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1 Motivation

Desription Logis (DLs) are a family of formalisms well-suited for the representation

of and reasoning about knowledge. Whereas most Desription Logis represent only

stati aspets of the appliation domain, reent researh resulted in the exploration

of various Desription Logis that allow to, additionally, represent temporal infor-

mation, see

[

4

℄

for an overview. The approahes to integrate time di�er in at least

two important aspets: First, the basi temporal entity may be a time point or a

time interval. Seond, the temporal struture may be part of the semantis (yielding

a multi-dimensional semantis) or it may be integrated as a so-alled onrete do-

main. Examples for multi-dimensional point-based logis an be found in, e.g.,

[

21;

29

℄

, while multi-dimensional interval-based logis are used in, e.g.,

[

23; 2

℄

. The on-

rete domain approah needs some more explanation. Conrete domains have been

proposed by Baader and Hanshke as an extension of Desription Logis that allows

reasoning about \onrete qualities" of the entities of the appliation domain suh as

sizes, length, or weights of real-worlds objets

[

5

℄

. Desription Logis with onrete

domains do usually not use a �xed onrete domain; instead the onrete domain

an be thought of as a parameter to the logi. As was �rst desribed in

[

16

℄

, if a

\temporal" onrete domain is employed, then onrete domains are very useful for

temporal reasoning. Temporal reasoning with onrete domains may be point-based,

interval-based, or both.

In this paper, we de�ne a temporal Desription Logi based on onrete domains

whih uses points as its basi temporal entity, but whih may also be used as a full-

edged interval-based temporal DL. More preisely, the presented logi T DL extends

the basi Desription Logi ALC

[

22

℄

with a onrete domain that is based on the

rationals and prediates < and =. This allows to represent point-based temporal

knowledge, e.g., the T DL onept

Student u 9graduation; 21birthday:<

desribes students who graduated before their 21'st birthday. For interval-based rea-

soning, the well-known Allen relations an be de�ned in terms of their endpoints

[

1

℄

.

Of ourse, point-based and interval-based temporal reasoning may be used in ombi-

nation. Sine it is an important feature of DLs that reasoning should be deidable,

we prove deidability of the standard reasoning tasks by using an automata-theoreti

approah whih also yields a tight ExpTime omplexity bound.

Most DLs allow for some kind of TBox formalism that is used to represent termi-

nologial knowledge as well as bakground knowledge about the appliation domain.

However, there exist various avours of TBoxes with vast di�erenes in expressivity

[

17; 18; 14

℄

. To the best of our knowledge, all interval-based DLs and all DLs with

onrete domains de�ned in the literature admit only a very restrited form of TBox,

i.e., sets of ayli maro de�nitions. Compared to existing Desription Logis that

are interval-based or inlude onrete domains, the distinguishing feature of our logi

is that it is equipped with a very general form of TBoxes that allows arbitrary equa-

tions over onepts. Thus, the presented work overomes a major limitation of both

families of Desription Logis.
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Our results an be viewed from the perspetive of interval-based temporal reason-

ing and from the perspetive of onrete domains. For the temporal perspetive, we

laim that the ombination of general TBoxes and interval-based temporal reasoning

is important for many appliation areas. In this paper, we present proess engineering

as an example. From the onrete domain perspetive, our results an be viewed as

follows: In

[

15

℄

, it is shown that, even for very simple onrete domains, reasoning

with general TBoxes is undeidable. Obvious solutions, whih inlude the restrition

of the onrete domain to unary prediates and the restrition of the onrete domain

onept onstrutor to features instead of feature hains, are not really onvining

sine the expressive power of the resulting formalism is very limited (readers not fa-

miliar with these notions are referred to

[

5

℄

). It was an open question whether there

exist interesting onrete domains for whih reasoning with general TBoxes is deid-

able. The results presented in this paper answer this question to the aÆrmative. This

paper is aompanied by a tehnial report ontaining the proofs of theorems.

2 Syntax and Semantis

In this setion, we introdue syntax and semantis of the Desription Logi T DL. As

mentioned in the introdution, this logi is from the family of DLs with onrete do-

mains. However, sine we only onsider a single onrete domain, we do not expliitly

refer to onrete domains in the de�nition of T DL. The exat onnetion between

onrete domains and our DL is disussed at the end of this setion.

De�nition 1. Let N

C

, N

R

, and N

F

be mutually disjoint and ountably in�nite sets

of onept names, roles, and onrete features. Furthermore, let N

aF

be a ountably

in�nite subset of N

R

. The elements of N

aF

are alled abstrat features. A path u is

a omposition f

1

� � � f

n

g of n abstrat features f

1

; : : : ; f

n

(n � 0) and one onrete

feature g. The set of T DL-onepts is the smallest set suh that

1. every onept name is a onept

2. if C and D are onepts, R is a role, g is a onrete feature, u

1

; u

2

are paths,

and P 2 f<;=g, then the following expressions are also onepts:

(a) :C, C uD, C tD,

(b) 9R:C, 8R:C,

() 9u

1

; u

2

:P , and g".

An axiom is an expression of the form C v D, where C and D are onepts. A �nite

set of axioms is alled a TBox.

Throughout this paper, we will denote atomi onepts by the letter A, (possibly

omplex) onepts by the letters C;D; : : : , roles by the letter R, abstrat features by

the letter f , onrete features by the letter g, paths by the letter u, and elements of the

set f<;=g by the letter P . We defer a disussion of how T DL an be used for interval-

based temporal reasoning until Setion 3. We will sometimes all the TBox formalism
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introdued above general TBoxes to distinguish it from other, weaker formalisms suh

as the ones in

[

17; 14

℄

. As most Desription Logis, T DL is equipped with a Tarski-

style semantis whih is introdued next.

De�nition 2. An interpretation I is a pair (�

I

; �

I

), where �

I

is a set alled the

domain and �

I

is the interpretation funtion. The interpretation funtion maps

� eah onept name C to a subset C

I

of �

I

,

� eah role name R to a subset R

I

of �

I

��

I

,

� eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

� eah onrete feature g to a partial funtion g

I

from �

I

to Q.

For paths u = f

1

� � � f

n

g, we set u

I

(a) := g

I

(f

I

n

(� � � (f

I

1

(a)) � � � )). The interpretation

funtion is extended to arbitrary onepts as follows:

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(:C)

I

:= �

I

n C

I

(9R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fa 2 �

I

j fb j (a; b) 2 R

I

g � C

I

g

(9u

1

; u

2

:P )

I

:= fa 2 �

I

j u

I

1

(a) = x

1

; u

I

2

(a) = x

2

; and x

1

Px

2

g

(g")

I

:= fa 2 �

I

j g

I

(a) unde�nedg

An interpretation I is a model of a TBox T i� it satis�es C

I

� D

I

for all axioms

C v D in T . I is a model of a onept C w.r.t. a TBox T i� I is a model of T and

C

I

6= ;.

If g(a) = x for some a 2 �

I

and x 2 Q, then we all x a onrete suessor of a in

I. In what follows, we write > for A t :A and ? for A u :A, where A is a onept

name. Moreover, we write u" with u = f

1

� � � f

k

g for 8f

1

: � � � 8f

k

:g".

How do T DL-models look like? It is not hard to see that T DL does not have

the �nite model property: The onept > is obviously satis�able w.r.t. the TBox

f> v 9g; fg: <g; however, it is not hard to see that there exists no �nite model for

this onept and this TBox. Furthermore, T DL has the tree model property, i.e.,

if a onept C is satis�able w.r.t. a TBox T , then there exists a tree-shaped model

I = (�

I

; �

I

) of C and T where the elements of �

I

are the nodes of the tree and

S

R2N

R

R

I

is the set of edges. The proof of this tree model property is a byprodut

of some results on Hintikka-trees obtained in Setion 4.3.

In this paper, the following inferene problems are onsidered.

De�nition 3 (Inferene Problems). Let C and D be onepts and T be a TBox.

C subsumes D w.r.t. T (written D v

T

C) i� D

I

� C

I

for all models I of T . C is

satis�able w.r.t. T i� there exists a model of both T and C. Moreover, C and D are

equivalent w.r.t. T (written C �

T

D) i� C v

T

D and D v

T

C.
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We are primarily interested in deiding satis�ability and subsumption. It is well-known

that (un)satis�ability and subsumption an be mutually redued to eah other, i.e.,

C v

T

D i� C u:D is unsatis�able w.r.t. T and C is satis�able w.r.t. T i� we do not

have C v

T

?. Sometimes, the inferene problems are onsidered without referene to

a TBox. In this ase, we omit the index T .

The use of Q in the semantis of T DL-onepts and TBoxes is not ruial: Q may

be replaed by any set with a dense linear ordering \<" suh as, e.g., R. Suh a hange

in the semantis does not a�et the satis�ability and subsumption of onepts. Q may,

however, not be replaed by N sine, on N, the usual \<" ordering is not dense, and,

as we will see later, there exist onepts whih are satis�able if Q is employed in the

semantis but unsatis�able if N is used.

We now disuss the relationship of T DL and Desription Logis with onrete

domains. To this end, let us introdue onrete domains formally.

De�nition 4 (Conrete Domain). A onrete domain D is a pair (�

D

;�

D

), where

�

D

is a set alled the domain, and �

D

is a set of prediate names. Eah prediate

name P 2 �

D

is assoiated with an arity n and an n-ary prediate P

D

� �

n

D

.

The onrete domain is usually integrated into the logi by a onept onstrutor

9u

1

; : : : ; u

n

:P , where u

1

; : : : ; u

n

are paths and P 2 �

D

(there also exist other on-

strutors, see, e.g.,

[

10

℄

). The semantis of this onstrutor is as follows:

(9u

1

; : : : ; u

n

:P )

I

:= fa 2 �

I

j u

I

i

(a) = x

i

for 1 � i � n and (x

I

1

; : : : ; x

I

n

) 2 P

D

g:

Hene, it is obvious that T DL an be viewed as being equipped with the onrete

domain D

<

:= (Q; f<;=g), where < and = are binary prediates with the usual se-

mantis. For most DLs with onrete domains, it is required that the set of prediates

is losed under negation and ontains a name >

D

for �

D

. This property ensures that

every onept an be onverted into an equivalent one in the so-alled negation normal

form (NNF). The NNF of onepts, in turn, is used as a starting point for devising

satis�ability algorithms. It is not hard to see that D

<

is not admissible in this sense.

However, as we will see in Setion 4.2, the onversion of T DL-onepts into equivalent

ones in NNF is nevertheless possible.

One tehnial di�erene between T DL and most Desription Logis with onrete

domains suh ALC(D), whih is de�ned by Baader and Hanshke in

[

5

℄

, should be

mentioned: ALC(D) does not distinguish between abstrat and onrete features,

but provides only one type of feature interpreted as a partial funtion from �

I

to

�

I

[�

D

. Obviously, using these \ombined" features instead of separated ones slightly

inreases expressive power. However, it seems rather hard to �nd any ases in whih

the additional expressivity is ruial. Furthermore, separating onrete and abstrat

features allows a learer algorithmi treatment and learer proofs. Apart from this

di�erene, T DL is just ALC(D

<

) enrihed with general TBoxes, where ALC(D

<

) is

ALC(D) instantiated with the onrete domain D

<

.
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blak before gray

blak meets gray

blak overlaps gray

blak during gray

blak starts gray

blak �nishes gray

Figure 1: The Allen relations (without equal and inverses).

3 Temporal Reasoning with T DL

Although T DL does only provide the relations \=" and \<" on time points, it is not

hard to see that the remaining relations an be de�ned:

9u

1

; u

2

: > � 9u

2

; u

1

:<

9u

1

; u

2

: � � 9u

1

; u

2

:< t 9u

1

; u

2

:=

9u

1

; u

2

: � � 9u

2

; u

1

:< t 9u

1

; u

2

:=

However, we laim that T DL annot only be used for point-based temporal reasoning

but also as a full-edged interval-based temporal Desription Logi. Reasoning with

time intervals has a onsiderable tradition in arti�ial intelligene, see, e.g.,

[

1; 23; 28;

9; 12; 26; 2

℄

. The foundation of interval-based reasoning in AI is Allen's observation

that there are 13 possible relationships between two intervals

[

1

℄

suh as, for example,

the meets relation: Two intervals i

1

and i

2

are related by meets i� the right endpoint

of i

1

is idential to the left endpoint of i

2

. Figure 1 illustrates meets and the other

relations omitting equal and inverses. The inverse relations orresponding to the rela-

tions displayed in Figure 1 are alled after, met-by, overlapped-by, ontains, started-by,

and �nished-by (from top to bottom).

In this setion, we �rst introdue a variant of T DL that is purely interval-based,

then present a framework for mixed interval- and point-based reasoning in T DL itself

and �nally apply this framework in the appliation area of proess engineering

3.1 An Interval-based Variant of T DL

It is straightforward to de�ne a variant of T DL whose semantis is interval-based

instead of point-based and whih o�ers Allen's relations as prediates.

De�nition 5 (T DL

I

). A T DL

I

-onept is a T DL-onept in whih eah ourrene

of prediates < and = have been replaed by Allen relations equal, before, after, meets,

met-by, overlaps, overlapped-by, during, ontains, starts, started-by, �nishes, �nished-by.

T DL

I

-TBoxes are de�ned analogously.

6



Let I

Q

be the set f(q

1

; q

2

) 2 Q

2

j q

1

< q

2

g, i.e., the set of all intervals over Q. An

T DL

I

-interpretation I is a T DL-interpretation that maps eah onrete feature g to

partial g

I

funtions from �

I

to I

Q

. The extension to omplex T DL

I

onepts is as

for T DL (now using Allen relations instead of the prediates < and =).

For example, the following is a T DL

I

-onept:

9fg

1

; g

2

:during t 9R:9g

1

; g

2

:after

Just as T DL an (apart from some minor di�erenes) be viewed as ALC(D

<

) enrihed

with general TBoxes, T DL

I

an be seen as ALC(D

I

) enrihed with general TBoxes,

where D

I

is a onrete domain based on the set of intervals (over Q) and Allen's

relations. Suh a onrete domain has, e.g., been de�ned in

[

16

℄

.

We show that T DL

I

is indeed just a variant of T DL by giving a very simple

translation of T DL

I

-onepts (resp. TBoxes) to orresponding T DL onepts (resp.

TBoxes). W.l.o.g., we assume that the onrete features appearing in T DL

I

-onepts

and TBoxes are alled i

1

; i

2

; : : : . In the target language T DL, we use onrete features

`

1

; r

1

; `

2

; r

2

; : : : , where, intuitively, `

j

-suessors in T DL represent the left endpoints

of the intervals represented by i

j

-suessors in T DL

I

and r

j

-suessors represent the

orresponding right endpoints of these intervals.

De�nition 6 (T DL

I

translation). For eah T DL

I

-onept C, we de�ne a orre-

sponding T DL-onept �(C) that is obtained by exhaustively applying the following

rewrite rules to C:

9Fi

1

; F

0

i

2

:equal ; 9F`

1

; F

0

`

2

:= u 9Fr

1

; F r

2

:=

9Fi

1

; F

0

i

2

:before ; 9Fr

1

; F

0

`

2

:<

9Fi

1

; F

0

i

2

:after ; 9F

0

r

2

; F `

1

:<

9Fi

1

; F

0

i

2

:meets ; 9Fr

1

; F

0

`

2

:=

9Fi

1

; F

0

i

2

:met-by ; 9F`

1

; F

0

r

2

:=

9Fi

1

; F

0

i

2

:overlaps ; 9F`

1

; F

0

`

2

:< u 9F

0

`

2

; F r

1

:< u 9Fr

1

; F

0

r

2

:<

9Fi

1

; F

0

i

2

:overlapped-by ; 9F

0

`

2

; F `

1

:< u 9F`

1

; F

0

r

2

:< u 9F

0

r

2

; F r

1

:<

9Fi

1

; F

0

i

2

:during ; 9F

0

`

2

; F `

1

:< u 9Fr

1

; F

0

r

2

:<

9Fi

1

; F

0

i

2

:ontains ; 9F`

1

; F

0

`

2

:< u 9F

0

r

2

; F r

1

:<

9Fi

1

; F

0

i

2

:starts ; 9F`

1

; F

0

`

2

:= u 9Fr

1

; F

0

r

2

:<

9Fi

1

; F

0

i

2

:started-by ; 9F`

1

; F

0

`

2

:= u 9F

0

r

2

; F r

1

:<

9Fi

1

; F

0

i

2

:�nishes ; 9F

0

`

2

; F `

1

:= u 9Fr

1

; F

0

r

2

:=

9Fi

1

; F

0

i

2

:�nished-by ; 9F`

1

; F

0

`

2

:= u 9Fr

1

; F

0

r

2

:=

where F; F

0

2 (N

aF

)

�

, i.e., F and F

0

are words over the alphabet N

aF

. For eah

T DL

I

-TBox T , we de�ne a orresponding T DL-TBox �(T ) analogously.

Using this translation, satis�ability (and hene also subsumption) of T DL

I

-onepts

an be redued to satis�ability of T DL-onepts.

7



ATemporal

:

= t" u `" u r"

Temporal

:

= Point t Interval

Point

:

= 9t; t:= u `" u r"

Interval

:

= 9`; r:< u t"

Interval w 9`; `;= t 9r; r:=

Figure 2: Basi de�nitions of the framework T

�

.

Proposition 7. A T DL

I

-onept C is satis�able w.r.t. a T DL

I

-TBox T i� �(C) is

satis�able w.r.t. �(T ) [ T

00

, where

T

00

=

[

1�i�k

f> v 9`

i

; r

i

:<g:

Hene, the ExpTime deidability result for T DL obtained in Setion 4 implies that

T DL

I

is also deidable in ExpTime. Again, it is worth to view this result from the

onrete domain point of view: The above translation shows that the onrete do-

main D

I

based on Allen's relations (whih is formally de�ned in

[

16

℄

) is a onrete

domain for whih reasoning with general TBoxes is deidable. Hene, we have shown

that, despite the disouraging results given in

[

15

℄

|where it is shown that the om-

bination of general TBoxes and ertain very simple onrete domains already leads

to undeidability|there exist interesting onrete domains for whih reasoning with

general TBoxes is deidable.

3.2 A Representation Framework

As an alternative to using the logi T DL

I

for interval-based temporal reasoning, one

an diretly employ T DL and represent intervals as pairs of endpoints. This has

the advantage that mixed point- and interval-based reasoning beomes possible. This

approah is pursued in the following setion, where we give an appliation example. To

simplify presentation, in this setion we introdue an abstrat framework for temporal

reasoning with T DL that onsists of several onventions and abbreviations.

We assume that eah entity of the appliation domain is either temporal or atem-

poral. If it is temporal, its temporal extension may be a time point or an interval

but not both. We generally assume that left endpoints of intervals aree represented

by the onrete feature `, right endpoints of intervals are represented by the onrete

feature r, and time-points not related to intervals are represented by the onrete

feature t. All this an be expressed by the TBox T

�

displayed in Figure 2. In the

�gure, C

:

= D is an abbreviation for C v D and D v C. The TBox implies that

the onepts ATemporal, Point, and Interval are mutually disjoint. To keep onepts

readable, we introdue abbreviations for Allen's relations. For example,

9(F; F

0

):ontains

8



is an abbreviation for

9F`; F

0

`:< u 9F

0

r; F r:<

where F; F

0

2 (N

aF

)

�

. Note that we have

9(F; F

0

):ontains v

T

�

9F:Interval u 9F

0

:Interval:

Similar abbreviations are introdued for the other Allen relations, where the de�ning

onepts an be read o� from De�nition 6. For better readability, we use self to denote

the empty word. For example,

9(F; self):starts

is an abbreviation for

9F`; `:= u 9Fr; r:<:

Intuitively, self refers to the interval assoiated with the abstrat objet at whih the

9(F; self):starts onept is \evaluated".

Sine we have intervals and points available, we should also be able to talk about

the relationship of points and intervals. More preisely, there exist 5 possible relations

between a point and an interval and we introdue the following abbreviations for them:

9(Fp; F

0

):beforep for 9Fp; F

0

`:<

9(Fp; F

0

):startsp for 9Fp; F

0

`:=

9(Fp; F

0

):duringp for 9F

0

`; Fp:< u 9Fp; F

0

r:<

9(Fp; F

0

):�nishesp for 9Fp; F

0

r:=

9(Fp; F

0

):afterp for 9F

0

r; Fp:<

where again F; F

0

2 (N

aF

)

�

and p 2 N

F

. We refrain from de�ning the inverses of

these relations. The usefulness of the introdued framework is demonstrated in the

next setion.

3.3 An Appliation Example

Interval-based temporal Desription Logis have been used in various appliation areas

suh as disaster management

[

13

℄

and reasoning about ation and plans

[

4

℄

. We laim

that T DL is a ontribution to most of these appliation areas sine, unlike existing

interval-based Desription Logis, it admits general TBoxes. To substantiate this

laim, we motivate T DL as an appropriate tool for temporal reasoning in the area

of proess engineering. In

[

19

℄

, Sattler desribes how Desription Logis an be used

for representation and reasoning in this appliation domain. However, in Sattler's

approah, only stati knowledge about proess engineering is onsidered, i.e., there

is no expliit representation of the temporal relationships between desribed entities.

We use the framework presented in the previous setion to show how the temporal

aspets of this appliation domain an be represented in T DL thus re�ning Sattler's

model.

Assume that our goal is to represent information about an automated hemial

prodution proess that is arried out by some omplex tehnial devie. The de-

vie operates eah day for some time depending on the number of orders. It needs a

9



Week

:

= Interval u

u

1�i�7

9day

i

:Day u

9(day

1

; self):starts u

9(day

7

; self):�nishes u

u

1�i<7

9(day

i

; day

i+1

):meets u

9next:Week u

9(self; next):meets

Figure 3: Weeks and days.

Day

:

= Interval u

9start:Startup u

9op:Operation u

9shut:Shutdown u

9(start; self):during u

9(start; op):meets u

9(op; shut):meets u

9(shut; self):during

Week v 9maint:Maintenane u

9(self;maint):ontains

Interval w Startup tOperation t Shutdown tMaintenane

Figure 4: Operation and maintenane.

omplex startup and shutdown proess before resp. after operation. Moreover, some

weekly maintenane is needed to keep the devie funtional. Let us �rst represent

the underlying temporal struture that, in our ase, onsists of weeks and days. The

orresponding TBox an be found in Figure 3. In the �gure, onepts are written ap-

italized while roles (as well as prediates) start with a lowerase letter. The TBox in

the �gure states that eah week onsists of seven days, where the i'th day is aessible

from the orresponding week via the abstrat feature day

i

. The temporal relationship

between the days are as expeted: Monday starts the week, Sunday �nishes it, and

eah day temporally meets the sueeding one. This implies that eah of the seven

days is during the orresponding week although this is not expliitly stated. More-

over, eah week has a suessor week that it temporally meets. Note that the TBox is

yli, i.e., Week is de�ned in terms of itself. This is already more than simple, ayli

TBoxes are able to express

[

18

℄

.

We an now desribe the startup, operation, shutdown, and maintenane phases,

10



Day v 9up-int:Operator-interation u

9down-int:Operator-interation u

9(up-int Æ t; start):startsp

9(down-int Æ t; shut):startsp

Operator-interation v Point

Figure 5: Operator interation.

see Figure 4. Here start, op, shut, and maint are abstrat features. The de�nition

implies that operation phases are temporally during the orresponding day. Our

urrent model does not say anything about the temporal relationship of maintenane

and operation. This may be inadequate, if, for example, maintenane and operation

are mutually exlusive sine maintenane prevents operation or is too dangerous during

the operation phase. We an take this into aount by using additional axioms

Week u t

1�i�7

9(maint; day

i

Æ op):REL v ? (�)

where (1) \Æ" is used for better readability (i.e., sequenes of features f

1

� � � f

k

are

written as f

1

Æ � � � Æ f

k

) and (2) REL is equal, overlaps, overlapped-by, during, ontains,

starts, started-by, �nishes, or �nished-by.

We may view the knowledge modeled so far as the spei�ation of a faultless

operation. To illustrate reasoning with T DL in this appliation domain, we an now

hek fats about spei� weeks or days against the spei�ation. For example, say

that in the 23rd alendar week, the maintenane took extremely long: it started on

Tuesday night and wasn't �nished until Thursday morning. This is expressed by the

axiom

Week23 vWeek u 9(day

3

;maint):during:

The T DL reasoner an be used to hek whether there was a problem in Week 23.

This is obviously the ase if the onept Week23 is not satis�able w.r.t. the TBox that

is obtained from the TBox expressing faultless operation by adding the de�nitorial

axiom for Week23. It is not hard to see that this TBox is indeed unsatis�able: The

de�nition of Week23 implies that the operation phase of wednesday is during the

weekly maintenane phase whih is a ontradition to (�). Hene we an dedue that,

in the 23rd alendar week, the spei�ation of faultless operation was not met.

In order to demonstrate mixed reasoning with time points and intervals, we pro-

pose a further re�nement of our model. Assume that the prodution proess is fully

automated exept that an operator interation is neessary to initiate the startup and

shutdown proesses. These fats an be expressed using the axiom shown in Figure 5.

In the �gure, up-int and down-int are abstrat features. We may now hek spei�

weeks or days against our re�ned spei�ation of faultless operation. For example, it

may be the ase that, on November 13, the operation ontinued after the shutdown

11



interation whih is obviously not a faultless operation. This an be desribed by

Nov13 v Day u 9(down-int; op):duringp:

It is not hard to see that Nov13 is unsatis�able: the shutdown interation annot

start the shutdown phase and simultaneously be during the operation phase sine the

operation phase must meet the shutdown phase. As another example, assume that, in

alendar week 11, the shutdown interation of some (unspei�ed) day ourred during

the weekly maintenane phase. Is this ompatible with a faultless operation? To hek

this, we an add the axiom

Week11

:

= Week u t

1�i�7

9(day

i

Æ down-int;maint):duringp

to our TBox. A lose look reveals that Week11 is also unsatis�able: The shutdown

interation starts the shutdown phase that is met by the operation phase. Hene, if

the shutdown interation of some day ours during the weekly maintenane phase,

then the temporal relation between this day's operation phase and the maintenane

phase is either during, overlaps, or starts. All three possibilities onit with (�).

The disussed examples do not exploit all the expressive power of T DL beause

of simpliity. Nevertheless, they demonstrate that T DL is a powerful tool for repre-

senting temporal knowledge.

4 The Deision Proedure

In this setion, we prove satis�ability of T DL-onepts w.r.t. TBoxes to be deid-

able and obtain a tight ExpTime omplexity bound for this problem. Deidability

is proved using an automata-theoreti approah: This is done using an automata-

theoreti approah: �rst, we abstrat models to so-alled Hintikka-trees suh that

there exists a model for a onept C and a TBox T i� there exists a Hintikka-tree

for C and T . Then, we build, for eah T DL-onept C and TBox T , a looping au-

tomaton A

(C;T )

that aepts exatly the Hintikka-trees for (C;T ). In partiular, this

implies that A

(C;T )

aepts the empty (tree-) language i� C is unsatis�able w.r.t. T .

4.1 Preliminaries

In this setion, we introdue the basi notions needed for proving deidability of T DL

like trees, looping automata, and the language they aept.

De�nition 8. Let M be a set and k � 1. A k-ary M -tree is a mapping T :

f1; : : : ; kg

�

! M that labels eah node � 2 f1; : : : ; kg

�

with T (�) 2 M . Intuitively,

the node �i is the i-th hild of �. We use � to denote the empty word (orresponding

to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-ary M -trees is de�ned by a set Q

of states, an alphabet M , a subset I � Q of initial states, and a transition relation

� � Q�M �Q

k

.

12



A run of A on an M -tree T is a mapping r : f1; : : : ; kg

�

7! Q with r(�) 2 I and

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for eah � 2 f1; : : : ; kg

�

: A looping automaton aepts all those M -trees for whih a

run exists, i.e., the language L(A) of M -trees aepted by A is

L(A) = fT j there is a run of A on Tg:

In

[

27

℄

, it is proved that the emptiness problem for looping automata, i.e., the problem

to deide whether the language L(A) aepted by a given looping automaton A is

empty, is deidable in polynomial time. A Hintikka-tree for C and T orresponds

to a anonial model for C and T . Apart from desribing the abstrat domain �

I

of the orresponding anonial model I together with the interpretation of onepts

and roles, eah Hintikka-tree indues a direted graph whose edges are labelled with

prediates from f<;=g. These onstraint graphs desribe the \onrete part" of I

(i.e., onrete suessors of domain objets and their relationships) and are de�ned in

the following.

De�nition 9. A onstraint graph is a pair G = (V;E), where V is a ountable set

of nodes and E � V � V � f=; <g a set of edges. We generally assume that on-

straint graphs are equality losed, i.e., that (v

1

; v

2

;=) 2 E implies (v

2

; v

1

;=) 2 E. A

onstraint graph G = (V;E) is alled satis�able over M|where M is a set equipped

with a total ordering <|i� there exists a total mapping Æ from V to M suh that

Æ(v

1

)P Æ(v

2

) for all (v

1

; v

2

; P ) 2 E. Suh a mapping Æ is alled a solution for G.

A path Q in G is a �nite non-empty sequene of nodes v

0

; : : : ; v

k�1

2 V suh that,

for all i with 0 � i < k, we have (v

i

; v

i+1

; P ) 2 E, where P 2 f<;=g. Suh a path

is also alled a path from v

0

to v

k�1

. Q is alled a =-path i� (v

i

; v

i+1

;=) 2 E for

0 � i < k � 1. A yle O in G is a path v

0

; : : : ; v

k�1

, suh that (v

k�1

; v

0

; P ) 2 E for

some P 2 f<;=g. O is a <-yle i� O is a yle suh that (v

i

; v

i�

k

1

; <) 2 E for some

i with 0 � i < k, where �

k

denotes addition modulo k.

The following theorem will be ruial for proving that, for every Hintikka-tree, there

exists a orresponding anonial model. More preisely, it will be used to ensure that

the onstraint graph indued by a Hintikka-tree, whih desribes the onrete part of

the orresponding model, is satis�able.

Theorem 10. A onstraint graph G is satis�able over M with M 2 fQ;Rg i� G

does not ontain a <-yle.

Proof Sine the \)" diretion is trivial, we onentrate on the \(" diretion. Let

G be a onstraint graph not ontaining a <-yle. Let � be the relation on V with

v

1

� v

2

i� v

1

= v

2

or there exists a =-path between v

1

and v

2

. Sine onstraint graphs

are assumed to be equality losed, � is an equivalene relation. For v 2 V , denote the

equivalene lass of v w.r.t. � with [v℄

�

. De�ne a new onstraint graph G

0

= (V

0

; E

0

)

as follows:

V

0

:= f[v℄

�

j v 2 V g

E

0

:= f([v

1

℄

�

; [v

2

℄

�

; <) j 9v

0

1

; v

0

2

2 V suh that

v

0

1

2 [v

1

℄

�

; v

0

2

2 [v

2

℄

�

; and (v

0

1

; v

0

2

; <) 2 Eg

13



� � �

< <

<

<

<

<

<

v

1

v

2

Figure 6: A onstraint graph ontaining no <-yle that is unsatis�able over N.

Using the fat that G does not ontain a <-yle, it is straightforward to prove that G

0

does not ontain a <-yle. Sine G

0

does not ontain a <-yle, E

0

indues a partial

order with domain V

0

. By Szpilrajn's Theorem, every partial order an be extended

to a total order (on the same domain)

[

24

℄

. Let �

E

0

be a total order obtained in

this way from the partial order indued by E

0

. In the following, we show that every

total order with a ountable domain an be embedded into Q (resp. R) suh that the

ordering is preserved. This suÆes to omplete the proof sine it implies that that

there exists a total mapping � from V to Q (resp. R) suh that v

1

�

E

0

v

2

implies

�(v

1

) < �(v

2

). It is obvious that � is a solution for G

0

and it is straightforward to use

� to onstrut a solution for G.

Hene, it remains to show that every total order � with a ountable domain D

an be embedded into Q (resp. R) suh that the ordering is preserved. Let d

0

; d

1

; : : :

be an enumeration of D. We use indution over this enumeration to de�ne a funtion

� from D to Q (resp. R) suh that d

1

� d

2

implies �(d

1

) < �(d

2

) for all d

1

; d

2

2 D.

1. For the indution start, set �(d

0

) to some q 2 Q.

2. Assume that �(d

i

) is de�ned for 0 � i < k. We distinguish three ases:

(a) d

i

� d

k

for 0 � i < k. Sine Q has no maximum, there exists a q 2 Q suh

that q > �(d

i

) for 0 � i < k. Set �(d

k

) := q.

(b) d

k

� d

i

for 0 � i < k. Sine Q has no minimum, there exists a q 2Q suh

that q < �(d

i

) for 0 � i < k. Set �(d

k

) := q.

() Neither of the previous two ases holds. Sine Q is dense, there exists

a q 2 Q suh that maxf�(d

i

) j 0 � i < k and d

i

� d

k

g < q and q <

minf�(d

i

) j 0 � i < k and d

k

� d

i

g. Set �(d

k

) := q.

It is readily heked that � is as required. ❏

In the sueeding setions, we deal with the satis�ability of onstraint graphs over Q.

However, all obtained results also apply if we hoose R instead. Note that Theorem 10

does not hold if satis�ability over N is onsidered due to the absene of density: If

there exist two nodes v

1

and v

2

suh that the length of <-paths (whih are de�ned in

the obvious way) between v

1

and v

2

is unbounded, a onstraint graph is unsatis�able

over N even if it ontains no <-yle. Figure 6 shows suh a onstraint graph.
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4.2 A T DL Normal Form

The deidability proedure works on T DL-onepts and TBoxes of a ertain syntati

form. This greatly simpli�es some onstrutions like de�ning Hintikka-trees. Let us

�rst introduing the well-known negation normal form.

De�nition 11 (NNF). A onept C is in negation normal form (NNF) if negation

ours only in front of onept names. Exhaustive appliation of the following rewrite

rules translates onepts to equivalent onepts in NNF.

::C =) C

:(C uD) =) :C t :D :(C tD) =) :C u :D

:(9R:C) =) (8R::C) :(8R:C) =) (9R::C)

:(9u

1

; u

2

:P ) =) 9u

1

; u

2

:

e

P t 9u

2

; u

1

:< t u

1

" t u

2

" :(g") =) 9g; g:=

where
e
� denotes the exhange of prediates, i.e.,

e

< is = and e= is <. With nnf(C),

we denote the equivalent of C in NNF whih an be obtained by applying the above

rules. Furthermore, we use �C as a shorthand for nnf(:C). A TBox T is in NNF i�

all onepts in T are in NNF.

We an now extend NNF to an even more onvenient normal form.

De�nition 12 (Path Normal Form). A T DL-onept C is in path normal form

(PNF) i� it is in NNF and, for all subonepts 9u

1

; u

2

:P of C, we have either

1. u

1

= g

1

and u

2

= g

2

for some g

1

; g

2

2 N

F

,

2. u

1

= fg

1

and u

2

= g

2

for some f 2 N

aF

and g

1

; g

2

2 N

F

, or

3. u

1

= g

1

and u

2

= fg

2

for some f 2 N

aF

and g

1

; g

2

2 N

F

.

A T DL TBox T is in path normal form i� it is in NNF and all onepts appearing

in T are in PNF.

The following lemma shows that it is not a restrition to onsider only onepts and

TBoxes in PNF.

Lemma 13. Satis�ability of T DL-onepts w.r.t. T DL-TBoxes an be redued to sat-

is�ability of T DL-onepts in PNF w.r.t. T DL-TBoxes in PNF.

Proof We start with de�ning a funtion � that onverts T DL-onepts (resp. T DL-

TBoxes) to T DL-onepts (resp. T DL-TBoxes) ontaining only paths of a restrited

length. This mapping will then be used to onvert T DL-onepts and TBoxes into

PNF.

Let C be a T DL-onept. For every path u = f

1

� � � f

n

g used in C, we assume

that [g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are onrete features. We indutively de�ne a mapping

� from paths u in C to onepts as follows:

�(g) = >

�(fu) = (9[fu℄; f [u℄: =) u 9f:�(u)
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Now, �(C) is obtained from C by replaing all subonepts 9u

1

; u

2

:P of C with

9[u

1

℄; [u

2

℄:P u �(u

1

) u �(u

2

) and g" with [g℄". Moreover, if

T = fC

1

v D

1

; : : : ; C

k

v D

k

g;

is a T DL-TBox, then

�(T ) = f�(C

1

) v �(D

1

); : : : ; �(C

k

) v �(D

k

)g:

Now let C be a T DL-onept and T a T DL-TBox. By De�nition 11, we an onvert

C to a onept C

0

in NNF and T to a onept T

0

in NNF suh that C is satis�able

w.r.t. T i� C

0

is satis�able w.r.t. T

0

. Moreover, we an learly translate C

0

to �(C

0

)

and T

0

to �(T

0

) in polynomial time and, obviously, �(C

0

) and �(T

0

) are in PNF. Hene,

it remains to show that C

0

is satis�able w.r.t. T

0

i� �(C

0

) is satis�able w.r.t. �(T

0

).

First for the \if" diretion. Let I be a model for �(C

0

) and �(T

0

). We extend I to

an interpretation J by setting g

J

:= [g℄

I

for all onrete features g used in C

0

or T

0

.

It is not hard to show by strutural indution that, for all subonepts D of C

0

or T

0

and all a 2 �

I

, we have a 2 �(D)

I

! a 2 D

J

. Sine C

0

and T

0

are in NNF, the only

non-trivial ases are:

� D = 9u

1

; u

2

:P . Then �(D) = 9[u

1

℄; [u

2

℄:Pu�(u

1

)u�(u

2

). For i 2 f1; 2g, let u

i

=

f

(i)

1

; : : : ; f

(i)

k

i

g

i

. It is easy to show by indution on n that, for eah i 2 f1; 2g and

every n with 1 � n � k

i

, there exist b

1

; : : : ; b

n

2 �

I

suh that (a; b

1

) 2 (f

(i)

1

)

I

and [u

i

℄

I

(a) = [f

(i)

2

; : : : ; f

(i)

k

i

g

i

℄

I

(b

1

), and, for eah 1 < j � n, we have (b

j�1

; b

j

) 2

(f

(i)

j

)

I

and [f

(i)

j

; : : : ; f

(i)

k

i

g

i

℄

I

(b

j�1

) = [f

(i)

j+1

; : : : ; f

(i)

k

i

g

i

℄

I

(b

j

). Hene, for eah

i 2 f1; 2g, we have f

(i)

k

i

(� � � (f

(i)

1

(a)) � � � ) = b

k

i

and [u

i

℄

I

(a) = [g

i

℄

I

(b

k

i

). Sine

9[u

1

℄; [u

2

℄:P is a onjunt of �(D), it is thus lear that [g

1

℄

I

(b

k

1

)P [g

2

℄

I

(b

k

2

). It

is now immediate by de�nition of J that a 2 (9u

1

; u

2

:P )

J

.

� D = g". Then �(D) = [g℄". Obvious by de�nition of J .

It is easily seen that the laim just proved by indution implies that J is a model for

C

0

and T

0

.

Now for the \only if" diretion. Let I be a model for C

0

and T

0

. We extend I to an

interpretation J by, for eah path u used in C

0

and T

0

, and eah post�x u

0

= f

1

� � � f

k

g

of u, setting [f

1

� � � f

k

g℄

J

:= (u

0

)

I

. It is not hard to show by strutural indution that,

for all subonepts D of C

0

or T

0

and all a 2 �

I

, we have a 2 D

I

! a 2 �(D)

J

. The

only non-trivial ases are the same as in the \if" diretion. However, both ases are

straightforward by de�nition of � and J . Thus, J is learly a model for �(C

0

) and

�(T

0

). ❏

Hene, it suÆes to prove that satis�ability of onepts in PNF w.r.t. TBoxes in PNF

is deidable. In what follows, we generally assume that all onepts and TBoxes are

in path normal form. We will often refer to TBoxes T in their onept form C

T

whih is

de�ned as follows:

C

T

= u

CvD2T

nnf(:C tD):
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4.3 De�ning Hintikka-trees

In this setion, we de�ne Hintikka-trees for T DL-onepts C and TBoxes T in path

normal form and show that there exists Hintikka-tree for C and T i� there exists a

model for C and T .

Let C be a onept and T be a TBox. With l(C;T ), we denote the set of

subonepts of C and C

T

. We assume that existential onepts 9R:D in l(C;T )

with R 2 N

R

nN

aF

are linearly ordered, and that

E

(C;T ; i) yields the i-th existential

onept in l(C;T ). Furthermore, we assume the abstrat features used in l(C;T ) to

be linearly ordered and use

F

(C;T ; i) to denote the i-th abstrat feature in l(C;T ).

The set of onrete features used in l(C;T ) is denoted with

G

(C;T ).

We now de�ne Hintikka-pairs whih are used as labels of the nodes in Hintikka-

trees (reall that Hintikka-trees are abstrations of models).

De�nition 14 (Hintikka-set, Hintikka-pair). Let C be a onept and T be a

TBox. A set 	 � l(C;T ) is a Hintikka-set for (C;T ) i� it satis�es the following

onditions:

(H1) C

T

2 	,

(H2) if C

1

u C

2

2 	, then fC

1

; C

2

g � 	,

(H3) if C

1

t C

2

2 	, then fC

1

; C

2

g \	 6= ;,

(H4) fA;:Ag 6� 	 for all onept names A 2 l(C;T ),

(H5) if g "2 	, then 9u

1

; u

2

:P =2 	 for all onepts 9u

1

; u

2

:P with u

1

= g or u

2

= g.

We say that f 2 N

aF

is enfored by a Hintikka-set 	 i� either 9f:C 2 	 for some

onept C or f9fg

1

; g

2

:P;9g

1

; fg

2

:Pg \	 6= ; for some g

1

; g

2

2 N

F

and P 2 f<;=g.

A Hintikka-pair (	; �) for (C;T ) onsists of a Hintikka-set 	 for (C;T ) and a set �

of tuples (g

1

; g

2

; P ) with g

1

; g

2

2

G

(C;T ) suh that

(H6) if (g

1

; g

2

; P ) 2 �, then fg

1

"; g

2

"g \	 = ;.

With �

(C;T )

, we denote the set of all Hintikka-pairs for (C;T ). A path u is enfored

by (	; �) i� either u appears in � or f9u; u

0

:P;9u

0

; u:Pg\	 6= ; for some path u

0

and

P 2 f<;=g.

1

Intuitively, eah node � of a (yet to be de�ned) Hintikka-tree T orresponds to a

domain objet a of the orresponding anonial model I. The �rst omponent 	

�

of the Hintikka-pair labelling � is the set of onepts from l(C;T ) satis�ed by a.

The seond omponent �

�

states restritions on the relationship between onrete

suessors of a. If, for example, (g

1

; g

2

; <) 2 �

�

, then we must have g

I

1

(a) < g

I

2

(a).

Note that the restritions in �

�

are independent from onepts 9g

1

; g

2

:P 2 	

�

. As

will beome lear when Hintikka-trees are de�ned, the restritions in �

�

are used to

1

Note: by de�nition of Hintikka-pairs, the path u has length 1 if it appears in �, and, sine all

onepts are in path normal form, u has length 1 or 2 if f9u; u

0

:P; 9u

0

; u:Pg \ 	 6= ; for some u

0

and P .
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ensure that the onstraint graph indued by the Hintikka-tree T , whih desribes the

onrete part of the model I, does not ontain a <-yle, i.e., that it is satis�able.

This indued onstraint graph an be thought of as the union of smaller onstraint

graphs, eah one being desribed by a Hintikka-pair labelling a node in T . These

pair-graphs are de�ned next.

De�nition 15 (Pair-graph). Let C be a onept, T a TBox, and p = (	; �) a

Hintikka-pair for (C;T ). The pair-graph G(p) = (V;E) of p is a onstraint graph

de�ned as follows:

1. V is the set of paths enfored by p

2. E = � [ f(u

1

; u

2

; P ) j 9u

1

; u

2

:P 2 	g.

An edge extension of G(p) is a set E

0

� V �V �f<;=g suh that for all fg

1

; fg

2

2 V ,

we have either (fg

2

; fg

1

; <) 2 E

0

or (fg

1

; fg

2

; P ) 2 E

0

for some P 2 f<;=g. If E

0

is

an edge extension of G(p), then the graph (V;E [E

0

) is a ompletion of G(p).

Note that, sine all onepts are in path normal form and due to the de�nitions of

Hintikka-pairs and pair-graphs, we have E

0

\ E = ; for every edge extension E

0

of

a pair-graph (V;E). As all onstraint graphs, we assume pair-graphs to be equality

losed.

We briey omment on the onnetion of ompletions and the �-omponent of

Hintikka-pairs. Let � and � be nodes in a Hintikka-tree T and let a and b be the

orresponding domain objets in the orresponding model I. Edges in Hintikka-trees

represent role-relationships, i.e., if � is suessor of � in T , then there exists an R 2 N

R

suh that (a; b) 2 R

I

. Assume � is suessor of � and the edge between � and � rep-

resents relationship via the abstrat feature f , i.e., we have f

I

(a) = b. The seond

omponent �

�

of the Hintikka-pair labelling � �xes the relationships between all on-

rete suessors of b that \a talks about". For example, if (9fg

1

; g

2

:=) 2 	

�

and

(9fg

3

; g

2

: <) 2 	

�

, where 	

�

is the �rsto omponent of the Hintikka-pair labelling �,

then \a talks about" the onrete g

1

-suessor and the onrete g

3

-suessor of b.

Hene, �

�

either ontains (g

3

; g

1

; <) or (g

1

; g

3

; P ) for some P 2 f<;=g. This is for-

malized by demanding that the pair-graph G(T (�)) of the Hintikka-pair labelling �

together with all the edges from the �-omponents of the suessors of � are a omple-

tion of G(T (�)). Moreover, this ompletion has to be satis�able, whih is neessary

to ensure that the onstraint graph indued by T does not ontain a <-yle. An ap-

propriate way of thinking about the �-omponents is as follows: at �, a ompletion of

G(T (�)) is \guessed". The additional edges are then \reorded" in the �-omponents

of the suessor-nodes of �. We now de�ne Hintikka-trees formally.

De�nition 16 (Hintikka-tree). Let C be a onept, T be a TBox, k the number

of existential subonepts in l(C;T ), and ` be the number of abstrat features in

l(C;T ). A 1 + k + `-tuple of Hintikka-pairs (p

0

; : : : ; p

k+`

) with p

i

= (	

i

; �

i

) and

G(p

0

) = (V;E) is alled mathing i�

(H7) if 9R:D 2 	

0

and

E

(C;T ; i) = 9R:D, then D 2 	

i
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(H8) if f9R:D;8R:Eg � 	

0

and

E

(C;T ; i) = 9R:D, then E 2 	

i

(H9) if 9f:D 2 	

0

and

F

(C;T ; i) = f , then D 2 	

k+i

.

(H10) if f is enfored by 	

0

,

F

(C;T ; i) = f , and 8f:D 2 	

0

, then D 2 	

k+i

.

(H11) the onstraint graph (V;E [E

0

), where

E

0

=

[

1�i�`

f(fg

1

; fg

2

; P ) j F(C;T ; i) = f; (g

1

; g

2

; P ) 2 �

k+i

g

is a satis�able ompletion of G(p

0

).

A k + `-ary �

(C;T )

-tree T is a Hintikka-tree for (C;T ) i� T (�) is a Hintikka-pair for

(C;T ) for eah node � in T , and T satis�es the following onditions:

(H12) C 2 	

�

, where T (�) = (	

�

; �

�

),

(H13) for all � 2 f1; : : : ; k + `g

�

, the tuple (T (�); T (�1); : : : ; T (�j)) with j = k + `

is mathing.

For a Hintikka-tree T and node � 2 f1; : : : ; k+ `g

�

with T (�) = (	; �), we use T

�

(�)

to denote 	 and T

�

(�) to denote �. Moreover, if G(�) = (V;E), we use pl(T; �) to

denote the onstraint graph (V;E [E

0

) as de�ned in (H11).

2

Whereas most properties of Hintikka-trees deal with onepts, roles, and abstrat

features and are hardly surprising, (H11) ensures that onstraint graphs indued by

Hintikka-trees ontain no <-yle. By \guessing" a ompletion as explained above,

possible <-yles are antiipated and an be deteted loally, i.e., it then suÆes to

hek that the ompletions pl(T; �) are satis�able as demanded by (H11). Indeed, it

is ruial that the yle detetion is done by a loal ondition sine we need to de�ne

an automaton whih aepts exatly Hintikka-trees and automata work loally. It is

worth noting that the loalization of yle detetion as expressed by (H11) ruially

depends on path normal form.

The following two lemmas show that Hintikka-trees are appropriate abstrations

of models. This lemma is entral sine, as we will see, de�ning looping automata

aepting exatly Hintikka-trees is a straightforward task.

Lemma 17. A onept C is satis�able w.r.t. a TBox T if there exists a Hintikka-tree

for (C;T ).

Proof Let C be a onept, T a TBox, and k and ` as in De�nition 16. Moreover, let

T be a Hintikka-tree for (C;T ). We de�ne an interpretation I = (�

I

; �

I

) as follows:

�

I

= f1; : : : ; k + `g

�

A

I

= f� j A 2 T

�

(�)g for all A 2 C

N

R

I

= f(�; �) j � = �i and E(C;T ; i) = 9R:E 2 T

�

(�)g for all R 2 N

R

nN

aF

f

I

= f(�; �) j � = �i, F(C;T ; i� k) = f; and f is enfored by T

�

(�)g

for all f 2 N

aF

2

more preisely its equality losure.
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It remains to de�ne the interpretation of onrete features. We de�ne an (in�nite)

onstraint graph G(T ) indued by T , show that G(T ) is satis�able, and de�ne the

interpretation of onrete features from a solution of G(T ). The nodes of G(T ) have

the form �ju, where � is a node in T and u is a path in C or T . More preisely, G(T )

is de�ned as (V;E), where

1. V = f�ju j � 2 f1; : : : ; k + `g

�

; u appears in C or T g

2. E =

[

�2f1;:::;k+`g

�

f(�ju; �ju

0

; P ) j (u; u

0

; P ) 2 pl(T; �)g

[ f(�jfg); �ijg;=) j F(C;T ; i� k) = f; fg is a node in pl(T; �)g

As always, we assume that G(T ) is equality losed. It is not hard to see that G(T )

really is a onstraint graph, i.e., the node set of G(T ) is ountable. Next, we show the

following laim:

Claim 1: G(T ) is satis�able.

Proof: By Theorem 10, it suÆes to show that G(T ) ontains no <-yle. Assume to

the ontrary that G(T ) ontains a <-yle and that O = �

0

ju

0

; : : : ; �

n�1

ju

n�1

is the

<-yle in G(T ) with minimal length. Fix a t with 0 � t < n suh that

for eah i with 0 � i < n and eah � 2 f1; : : : ; k + `g

+

, we have �

i

6= �

t

�; (�)

i.e., there exist no �

i

in O suh that �

t

is a true pre�x of �

i

(suh a t exists sine O

is of �nite length). Sine O is a <-yle, there exists an s with 0 � s < n suh that

(�

s

ju

s

; �

s�

n

1

ju

s�

n

1

; <) 2 E. We make a ase distintion and derive a ontradition

in either ase.

� �

s

6= �

t

. De�ne a sequene of nodes O

0

from O by deleting all nodes �

i

ju

i

with

�

i

= �

t

. O

0

is non-empty sine �

s

6= �

t

. We show that O

0

is a <-yle in G(T )

whih is a ontradition to the minimality of O. Let O

0

= �

0

0

ju

0

0

; : : : ; �

0

m�1

ju

0

m�1

.

By de�nition of G(T ), the fat that (�

s

ju

s

; �

s�

n

1

ju

s�

n

1

; <) 2 E implies �

s�

n

1

=

�

s

. Sine �

s

6= �

t

, �

s

ju

s

and �

s�

n

1

ju

s�

n

1

are in O

0

and it remains to show that

O

0

is a yle inG(T ), i.e., for all i with 0 � i < m, we have (�

0

i

ju

0

i

; �

0

i�

m

1

ju

0

i�

m

1

; P ) 2

E for some P 2 f<;=g.

Let �

0

i

ju

0

i

and �

0

i�

m

1

ju

0

i�

m

1

be nodes in O

0

. If these two nodes are already neigh-

bor nodes in O, we are obviously done. Hene, assume that this is not the ase.

By onstrution of O

0

, this implies the existene of a path

�

0

i

ju

0

i

; �

t

ju

�

1

; : : : ; �

t

ju

�

x

; �

0

i�

m

1

ju

0

i�

m

1

inG(T ) whih is a subpath of O.

3

Sine �

0

i

6= �

t

and �

0

i�

m

1

6= �

t

, by onstrution

of G(T ) and by (�), this implies that

1. there exists a � 2 f1; : : : ; k + `g

�

suh that �

0

i

= �

0

i�

m

1

= �,

2. there exists an f 2 N

aF

suh that �

t

= �j where F(C;T ; j � k) = f ,

3

Where \subpath" is de�ned in the obvious way.
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3. u

0

i

= fg, u

�

1

= g, u

�

x

= g

0

, and u

0

i�

m

1

= fg

0

for some g; g

0

2 G(C;T ), and

4. (�jfg; �jjg;=) 2 E and (�jfg

0

; �jjg

0

;=) 2 E.

By de�nition of G(T ) and by Point 4, both fg and fg

0

are nodes in pl(T; �) =

(V

0

; E

0

). By de�nition of pl, this implies that either

(a) (fg

0

; fg;<) 2 E

0

or

(b) (fg; fg

0

; P ) 2 E

0

for some P 2 f<;=g.

Together with Point 1 and 3 and the de�nition of G(T ), (b) obviously implies

(�

0

i

ju

0

i

; �

0

i�

m

1

ju

0

i�

m

1

; P ) 2 E and we are done. Moreover, in the following we

show that ase (a) annot our.

Let pl(�j) = (V

00

; E

00

). In ase (a), we have (g

0

; g;<) 2 E

00

: Let G(�) =

(V

0

�

; E

0

�

); by de�nition of pair-graphs and sine all onepts are in path normal

form, (fg

0

; fg;<) 2 E

0

implies (fg

0

; fg;<) 2 E

0

n E

0

�

; by de�nition of pl and

by Point 2, this means that (g

0

; g;<) 2 T

�

(�). Hene, (g

0

; g;<) 2 E

00

. By

de�nition of G(T ) and Point 1 and 3, (g

0

; g;<) 2 E

00

implies that we have

(�

t

ju

�

x

; �

t

ju

�

1

; <) 2 E. Hene, the path �

t

ju

�

1

; : : : ; �

t

ju

�

x

is a <-yle in G(T )

whih ontradits the minimality of O sine this path is a true subpath of O.

� �

s

= �

t

. De�ne a sequene of nodes O

0

from O by deleting all nodes �

i

ju

i

with

�

i

6= �

t

. O

0

is non-empty sine �

s

= �

t

. We show that O

0

is a <-yle in G(T )

whih is a ontradition to the minimality of O. Let O

0

= �

t

ju

0

0

; : : : ; �

t

ju

0

m�1

.

By de�nition of G(T ), the fat that (�

s

ju

s

; �

s�

n

1

ju

s�

n

1

; <) 2 E implies �

s�

n

1

=

�

s

= �

t

. Hene, it remains to show that O

0

is a yle in G(T ), i.e., that, for all

i with 0 � i < m, we have (�

t

ju

0

i

; �

t

ju

0

i�

m

1

; P ) 2 E for some P 2 f<;=g.

Let �

t

ju

0

i

and �

t

ju

0

i�

m

1

be nodes in O

0

. If these two nodes are already neighbor

nodes in O, we are obviously done. Hene, assume that this is not the ase. By

onstrution of O

0

, this implies the existene of a subpath

�

t

ju

0

i

; �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

; �

t

ju

0

i�

m

1

of O in G(T ) with �

�

i

6= �

t

for 1 � i � x. By onstrution of G(T ) and by (�),

this implies that

1. there exists a � 2 f1; : : : ; k + `g

�

suh that �

�

1

= �

�

x

= �,

2. there exists an f 2 N

aF

suh that �

t

= �j where F(C;T ; j � k) = f ,

3. u

0

i

= g, u

�

1

= fg, u

�

x

= fg

0

, and u

0

i�

m

1

= g

0

for some g; g

0

2 G(C;T ), and

4. (�jjg; �jfg;=) 2 E and (�jfg

0

; �jjg

0

;=) 2 E.

By de�nition of G(T ) and by Point 4, both fg and fg

0

are nodes in pl(T; �) =

(V

0

; E

0

).

4

By de�nition of pl, this implies that either

(a) (fg

0

; fg;<) 2 E

0

or

4

Here we exploit that G(T ) is equality losed.
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(b) (fg; fg

0

; P ) 2 E

0

for some P 2 f<;=g.

Together with Point 1 and 3 and the de�nition of G(T ), (a) obviously implies

(�

�

x

ju

�

x

; �

�

1

ju

�

1

; <) 2 E. Hene, the path �

�

1

ju

�

1

; : : : ; �

�

x

ju

�

x

is a <-yle in G(T )

whih ontradits the minimality of O sine this path is a true subpath of O.

Hene, let us assume that (b) holds. Moreover, let pl(�j) = (V

00

; E

00

). We have

(g; g

0

; <) 2 E

00

: Let G(�) = (V

0

�

; E

0

�

); by de�nition of pair-graphs and sine all

onepts are in path normal form, (fg; fg

0

; P ) 2 E

0

implies (fg; fg

0

; P ) 2 E

0

nE

0

�

;

by de�nition of pl and by Point 2, this means that (g; g

0

; P ) 2 T

�

(�). Hene,

(g; g

0

; P ) 2 E

00

. By de�nition of G(T ) and Point 1 and 3, (g; g

0

; P ) 2 E

00

implies

that we have (�

t

ju

0

i

; �

t

ju

0

i�

m

1

; P ) 2 E what was to be shown.

This �nishes the proof of Claim 1. We may now de�ne the interpretation of onrete

features. Let Æ be a solution for G(T ). We set

g

I

= f(�; x) j g is enfored by T (�) and Æ(�jg) = xg for all g 2 N

F

:

To show that there exists an a 2 �

I

suh that a 2 C

I

, we prove the following laim:

Claim 2: D 2 T

�

(�) implies � 2 D

I

for all � 2 �

I

and D 2 l(C;T ).

Proof: The laim is proved by indution over the struture of D. The indution start,

i.e., the ase that D is a onept name, is an immediate onsequene of the de�nition

of I. For the indution step, we make a ase distintion aording to the topmost

operator in D. Assume D 2 T

�

(�).

� D = :E. Sine C is in NNF and by de�nition of l(), D is in NNF. Hene, E

is a onept name. By de�nition of I and sine T (�) is a Hintikka-set and thus

satis�es (H4), we have � 2 (:E)

I

.

� D = C

1

uC

2

orD = C

1

tC

2

. Straightforward by (H2) and (H3) of Hintikka-sets

and by indution hypothesis.

� D = 9R:E with R 2 N

R

n N

aF

. By de�nition of R

I

, we have (�; �) 2 R

I

for

� = �i and

E

(C;T ; i) = 9R:E. By (H7), we have E 2 T

�

(�), and, by indution,

� 2 E

I

.

� D = 9f:E with f 2 N

aF

. Hene, f is enfored by T

�

(�). By de�nition of f

I

,

we have f

I

(�) = � for � = �i and

F

(C;T ; i � k) = f . By (H9), we have

E 2 T

�

(�), and, by indution, � 2 E

I

.

� D = 8R:E with R 2 N

R

n N

aF

. Let (�; �) 2 R

I

. By de�nition of R

I

, there

exists an i suh that

E

(C;T ; i) = 9R:D 2 T

�

(�) and � = �i. By (H8), we have

E 2 T

�

(�), and, by indution, � 2 E

I

. Sine this holds independently of the

hoie of �, we have � 2 (8R:E)

I

.

� D = 8f:E with f 2 N

aF

. Let f

I

(�) = �. By de�nition of f

I

, we have � = �i,

F

(C;T ; i�k) = f , and f is enfored by T

�

(�). By (H10), we have E 2 T

�

(�),

and, by indution, � 2 E

I

.
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� D = 9u

1

; u

2

:P . Let G(T ) = (V;E) and pl(T; �) = (V

0

; E

0

). By de�nition of

pair-graphs and pl(), we have (u

1

; u

2

; P ) 2 E

0

. We show that there exist nodes

n

1

; n

2

2 V suh that (n

1

; n

2

; P ) 2 E, u

I

1

(�) = Æ(n

1

), and u

I

2

(�) = Æ(n

2

). Sine

Æ is a solution for G(T ), this implies u

I

1

(�)Pu

I

2

(�).

For i 2 f1; 2g, set n

i

:= �ju

i

. By de�nition of G(T ) and sine (u

1

; u

2

; P ) 2 E

0

,

we have (n

1

; n

2

; P ) 2 E. Fix an i 2 f1; 2g. We need to show that u

I

i

(�) = Æ(n

i

).

In the ase u

i

= g, this is obvious by de�nition of g

I

(sine g is obviously

enfored by T (�)).

Hene let u

i

= fg and F(C;T ; j � k) = f . Sine fg is a node in pl(T; �), we

have (�jfg; �jjg;=) 2 E. Hene, Æ(�jjg) = Æ(�jfg). By de�nition of f

I

and

sine f is learly enfored by T

�

(�), we have f

I

(�) = �j. By de�nition of pl

and of pair-graphs, fg 2 V

0

implies that g appears in T

�

(�j): Sine pl(T; �)

is both a ompletion of G(�) and satis�able, fg 2 V

0

implies (fg; fg;=) 2 E

0

;

due to the de�nition of pair graphs and sine all onepts are in path normal

form, (fg; fg;=) is not an edge of G(�); hene, by de�nition of pl and sine

F(C;T ; j � k) = f , we must have (g; g;=) 2 T

�

(�j), i.e., g appears in T

�

(�j).

Sine g appears in T

�

(�j) and thus enfored by T (�j), we have g

I

(�j) = Æ(�jjg)

by de�nition of g

I

. Summing up, (fg)

I

(�) = Æ(�jjg) = Æ(�jfg).

� D = g". If g

I

(�) is de�ned, then g is enfored by T (�). We show that this

implies g" =2 T

�

(�). If g is enfored by T (�), then either (i) g appears in T

�

(�)

or (ii) f9g; u

0

:P;9u

0

; g:Pg \ T

�

(�) 6= ; for some path u

0

and P 2 f<;=g. In

ase (i), (H6) yields g" =2 T

�

(�). In ase (ii), (H5) yields the same result.

This ompletes the proof of the laim. Sine C 2 T

�

(�) by (H12) and, for all � 2 �

I

,

we have C

T

2 T

�

(�) by (H1), it is an immediate onsequene of the semantis and

Claim 2 that I is a model of C w.r.t. T . ❏

Lemma 18. A onept C is satis�able w.r.t. a TBox T only if there exists a Hintikka-

tree for (C;T ).

Proof Let C be a onept, T a TBox, and k and ` as in De�nition 16. Moreover,

let I = (�

I

; �

I

) be a model for C w.r.t. T , i.e., there exists an a

0

2 �

I

suh that

a

0

2 C

I

and D

I

� E

I

for all D v E 2 T . We indutively de�ne a Hintikka-tree T

for (C;T ), i.e., a k + `-ary �

(C;T )

-tree that satis�es (H12) and (H13). Along with

T , we de�ne a mapping � from f1; : : : ; k + `g

�

to �

I

in suh a way that

T

�

(�) = fD 2 l(C;T ) j �(�) 2 D

I

g (�)

For the indution start, set

�(�) := a

0

; T

�

(�) := fD 2 l(C;T ) j a

0

2 D

I

g; and T

�

(�) := ;:

Now for the indution step. Let � 2 f1; : : : ; k+ `g

�

suh that �(�) is already de�ned,

and let i 2 f1; : : : ; k + `g. We make a ase distintion as follows:
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1.

E

(C;T ; i) = 9R:D 2 T

�

(�). By (�), we have �(�) 2 (9R:D)

I

. By the semantis,

there exists some b 2 �

I

suh that (�(�); b) 2 R

I

and b 2 D

I

. Set �(�i) := b,

T

�

(�

i

) := fE 2 l(C;T ) j b 2 E

I

g, and T

�

(�i) := ;.

2.

F

(C;T ; i � k) = f , and f is enfored by �(�). By (�), the semantis, and the

de�nition of \enfored", f

I

(�(�)) is de�ned. Let f

I

(�(�)) = b. Set �(�i) := b,

T

�

(�i) := fE 2 l(C;T ) j b 2 E

I

g, and

T

�

(�i) := f(g

1

; g

2

; P ) j fg

1

and fg

2

are enfored by T (�) and g

I

1

(b)Pg

I

2

(b)g

3. �, i do not math the above ases. Then set �(�i) := �(�) and T (�i) := T (�).

It is readily heked that the k + `-ary tree T just de�ned does satisfy (�). We need

to prove that T is a Hintikka-tree for (C;T ). From (�) together with the semantis

of onepts and TBoxes, it is lear that T

�

(�) is a Hintikka-set for (C;T ) for eah

� 2 f1; : : : ; k+`g

�

. Let us show exemplarily that (H1) holds. Assume to the ontrary

that there exists an � 2 f1; : : : ; k + `g

�

suh that C

T

=2 T

�

(�). Sine C

T

2 l(C;T )

and by (�), we have �(�) =2 (C

T

)

I

, and, by the semantis, �(�) 2 (�C

T

)

I

. By

de�nition of C

T

and semantis, this implies the existene of D v E 2 T suh that

�(�) 2 (:nnf(:D t E))

I

, i.e., �(�) 2 D

I

and �(�) =2 E

I

. Hene, we do not have

D

I

� E

I

and obtain a ontradition to the fat that I is a model for T .

We now show that T (�) is a Hintikka-pair for eah node �, i.e., that (H6) is

satis�ed. The proof is by ontradition. Assume that there exists an � 2 f1; : : : ; k+`g

�

suh that (g

1

; g

2

; P ) 2 T

�

(�) and g

j

" 2 T

�

(�) where j 2 f1; 2g. Sine (g

1

; g

2

; P ) 2

T

�

(�), g

I

j

(�(�)) is de�ned by de�nition of T

�

. Sine g

j

" 2 T

�

(�) and by (�), g

I

j

(�(�))

is unde�ned, whih is a ontradition.

It remains to show that T satis�es (H12) and (H13), where the latter amounts

to showing that, for eah � 2 f1; : : : ; k+ `g

�

, the tuple (T (�); T (�1); : : : ; T (�j)) with

j = k + ` satis�es (H7) to (H11).

(H7) Let 9R:D 2 T

�

(�) and

E

(C;T ; i) = 9R:D. By de�nition of � (Case 1), we have

�(�i) = b for some b 2 �

I

with (�(�); b) 2 R

I

and b 2 D

I

. By (�), we thus

have D 2 T

�

(�i).

(H8) Let f9R:D;8R:Eg � T

�

(�) and

E

(C;T ; i) = 9R:D. By de�nition of � (Case 1),

we have �(�i) = b for some b 2 �

I

with (�(�); b) 2 R

I

. By (�), we have

�(�) 2 (8R:E)

I

. The semantis implies b 2 E

I

, and, by (�), we thus have

E 2 T

�

(�i).

(H9) Let 9f:D 2 T

�

(�) and

F

(C;T ; i) = f . Hene, f is enfored by T (�). By

de�nition of � (Case 2), we have �(�j) = b for b = f

I

(�(�)) and j = k+ i. The

semantis implies b 2 D

I

, and, by (�), we thus have D 2 T

�

(�j).

(H10) Let f be enfored by T (�),

F

(C;T ; i) = f , and 8f:D 2 T

�

(�). By de�nition

of � (Case 2), we have �(�j) = b for b = f

I

(�(�)) and j = k+ i. The semantis

implies b 2 D

I

, and, by (�), we thus have D 2 T

�

(�j).
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(H11) Let G(T (�)) = (V;E) and pl(T; �) = (V;E [ E

0

). To prove that (H11) is

satis�ed, we show that

1. E

0

is an edge extension of G(T (�)), i.e., (V;E [ E

0

) is a ompletion of

G(T (�)) and

2. (V;E [E

0

) is satis�able.

We �rst prove Point 1. It needs to be shown that, for eah fg

1

; fg

2

2 V ,

either (fg

2

; fg

1

; <) 2 E

0

or (fg

1

; fg

2

; P ) 2 E

0

for some P 2 f<;=g. By

de�nition of G(T (�)), fg

1

and fg

2

are enfored by T (�). Sine T

�

(�) may

only ontain paths of length 1, we have f9fg

1

; u:P

0

;9u; fg

1

:P

0

g \ T

�

(�) 6= ;

for some path u and P

0

2 f<;=g and similarly for fg

2

. By (�), this implies

that f

I

(g

I

1

(�(�))) and f

I

(g

I

2

(�(�))) are de�ned. By de�nition of T (Case 2)

and sine f is obviously enfored by T (�), we have f

I

(�(�)) = �(�i) with

F(C;T ; i � k) = f . Hene, g

I

1

(�(�i)) and g

I

2

(�(�i)) are de�ned. By semantis,

we either have (i) g

I

2

(�(�i)) < g

I

1

(�(�i)) or (ii) g

I

1

(�(�i))Pg

I

2

(�(�i)) for some

P 2 f<;=g. By de�nition of T

�

, (i) implies (g

2

; g

1

; <) 2 T

�

(�i) and (ii) implies

(g

1

; g

2

; P ) 2 T

�

(�i). Hene, by de�nition of E

0

, we have either (fg

2

; fg

1

; <) 2 E

0

or (fg

1

; fg

2

; P ) 2 E

0

.

We now prove point 2. De�ne a mapping Æ from V to Q as follows: Æ(u) :=

u

I

(�(�)). This mapping is well-de�ned, whih an be seen as follows. Fix a

u 2 V . Sine u is enfored by T (�), either

(i) u ours in T

�

(�) or

(ii) f9u; u

0

:P;9u

0

; u:Pg \ T

�

(�) 6= ; for some path u

0

and P 2 f<;=g.

In Case (i), we have u = g for some g 2 N

F

. By de�nition of T , there exists a

predeessor � of � in T suh that � = �i, F(C;T ; i� k) = f for some f 2 N

aF

,

and fg is enfored by T (�). Sine T

�

(�) ontains only paths of length 1, we

have f9fg; u:P;9u; fg:Pg\T

�

(�) 6= ; for some path u and P 2 f<;=g. By (�),

g

I

(f

I

(�(�))) is de�ned. Sine, by de�nition of T , we have f

I

(�(�))) = �(�),

g

I

(�(�)) is de�ned. In Case (ii), de�nedness of u

I

(�(�)) follows from (�) and

the semantis.

We show that Æ is a solution for (V;E[E

0

) by distinguishing the following ases:

1. (u

1

; u

2

; P ) 2 E and (u

1

; u

2

; P ) 2 T

�

(�). Then there exist g

1

; g

2

2 N

F

suh

that u

1

= g

1

and u

2

= g

2

. By de�nition of T

�

, we have g

I

1

(�(�))Pg

I

2

(�(�)),

and, by de�nition of Æ, Æ(g

1

)PÆ(g

2

).

5

2. (u

1

; u

2

; P ) 2 E and 9u

1

; u

2

:P 2 T

�

(�). By (�), we have �(�) 2 (9u

1

; u

2

:P )

I

.

Hene, u

I

1

(�(�))Pu

I

2

(�(�)). By de�nition of Æ, we obtain Æ(u

1

)PÆ(u

2

).

3. (u

1

; u

2

; P ) 2 E

0

. By de�nition of E

0

, we have u

1

= fg

1

, u

2

= fg

2

, and

(g

1

; g

2

; P ) 2 T

�

(�i) where g

1

; g

2

2 N

F

and F(C;T ; k � i) = f . By de�-

nition of T

�

, this implies that fg

1

and fg

2

are enfored by T (�) and that

5

We need not onsider the ase \(u

1

; u

2

;=) 2 E and (u

2

; u

1

:=) 2 T

�

(�)" sine onstraint graphs

are assumed to be equality losed. A similar note applies to Case 2.
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g

I

1

(�(�i))Pg

I

2

(�(�i)). From this and the de�nition of T (Case 2), it follows

that f

I

(�(�)) = �(�i). We onlude Æ(u

1

)PÆ(u

2

).

(H12) By de�nition of T (indution start) and sine a

0

2 C

I

by assumption.

❏

Note that Lemma 18 together with the proof of Lemma 17 implies that the PNF

fragment of T DL has the tree model property: By Lemma 18, the satis�ability of

a onept C w.r.t. a TBox T implies the existene of a Hintikka-tree T for (C;T ).

Using the onstrution from the proof of Lemma 17, we an onstrut a anonial

model from T . It is not hard to see that this anonial model is a tree model in the

sense of Setion 2. In view of Lemma 13 and its proof, it is not hard to show that

T DL also has the tree model property.

4.4 De�ning looping automata

To prove deidability, it remains to de�ne a looping automaton A

(C;T )

for eah onept

C and TBox T suh that A

(C;T )

aepts exatly the Hintikka-trees for (C;T ). Using

the notion of mathing tuples of Hintikka-pairs, this is rather straightforward.

De�nition 19. Let C be a onept, T be a TBox, k the number of existential sub-

onepts in l(C;T ), and ` be the number of abstrat features in l(C;T ). The looping

automaton A

(C;T )

= (Q;�

(C;T )

;�; I) is de�ned as follows:

� Q = �

(C;T )

� I = f(	; �) 2 Q j C 2 	g.

� ((	; �); (	

0

; �

0

); (	

1

; �

1

); : : : ; (	

k

; �

k+`

)) 2 � i�

(	; �) = (	

0

; �

0

) and

((	; �); (	

1

; �

1

); : : : ; (	

k

; �

k+`

)) is mathing.

As a onsequene of the following lemma and Lemmas 17 and 18, we an redue

satis�ability of onepts w.r.t. TBoxes (in PNF) to the emptiness of the language

aepted by looping automata.

Lemma 20. T is a Hintikka-tree for (C;T ) i� T 2 L(A

C;T

).

Proof Let C be a onept, T a TBox, and k, `, and A

(C;T )

as in De�nition 19.

\)" It is straightforward to hek that the funtion r de�ned by r(�) := T (�) is

a run of A

C;T

on T : (i) By de�nition of Hintikka-trees and A

C;T

, r(�) 2 Q for all

� 2 f1; : : : ; k+ `g

�

; (ii) by (H12) and de�nition of I, we have r(�) 2 I; (iii) by (H13)

and by de�nition of r and of �, we have (r(�); T (�); r(�

1

); : : : ; r(�

k

)) 2 �.
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\(" Let r be a run of A

(C;T )

on T . It is straightforward to show that T is a

Hintikka-tree for (C;T ): (i) by de�nition of runs and of Q, r is a �

(C;T )

-tree; (ii) sine,

by de�nition of runs, r(�) 2 I, (H12) is satis�ed by de�nition of I; and (iii), by

de�nition of runs and of �, (H13) is satis�ed. ❏

It is an immediate onsequene of Lemmas 13, 17, 18, and 20, and the deidability of

the emptiness problem of looping automata

[

27

℄

that satis�ability of T DL-onepts

w.r.t. TBoxes is deidable. However, the presented automata-based algorithm has the

nie property of additionally providing us with a tight omplexity bound.

Theorem 21. Satis�ability and subsumption of T DL-onepts w.r.t. TBoxes are de-

idable in deterministi exponential time.

Proof The lower bound is an immediate onsequene of the fat that ALC with

general TBoxes is ExpTime-hard

[

20

℄

. For the upper bound, we need to show that the

size of A

(C;T )

= (Q;M;�; I) is exponential in the size of C and T (it is then obvious

that A

(C;T )

an be omputed in exponential time).

6

Obviously, the ardinality of

l(C;T ) is linear in the size of C and T . Hene, by de�nition of A

(C;T )

and Hintikka-

pairs, the ardinality of Q and M are exponential in the size of C and T . Again by

de�nition of A

(C;T )

, this implies that the ardinalities of I and � are also exponential

in the size of C and T . Hene, the size of A

(C;T )

is exponential in the size of C and T .

This fat together with Lemmas 13, 17, 18, and 20, and the fat that emptiness of the

language aepted by a looping automaton A

(C;T )

an be tested in time polynomial

in the size of A

(C;T )

[

27

℄

, we have that satis�ability of T DL-onepts w.r.t. TBoxes

is in ExpTime. It remains to remind the reader that subsumption an be redued to

satis�ability. ❏

4.5 Connetion to Tableau Algorithms

We onlude this setion with some remarks on the onnetion of the presented al-

gorithm with so-alled tableau algorithms. This informal disussion assumes some

familiarity with tableau algorithms, see, e.g.,

[

6

℄

for more information on this topi.

As empirial results have shown, tableau algorithms are amenable to optimizations

that allow for eÆient implementations of these algorithms, see, e.g.,

[

11

℄

. To the on-

trary, eÆient implementations of automata-based algorithms like the one presented

in this paper are|as of now|unknown. Hene, it would be interesting to de�ne a

tableau algorithm for T DL. We argue that there exists a lose onnetion between

the results obtained in this paper and ertain diÆulties enountered in orretness

proofs for tableau algorithm for T DL.

Sine T DL admits general TBoxes, a tableau algorithm for T DL would have to

use a tehnique alled bloking. This means that suh an algorithm would not try to

diretly onstrut a model for the input onept but it would try to onstrut a \pre-

model", i.e., a �nite representation of a \real" model. In the orretness proof, the real

model an then be obtained from the pre-model by a tehnique alled unravelling. It

6

When talking of the size of C and T , we refer to the sum of the lengths of C and C

T

.
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is not hard to see that unravelling yields only models that are in some sense periodi.

Unfortunately, it is outside the sope of this paper to give a formal de�nition of

this kind of periodiity (or unravelling itself). Roughly spoken, unravelling yields

an in�nite tree whose paths are built aording to a spei� pattern indued by the

bloking-relationships in the pre-model. The existene of this pattern is what is meant

by \periodi". This implies that a tableau algorithm for T DL does only onstrut

�nite representations of periodi models (and not of arbitrary models).

This is not a problem for most Desription Logis: It is a (usually unnotied)

byprodut of the standard proof tehnique used for showing orretness of DL tableau

algorithms that, for most logis, satis�ability of a onept implies satis�ability in a

periodi model. However, in T DL, this issue annot be treated \impliitly" beause

of the global nature of the \onrete part" of models. Assume that we want to prove

that the existene of a model for a onept C implies that a T DL tableau algorithm

reports satis�able. To do this, we ould, for example, �x a model I for C and use it

to \guide" the appliation of the ompletion rules. We will end up with a pre-model

that indues a model I

0

. As we argued above, this model is periodi and so is its loal

part. To omplete our proof, we need to show that the onrete part of I is idential

to the onrete part of I

0

. But this may not be the ase sine the onrete part of

I may be aperiodi. Hene, we want to hoose a periodi model of I to guide our

ompletion rules whih an only be done safely if we �rst establish a \periodi model

property". Summing up, in the ase of T DL, the things are a little bit di�erent than

usual: The periodi model property is not a byprodut of the orretness proof but

it needs to be proved in advane and is then used in the orretness proof. We laim

that this e�et is not due to the spei� proof tehnique skethed above but rather a

general problem. Unfortunately, it is not at all obvious how a periodi model property

an be established.

Fortunately, the periodi model property is a byprodut of the automata-based

approah presented in this paper: As is, e.g., noted by Thomas

[

25

℄

, there exists a

so-alled \regular" tree in every nonempty B�uhi-reognizable set of trees. Obviously,

the set of Hintikka-trees for a formula C and a TBox T is suh a set. The notion of

regularity of trees is very losely related to the periodiity of models. More preisely,

we onjeture that a proof of the periodi model property ould work as follows: By

Lemma 20, the fat that C is satis�able w.r.t. a TBox T implies that the set of

Hintikka-trees aepted by A

(C;T )

is nonempty. Hene, it ontains a regular tree T . If

we onstrut a model of T as in the proof of Lemma 17, then this model is periodi. We

onlude that the algorithm presented in this paper provides an important building

blok for proving the orretness of tableau algorithms for T DL.

5 Conlusion

In this paper, we presented the temporal Desription Logi T DL that ombines

interval-based reasoning with reasoning about general TBoxes. An automata-based

deision proedure was devised and a tight ExpTime-omplexity bound was obtained.

We demonstrated the usefulness of our logi by giving examples from the appliation
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domain of proess engineering. Sine there exists a very lose onnetion between

T DL and Desription Logis with onrete domains, our results an also be viewed

from a di�erent perspetive: Despite the disouraging results given in

[

15

℄

, we were

able to show that there exist interesting onrete domains for whih reasoning with

general TBoxes is deidable.

There are several perspetives for future work of whih we highlight two rather

interesting ones: First, the presented deision proedure is only valid if a dense strit

linear order is assumed as the underlying temporal struture. For example, the onept

> is satis�able w.r.t. the TBox

T = f> v 9g

1

; g

2

; < u 9g

1

; fg

1

; < u 9fg

2

; g

2

; <g

over the temporal strutures Q and R (with the natural orderings) but not over N.

To see this, note that T indues a onstraint graph as in Figure 6. Hene, it would be

interesting to investigate how the presented algorithm has to be modi�ed for reasoning

with the temporal struture N. We onjeture that a onstraint graph G is satis�able

over N i� there exists an upper bound on the length of <-paths between any two

nodes in G.

7

It is, however, not immediately lear how Hintikka-trees and automata

an be modi�ed to aount for this stronger ondition.

Seond, it would be interesting to extend T DL to make it suitable for reason-

ing about entity relationship (ER) diagrams with temporal integrity onstraints. As

demonstrated by Calvanese et al. in

[

7; 8

℄

, Desription Logis are well-suited for rea-

soning about ER diagrams with integrity onstraints and thus are a valuable tool for

database design. Artale and Franoni propose a temporalization of Calvanese's ap-

proah that an be used for reasoning about temporal ER diagrams

[

3

℄

. They use a

point-based logi and fous on temporal databases, i.e., they admit referene to previ-

ous database states in the ER model. By using an appropriate extension of T DL, one

should be able to apture a di�erent kind of temporal reasoning with ER diagrams,

namely reasoning over ER diagrams with integrity onstraints for databases that store

temporal data. Suh an extension would allow to formulate temporal integrity on-

straints, i.e., integrity onstraints that take into aount the temporal semantis of

the data in the database. For example, a temporal integrity onstraint ould state

that employees birthdays should be before their employment date. But what is an

appropriate extension of T DL for reasoning in this domain? Given the results in

[

7

℄

,

it is lear that we need (unquali�ed) number restritions and inverse roles. For the

temporal aspets, we need a generalized version of the onrete domain onstrutor

9u

1

; u

2

:P that allows quanti�ation over role paths instead of feature paths and has a

universal instead of an existential semantis. An extension of the presented automata-

theoreti deision proedure to this more omplex logi seems possible.
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7

This also implies that G ontains no <-yle.
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