
tion

of the 
on
rete domain to unary predi
ates and the restri
tion of the 
on
rete domain


on
ept 
onstru
tor to features instead of feature 
hains, are not really 
onvin
ing

sin
e the expressive power of the resulting formalism is very limited (readers not fa-

miliar with these notions are referred to

[

5

℄

). It was an open question whether there

exist interesting 
on
rete domains for whi
h reasoning with general TBoxes is de
id-

able. The results presented in this paper answer this question to the aÆrmative. This

paper is a

ompanied by a te
hni
al report 
ontaining the proofs of theorems.

2 Syntax and Semanti
s

In this se
tion, we introdu
e syntax and semanti
s of the Des
ription Logi
 T DL. As

mentioned in the introdu
tion, this logi
 is from the family of DLs with 
on
rete do-

mains. However, sin
e we only 
onsider a single 
on
rete domain, we do not expli
itly

refer to 
on
rete domains in the de�nition of T DL. The exa
t 
onne
tion between


on
rete domains and our DL is dis
ussed at the end of this se
tion.

De�nition 1. Let N

C

, N

R

, and N


F

be mutually disjoint and 
ountably in�nite sets

of 
on
ept names, roles, and 
on
rete features. Furthermore, let N

aF

be a 
ountably

in�nite subset of N

R

. The elements of N

aF

are 
alled abstra
t features. A path u is

a 
omposition f

1

� � � f

n

g of n abstra
t features f

1

; : : : ; f

n

(n � 0) and one 
on
rete

feature g. The set of T DL-
on
epts is the smallest set su
h that

1. every 
on
ept name is a 
on
ept

2. if C and D are 
on
epts, R is a role, g is a 
on
rete feature, u

1

; u

2

are paths,

and P 2 f<;=g, then the following expressions are also 
on
epts:

(a) :C, C uD, C tD,

(b) 9R:C, 8R:C,

(
) 9u

1

; u

2

:P , and g".

An axiom is an expression of the form C v D, where C and D are 
on
epts. A �nite

set of axioms is 
alled a TBox.

Throughout this paper, we will denote atomi
 
on
epts by the letter A, (possibly


omplex) 
on
epts by the letters C;D; : : : , roles by the letter R, abstra
t features by

the letter f , 
on
rete features by the letter g, paths by the letter u, and elements of the

set f<;=g by the letter P . We defer a dis
ussion of how T DL 
an be used for interval-

based temporal reasoning until Se
tion 3. We will sometimes 
all the TBox formalism

3



introdu
ed above general TBoxes to distinguish it from other, weaker formalisms su
h

as the ones in

[

17; 14

℄

. As most Des
ription Logi
s, T DL is equipped with a Tarski-

style semanti
s whi
h is introdu
ed next.

De�nition 2. An interpretation I is a pair (�

I

; �

I

), where �

I

is a set 
alled the

domain and �

I

is the interpretation fun
tion. The interpretation fun
tion maps

� ea
h 
on
ept name C to a subset C

I

of �

I

,

� ea
h role name R to a subset R

I

of �

I

��

I

,

� ea
h abstra
t feature f to a partial fun
tion f

I

from �

I

to �

I

, and

� ea
h 
on
rete feature g to a partial fun
tion g

I

from �

I

to Q.

For paths u = f

1

� � � f

n

g, we set u

I

(a) := g

I

(f

I

n

(� � � (f

I

1

(a)) � � � )). The interpretation

fun
tion is extended to arbitrary 
on
epts as follows:

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(:C)

I

:= �

I

n C

I

(9R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g � C

I

g

(9u

1

; u

2

:P )

I

:= fa 2 �

I

j u

I

1

(a) = x

1

; u

I

2

(a) = x

2

; and x

1

Px

2

g

(g")

I

:= fa 2 �

I

j g

I

(a) unde�nedg

An interpretation I is a model of a TBox T i� it satis�es C

I

� D

I

for all axioms

C v D in T . I is a model of a 
on
ept C w.r.t. a TBox T i� I is a model of T and

C

I

6= ;.

If g(a) = x for some a 2 �

I

and x 2 Q, then we 
all x a 
on
rete su

essor of a in

I. In what follows, we write > for A t :A and ? for A u :A, where A is a 
on
ept

name. Moreover, we write u" with u = f

1

� � � f

k

g for 8f

1

: � � � 8f

k

:g".

How do T DL-models look like? It is not hard to see that T DL does not have

the �nite model property: The 
on
ept > is obviously satis�able w.r.t. the TBox

f> v 9g; fg: <g; however, it is not hard to see that there exists no �nite model for

this 
on
ept and this TBox. Furthermore, T DL has the tree model property, i.e.,

if a 
on
ept C is satis�able w.r.t. a TBox T , then there exists a tree-shaped model

I = (�

I

; �

I

) of C and T where the elements of �

I

are the nodes of the tree and

S

R2N

R

R

I

is the set of edges. The proof of this tree model property is a byprodu
t

of some results on Hintikka-trees obtained in Se
tion 4.3.

In this paper, the following inferen
e problems are 
onsidered.

De�nition 3 (Inferen
e Problems). Let C and D be 
on
epts and T be a TBox.

C subsumes D w.r.t. T (written D v

T

C) i� D

I

� C

I

for all models I of T . C is

satis�able w.r.t. T i� there exists a model of both T and C. Moreover, C and D are

equivalent w.r.t. T (written C �

T

D) i� C v

T

D and D v

T

C.
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We are primarily interested in de
iding satis�ability and subsumption. It is well-known

that (un)satis�ability and subsumption 
an be mutually redu
ed to ea
h other, i.e.,

C v

T

D i� C u:D is unsatis�able w.r.t. T and C is satis�able w.r.t. T i� we do not

have C v

T

?. Sometimes, the inferen
e problems are 
onsidered without referen
e to

a TBox. In this 
ase, we omit the index T .

The use of Q in the semanti
s of T DL-
on
epts and TBoxes is not 
ru
ial: Q may

be repla
ed by any set with a dense linear ordering \<" su
h as, e.g., R. Su
h a 
hange

in the semanti
s does not a�e
t the satis�ability and subsumption of 
on
epts. Q may,

however, not be repla
ed by N sin
e, on N, the usual \<" ordering is not dense, and,

as we will see later, there exist 
on
epts whi
h are satis�able if Q is employed in the

semanti
s but unsatis�able if N is used.

We now dis
uss the relationship of T DL and Des
ription Logi
s with 
on
rete

domains. To this end, let us introdu
e 
on
rete domains formally.

De�nition 4 (Con
rete Domain). A 
on
rete domain D is a pair (�

D

;�

D

), where

�

D

is a set 
alled the domain, and �

D

is a set of predi
ate names. Ea
h predi
ate

name P 2 �

D

is asso
iated with an arity n and an n-ary predi
ate P

D

� �

n

D

.

The 
on
rete domain is usually integrated into the logi
 by a 
on
ept 
onstru
tor

9u

1

; : : : ; u

n

:P , where u

1

; : : : ; u

n

are paths and P 2 �

D

(there also exist other 
on-

stru
tors, see, e.g.,

[

10

℄

). The semanti
s of this 
onstru
tor is as follows:

(9u

1

; : : : ; u

n

:P )

I

:= fa 2 �

I

j u

I

i

(a) = x

i

for 1 � i � n and (x

I

1

; : : : ; x

I

n

) 2 P

D

g:

Hen
e, it is obvious that T DL 
an be viewed as being equipped with the 
on
rete

domain D

<

:= (Q; f<;=g), where < and = are binary predi
ates with the usual se-

manti
s. For most DLs with 
on
rete domains, it is required that the set of predi
ates

is 
losed under negation and 
ontains a name >

D

for �

D

. This property ensures that

every 
on
ept 
an be 
onverted into an equivalent one in the so-
alled negation normal

form (NNF). The NNF of 
on
epts, in turn, is used as a starting point for devising

satis�ability algorithms. It is not hard to see that D

<

is not admissible in this sense.

However, as we will see in Se
tion 4.2, the 
onversion of T DL-
on
epts into equivalent

ones in NNF is nevertheless possible.

One te
hni
al di�eren
e between T DL and most Des
ription Logi
s with 
on
rete

domains su
h ALC(D), whi
h is de�ned by Baader and Hans
hke in

[

5

℄

, should be

mentioned: ALC(D) does not distinguish between abstra
t and 
on
rete features,

but provides only one type of feature interpreted as a partial fun
tion from �

I

to

�

I

[�

D

. Obviously, using these \
ombined" features instead of separated ones slightly

in
reases expressive power. However, it seems rather hard to �nd any 
ases in whi
h

the additional expressivity is 
ru
ial. Furthermore, separating 
on
rete and abstra
t

features allows a 
learer algorithmi
 treatment and 
learer proofs. Apart from this

di�eren
e, T DL is just ALC(D

<

) enri
hed with general TBoxes, where ALC(D

<

) is

ALC(D) instantiated with the 
on
rete domain D

<

.

5



bla
k before gray

bla
k meets gray

bla
k overlaps gray

bla
k during gray

bla
k starts gray

bla
k �nishes gray

Figure 1: The Allen relations (without equal and inverses).

3 Temporal Reasoning with T DL

Although T DL does only provide the relations \=" and \<" on time points, it is not

hard to see that the remaining relations 
an be de�ned:

9u

1

; u

2

: > � 9u

2

; u

1

:<

9u

1

; u

2

: � � 9u

1

; u

2

:< t 9u

1

; u

2

:=

9u

1

; u

2

: � � 9u

2

; u

1

:< t 9u

1

; u

2

:=

However, we 
laim that T DL 
annot only be used for point-based temporal reasoning

but also as a full-
edged interval-based temporal Des
ription Logi
. Reasoning with

time intervals has a 
onsiderable tradition in arti�
ial intelligen
e, see, e.g.,

[

1; 23; 28;

9; 12; 26; 2

℄

. The foundation of interval-based reasoning in AI is Allen's observation

that there are 13 possible relationships between two intervals

[

1

℄

su
h as, for example,

the meets relation: Two intervals i

1

and i

2

are related by meets i� the right endpoint

of i

1

is identi
al to the left endpoint of i

2

. Figure 1 illustrates meets and the other

relations omitting equal and inverses. The inverse relations 
orresponding to the rela-

tions displayed in Figure 1 are 
alled after, met-by, overlapped-by, 
ontains, started-by,

and �nished-by (from top to bottom).

In this se
tion, we �rst introdu
e a variant of T DL that is purely interval-based,

then present a framework for mixed interval- and point-based reasoning in T DL itself

and �nally apply this framework in the appli
ation area of pro
ess engineering

3.1 An Interval-based Variant of T DL

It is straightforward to de�ne a variant of T DL whose semanti
s is interval-based

instead of point-based and whi
h o�ers Allen's relations as predi
ates.

De�nition 5 (T DL

I

). A T DL

I

-
on
ept is a T DL-
on
ept in whi
h ea
h o

urren
e

of predi
ates < and = have been repla
ed by Allen relations equal, before, after, meets,

met-by, overlaps, overlapped-by, during, 
ontains, starts, started-by, �nishes, �nished-by.

T DL

I

-TBoxes are de�ned analogously.

6



Let I

Q

be the set f(q

1

; q

2

) 2 Q

2

j q

1

< q

2

g, i.e., the set of all intervals over Q. An

T DL

I

-interpretation I is a T DL-interpretation that maps ea
h 
on
rete feature g to

partial g

I

fun
tions from �

I

to I

Q

. The extension to 
omplex T DL

I


on
epts is as

for T DL (now using Allen relations instead of the predi
ates < and =).

For example, the following is a T DL

I

-
on
ept:

9fg

1

; g

2

:during t 9R:9g

1

; g

2

:after

Just as T DL 
an (apart from some minor di�eren
es) be viewed as ALC(D

<

) enri
hed

with general TBoxes, T DL

I


an be seen as ALC(D

I

) enri
hed with general TBoxes,

where D

I

is a 
on
rete domain based on the set of intervals (over Q) and Allen's

relations. Su
h a 
on
rete domain has, e.g., been de�ned in

[

16

℄

.

We show that T DL

I

is indeed just a variant of T DL by giving a very simple

translation of T DL

I

-
on
epts (resp. TBoxes) to 
orresponding T DL 
on
epts (resp.

TBoxes). W.l.o.g., we assume that the 
on
rete features appearing in T DL

I

-
on
epts

and TBoxes are 
alled i

1

; i

2

; : : : . In the target language T DL, we use 
on
rete features

`

1

; r

1

; `

2

; r

2

; : : : , where, intuitively, `

j

-su

essors in T DL represent the left endpoints

of the intervals represented by i

j

-su

essors in T DL

I

and r

j

-su

essors represent the


orresponding right endpoints of these intervals.

De�nition 6 (T DL

I

translation). For ea
h T DL

I

-
on
ept C, we de�ne a 
orre-

sponding T DL-
on
ept �(C) that is obtained by exhaustively applying the following

rewrite rules to C:

9Fi

1

; F

0

i

2

:equal ; 9F`

1

; F

0

`

2

:= u 9Fr

1

; F r

2

:=

9Fi

1

; F

0

i

2

:before ; 9Fr

1

; F

0

`

2

:<

9Fi

1

; F

0

i

2

:after ; 9F

0

r

2

; F `

1

:<

9Fi

1

; F

0

i

2

:meets ; 9Fr

1

; F

0

`

2

:=

9Fi

1

; F

0

i

2

:met-by ; 9F`

1

; F

0

r

2

:=

9Fi

1

; F

0

i

2

:overlaps ; 9F`

1

; F

0

`

2

:< u 9F

0

`

2

; F r

1

:< u 9Fr

1

; F

0

r

2

:<

9Fi

1

; F

0

i

2

:overlapped-by ; 9F

0

`

2

; F `

1

:< u 9F`

1

; F

0

r

2

:< u 9F

0

r

2

; F r

1

:<

9Fi

1

; F

0

i

2

:during ; 9F

0

`

2

; F `

1

:< u 9Fr

1

; F

0

r

2

:<

9Fi

1

; F

0

i

2

:
ontains ; 9F`

1

; F

0

`

2

:< u 9F

0

r

2

; F r

1

:<

9Fi

1

; F

0

i

2

:starts ; 9F`

1

; F

0

`

2

:= u 9Fr

1

; F

0

r

2

:<

9Fi

1

; F

0

i

2

:started-by ; 9F`

1

; F

0

`

2

:= u 9F

0

r

2

; F r

1

:<

9Fi

1

; F

0

i

2

:�nishes ; 9F

0

`

2

; F `

1

:= u 9Fr

1

; F

0

r

2

:=

9Fi

1

; F

0

i

2

:�nished-by ; 9F`

1

; F

0

`

2

:= u 9Fr

1

; F

0

r

2

:=

where F; F

0

2 (N

aF

)

�

, i.e., F and F

0

are words over the alphabet N

aF

. For ea
h

T DL

I

-TBox T , we de�ne a 
orresponding T DL-TBox �(T ) analogously.

Using this translation, satis�ability (and hen
e also subsumption) of T DL

I

-
on
epts


an be redu
ed to satis�ability of T DL-
on
epts.

7



ATemporal

:

= t" u `" u r"

Temporal

:

= Point t Interval

Point

:

= 9t; t:= u `" u r"

Interval

:

= 9`; r:< u t"

Interval w 9`; `;= t 9r; r:=

Figure 2: Basi
 de�nitions of the framework T

�

.

Proposition 7. A T DL

I

-
on
ept C is satis�able w.r.t. a T DL

I

-TBox T i� �(C) is

satis�able w.r.t. �(T ) [ T

00

, where

T

00

=

[

1�i�k

f> v 9`

i

; r

i

:<g:

Hen
e, the ExpTime de
idability result for T DL obtained in Se
tion 4 implies that

T DL

I

is also de
idable in ExpTime. Again, it is worth to view this result from the


on
rete domain point of view: The above translation shows that the 
on
rete do-

main D

I

based on Allen's relations (whi
h is formally de�ned in

[

16

℄

) is a 
on
rete

domain for whi
h reasoning with general TBoxes is de
idable. Hen
e, we have shown

that, despite the dis
ouraging results given in

[

15

℄

|where it is shown that the 
om-

bination of general TBoxes and 
ertain very simple 
on
rete domains already leads

to unde
idability|there exist interesting 
on
rete domains for whi
h reasoning with

general TBoxes is de
idable.

3.2 A Representation Framework

As an alternative to using the logi
 T DL

I

for interval-based temporal reasoning, one


an dire
tly employ T DL and represent intervals as pairs of endpoints. This has

the advantage that mixed point- and interval-based reasoning be
omes possible. This

approa
h is pursued in the following se
tion, where we give an appli
ation example. To

simplify presentation, in this se
tion we introdu
e an abstra
t framework for temporal

reasoning with T DL that 
onsists of several 
onventions and abbreviations.

We assume that ea
h entity of the appli
ation domain is either temporal or atem-

poral. If it is temporal, its temporal extension may be a time point or an interval

but not both. We generally assume that left endpoints of intervals aree represented

by the 
on
rete feature `, right endpoints of intervals are represented by the 
on
rete

feature r, and time-points not related to intervals are represented by the 
on
rete

feature t. All this 
an be expressed by the TBox T

�

displayed in Figure 2. In the

�gure, C

:

= D is an abbreviation for C v D and D v C. The TBox implies that

the 
on
epts ATemporal, Point, and Interval are mutually disjoint. To keep 
on
epts

readable, we introdu
e abbreviations for Allen's relations. For example,

9(F; F

0

):
ontains

8



is an abbreviation for

9F`; F

0

`:< u 9F

0

r; F r:<

where F; F

0

2 (N

aF

)

�

. Note that we have

9(F; F

0

):
ontains v

T

�

9F:Interval u 9F

0

:Interval:

Similar abbreviations are introdu
ed for the other Allen relations, where the de�ning


on
epts 
an be read o� from De�nition 6. For better readability, we use self to denote

the empty word. For example,

9(F; self):starts

is an abbreviation for

9F`; `:= u 9Fr; r:<:

Intuitively, self refers to the interval asso
iated with the abstra
t obje
t at whi
h the

9(F; self):starts 
on
ept is \evaluated".

Sin
e we have intervals and points available, we should also be able to talk about

the relationship of points and intervals. More pre
isely, there exist 5 possible relations

between a point and an interval and we introdu
e the following abbreviations for them:

9(Fp; F

0

):beforep for 9Fp; F

0

`:<

9(Fp; F

0

):startsp for 9Fp; F

0

`:=

9(Fp; F

0

):duringp for 9F

0

`; Fp:< u 9Fp; F

0

r:<

9(Fp; F

0

):�nishesp for 9Fp; F

0

r:=

9(Fp; F

0

):afterp for 9F

0

r; Fp:<

where again F; F

0

2 (N

aF

)

�

and p 2 N


F

. We refrain from de�ning the inverses of

these relations. The usefulness of the introdu
ed framework is demonstrated in the

next se
tion.

3.3 An Appli
ation Example

Interval-based temporal Des
ription Logi
s have been used in various appli
ation areas

su
h as disaster management

[

13

℄

and reasoning about a
tion and plans

[

4

℄

. We 
laim

that T DL is a 
ontribution to most of these appli
ation areas sin
e, unlike existing

interval-based Des
ription Logi
s, it admits general TBoxes. To substantiate this


laim, we motivate T DL as an appropriate tool for temporal reasoning in the area

of pro
ess engineering. In

[

19

℄

, Sattler des
ribes how Des
ription Logi
s 
an be used

for representation and reasoning in this appli
ation domain. However, in Sattler's

approa
h, only stati
 knowledge about pro
ess engineering is 
onsidered, i.e., there

is no expli
it representation of the temporal relationships between des
ribed entities.

We use the framework presented in the previous se
tion to show how the temporal

aspe
ts of this appli
ation domain 
an be represented in T DL thus re�ning Sattler's

model.

Assume that our goal is to represent information about an automated 
hemi
al

produ
tion pro
ess that is 
arried out by some 
omplex te
hni
al devi
e. The de-

vi
e operates ea
h day for some time depending on the number of orders. It needs a

9



Week

:

= Interval u

u

1�i�7

9day

i

:Day u

9(day

1

; self):starts u

9(day

7

; self):�nishes u

u

1�i<7

9(day

i

; day

i+1

):meets u

9next:Week u

9(self; next):meets

Figure 3: Weeks and days.

Day

:

= Interval u

9start:Startup u

9op:Operation u

9shut:Shutdown u

9(start; self):during u

9(start; op):meets u

9(op; shut):meets u

9(shut; self):during

Week v 9maint:Maintenan
e u

9(self;maint):
ontains

Interval w Startup tOperation t Shutdown tMaintenan
e

Figure 4: Operation and maintenan
e.


omplex startup and shutdown pro
ess before resp. after operation. Moreover, some

weekly maintenan
e is needed to keep the devi
e fun
tional. Let us �rst represent

the underlying temporal stru
ture that, in our 
ase, 
onsists of weeks and days. The


orresponding TBox 
an be found in Figure 3. In the �gure, 
on
epts are written 
ap-

italized while roles (as well as predi
ates) start with a lower
ase letter. The TBox in

the �gure states that ea
h week 
onsists of seven days, where the i'th day is a

essible

from the 
orresponding week via the abstra
t feature day

i

. The temporal relationship

between the days are as expe
ted: Monday starts the week, Sunday �nishes it, and

ea
h day temporally meets the su

eeding one. This implies that ea
h of the seven

days is during the 
orresponding week although this is not expli
itly stated. More-

over, ea
h week has a su

essor week that it temporally meets. Note that the TBox is


y
li
, i.e., Week is de�ned in terms of itself. This is already more than simple, a
y
li


TBoxes are able to express

[

18

℄

.

We 
an now des
ribe the startup, operation, shutdown, and maintenan
e phases,

10



Day v 9up-int:Operator-intera
tion u

9down-int:Operator-intera
tion u

9(up-int Æ t; start):startsp

9(down-int Æ t; shut):startsp

Operator-intera
tion v Point

Figure 5: Operator intera
tion.

see Figure 4. Here start, op, shut, and maint are abstra
t features. The de�nition

implies that operation phases are temporally during the 
orresponding day. Our


urrent model does not say anything about the temporal relationship of maintenan
e

and operation. This may be inadequate, if, for example, maintenan
e and operation

are mutually ex
lusive sin
e maintenan
e prevents operation or is too dangerous during

the operation phase. We 
an take this into a

ount by using additional axioms

Week u t

1�i�7

9(maint; day

i

Æ op):REL v ? (�)

where (1) \Æ" is used for better readability (i.e., sequen
es of features f

1

� � � f

k

are

written as f

1

Æ � � � Æ f

k

) and (2) REL is equal, overlaps, overlapped-by, during, 
ontains,

starts, started-by, �nishes, or �nished-by.

We may view the knowledge modeled so far as the spe
i�
ation of a faultless

operation. To illustrate reasoning with T DL in this appli
ation domain, we 
an now


he
k fa
ts about spe
i�
 weeks or days against the spe
i�
ation. For example, say

that in the 23rd 
alendar week, the maintenan
e took extremely long: it started on

Tuesday night and wasn't �nished until Thursday morning. This is expressed by the

axiom

Week23 vWeek u 9(day

3

;maint):during:

The T DL reasoner 
an be used to 
he
k whether there was a problem in Week 23.

This is obviously the 
ase if the 
on
ept Week23 is not satis�able w.r.t. the TBox that

is obtained from the TBox expressing faultless operation by adding the de�nitorial

axiom for Week23. It is not hard to see that this TBox is indeed unsatis�able: The

de�nition of Week23 implies that the operation phase of wednesday is during the

weekly maintenan
e phase whi
h is a 
ontradi
tion to (�). Hen
e we 
an dedu
e that,

in the 23rd 
alendar week, the spe
i�
ation of faultless operation was not met.

In order to demonstrate mixed reasoning with time points and intervals, we pro-

pose a further re�nement of our model. Assume that the produ
tion pro
ess is fully

automated ex
ept that an operator intera
tion is ne
essary to initiate the startup and

shutdown pro
esses. These fa
ts 
an be expressed using the axiom shown in Figure 5.

In the �gure, up-int and down-int are abstra
t features. We may now 
he
k spe
i�


weeks or days against our re�ned spe
i�
ation of faultless operation. For example, it

may be the 
ase that, on November 13, the operation 
ontinued after the shutdown

11



intera
tion whi
h is obviously not a faultless operation. This 
an be des
ribed by

Nov13 v Day u 9(down-int; op):duringp:

It is not hard to see that Nov13 is unsatis�able: the shutdown intera
tion 
annot

start the shutdown phase and simultaneously be during the operation phase sin
e the

operation phase must meet the shutdown phase. As another example, assume that, in


alendar week 11, the shutdown intera
tion of some (unspe
i�ed) day o

urred during

the weekly maintenan
e phase. Is this 
ompatible with a faultless operation? To 
he
k

this, we 
an add the axiom

Week11

:

= Week u t

1�i�7

9(day

i

Æ down-int;maint):duringp

to our TBox. A 
lose look reveals that Week11 is also unsatis�able: The shutdown

intera
tion starts the shutdown phase that is met by the operation phase. Hen
e, if

the shutdown intera
tion of some day o

urs during the weekly maintenan
e phase,

then the temporal relation between this day's operation phase and the maintenan
e

phase is either during, overlaps, or starts. All three possibilities 
on
i
t with (�).

The dis
ussed examples do not exploit all the expressive power of T DL be
ause

of simpli
ity. Nevertheless, they demonstrate that T DL is a powerful tool for repre-

senting temporal knowledge.

4 The De
ision Pro
edure

In this se
tion, we prove satis�ability of T DL-
on
epts w.r.t. TBoxes to be de
id-

able and obtain a tight ExpTime 
omplexity bound for this problem. De
idability

is proved using an automata-theoreti
 approa
h: This is done using an automata-

theoreti
 approa
h: �rst, we abstra
t models to so-
alled Hintikka-trees su
h that

there exists a model for a 
on
ept C and a TBox T i� there exists a Hintikka-tree

for C and T . Then, we build, for ea
h T DL-
on
ept C and TBox T , a looping au-

tomaton A

(C;T )

that a

epts exa
tly the Hintikka-trees for (C;T ). In parti
ular, this

implies that A

(C;T )

a

epts the empty (tree-) language i� C is unsatis�able w.r.t. T .

4.1 Preliminaries

In this se
tion, we introdu
e the basi
 notions needed for proving de
idability of T DL

like trees, looping automata, and the language they a

ept.

De�nition 8. Let M be a set and k � 1. A k-ary M -tree is a mapping T :

f1; : : : ; kg

�

! M that labels ea
h node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively,

the node �i is the i-th 
hild of �. We use � to denote the empty word (
orresponding

to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M -trees is de�ned by a set Q

of states, an alphabet M , a subset I � Q of initial states, and a transition relation

� � Q�M �Q

k

.

12



A run of A on an M -tree T is a mapping r : f1; : : : ; kg

�

7! Q with r(�) 2 I and

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

: A looping automaton a

epts all those M -trees for whi
h a

run exists, i.e., the language L(A) of M -trees a

epted by A is

L(A) = fT j there is a run of A on Tg:

In

[

27

℄

, it is proved that the emptiness problem for looping automata, i.e., the problem

to de
ide whether the language L(A) a

epted by a given looping automaton A is

empty, is de
idable in polynomial time. A Hintikka-tree for C and T 
orresponds

to a 
anoni
al model for C and T . Apart from des
ribing the abstra
t domain �

I

of the 
orresponding 
anoni
al model I together with the interpretation of 
on
epts

and roles, ea
h Hintikka-tree indu
es a dire
ted graph whose edges are labelled with

predi
ates from f<;=g. These 
onstraint graphs des
ribe the \
on
rete part" of I

(i.e., 
on
rete su

essors of domain obje
ts and their relationships) and are de�ned in

the following.

De�nition 9. A 
onstraint graph is a pair G = (V;E), where V is a 
ountable set

of nodes and E � V � V � f=; <g a set of edges. We generally assume that 
on-

straint graphs are equality 
losed, i.e., that (v

1

; v

2

;=) 2 E implies (v

2

; v

1

;=) 2 E. A


onstraint graph G = (V;E) is 
alled satis�able over M|where M is a set equipped

with a total ordering <|i� there exists a total mapping Æ from V to M su
h that

Æ(v

1

)P Æ(v

2

) for all (v

1

; v

2

; P ) 2 E. Su
h a mapping Æ is 
alled a solution for G.

A path Q in G is a �nite non-empty sequen
e of nodes v

0

; : : : ; v

k�1

2 V su
h that,

for all i with 0 � i < k, we have (v

i

; v

i+1

; P ) 2 E, where P 2 f<;=g. Su
h a path

is also 
alled a path from v

0

to v

k�1

. Q is 
alled a =-path i� (v

i

; v

i+1

;=) 2 E for

0 � i < k � 1. A 
y
le O in G is a path v

0

; : : : ; v

k�1

, su
h that (v

k�1

; v

0

; P ) 2 E for

some P 2 f<;=g. O is a <-
y
le i� O is a 
y
le su
h that (v

i

; v

i�

k

1

; <) 2 E for some

i with 0 � i < k, where �

k

denotes addition modulo k.

The following theorem will be 
ru
ial for proving that, for every Hintikka-tree, there

exists a 
orresponding 
anoni
al model. More pre
isely, it will be used to ensure that

the 
onstraint graph indu
ed by a Hintikka-tree, whi
h des
ribes the 
on
rete part of

the 
orresponding model, is satis�able.

Theorem 10. A 
onstraint graph G is satis�able over M with M 2 fQ;Rg i� G

does not 
ontain a <-
y
le.

Proof Sin
e the \)" dire
tion is trivial, we 
on
entrate on the \(" dire
tion. Let

G be a 
onstraint graph not 
ontaining a <-
y
le. Let � be the relation on V with

v

1

� v

2

i� v

1

= v

2

or there exists a =-path between v

1

and v

2

. Sin
e 
onstraint graphs

are assumed to be equality 
losed, � is an equivalen
e relation. For v 2 V , denote the

equivalen
e 
lass of v w.r.t. � with [v℄

�

. De�ne a new 
onstraint graph G

0

= (V

0

; E

0

)

as follows:

V

0

:= f[v℄

�

j v 2 V g

E

0

:= f([v

1

℄

�

; [v

2

℄

�

; <) j 9v

0

1

; v

0

2

2 V su
h that

v

0

1

2 [v

1

℄

�

; v

0

2

2 [v

2

℄

�

; and (v

0

1

; v

0

2

; <) 2 Eg
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� � �

< <

<

<

<

<

<

v

1

v

2

Figure 6: A 
onstraint graph 
ontaining no <-
y
le that is unsatis�able over N.

Using the fa
t that G does not 
ontain a <-
y
le, it is straightforward to prove that G

0

does not 
ontain a <-
y
le. Sin
e G

0

does not 
ontain a <-
y
le, E

0

indu
es a partial

order with domain V

0

. By Szpilrajn's Theorem, every partial order 
an be extended

to a total order (on the same domain)

[

24

℄

. Let �

E

0

be a total order obtained in

this way from the partial order indu
ed by E

0

. In the following, we show that every

total order with a 
ountable domain 
an be embedded into Q (resp. R) su
h that the

ordering is preserved. This suÆ
es to 
omplete the proof sin
e it implies that that

there exists a total mapping � from V to Q (resp. R) su
h that v

1

�

E

0

v

2

implies

�(v

1

) < �(v

2

). It is obvious that � is a solution for G

0

and it is straightforward to use

� to 
onstru
t a solution for G.

Hen
e, it remains to show that every total order � with a 
ountable domain D


an be embedded into Q (resp. R) su
h that the ordering is preserved. Let d

0

; d

1

; : : :

be an enumeration of D. We use indu
tion over this enumeration to de�ne a fun
tion

� from D to Q (resp. R) su
h that d

1

� d

2

implies �(d

1

) < �(d

2

) for all d

1

; d

2

2 D.

1. For the indu
tion start, set �(d

0

) to some q 2 Q.

2. Assume that �(d

i

) is de�ned for 0 � i < k. We distinguish three 
ases:

(a) d

i

� d

k

for 0 � i < k. Sin
e Q has no maximum, there exists a q 2 Q su
h

that q > �(d

i

) for 0 � i < k. Set �(d

k

) := q.

(b) d

k

� d

i

for 0 � i < k. Sin
e Q has no minimum, there exists a q 2Q su
h

that q < �(d

i

) for 0 � i < k. Set �(d

k

) := q.

(
) Neither of the previous two 
ases holds. Sin
e Q is dense, there exists

a q 2 Q su
h that maxf�(d

i

) j 0 � i < k and d

i

� d

k

g < q and q <

minf�(d

i

) j 0 � i < k and d

k

� d

i

g. Set �(d

k

) := q.

It is readily 
he
ked that � is as required. ❏

In the su

eeding se
tions, we deal with the satis�ability of 
onstraint graphs over Q.

However, all obtained results also apply if we 
hoose R instead. Note that Theorem 10

does not hold if satis�ability over N is 
onsidered due to the absen
e of density: If

there exist two nodes v

1

and v

2

su
h that the length of <-paths (whi
h are de�ned in

the obvious way) between v

1

and v

2

is unbounded, a 
onstraint graph is unsatis�able

over N even if it 
ontains no <-
y
le. Figure 6 shows su
h a 
onstraint graph.
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4.2 A T DL Normal Form

The de
idability pro
edure works on T DL-
on
epts and TBoxes of a 
ertain synta
ti


form. This greatly simpli�es some 
onstru
tions like de�ning Hintikka-trees. Let us

�rst introdu
ing the well-known negation normal form.

De�nition 11 (NNF). A 
on
ept C is in negation normal form (NNF) if negation

o

urs only in front of 
on
ept names. Exhaustive appli
ation of the following rewrite

rules translates 
on
epts to equivalent 
on
epts in NNF.

::C =) C

:(C uD) =) :C t :D :(C tD) =) :C u :D

:(9R:C) =) (8R::C) :(8R:C) =) (9R::C)

:(9u

1

; u

2

:P ) =) 9u

1

; u

2

:

e

P t 9u

2

; u

1

:< t u

1

" t u

2

" :(g") =) 9g; g:=

where
e
� denotes the ex
hange of predi
ates, i.e.,

e

< is = and e= is <. With nnf(C),

we denote the equivalent of C in NNF whi
h 
an be obtained by applying the above

rules. Furthermore, we use �C as a shorthand for nnf(:C). A TBox T is in NNF i�

all 
on
epts in T are in NNF.

We 
an now extend NNF to an even more 
onvenient normal form.

De�nition 12 (Path Normal Form). A T DL-
on
ept C is in path normal form

(PNF) i� it is in NNF and, for all sub
on
epts 9u

1

; u

2

:P of C, we have either

1. u

1

= g

1

and u

2

= g

2

for some g

1

; g

2

2 N


F

,

2. u

1

= fg

1

and u

2

= g

2

for some f 2 N

aF

and g

1

; g

2

2 N


F

, or

3. u

1

= g

1

and u

2

= fg

2

for some f 2 N

aF

and g

1

; g

2

2 N


F

.

A T DL TBox T is in path normal form i� it is in NNF and all 
on
epts appearing

in T are in PNF.

The following lemma shows that it is not a restri
tion to 
onsider only 
on
epts and

TBoxes in PNF.

Lemma 13. Satis�ability of T DL-
on
epts w.r.t. T DL-TBoxes 
an be redu
ed to sat-

is�ability of T DL-
on
epts in PNF w.r.t. T DL-TBoxes in PNF.

Proof We start with de�ning a fun
tion � that 
onverts T DL-
on
epts (resp. T DL-

TBoxes) to T DL-
on
epts (resp. T DL-TBoxes) 
ontaining only paths of a restri
ted

length. This mapping will then be used to 
onvert T DL-
on
epts and TBoxes into

PNF.

Let C be a T DL-
on
ept. For every path u = f

1

� � � f

n

g used in C, we assume

that [g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are 
on
rete features. We indu
tively de�ne a mapping

� from paths u in C to 
on
epts as follows:

�(g) = >

�(fu) = (9[fu℄; f [u℄: =) u 9f:�(u)

15



Now, �(C) is obtained from C by repla
ing all sub
on
epts 9u

1

; u

2

:P of C with

9[u

1

℄; [u

2

℄:P u �(u

1

) u �(u

2

) and g" with [g℄". Moreover, if

T = fC

1

v D

1

; : : : ; C

k

v D

k

g;

is a T DL-TBox, then

�(T ) = f�(C

1

) v �(D

1

); : : : ; �(C

k

) v �(D

k

)g:

Now let C be a T DL-
on
ept and T a T DL-TBox. By De�nition 11, we 
an 
onvert

C to a 
on
ept C

0

in NNF and T to a 
on
ept T

0

in NNF su
h that C is satis�able

w.r.t. T i� C

0

is satis�able w.r.t. T

0

. Moreover, we 
an 
learly translate C

0

to �(C

0

)

and T

0

to �(T

0

) in polynomial time and, obviously, �(C

0

) and �(T

0

) are in PNF. Hen
e,

it remains to show that C

0

is satis�able w.r.t. T

0

i� �(C

0

) is satis�able w.r.t. �(T

0

).

First for the \if" dire
tion. Let I be a model for �(C

0

) and �(T

0

). We extend I to

an interpretation J by setting g

J

:= [g℄

I

for all 
on
rete features g used in C

0

or T

0

.

It is not hard to show by stru
tural indu
tion that, for all sub
on
epts D of C

0

or T

0

and all a 2 �

I

, we have a 2 �(D)

I

! a 2 D

J

. Sin
e C

0

and T

0

are in NNF, the only

non-trivial 
ases are:

� D = 9u

1

; u

2

:P . Then �(D) = 9[u

1

℄; [u

2

℄:Pu�(u

1

)u�(u

2

). For i 2 f1; 2g, let u

i

=

f

(i)

1

; : : : ; f

(i)

k

i

g

i

. It is easy to show by indu
tion on n that, for ea
h i 2 f1; 2g and

every n with 1 � n � k

i

, there exist b

1

; : : : ; b

n

2 �

I

su
h that (a; b

1

) 2 (f

(i)

1

)

I

and [u

i

℄

I

(a) = [f

(i)

2

; : : : ; f

(i)

k

i

g

i

℄

I

(b

1

), and, for ea
h 1 < j � n, we have (b

j�1

; b

j

) 2

(f

(i)

j

)

I

and [f

(i)

j

; : : : ; f

(i)

k

i

g

i

℄

I

(b

j�1

) = [f

(i)

j+1

; : : : ; f

(i)

k

i

g

i

℄

I

(b

j

). Hen
e, for ea
h

i 2 f1; 2g, we have f

(i)

k

i

(� � � (f

(i)

1

(a)) � � � ) = b

k

i

and [u

i

℄

I

(a) = [g

i

℄

I

(b

k

i

). Sin
e

9[u

1

℄; [u

2

℄:P is a 
onjun
t of �(D), it is thus 
lear that [g

1

℄

I

(b

k

1

)P [g

2

℄

I

(b

k

2

). It

is now immediate by de�nition of J that a 2 (9u

1

; u

2

:P )

J

.

� D = g". Then �(D) = [g℄". Obvious by de�nition of J .

It is easily seen that the 
laim just proved by indu
tion implies that J is a model for

C

0

and T

0

.

Now for the \only if" dire
tion. Let I be a model for C

0

and T

0

. We extend I to an

interpretation J by, for ea
h path u used in C

0

and T

0

, and ea
h post�x u

0

= f

1

� � � f

k

g

of u, setting [f

1

� � � f

k

g℄

J

:= (u

0

)

I

. It is not hard to show by stru
tural indu
tion that,

for all sub
on
epts D of C

0

or T

0

and all a 2 �

I

, we have a 2 D

I

! a 2 �(D)

J

. The

only non-trivial 
ases are the same as in the \if" dire
tion. However, both 
ases are

straightforward by de�nition of � and J . Thus, J is 
learly a model for �(C

0

) and

�(T

0

). ❏

Hen
e, it suÆ
es to prove that satis�ability of 
on
epts in PNF w.r.t. TBoxes in PNF

is de
idable. In what follows, we generally assume that all 
on
epts and TBoxes are

in path normal form. We will often refer to TBoxes T in their 
on
ept form C

T

whi
h is

de�ned as follows:

C

T

= u

CvD2T

nnf(:C tD):
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4.3 De�ning Hintikka-trees

In this se
tion, we de�ne Hintikka-trees for T DL-
on
epts C and TBoxes T in path

normal form and show that there exists Hintikka-tree for C and T i� there exists a

model for C and T .

Let C be a 
on
ept and T be a TBox. With 
l(C;T ), we denote the set of

sub
on
epts of C and C

T

. We assume that existential 
on
epts 9R:D in 
l(C;T )

with R 2 N

R

nN

aF

are linearly ordered, and that

E

(C;T ; i) yields the i-th existential


on
ept in 
l(C;T ). Furthermore, we assume the abstra
t features used in 
l(C;T ) to

be linearly ordered and use

F

(C;T ; i) to denote the i-th abstra
t feature in 
l(C;T ).

The set of 
on
rete features used in 
l(C;T ) is denoted with

G

(C;T ).

We now de�ne Hintikka-pairs whi
h are used as labels of the nodes in Hintikka-

trees (re
all that Hintikka-trees are abstra
tions of models).

De�nition 14 (Hintikka-set, Hintikka-pair). Let C be a 
on
ept and T be a

TBox. A set 	 � 
l(C;T ) is a Hintikka-set for (C;T ) i� it satis�es the following


onditions:

(H1) C

T

2 	,

(H2) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(H3) if C

1

t C

2

2 	, then fC

1

; C

2

g \	 6= ;,

(H4) fA;:Ag 6� 	 for all 
on
ept names A 2 
l(C;T ),

(H5) if g "2 	, then 9u

1

; u

2

:P =2 	 for all 
on
epts 9u

1

; u

2

:P with u

1

= g or u

2

= g.

We say that f 2 N

aF

is enfor
ed by a Hintikka-set 	 i� either 9f:C 2 	 for some


on
ept C or f9fg

1

; g

2

:P;9g

1

; fg

2

:Pg \	 6= ; for some g

1

; g

2

2 N


F

and P 2 f<;=g.

A Hintikka-pair (	; �) for (C;T ) 
onsists of a Hintikka-set 	 for (C;T ) and a set �

of tuples (g

1

; g

2

; P ) with g

1

; g

2

2

G

(C;T ) su
h that

(H6) if (g

1

; g

2

; P ) 2 �, then fg

1

"; g

2

"g \	 = ;.

With �

(C;T )

, we denote the set of all Hintikka-pairs for (C;T ). A path u is enfor
ed

by (	; �) i� either u appears in � or f9u; u

0

:P;9u

0

; u:Pg\	 6= ; for some path u

0

and

P 2 f<;=g.

1

Intuitively, ea
h node � of a (yet to be de�ned) Hintikka-tree T 
orresponds to a

domain obje
t a of the 
orresponding 
anoni
al model I. The �rst 
omponent 	

�

of the Hintikka-pair labelling � is the set of 
on
epts from 
l(C;T ) satis�ed by a.

The se
ond 
omponent �

�

states restri
tions on the relationship between 
on
rete

su

essors of a. If, for example, (g

1

; g

2

; <) 2 �

�

, then we must have g

I

1

(a) < g

I

2

(a).

Note that the restri
tions in �

�

are independent from 
on
epts 9g

1

; g

2

:P 2 	

�

. As

will be
ome 
lear when Hintikka-trees are de�ned, the restri
tions in �

�

are used to

1

Note: by de�nition of Hintikka-pairs, the path u has length 1 if it appears in �, and, sin
e all


on
epts are in path normal form, u has length 1 or 2 if f9u; u

0

:P; 9u

0

; u:Pg \ 	 6= ; for some u

0

and P .
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ensure that the 
onstraint graph indu
ed by the Hintikka-tree T , whi
h des
ribes the


on
rete part of the model I, does not 
ontain a <-
y
le, i.e., that it is satis�able.

This indu
ed 
onstraint graph 
an be thought of as the union of smaller 
onstraint

graphs, ea
h one being des
ribed by a Hintikka-pair labelling a node in T . These

pair-graphs are de�ned next.

De�nition 15 (Pair-graph). Let C be a 
on
ept, T a TBox, and p = (	; �) a

Hintikka-pair for (C;T ). The pair-graph G(p) = (V;E) of p is a 
onstraint graph

de�ned as follows:

1. V is the set of paths enfor
ed by p

2. E = � [ f(u

1

; u

2

; P ) j 9u

1

; u

2

:P 2 	g.

An edge extension of G(p) is a set E

0

� V �V �f<;=g su
h that for all fg

1

; fg

2

2 V ,

we have either (fg

2

; fg

1

; <) 2 E

0

or (fg

1

; fg

2

; P ) 2 E

0

for some P 2 f<;=g. If E

0

is

an edge extension of G(p), then the graph (V;E [E

0

) is a 
ompletion of G(p).

Note that, sin
e all 
on
epts are in path normal form and due to the de�nitions of

Hintikka-pairs and pair-graphs, we have E

0

\ E = ; for every edge extension E

0

of

a pair-graph (V;E). As all 
onstraint graphs, we assume pair-graphs to be equality


losed.

We brie
y 
omment on the 
onne
tion of 
ompletions and the �-
omponent of

Hintikka-pairs. Let � and � be nodes in a Hintikka-tree T and let a and b be the


orresponding domain obje
ts in the 
orresponding model I. Edges in Hintikka-trees

represent role-relationships, i.e., if � is su

essor of � in T , then there exists an R 2 N

R

su
h that (a; b) 2 R

I

. Assume � is su

essor of � and the edge between � and � rep-

resents relationship via the abstra
t feature f , i.e., we have f

I

(a) = b. The se
ond


omponent �

�

of the Hintikka-pair labelling � �xes the relationships between all 
on-


rete su

essors of b that \a talks about". For example, if (9fg

1

; g

2

:=) 2 	

�

and

(9fg

3

; g

2

: <) 2 	

�

, where 	

�

is the �rsto 
omponent of the Hintikka-pair labelling �,

then \a talks about" the 
on
rete g

1

-su

essor and the 
on
rete g

3

-su

essor of b.

Hen
e, �

�

either 
ontains (g

3

; g

1

; <) or (g

1

; g

3

; P ) for some P 2 f<;=g. This is for-

malized by demanding that the pair-graph G(T (�)) of the Hintikka-pair labelling �

together with all the edges from the �-
omponents of the su

essors of � are a 
omple-

tion of G(T (�)). Moreover, this 
ompletion has to be satis�able, whi
h is ne
essary

to ensure that the 
onstraint graph indu
ed by T does not 
ontain a <-
y
le. An ap-

propriate way of thinking about the �-
omponents is as follows: at �, a 
ompletion of

G(T (�)) is \guessed". The additional edges are then \re
orded" in the �-
omponents

of the su

essor-nodes of �. We now de�ne Hintikka-trees formally.

De�nition 16 (Hintikka-tree). Let C be a 
on
ept, T be a TBox, k the number

of existential sub
on
epts in 
l(C;T ), and ` be the number of abstra
t features in


l(C;T ). A 1 + k + `-tuple of Hintikka-pairs (p

0

; : : : ; p

k+`

) with p

i

= (	

i

; �

i

) and

G(p

0

) = (V;E) is 
alled mat
hing i�

(H7) if 9R:D 2 	

0

and

E

(C;T ; i) = 9R:D, then D 2 	

i
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(H8) if f9R:D;8R:Eg � 	

0

and

E

(C;T ; i) = 9R:D, then E 2 	

i

(H9) if 9f:D 2 	

0

and

F

(C;T ; i) = f , then D 2 	

k+i

.

(H10) if f is enfor
ed by 	

0

,

F

(C;T ; i) = f , and 8f:D 2 	

0

, then D 2 	

k+i

.

(H11) the 
onstraint graph (V;E [E

0

), where

E

0

=

[

1�i�`

f(fg

1

; fg

2

; P ) j F(C;T ; i) = f; (g

1

; g

2

; P ) 2 �

k+i

g

is a satis�able 
ompletion of G(p

0

).

A k + `-ary �

(C;T )

-tree T is a Hintikka-tree for (C;T ) i� T (�) is a Hintikka-pair for

(C;T ) for ea
h node � in T , and T satis�es the following 
onditions:

(H12) C 2 	

�

, where T (�) = (	

�

; �

�

),

(H13) for all � 2 f1; : : : ; k + `g

�

, the tuple (T (�); T (�1); : : : ; T (�j)) with j = k + `

is mat
hing.

For a Hintikka-tree T and node � 2 f1; : : : ; k+ `g

�

with T (�) = (	; �), we use T

�

(�)

to denote 	 and T

�

(�) to denote �. Moreover, if G(�) = (V;E), we use 
pl(T; �) to

denote the 
onstraint graph (V;E [E

0

) as de�ned in (H11).

2

Whereas most properties of Hintikka-trees deal with 
on
epts, roles, and abstra
t

features and are hardly surprising, (H11) ensures that 
onstraint graphs indu
ed by

Hintikka-trees 
ontain no <-
y
le. By \guessing" a 
ompletion as explained above,

possible <-
y
les are anti
ipated and 
an be dete
ted lo
ally, i.e., it then suÆ
es to


he
k that the 
ompletions 
pl(T; �) are satis�able as demanded by (H11). Indeed, it

is 
ru
ial that the 
y
le dete
tion is done by a lo
al 
ondition sin
e we need to de�ne

an automaton whi
h a

epts exa
tly Hintikka-trees and automata work lo
ally. It is

worth noting that the lo
alization of 
y
le dete
tion as expressed by (H11) 
ru
ially

depends on path normal form.

The following two lemmas show that Hintikka-trees are appropriate abstra
tions

of models. This lemma is 
entral sin
e, as we will see, de�ning looping automata

a

epting exa
tly Hintikka-trees is a straightforward task.

Lemma 17. A 
on
ept C is satis�able w.r.t. a TBox T if there exists a Hintikka-tree

for (C;T ).

Proof Let C be a 
on
ept, T a TBox, and k and ` as in De�nition 16. Moreover, let

T be a Hintikka-tree for (C;T ). We de�ne an interpretation I = (�

I

; �

I

) as follows:

�

I

= f1; : : : ; k + `g

�

A

I

= f� j A 2 T

�

(�)g for all A 2 C

N

R

I

= f(�; �) j � = �i and E(C;T ; i) = 9R:E 2 T

�

(�)g for all R 2 N

R

nN

aF

f

I

= f(�; �) j � = �i, F(C;T ; i� k) = f; and f is enfor
ed by T

�

(�)g

for all f 2 N

aF

2

more pre
isely its equality 
losure.
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It remains to de�ne the interpretation of 
on
rete features. We de�ne an (in�nite)


onstraint graph G(T ) indu
ed by T , show that G(T ) is satis�able, and de�ne the

interpretation of 
on
rete features from a solution of G(T ). The nodes of G(T ) have

the form �ju, where � is a node in T and u is a path in C or T . More pre
isely, G(T )

is de�ned as (V;E), where

1. V = f�ju j � 2 f1; : : : ; k + `g

�

; u appears in C or T g

2. E =

[

�2f1;:::;k+`g

�

f(�ju; �ju

0

; P ) j (u; u

0

; P ) 2 
pl(T; �)g

[ f(�jfg); �ijg;=) j F(C;T ; i� k) = f; fg is a node in 
pl(T; �)g

As always, we assume that G(T ) is equality 
losed. It is not hard to see that G(T )

really is a 
onstraint graph, i.e., the node set of G(T ) is 
ountable. Next, we show the

following 
laim:

Claim 1: G(T ) is satis�able.

Proof: By Theorem 10, it suÆ
es to show that G(T ) 
ontains no <-
y
le. Assume to

the 
ontrary that G(T ) 
ontains a <-
y
le and that O = �

0

ju

0

; : : : ; �

n�1

ju

n�1

is the

<-
y
le in G(T ) with minimal length. Fix a t with 0 � t < n su
h that

for ea
h i with 0 � i < n and ea
h � 2 f1; : : : ; k + `g

+

, we have �

i

6= �

t

�; (�)

i.e., there exist no �

i

in O su
h that �

t

is a true pre�x of �

i

(su
h a t exists sin
e O

is of �nite length). Sin
e O is a <-
y
le, there exists an s with 0 � s < n su
h that

(�

s

ju

s

; �

s�

n

1

ju

s�

n

1

; <) 2 E. We make a 
ase distin
tion and derive a 
ontradi
tion

in either 
ase.

� �

s

6= �

t

. De�ne a sequen
e of nodes O

0

from O by deleting all nodes �

i

ju

i

with

�

i

= �

t

. O

0

is non-empty sin
e �

s

6= �

t

. We show that O

0

is a <-
y
le in G(T )

whi
h is a 
ontradi
tion to the minimality of O. Let O

0

= �

0

0

ju

0

0

; : : : ; �

0

m�1

ju

0

m�1

.

By de�nition of G(T ), the fa
t that (�

s

ju

s

; �

s�

n

1

ju

s�

n

1

; <) 2 E implies �

s�

n

1

=

�

s

. Sin
e �

s

6= �

t

, �

s

ju

s

and �

s�

n

1

ju

s�

n

1

are in O

0

and it remains to show that

O

0

is a 
y
le inG(T ), i.e., for all i with 0 � i < m, we have (�

0

i

ju

0

i

; �

0

i�

m

1

ju

0

i�

m

1

; P ) 2

E for some P 2 f<;=g.

Let �

0

i

ju

0

i

and �

0

i�

m

1

ju

0

i�

m

1

be nodes in O

0

. If these two nodes are already neigh-

bor nodes in O, we are obviously done. Hen
e, assume that this is not the 
ase.

By 
onstru
tion of O

0

, this implies the existen
e of a path

�

0

i

ju

0

i

; �

t

ju

�

1

; : : : ; �

t

ju

�

x

; �

0

i�

m

1

ju

0

i�

m

1

inG(T ) whi
h is a subpath of O.

3

Sin
e �

0

i

6= �

t

and �

0

i�

m

1

6= �

t

, by 
onstru
tion

of G(T ) and by (�), this implies that

1. there exists a � 2 f1; : : : ; k + `g

�

su
h that �

0

i

= �

0

i�

m

1

= �,

2. there exists an f 2 N

aF

su
h that �

t

= �j where F(C;T ; j � k) = f ,

3

Where \subpath" is de�ned in the obvious way.
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3. u

0

i

= fg, u

�

1

= g, u

�

x

= g

0

, and u

0

i�

m

1

= fg

0

for some g; g

0

2 G(C;T ), and

4. (�jfg; �jjg;=) 2 E and (�jfg

0

; �jjg

0

;=) 2 E.

By de�nition of G(T ) and by Point 4, both fg and fg

0

are nodes in 
pl(T; �) =

(V

0

; E

0

). By de�nition of 
pl, this implies that either

(a) (fg

0

; fg;<) 2 E

0

or

(b) (fg; fg

0

; P ) 2 E

0

for some P 2 f<;=g.

Together with Point 1 and 3 and the de�nition of G(T ), (b) obviously implies

(�

0

i

ju

0

i

; �

0

i�

m

1

ju

0

i�

m

1

; P ) 2 E and we are done. Moreover, in the following we

show that 
ase (a) 
annot o

ur.

Let 
pl(�j) = (V

00

; E

00

). In 
ase (a), we have (g

0

; g;<) 2 E

00

: Let G(�) =

(V

0

�

; E

0

�

); by de�nition of pair-graphs and sin
e all 
on
epts are in path normal

form, (fg

0

; fg;<) 2 E

0

implies (fg

0

; fg;<) 2 E

0

n E

0

�

; by de�nition of 
pl and

by Point 2, this means that (g

0

; g;<) 2 T

�

(�). Hen
e, (g

0

; g;<) 2 E

00

. By

de�nition of G(T ) and Point 1 and 3, (g

0

; g;<) 2 E

00

implies that we have

(�

t

ju

�

x

; �

t

ju

�

1

; <) 2 E. Hen
e, the path �

t

ju

�

1

; : : : ; �

t

ju

�

x

is a <-
y
le in G(T )

whi
h 
ontradi
ts the minimality of O sin
e this path is a true subpath of O.

� �

s

= �

t

. De�ne a sequen
e of nodes O

0

from O by deleting all nodes �

i

ju

i

with

�

i

6= �

t

. O

0

is non-empty sin
e �

s

= �

t

. We show that O

0

is a <-
y
le in G(T )

whi
h is a 
ontradi
tion to the minimality of O. Let O

0

= �

t

ju

0

0

; : : : ; �

t

ju

0

m�1

.

By de�nition of G(T ), the fa
t that (�

s

ju

s

; �

s�

n

1

ju

s�

n

1

; <) 2 E implies �

s�

n

1

=

�

s

= �

t

. Hen
e, it remains to show that O

0

is a 
y
le in G(T ), i.e., that, for all

i with 0 � i < m, we have (�

t

ju

0

i

; �

t

ju

0

i�

m

1

; P ) 2 E for some P 2 f<;=g.

Let �

t

ju

0

i

and �

t

ju

0

i�

m

1

be nodes in O

0

. If these two nodes are already neighbor

nodes in O, we are obviously done. Hen
e, assume that this is not the 
ase. By


onstru
tion of O

0

, this implies the existen
e of a subpath

�

t

ju

0

i

; �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

; �

t

ju

0

i�

m

1

of O in G(T ) with �

�

i

6= �

t

for 1 � i � x. By 
onstru
tion of G(T ) and by (�),

this implies that

1. there exists a � 2 f1; : : : ; k + `g

�

su
h that �

�

1

= �

�

x

= �,

2. there exists an f 2 N

aF

su
h that �

t

= �j where F(C;T ; j � k) = f ,

3. u

0

i

= g, u

�

1

= fg, u

�

x

= fg

0

, and u

0

i�

m

1

= g

0

for some g; g

0

2 G(C;T ), and

4. (�jjg; �jfg;=) 2 E and (�jfg

0

; �jjg

0

;=) 2 E.

By de�nition of G(T ) and by Point 4, both fg and fg

0

are nodes in 
pl(T; �) =

(V

0

; E

0

).

4

By de�nition of 
pl, this implies that either

(a) (fg

0

; fg;<) 2 E

0

or

4

Here we exploit that G(T ) is equality 
losed.
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(b) (fg; fg

0

; P ) 2 E

0

for some P 2 f<;=g.

Together with Point 1 and 3 and the de�nition of G(T ), (a) obviously implies

(�

�

x

ju

�

x

; �

�

1

ju

�

1

; <) 2 E. Hen
e, the path �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

is a <-
y
le in G(T )

whi
h 
ontradi
ts the minimality of O sin
e this path is a true subpath of O.

Hen
e, let us assume that (b) holds. Moreover, let 
pl(�j) = (V

00

; E

00

). We have

(g; g

0

; <) 2 E

00

: Let G(�) = (V

0

�

; E

0

�

); by de�nition of pair-graphs and sin
e all


on
epts are in path normal form, (fg; fg

0

; P ) 2 E

0

implies (fg; fg

0

; P ) 2 E

0

nE

0

�

;

by de�nition of 
pl and by Point 2, this means that (g; g

0

; P ) 2 T

�

(�). Hen
e,

(g; g

0

; P ) 2 E

00

. By de�nition of G(T ) and Point 1 and 3, (g; g

0

; P ) 2 E

00

implies

that we have (�

t

ju

0

i

; �

t

ju

0

i�

m

1

; P ) 2 E what was to be shown.

This �nishes the proof of Claim 1. We may now de�ne the interpretation of 
on
rete

features. Let Æ be a solution for G(T ). We set

g

I

= f(�; x) j g is enfor
ed by T (�) and Æ(�jg) = xg for all g 2 N


F

:

To show that there exists an a 2 �

I

su
h that a 2 C

I

, we prove the following 
laim:

Claim 2: D 2 T

�

(�) implies � 2 D

I

for all � 2 �

I

and D 2 
l(C;T ).

Proof: The 
laim is proved by indu
tion over the stru
ture of D. The indu
tion start,

i.e., the 
ase that D is a 
on
ept name, is an immediate 
onsequen
e of the de�nition

of I. For the indu
tion step, we make a 
ase distin
tion a

ording to the topmost

operator in D. Assume D 2 T

�

(�).

� D = :E. Sin
e C is in NNF and by de�nition of 
l(), D is in NNF. Hen
e, E

is a 
on
ept name. By de�nition of I and sin
e T (�) is a Hintikka-set and thus

satis�es (H4), we have � 2 (:E)

I

.

� D = C

1

uC

2

orD = C

1

tC

2

. Straightforward by (H2) and (H3) of Hintikka-sets

and by indu
tion hypothesis.

� D = 9R:E with R 2 N

R

n N

aF

. By de�nition of R

I

, we have (�; �) 2 R

I

for

� = �i and

E

(C;T ; i) = 9R:E. By (H7), we have E 2 T

�

(�), and, by indu
tion,

� 2 E

I

.

� D = 9f:E with f 2 N

aF

. Hen
e, f is enfor
ed by T

�

(�). By de�nition of f

I

,

we have f

I

(�) = � for � = �i and

F

(C;T ; i � k) = f . By (H9), we have

E 2 T

�

(�), and, by indu
tion, � 2 E

I

.

� D = 8R:E with R 2 N

R

n N

aF

. Let (�; �) 2 R

I

. By de�nition of R

I

, there

exists an i su
h that

E

(C;T ; i) = 9R:D 2 T

�

(�) and � = �i. By (H8), we have

E 2 T

�

(�), and, by indu
tion, � 2 E

I

. Sin
e this holds independently of the


hoi
e of �, we have � 2 (8R:E)

I

.

� D = 8f:E with f 2 N

aF

. Let f

I

(�) = �. By de�nition of f

I

, we have � = �i,

F

(C;T ; i�k) = f , and f is enfor
ed by T

�

(�). By (H10), we have E 2 T

�

(�),

and, by indu
tion, � 2 E

I

.
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� D = 9u

1

; u

2

:P . Let G(T ) = (V;E) and 
pl(T; �) = (V

0

; E

0

). By de�nition of

pair-graphs and 
pl(), we have (u

1

; u

2

; P ) 2 E

0

. We show that there exist nodes

n

1

; n

2

2 V su
h that (n

1

; n

2

; P ) 2 E, u

I

1

(�) = Æ(n

1

), and u

I

2

(�) = Æ(n

2

). Sin
e

Æ is a solution for G(T ), this implies u

I

1

(�)Pu

I

2

(�).

For i 2 f1; 2g, set n

i

:= �ju

i

. By de�nition of G(T ) and sin
e (u

1

; u

2

; P ) 2 E

0

,

we have (n

1

; n

2

; P ) 2 E. Fix an i 2 f1; 2g. We need to show that u

I

i

(�) = Æ(n

i

).

In the 
ase u

i

= g, this is obvious by de�nition of g

I

(sin
e g is obviously

enfor
ed by T (�)).

Hen
e let u

i

= fg and F(C;T ; j � k) = f . Sin
e fg is a node in 
pl(T; �), we

have (�jfg; �jjg;=) 2 E. Hen
e, Æ(�jjg) = Æ(�jfg). By de�nition of f

I

and

sin
e f is 
learly enfor
ed by T

�

(�), we have f

I

(�) = �j. By de�nition of 
pl

and of pair-graphs, fg 2 V

0

implies that g appears in T

�

(�j): Sin
e 
pl(T; �)

is both a 
ompletion of G(�) and satis�able, fg 2 V

0

implies (fg; fg;=) 2 E

0

;

due to the de�nition of pair graphs and sin
e all 
on
epts are in path normal

form, (fg; fg;=) is not an edge of G(�); hen
e, by de�nition of 
pl and sin
e

F(C;T ; j � k) = f , we must have (g; g;=) 2 T

�

(�j), i.e., g appears in T

�

(�j).

Sin
e g appears in T

�

(�j) and thus enfor
ed by T (�j), we have g

I

(�j) = Æ(�jjg)

by de�nition of g

I

. Summing up, (fg)

I

(�) = Æ(�jjg) = Æ(�jfg).

� D = g". If g

I

(�) is de�ned, then g is enfor
ed by T (�). We show that this

implies g" =2 T

�

(�). If g is enfor
ed by T (�), then either (i) g appears in T

�

(�)

or (ii) f9g; u

0

:P;9u

0

; g:Pg \ T

�

(�) 6= ; for some path u

0

and P 2 f<;=g. In


ase (i), (H6) yields g" =2 T

�

(�). In 
ase (ii), (H5) yields the same result.

This 
ompletes the proof of the 
laim. Sin
e C 2 T

�

(�) by (H12) and, for all � 2 �

I

,

we have C

T

2 T

�

(�) by (H1), it is an immediate 
onsequen
e of the semanti
s and

Claim 2 that I is a model of C w.r.t. T . ❏

Lemma 18. A 
on
ept C is satis�able w.r.t. a TBox T only if there exists a Hintikka-

tree for (C;T ).

Proof Let C be a 
on
ept, T a TBox, and k and ` as in De�nition 16. Moreover,

let I = (�

I

; �

I

) be a model for C w.r.t. T , i.e., there exists an a

0

2 �

I

su
h that

a

0

2 C

I

and D

I

� E

I

for all D v E 2 T . We indu
tively de�ne a Hintikka-tree T

for (C;T ), i.e., a k + `-ary �

(C;T )

-tree that satis�es (H12) and (H13). Along with

T , we de�ne a mapping � from f1; : : : ; k + `g

�

to �

I

in su
h a way that

T

�

(�) = fD 2 
l(C;T ) j �(�) 2 D

I

g (�)

For the indu
tion start, set

�(�) := a

0

; T

�

(�) := fD 2 
l(C;T ) j a

0

2 D

I

g; and T

�

(�) := ;:

Now for the indu
tion step. Let � 2 f1; : : : ; k+ `g

�

su
h that �(�) is already de�ned,

and let i 2 f1; : : : ; k + `g. We make a 
ase distin
tion as follows:
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1.

E

(C;T ; i) = 9R:D 2 T

�

(�). By (�), we have �(�) 2 (9R:D)

I

. By the semanti
s,

there exists some b 2 �

I

su
h that (�(�); b) 2 R

I

and b 2 D

I

. Set �(�i) := b,

T

�

(�

i

) := fE 2 
l(C;T ) j b 2 E

I

g, and T

�

(�i) := ;.

2.

F

(C;T ; i � k) = f , and f is enfor
ed by �(�). By (�), the semanti
s, and the

de�nition of \enfor
ed", f

I

(�(�)) is de�ned. Let f

I

(�(�)) = b. Set �(�i) := b,

T

�

(�i) := fE 2 
l(C;T ) j b 2 E

I

g, and

T

�

(�i) := f(g

1

; g

2

; P ) j fg

1

and fg

2

are enfor
ed by T (�) and g

I

1

(b)Pg

I

2

(b)g

3. �, i do not mat
h the above 
ases. Then set �(�i) := �(�) and T (�i) := T (�).

It is readily 
he
ked that the k + `-ary tree T just de�ned does satisfy (�). We need

to prove that T is a Hintikka-tree for (C;T ). From (�) together with the semanti
s

of 
on
epts and TBoxes, it is 
lear that T

�

(�) is a Hintikka-set for (C;T ) for ea
h

� 2 f1; : : : ; k+`g

�

. Let us show exemplarily that (H1) holds. Assume to the 
ontrary

that there exists an � 2 f1; : : : ; k + `g

�

su
h that C

T

=2 T

�

(�). Sin
e C

T

2 
l(C;T )

and by (�), we have �(�) =2 (C

T

)

I

, and, by the semanti
s, �(�) 2 (�C

T

)

I

. By

de�nition of C

T

and semanti
s, this implies the existen
e of D v E 2 T su
h that

�(�) 2 (:nnf(:D t E))

I

, i.e., �(�) 2 D

I

and �(�) =2 E

I

. Hen
e, we do not have

D

I

� E

I

and obtain a 
ontradi
tion to the fa
t that I is a model for T .

We now show that T (�) is a Hintikka-pair for ea
h node �, i.e., that (H6) is

satis�ed. The proof is by 
ontradi
tion. Assume that there exists an � 2 f1; : : : ; k+`g

�

su
h that (g

1

; g

2

; P ) 2 T

�

(�) and g

j

" 2 T

�

(�) where j 2 f1; 2g. Sin
e (g

1

; g

2

; P ) 2

T

�

(�), g

I

j

(�(�)) is de�ned by de�nition of T

�

. Sin
e g

j

" 2 T

�

(�) and by (�), g

I

j

(�(�))

is unde�ned, whi
h is a 
ontradi
tion.

It remains to show that T satis�es (H12) and (H13), where the latter amounts

to showing that, for ea
h � 2 f1; : : : ; k+ `g

�

, the tuple (T (�); T (�1); : : : ; T (�j)) with

j = k + ` satis�es (H7) to (H11).

(H7) Let 9R:D 2 T

�

(�) and

E

(C;T ; i) = 9R:D. By de�nition of � (Case 1), we have

�(�i) = b for some b 2 �

I

with (�(�); b) 2 R

I

and b 2 D

I

. By (�), we thus

have D 2 T

�

(�i).

(H8) Let f9R:D;8R:Eg � T

�

(�) and

E

(C;T ; i) = 9R:D. By de�nition of � (Case 1),

we have �(�i) = b for some b 2 �

I

with (�(�); b) 2 R

I

. By (�), we have

�(�) 2 (8R:E)

I

. The semanti
s implies b 2 E

I

, and, by (�), we thus have

E 2 T

�

(�i).

(H9) Let 9f:D 2 T

�

(�) and

F

(C;T ; i) = f . Hen
e, f is enfor
ed by T (�). By

de�nition of � (Case 2), we have �(�j) = b for b = f

I

(�(�)) and j = k+ i. The

semanti
s implies b 2 D

I

, and, by (�), we thus have D 2 T

�

(�j).

(H10) Let f be enfor
ed by T (�),

F

(C;T ; i) = f , and 8f:D 2 T

�

(�). By de�nition

of � (Case 2), we have �(�j) = b for b = f

I

(�(�)) and j = k+ i. The semanti
s

implies b 2 D

I

, and, by (�), we thus have D 2 T

�

(�j).
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(H11) Let G(T (�)) = (V;E) and 
pl(T; �) = (V;E [ E

0

). To prove that (H11) is

satis�ed, we show that

1. E

0

is an edge extension of G(T (�)), i.e., (V;E [ E

0

) is a 
ompletion of

G(T (�)) and

2. (V;E [E

0

) is satis�able.

We �rst prove Point 1. It needs to be shown that, for ea
h fg

1

; fg

2

2 V ,

either (fg

2

; fg

1

; <) 2 E

0

or (fg

1

; fg

2

; P ) 2 E

0

for some P 2 f<;=g. By

de�nition of G(T (�)), fg

1

and fg

2

are enfor
ed by T (�). Sin
e T

�

(�) may

only 
ontain paths of length 1, we have f9fg

1

; u:P

0

;9u; fg

1

:P

0

g \ T

�

(�) 6= ;

for some path u and P

0

2 f<;=g and similarly for fg

2

. By (�), this implies

that f

I

(g

I

1

(�(�))) and f

I

(g

I

2

(�(�))) are de�ned. By de�nition of T (Case 2)

and sin
e f is obviously enfor
ed by T (�), we have f

I

(�(�)) = �(�i) with

F(C;T ; i � k) = f . Hen
e, g

I

1

(�(�i)) and g

I

2

(�(�i)) are de�ned. By semanti
s,

we either have (i) g

I

2

(�(�i)) < g

I

1

(�(�i)) or (ii) g

I

1

(�(�i))Pg

I

2

(�(�i)) for some

P 2 f<;=g. By de�nition of T

�

, (i) implies (g

2

; g

1

; <) 2 T

�

(�i) and (ii) implies

(g

1

; g

2

; P ) 2 T

�

(�i). Hen
e, by de�nition of E

0

, we have either (fg

2

; fg

1

; <) 2 E

0

or (fg

1

; fg

2

; P ) 2 E

0

.

We now prove point 2. De�ne a mapping Æ from V to Q as follows: Æ(u) :=

u

I

(�(�)). This mapping is well-de�ned, whi
h 
an be seen as follows. Fix a

u 2 V . Sin
e u is enfor
ed by T (�), either

(i) u o

urs in T

�

(�) or

(ii) f9u; u

0

:P;9u

0

; u:Pg \ T

�

(�) 6= ; for some path u

0

and P 2 f<;=g.

In Case (i), we have u = g for some g 2 N


F

. By de�nition of T , there exists a

prede
essor � of � in T su
h that � = �i, F(C;T ; i� k) = f for some f 2 N

aF

,

and fg is enfor
ed by T (�). Sin
e T

�

(�) 
ontains only paths of length 1, we

have f9fg; u:P;9u; fg:Pg\T

�

(�) 6= ; for some path u and P 2 f<;=g. By (�),

g

I

(f

I

(�(�))) is de�ned. Sin
e, by de�nition of T , we have f

I

(�(�))) = �(�),

g

I

(�(�)) is de�ned. In Case (ii), de�nedness of u

I

(�(�)) follows from (�) and

the semanti
s.

We show that Æ is a solution for (V;E[E

0

) by distinguishing the following 
ases:

1. (u

1

; u

2

; P ) 2 E and (u

1

; u

2

; P ) 2 T

�

(�). Then there exist g

1

; g

2

2 N


F

su
h

that u

1

= g

1

and u

2

= g

2

. By de�nition of T

�

, we have g

I

1

(�(�))Pg

I

2

(�(�)),

and, by de�nition of Æ, Æ(g

1

)PÆ(g

2

).

5

2. (u

1

; u

2

; P ) 2 E and 9u

1

; u

2

:P 2 T

�

(�). By (�), we have �(�) 2 (9u

1

; u

2

:P )

I

.

Hen
e, u

I

1

(�(�))Pu

I

2

(�(�)). By de�nition of Æ, we obtain Æ(u

1

)PÆ(u

2

).

3. (u

1

; u

2

; P ) 2 E

0

. By de�nition of E

0

, we have u

1

= fg

1

, u

2

= fg

2

, and

(g

1

; g

2

; P ) 2 T

�

(�i) where g

1

; g

2

2 N


F

and F(C;T ; k � i) = f . By de�-

nition of T

�

, this implies that fg

1

and fg

2

are enfor
ed by T (�) and that

5

We need not 
onsider the 
ase \(u

1

; u

2

;=) 2 E and (u

2

; u

1

:=) 2 T

�

(�)" sin
e 
onstraint graphs

are assumed to be equality 
losed. A similar note applies to Case 2.
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g

I

1

(�(�i))Pg

I

2

(�(�i)). From this and the de�nition of T (Case 2), it follows

that f

I

(�(�)) = �(�i). We 
on
lude Æ(u

1

)PÆ(u

2

).

(H12) By de�nition of T (indu
tion start) and sin
e a

0

2 C

I

by assumption.

❏

Note that Lemma 18 together with the proof of Lemma 17 implies that the PNF

fragment of T DL has the tree model property: By Lemma 18, the satis�ability of

a 
on
ept C w.r.t. a TBox T implies the existen
e of a Hintikka-tree T for (C;T ).

Using the 
onstru
tion from the proof of Lemma 17, we 
an 
onstru
t a 
anoni
al

model from T . It is not hard to see that this 
anoni
al model is a tree model in the

sense of Se
tion 2. In view of Lemma 13 and its proof, it is not hard to show that

T DL also has the tree model property.

4.4 De�ning looping automata

To prove de
idability, it remains to de�ne a looping automaton A

(C;T )

for ea
h 
on
ept

C and TBox T su
h that A

(C;T )

a

epts exa
tly the Hintikka-trees for (C;T ). Using

the notion of mat
hing tuples of Hintikka-pairs, this is rather straightforward.

De�nition 19. Let C be a 
on
ept, T be a TBox, k the number of existential sub-


on
epts in 
l(C;T ), and ` be the number of abstra
t features in 
l(C;T ). The looping

automaton A

(C;T )

= (Q;�

(C;T )

;�; I) is de�ned as follows:

� Q = �

(C;T )

� I = f(	; �) 2 Q j C 2 	g.

� ((	; �); (	

0

; �

0

); (	

1

; �

1

); : : : ; (	

k

; �

k+`

)) 2 � i�

(	; �) = (	

0

; �

0

) and

((	; �); (	

1

; �

1

); : : : ; (	

k

; �

k+`

)) is mat
hing.

As a 
onsequen
e of the following lemma and Lemmas 17 and 18, we 
an redu
e

satis�ability of 
on
epts w.r.t. TBoxes (in PNF) to the emptiness of the language

a

epted by looping automata.

Lemma 20. T is a Hintikka-tree for (C;T ) i� T 2 L(A

C;T

).

Proof Let C be a 
on
ept, T a TBox, and k, `, and A

(C;T )

as in De�nition 19.

\)" It is straightforward to 
he
k that the fun
tion r de�ned by r(�) := T (�) is

a run of A

C;T

on T : (i) By de�nition of Hintikka-trees and A

C;T

, r(�) 2 Q for all

� 2 f1; : : : ; k+ `g

�

; (ii) by (H12) and de�nition of I, we have r(�) 2 I; (iii) by (H13)

and by de�nition of r and of �, we have (r(�); T (�); r(�

1

); : : : ; r(�

k

)) 2 �.
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\(" Let r be a run of A

(C;T )

on T . It is straightforward to show that T is a

Hintikka-tree for (C;T ): (i) by de�nition of runs and of Q, r is a �

(C;T )

-tree; (ii) sin
e,

by de�nition of runs, r(�) 2 I, (H12) is satis�ed by de�nition of I; and (iii), by

de�nition of runs and of �, (H13) is satis�ed. ❏

It is an immediate 
onsequen
e of Lemmas 13, 17, 18, and 20, and the de
idability of

the emptiness problem of looping automata

[

27

℄

that satis�ability of T DL-
on
epts

w.r.t. TBoxes is de
idable. However, the presented automata-based algorithm has the

ni
e property of additionally providing us with a tight 
omplexity bound.

Theorem 21. Satis�ability and subsumption of T DL-
on
epts w.r.t. TBoxes are de-


idable in deterministi
 exponential time.

Proof The lower bound is an immediate 
onsequen
e of the fa
t that ALC with

general TBoxes is ExpTime-hard

[

20

℄

. For the upper bound, we need to show that the

size of A

(C;T )

= (Q;M;�; I) is exponential in the size of C and T (it is then obvious

that A

(C;T )


an be 
omputed in exponential time).

6

Obviously, the 
ardinality of


l(C;T ) is linear in the size of C and T . Hen
e, by de�nition of A

(C;T )

and Hintikka-

pairs, the 
ardinality of Q and M are exponential in the size of C and T . Again by

de�nition of A

(C;T )

, this implies that the 
ardinalities of I and � are also exponential

in the size of C and T . Hen
e, the size of A

(C;T )

is exponential in the size of C and T .

This fa
t together with Lemmas 13, 17, 18, and 20, and the fa
t that emptiness of the

language a

epted by a looping automaton A

(C;T )


an be tested in time polynomial

in the size of A

(C;T )

[

27

℄

, we have that satis�ability of T DL-
on
epts w.r.t. TBoxes

is in ExpTime. It remains to remind the reader that subsumption 
an be redu
ed to

satis�ability. ❏

4.5 Conne
tion to Tableau Algorithms

We 
on
lude this se
tion with some remarks on the 
onne
tion of the presented al-

gorithm with so-
alled tableau algorithms. This informal dis
ussion assumes some

familiarity with tableau algorithms, see, e.g.,

[

6

℄

for more information on this topi
.

As empiri
al results have shown, tableau algorithms are amenable to optimizations

that allow for eÆ
ient implementations of these algorithms, see, e.g.,

[

11

℄

. To the 
on-

trary, eÆ
ient implementations of automata-based algorithms like the one presented

in this paper are|as of now|unknown. Hen
e, it would be interesting to de�ne a

tableau algorithm for T DL. We argue that there exists a 
lose 
onne
tion between

the results obtained in this paper and 
ertain diÆ
ulties en
ountered in 
orre
tness

proofs for tableau algorithm for T DL.

Sin
e T DL admits general TBoxes, a tableau algorithm for T DL would have to

use a te
hnique 
alled blo
king. This means that su
h an algorithm would not try to

dire
tly 
onstru
t a model for the input 
on
ept but it would try to 
onstru
t a \pre-

model", i.e., a �nite representation of a \real" model. In the 
orre
tness proof, the real

model 
an then be obtained from the pre-model by a te
hnique 
alled unravelling. It

6

When talking of the size of C and T , we refer to the sum of the lengths of C and C

T

.
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is not hard to see that unravelling yields only models that are in some sense periodi
.

Unfortunately, it is outside the s
ope of this paper to give a formal de�nition of

this kind of periodi
ity (or unravelling itself). Roughly spoken, unravelling yields

an in�nite tree whose paths are built a

ording to a spe
i�
 pattern indu
ed by the

blo
king-relationships in the pre-model. The existen
e of this pattern is what is meant

by \periodi
". This implies that a tableau algorithm for T DL does only 
onstru
t

�nite representations of periodi
 models (and not of arbitrary models).

This is not a problem for most Des
ription Logi
s: It is a (usually unnoti
ed)

byprodu
t of the standard proof te
hnique used for showing 
orre
tness of DL tableau

algorithms that, for most logi
s, satis�ability of a 
on
ept implies satis�ability in a

periodi
 model. However, in T DL, this issue 
annot be treated \impli
itly" be
ause

of the global nature of the \
on
rete part" of models. Assume that we want to prove

that the existen
e of a model for a 
on
ept C implies that a T DL tableau algorithm

reports satis�able. To do this, we 
ould, for example, �x a model I for C and use it

to \guide" the appli
ation of the 
ompletion rules. We will end up with a pre-model

that indu
es a model I

0

. As we argued above, this model is periodi
 and so is its lo
al

part. To 
omplete our proof, we need to show that the 
on
rete part of I is identi
al

to the 
on
rete part of I

0

. But this may not be the 
ase sin
e the 
on
rete part of

I may be aperiodi
. Hen
e, we want to 
hoose a periodi
 model of I to guide our


ompletion rules whi
h 
an only be done safely if we �rst establish a \periodi
 model

property". Summing up, in the 
ase of T DL, the things are a little bit di�erent than

usual: The periodi
 model property is not a byprodu
t of the 
orre
tness proof but

it needs to be proved in advan
e and is then used in the 
orre
tness proof. We 
laim

that this e�e
t is not due to the spe
i�
 proof te
hnique sket
hed above but rather a

general problem. Unfortunately, it is not at all obvious how a periodi
 model property


an be established.

Fortunately, the periodi
 model property is a byprodu
t of the automata-based

approa
h presented in this paper: As is, e.g., noted by Thomas

[

25

℄

, there exists a

so-
alled \regular" tree in every nonempty B�u
hi-re
ognizable set of trees. Obviously,

the set of Hintikka-trees for a formula C and a TBox T is su
h a set. The notion of

regularity of trees is very 
losely related to the periodi
ity of models. More pre
isely,

we 
onje
ture that a proof of the periodi
 model property 
ould work as follows: By

Lemma 20, the fa
t that C is satis�able w.r.t. a TBox T implies that the set of

Hintikka-trees a

epted by A

(C;T )

is nonempty. Hen
e, it 
ontains a regular tree T . If

we 
onstru
t a model of T as in the proof of Lemma 17, then this model is periodi
. We


on
lude that the algorithm presented in this paper provides an important building

blo
k for proving the 
orre
tness of tableau algorithms for T DL.

5 Con
lusion

In this paper, we presented the temporal Des
ription Logi
 T DL that 
ombines

interval-based reasoning with reasoning about general TBoxes. An automata-based

de
ision pro
edure was devised and a tight ExpTime-
omplexity bound was obtained.

We demonstrated the usefulness of our logi
 by giving examples from the appli
ation
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domain of pro
ess engineering. Sin
e there exists a very 
lose 
onne
tion between

T DL and Des
ription Logi
s with 
on
rete domains, our results 
an also be viewed

from a di�erent perspe
tive: Despite the dis
ouraging results given in

[

15

℄

, we were

able to show that there exist interesting 
on
rete domains for whi
h reasoning with

general TBoxes is de
idable.

There are several perspe
tives for future work of whi
h we highlight two rather

interesting ones: First, the presented de
ision pro
edure is only valid if a dense stri
t

linear order is assumed as the underlying temporal stru
ture. For example, the 
on
ept

> is satis�able w.r.t. the TBox

T = f> v 9g

1

; g

2

; < u 9g

1

; fg

1

; < u 9fg

2

; g

2

; <g

over the temporal stru
tures Q and R (with the natural orderings) but not over N.

To see this, note that T indu
es a 
onstraint graph as in Figure 6. Hen
e, it would be

interesting to investigate how the presented algorithm has to be modi�ed for reasoning

with the temporal stru
ture N. We 
onje
ture that a 
onstraint graph G is satis�able

over N i� there exists an upper bound on the length of <-paths between any two

nodes in G.

7

It is, however, not immediately 
lear how Hintikka-trees and automata


an be modi�ed to a

ount for this stronger 
ondition.

Se
ond, it would be interesting to extend T DL to make it suitable for reason-

ing about entity relationship (ER) diagrams with temporal integrity 
onstraints. As

demonstrated by Calvanese et al. in

[

7; 8

℄

, Des
ription Logi
s are well-suited for rea-

soning about ER diagrams with integrity 
onstraints and thus are a valuable tool for

database design. Artale and Fran
oni propose a temporalization of Calvanese's ap-

proa
h that 
an be used for reasoning about temporal ER diagrams

[

3

℄

. They use a

point-based logi
 and fo
us on temporal databases, i.e., they admit referen
e to previ-

ous database states in the ER model. By using an appropriate extension of T DL, one

should be able to 
apture a di�erent kind of temporal reasoning with ER diagrams,

namely reasoning over ER diagrams with integrity 
onstraints for databases that store

temporal data. Su
h an extension would allow to formulate temporal integrity 
on-

straints, i.e., integrity 
onstraints that take into a

ount the temporal semanti
s of

the data in the database. For example, a temporal integrity 
onstraint 
ould state

that employees birthdays should be before their employment date. But what is an

appropriate extension of T DL for reasoning in this domain? Given the results in

[

7

℄

,

it is 
lear that we need (unquali�ed) number restri
tions and inverse roles. For the

temporal aspe
ts, we need a generalized version of the 
on
rete domain 
onstru
tor

9u

1

; u

2

:P that allows quanti�
ation over role paths instead of feature paths and has a

universal instead of an existential semanti
s. An extension of the presented automata-

theoreti
 de
ision pro
edure to this more 
omplex logi
 seems possible.
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7

This also implies that G 
ontains no <-
y
le.
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