Aachen University of Technology
Research group for
Theoretical Computer Science

LTCS—Report

The Complexity of Reasoning with Boolean
Modal Logics (Extended Version)

Carsten Lutz and Ulrike Sattler

LTCS-Report 00-02

This is an extended version of the article in: Advances in Modal
Logic (AiML), Volume 3

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

The Complexity of Reasoning with Boolean
Modal Logics (Extended Version)

Carsten Lutz and Ulrike Sattler
Theoretical Computer Science, RWTH Aachen, Germany
{lutz, sattler }@Qcs.rwth-aachen.de

February 28, 2001

1 Motivation

Since Modal Logics are an extension of Propositional Logic, they provide Boolean
operators for constructing complex formulae. However, most Modal Logics do
not admit Boolean operators for constructing complex modal parameters to
be used in the box and diamond operators. This asymmetry is not present
in Boolean Modal Logics, in which box and diamond quantify over arbitrary
Boolean combinations of atomic modal parameters [9]. Boolean Modal Logics
have been considered in various forms and contexts:

1. “Pure” Boolean Modal Logic has been studied in [9]. Negation and inter-
section of modal parameters occur in some variants of Propositional Dynamic
Logic, see, e.g., [7, 16, 22].

2. The modal box operator can be thought of as expressing necessity. More pre-
cisely, when employing the usual Kripke Semantics, Oy holds at a world w iff
w' being accessible from w implies that ¢ holds at w'. Given this, it is obviously
quite natural to define a symmetric operator @ (sometimes called “window” op-
erator) such that M holds at a world w iff ¢ holding at a world w’ implies that
w' is accessible from w. Obviously, the window operator can be thought of as
expressing sufficiency. Logics with this operator were investigated from different
viewpoints by, e.g., Humberstone, Gargov et al., and Goranko [17, 10, 13, 14].
If negation of modal parameters is available, the window operator comes for
free since we can write Mg ¢ as [R]—p. For other work related to the window
operator see, e.g., [2, 12, 11].

3. There are several Description Logics that provide “negation of roles” which
corresponds to the negation of modal parameters, see, e.g. [18]. Union and in-
tersection of modal parameters are also considered in Description Logics and
other KR formalisms, as is the window operator [11, 21].

Although—as we just argued—logics involving Boolean operators on modal

parameters or the window operator are widely used, to the best of our knowl-
edge, complexity results for this class of logics have never been obtained. In this
paper, we close the gap and determine the complexity of the satisfiability and
validity problems for many Boolean Modal Logics. In the first part of this pa-
per (Sections 2 and 3), we investigate the logic K, (K with a countably infinite
number of accessibility relations) enriched with negation of modal parameters
and show that the afore mentioned inference problems are ExpTime-complete
using an automata-theoretic approach. We then demonstrate the generality of
our approach by extending this result to the logic (K, ® K4,,)7, i.e., to the
fusion of K, with K4, enriched with negation on relations. In the second part
of this paper (Sections 4 and 5), we add other Boolean operators on roles. In
doing so, one has the choice to either restrict negation to atomic relations or to
allow for full negation of relations.

We give a complete list of complexity results for the logics obtained in this
way, the central result being that the combination of (atomic) negation with
intersection yields a logic whose inference problems are NExpTime-complete.
The lower bound is obtained by a reduction of a NExpTime-complete variant of
the domino problem. The mentioned result obviously implies that full Boolean
Modal Logic K*™" is also NExpTime-complete. However, the lower bound
crucially depends on the number of relations to be unbounded. Inspired by this
observation, in Section 5, we supplement our result by showing that, for any
fixed finite number of relations, full Boolean Modal Logic is ExpTime-complete.
The upper bound is proved by a reduction to multi-modal K (with finitely many
relations) enriched with the universal modality.

To complete our investigation, in Section 6 we show that K, with union and
intersection of roles and without negation is of the same complexity as pure K,
i.e., PSpace-complete. Summing up, we thus have tight complexity bounds for
K, extended with any combination of Boolean operators on roles.

2 Preliminaries

In this section, we define syntax and semantics of K, and discuss some model-
and complexity-theoretic properties of this logic.

Definition 1 Given a countably infinite set of propositional variables ® and
a countably infinite set of atomic modal parameters Ry, Ro, ..., the set of K-
formulae is the smallest set that

e contains the propositional variables in ®,
e is closed under boolean connectives A, V, and —, and

e if it contains ¢, then it also contains (R;) ¢, [Ri] ¢, (7 R;) ¢, and [~R;] ¢
fori > 1.

The set of K-modal parameters is the smallest set containing all atomic modal
parameters and their negations (i.e., expressions of the form —R;).

The semantics of K -formulae is given by Kripke structures
M= <W,7T,R1,R2,. . .),

where W is a set of worlds, w is a mapping from the set of propositional variables
into sets of worlds (i.e., for each p € ®, 7(p) is the set of worlds in which p holds),
and R; is a binary relation on the worlds W, the so-called accessibility relation
for the atomic modal parameter R;.

The semantics is then given as follows, where, for a K J-formula ¢, a Kripke
structure M, and a world w € W; the expression M, w [= ¢ is read as “p holds
in M in world w”.

M, w = p; iff we n(p;) forp € ®

M,wEpr Aps iff M,w @ and M,w = 9

My,wE @1 Vs iff MiwlE e or M,w = ¢

M,w |~ iff M, wlE o

M,w = (R;)p iff there exists w’ € W with (w,w') € R; and M,w' |= ¢
M,wE[Ri]e iff forallw € W,if (w,w') € R;, then M,w' | ¢
M,w E (=R;) ¢ iff there exists w' € W with (w,w') € R; and M,w' E ¢
M,w E[-R;]e iff forall w' € W, if (w,w') € R;, then M,w' = ¢

A K -formula ¢ is satisfiable iff there is a Kripke structure M with a set of
worlds W and a world w € W such that M, w |= ¢. Such a structure is called
a model of p. Two K -formulae ¢ and ¢ are equivalent (written ¢ =) iff
M,w E ¢ <= M,w [¢ for all Kripke structures M with set of worlds W
and worlds w € W. Let R be a modal parameter. We write M, (w,w’) = R
to express that (i) (w,w') € R; if R is an atomic modal parameter R; and (ii)
(w,w") ¢ R; if R =-R; for an atomic modal parameter R;.
A

Throughout this paper, we denote modal parameters by R and S. For the
sake of brevity, we will often omit the word “modal” when talking about modal
parameters. As usual, we write ¢ — ¢ for =V and ¢ < ¢ for (¢ = V)A (Y —
©). The semantics of the window operator discussed in the introduction can
formally be defined as follows:

M,wEDgR, ¢ iff forallw € W,if M,w' |= ¢, then (w,w') € R;

Obviously, we have Mg, ¢ = [-R;]—p, and, hence, the window operator is avail-
able in K7].

It is not hard to see that satisfiability of K -formulae is ExpTime-hard and in
NExpTime: (i) satisfiability of K%-formulae, where K* is uni-modal K enriched
with the universal modality, can be reduced to the satisfiability of K -formulae:
Just replace

e every occurrence of [u] ¢ by [R]¢ A [-R] ¢ and

e every occurrence of (u) ¢ by (R) ¢V (=R) ¢

where [u] and (u) denote the universal modality, and R is an arbitrary atomic
modal parameter. This translation may clearly lead to an exponential blowup
in the formula. However, in the class of formulae used to prove the ExpTime-
hardness of K* [25], [u] occurs only once, and (u) does not occur. In this case,
the translation is linear, and, thus, satisfiability of K -concepts is ExpTime-
hard; (ii) when using the standard translation of modal formulae into first order
formulae (see, e.g, [5, 3]), K_-formulae are translated to first-order formulae
with at most 2 variables. Since L2, the two-variable fragment of first-order logic,
is decidable in NExpTime [15], this implies that satisfiability of K_-formulae
is also in NExpTime. However, these two complexity bounds are obviously not
tight. One main contribution of this paper is to give an ExpTime-algorithm for
the satisfiability of K -formulae, thus tightening the complexity bounds.

For devising a satisfiability algorithm, it is interesting to know what kind of
models need to be considered. In [10], it is proved that K has the finite model
property. K, does not have the tree model property since, e.g., the formula
pA[~R]—p has no tree model. However, we will show that there exists a one-to-
one correspondence between models and so-called Hintikka-trees which we then
use to decide satisfiability (and thus validity) of K7 -formulae. We do this by
building, for each K -formula ¢, a looping automaton A, which accepts the
empty (tree-) language iff ¢ is unsatisfiable. Hence we introduce trees, looping
automata, and the language they accept here.

Definition 2 Let M be a set and k& > 1. A k-ary M-tree is a mapping
T:{1,...,k}* — M that labels each node a € {1,...,k}* with T(a) € M.
Intuitively, the node «ai is the i-th child of a. We use € to denote the empty
word (corresponding to the root of the tree).

A looping automaton A = (Q,M,I,A) for k-ary M-trees is defined by a set
QQ of states, an alphabet M, a subset I C (Q of initial states, and a transition
relation A C Q x M x Q.
A run of A on an M-tree T is a mapping r : {1,...,k}* — Q with

(r(a), T(a),r(al),...,r(ak)) € A

for each av € {1,...,k}*.
A looping automaton accepts all those M-trees for which a run exists, i.e.,
the language L(A) of M-trees accepted by A is

L(A) = {T | There is a run from A on T}.

Since looping automata are special Biichi automata, emptiness of their language
can effectively be tested using the well-known (quadratic) emptiness test for
Biichi-automata [26]. However, for looping tree automata, this algorithm can
be specialized into a simpler (linear) one.

3 Negation of Modal Parameters

We show that satisfiability of K -formulae is decidable in exponential time.
For this purpose, we first abstract from models of K -formulae to Hintikka-
trees, and then show how to construct a looping automaton that accepts exactly
Hintikka-trees.

Notation: We assume all formulae to be in negation normal form (NNF), i.e.,
negation occurs only in front of atomic parameters and propositional variables.
Each formula can easily be transformed into an equivalent one in NNF by push-
ing negation inwards, employing de Morgan’s law and the duality between [R]
and (R) and between [-R] and (—R). We use @ to denote the NNF of —p.

Since we treat modalities with negated and unnegated modal parameters
symmetrically, we introduce the notion

(Ryp = (-R)¢ if R is atomic,
7= (S)e if R = —S for some atomic parameter S

and analogously [R] ¢.
Let cl(¢) denote the set of ¢’s subformulae and the NNF's of their negations,
ie.,
cl(e) :=={y| 1 is a subformula of ¢ or
Y = p for a subformula p of ¢}.

We assume that diamond-formulae (R) in cl(¢) are linearly ordered, and
that D(i) yields the i-th diamond-formula in cl(yp).

Definition 3 (Hintikka-set and Hintikka-tree)
Let ¢ be a K_-formula and k the number of diamond-formulae in cl(p).
A set ¥ C cl(yp) is a Hintikka-set iff it satisfies the following conditions:

(H1) if o1 Ao € T, then {p1,¢p2} C T,
(H2) if p1 Vo € U, then {p1,p2} NT £ (,
(H3) {,v} ¥ for all K -formulae .

A k-ary 29)_tree T is a Hintikka-tree for ¢ iff T'(a) is a Hintikka-set for
each node a in T', and T satisfies, for all nodes «, 5 € {1,...,k}*, the following
conditions:

(H4) ¢ € T(e),

(H5) if {{R)¢,[R]p1,...,[R]pm} C T(a) and D(i) = (R) ¢,
then {¢, p1,...,pm} C T(ai)

(H6) if D(i) € T(a), then T(ai) =0,
(HT7) if [R]p € T(a), then p € T(8), p € T(B), or T(B) =0,

(H8) if {[R] p, [R]%} C T(a) and 5 € T(8), then v € T(8).

For (H5), (H7), and (HS8), recall that R denotes atomic parameters and also
negations of atomic parameters.

Lemma 4 A K -formula ¢ is satisfiable iff ¢ has a Hintikka-tree.

Proof: Let ¢ be a K_-formula and let there be k& diamond-formulae in cl(ip).

“e” Let T be a Hintikka-tree for . We define a Kripke structure M =
(W, 7, Rq,...) as follows:

W = {ae{l,....k}* | T(a) # 0}
m(p) = {a|peT(a)}forallped®
Ri = {(e,B)|B=cjand £(j) = (Ri) € T(a)} U
{(e,8) | [Ri]¢ € T(a) and ¥ € T(B)}

To show that there exists a w € W such that M,w = ¢, we first prove the
following claim:

Claim: ¢ € T(«) implies M, a =1 for all a € W and ¢ € cl(yp).

The claim is proved by induction over the structure of 1. The induction start,
i.e., the case that ¢ is a propositional variable, is an immediate consequence
of the definition of M. For the induction step, we make a case distinction
according to the topmost operator in 9. Assume ¢ € T'(a).

e ¢y = —p. Since ¢ is in NNF (by the definition of Hintikka-sets and cl),
p is a propositional variable. By definition of M and since T'(a) is a
Hintikka-set and thus satisfies (H3), we have M, «a |= —p.

e)= @1 ANyy or ¥ = @1 V py. Straightforward by (H1) and (H2) of
Hintikka-sets and by induction hypothesis.

e ¢y = (Ryp = E(j) for a j with 1 < j < k. First assume that R = R;,

i.e.,, R is atomic. By definition of R;, we have (o, aj) € R;. By (H5),
(R;) p € T'(«) implies p € T'(«j). By induction, M, aj = p, and, hence,
M,Oé |: <R£> p-
Now assume that R = —R; for an atomic parameter R;. We show that
(o,) ¢ R;, for, if we have done this, M,a | (R)p follows as in the
previous case (where R is atomic). Assume to the contrary that (a,aj) €
R;i. Then, by definition of R;, we have either

1. £(j) = (Ri) p' € T(a), or
2. ["Ri]p' € T(a) and p' € T'(aj)

where p' € cl(p). In the first case, we have a contradiction to the assump-
tion £(j) = (=R;)p. In the second case, we have {(=R;)p,[~R;]p'} C
T(«) which, by (H5), implies {p,p'} C T(ayj). Since we also know that
p € T(aj), we obtain a contradiction to (H3) of Hintikka-sets and con-
clude that (o, aj) ¢ R;.

e) = [R]p. First assume that R = R;, i.e., R is atomic, and fix a such
that (a, 8) € R;. By definition of R;, we have to distinguish two cases:

1. f=aj and £(j) = (R;) p' € T(a), or
2. ["R;]p' € T(a) and p' € T(S)

In the first case, we have {(R;) p',[R;] p} C T'(«) which, by (H5), implies
{p,p'} C T(aj). By induction, we obtain M, = p. In the second case,
we have {[R;]p,[-Ri]p'} C T(a) and p' € T'(5). By (HS8), we have
p € T(B), and, by induction, M, 8 = p. Slnce this holds independently of
the choice of 3, we conclude M, a |= [R;] p.

Now assume that R = —R; for an atomic parameter R;. Fix a such that
(a,8) ¢ R;. Since B € W, we have that T'(3) # 0. Hence, by (HT), we
have p € T'(B) or p € T(B). However, p € T(3) would imply (o, 8) € R;
by definition of R;, which is a contradiction to our choice of . Hence we
deduce p € T(B). By induction, we obtain M, £ p. Since this holds
independently of the choice of 3, we conclude M, a |= [-~R;] p.

This completes the proof of the claim. Since ¢ € T'(¢) by (H4), it is an imme-
diate consequence of the claim that M is a model of .

“=” Let M = (W,7,R1,...) beamodel of v, i.e., there exists a wy € W with
M, wy |= . We define a Hintikka-tree for ¢ (i.e., a Hintikka-set label T'(a/) for
each « € {1,...,k}*) that satisfies (H4) to (H8). To do this, we inductively
define a mapping 7 from {1,...,k}* to W U { L} in such a way that

o) = { {# €0 M@ o)) 24 "

otherwise
For the induction start, set

T(e) = wo

T(e) = {¢edlp)| M w =1}

Now for the induction step. Let o € {1,...,k}* such that 7(a) is already
defined, and let i € {1,...,k}. We make a case distinction as follows:

T(a) # L and £(i) = (R)¢ € T(a). By (x), we have M, 7(a) |E (R)
which implies the existence of a world w € W such that M, (7(a), w)
and M,w [= 1. Choose such a w and define 7(ai) := w and T'(i) :

{p € cllp) | M,w E p}.

¥
R

2. if o, 7 do not match the above case, set 7(ai) = L and T'(ai) = 0.

By definition, T and 7 satisfy (). We need to prove that the k-ary 2°(#)-tree
T just defined is a Hintikka-tree for ¢. From the semantics of K7 and the
definition of cl, it is clear that T'(a) is a Hintikka-set for each a € {1,...,k}*.
Hence, it remains to show that T satisfies (H4) to (HS).

(H4) Satisfied by definition of T' (see induction start).

(H5) Let {(R)¢,[R]p1,---,[R] pm} C T(a) and £(i) = (R) . By (x), we have
T(a) # L and M,7(a) = (R)¢) A [R]p1 A--- A [R] pm. By definition of
7 (induction step, first case), we have 7(ai) = w for some w € W, with
M, (1(a),w) = R, and M, w = 1. Moreover, the semantics of K] implies
M,w E p1 A+ A pp, and, by (%), we thus have {¢, p1,...,pm} C T(ad).

(H6) Satisfied by definition of T' (see induction step, second case).

(H7) Let [R]Y € T(a) and fix a 8 € {1,...,k}*. If 7(8) = L, then we have
T(B) = 0 by (x) and (HT7) is satisfied. If 7(8) # L, then 7(3) € W and

we have either M, 7(8) |E ¢ or M,7(f) |E ¢. Again, (x) implies that
(H7) is satisfied.

(H8) Assume {[R]p,[R]¢} C T(a) and p € T(B). By (x), we have M, 7(a) |=
[R] p A [R]¢ and M, 7(B) |= p. This implies M, (1(a),7(8)) & R since
1. we have either M, (7(a),7(8)) E R or M, (1(a),7(8)) E R and
2. M, (r(a),7(8)) E R is not possible since M,7(a) = [R]p and
M, 7(B) p.
Hence, due to the semantics of K, we have M, 7(8) |= , which, by (%),

implies ¢ € T(5).
O

Thus, we have that Hintikka-trees are appropriate abstractions of models of
K -formulae. Hintikka-trees enjoy the nice property that they are trees, and we
can thus define, for a K j-formula ¢, a tree-automaton A, that accepts exactly
the Hintikka-trees for .

Definition 5 For a K -formula ¢ with k£ diamond-formulae in cl(y), the loop-
ing automaton A, = (@, 2¢(¢) A, T) is defined as follows:

o Let P = {{[R]¢,[R]p} |[R]¢,[R]p € cl(p)},
S = ARy [[R]Y € clp)},

@ is the set of all those elements (¥, p, s) of
{® € 299) | ¥ is a Hintikka-set} x 2F x 25
satisfying the following conditions:

1. if {[R] p,[R]} € pand p € ¥, then 1) € ¥,

2. if [R]p € s, then U = or {p,p} NPT # 0,
3. if [R]p € ¥, then [R]p € s, and
4. if {[R] p,[R]¥} C ¥, then {[R]p, [R] ¢} € p.
o [={(T,p,s)]|pe T}
o ((\Ilapa 8)7\1’,: (\Illaplasl)a teey (\I’k,pk,Sk)) € Aiff
U=V p=p s;=sforalll<i<k, and
if D(i) =(R)y € ¥, then ¢ € ¥; and p € ¥, for each [R]p € ¥ and

if D(i) = (R)Y ¢ T, then ¥; = (.
A

Note that, since A, is a looping automata, every run is accepting. As a
consequence of the following lemma and Lemma 4, we can reduce satisfiability
of K -formulae to the emptyness of the language accepted by looping automata.

Lemma 6 T is a Hintikka-tree for a K -formula ¢ iff T € £L(A,).
Proof: Let ¢ be a K -formula and k&, A, as in Definition 5.

“=" Let T be Hintikka-tree for ¢. We prove that there is an accepting run
of A, on T'. First, define

p = {{[R]v¥,[R]p}| Thereis a node a in T with {[R],[R]p} C T(a)}
s := {[R]v | Thereis anode a in T with [R]v € T'(a)}

Next, we show that r(«) = (T'(«),p,s) is an accepting run of A, on T. By
definition, r is defined for each o € {1,...,k}*. We have to show that, for each
node « in T, r satisfies the following three conditions.

(i) 7(a) € Q. Let a be a node in T. Since T is a Hintikka-tree, T'(«)
is a Hintikka-set. It remains to prove that (T'(«),p, s) satisfies the four
properties of states @) in Definition 5.

1. If {[R] p,[R]) ¢} € p, then there is some node 3 with {[R]p,[R]¢} C
T(B). Hence if, additionally, p € T(a), then (H8) ensures that
e T(a).

2. If [R]p € s, then there is some node 8 with [R]p € T(3), and (HT)
ensures that T'(a) =0, p € T(a), or p € T(«).

3. & 4. are satiesfied by definition of p and s.

(if) r(e) € I. Since T is a Hintikka-tree for ¢, (H4) ensures that ¢ € T'(e),
hence r(e) = (T'(e),p,s) € I.

(111) ((T(Oé),p, 5)7 T(Oé), (T(Oll),p, S): BN (T(ak)7p7 S)) € A. There are Only
two conditions to prove: Firstly, if D(i) = (R)¢ € T(a), then (H5)
ensures that ¢ € T(ai) and, for each [R]p € T(«), (H5) ensures that
p € T(ai).

Secondly, if D(i) = (R) ¢ &€ T(«), then (H6) ensures that T'(«i) = 0.

“” Let T € L(A,) and r be an accepting run of A, on T'. We prove that T
is a Hintikka-tree for .

e By definition of A,, T is a k-ary 2¢)_tree, and r(a) = (Vy,Pa,sa)
implies ¥, = T'(a) by definition of A. Hence, by definition of @, each
node in T is labelled with a Hintikka-set. Let r(¢) = (T'(¢),p,s). Then,
by definition of A, for each node «, we have p, = p and s, = s.

e Let r(e) = (U, p,s), then ¢ € ¥, by definition of I and, since ¥, = T'(¢),
we have that T satisfies (H4).

e For (H5), let {(R) ¢, [R] p1,.-.,[R] pm} C T(a) and D(i) = (R) ¢. Again,
we have r(a) = (T'(a),p,s), and r(ai) = (T'(xi),p, s). Since r is a run of
A, on T, we have

(T(a),p,5),T(a), (T(ad),p,5),...,(T(ak),p,s)) € A,

which implies {¢,p1,...,pm} C T(ai) by Definition of A, and thus T
satisfies (H5).

e T satisfies (H6) due to the last implication in the definition of A and
since r(a) = (T'(a),p, 5).

e For (H7), let [R]p € T(«). Since r(a) = (T(«a),p,s) and, due to 3. in
the definition of @, we have [R]p € s. Then, for a node 3, we have
r(B) = (T'(B),p,s), and, due to 2. in the definition of Q, T(8) = 0 or

{p,p}NT(B) #0.

e For (H8), let {[R] p, [R]} C T(a)and p € T(3). Sincer(a) = (T(a),p, s)
and, due to 4. in the definition of @, we have {[R]p,[R]+} € p. Now
r(B) = (T(B),p, s) and, due to 1. in the definition of @), we have ¢ € T'(j3).

Summing up, A, accepts each Hintikka-tree for ¢ and, vice versa, each
Hintikka-tree for ¢ is accepted by A.,. O

What is the size of looping automata A, = (Q,, My, I,,A,)? Obviously,
the cardinality of cl(y) is linear in the length of ¢. Hence, by definition of
Ay, the cardinality of (), and M, are exponential in the length of ¢. Again
by definition of Ay, this implies that the cardinalities of I, and A, are also
exponential in the length of ¢. Hence, the size of A, is exponential in the
length of ¢. This fact together with Lemma 4, Lemma 6, and the fact that
emptiness of the language accepted by a looping automaton A, can be tested
in time polynomial in the size of A, we have that satisfiability of K -formulae
is in ExpTime. In Section 2, we already noted that satisfiability of K -formulae
is ExpTime-hard, and, hence, we obtain the following theorem:

Theorem 7 Satisfiability of K -formulae is ExpTime-complete.

10

3.1 (K,®K4,)" is also in ExpTime

In this section, we show that the same technique as in the previous section can
be used to prove that (K, ® K4,)7, i.e., the fusion of K, with K4, extended
with the negation of modal parameters, is also in ExpTime.

(K,®K4,)™ provides two disjoint sets of atomic modal parameters Ry, Ro, . . .
and Sy, S5, ..., where the latter are called transitive modal parameters. The syn-
tax of (K, ® K4,,)™ is the same as the one of K except that, in (K, ® K4,,)”,
transitive modal parameters may be used anywhere were modal parameters are
allowed in K. For the semantics, we restrict Kripke structures to those where
accessibility relations S; corresponding to transitive atomic parameters S; are
transitive.

Again, w.l.o.g., we assume that ¢ is in NNF.

Definition 8 A (K, ®K4,) -Hintikka-tree is a Hintikka-tree as in Definition 3
extended by the following two conditions:!

(H5b) if, for a transitive parameter S;, we have {(S;) ¥, [S:]p1,...,[Si]pm} C
T(«) and D(i) = (S;) ¢, then {&, p1, ..., pm, [Si] p1,- -, [Si] pm} C T(cvi)

(H8Db) if, for a transitive parameter S;, we have {[S;]%,[~S;]p} C T(a) and
5 € T(8), then {[Si] ¥, v} C T(B).

A
We can now “lift” Lemma 4 to the (K, ® K4,)” case.

Lemma 9 A (K, ® K4,) -formula ¢ is satisfiable iff ¢ has a (K, ® K4,,)™-
Hintikka-tree.

Proof: The proof is analogous to the one for Lemma 4. Let ¢ be a (K ,®K4,,)"-
formula and let there be k diamond-formulae in cl(p).

“e=” Let T be a Hintikka-tree for ¢. For each S € {Ry,...,S1,...}, define
relations Kg as follows:
Ks = {(a,B) €)= (S)¢ € T(a) and § = aj} U
{(a,8) | [~S]¢ € T(a) and § € T(8)}

Based on the relations K g, we define a Kripke structure M = (W, 7, R4,...,S1,...)
as follows:

W = {ae{l,....k}* | T(a) # 0}
w(p) = {a|p€eT(a)} forall pe o}

R; = Kg, foralli>1

S, = /Cgi foralli >1

INote that “R” in Definition 3 now denotes both standard and transitive modal parameters
and negations thereof.

11

where Kt denotes the transitive closure of the relation K. As for K7, the “only
if” direction is now an immediate consequence of the following claim:

Claim: ¢ € T(«) implies M, a =1 for all € W and ¢ € cl(yp).

The claim is proved by induction over the structure of 1». The induction start
and all but one case in the induction step are identical to the K case and omit-
ted here. The only interesting case is the following (note that the complement
of a transitive relation does not need to be transitive, hence we need to consider
only the positive case here):

e ¢p = [Si]p for a transitive atomic parameter S; with corresponding ac-
cessibility relation S;. Fix a § with (o, 8) € S;. We need to show that
M, B | p. By definition of M, there exists a sequence 7i,...,7, with
r > 2 such that

— (ve,v041) € Kg, for 1 <4 < r, and
— 1 =aand v = .

We show that [S;]p € T () implies [S;]p € T (vye41) for each 1 < £ < r.
By definition of Kg,, we have to distinguish two cases:

L. ve41 = vej and E(j) = (Si) p' € T'(ye), or
2. [=Si]p' € T(ve) and p' € T(e+1)

In the first case, we have {(S;) p', [Si] p} C T'(v¢) which, by (H5b), implies
{p, 0, [Si] p} € T(vej)- In the second case, we have {[S;] p, [S:] p'} C T (v¢)
and p' € T'(y¢4+1). By (H8b), we have {[S;] p,p} C T(ve41)-

Hence [Si]p € T'(yr—1) because [S;]p € T'(71). We can then use the same
arguments as in the proof of Lemma 4 to show that p € T'(v,), and thus
we have M, ~, |= p by induction.

“e=” Let M = (W,m,Rq,...,S1,...) be a model of ¢, i.e., there exists a
wo € W with M, wg |= ¢. Define a Hintikka-tree T based on M as in the proof
of Lemma 4. We need to show that T satisfies the additional properties (H5b)
and (H8b).

(H5b) Let {(Si),[Si]p1,---,[Sil pm} C T'(a) and E(i) = (S;) ¢ for a transi-
tive parameter S;. By (x), we have 7(a) # L and M, 7(a) |E (S;)¢ A
[Si]p1 A -+ A[Si] pm- By definition of 7 (induction step, first case), we
have 7(ai) = w for a w with M, (7(a),w) E S;, and M,w [¢. By
semantics of (K, ® K4,,)7, we also have M, w = p1 A -+ A ppy.

Now let w' € W such that M, (r(ai),w') | S;. Since S; is transitive,
we have M, (r(a),w') E S; and hence M,w' |E p1 A+ A pp. Since
this holds independently of the choice of w', we have that M, r(ai)
[Silpr A=+ A[Si] pm-

Summing up and applying (x), we obtain {¢, p1, ..., pm, [Si] p1,- -, [Si] pm} C
T ().

12

(H8b) Assume {[S;]%,[~S;]p} C T(a) and p € T(S) for a transitive param-
eter S;. By (%), we have M, 7(a) = [Si]¢ A [=Si]p and M, 7(5) E p.
Analogously to the corresponding case in the proof of Lemma 4, we de-
duce M, (t(a), 7(B)) = S; and M, 7(8) | ¢. As in the case (H5b), we
obtain M, 8 = [S;] ¢, and, by (x), we conclude {4, [S;] ¢} C T(B).

It remains to construct a looping automaton that accepts exactly the Hintikka-
trees for a given (K, ® K4,,) -formula ¢. This constructions is a simple exten-
sion of the one for K -formulae with the approriate translations of the additional
properties (H5b) and (H8b). More precisely, the construction is the same as
the one in Defintion 5, with an additional fifth condition in the definition of Q
as a translation of (H8b), and an additional implication in the definition of A
as a translation of (H5b).

Definition 10 For a (K, ®K4,) -formula ¢ with & diamond-formulae in cl(¢),
the looping automaton A, = (@, 2¢(9) A, T) is defined as follows:

o Let P = {{[R]¥,[R]p}|[R]",[R]p € cl(p)},
S = ARy [[R]Y € cl(p)},
@ is the set of all those elements (¥, p, s) of

{® € 29¢%) | ¥ is a Hintikka-set} x 27 x 25
satisfying the following conditions:
1. if {[R] p,[R]%} € pand p € ¥, then 1) € ¥,
2. if [R]p € s, then ¥ = or {p,p} NT # (),
3. if [R]p € ¥, then [R]p € s,
4. if {[R] p,[R]¥} C ¥, then {[R] p,[R] ¢} € p, and
5. if {[S;] ¥, [=Si]p} € p and p € ¥ for a transitive parameter S;, then
o I={(¥,p,s)|pe T}
hd ((\I’apa 8)7 \I’Ia (\Illapla 81)7 vy (\Ilkapka Sk)) € Aiff
=0 p=p si=sforalll<i<k, and
if D(i) =(R)y € ¥, then ¢ € ¥; and p € ¥, for each [R]p € ¥
if D(i) = (S;) ¢ € ¥ for a transitive parameter S;, then [S;]p € U;

for each [Si]p € ¥ and
it D(i) = (R)¢ ¢ U, then ¥; = 0.

13

With the remarks above, the proof of the following lemma is completely
analogous to the one of Lemma 6, and thus omitted.

Lemma 11 T is a Hintikka-tree for a (K, ® K4,,) -formula ¢ iff T' € L(A,).
Analogously to Theorem 7, we obtain the following theorem:

Theorem 12 Satisfiability of (K, ® K4,) -formulae is ExpTime-complete.

4 Adding Intersection and Union of Modal Pa-
rameters

In this section, we investigate the complexity of adding intersection and union
of modal parameters to the logic K. In doing this, one has the choice to either
restrict the applicability of negation to atomic modal parameters or allowing
for full negation w.r.t. modal parameters. In the latter case, adding union is
obviously equivalent to adding intersection or both.

We start with the smallest extension, i.e., we add either intersection or union
on modal parameters while restricting negation to atomic parameters.

Definition 13 A K&ﬁ)’u—formula (K&ﬁ)’ﬂ—formula) is a K_-formula
which, additionally, allows for modal parameters of the form S; U --- U Sy
(S1 N---NSk), where each S; is an atomic or a negated atomic parameter.
The semantics of the new modal operators is defined as follows:

M,wE (S1U---USk) e iff Fw' € W with M, (w,w') E S; for
some i € {1,...,k} and M,w' = ¢
M,wE[S1U---USkle iff Yu' e W, if M, (w,w") E S; for
some i € {1,...,k}, then M,w' E ¢
M,wE(S1N---NSk) e iff Jaw' € W with M, (w,w") E S;
forall 1 <i<kand M,w' =
M,wE[SiN---NSkle iff V' e W, if M, (w,w') ES;
for all 1 <i <k, then M,w' |=¢

Let us first investigate the logic Kff)’u. It is not hard to see that

[SiU---USkle = [Si]eA---A[Sk]p and
(S1U---USk e = (S1)eV---V[Sk]e,

i.e., satisfiability of Kff)’u—formulae can be reduced to satisfiability of K-
formulae. However, this naive reduction might lead to an exponential blow-up
of the formula. In order to avoid this blow-up, we can proceed as follows to

transform a K" -formula 1 into an equivalent K -formula 12 whose length is

14

linear in the length of 1): As the first step, recursively apply the following substi-
tutions to v from the inside to the outside (i.e., no union on modal parameters
occurs in @)

[S1U---USkle ~ [Si]py A---A[Sk]p, and
(S1U---USp)e ~ (S1)py V-V [Sk]pe

where p,, is a new propositional variable. Call the result of these substitutions
'. Secondly, use a new modal parameter R and define

{ﬁ\ = YA /\ [R](py <>) A[=R](py < ¢)

py occurs in ¥’
It can easily be seen that this gives the following result.
Theorem 14 Satisfiability of Ku(,ﬁ)M—formulae is ExpTime-complete.

Next, we show that the satisfiability of K,(,:)1 _formulae is NExpTime-hard.
The proof is given by a reduction of a NExpTime-complete variant of the well-
known, undecidable domino problem.

A domino problem [4, 19] is given by a finite set of domino types. All domino
types are of the same size, each type has a quadratic shape and colored edges.
Of each type, an unlimited number of dominoe is available. The problem in the
original domino problem is to arrange these dominoe to cover the plane without
holes or overlapping, such that adjacent dominoe have identical colors on their
touching edges (rotation of the dominoe is not allowed). In the NExpTime-
complete variant of the domino problem that we use, the task is not to tile
the whole plane, but to tile a 27! x 2"+l torus, i.e., a 2! x 2"+ _rectangle
whose edges are “glued” together. See, e.g., [4, 19] for undecidable versions of
the domino problem and [6] for bounded variants. We now formally introduce
bounded domino systems.

Definition 15 Let D = (D, H,V) be a domino system, where D is a finite
set of domino types and H,V C D x D represent the horizontal and vertical
matching conditions. For s,t € N, let U(s,t) be the torus Z, x Z;, where Z,,
denotes the set {0,...,n — 1}. Let a = ag,...,a,_1 be an n-tuple of dominoe
(with n < s). We say that D tiles U(s,t) with initial condition a iff there exists
a mapping 7 : U(s,t) — D such that, for all (z,y) € U(s,t):

e if 7(z,y) =d and 7(x ®s 1,y) =d’, then (d,d') € H
e if 7(z,y) =d and 7(x,y ¢ 1) = d', then (d,d') € V
e 7(i,0) = a; for 0 <i < n.

where @,, denotes addition modulo n. Such a mapping 7 is called a solution for
D w.r.t. a. A

15

These bounded domino systems are capable of expressing the computational be-
haviour of restricted, so-called simple, Turing Machines (TMs). This restriction
is non-essential in the following sense: Every language accepted in time T'(n)
and space S(n) by some one-tape TM is accepted within the same time and
space bounds by a simple TM, provided that S(n),T(n) > 2n [6].

Theorem 16 [[6], Theorem 6.1.2] Let M be a simple TM with input alphabet
Y. Then there exists a domino system D = (D, H, V') and a linear time reduction
which takes any input z € ¥£* to an n-tuple a of dominoe with |z| = n such that

e If M accepts z in time t; with space sg, then D tiles U(s,t) with initial
condition a for all s > sq + 2, > tg + 2;

e if M does not accept z, then D does not tile U(s,t) with initial condition
a for any s,t > 2.

Corollary 17 There exists a domino system D such that the following is a
NExpTime-hard problem: Given an initial condition a = ag - --a,—1 of length
n, does D tile the torus U (27!, 27+1) with initial condition a?

Proof: Let M be a (w.l.o.g. simple) non-deterministic TM with time- (and
hence space-) bound 2" deciding an arbitrary NExpTime-complete language
over the alphabet ¥. Let D be the corresponding domino system and trans the
reduction from Theorem 16. The function trans is a linear reduction from L£(M)
to the problem above: For b € £* with || = n, it holds that b € L(M) iff M
accepts b in time and space 2/l iff D tiles U(2"*+1,27*!) with initial condition
trans(b). O

We reduce the NExpTime-complete variant of the domino problem from
Corollary 17 to the satisfiability of K,g:)" formulae. Given a domino system
D = (D,H,V) and an initial condition a = aq, ..., a,_1, we define a reduction
formula ¢(p) such that ¢(p 4 is satisfiable iff D tiles the torus U(2"+!,27+1)
with initial condition a. The reduction formula ¢(p 4) can be found in Figure 1.
In this figure, [u]p is an abbreviation for [R]¢ A [7R] ¢, where R is an arbi-
trary atomic modal parameter. Obviously, in each model of [u]p, each world
satisfies ¢. In Init, we write [R]™¢ for the n-fold nesting of [R], i.e., for

[B]---[R] p.
————r—

n times

Before we formally prove the correctness of the reduction, we discuss the un-
derlying intuition.

The general strategy is to define the reduction formula ¢p(p ,) such that, for
every model M of ¢(p ,) with set of worlds W,

1. there exists a propositional variable p,; for every domino type d € D such
that each w € W is in the extension of p, for exactly one d € D (see the
first line of Tiling),

16

2. for each point (4, §) in the torus U (2" +1, 27 +1) ' there exists a corresponding
set of worlds {wy,...,wr} C W with & > 1 and a d € D such that all
wi, ..., w are in the extension of py,

3. the horizontal and vertical conditions V' and H are satisfied w.r.t. sets of
worlds representing points in the plane (see the second and third line of
Tiling), and

4. the initial condition is satisfied (see Init).

Let us examine the structure of models of ¢(p ,) in detail. Let
M= W,m,Rs,Ry,Ros---,Rn,Sos---,Sny---)

be a model for ¢p 4). Every w € W is associated with a point (i, j) of the torus
U(27+1 27+1) . The number i is binarily coded by the propositional variables
Zo, - - -, Ty while the number j is binarily coded by the propositional variables
Yo, - -+, Yn- More precisely, we set

xpos(w) = 1o avi(w) * 2¢ and ypos(w) = B, B (w) * 2°
where

o1 ifwem(x) o1 ifwen(y)
ai(w) = { 0 otherwise and f;(w) = 0 otherwise

With pos(w), we denote the pair (xpos(w),ypos(w)). The first conjunct of the
Init formula ensures that pos(w) = (0,0) for all w with M,w |= ¢(p). The
Count, and Count, formulae together with the Stable formula ensure that, for
every w € W, there exist wy,ws € W such that

(a) M, (w,wr) | Ry and M, (w,ws) E Ry,
(b) xpos(w) = xpos(w) Ban+1 1 and ypos(ws) = ypos(w) Ban+1 1, and
(¢) xpos(wsy) = xpos(w) and ypos(wq) = ypos(w).

Here, the Count, and Count, formulae enforce Property (b) by a standard
encoding of binary incrementation by 1 modulo 2"*! (see, e.g., [6]). The Stable
formula enforces Property (c), i.e., Stable enforces that the R,-successors of a
world w satisfy the same y;, as w, and analogously for R, and z.

Informally speaking, models of ¢(p ,) can be thought of as having the form
of an infinite binary tree (in which some nodes may coincide) where paths p
of R, and R, relations lead to a world w such that xpos(w) is the number
of R, edges in p modulo 2"*!' and ypos(w) is the number of R, edges in p
modulo 2"*! . The modal parameters R, and R, are representing horizontal
and vertical successors in the torus.

As already noted, the domino types are represented by propositional vari-
ables pg with d € D, and the (first line of the) Tiling formula guarantees that
every worlds belongs to pg for exactly one d € D. We write dtype(w) to denote

17

n k

Count, = [u][/\ ((_1a:j)—>(a:k<—>[Rx]—|mk))/\
k=0 j=

ESIIS
|
= O

/\ ((—zj) = (Th & [Rz]xk)) A (Rz>true]

Count, like Count,, replace R, by Ry, z; by y;, and x by yi

n n

Stable = [u][A @ = Ryla) A N\ (~ax = [Ry] -2i) A

kio k;o
A i = Balyo) A N\ o = [Ral =)
k=0 k=0
Unique = [u][A ((a:k s [~Ry] ~ap) A (~ap — [—an]mk)) A
k=0
A (= S =w) A (we = [SiTwe)) A
k=0
N pi— [Rom---manSm---mSn]pd]
deD
Tiling = [u] [(\/ Pa) N /\ /\ =(pa Apar) N
deD deD d'eD\{d}
/\ pa — ([R:] \/ par) A
deD (d,d')eH
A pi— (R] \/ pa)]
deD (d,d")eG
Init = /\ (=i A i) A Puo A [Re] Py A+ A [Re])" "oy
k=0
C, = Count, A Count, A Stable A\ Unique A Tiling A Init

Figure 1: The Kfnﬁ)’m formula ¢(p q) for D= (D, H,V) and a = ag,...,an 1.

the d € D such that w € 7(pg). Since different worlds may be associated with
the same point in the torus, we must ensure that pos(w) = pos(w') implies
dtype(w) = dtype(w’). This is done by the Unique formula: For each 0 < i <,
this formula ensures that

18

M, (w,w") = R; if (i) w € n(z;) and w' € w(x;) or
(i) w &€ w(x;) and w' & w(z;) ,

and similarly for S; and y;. Furthermore, due to its last conjunct, Unique
guarantees that, for worlds w,w’ € W, if M, (w,w') E R; and M, (w,w") = S;
for each 0 < i < n, then w and w' are labelled by the same domino type, i.e.,
dtype(w) = dtype(w’). Recall that, if M, (w,w") E R; (M, (w,w") = S;), then
w and w’ coincide w.r.t. z; (y;). Hence the above relationship w.r.t. to all
R; and S; implies that w and w’ coincide on all 2; and y; and thus, that they
represent, the same point in the torus.

Before we prove the main proposition of the reduction, we establish some
properties of models of p(p q)-

Lemma 18 Let M be a model for pp ,) with set of worlds W and let a =
ag,...,an_1. For all (i,7) € U(2"+!,27+1) | there exists a w € W such that

pos(w) = (i, j)-

Proof: The proof is by induction over i 4+ j. For the induction start (i 4+ j = 0),
it suffices to note that

e pos(w) = (0,0) for all w € W with M, w |= ¢(p 4 by the first conjunct of
the Init formula and

e such a w exists since M is a model for ¢(p ,).

For the induction step, let (i,5) € U(2"+!,27+1). First assume i > 0. By
induction hypothesis, there exists a w' € W such that pos(w’) = (i — 1,7).
Since the Count, formula encodes incrementation by 1 modulo 2"+ w.r.t. R,
successors, there exists a world w such that M, (w',w) E R, and xpos(w) =
xpos(w') Ban+1 1. We have ypos(w) = ypos(w') since M, w' |= Stable. The case
J > 0 is analogous, just switch the roles of ¢ and j and replace R, by R, and
Count, by Count,,. O

In the following lemma, we use the dtype function which we already have argued
to be well-defined.

Lemma 19 Let M be a model of ¢p ,) with set of worlds W and let a =
ag,...,a,—1. Forallw,w’" € W, pos(w) = pos(w') implies dtype(w) = dtype(w’).

Proof: The choice of w,w’ implies that w and w' agree on the interpretation
of the propositional variables x,...,z, and yo, ..., y,. By the first two lines of
Unique, we have that M, (w,w") E R; and M, (w,w') E S; for 0 < k < n. It
is then an immediate consequence of the third line of the Unique formula that
dtype(w) = dtype(w'). O

We are now ready to prove the correctness of the reduction.

Proposition 20 A domino system D tiles the torus U (2"*!,2"*+1) with initial
condition a = ao, . .., an—1 iff p(p q) is satisfiable.

Proof: Let D= (D,H,V) and a = ag,- .-, @p—1-

19

“<” First, assume that ¢(p . is satisfiable, i.e., that there exists a Kripke
structure
M= (Waﬂ-aR.’EaRyaROa - '7Rna80a . aS'n,)

and some wo € W such that M,wp |= ¢(p,.). We show that D has a solution
w.r.t. a. Define a mapping 7 from U(2"*1,2""1) to D by setting 7(i,5) := d
iff dtype(w) = d for a w € W with pos(w) = (4,7). By Lemmas 18 and 19, 7 is
a well-defined total function. We need to show that 7 is a solution for D with
initial condition a.

Let (i,7) € U(2"*!,27%1) and i’ = i Ggn+1 +1. To show that 7 satisfies the
horizontal matching condition, we need to show that (7(i,5),7(i’,j)) € H. By
Lemma 18, there exists a world w such that pos(w) = (i,7). By Lemma 19
and definition of 7, we have dtype(w) = 7(i,j). By the Count, formula, there
exists a w’ € W such that xpos(w') = i’ and M, (w,w') |E R,. By the Stable
formula, we have ypos(w’) = j. Again, by Lemma 19 and definition of 7, we have
dtype(w) = 7(i’, j). By the second conjunct of the Tiling formula, we conclude
(1(i,7),7(i',7)) € H. The proof that the vertical matching condition is satisfied
is analogous. Taking into account the Count,, Stable, and Init formulae and
the definition of 7, it is straightforward to prove that the initial condition is
satisfied by using induction on n.

“=" Let 7 be a solution for D w.r.t. a. For two integers n,k € N with
0 < k < logyn, we denote the k’th bit in the binary representation of n by
bit;(n). We define a Kripke structure

M= (W,m,Ray Ry, Ros - Ry Sor - S -)

as follows:
W = {ai,]’ |0§’L,]S2n+1}
w(pa) = {a;;|7(,j)=d}forallde D
m(zy) = {a;; | bitg(i) =1} for 0 <k <n
w(yr) = {a;;|bitp(j) =1} for 0 <k <n

Ry = {(aij,ai ;)| =1iDgn+1 1}

Ry = {(aij,aij)|Jj =JSonsr 1}
for0<k<n: Ri = {(a;;,ay)| bitg(i) = bity(¢')}
for0<k<n: Sk = {(aij,ai)| bitg(j) = bitg(j)}

It is easy to verify that M, ao0 = ¢©(p,aq)- O

Summing up Proposition 20 and Corollary 17, we obtain a NExpTime lower
bound for Kh(;)’m—formulae. The corresponding upper bound follows from the
fact that the translation of K -formulae to L?>-formulae mentioned in Section 2

can also be applied to K""-formulae.

Theorem 21 Satisfiability of K formulae is NExpTime-complete.

20

5 Full Boolean Modal Logic

In this section, we investigate the complexity of full Boolean Modal Logic. Let
us start with introducing this logic formally.

Definition 22 A complexr modal parameter is a Boolean formula of atomic
modal parameters. We use K '™V to denote the extension of K, with complex
modal parameters. Let M = (W, 7, Rq,...) be a Kripke structure, and S a
(possibly complex) modal parameter. Then the extension £(S) is inductively
defined as follows:

if S = R; (i.e., S is atomic) then £(S) = R;

if § = 9’ then £(S) = (W x W)\ £(5")
ifS:Sl 052 then 5(5)25(51)05(52)
ifS:Sl USQ then g(S):g(Sl)Ug(Sg)

The semantics of formulae is extended as follows:

MyiwE(S)y if Fw eW with (w,w') € £(S) and M,w' | ¢
M,wE[S]e iff Vw' e W, if (w,w') € £(S), then M,w' = ¢

We write M, (w,w') E S iff (w,w') € £(S).
A

From Theorem 21 and the standard tranlation of K™Y into L?, we easily
obtain the following result:

Theorem 23 Satisfiability of K *™Y-formulae is NExpTime-complete.

However, it is interesting to note that the NExpTime reduction used to prove
Theorem 21 crucially depends on the fact that an infinite number of modal
parameters is available: Since the size of the torus to be tiled is not bounded,
there exists no upper bound for the number of the R; and S; parameters used for
the reduction either. Although Boolean Modal Logics usually provide an infinite
number of modal parameters (see, e.g., [9]), the question whether NExpTime-
hardness can still be obtained if only a bounded number of modal parameters is
available is natural. In the remainder of this section, we answer this question by
showing that satisfiability and validity of K ;""" i.e., full Boolean Modal Logic
with a fixed number m of modal parameters, is ExpTime-complete. The upper
bound is proved by a reduction to multi-modal K enriched with the universal
modality.

We show that satisfiability of K »™"“~formulae can be reduced to satisfiability
of K¥-formulae (i.e., formulae of multi-modal K enriched with the universal
modality) by giving a series of polynomial reduction steps. We do not introduce
K formally but refer the reader to, e.g., [25]. The following notions are central
to several of the reduction steps.

21

Definition 24 A Kripke structure M = (W, 7, Ry,... Ry, is called simple iff
we have R; NR; =P forall 1 <i < j < m. M is called complete iff, for all
w,w' € W, there exists a unique ¢ with 1 <4 < m such that (w,w') € R;. A
formula (of any logic defined in this paper) is called s-satisfiable iff it has a model
which is a simple Kripke structure. Similarly, a formula is called c-satisfiable iff
it has a model which is a complete Kripke structure. A

Note that every complete Kripke structure is also simple. We now describe the
reduction steps in detail. Let ¢ be a K ;™Y-formula whose satisfiability is to
be decided and let Ry, ..., Ry, be the modal parameters of K,;™".
Step 1. Convert all modal parameters in ¢ to disjunctive normal form using a
truth table. If the “empty disjunction” is obtained when converting a modal
parameter S, then replace every occurrence of (S)y with false and every occur-
rence of [S]y with true. Call the result of the conversion ¢;. The length of ¢
is linear in the length of ¢ since the number m of atomic modal parameters is
fixed (and the conversion can be done in linear time). It is easy to see that ¢
is satisfiable iff ¢ is satisfiable.

Since the conversion to DNF was done using a truth table, each disjunct
occurring in a modal parameter in ; is a relational type, i.e., of the form

Slﬂ"'ﬂsmwithSiZRiOI'Siz—'RZ’fOI“lg’L'Sm

Let T be the set of all relational types. As is easily seen, if M, (w,w") = S for
some Kripke structure M with set of worlds W, w,w’ € W, and S € T', then, for
every atomic modal parameters R;, this determines whether M, (w,w') E R;
holds. Hence, for every w,w’ € W, we have M, (w,w’) | S for exactly one
Serl.

Step 2. We reduce satisfiability of K,;""“-formulae of the form of ¢; (i.e, the
modal parameters are in DNF and hence U does not appear nested inside other
operators) to the satisfiability of K,(;)'M_formulae in which all modal parameters
are relational types. It is not hard to see that this can be done as in Section 4,
where KETW is reduced to K : In the reduction, just replace the formula
[Rl(py < @) A[=R](py ¢ @) with Agp[S](p, < ¢).2 The reduction can

again be done in linear time since m is fixed. The KS;)’ﬂ—formula obtained by
converting ¢ is called .

Step 3. We reduce satisfiability of Kg,:)M _formulae of the form of P2 to c-
satisfiability of Kom-formulae. Set n := 2™ and let Ky,..., K, be the atomic
modal parameters of the logic K,,. Let r be some bijection between I' and
the set {K1,...,K,}. The formula ¢3 is obtained from - by replacing each
element S of T in o with r(S). Considering the special syntactic form of @5 and
the definitions of T' and of c-satisfiability, it is easy to see that is satisfiable
iff 3 is c-satisfiable. Furthermore, the reduction is obviously linear. Note that

2This reduction ensures that all modal parameters in the resulting formula are relational
types.

22

using 2™ instead of m modal parameters does not spoil the reduction since,
ultimately, our reduction goes to satisfiability of multi-modal K enriched with
the universal modality, and this logic is known to be in ExpTime for any fixed
number of modalities [25].

Step 4. We reduce c-satisfiability of K, -formulae to s-satisfiability of K-
formulae. Define ¢, as the conjunction of p3 with the formula

X = [u](A [K1]n A= A [Knltbn = [l V-V)

P1,...,n subformulae of ¢3

Note that the length of ¢4 is polynomial in the length |p3] of p3: The number
of subformulae of o3 is bounded by |ps|; hence, x consists of at most |p3|°
conjuncts, where / is a constant since the number of modal parameters is fixed.
Let us prove that g is c-satisfiable iff (4 is s-satisfiable. The “only if” direction
is straightforward: Let M be a complete model for 3. Obviously, M is also
simple. Moreover, using the fact that M is complete, it is straightforward to
check that M is a model for 4. It remains to prove the “if” direction. Let
M= (W,r,Ky,...,K,) be a simple model for ¢4. We first show that

Claim. For each w,w’ € W, there exists an ¢ with 1 < ¢ < n such that, for all
subformulae ¥ of 3, M, w = [K(] implies M, w' |= 4.

Assume to the contrary that, for some w,w’ € W, there exist no £ as in the
claim. Hence, for each i with 1 < ¢ < n, there exists a subformula p; of ¢3 such
that M, w [= [K;]p; and M, w' [# p;. Since M is a model for y, we clearly have

Mow | [Ki]pr A= ANEplpn = [u](p1 V-V pn).

This is obviously a contradiction to the fact that M,w ¥ p1 V --- V p,, which
proves the claim.

Extend the Kripke structure M to M' = (W, n,K},...,K},) as follows: For
any w,w’ € W with (w,w") ¢ K; for all ¢ with 1 <7 < n, augment K, with
the tuple (w,w’), where £ is as in the claim. Obviously, M’ is complete. It is
now a matter of routine to prove that M,w = ¢ implies M',w [¢ for all
subformulae 1 of 3. The proof is by induction over the structure of 1. The
only interesting case is:
W =[K;]¢'. Let (w,w') € K;. We need to show that M', w' |=4'. First assume
that (w,w") € K;. Since M, w [= 1, this implies M, w’ |= 4. By induction, we
have M',w' = ¢’ and are done. Now assume (w,w’) € K} \ K;. By definition of
K}, we have that M, w = [K;]p implies M, w' [= p for all subformulae p of ;.
Since 1 is a subformula of y3, we have M,w' |= ¢'. Tt remains to apply the
induction hypothesis.

Since M is a model for ¢4, we have that M’ is a model for 3. O

Step 5. It remains to prove that s-satisfiability of K -formulae is decidable in
ExpTime. This is, however, an easy consequence of the facts that satisfiability

23

of K¥-formulae is in ExpTime and that K" has the tree model property: since
every tree model is obviously simple, satisfiability coincides with s-satisfiability.

The sequence of reductions given above yields an ExpTime upper bound for the
satisfiability of K;»™"-formulae. Since the lower bound for K already holds
if we have only a single modal parameter available (again, see [25]), we obtain
the following theorem.

Theorem 25 Satisfiability of K;,"“-formulae (i.e., K™Y with a
bounded bumber of modal parameters) is ExpTime-complete.

The sequence of reductions given above immediately yields an upper bound for
the satisfiability of K;™"-formulae. Since the lower bound for K already
holds if we have only a single modal parameter available (again, see [25]), we
obtain the following theorem.

Theorem 26 Satisfiability of K,,""Y-formulae (i.e., K™Y with a
bounded bumber of modal parameters) is ExpTime-complete.

6 Boolean Modal Logics without Negation

So far, we have only considered logics with negation of modal parameters. We
will complete our investigation by showing that adding intersection and union of
modal parameters does not increase the complexity of K,, (and thus neither the
complexity of K, is increased by this extension). The fact that the extension
of K,, with intersection of modal parameters (i.e., K[) is still in PSpace is an
immediate consequence of PSpace-completeness of the Description Logic ALCR
[8] and the fact that ALCR is a notational variant of K[} [24]. Moreover, it is
folklore that K, extended with union of modal parameters (i.e., KY) is also
in PSpace (however, the reduction from Section 4 cannot be applied since the
universal modality is not available). For both union and intersection, we go into
more detail.

With K[V, we denote the variant of K™ obtained by disallowing the
use of negation of modal parameters. In the following, we will present a slight
extension of the standard PSpace tableau algorithm for K, K-World [20], to
decide satisfiability of K)“-formulae. Please note that we cannot adapt the
reduction from the previous section since the disjunctive normal form of a com-
plex modal parameter can yield an exponential blow-up if the number of boolean
parameters is not bounded. When started with an input formula ¢, K-World
decides ’s satisfiability by recursively searching a finite tree-model of ¢ in a
depth-first manner. For each world w in this tree model, it checks whether the
set A of formulae that w must satisfy is not contradictory. Then, for each v
in A, K-World is called recursively with ¢ and all p with Op in A.

To extend K-World to K{}'¥, it is comfortable to view the semantics of roles
in a different way. For S a complex modal parameter and s a set of atomic
modal parameters, we say s = S iff s, when viewed as the valuation that maps
each R; € s to true and each R; ¢ s to false, evaluates the Boolean expression S

24

to true. Then (w,w') € £(S) iff there is a set s of atomic modal parameters with
s E S and (w,w') € R; for each R; € s. The only modifications to K-World
concern the recursive calls for diamond formulae which are more elaborate in the
presence of complex modal parameters. For each (S) ¢ in the set A of formulae
currently considered, we guess an s with s | S, and then consider ¢ together
with all p where [S"] pisin A and s E S'.

For the sake of a succinct presentation, we assume the input formula ¢ to
contain no disjunction and no diamond-formulae. For A and S sets of K[“-
formulae where S is closed under subformulae and single negations, K'*V~-World(A, S)
returns true iff

e A is a maximally propositionally consistent subset of S, i.e.,

- ACS,
— for each «p € S, € Aiff v € A, and
— for each 1 Apo € S, 01 A2 € Aiff Yy € A and ¢ € A.
e For each subformula = [S]v¢ € A, there exists a set s of modal parameters
with s =S and a set Ay such that
- _Idj e A’l/)787
— for each S" and p, if [S']p € A and s = S', then p € Ay 5,

— K{""—World(Ay 4, S') returns true, where S’ is the closure under
subformulae and single negation of {p | [S']p € A and s E S'} U

{1}

Let cl(¢) be the smallest set of formulae containing ¢ that is closed under
subformulae and single negation. The proof that a K)“~formula ¢ is satisfiable
iff there exists a A C cl(¢) with ¢ € A such that

K "Y-World(A, cl(¢)})

returns true is analogous to the one for K-World. Just like K-World, K')*V-World
runs in PSpace (since PSpace = NPSpace [23], the additional non-deterministic
guessing of the set of modal parameters s does not matter). Moreover, K is
known to be PSpace-hard [20], and we thus have the following result.

Theorem 27 Satisfiability of K'"-formulae is PSpace-complete.

7 Conclusion

We have given a complete picture of the complexity of Boolean Modal Logics,
both with and without a bound on the number of modal parameters. The results
for (fragments of) Boolean Modal Logic with an unbounded number of modal
parameters are summarised in Figure 2, showing known results in grey.

We have proved that K is in ExpTime using looping automata, which
turned out to be rather elegent a technique for two reasons. Firstly, we did

25

not need to bound the size of models/Hintikka trees since the looping automata
we used work on infinite trees. Secondly, disjunctions were handled simply by
introducing non-deterministic transitions of the automaton, which are harmless
since the emptyness problem for non-deterministic looping automata is polyno-
mial. Finally, we extended the automata approach to (K, ® K4,)™ to show
that it is also applicable to similar logics.

NExpTime-hardness of Kff)’ﬁ was rather surprising since so far, intersection
of atomic modal parameters (not of chainings/composition of modal parame-
ters) is mostly considered to be “harmless” w.r.t. complexity. Interestingly, we
were able to show that, if a bound m is imposed on the number of atomic modal
parameters, then full Boolean Modal Logic K;>™"“ becomes ExpTime-complete.
For this proof, we did not use the automata-based approach because we con-
sidered that extending it to take care of complex modal parameters was more
involved than the reduction to K% that we used.

As future work, it may be interesting to extend our techniques to more ex-
pressive logics. For example, one may consider arbitrary combinations of the
Boolean operators on modal parameters with composition and converse. Several
results for such logics are known from the area of Propositional Dynamic Logics
(PDL). For example, Harel proves that PDL extended with negation of modal
parameters is undecidable using a reduction to the equivalence problem for rela-
tion algebra [16]. It is not hard to see that a similar reduction (of the equivalence
problem of boolean algebras of relations with composition only, see, e.g., [1])
can be used to show that Boolean Modal Logic extended with composition of
modal parameters is undecidable. On the contrary, it follows from Danecki’s
results on PDL with intersection that K" extended with composition is de-
cidable in double ExpTime [7]. As we demonstrated by extending our results to
(K, ® K4,)7, our automata-based approach to proving ExpTime-bounds can
be considered flexible. As a first step towards more expressive logics, we hope
that our approach can be “married” with the standard automata-based decid-
ability procedure for PDL thus yielding a decidability result for PDL extended
with atomic negation of modal parameters.

Acknowledgments

The authors would like to thank Franz Baader, Stephane Demri, Marcus Kracht,
Agnes Kurucz, and Maarten Marx for fruitful discussions. The first author

no negation atomic negation | full negation
— PSpace-compl. ExpTime-compl.
U PSpace-compl. | ExpTime-compl. | NExpTime-compl.
N PSpace-compl. | NExpTime-compl. | NExpTime-compl.
N and U | PSpace-compl. | NExpTime-compl. | NExpTime-compl.

Figure 2: Complexity of K, extended with various role constructors.

26

was supported by the DFG Project BA1122/3-1 “Combinations of Modal and
Description Logics”.

References

[1] H. Andreka, I. Nemeti and I. Sain. Algebraic Logic. In Handbook of Philo-
sophical Logic, Vol. D2, 2nd edition. Forthcoming.

[2] J.F.A.K. van Benthem. Minimal deontic logics. Bull. of Sec. of Logic,
8(1):36-42, 1979.

[3] J.F.AK. van Benthem. Modal Logic and Classical Logic. Bibliopolis,
Naples, 1983.

[4] R. Berger. The undecidability of the dominoe problem. Mem. Amer. Math.
Soc., 66, 1966.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. forthcoming.
preprint available at http://turing.wins.uva.nl/~mdr/Publications/modal-
logic.html.

[6] E. Borger, E. Gridel, and Y. Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1997.

[7] S. Danecki. Nondeterministic propositional dynamic logic with intersection
is decidable. In A. Skowron (ed.), Proc. of the 5th Symp. on Computation
Theory, volume 208 of LNCS, pages 34-53, 1984. Springer.

[8] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proc. of KR-91, Boston, MA, USA, 1991.

[9] G. Gargov and S. Passy. A note on boolean modal logic. In D. Skordev,
editor, Mathematical Logic and Applications, pages 253-263, New York,
1987. Plenum Press.

[10] G. Gargov, S. Passy, and T. Tinchev. Modal environment for Boolean
speculations. In D. Skordev, editor, Mathematical Logic and Applications,
pages 253-263, New York, 1987. Plenum Press.

[11] R. Givan, D. McAllester, and S. Shalaby. Natural language based inference
procedures applied to schubert’s steamroller. In K. Dean, Thomas L.;
McKeown, editor, Proceedings of the 9th National Conference on Artificial
Intelligence, pages 915-922. MIT Press, July 1991.

[12] R. Goldblatt. Semantic analysis of orthologic. Journal of Philosophical
Logic, 3:19-35, 1974.

[13] V. Goranko. Completeness and incompleteness in the bimodal base
L(R,—R). In Proc. of the Conf. on Mathematical Logic “Heyting 88",
Chaika, Bulgaria, New York, 1987. Plenum Press.

27

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

V. Goranko. Modal definability in enriched languages. Notre Dame Journal
of Formal Logic, 31(1):81-105, Winter 1990.

E. Gridel, P. Kolaitis, and M. Vardi. On the Decision Problem for Two-
Variable First-Order Logic. Bulletin of Symbolic Logic, 3:53-69, 1997.

D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, Volume II, pages 496-604. D. Reidel Pub-
lishers, 1984.

I. L. Humberstone. Inaccessible worlds. Notre Dame Journal of Formal
Logic, 24(3):346-352, 1983.

U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in
the framework of resolution. In R. Caterra and G. Salzer (eds.), Automated
Deduction in classical and non-classical logic, volume 1761 of LNAI, pages
191-205. Springer-Verlag, 1996.

D. Knuth. The Art of computer programming, volume 1. Addison Wesley
Publ. Co., Reading, Massachussetts, 1968.

R. E. Ladner. The computational complexity of provability in systems
of modal propositional logic. SIAM Journal of Computing, 6(3):467-480,
1977.

C. Lutz and U. Sattler. Mary likes all cats. In F. Baaer and U. Sattler,
editors, Proceedings of the 2000 International Workshop in Description
Logics (DL2000), number 33 in CEUR-WS, pages 213-226, 2000. RWTH
Aachen.

S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Infor-
mation and Computation, 93(2), 1991.

W. J. Savitch. Relationsship between nondeterministic and deterministic
tape complexities. Journal of Computer and System Science, 4:177-192,
1970.

K. Schild. A correspondence theory for terminological logics: Preliminary
report. In Proc. of IJCAI-91, pages 466—471, Sydney, 1991.

E. Spaan. Complezity of Modal Logics. PhD thesis, University of Amster-
dam, 1993.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic
of programs. Journal of Computer and System Sciences, 32:183-221, 1986.

28

