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1 Motivation

Sin
e Modal Logi
s are an extension of Propositional Logi
, they provide Boolean

operators for 
onstru
ting 
omplex formulae. However, most Modal Logi
s do

not admit Boolean operators for 
onstru
ting 
omplex modal parameters to

be used in the box and diamond operators. This asymmetry is not present

in Boolean Modal Logi
s, in whi
h box and diamond quantify over arbitrary

Boolean 
ombinations of atomi
 modal parameters [9℄. Boolean Modal Logi
s

have been 
onsidered in various forms and 
ontexts:

1. \Pure" Boolean Modal Logi
 has been studied in [9℄. Negation and inter-

se
tion of modal parameters o

ur in some variants of Propositional Dynami


Logi
, see, e.g., [7, 16, 22℄.

2. The modal box operator 
an be thought of as expressing ne
essity. More pre-


isely, when employing the usual Kripke Semanti
s, 2' holds at a world w i�

w

0

being a

essible from w implies that ' holds at w

0

. Given this, it is obviously

quite natural to de�ne a symmetri
 operator (sometimes 
alled \window" op-

erator) su
h that ' holds at a world w i� ' holding at a world w

0

implies that

w

0

is a

essible from w. Obviously, the window operator 
an be thought of as

expressing suÆ
ien
y. Logi
s with this operator were investigated from di�erent

viewpoints by, e.g., Humberstone, Gargov et al., and Goranko [17, 10, 13, 14℄.

If negation of modal parameters is available, the window operator 
omes for

free sin
e we 
an write

R

' as [:R℄:'. For other work related to the window

operator see, e.g., [2, 12, 11℄.

3. There are several Des
ription Logi
s that provide \negation of roles" whi
h


orresponds to the negation of modal parameters, see, e.g. [18℄. Union and in-

terse
tion of modal parameters are also 
onsidered in Des
ription Logi
s and

other KR formalisms, as is the window operator [11, 21℄.

Although|as we just argued|logi
s involving Boolean operators on modal
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parameters or the window operator are widely used, to the best of our knowl-

edge, 
omplexity results for this 
lass of logi
s have never been obtained. In this

paper, we 
lose the gap and determine the 
omplexity of the satis�ability and

validity problems for many Boolean Modal Logi
s. In the �rst part of this pa-

per (Se
tions 2 and 3), we investigate the logi
 K

!

(K with a 
ountably in�nite

number of a

essibility relations) enri
hed with negation of modal parameters

and show that the afore mentioned inferen
e problems are ExpTime-
omplete

using an automata-theoreti
 approa
h. We then demonstrate the generality of

our approa
h by extending this result to the logi
 (K

!


 K4

!

)

:

, i.e., to the

fusion of K

!

with K4

!

enri
hed with negation on relations. In the se
ond part

of this paper (Se
tions 4 and 5), we add other Boolean operators on roles. In

doing so, one has the 
hoi
e to either restri
t negation to atomi
 relations or to

allow for full negation of relations.

We give a 
omplete list of 
omplexity results for the logi
s obtained in this

way, the 
entral result being that the 
ombination of (atomi
) negation with

interse
tion yields a logi
 whose inferen
e problems are NExpTime-
omplete.

The lower bound is obtained by a redu
tion of a NExpTime-
omplete variant of

the domino problem. The mentioned result obviously implies that full Boolean

Modal Logi
 K

:;\;[

!

is also NExpTime-
omplete. However, the lower bound


ru
ially depends on the number of relations to be unbounded. Inspired by this

observation, in Se
tion 5, we supplement our result by showing that, for any

�xed �nite number of relations, full Boolean Modal Logi
 is ExpTime-
omplete.

The upper bound is proved by a redu
tion to multi-modalK (with �nitely many

relations) enri
hed with the universal modality.

To 
omplete our investigation, in Se
tion 6 we show that K

!

with union and

interse
tion of roles and without negation is of the same 
omplexity as pureK

!

,

i.e., PSpa
e-
omplete. Summing up, we thus have tight 
omplexity bounds for

K

!

extended with any 
ombination of Boolean operators on roles.

2 Preliminaries

In this se
tion, we de�ne syntax and semanti
s of K

:

!

and dis
uss some model-

and 
omplexity-theoreti
 properties of this logi
.

De�nition 1 Given a 
ountably in�nite set of propositional variables � and

a 
ountably in�nite set of atomi
 modal parameters R

1

; R

2

; : : :, the set of K

:

!

-

formulae is the smallest set that

� 
ontains the propositional variables in �,

� is 
losed under boolean 
onne
tives ^, _, and :, and

� if it 
ontains ', then it also 
ontains hR

i

i', [R

i

℄', h:R

i

i', and [:R

i

℄'

for i � 1.

The set of K

:

!

-modal parameters is the smallest set 
ontaining all atomi
 modal

parameters and their negations (i.e., expressions of the form :R

i

).
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The semanti
s of K

:

!

-formulae is given by Kripke stru
tures

M = hW;�;R

1

;R

2

; : : :i;

whereW is a set of worlds, � is a mapping from the set of propositional variables

into sets of worlds (i.e., for ea
h p 2 �, �(p) is the set of worlds in whi
h p holds),

and R

i

is a binary relation on the worlds W , the so-
alled a

essibility relation

for the atomi
 modal parameter R

i

.

The semanti
s is then given as follows, where, for a K

:

!

-formula ', a Kripke

stru
tureM, and a world w 2W ; the expressionM; w j= ' is read as \' holds

in M in world w".

M; w j= p

i

i� w 2 �(p

i

) for p 2 �

M; w j= '

1

^ '

2

i� M; w j= '

1

and M; w j= '

2

M; w j= '

1

_ '

2

i� M; w j= '

1

or M; w j= '

2

M; w j= :' i� M; w 6j= '

M; w j= hR

i

i' i� there exists w

0

2W with (w;w

0

) 2 R

i

and M; w

0

j= '

M; w j= [R

i

℄' i� for all w

0

2W , if (w;w

0

) 2 R

i

; then M; w

0

j= '

M; w j= h:R

i

i' i� there exists w

0

2W with (w;w

0

) 62 R

i

and M; w

0

j= '

M; w j= [:R

i

℄' i� for all w

0

2W , if (w;w

0

) 62 R

i

; then M; w

0

j= '

A K

:

!

-formula ' is satis�able i� there is a Kripke stru
ture M with a set of

worlds W and a world w 2 W su
h that M; w j= '. Su
h a stru
ture is 
alled

a model of '. Two K

:

!

-formulae ' and  are equivalent (written ' �  ) i�

M; w j= ' () M; w j=  for all Kripke stru
tures M with set of worlds W

and worlds w 2 W . Let R be a modal parameter. We write M; (w;w

0

) j= R

to express that (i) (w;w

0

) 2 R

i

if R is an atomi
 modal parameter R

i

and (ii)

(w;w

0

) =2 R

i

if R = :R

i

for an atomi
 modal parameter R

i

.

▲

Throughout this paper, we denote modal parameters by R and S. For the

sake of brevity, we will often omit the word \modal" when talking about modal

parameters. As usual, we write '!  for :'_ and '$  for ('!  )^( !

'). The semanti
s of the window operator dis
ussed in the introdu
tion 
an

formally be de�ned as follows:

M; w j=

R

i

' i� for all w

0

2 W , if M; w

0

j= '; then (w;w

0

) 2 R

i

Obviously, we have

R

i

' � [:R

i

℄:', and, hen
e, the window operator is avail-

able in K

:

!

.

It is not hard to see that satis�ability ofK

:

!

-formulae is ExpTime-hard and in

NExpTime: (i) satis�ability of K

u

-formulae, whereK

u

is uni-modalK enri
hed

with the universal modality, 
an be redu
ed to the satis�ability of K

:

!

-formulae:

Just repla
e

� every o

urren
e of [u℄' by [R℄' ^ [:R℄' and

� every o

urren
e of hui' by hRi' _ h:Ri'

3



where [u℄ and hui denote the universal modality, and R is an arbitrary atomi


modal parameter. This translation may 
learly lead to an exponential blowup

in the formula. However, in the 
lass of formulae used to prove the ExpTime-

hardness of K

u

[25℄, [u℄ o

urs only on
e, and hui does not o

ur. In this 
ase,

the translation is linear, and, thus, satis�ability of K

:

!

-
on
epts is ExpTime-

hard; (ii) when using the standard translation of modal formulae into �rst order

formulae (see, e.g, [5, 3℄), K

:

!

-formulae are translated to �rst-order formulae

with at most 2 variables. Sin
e L

2

, the two-variable fragment of �rst-order logi
,

is de
idable in NExpTime [15℄, this implies that satis�ability of K

:

!

-formulae

is also in NExpTime. However, these two 
omplexity bounds are obviously not

tight. One main 
ontribution of this paper is to give an ExpTime-algorithm for

the satis�ability of K

:

!

-formulae, thus tightening the 
omplexity bounds.

For devising a satis�ability algorithm, it is interesting to know what kind of

models need to be 
onsidered. In [10℄, it is proved that K

:

!

has the �nite model

property. K

:

!

does not have the tree model property sin
e, e.g., the formula

p^ [:R℄:p has no tree model. However, we will show that there exists a one-to-

one 
orresponden
e between models and so-
alled Hintikka-trees whi
h we then

use to de
ide satis�ability (and thus validity) of K

:

!

-formulae. We do this by

building, for ea
h K

:

!

-formula ', a looping automaton A

'

whi
h a

epts the

empty (tree-) language i� ' is unsatis�able. Hen
e we introdu
e trees, looping

automata, and the language they a

ept here.

De�nition 2 Let M be a set and k � 1. A k-ary M-tree is a mapping

T : f1; : : : ; kg

�

7! M that labels ea
h node � 2 f1; : : : ; kg

�

with T (�) 2 M .

Intuitively, the node �i is the i-th 
hild of �. We use � to denote the empty

word (
orresponding to the root of the tree).

A looping automaton A = (Q;M; I;�) for k-aryM -trees is de�ned by a set

Q of states, an alphabet M , a subset I � Q of initial states, and a transition

relation � � Q�M �Q

k

.

A run of A on an M -tree T is a mapping r : f1; : : : ; kg

�

7! Q with

(r(�); T (�); r(�1); : : : ; r(�k)) 2 �

for ea
h � 2 f1; : : : ; kg

�

:

A looping automaton a

epts all those M -trees for whi
h a run exists, i.e.,

the language L(A) of M -trees a

epted by A is

L(A) = fT j There is a run from A on Tg:

▲

Sin
e looping automata are spe
ial B�u
hi automata, emptiness of their language


an e�e
tively be tested using the well-known (quadrati
) emptiness test for

B�u
hi-automata [26℄. However, for looping tree automata, this algorithm 
an

be spe
ialized into a simpler (linear) one.
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3 Negation of Modal Parameters

We show that satis�ability of K

:

!

-formulae is de
idable in exponential time.

For this purpose, we �rst abstra
t from models of K

:

!

-formulae to Hintikka-

trees, and then show how to 
onstru
t a looping automaton that a

epts exa
tly

Hintikka-trees.

Notation: We assume all formulae to be in negation normal form (NNF), i.e.,

negation o

urs only in front of atomi
 parameters and propositional variables.

Ea
h formula 
an easily be transformed into an equivalent one in NNF by push-

ing negation inwards, employing de Morgan's law and the duality between [R℄

and hRi and between [:R℄ and h:Ri. We use �' to denote the NNF of :'.

Sin
e we treat modalities with negated and unnegated modal parameters

symmetri
ally, we introdu
e the notion

h

�

Ri' =

�

h:Ri' if R is atomi
,

hSi' if R = :S for some atomi
 parameter S

and analogously [

�

R℄'.

Let 
l(') denote the set of ''s subformulae and the NNFs of their negations,

i.e.,


l(') := f j  is a subformula of ' or

 = �� for a subformula � of 'g:

We assume that diamond-formulae hRi in 
l(') are linearly ordered, and

that

D

(i) yields the i-th diamond-formula in 
l(').

De�nition 3 (Hintikka-set and Hintikka-tree)

Let ' be a K

:

!

-formula and k the number of diamond-formulae in 
l(').

A set 	 � 
l(') is a Hintikka-set i� it satis�es the following 
onditions:

(H1) if '

1

^ '

2

2 	, then f'

1

; '

2

g � 	,

(H2) if '

1

_ '

2

2 	, then f'

1

; '

2

g \	 6= ;,

(H3) f ;

�

 g 6� 	 for all K

:

!

-formulae  .

A k-ary 2


l(')

-tree T is a Hintikka-tree for ' i� T (�) is a Hintikka-set for

ea
h node � in T , and T satis�es, for all nodes �; � 2 f1; : : : ; kg

�

, the following


onditions:

(H4) ' 2 T (�),

(H5) if fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and

D

(i) = hRi ,

then f ; �

1

; : : : ; �

m

g � T (�i)

(H6) if

D

(i) 62 T (�), then T (�i) = ;,

(H7) if [R℄ � 2 T (�), then � 2 T (�), �� 2 T (�), or T (�) = ;,
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(H8) if f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�), then  2 T (�).

For (H5), (H7), and (H8), re
all that R denotes atomi
 parameters and also

negations of atomi
 parameters.

Lemma 4 A K

:

!

-formula ' is satis�able i� ' has a Hintikka-tree.

Proof: Let ' be a K

:

!

-formula and let there be k diamond-formulae in 
l(').

\(" Let T be a Hintikka-tree for '. We de�ne a Kripke stru
ture M =

hW;�;R

1

; : : :i as follows:

W = f� 2 f1; : : : ; kg

�

j T (�) 6= ;g

�(p) = f� j p 2 T (�)g for all p 2 �

R

i

= f(�; �) j � = �j and E(j) = hR

i

i 2 T (�)g [

f(�; �) j [:R

i

℄ 2 T (�) and

�

 2 T (�)g

To show that there exists a w 2 W su
h that M; w j= ', we �rst prove the

following 
laim:

Claim:  2 T (�) implies M; � j=  for all � 2W and  2 
l(').

The 
laim is proved by indu
tion over the stru
ture of  . The indu
tion start,

i.e., the 
ase that  is a propositional variable, is an immediate 
onsequen
e

of the de�nition of M. For the indu
tion step, we make a 
ase distin
tion

a

ording to the topmost operator in  . Assume  2 T (�).

�  = :�. Sin
e ' is in NNF (by the de�nition of Hintikka-sets and 
l),

� is a propositional variable. By de�nition of M and sin
e T (�) is a

Hintikka-set and thus satis�es (H3), we have M; � j= :�.

�  = '

1

^ '

2

or  = '

1

_ '

2

. Straightforward by (H1) and (H2) of

Hintikka-sets and by indu
tion hypothesis.

�  = hRi � = E(j) for a j with 1 � j � k. First assume that R = R

i

,

i.e., R is atomi
. By de�nition of R

i

, we have (�; �j) 2 R

i

. By (H5),

hR

i

i � 2 T (�) implies � 2 T (�j). By indu
tion, M; �j j= �, and, hen
e,

M; � j= hR

i

i �.

Now assume that R = :R

i

for an atomi
 parameter R

i

. We show that

(�; �j) =2 R

i

, for, if we have done this, M; � j= hRi � follows as in the

previous 
ase (where R is atomi
). Assume to the 
ontrary that (�; �j) 2

R

i

. Then, by de�nition of R

i

, we have either

1. E(j) = hR

i

i �

0

2 T (�), or

2. [:R

i

℄ �

0

2 T (�) and ��

0

2 T (�j)
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where �

0

2 
l('). In the �rst 
ase, we have a 
ontradi
tion to the assump-

tion E(j) = h:R

i

i �. In the se
ond 
ase, we have fh:R

i

i �; [:R

i

℄ �

0

g �

T (�) whi
h, by (H5), implies f�; �

0

g � T (�j). Sin
e we also know that

��

0

2 T (�j), we obtain a 
ontradi
tion to (H3) of Hintikka-sets and 
on-


lude that (�; �j) =2 R

i

.

�  = [R℄ �. First assume that R = R

i

, i.e., R is atomi
, and �x a � su
h

that (�; �) 2 R

i

. By de�nition of R

i

, we have to distinguish two 
ases:

1. � = �j and E(j) = hR

i

i �

0

2 T (�), or

2. [:R

i

℄ �

0

2 T (�) and ��

0

2 T (�)

In the �rst 
ase, we have fhR

i

i �

0

; [R

i

℄ �g � T (�) whi
h, by (H5), implies

f�; �

0

g � T (�j). By indu
tion, we obtain M; � j= �. In the se
ond 
ase,

we have f[R

i

℄ �; [:R

i

℄ �

0

g � T (�) and ��

0

2 T (�). By (H8), we have

� 2 T (�), and, by indu
tion, M; � j= �. Sin
e this holds independently of

the 
hoi
e of �, we 
on
lude M; � j= [R

i

℄ �.

Now assume that R = :R

i

for an atomi
 parameter R

i

. Fix a � su
h that

(�; �) =2 R

i

. Sin
e � 2 W , we have that T (�) 6= ;. Hen
e, by (H7), we

have � 2 T (�) or �� 2 T (�). However, �� 2 T (�) would imply (�; �) 2 R

i

by de�nition of R

i

, whi
h is a 
ontradi
tion to our 
hoi
e of �. Hen
e we

dedu
e � 2 T (�). By indu
tion, we obtain M; � j= �. Sin
e this holds

independently of the 
hoi
e of �, we 
on
lude M; � j= [:R

i

℄ �.

This 
ompletes the proof of the 
laim. Sin
e ' 2 T (�) by (H4), it is an imme-

diate 
onsequen
e of the 
laim that M is a model of '.

\)" LetM = hW;�;R

1

; : : :i be a model of ', i.e., there exists a w

0

2 W with

M; w

0

j= '. We de�ne a Hintikka-tree for ' (i.e., a Hintikka-set label T (�) for

ea
h � 2 f1; : : : ; kg

�

) that satis�es (H4) to (H8). To do this, we indu
tively

de�ne a mapping � from f1; : : : ; kg

�

to W [ f?g in su
h a way that

T (�) =

�

f 2 
l(') j M; �(�) j=  g if �(�) 6= ?

; otherwise

(�)

For the indu
tion start, set

�(�) := w

0

T (�) := f 2 
l(') j M; w

0

j=  g

Now for the indu
tion step. Let � 2 f1; : : : ; kg

�

su
h that �(�) is already

de�ned, and let i 2 f1; : : : ; kg. We make a 
ase distin
tion as follows:

1. �(�) 6= ? and E(i) = hRi 2 T (�). By (�), we have M; �(�) j= hRi 

whi
h implies the existen
e of a world w 2W su
h thatM; (�(�); w) j= R

and M; w j=  . Choose su
h a w and de�ne �(�i) := w and T (�i) :=

f� 2 
l(') j M; w j= �g.

7



2. if �; i do not mat
h the above 
ase, set �(�i) = ? and T (�i) = ;.

By de�nition, T and � satisfy (�). We need to prove that the k-ary 2


l(')

-tree

T just de�ned is a Hintikka-tree for '. From the semanti
s of K

:

!

and the

de�nition of 
l, it is 
lear that T (�) is a Hintikka-set for ea
h � 2 f1; : : : ; kg

�

.

Hen
e, it remains to show that T satis�es (H4) to (H8).

(H4) Satis�ed by de�nition of T (see indu
tion start).

(H5) Let fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and E(i) = hRi . By (�), we have

�(�) 6= ? and M; �(�) j= hRi ^ [R℄ �

1

^ � � � ^ [R℄ �

m

. By de�nition of

� (indu
tion step, �rst 
ase), we have �(�i) = w for some w 2 W , with

M; (�(�); w) j= R, andM; w j=  . Moreover, the semanti
s ofK

:

!

implies

M; w j= �

1

^ � � � ^ �

m

, and, by (�), we thus have f ; �

1

; : : : ; �

m

g � T (�i).

(H6) Satis�ed by de�nition of T (see indu
tion step, se
ond 
ase).

(H7) Let [R℄ 2 T (�) and �x a � 2 f1; : : : ; kg

�

. If �(�) = ?, then we have

T (�) = ; by (�) and (H7) is satis�ed. If �(�) 6= ?, then �(�) 2 W and

we have either M; �(�) j=  or M; �(�) j=

�

 . Again, (�) implies that

(H7) is satis�ed.

(H8) Assume f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�). By (�), we have M; �(�) j=

[R℄ � ^ [

�

R℄ and M; �(�) j= ��. This implies M; (�(�); �(�)) j=

�

R sin
e

1. we have either M; (�(�); �(�)) j= R or M; (�(�); �(�)) j=

�

R and

2. M; (�(�); �(�)) j= R is not possible sin
e M; �(�) j= [R℄ � and

M; �(�) j= ��.

Hen
e, due to the semanti
s of K

:

!

, we have M; �(�) j=  , whi
h, by (�),

implies  2 T (�).

❏

Thus, we have that Hintikka-trees are appropriate abstra
tions of models of

K

:

!

-formulae. Hintikka-trees enjoy the ni
e property that they are trees, and we


an thus de�ne, for a K

:

!

-formula ', a tree-automaton A

'

that a

epts exa
tly

the Hintikka-trees for '.

De�nition 5 For a K

:

!

-formula ' with k diamond-formulae in 
l('), the loop-

ing automaton A

'

= (Q; 2


l(')

;�; I) is de�ned as follows:

� Let P = ff[R℄ ; [

�

R℄ �g j [R℄ ; [

�

R℄ � 2 
l(')g;

S = f[R℄ j [R℄ 2 
l(')g;

Q is the set of all those elements (	; p; s) of

f	 2 2


l(')

j 	 is a Hintikka-setg � 2

P

� 2

S

satisfying the following 
onditions:

1. if f[R℄ �; [

�

R℄ g 2 p and �� 2 	, then  2 	,

8



2. if [R℄ � 2 s, then 	 = ; or f�; ��g \	 6= ;,

3. if [R℄ � 2 	, then [R℄ � 2 s, and

4. if f[R℄ �; [

�

R℄ g � 	, then f[R℄ �; [

�

R℄ g 2 p.

� I = f(	; p; s) j ' 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

if

D

(i) = hRi 2 	, then  2 	

i

and � 2 	

i

for ea
h [R℄ � 2 	 and

if

D

(i) = hRi 62 	, then 	

i

= ;:

▲

Note that, sin
e A

'

is a looping automata, every run is a

epting. As a


onsequen
e of the following lemma and Lemma 4, we 
an redu
e satis�ability

ofK

:

!

-formulae to the emptyness of the language a

epted by looping automata.

Lemma 6 T is a Hintikka-tree for a K

:

!

-formula ' i� T 2 L(A

'

).

Proof: Let ' be a K

:

!

-formula and k, A

'

as in De�nition 5.

\)" Let T be Hintikka-tree for '. We prove that there is an a

epting run

of A

'

on T . First, de�ne

p := ff[R℄ ; [

�

R℄ �g j There is a node � in T with f[R℄ ; [

�

R℄ �g � T (�)g

s := f[R℄ j There is a node � in T with [R℄ 2 T (�)g

Next, we show that r(�) = (T (�); p; s) is an a

epting run of A

'

on T . By

de�nition, r is de�ned for ea
h � 2 f1; : : : ; kg

�

. We have to show that, for ea
h

node � in T , r satis�es the following three 
onditions.

(i) r(�) 2 Q. Let � be a node in T . Sin
e T is a Hintikka-tree, T (�)

is a Hintikka-set. It remains to prove that (T (�); p; s) satis�es the four

properties of states Q in De�nition 5.

1. If f[R℄ �; [

�

R℄ g 2 p, then there is some node � with f[R℄ �; [

�

R℄ g �

T (�). Hen
e if, additionally, �� 2 T (�), then (H8) ensures that

 2 T (�).

2. If [R℄ � 2 s, then there is some node � with [R℄ � 2 T (�), and (H7)

ensures that T (�) = ;, � 2 T (�), or �� 2 T (�).

3. & 4. are saties�ed by de�nition of p and s.

(ii) r(�) 2 I . Sin
e T is a Hintikka-tree for ', (H4) ensures that ' 2 T (�),

hen
e r(�) = (T (�); p; s) 2 I .

(iii) ((T (�); p; s); T (�); (T (�1); p; s); : : : ; (T (�

k

); p; s)) 2 �. There are only

two 
onditions to prove: Firstly, if

D

(i) = hRi 2 T (�), then (H5)

ensures that  2 T (�i) and, for ea
h [R℄ � 2 T (�), (H5) ensures that

� 2 T (�i).

Se
ondly, if

D

(i) = hRi 62 T (�), then (H6) ensures that T (�i) = ;.

9



\(" Let T 2 L(A

'

) and r be an a

epting run of A

'

on T . We prove that T

is a Hintikka-tree for '.

� By de�nition of A

'

, T is a k-ary 2


l(')

-tree, and r(�) = (	

�

; p

�

; s

�

)

implies 	

�

= T (�) by de�nition of �. Hen
e, by de�nition of Q, ea
h

node in T is labelled with a Hintikka-set. Let r(�) = (T (�); p; s). Then,

by de�nition of �, for ea
h node �, we have p

�

= p and s

�

= s.

� Let r(�) = (	

�

; p; s), then ' 2 	

�

by de�nition of I and, sin
e 	

�

= T (�),

we have that T satis�es (H4).

� For (H5), let fhRi ; [R℄ �

1

; : : : ; [R℄ �

m

g � T (�) and

D

(i) = hRi . Again,

we have r(�) = (T (�); p; s), and r(�i) = (T (�i); p; s). Sin
e r is a run of

A

'

on T , we have

((T (�); p; s); T (�); (T (�1); p; s); : : : ; (T (�k); p; s)) 2 �;

whi
h implies f ; �

1

; : : : ; �

m

g � T (�i) by De�nition of �, and thus T

satis�es (H5).

� T satis�es (H6) due to the last impli
ation in the de�nition of � and

sin
e r(�) = (T (�); p; s).

� For (H7), let [R℄ � 2 T (�). Sin
e r(�) = (T (�); p; s) and, due to 3. in

the de�nition of Q, we have [R℄ � 2 s. Then, for a node �, we have

r(�) = (T (�); p; s), and, due to 2. in the de�nition of Q, T (�) = ; or

f�; ��g \ T (�) 6= ;.

� For (H8), let f[R℄ �; [

�

R℄ g � T (�) and �� 2 T (�). Sin
e r(�) = (T (�); p; s)

and, due to 4. in the de�nition of Q, we have f[R℄ �; [

�

R℄ g 2 p. Now

r(�) = (T (�); p; s) and, due to 1. in the de�nition of Q, we have  2 T (�).

Summing up, A

'

a

epts ea
h Hintikka-tree for ' and, vi
e versa, ea
h

Hintikka-tree for ' is a

epted by A

'

. ❏

What is the size of looping automata A

'

= (Q

'

;M

'

; I

'

;�

'

)? Obviously,

the 
ardinality of 
l(') is linear in the length of '. Hen
e, by de�nition of

A

'

, the 
ardinality of Q

'

and M

'

are exponential in the length of '. Again

by de�nition of A

'

, this implies that the 
ardinalities of I

'

and �

'

are also

exponential in the length of '. Hen
e, the size of A

'

is exponential in the

length of '. This fa
t together with Lemma 4, Lemma 6, and the fa
t that

emptiness of the language a

epted by a looping automaton A

'


an be tested

in time polynomial in the size of A

'

, we have that satis�ability of K

:

!

-formulae

is in ExpTime. In Se
tion 2, we already noted that satis�ability of K

:

!

-formulae

is ExpTime-hard, and, hen
e, we obtain the following theorem:

Theorem 7 Satis�ability of K

:

!

-formulae is ExpTime-
omplete.

10



3.1 (K

!


K4

!

)

:

is also in ExpTime

In this se
tion, we show that the same te
hnique as in the previous se
tion 
an

be used to prove that (K

!


K4

!

)

:

, i.e., the fusion of K

!

with K4

!

extended

with the negation of modal parameters, is also in ExpTime.

(K

!


K4

!

)

:

provides two disjoint sets of atomi
 modal parametersR

1

; R

2

; : : :

and S

1

; S

2

; : : : , where the latter are 
alled transitive modal parameters. The syn-

tax of (K

!


K4

!

)

:

is the same as the one of K

:

!

ex
ept that, in (K

!


K4

!

)

:

,

transitive modal parameters may be used anywhere were modal parameters are

allowed in K

:

!

. For the semanti
s, we restri
t Kripke stru
tures to those where

a

essibility relations S

i


orresponding to transitive atomi
 parameters S

i

are

transitive.

Again, w.l.o.g., we assume that ' is in NNF.

De�nition 8 A (K

!


K4

!

)

:

-Hintikka-tree is a Hintikka-tree as in De�nition 3

extended by the following two 
onditions:

1

(H5b) if, for a transitive parameter S

i

, we have fhS

i

i ; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g �

T (�) and

D

(i) = hS

i

i , then f ; �

1

; : : : ; �

m

; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g � T (�i)

(H8b) if, for a transitive parameter S

i

, we have f[S

i

℄ ; [:S

i

℄ �g � T (�) and

�� 2 T (�), then f[S

i

℄ ;  g � T (�).

▲

We 
an now \lift" Lemma 4 to the (K

!


K4

!

)

:


ase.

Lemma 9 A (K

!


K4

!

)

:

-formula ' is satis�able i� ' has a (K

!


K4

!

)

:

-

Hintikka-tree.

Proof: The proof is analogous to the one for Lemma 4. Let ' be a (K

!


K4

!

)

:

-

formula and let there be k diamond-formulae in 
l(').

\(" Let T be a Hintikka-tree for '. For ea
h S 2 fR

1

; : : : ; S

1

; : : : g, de�ne

relations K

S

as follows:

K

S

= f(�; �) j E(j) = hSi 2 T (�) and � = �jg [

f(�; �) j [:S℄ 2 T (�) and

�

 2 T (�)g

Based on the relationsK

S

, we de�ne a Kripke stru
tureM = hW;�;R

1

; : : : ;S

1

; : : :i

as follows:

W = f� 2 f1; : : : ; kg

�

j T (�) 6= ;g

�(p) = f� j p 2 T (�)g for all p 2 �g

R

i

= K

R

i

for all i � 1

S

i

= K

+

S

i

for all i � 1

1

Note that \R" in De�nition 3 now denotes both standard and transitive modal parameters

and negations thereof.
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where K

+

denotes the transitive 
losure of the relation K. As for K

:

!

, the \only

if" dire
tion is now an immediate 
onsequen
e of the following 
laim:

Claim:  2 T (�) implies M; � j=  for all � 2W and  2 
l(').

The 
laim is proved by indu
tion over the stru
ture of  . The indu
tion start

and all but one 
ase in the indu
tion step are identi
al to the K

:

!


ase and omit-

ted here. The only interesting 
ase is the following (note that the 
omplement

of a transitive relation does not need to be transitive, hen
e we need to 
onsider

only the positive 
ase here):

�  = [S

i

℄ � for a transitive atomi
 parameter S

i

with 
orresponding a
-


essibility relation S

i

. Fix a � with (�; �) 2 S

i

. We need to show that

M; � j= �. By de�nition of M, there exists a sequen
e 


1

; : : : ; 


r

with

r � 2 su
h that

{ (


`

; 


`+1

) 2 K

S

i

for 1 � ` < r, and

{ 


1

= � and 


r

= �.

We show that [S

i

℄ � 2 T (


`

) implies [S

i

℄ � 2 T (


`+1

) for ea
h 1 � ` < r.

By de�nition of K

S

i

, we have to distinguish two 
ases:

1. 


`+1

= 


`

j and E(j) = hS

i

i �

0

2 T (


`

), or

2. [:S

i

℄ �

0

2 T (


`

) and ��

0

2 T (


`+1

)

In the �rst 
ase, we have fhS

i

i �

0

; [S

i

℄ �g � T (


`

) whi
h, by (H5b), implies

f�; �

0

; [S

i

℄ �g � T (


`

j). In the se
ond 
ase, we have f[S

i

℄ �; [S

i

℄ �

0

g � T (


`

)

and ��

0

2 T (


`+1

). By (H8b), we have f[S

i

℄ �; �g � T (


`+1

).

Hen
e [S

i

℄ � 2 T (


r�1

) be
ause [S

i

℄ � 2 T (


1

). We 
an then use the same

arguments as in the proof of Lemma 4 to show that � 2 T (


r

), and thus

we have M; 


r

j= � by indu
tion.

\(" Let M = hW;�;R

1

; : : : ;S

1

; : : :i be a model of ', i.e., there exists a

w

0

2 W with M; w

0

j= '. De�ne a Hintikka-tree T based onM as in the proof

of Lemma 4. We need to show that T satis�es the additional properties (H5b)

and (H8b).

(H5b) Let fhS

i

i ; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g � T (�) and E(i) = hS

i

i for a transi-

tive parameter S

i

. By (�), we have �(�) 6= ? and M; �(�) j= hS

i

i ^

[S

i

℄ �

1

^ � � � ^ [S

i

℄ �

m

. By de�nition of � (indu
tion step, �rst 
ase), we

have �(�i) = w for a w with M; (�(�); w) j= S

i

, and M; w j=  . By

semanti
s of (K

!


K4

!

)

:

, we also have M; w j= �

1

^ � � � ^ �

m

.

Now let w

0

2 W su
h that M; (�(�i); w

0

) j= S

i

. Sin
e S

i

is transitive,

we have M; (�(�); w

0

) j= S

i

and hen
e M; w

0

j= �

1

^ � � � ^ �

m

. Sin
e

this holds independently of the 
hoi
e of w

0

, we have that M; �(�i) j=

[S

i

℄ �

1

^ � � � ^ [S

i

℄ �

m

.

Summing up and applying (�), we obtain f ; �

1

; : : : ; �

m

; [S

i

℄ �

1

; : : : ; [S

i

℄ �

m

g �

T (�i).
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(H8b) Assume f[S

i

℄ ; [:S

i

℄ �g � T (�) and �� 2 T (�) for a transitive param-

eter S

i

. By (�), we have M; �(�) j= [S

i

℄ ^ [:S

i

℄ � and M; �(�) j= ��.

Analogously to the 
orresponding 
ase in the proof of Lemma 4, we de-

du
e M; (�(�); �(�)) j= S

i

and M; �(�) j=  . As in the 
ase (H5b), we

obtain M; � j= [S

i

℄ , and, by (�), we 
on
lude f ; [S

i

℄ g � T (�).

❏

It remains to 
onstru
t a looping automaton that a

epts exa
tly the Hintikka-

trees for a given (K

!


K4

!

)

:

-formula '. This 
onstru
tions is a simple exten-

sion of the one forK

:

!

-formulae with the approriate translations of the additional

properties (H5b) and (H8b). More pre
isely, the 
onstru
tion is the same as

the one in De�ntion 5, with an additional �fth 
ondition in the de�nition of Q

as a translation of (H8b), and an additional impli
ation in the de�nition of �

as a translation of (H5b).

De�nition 10 For a (K

!


K4

!

)

:

-formula ' with k diamond-formulae in 
l('),

the looping automaton A

'

= (Q; 2


l(')

;�; I) is de�ned as follows:

� Let P = ff[R℄ ; [

�

R℄ �g j [R℄ ; [

�

R℄ � 2 
l(')g;

S = f[R℄ j [R℄ 2 
l(')g;

Q is the set of all those elements (	; p; s) of

f	 2 2


l(')

j 	 is a Hintikka-setg � 2

P

� 2

S

satisfying the following 
onditions:

1. if f[R℄ �; [

�

R℄ g 2 p and �� 2 	, then  2 	,

2. if [R℄ � 2 s, then 	 = ; or f�; ��g \	 6= ;,

3. if [R℄ � 2 	, then [R℄ � 2 s,

4. if f[R℄ �; [

�

R℄ g � 	, then f[R℄ �; [

�

R℄ g 2 p, and

5. if f[S

i

℄ ; [:S

i

℄ �g 2 p and �� 2 	 for a transitive parameter S

i

, then

f ; [S

i

℄ g 2 	.

� I = f(	; p; s) j ' 2 	g.

� ((	; p; s);	

0

; (	

1

; p

1

; s

1

); : : : ; (	

k

; p

k

; s

k

)) 2 � i�

	 = 	

0

; p

i

= p; s

i

= s for all 1 � i � k; and

if

D

(i) = hRi 2 	, then  2 	

i

and � 2 	

i

for ea
h [R℄ � 2 	

if

D

(i) = hS

i

i 2 	 for a transitive parameter S

i

, then [S

i

℄ � 2 	

i

for ea
h [S

i

℄ � 2 	 and

if

D

(i) = hRi 62 	, then 	

i

= ;:

▲
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With the remarks above, the proof of the following lemma is 
ompletely

analogous to the one of Lemma 6, and thus omitted.

Lemma 11 T is a Hintikka-tree for a (K

!


K4

!

)

:

-formula ' i� T 2 L(A

'

).

Analogously to Theorem 7, we obtain the following theorem:

Theorem 12 Satis�ability of (K

!


K4

!

)

:

-formulae is ExpTime-
omplete.

4 Adding Interse
tion and Union of Modal Pa-

rameters

In this se
tion, we investigate the 
omplexity of adding interse
tion and union

of modal parameters to the logi
 K

:

!

. In doing this, one has the 
hoi
e to either

restri
t the appli
ability of negation to atomi
 modal parameters or allowing

for full negation w.r.t. modal parameters. In the latter 
ase, adding union is

obviously equivalent to adding interse
tion or both.

We start with the smallest extension, i.e., we add either interse
tion or union

on modal parameters while restri
ting negation to atomi
 parameters.

De�nition 13 A K

(:);[

!

-formula (K

(:);\

!

-formula) is a K

:

!

-formula

whi
h, additionally, allows for modal parameters of the form S

1

[ � � � [ S

k

(S

1

\ � � � \ S

k

), where ea
h S

i

is an atomi
 or a negated atomi
 parameter.

The semanti
s of the new modal operators is de�ned as follows:

M; w j= hS

1

[ � � � [ S

k

i' i� 9w

0

2W with M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg and M; w

0

j= '

M; w j= [S

1

[ � � � [ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for

some i 2 f1; : : : ; kg; then M; w

0

j= '

M; w j= hS

1

\ � � � \ S

k

i' i� 9aw

0

2W with M; (w;w

0

) j= S

i

for all 1 � i � k and M; w

0

j= '

M; w j= [S

1

\ � � � \ S

k

℄' i� 8w

0

2W , if M; (w;w

0

) j= S

i

for all 1 � i � k; then M; w

0

j= '

▲

Let us �rst investigate the logi
 K

(:);[

!

. It is not hard to see that

[S

1

[ � � � [ S

k

℄' � [S

1

℄' ^ � � � ^ [S

k

℄' and

hS

1

[ � � � [ S

k

i' � hS

1

i' _ � � � _ [S

k

℄';

i.e., satis�ability of K

(:);[

!

-formulae 
an be redu
ed to satis�ability of K

:

!

-

formulae. However, this naive redu
tion might lead to an exponential blow-up

of the formula. In order to avoid this blow-up, we 
an pro
eed as follows to

transform a K

(:);[

!

-formula  into an equivalent K

:

!

-formula

b

 whose length is

14



linear in the length of  : As the �rst step, re
ursively apply the following substi-

tutions to  from the inside to the outside (i.e., no union on modal parameters

o

urs in ')

[S

1

[ � � � [ S

k

℄' ; [S

1

℄ p

'

^ � � � ^ [S

k

℄ p

'

and

hS

1

[ � � � [ S

k

i' ; hS

1

i p

'

_ � � � _ [S

k

℄ p

'

where p

'

is a new propositional variable. Call the result of these substitutions

 

0

. Se
ondly, use a new modal parameter R and de�ne

b

 :=  

0

^

^

p

'

o

urs in  

0

[R℄(p

'

$ ') ^ [:R℄(p

'

$ ')

It 
an easily be seen that this gives the following result.

Theorem 14 Satis�ability of K

(:);[

!

-formulae is ExpTime-
omplete.

Next, we show that the satis�ability of K

(:);\

m

-formulae is NExpTime-hard.

The proof is given by a redu
tion of a NExpTime-
omplete variant of the well-

known, unde
idable domino problem.

A domino problem [4, 19℄ is given by a �nite set of domino types. All domino

types are of the same size, ea
h type has a quadrati
 shape and 
olored edges.

Of ea
h type, an unlimited number of dominoe is available. The problem in the

original domino problem is to arrange these dominoe to 
over the plane without

holes or overlapping, su
h that adja
ent dominoe have identi
al 
olors on their

tou
hing edges (rotation of the dominoe is not allowed). In the NExpTime-


omplete variant of the domino problem that we use, the task is not to tile

the whole plane, but to tile a 2

n+1

� 2

n+1

-torus, i.e., a 2

n+1

� 2

n+1

-re
tangle

whose edges are \glued" together. See, e.g., [4, 19℄ for unde
idable versions of

the domino problem and [6℄ for bounded variants. We now formally introdu
e

bounded domino systems.

De�nition 15 Let D = (D;H; V ) be a domino system, where D is a �nite

set of domino types and H;V � D � D represent the horizontal and verti
al

mat
hing 
onditions. For s; t 2 N, let U(s; t) be the torus Z

s

� Z

t

, where Z

n

denotes the set f0; : : : ; n � 1g. Let a = a

0

; : : : ; a

n�1

be an n-tuple of dominoe

(with n � s). We say that D tiles U(s; t) with initial 
ondition a i� there exists

a mapping � : U(s; t)! D su
h that, for all (x; y) 2 U(s; t):

� if �(x; y) = d and �(x �

s

1; y) = d

0

, then (d; d

0

) 2 H

� if �(x; y) = d and �(x; y �

t

1) = d

0

, then (d; d

0

) 2 V

� �(i; 0) = a

i

for 0 � i < n.

where �

n

denotes addition modulo n. Su
h a mapping � is 
alled a solution for

D w.r.t. a. ▲
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These bounded domino systems are 
apable of expressing the 
omputational be-

haviour of restri
ted, so-
alled simple, Turing Ma
hines (TMs). This restri
tion

is non-essential in the following sense: Every language a

epted in time T (n)

and spa
e S(n) by some one-tape TM is a

epted within the same time and

spa
e bounds by a simple TM, provided that S(n); T (n) � 2n [6℄.

Theorem 16 [[6℄, Theorem 6.1.2℄ Let M be a simple TM with input alphabet

�. Then there exists a domino systemD = (D;H; V ) and a linear time redu
tion

whi
h takes any input x 2 �

�

to an n-tuple a of dominoe with jxj = n su
h that

� If M a

epts x in time t

0

with spa
e s

0

, then D tiles U(s; t) with initial


ondition a for all s � s

0

+ 2; t � t

0

+ 2;

� if M does not a

ept x, then D does not tile U(s; t) with initial 
ondition

a for any s; t � 2.

Corollary 17 There exists a domino system D su
h that the following is a

NExpTime-hard problem: Given an initial 
ondition a = a

0

� � � a

n�1

of length

n, does D tile the torus U(2

n+1

; 2

n+1

) with initial 
ondition a?

Proof: Let M be a (w.l.o.g. simple) non-deterministi
 TM with time- (and

hen
e spa
e-) bound 2

n

de
iding an arbitrary NExpTime-
omplete language

over the alphabet �. Let D be the 
orresponding domino system and trans the

redu
tion from Theorem 16. The fun
tion trans is a linear redu
tion from L(M)

to the problem above: For b 2 �

�

with jbj = n, it holds that b 2 L(M) i� M

a

epts b in time and spa
e 2

jbj

i� D tiles U(2

n+1

; 2

n+1

) with initial 
ondition

trans(b). ❏

We redu
e the NExpTime-
omplete variant of the domino problem from

Corollary 17 to the satis�ability of K

(:);\

m

-formulae. Given a domino system

D = (D;H; V ) and an initial 
ondition a = a

0

; : : : ; a

n�1

, we de�ne a redu
tion

formula '

(D;a)

su
h that '

(D;a)

is satis�able i� D tiles the torus U(2

n+1

; 2

n+1

)

with initial 
ondition a. The redu
tion formula '

(D;a)


an be found in Figure 1.

In this �gure, [u℄' is an abbreviation for [R℄' ^ [:R℄', where R is an arbi-

trary atomi
 modal parameter. Obviously, in ea
h model of [u℄', ea
h world

satis�es '. In Init, we write [R℄

n

' for the n-fold nesting of [R℄, i.e., for

[R℄ � � � [R℄

| {z }

n times

':

Before we formally prove the 
orre
tness of the redu
tion, we dis
uss the un-

derlying intuition.

The general strategy is to de�ne the redu
tion formula '

(D;a)

su
h that, for

every model M of '

(D;a)

with set of worlds W ,

1. there exists a propositional variable p

d

for every domino type d 2 D su
h

that ea
h w 2 W is in the extension of p

d

for exa
tly one d 2 D (see the

�rst line of Tiling),
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2. for ea
h point (i; j) in the torus U(2

n+1

; 2

n+1

), there exists a 
orresponding

set of worlds fw

1

; : : : ; w

k

g � W with k � 1 and a d 2 D su
h that all

w

1

; : : : ; w

k

are in the extension of p

d

,

3. the horizontal and verti
al 
onditions V and H are satis�ed w.r.t. sets of

worlds representing points in the plane (see the se
ond and third line of

Tiling), and

4. the initial 
ondition is satis�ed (see Init).

Let us examine the stru
ture of models of '

(D;a)

in detail. Let

M = (W;�;R

x

;R

y

;R

0

; : : : ;R

n

;S

0

; : : : ;S

n

; : : :)

be a model for '

(D;a)

. Every w 2W is asso
iated with a point (i; j) of the torus

U(2

n+1

; 2

n+1

). The number i is binarily 
oded by the propositional variables

x

0

; : : : ; x

n

while the number j is binarily 
oded by the propositional variables

y

0

; : : : ; y

n

. More pre
isely, we set

xpos(w) = �

n

i=0

�

i

(w) � 2

i

and ypos(w) = �

n

i=0

�

i

(w) � 2

i

where

�

i

(w) =

�

1 if w 2 �(x

i

)

0 otherwise

and �

i

(w) =

�

1 if w 2 �(y

i

)

0 otherwise

With pos(w), we denote the pair (xpos(w); ypos(w)). The �rst 
onjun
t of the

Init formula ensures that pos(w) = (0; 0) for all w with M; w j= '

(D;a)

. The

Count

x

and Count

y

formulae together with the Stable formula ensure that, for

every w 2W , there exist w

1

; w

2

2W su
h that

(a) M; (w;w

1

) j= R

x

and M; (w;w

2

) j= R

y

,

(b) xpos(w

1

) = xpos(w) �

2

n+1
1 and ypos(w

2

) = ypos(w)�

2

n+1
1, and

(
) xpos(w

2

) = xpos(w) and ypos(w

1

) = ypos(w).

Here, the Count

x

and Count

y

formulae enfor
e Property (b) by a standard

en
oding of binary in
rementation by 1 modulo 2

n+1

(see, e.g., [6℄). The Stable

formula enfor
es Property (
), i.e., Stable enfor
es that the R

x

-su

essors of a

world w satisfy the same y

k

as w, and analogously for R

y

and x

k

.

Informally speaking, models of '

(D;a)


an be thought of as having the form

of an in�nite binary tree (in whi
h some nodes may 
oin
ide) where paths p

of R

x

and R

y

relations lead to a world w su
h that xpos(w) is the number

of R

x

edges in p modulo 2

n+1

and ypos(w) is the number of R

y

edges in p

modulo 2

n+1

. The modal parameters R

x

and R

y

are representing horizontal

and verti
al su

essors in the torus.

As already noted, the domino types are represented by propositional vari-

ables p

d

with d 2 D, and the (�rst line of the) Tiling formula guarantees that

every worlds belongs to p

d

for exa
tly one d 2 D. We write dtype(w) to denote
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Count

x

= [u℄

h

n

^

k=0

�

(

k�1

^

j=0

x

j

)! (x

k

$ [R

x

℄:x

k

)

�

^

n

^

k=0

�

(

k�1

_

j=0

:x

j

)! (x

k

$ [R

x

℄x

k

)

�

^ hR

x

i true

i

Count

y

like Count

x

; repla
e R

x

by R

y

, x

j

by y

j

, and x

k

by y

k

Stable = [u℄

h

n

^

k=0

(x

k

! [R

y

℄x

k

) ^

n

^

k=0

(:x

k

! [R

y

℄:x

k

) ^

n

^

k=0

(y

k

! [R

x

℄ y

k

) ^

n

^

k=0

(:y

k

! [R

x

℄:y

k

)

i

Unique = [u℄

h

n

^

k=0

�

(x

k

! [:R

k

℄:x

k

) ^ (:x

k

! [:R

k

℄x

k

)

�

^

n

^

k=0

�

(y

k

! [:S

k

℄:y

k

) ^ (:y

k

! [:S

k

℄ y

k

)

�

^

^

d2D

p

d

! [R

0

\ � � � \R

n

\ S

0

\ � � � \ S

n

℄ p

d

i

Tiling = [u℄

h

(

_

d2D

p

d

) ^

^

d2D

^

d

0

2Dnfdg

:(p

d

^ p

d

0

) ^

^

d2D

p

d

!

�

[R

x

℄

_

(d;d

0

)2H

p

d

0

�

^

^

d2D

p

d

!

�

[R

y

℄

_

(d;d

0

)2G

p

d

0

��

Init =

n

^

k=0

(:x

i

^ :y

i

) ^ p

w

0

^ [R

x

℄ p

w

1

^ � � � ^ [R

x

℄

n�1

p

w

n�1

C

'

= Count

x

^ Count

y

^ Stable ^ Unique ^ Tiling ^ Init

Figure 1: The K

(:);\

m

formula '

(D;a)

for D = (D;H; V ) and a = a

0

; : : : ; a

n�1

.

the d 2 D su
h that w 2 �(p

d

). Sin
e di�erent worlds may be asso
iated with

the same point in the torus, we must ensure that pos(w) = pos(w

0

) implies

dtype(w) = dtype(w

0

). This is done by the Unique formula: For ea
h 0 � i � n,

this formula ensures that
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M; (w;w

0

) j= R

i

if (i) w 2 �(x

i

) and w

0

2 �(x

i

) or

(ii) w 62 �(x

i

) and w

0

62 �(x

i

) ,

and similarly for S

i

and y

i

. Furthermore, due to its last 
onjun
t, Unique

guarantees that, for worlds w;w

0

2 W , if M; (w;w

0

) j= R

i

and M; (w;w

0

) j= S

i

for ea
h 0 � i � n, then w and w

0

are labelled by the same domino type, i.e.,

dtype(w) = dtype(w

0

). Re
all that, if M; (w;w

0

) j= R

i

(M; (w;w

0

) j= S

i

), then

w and w

0


oin
ide w.r.t. x

i

(y

i

). Hen
e the above relationship w.r.t. to all

R

i

and S

i

implies that w and w

0


oin
ide on all x

i

and y

j

and thus, that they

represent the same point in the torus.

Before we prove the main proposition of the redu
tion, we establish some

properties of models of '

(D;a)

.

Lemma 18 Let M be a model for '

(D;a)

with set of worlds W and let a =

a

0

; : : : ; a

n�1

. For all (i; j) 2 U(2

n+1

; 2

n+1

), there exists a w 2 W su
h that

pos(w) = (i; j).

Proof: The proof is by indu
tion over i+ j. For the indu
tion start (i+ j = 0),

it suÆ
es to note that

� pos(w) = (0; 0) for all w 2W with M; w j= '

(D;a)

by the �rst 
onjun
t of

the Init formula and

� su
h a w exists sin
e M is a model for '

(D;a)

.

For the indu
tion step, let (i; j) 2 U(2

n+1

; 2

n+1

). First assume i > 0. By

indu
tion hypothesis, there exists a w

0

2 W su
h that pos(w

0

) = (i � 1; j).

Sin
e the Count

x

formula en
odes in
rementation by 1 modulo 2

n+1

w.r.t. R

x

su

essors, there exists a world w su
h that M; (w

0

; w) j= R

x

and xpos(w) =

xpos(w

0

)�

2

n+1
1. We have ypos(w) = ypos(w

0

) sin
e M; w

0

j= Stable. The 
ase

j > 0 is analogous, just swit
h the roles of i and j and repla
e R

x

by R

y

and

Count

x

by Count

y

. ❏

In the following lemma, we use the dtype fun
tion whi
h we already have argued

to be well-de�ned.

Lemma 19 Let M be a model of '

(D;a)

with set of worlds W and let a =

a

0

; : : : ; a

n�1

. For all w;w

0

2W , pos(w) = pos(w

0

) implies dtype(w) = dtype(w

0

).

Proof: The 
hoi
e of w;w

0

implies that w and w

0

agree on the interpretation

of the propositional variables x

0

; : : : ; x

n

and y

0

; : : : ; y

n

. By the �rst two lines of

Unique, we have that M; (w;w

0

) j= R

i

and M; (w;w

0

) j= S

i

for 0 � k � n. It

is then an immediate 
onsequen
e of the third line of the Unique formula that

dtype(w) = dtype(w

0

). ❏

We are now ready to prove the 
orre
tness of the redu
tion.

Proposition 20 A domino system D tiles the torus U(2

n+1

; 2

n+1

) with initial


ondition a = a

0

; : : : ; a

n�1

i� '

(D;a)

is satis�able.

Proof: Let D = (D;H; V ) and a = a

0

; : : : ; a

n�1

.
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\(" First, assume that '

(D;a)

is satis�able, i.e., that there exists a Kripke

stru
ture

M = (W;�;R

x

;R

y

;R

0

; : : : ;R

n

;S

0

; : : : ;S

n

)

and some w

0

2 W su
h that M; w

0

j= '

(D;a)

. We show that D has a solution

w.r.t. a. De�ne a mapping � from U(2

n+1

; 2

n+1

) to D by setting �(i; j) := d

i� dtype(w) = d for a w 2 W with pos(w) = (i; j). By Lemmas 18 and 19, � is

a well-de�ned total fun
tion. We need to show that � is a solution for D with

initial 
ondition a.

Let (i; j) 2 U(2

n+1

; 2

n+1

) and i

0

= i�

2

n+1
+1. To show that � satis�es the

horizontal mat
hing 
ondition, we need to show that (�(i; j); �(i

0

; j)) 2 H . By

Lemma 18, there exists a world w su
h that pos(w) = (i; j). By Lemma 19

and de�nition of � , we have dtype(w) = �(i; j). By the Count

x

formula, there

exists a w

0

2 W su
h that xpos(w

0

) = i

0

and M; (w;w

0

) j= R

x

. By the Stable

formula, we have ypos(w

0

) = j. Again, by Lemma 19 and de�nition of � , we have

dtype(w) = �(i

0

; j). By the se
ond 
onjun
t of the Tiling formula, we 
on
lude

(�(i; j); �(i

0

; j)) 2 H . The proof that the verti
al mat
hing 
ondition is satis�ed

is analogous. Taking into a

ount the Count

x

, Stable, and Init formulae and

the de�nition of � , it is straightforward to prove that the initial 
ondition is

satis�ed by using indu
tion on n.

\)" Let � be a solution for D w.r.t. a. For two integers n; k 2 N with

0 � k � log

2

n, we denote the k'th bit in the binary representation of n by

bit

k

(n). We de�ne a Kripke stru
ture

M = (W;�;R

x

;R

y

;R

0

; : : : ;R

n

;S

0

; : : : ;S

n

; : : : )

as follows:

W := fa

i;j

j 0 � i; j � 2

n+1

g

�(p

d

) := fa

i;j

j �(i; j) = dg for all d 2 D

�(x

k

) := fa

i;j

j bit

k

(i) = 1g for 0 � k � n

�(y

k

) := fa

i;j

j bit

k

(j) = 1g for 0 � k � n

R

x

:= f(a

i;j

; a

i

0

;j

) j i

0

= i�

2

n+1
1g

R

y

:= f(a

i;j

; a

i;j

0

) j j

0

= j �

2

n+1
1g

for 0 � k � n : R

k

:= f(a

i;j

; a

i

0

;j

0

) j bit

k

(i) = bit

k

(i

0

)g

for 0 � k � n : S

k

:= f(a

i;j

; a

i

0

;j

0

) j bit

k

(j) = bit

k

(j

0

)g

It is easy to verify that M; a

0;0

j= '

(D;a)

. ❏

Summing up Proposition 20 and Corollary 17, we obtain a NExpTime lower

bound for K

(:);\

!

-formulae. The 
orresponding upper bound follows from the

fa
t that the translation of K

:

!

-formulae to L

2

-formulae mentioned in Se
tion 2


an also be applied to K

(:);\

!

-formulae.

Theorem 21 Satis�ability of K

(:);\

!

-formulae is NExpTime-
omplete.
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5 Full Boolean Modal Logi


In this se
tion, we investigate the 
omplexity of full Boolean Modal Logi
. Let

us start with introdu
ing this logi
 formally.

De�nition 22 A 
omplex modal parameter is a Boolean formula of atomi


modal parameters. We use K

:;\;[

!

to denote the extension of K

!

with 
omplex

modal parameters. Let M = hW;�;R

1

; : : :i be a Kripke stru
ture, and S a

(possibly 
omplex) modal parameter. Then the extension E(S) is indu
tively

de�ned as follows:

if S = R

i

(i.e., S is atomi
) then E(S) = R

i

if S = :S

0

then E(S) = (W �W ) n E(S

0

)

if S = S

1

\ S

2

then E(S) = E(S

1

) \ E(S

2

)

if S = S

1

[ S

2

then E(S) = E(S

1

) [ E(S

2

)

The semanti
s of formulae is extended as follows:

M; w j= hSi' i� 9w

0

2 W with (w;w

0

) 2 E(S) and M; w

0

j= '

M; w j= [S℄' i� 8w

0

2 W , if (w;w

0

) 2 E(S), then M; w

0

j= '

We write M; (w;w

0

) j= S i� (w;w

0

) 2 E(S).

▲

From Theorem 21 and the standard tranlation of K

:;\;[

!

into L

2

, we easily

obtain the following result:

Theorem 23 Satis�ability of K

:;\;[

!

-formulae is NExpTime-
omplete.

However, it is interesting to note that the NExpTime redu
tion used to prove

Theorem 21 
ru
ially depends on the fa
t that an in�nite number of modal

parameters is available: Sin
e the size of the torus to be tiled is not bounded,

there exists no upper bound for the number of the R

i

and S

i

parameters used for

the redu
tion either. Although Boolean Modal Logi
s usually provide an in�nite

number of modal parameters (see, e.g., [9℄), the question whether NExpTime-

hardness 
an still be obtained if only a bounded number of modal parameters is

available is natural. In the remainder of this se
tion, we answer this question by

showing that satis�ability and validity of K

:;\;[

m

, i.e., full Boolean Modal Logi


with a �xed number m of modal parameters, is ExpTime-
omplete. The upper

bound is proved by a redu
tion to multi-modal K enri
hed with the universal

modality.

We show that satis�ability ofK

:;\;[

m

-formulae 
an be redu
ed to satis�ability

of K

u

n

-formulae (i.e., formulae of multi-modal K enri
hed with the universal

modality) by giving a series of polynomial redu
tion steps. We do not introdu
e

K

u

n

formally but refer the reader to, e.g., [25℄. The following notions are 
entral

to several of the redu
tion steps.
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De�nition 24 A Kripke stru
ture M = hW;�;R

1

; : : :R

m

i is 
alled simple i�

we have R

i

\ R

j

= ; for all 1 � i < j � m. M is 
alled 
omplete i�, for all

w;w

0

2 W , there exists a unique i with 1 � i � m su
h that (w;w

0

) 2 R

i

. A

formula (of any logi
 de�ned in this paper) is 
alled s-satis�able i� it has a model

whi
h is a simple Kripke stru
ture. Similarly, a formula is 
alled 
-satis�able i�

it has a model whi
h is a 
omplete Kripke stru
ture. ▲

Note that every 
omplete Kripke stru
ture is also simple. We now des
ribe the

redu
tion steps in detail. Let ' be a K

:;\;[

m

-formula whose satis�ability is to

be de
ided and let R

1

; : : : ; R

m

be the modal parameters of K

:;\;[

m

.

Step 1. Convert all modal parameters in ' to disjun
tive normal form using a

truth table. If the \empty disjun
tion" is obtained when 
onverting a modal

parameter S, then repla
e every o

urren
e of hSi with false and every o

ur-

ren
e of [S℄ with true. Call the result of the 
onversion '

1

. The length of '

1

is linear in the length of ' sin
e the number m of atomi
 modal parameters is

�xed (and the 
onversion 
an be done in linear time). It is easy to see that '

1

is satis�able i� ' is satis�able.

Sin
e the 
onversion to DNF was done using a truth table, ea
h disjun
t

o

urring in a modal parameter in '

1

is a relational type, i.e., of the form

S

1

\ � � � \ S

m

with S

i

= R

i

or S

i

= :R

i

for 1 � i � m

Let � be the set of all relational types. As is easily seen, if M; (w;w

0

) j= S for

some Kripke stru
tureM with set of worldsW , w;w

0

2W , and S 2 �, then, for

every atomi
 modal parameters R

i

, this determines whether M; (w;w

0

) j= R

i

holds. Hen
e, for every w;w

0

2 W , we have M; (w;w

0

) j= S for exa
tly one

S 2 �.

Step 2. We redu
e satis�ability of K

:;\;[

m

-formulae of the form of '

1

(i.e, the

modal parameters are in DNF and hen
e [ does not appear nested inside other

operators) to the satis�ability ofK

(:);\

m

-formulae in whi
h all modal parameters

are relational types. It is not hard to see that this 
an be done as in Se
tion 4,

where K

(:);[

!

is redu
ed to K

:

!

: In the redu
tion, just repla
e the formula

[R℄(p

'

$ ') ^ [:R℄(p

'

$ ') with

V

S2�

[S℄(p

'

$ ').

2

The redu
tion 
an

again be done in linear time sin
e m is �xed. The K

(:);\

m

-formula obtained by


onverting '

1

is 
alled '

2

.

Step 3. We redu
e satis�ability of K

(:);\

m

-formulae of the form of '

2

to 
-

satis�ability of K

2

m

-formulae. Set n := 2

m

and let K

1

; : : : ;K

n

be the atomi


modal parameters of the logi
 K

n

. Let r be some bije
tion between � and

the set fK

1

; : : : ;K

n

g. The formula '

3

is obtained from '

2

by repla
ing ea
h

element S of � in '

2

with r(S). Considering the spe
ial synta
ti
 form of '

2

and

the de�nitions of � and of 
-satis�ability, it is easy to see that '

2

is satis�able

i� '

3

is 
-satis�able. Furthermore, the redu
tion is obviously linear. Note that

2

This redu
tion ensures that all modal parameters in the resulting formula are relational

types.
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using 2

m

instead of m modal parameters does not spoil the redu
tion sin
e,

ultimately, our redu
tion goes to satis�ability of multi-modal K enri
hed with

the universal modality, and this logi
 is known to be in ExpTime for any �xed

number of modalities [25℄.

Step 4. We redu
e 
-satis�ability of K

n

-formulae to s-satis�ability of K

u

n

-

formulae. De�ne '

4

as the 
onjun
tion of '

3

with the formula

� := [u℄

�

^

 

1

;:::; 

n

subformulae of '

3

[K

1

℄ 

1

^ � � � ^ [K

n

℄ 

n

! [u℄( 

1

_ � � � _  

n

)

�

Note that the length of '

4

is polynomial in the length j'

3

j of '

3

: The number

of subformulae of '

3

is bounded by j'

3

j; hen
e, � 
onsists of at most j'

3

j

`


onjun
ts, where ` is a 
onstant sin
e the number of modal parameters is �xed.

Let us prove that '

3

is 
-satis�able i� '

4

is s-satis�able. The \only if" dire
tion

is straightforward: Let M be a 
omplete model for '

3

. Obviously, M is also

simple. Moreover, using the fa
t that M is 
omplete, it is straightforward to


he
k that M is a model for '

4

. It remains to prove the \if" dire
tion. Let

M = hW;�;K

1

; : : : ;K

n

i be a simple model for '

4

. We �rst show that

Claim. For ea
h w;w

0

2 W , there exists an ` with 1 � ` � n su
h that, for all

subformulae  of '

3

, M; w j= [K

`

℄ implies M; w

0

j=  .

Assume to the 
ontrary that, for some w;w

0

2 W , there exist no ` as in the


laim. Hen
e, for ea
h i with 1 � i � n, there exists a subformula �

i

of '

3

su
h

thatM; w j= [K

i

℄�

i

andM; w

0

6j= �

i

. Sin
eM is a model for �, we 
learly have

M; w j= [K

1

℄�

1

^ � � � ^ [K

n

℄�

n

! [u℄(�

1

_ � � � _ �

n

):

This is obviously a 
ontradi
tion to the fa
t that M; w 6j= �

1

_ � � � _ �

n

whi
h

proves the 
laim.

Extend the Kripke stru
ture M to M

0

= hW;�;K

0

1

; : : : ;K

0

n

i as follows: For

any w;w

0

2 W with (w;w

0

) =2 K

i

for all i with 1 � i � n, augment K

`

with

the tuple (w;w

0

), where ` is as in the 
laim. Obviously, M

0

is 
omplete. It is

now a matter of routine to prove that M; w j=  implies M

0

; w j=  for all

subformulae  of '

3

. The proof is by indu
tion over the stru
ture of  . The

only interesting 
ase is:

 = [K

i

℄ 

0

. Let (w;w

0

) 2 K

0

i

. We need to show thatM

0

; w

0

j=  

0

. First assume

that (w;w

0

) 2 K

i

. Sin
e M; w j=  , this implies M; w

0

j=  

0

. By indu
tion, we

haveM

0

; w

0

j=  

0

and are done. Now assume (w;w

0

) 2 K

0

i

nK

i

. By de�nition of

K

0

i

, we have that M; w j= [K

i

℄� implies M; w

0

j= � for all subformulae � of '

3

.

Sin
e  is a subformula of '

3

, we have M; w

0

j=  

0

. It remains to apply the

indu
tion hypothesis.

Sin
e M is a model for '

4

, we have that M

0

is a model for '

3

. ❏

Step 5. It remains to prove that s-satis�ability of K

u

n

-formulae is de
idable in

ExpTime. This is, however, an easy 
onsequen
e of the fa
ts that satis�ability
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of K

u

n

-formulae is in ExpTime and that K

u

n

has the tree model property: sin
e

every tree model is obviously simple, satis�ability 
oin
ides with s-satis�ability.

The sequen
e of redu
tions given above yields an ExpTime upper bound for the

satis�ability of K

:;\;[

m

-formulae. Sin
e the lower bound for K

:

!

already holds

if we have only a single modal parameter available (again, see [25℄), we obtain

the following theorem.

Theorem 25 Satis�ability of K

:;\;[

m

-formulae (i.e., K

:;\;[

!

with a

bounded bumber of modal parameters) is ExpTime-
omplete.

The sequen
e of redu
tions given above immediately yields an upper bound for

the satis�ability of K

:;\;[

m

-formulae. Sin
e the lower bound for K

:

!

already

holds if we have only a single modal parameter available (again, see [25℄), we

obtain the following theorem.

Theorem 26 Satis�ability of K

:;\;[

m

-formulae (i.e., K

:;\;[

!

with a

bounded bumber of modal parameters) is ExpTime-
omplete.

6 Boolean Modal Logi
s without Negation

So far, we have only 
onsidered logi
s with negation of modal parameters. We

will 
omplete our investigation by showing that adding interse
tion and union of

modal parameters does not in
rease the 
omplexity of K

!

(and thus neither the


omplexity of K

m

is in
reased by this extension). The fa
t that the extension

of K

!

with interse
tion of modal parameters (i.e., K

\

!

) is still in PSpa
e is an

immediate 
onsequen
e of PSpa
e-
ompleteness of the Des
ription Logi
 ALCR

[8℄ and the fa
t that ALCR is a notational variant of K

\

!

[24℄. Moreover, it is

folklore that K

!

extended with union of modal parameters (i.e., K

[

!

) is also

in PSpa
e (however, the redu
tion from Se
tion 4 
annot be applied sin
e the

universal modality is not available). For both union and interse
tion, we go into

more detail.

With K

\;[

!

, we denote the variant of K

:;\;[

!

obtained by disallowing the

use of negation of modal parameters. In the following, we will present a slight

extension of the standard PSpa
e tableau algorithm for K, K-World [20℄, to

de
ide satis�ability of K

\;[

!

-formulae. Please note that we 
annot adapt the

redu
tion from the previous se
tion sin
e the disjun
tive normal form of a 
om-

plex modal parameter 
an yield an exponential blow-up if the number of boolean

parameters is not bounded. When started with an input formula ', K-World

de
ides ''s satis�ability by re
ursively sear
hing a �nite tree-model of ' in a

depth-�rst manner. For ea
h world w in this tree model, it 
he
ks whether the

set � of formulae that w must satisfy is not 
ontradi
tory. Then, for ea
h 3 

in �, K-World is 
alled re
ursively with  and all � with 2� in �.

To extend K-World to K

\;[

!

, it is 
omfortable to view the semanti
s of roles

in a di�erent way. For S a 
omplex modal parameter and s a set of atomi


modal parameters, we say s j= S i� s, when viewed as the valuation that maps

ea
h R

i

2 s to true and ea
h R

j

62 s to false, evaluates the Boolean expression S

24



to true. Then (w;w

0

) 2 E(S) i� there is a set s of atomi
 modal parameters with

s j= S and (w;w

0

) 2 R

i

for ea
h R

i

2 s. The only modi�
ations to K-World


on
ern the re
ursive 
alls for diamond formulae whi
h are more elaborate in the

presen
e of 
omplex modal parameters. For ea
h hSi in the set � of formulae


urrently 
onsidered, we guess an s with s j= S, and then 
onsider  together

with all � where [S

0

℄ � is in � and s j= S

0

.

For the sake of a su

in
t presentation, we assume the input formula ' to


ontain no disjun
tion and no diamond-formulae. For � and S sets of K

\;[

!

-

formulae where S is 
losed under subformulae and single negations,K

\;[

!

-World(�; S)

returns true i�

� � is a maximally propositionally 
onsistent subset of S, i.e.,

{ � � S,

{ for ea
h : 2 S,  2 � i� : 62 �, and

{ for ea
h  

1

^  

2

2 S,  

1

^  

2

2 � i�  

1

2 � and  

2

2 �.

� For ea
h subformula : [S℄ 2 �, there exists a set s of modal parameters

with s j= S and a set �

 ;s

su
h that

{ : 2 �

 ;s

,

{ for ea
h S

0

and �, if [S

0

℄ � 2 � and s j= S

0

, then � 2 �

 ;s

,

{ K

\;[

!

�World(�

 ;s

; S

0

) returns true, where S

0

is the 
losure under

subformulae and single negation of f� j [S

0

℄ � 2 � and s j= S

0

g [

f: g.

Let 
l(') be the smallest set of formulae 
ontaining ' that is 
losed under

subformulae and single negation. The proof that a K

\;[

!

-formula ' is satis�able

i� there exists a � � 
l(') with ' 2 � su
h that

K

\;[

!

-World(�; 
l(')g)

returns true is analogous to the one forK-World. Just likeK-World,K

\;[

!

-World

runs in PSpa
e (sin
e PSpa
e = NPSpa
e [23℄, the additional non-deterministi


guessing of the set of modal parameters s does not matter). Moreover, K is

known to be PSpa
e-hard [20℄, and we thus have the following result.

Theorem 27 Satis�ability of K

[;\

!

-formulae is PSpa
e-
omplete.

7 Con
lusion

We have given a 
omplete pi
ture of the 
omplexity of Boolean Modal Logi
s,

both with and without a bound on the number of modal parameters. The results

for (fragments of) Boolean Modal Logi
 with an unbounded number of modal

parameters are summarised in Figure 2, showing known results in grey.

We have proved that K

:

!

is in ExpTime using looping automata, whi
h

turned out to be rather elegent a te
hnique for two reasons. Firstly, we did
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not need to bound the size of models/Hintikka trees sin
e the looping automata

we used work on in�nite trees. Se
ondly, disjun
tions were handled simply by

introdu
ing non-deterministi
 transitions of the automaton, whi
h are harmless

sin
e the emptyness problem for non-deterministi
 looping automata is polyno-

mial. Finally, we extended the automata approa
h to (K

!


K4

!

)

:

to show

that it is also appli
able to similar logi
s.

NExpTime-hardness ofK

(:);\

!

was rather surprising sin
e so far, interse
tion

of atomi
 modal parameters (not of 
hainings/
omposition of modal parame-

ters) is mostly 
onsidered to be \harmless" w.r.t. 
omplexity. Interestingly, we

were able to show that, if a bound m is imposed on the number of atomi
 modal

parameters, then full Boolean Modal Logi
K

:;\;[

m

be
omes ExpTime-
omplete.

For this proof, we did not use the automata-based approa
h be
ause we 
on-

sidered that extending it to take 
are of 
omplex modal parameters was more

involved than the redu
tion to K

u

n

that we used.

As future work, it may be interesting to extend our te
hniques to more ex-

pressive logi
s. For example, one may 
onsider arbitrary 
ombinations of the

Boolean operators on modal parameters with 
omposition and 
onverse. Several

results for su
h logi
s are known from the area of Propositional Dynami
 Logi
s

(PDL). For example, Harel proves that PDL extended with negation of modal

parameters is unde
idable using a redu
tion to the equivalen
e problem for rela-

tion algebra [16℄. It is not hard to see that a similar redu
tion (of the equivalen
e

problem of boolean algebras of relations with 
omposition only, see, e.g., [1℄)


an be used to show that Boolean Modal Logi
 extended with 
omposition of

modal parameters is unde
idable. On the 
ontrary, it follows from Dane
ki's

results on PDL with interse
tion that K

\;[

!

extended with 
omposition is de-


idable in double ExpTime [7℄. As we demonstrated by extending our results to

(K

!


K4

!

)

:

, our automata-based approa
h to proving ExpTime-bounds 
an

be 
onsidered 
exible. As a �rst step towards more expressive logi
s, we hope

that our approa
h 
an be \married" with the standard automata-based de
id-

ability pro
edure for PDL thus yielding a de
idability result for PDL extended

with atomi
 negation of modal parameters.
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