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Abstra
t

Whereas mat
hing in Des
ription Logi
s is now relatively well-

investigated, there are only very few formal results on mat
hing under

additional side 
onditions, though these side 
onditions were already

present in the original paper by Borgida and M
Guinness introdu
ing

mat
hing in DLs. The present report 
loses this gap for the DL ALN

and its sublanguages.



CONTENTS i

Contents

1 Introdu
tion 1

2 Des
ription logi
s 2

2.1 Syntax and semanti
s . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 A normal form for 
on
ept des
riptions . . . . . . . . . 3

2.1.2 Chara
terization of subsumption . . . . . . . . . . . . 4

2.2 Mat
hing in des
ription logi
s . . . . . . . . . . . . . . . . . . 5

2.2.1 Solving the de
ision problem . . . . . . . . . . . . . . . 7

2.2.2 Solving the 
omputation problem . . . . . . . . . . . . 11

2.3 Mat
hing under side 
onditions . . . . . . . . . . . . . . . . . 13

3 Mat
hing under subsumption 
onditions 14

3.1 The algorithm handling subsumption 
onditions . . . . . . . . 14

3.2 Soundness and Completeness . . . . . . . . . . . . . . . . . . . 15

3.3 Redu
ed normal forms . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Pre�x free languages . . . . . . . . . . . . . . . . . . . 16

3.3.2 Redu
ed normal forms . . . . . . . . . . . . . . . . . . 20

3.4 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Termination properties in FL

?

. . . . . . . . . . . . . 34

3.4.2 Termination properties in FL

:

. . . . . . . . . . . . . . 39

3.4.3 Termination properties in ALN . . . . . . . . . . . . . 40

3.4.4 General result . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Mat
hing under subsumption 
onditions in FL

0

. . . . . . . . 46

4 Mat
hing under general side 
onditions 47

4.1 Eliminating 
y
les . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 The algorithm handling a
y
li
 side 
onditions . . . . . . . . . 50

4.3 How to guess modi�
ations . . . . . . . . . . . . . . . . . . . . 51

4.4 Soundness and 
ompleteness . . . . . . . . . . . . . . . . . . . 58

Referen
es 67



1 INTRODUCTION 1

1 Introdu
tion

The traditional inferen
e problems (like subsumption) in des
ription logi
s

(DLs) are now well-investigated, whi
h means that there exist 
omplexity

results and algorithms for a great variety of DLs of di�ering expressive power

[9℄ as well as optimized implementations of the algorithms for expressive

DLs [11℄. In 
ontrast, mat
hing 
on
epts against patterns is a relatively new

inferen
e problem in DLs, whi
h has originally been introdu
ed in [6, 13℄

to help �lter out the unimportant aspe
ts of large 
on
epts appearing in

knowledge bases of the Classi
 system [8℄. More re
ently, mat
hing (as

well as the more general problem of uni�
ation) has been proposed as a

tool for dete
ting redundan
ies in knowledge bases [3℄ and to support the

integration of knowledge bases by prompting possible inters
hema assertions

[5℄.

All three appli
ations have in 
ommon that one wants to sear
h a large

knowledge base for 
on
epts having a 
ertain (not 
ompletely spe
i�ed) form.

This \form" 
an be expressed with the help of so-
alled 
on
ept patterns, i.e.,


on
ept des
riptions 
ontaining variables. For example, the pattern D :=

X u8
hild:(Y uFemale) looks for 
on
epts that restri
t the 
hild role to �llers

that are Female, su
h as the 
on
ept C := (� 1 
hild)u8
hild:(FemaleuRi
h).

In fa
t, applying the substitution � := fX 7! (� 1 
hild); Y 7! Ri
hg to the

pattern D yields a 
on
ept equivalent to C, i.e., � is a solution (mat
her) of

the mat
hing problem C �

?

D.

1

This type of mat
hing problems has been investigated in detail for sub-

languages of the DLs ALN and ALE in [2℄ and [1℄, respe
tively. In parti
ular,

it was shown that, for sublanguages of ALN , solvable mat
hing problems

always have a least mat
her (w.r.t. subsumption), whi
h 
an be 
omputed in

polynomial time. For sublanguages of ALE , de
iding solvability of mat
hing

problems modulo equivalen
e is already NP-
omplete.

In [6, 13℄, the expressivity of mat
hing problems was further enhan
ed

by allowing for additional side 
onditions on the variables (through the as-


onstru
t): a (stri
t) subsumption 
ondition is of the formX v

?

E (X �

?

E)

where X is a variable and E a pattern, and it restri
ts the mat
hers to

substitutions satisfying �(X) v �(E) (�(X) � �(E)). Using a subsumption


ondition, the mat
hing problem of the above example 
an be written more

1

We restri
t our attention to su
h mat
hing problems modulo equivalen
e sin
e mat
h-

ing modulo subsumption, as introdu
ed in [6℄, 
an be redu
ed to mat
hing modulo equiv-

alen
e [2℄.
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intuitively as X u 8
hild:Z �

?

(� 1 
hild) u 8
hild:(Female u Ri
h) under the

subsumption 
ondition Z v

?

Female. One result of this paper is that also

more 
omplex sets of subsumption 
onditions do not extend the expressive

power of mat
hing problems (see below). However, they are often more


onvenient to state. In 
ontrast, stri
t subsumption 
onditions 
annot always

be simulated by pure mat
hing problems. They 
an, e.g., be used to avoid

trivial mat
hes. For example, the pattern D

0

:= X u 8
hild:Y mat
hes every


on
ept sin
e 8
hild:> � > (where the top 
on
ept > stands for the set of all

individuals). The additional stri
t subsumption 
ondition Y �

?

> ensures

that we 
an only mat
h 
on
epts with a real restri
tion on 
hild.

The �rst (rather restri
ted) formal results on mat
hing under side 
ondi-

tions were given in [2℄: it was shown that mat
hing under stri
t subsumption


onditions in the small DL FL

0

is already NP-hard, and that mat
hing under

so-
alled a
y
li
 subsumption 
onditions 
an be redu
ed to mat
hing with-

out side 
onditions. However, [2℄ does not give a 
omplexity upper bound for

mat
hing under stri
t subsumption 
onditions and the redu
tion for a
y
li


subsumption 
onditions given there is exponential.

This paper investigates in detail mat
hing under side 
onditions in sublan-

guages of ALN . We will show that mat
hing under subsumption 
onditions


an be redu
ed in polynomial time to mat
hing without side 
onditions. In

parti
ular, this implies that solvable mat
hing problems under subsumption


onditions in sublanguages of ALN always have a least mat
her, whi
h 
an be


omputed in polynomial time. For stri
t subsumption 
onditions, mat
hing

is shown to be NP-
omplete in the sublanguages FL

?

and FL

:

of ALN .

2 Des
ription logi
s

2.1 Syntax and semanti
s

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
on-


ept 
onstru
tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names. In this paper, we 
onsider 
on
ept des
riptions built from

the 
onstru
tors shown in Table 1. In the des
ription logi
 FL

0

, 
on
ept

des
riptions are formed using the 
onstru
tors top-
on
ept (>), 
onjun
tion

(CuD), and value restri
tion (8r:C). The des
ription logi
 FL

?

additionally

provides us with the bottom 
on
ept (?), and FL

:

also allows for primitive

negation (:P ). Finally, ALN extends FL

:

with number restri
tions (� n r)
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Syntax Semanti
s FL

0

FL

?

FL

:

ALN

> �

I

x x x x

C uD C

I

\D

I

x x x x

8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g x x x x

? ; x x x

:P , P 2 N

C

�

I

n P

I

x x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

and (� n r) (see Table 1).

As usual, the semanti
s of 
on
ept des
riptions is de�ned in terms of an

interpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set and the

interpretation fun
tion �

I

maps ea
h 
on
ept name P 2 N

C

to a set P

I

� �

I

and ea
h role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The extension

of �

I

to arbitrary 
on
ept des
riptions is de�ned indu
tively, as shown in the

se
ond 
olumn of Table 1.

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription

C is subsumed by the des
ription D (C v D) i� C

I

� D

I

holds for all

interpretations I; C and D are equivalent (C � D) i� they subsume ea
h

other; C is stri
tly subsumed by D (C � D) i� C v D and C 6� D. For all

DLs listed in Table 1, subsumption 
an be de
ided in polynomial time using

a stru
tural subsumption algorithm [7℄.

2.1.1 A normal form for 
on
ept des
riptions

It is easy to see that any FL

?

-
on
ept des
ription 
an be transformed into

an equivalent des
ription that is either > or a (nonempty) 
onjun
tion of

des
riptions of the form 8r

1

: � � � 8r

m

:A, where r

1

; : : : ; r

m

are m � 0 (not

ne
essarily distin
t) roles, and A is the bottom 
on
ept ? or a 
on
ept name.

We abbreviate 8r

1

: � � � 8r

m

:A by 8r

1

: : : r

m

:A, where r

1

: : : r

m

is viewed as a

word over the alphabet N

R

of all role names. If m = 0, then this is the empty

word ", and thus 8":A is our \abbreviation" for A. In addition, instead of

8w

1

:Au : : :u 8w

`

:A we write 8L:A where L := fw

1

; : : : ; w

`

g is a �nite set of

words over N

R

; we de�ne 8;:A � >. Using these abbreviations, any FL

?

-
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on
ept des
ription C 
ontaining only 
on
ept names in the �nite set C � N

C


an be written as

C � 8U

?

:? u u

A2C

8U

A

:A

where U

H

for H 2 C [ f?g are �nite sets of words over N

R

(
alled role

languages). This representation of C will subsequently be 
alled its U-labeled

normal form.

As an example 
onsider the FL

?

-
on
ept des
ription C

ex

:= 8r:(? u

8r:?) u 8r:8s:A u 8s:A. Its FL

0

-normal form C

0

ex

is 8fr; rrg:?u 8frs; sg:A.

Similar normal forms exist for 
on
ept des
riptions in FL

:

and ALN .

In FL

:

, an additional role language for every negated atomi
 
on
ept is

ne
essary; normal forms in ALN require an additional role language for every

negated atomi
 
on
ept and one for every number restri
tion.

2.1.2 Chara
terization of subsumption

Normal forms as introdu
ed in the previous se
tion 
an be used to 
hara
-

terize subsumption of 
on
ept des
riptions. The relevant results for ALN

and its sublanguages are provided in [2℄. For FL

?

, we obtain the following

lemma:

Lemma 1 Chara
terization of subsumption in FL

?

Let C and D be FL

?

-
on
ept des
riptions. Let C be in U-labeled normal

form and let D be in V -labeled normal form. Then, C v D i� the following

two 
onditions hold:

1. U

?

�N

�

R

� V

?

�N

�

R

2. U

A

[ U

?

�N

�

R

� V

A

[ V

?

�N

�

R

for all A 2 C.

In preparation of the 
hara
terization of subsumption in FL

:

and ALN ,

we need to introdu
e the notion of ex
luding words.

De�nition 2 Ex
luding words

Let C be an FL

:

-
on
ept des
ription in U-labeled normal form. Let D be an

ALN -
on
ept des
ription. For C, de�ne the role language

b

U

?

as follows:

b

U

?

:= U

?

[

[

A2C

(U

A

\ U

:A

)

For D, the set of D-ex
luding words is de�ned by:

E

D

:= fw 2 N

�

R

j D v 8w:?g
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It 
an be shown that E

D

=

b

U

?

�N

�

R

for every FL

:

-
on
ept des
ription

D in U -labeled normal form. Hen
e, in this 
ase the notion of ex
luding

words 
an be 
hara
terized by

b

U

?

. We shall see in De�nition 32 that a


hara
terization of ex
luding words for ALN -
on
ept des
riptions is more


omplex. Subsumption of FL

:

-
on
ept des
ription 
an be 
hara
terized as

follows.

Lemma 3 Chara
terization of subsumption in FL

:

Let C and D be FL

:

-
on
ept des
riptions. Let C be in U-labeled normal

form and let D be in V -labeled normal form. Then, C v D i� the following

two 
onditions hold:

1.

b

U

?

�N

�

R

�

b

V

?

�N

�

R

2. U

A

[

b

U

?

�N

�

R

� V

A

[

b

V

?

�N

�

R

for all H 2 C [ f:AjA 2 Cg

Subsumption in ALN was 
hara
terized by K�usters in [12℄, yielding the

following result.

Lemma 4 Chara
terization of subsumption in ALN

Let C;D be ALN -
on
ept des
riptions. Let C be in U-labeled normal form.

Let D be in V -labeled normal form. Then C v D i� all of the following


onditions hold.

1. E

C

� E

D

2. U

A

[ E

C

� V

A

[ E

D

for all A 2 C

3. U

:A

[ E

C

� V

:A

[ E

D

for all A 2 C

4.

S

m�n

U

(�mR)

[E

C

�

S

m�n

V

(�mR)

[E

D

for all (� nR) 2 N

�

with n � 1

5.

S

m�n

U

(�mR)

[ E

C

�R

�1

�

S

m�n

V

(�mR)

[ E

D

�R

�1

for all (� nR) 2 N

�

Note that two 
on
ept des
riptions are equivalent if they subsume ea
h

other. In order to 
hara
terize equivalen
e it is therefore suÆ
ient to repla
e

all (�)-relations by (=) in the above four lemmae.

2.2 Mat
hing in des
ription logi
s

In order to de�ne 
on
ept patterns, we additionally need a set N

X

of 
on
ept

variables, whi
h we assume to be disjoint from N

C

[ N

R

. Informally, an

ALN -
on
ept pattern is an ALN -
on
ept des
ription over the 
on
ept names

N

C

[ N

X

and the role names N

R

, with the only ex
eption that primitive
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negation must not be applied to variables. More formally, 
on
ept patterns

(denoted D;D

0

) are de�ned using the following syntax rules:

D;D

0

�! X j C j D uD

0

j 8r:D;

where X 2 N

X

, r 2 N

R

, and C is an ALN -
on
ept des
ription. For example,

if X; Y are 
on
ept variables, r a role name, and A;B 
on
ept names, then

D := A uX u 8r:(B u Y ) is an ALN -
on
ept pattern, but :X is not.

In analogy to the normal forms de�ned for 
on
ept des
riptions, every

ALN -
on
ept pattern D over a �nite subset X � N

X

of variables 
an be

written as

D � C u u

X2X

V

X

:X;

where C is an ALN -
on
ept des
ription in V -labeled normal form. We 
all

this the V -labeled normal form of the 
on
ept pattern D. The notion of a

pattern, the normal form (and also the notions \substitution" and \mat
hing

problem" introdu
ed below) 
an be restri
ted to sublanguages of ALN in the

obvious way.

A substitution � is a mapping from N

X

into the set of all ALN -
on
ept

des
riptions. This mapping is extended to 
on
ept patterns in the usual

way by repla
ing the o

urren
es of the variables X in the pattern by the


orresponding 
on
ept des
ription �(X). For example, if we apply the sub-

stitution � := fX 7! AuB; Y 7! Ag to the pattern D from above, we obtain

the des
ription �(D) = A u A u B u 8r:(B u A). The result of applying a

substitution to an ALN -
on
ept pattern is always an ALN -
on
ept des
rip-

tion. Note that this would no longer be the 
ase if negation were allowed in

front of 
on
ept variables.

Subsumption 
an be extended to substitutions as follows: the substitution

� is subsumed by the substitution � (� v �) i� �(X) v �(X) for all variables

X 2 N

X

.

De�nition 5 Let C be an ALN -
on
ept des
ription and D an ALN -
on
ept

pattern. Then, C �

?

D is an ALN -mat
hing problem. The substitution � is

a solution (mat
her) of C �

?

D i� C � �(D).

In the following, we will abbreviate a mat
hing problem of the form C �

?

C u D as C v

?

D. This notation is justi�ed by the fa
t that � solves

C �

?

C uD i� C v �(D).

A mat
hing problem 
an either be viewed as a de
ision problem, where

one asks whether the problem is solvable, or as a 
omputation problem, where
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one asks for a
tual mat
hers of this problem (if any). Although the 
ompu-

tation problem is usually the more interesting one, the de
ision problem 
an

serve as a starting point for the 
omplexity analysis. In general, mat
hing

problems may have several (even an in�nite number of) solutions, and thus

the question arises whi
h mat
her to 
ompute. Following [6, 2℄ we will here


on
entrate on the problem of 
omputing a least mat
her (w.r.t. the ordering

v on substitutions).

Instead of a single mat
hing problem, we may also 
onsider �nite systems

fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g of su
h problems, whi
h must be solved simul-

taneously. As shown in [2℄, solving su
h systems 
an, however, be redu
ed

to solving the single mat
hing problem

8r

1

:C

1

u � � � u 8r

m

:C

m

�

?

8r

1

:D

1

u � � � u 8r

m

:D

m

where the r

i

are pairwise distin
t role names.

How to de
ide if a given mat
hing problem is solvable and how to 
ompute

least mat
hers has been addressed in [2℄ and [12℄. The next two subse
tions

summarize the relevant results and re
all some notions used in this 
ontext.

2.2.1 Solving the de
ision problem

In [2℄ and [12℄, mat
hing modulo equivalen
e in FL

?

, FL

:

and ALN is re-

du
ed to solving equations over formal languages, whi
h we will refer to as

solvability equations. By assigning appropriate values to the variables o

ur-

ring in these equations the de
ision problem 
an be redu
ed to testing 
ertain

formal languages for equality. The stru
ture of the languages involved guar-

antees that this test 
an be done by �nite automata in polynomial time.

We begin by introdu
ing solvability equations in FL

?

. Let (C �

?

D) be

an FL

?

-mat
hing problem, where C is in U -labeled normal form and D is in

V -labeled normal form.

De�nition 6 Solvability equations for (C �

?

D) in FL

?

U

?

�N

�

R

= V

?

�N

�

R

[

[

X2X

V

X

��

X

?

�N

�

R

(?)

U

A

[ U

?

�N

�

R

= V

A

[ U

?

�N

�

R

[

[

X2X

V

X

��

X

A

(A)

for all A 2 C.
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Solvability of the above system of equations is de
ided by assigning ap-

propriate formal languages to the o

urring variables. The following lemma

spe
i�es these formal languages.

Lemma 7 Testing solvability in FL

?

The system of equations (?); ((A) j A 2 C) has a solution i�:

1. For every X 2 X , repla
ing the expression �

X

?

�N

�

R

by the set

b

L

X

?

:=

T

w2V

X

w

�1

�(U

?

�N

�

R

) solves Equation (?).

2. For every A 2 C and for every X 2 X , repla
ing the variable �

X

A

by the

set

b

L

X

A

:=

T

w2V

X

w

�1

�(U

A

[ U

?

�N

�

R

) solves Equation (A).

Hen
e, by inserting the languages spe
i�ed in the above lemma into the

referring solvability equations, we obtain variable-free formal language equa-

tions valid if and only if the original mat
hing problem is solvable. It is shown

in [2℄ that validity of these equations 
an be tested in polynomial time using

�nite automata.

Analogous results exist for FL

:

and ALN . Let (C �

?

D) be an FL

:

-

mat
hing problem, where C and D are in U -labeled and V -labeled normal

forms respe
tively. Then the relevant solvability equations are de�ned as

follows.

De�nition 8 Solvability equations for (C �

?

D) in FL

:

b

U

?

�N

�

R

= V

?

�N

�

R

[

[

X2X

V

X

��

X

?

�N

�

R

[

[

A2C

Int(A;:A)�N

�

R

(?)

U

A

[

b

U

?

�N

�

R

= V

A

[

b

U

?

�N

�

R

[

[

X2X

V

X

��

X

A

(A)

U

:A

[

b

U

?

�N

�

R

= V

:A

[

b

U

?

�N

�

R

[

[

X2X

V

X

��

X

:A

(:A)

for all A 2 C, where

Int(A;:A) :=

�

V

A

[

[

X2X

V

X

��

X

A

�

\

�

V

:A

[

[

X2X

V

X

��

X

:A

�

:

Note that in the solvability equations for FL

?

, Equation (?) was 
om-

pletely independent of role languages referring to atomi
 
on
epts A 2 C. For
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FL

:

this is no longer the 
ase, be
ause the 
onjun
tion of an atomi
 
on
ept

and its negation is in
onsistent. For that reason, the expression Int is in-


luded in Equation (?). The following lemma provides a test for solvability

in FL

:

.

Lemma 9 Testing solvability in FL

:

The system of equations (?); ((A) j A 2 C); ((:A) j A 2 C) has a solution i�:

1. For every A 2 C and for every X 2 X , repla
ing the variable �

X

A

by the

set

b

L

X

A

:=

T

w2V

X

w

�1

�(U

A

[

b

U

?

�N

�

R

) solves Equation (A).

2. For every A 2 C and for every X 2 X , repla
ing the variable �

X

:A

by

the set

b

L

X

:A

:=

T

w2V

X

w

�1

�(U

:A

[

b

U

?

�N

�

R

) solves Equation (A).

3. For every X 2 X , repla
ing the expression �

X

?

�N

�

R

by the set

b

L

X

?

:=

T

w2V

X

w

�1

�(U

?

�N

�

R

) together with the assignments proposed in (1) and

(2) solves Equation (?).

Note that the third 
ondition requires \together with the assignments

proposed in (1) and (2)". This is ne
essary be
ause of the expression Int ,

by whi
h Equation (?) be
omes dependent on the other assignments. For

ALN , we have to introdu
e some notation �rst. Let (C �

?

D) be an ALN -

mat
hing problem, where C and D are in U -labeled and V -labeled normal

forms respe
tively.

De�nition 10 The following tuples of variables are de�ned for the sake of

readability.

�

?

:= (�

X

?

j X 2 X )

�

C

:= (�

X

A

j X 2 X ; A 2 C)

�

:

:= (�

X

:A

j X 2 X ; A 2 C)

�

�

:= (�

X

(�nR)

j X 2 X ; (� nR) 2 N

�

)

�

�

:= (�

X

(�nR)

j X 2 X ; (� nR) 2 N

�

)

Denote by � an arbitrary assignment of �nite languages to the variables 
on-

tained in the tuples, i.e. �(�

X

H

) = L

X

H

for all X 2 X and H 2 f?g[C[f:A j

A 2 Cg [ N

�

[ N

�

=: H. Let � be the substitution 
orresponding to �, so

that for every X 2 X we have:

�(�

X

) = u

H2H

�(�

X

H

):H
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Denote by E

D

(�

?

; �

C

; �

:

; �

�

; �

�

) the set of ex
luding words obtained for D

relative to the assignment �. Thus, let

E

D

�

�(�

?

); �(�

C

); �(�

:

); �(�

�

); �(�

�

)

�

:= E

�(D)

;

yielding the set of �(D)-ex
luding words after assigning the o

urring vari-

ables.

The above 
onstru
t is ne
essary, be
ause the set of ex
luding words is

de�ned only for 
on
ept des
riptions and not for 
on
ept patterns. Conse-

quently, we must assume some assignment of the 
on
ept variables o

urring

on the right-hand side of the mat
hing problem. With these preparations,

the following solvability equations are provided.

De�nition 11 Solvability equations in ALN

With the notation of the above de�nition, de�ne the following formal language

equations.

E

C

= E

D

(�

?

; �

C

; �

:

; �

�

; �

�

) (?)

U

A

[ E

C

= V

A

[ E

C

[

[

X2X

V

X

��

X

A

(A)

U

:A

[ E

C

= V

:A

[ E

C

[

[

X2X

V

X

��

X

:A

(:A)

[

m�n

U

(�mR)

[ E

C

= V

(�mR)

[ E

C

[

[

X2X

V

X

��

X

(�nR)

(� nR)

[

m�n

0

U

(�mR)

[ E

C

�R

�1

= V

(�mR)

[ E

C

�R

�1

[

[

X2X

V

X

��

X

(�n

0

R)

(� n

0

R)

for all A 2 C, n 2 N n f0g, n

0

2 N, (� nR) 2 N

�

, and (� n

0

R) 2 N

�

.

Again, Equation (?) takes into a

ount role languages referring to other


on
epts than the ?-
on
ept. However, this property is synta
ti
ally hidden

in the 
onstru
ts E

C

and E

D

, whi
h are de�ned as fw 2 N

�

R

j C v 8w:?g

and analogously for E

D

, as introdu
ed in De�nition 2.

Lemma 12 Testing solvability in ALN

Let

b

L

X

?

:=

T

w2V

X

w

�1

�E

C

. Then there exists a �nite set L

X

?

of polynomial

size in the input mat
hing problem with L

X

?

�N

�

R

=

b

L

X

?

.

2

The system of

2

As mentioned previously, this is shown in [2℄.
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equations (?); ((A) j A 2 C); ((:A) j A 2 C); ((� nR) j (� nR) 2 N

�

); ((�

nR) j (� nR) 2 N

�

) then has a solution i�:

1. For every X 2 X and A 2 C, repla
ing the variable �

X

A

by the set

L

X

A

:=

�

T

w2V

X

w

�1

�(U

A

[ E

C

)

�

n

b

L

X

?

solves Equation (A).

2. For every X 2 X and A 2 C, repla
ing the variable �

X

:A

by the set

L

X

:A

:=

�

T

w2V

X

w

�1

�(U

:A

[ E

C

)

�

n

b

L

X

?

solves Equation (:A).

3. For every X 2 X and (� nR) 2 N

�

, repla
ing the variable �

X

:A

by the

set L

X

(�nR)

:=

�

T

w2V

X

w

�1

�(

S

m�n

U

(�nR)

[ E

C

)

�

n

b

L

X

?

solves Equation

(� nR).

4. For every X 2 X and (� nR) 2 N

�

, repla
ing the variable �

X

:A

by

the set L

X

(�nR)

:=

�

T

w2V

X

w

�1

�(

S

m�n

U

(�nR)

[ E

C

�R

�1

)

�

n

b

L

X

?

solves

Equation (� nR).

5. For every X 2 X , repla
ing the variable �

X

?

by the set L

X

?

together with

the assignments proposed in (1){(4) solves Equation (?).

Observe that in the above 
onditions a �nite alternative to

b

L

j;?

is provided

and that

b

L

j;?

is subtra
ted from the other languages, thus produ
ing poly-

nomially large languages as solutions to the equations. This is an immediate


onsequen
e of [2℄, where it was shown that the above solution languages 
an

be 
omputed in polynomial time.

2.2.2 Solving the 
omputation problem

Apart from testing solvability, [2℄ also proposes solutions to be assigned to the

variables o

urring in a mat
hing problem and dis
usses their 
orre
tness and


omplexity in detail. The following lemma simmarizes the relevant results.

Lemma 13 Solving mat
hing problems

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let M be an L-mat
hing problem. Then

there exists an algorithm mat
h

L

with the following properties.

1. mat
h

L

(M) de
ides in polynomial time, whether the input mat
hing

problem M has a solution or not. If M is solvable, then mat
h

L

(M)

in polynomial time in the size of M 
omputes a solution � whi
h is

minimal in regard to the ordering v on substitutions.
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2. mat
h

L

does not introdu
e atomi
 
on
epts or number restri
tions

whi
h do not o

ur in the input mat
hing problem M .

3. mat
h

L

also a

epts a �nite system of L-mat
hing problems.

Proof. 1. It remains to be shown that 
omputing the a
tual solution to

a solvable mat
hing problem also requires only polynomial time.

Solution in ALN : To show this for ALN -mat
hing problems, we 
an

refer to results provided in [2℄. It is shown that the languages L

X

�

used

for the solvability test in Lemma 12 in fa
t are least solutions to the

mat
hing problem, whi
h 
an be 
omputed in polynomial time by �nite

automata. Therefore, a solution � with the desired properties 
an be

de�ned by assigning

X 7�! 8L

X

?

:? u u

A2C

8L

X

A

:A u u

A2C

8L

X

:A

::A

u u

(�nR)2N

�

8L

X

(�nR)

:(� nR) u u

(�nR)2N

�

8L

X

(�nR)

:(� nR)

for every X 2 X . It 
an be shown that the assigned 
on
ept de-

s
riptions are of polynomial size in the size of the original mat
hing

problem. Sin
e every role language of the form L

X

�


an be represented

by a treelike automaton [2℄, it takes only polynomial time to read o�

the languages represented by these automata, i.e. to a
tually return

the 
omputed solution.

Solutions in FL

?

and FL

:

: For these sublanguages of ALN , we must

�rst restri
t the languages used in the solvability test to �nite ones. The

rest of the argument then is identi
al to that for ALN . For FL

?

and

FL

:

, [2℄ again provides us with the ne
essary results: Finite solution

languages L

X

A


an be obtained in the following way. Sin
e

b

L

X

?


an be

represented by a treelike automaton [2℄ for every X, we read o� a �nite

language L

X

?

with L

X

?

�N

�

R

=

b

L

X

?

. Analogous to the languages de�ned

for ALN in Lemma 12 we now de�ne languages L

X

A

by subtra
ting

b

L

X

?

from

b

L

X

A

. We 
an then assign to the variable X the 
onjun
tion

X 7�! 8L

X

?

:? u u

A2C

8L

X

A

:A u u

A2C

8L

X

:A

::A

for every X 2 X . Again, we yield a solution of polynomial size in

polynomial time. The argument for FL

?

is identi
al ex
ept for negated

atomi
 
on
ept missing in the 
on
ept des
riptions �nally assigned.
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Solutions in FL

0

: Two arbitrary FL

0

-
on
ept des
riptions are equiva-

lent if and only if their FL

0

-normal forms agree on all role languages

involved. Therefore, in�nite sets are not ne
essary at any step when

solving mat
hing problems. It 
an be shown that the solvability equa-

tion and solution languages for FL

0

are equivalent to those for FL

?

after removing any 
onstru
ts relating to the bottom-
on
ept or its

role languages. The task of de
iding solvability and 
omputing solu-

tions to a given mat
hing problem then apparently is of of polynomial


omplexity.

2. It is shown in [2℄, that the solution spe
i�ed above already has the de-

sired property. Espe
ially, this implies that the solution of a mat
hing

problem 
an be represented with the same set of role languages as the

mat
hing problem.

3. In Se
tion 2.2, we have already seen that systems of mat
hing equations


an be represented by a single mat
hing problem modulo subsumption

whi
h is polynomial in the size of the original system. Thus, with the

results from (1) the proposition follows immediately.

Hen
e, mat
hing problems 
an be solved in polynomial time. Further-

more, we 
an �nd minimal solutions without introdu
ing new atomi
 
on-


epts or number restri
tions and we 
an admit systems of mat
hing problems

as input. The following theorem summarizes the results obtained.

Theorem 14 Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Then there exists a polyno-

mial time mat
hing algorithm, 
alled mat
h

L

in the sequel, that 
omputes

the least mat
her of a given system of L-mat
hing problems, if this system

has a solution, and returns \fail" otherwise.

2.3 Mat
hing under side 
onditions

In this report, we fo
us on more general mat
hing problems, those that allow

for additional side 
onditions.

De�nition 15 A subsumption 
ondition is of the form X v

?

E where X is

a 
on
ept variable and E is a pattern; a stri
t subsumption 
ondition is of

the form X � E where X and E are as above. A side 
ondition is either a

subsumption 
ondition or a stri
t subsumption 
ondition. The substitution �

satis�es the side 
ondition X � E for � 2 fv;�g i� �(X) � �(E).
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A mat
hing problem under side 
onditions is a tuple M := hC �

?

D;Si,

where C �

?

D is a mat
hing problem and S is a �nite set of side 
ondi-

tions. If the set S 
ontains only subsumption 
onditions, then M is 
alled

mat
hing problem under subsumption 
onditions. The substitution � is a

solution (mat
her) of M i� it is a mat
her of C �

?

D that satis�es every

side 
ondition in S.

In the next se
tion, we will restri
t the attention to mat
hing problems under

subsumption 
onditions. Se
tion 4 then treats general mat
hing problems

under side 
onditions. There it is useful to distinguish between 
y
li
 and

a
y
li
 sets of side 
onditions. In order to de�ne mat
hing problems under

a
y
li
 side 
onditions, we say that a variableX dire
tly depends on a variable

Y in S i� S 
ontains a side 
ondition X � E su
h that Y o

urs in E. If

there are n � 1 variables X

1

; : : : ; X

n

su
h that X

i

dire
tly depends on X

i+1

in S (1 � i � n � 1), then we say that X

1

depends on X

n

in S. The set of

side 
onditions S is 
y
li
 i� there is a variable X that depends on itself in

S; otherwise, S is a
y
li
.

3 Mat
hing under subsumption 
onditions

Let L be one of the DLs FL

?

;FL

:

;ALN . We present a polynomial time al-

gorithm that, given an L-mat
hing problems under subsumption 
onditions,

returns a least mat
her (w.r.t. the orderingv on substitutions) if the problem

is solvable, and \fail" otherwise.

3.1 The algorithm handling subsumption 
onditions

In prin
iple, the algorithm iterates the appli
ation of mat
h

L

until a �xpoint

is rea
hed. However, the mat
her 
omputed in one step is used to modify

the mat
hing problem to be solved in the next step. Given an L-mat
hing

problem under subsumption 
onditionsM := hC �

?

D;Si and a substitution

�, we de�ne

M

�

:= fC �

?

Dg [ f�(X) v

?

E j X v

?

E 2 Sg:

Re
all that �(X) v

?

E abbreviates the mat
hing problem �(X) �

?

�(X)uE.

Thus M

�

is a system of L-mat
hing problems without side 
onditions, to

whi
h mat
h

L


an be applied.
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Algorithm 16 Let M := hC �

?

D;Si be an L-mat
hing problem under sub-

sumption 
onditions. Then, the algorithm mat
h

v

L

(M) works as follows:

1. �(X) := ? for all variables X;

2. If mat
h

L

(M

�

) returns \fail", then return \fail";

else if � � mat
h

L

(M

�

), then return �;

else � := mat
h

L

(M

�

); 
ontinue with 2.

Let �

0

denote the substitution de�ned in step 1 of the algorithm, and �

t

(t � 1) the mat
her 
omputed in the t-th iteration of Step 2. Note that �

t

is

unde�ned if mat
h

L

returns \fail" in the t-th iteration or if the algorithm

has stopped before the t-th iteration.

To show that the algorithm is 
orre
t, we must show soundness, 
om-

pleteness, and termination, i.e., i) if the algorithm terminates and returns a

substitution, then this substitution in fa
t solves the problem; ii) if the al-

gorithm terminates and returns \fail", then there indeed is no solution; and

iii) the algorithm halts on every input.

Soundness and 
ompleteness are addressed below in Se
tion 3.2. Proving

termination of the algorithm is more involved, and the exa
t argument de-

pends on the DL L under 
onsideration. The proof is given in Se
tion 3.4. It

depends on the so-
alled redu
ed normal form of 
on
ept des
riptions, whi
h

has to be introdu
ed beforehand in Se
tion 3.3.

3.2 Soundness and Completeness

The following lemma proves soundness and 
ompleteness of Algorithm 16.

The �rst two items establish a loop invariant.

Lemma 17 Let M := hC �

?

D;Si be an L-mat
hing problem under sub-

sumption 
onditions.

1. If �

t

is de�ned and � is a solution of M , then �

t

v � .

2. If �

t

; �

t+1

are de�ned, then �

t

v �

t+1

.

3. If mat
h

v

L

(M) returns the substitution �, then � solves M (sound-

ness).

4. If mat
h

v

L

(M) returns \fail", then M has no solution (
ompleteness).
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Proof. 1. Obviously, the 
laim is true for �

0

. Assume that �

t

v � , and

that �

t+1

is de�ned. To prove �

t+1

v � , it is suÆ
ient to show that �

solves M

�

t

sin
e �

t+1

is the least solution of M

�

t

. Sin
e � solves M , we

know that it solves C �

?

D and that �(X) v �(E) for all X v

?

E 2 S.

The indu
tion assumption �

t

v � implies �

t

(X) v �(X), and thus

�

t

(X) v �(E), whi
h shows that � solves M

�

t

.

2. Obviously, �

0

v �

1

. Now assume that �

t�1

v �

t

. Together with the

fa
t that �

t

solvesM

�

t�1

, this implies that �

t+1

solves the systemM

�

t�1

.

Sin
e �

t

is the least solution of M

�

t�1

, we 
an 
on
lude �

t

v �

t+1

.

3. Assume that � = �

t

. By de�nition of mat
h

v

L

, C � �

t

(D). It remains

to show that �

t

solves the side 
onditions. We know that �

t

� �

t+1

and

�

t+1

solves M

�

t

. Thus, �

t

(X) v �

t+1

(E) � �

t

(E) for every X v

?

E 2

S.

4. Assume that mat
h

v

L

(M) returns \fail," and that �

t

is the last substi-

tution 
omputed by the algorithm. Now assume that � solves M . As

in the proof of 1. we 
an show that � solves M

�

t

. Consequently, M

�

t

is solvable, and thus mat
h(M

�

t

) returns the least mat
her of this

system, in 
ontradi
tion to the assumption that mat
h

v

L

(M) returns

\fail" in this step of the iteration.

3.3 Redu
ed normal forms

Role languages o

urring in 
on
ept des
riptions may 
ontain redundant

words, i.e., words that, when removed, yield equivalent 
on
ept des
rip-

tions. For instan
e, in FL

?

it holds that: i) sin
e 8w:? v 8wv:? for every

w; v 2 N

�

R

, we 
an require U

?

to be pre�x-free, i.e., w;wv 2 U

?

implies

v = "; and ii) sin
e 8w:? v 8wv:A, we 
an require U

A

\ (U

?

� N

�

R

) = ;.

A normal form satisfying these 
onditions is 
alled redu
ed normal form. A

formal de�nition of redu
ed normal forms for 
on
ept des
riptions in FL

?

,

FL

:

, and ALN is provided in Se
tion 3.3.2. In preparation, we dis
uss some

properties of so-
alled pre�x-free formal languages.

3.3.1 Pre�x free languages

We de�ne pre�x free languages as a spe
ialization of formal languages [10℄

by introdu
ing a unary fun
tion to make a given formal language pre�x free.
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De�nition 18 Pre�x free languages

pf : P(N

�

R

)! P(N

�

R

)

L 7! L n (L�N

+

R

)

A language U � N

�

R

is 
alled pre�x free if and only if U = pf (U).

Intuitively, pf (L) for every word w 2 L removes all nontrivial 
ontin-

uations of w. The result is that for every word w 2 pf (L), all nontrivial

pre�xes of w are missing in pf (L). To examine the properties of pre�x free

sets in greater detail, we must �rst introdu
e an appropriate order over �nite

languages. The de�nition of multiset orders is taken from [4℄, where their

properties are dis
ussed in depth. However, we employ multiset orders over

formal languages and do not need to introdu
e multisets, whi
h generalize

the notion of sets by admitting multiple o

urren
es of elements.

De�nition 19 Multiset order for �nite languages

De�ne (�) as a multiset order with (>

pr

) on N

�

R

. Thus, for �nite languages

U; V � N

�

R

it holds that V � U if and only if there exist �nite languages

X; Y � N

�

R

su
h that:

1. ; 6= X � V

2. U = (V nX) [ Y

3. 8y 2 Y 9x 2 X : x <

pr

y

A

ording to the de�nition, �nite languages U and V are in pre�x order,

i.e. U � V , if and only if U 
an be transformed into V by performing

a modi�
ation of the following type one or more times: remove a word u

from U and repla
e it by a �nite number of words from fug�N

+

R

. Thus, u is

repla
ed by a �nite number of (nontrivial) 
ontinuations of u. Note that in

this modi�
ation, u may be removed without substituting any words. This

is allowed be
ause in the de�nition above, the language Y may be empty.

The following example illustrates this.

Example 20 Multiset order

Let N

R

:= fa; b; 
g. Then fa; ab; 
g � fab; a
; 
aa; 
ab; 


g. The de�-

nition of the multiset order is satis�ed by taking X := fa; 
g and Y :=

fa
; 
aa; 
ab; 


g. On the other hand, we also obtain fa; ab; 
g � f
ag by
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taking X := fa; ab; 
g and Y := f
ag. Observe that the relation U � V does

not imply an obvious relation for the 
ardinality of the languages or for the

length of the longest word 
ontained in them.

The multiset order 
an be used to simplify 
omparing the N

�

R

-
losure of

two given languages. This is addressed by the following lemma.

Lemma 21 N

�

R

-
losures and pre�x free languages

Let U; V � N

�

R

be �nite languages over N

R

. Then,

1. U �N

�

R

= pf (U)�N

�

R

2. U �N

�

R

� V �N

�

R

i� pf (U) � pf (V )

3. U �N

�

R

= V �N

�

R

i� pf (U) = pf (V ).

Proof. For the sake of brevity, denote pf (U) by U

0

throughout this lemma.

Analogously, denote pf (V ) by V

0

.

1. Sin
e U

0

is a subset of U and sin
e the sets on both sides of the equation

are N

�

R

-
losed, it is suÆ
ient to show that U n U

0

is a subset of U

0

�N

�

R

.

Thus, 
onsider w 2 U n U

0

. Then, by de�nition of pre�x free sets,

w 2 U �N

+

R

. This implies, that in U there exists a word u 2 U of

minimal length and a word v 2 N

+

R

so that w = uv. Consequently,

u 62 U �N

+

R

, be
ause in this 
ase the length of u would not be minimal.

So we have u 2 U

0

, implying that w = uv 2 U

0

�N

�

R

.

2. (\(") If U

0

� V

0

then, by De�nition 18, there exist �nite sets X; Y �

N

�

R

with:

(a) ; 6= X � V

0

(b) U

0

= (V

0

nX) [ Y

(
) 8y 2 Y 9x 2 X : x <

pr

y.

We �rst prove the non-stri
t version of the 
laim, i.e. U �N

�

R

� V �N

�

R

,

and then show that the in
lusion is stri
t.

Nonstri
t in
lusion: As U

0

equals (V

0

nX) [ Y , it is suÆ
ient to show

that Y � V

0

�N

�

R

. Thus, 
onsider an arbitrary y 2 Y . Be
ause of

Property 3 of multiset orders it holds that there is an x 2 X � V

0

so

that x <

pr

y. Being less in regard to the pre�x order implies, that we
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obtain y = xw for an appropriate w 2 N

�

R

. Sin
e x 2 V

0

, this yields

y = xw 2 V

0

�N

�

R

, 
ompleting the proof.

Stri
tness of the in
lusion: Consider an arbitrary x 2 X � V

0

. A
-


ording to Property 1 of multiset orders, su
h an x in fa
t exists. x

is no element of (V

0

n X), be
ause V

0

is pre�x free and thus 
ontains

no pre�x of x. Now, if x 2 Y then Property 3 demands that there is

another word x

0

2 X so that x

0

<

pr

X. This would be a 
ontradi
tion

to V

0

being pre�x free, and therefore: x 62 U

0

�N

�

R

.

(\)") Assume U

0

�N

�

R

� V

0

�N

�

R

. Taking advantage of (1), this is equiv-

alent to the original proposition. De�ne �nite languages X; Y in the

following way: X := V

0

n U

0

and Y := U

0

n V

0

. We will show that

these languages mat
h 
onditions 1, 2, and 3 stated in the de�nition of

multiset orders.

Property 1: Trivial. X is obviously de�ned as a subset of V

0

. If X is

empty, then U

0

� V

0

, whi
h would rule out U

0

�N

�

R

� V

0

�N

�

R

, 
on
i
ting

with the assumption above.

Property 2: Applying the de�nitions of X and y, we 
an expand (V

0

n

X) [ Y to the expression (V

0

n (V

0

n U

0

)) [ U

0

n V

0

, whi
h simpli�es

to (U

0

\ V

0

) [ U

0

n V

0

. This is obviously equivalent to U

0

.

Property 3: Consider an arbitrary y 2 Y = U

0

n V

0

. From Property

2 of the multiset order we know that Y � U

0

� V

0

�N

�

R

. Thus, there

are words v 2 V

0

and w 2 N

�

R

su
h that y = vw. This implies w 6= ",

be
ause otherwise y, being equal to v, would be an element of V

0

. If w

is not empty, then v and y are in pre�x relation: v <

pr

y. Consequently,

v is no element of U

0

, be
ause then U

0

would not be pre�x free. This

implies v 2 V

0

n U

0

, whi
h by de�nition is equivalent to v 2 X.

3. (\(") This is an immediate 
onsequen
e of (1). If U

0

equals V

0

, then

obviously U

0

�N

�

R

= V

0

�N

�

R

, whi
h implies U �N

�

R

= V �N

�

R

, as shown in

(1). (\)") Reversely assume that U

0

�N

�

R

= V

0

�N

�

R

. A

ording to (1),

this is equivalent to the original proposition. It is suÆ
ient to prove

the in
lusion U

0

� V

0

, sin
e the reverse in
lusion follows by symmetry.

Consider an arbitrary u 2 U

0

. A

ording to the above assumption we

have U

0

� V

0

�N

�

R

, whi
h implies the existen
e of words v 2 V

0

and

w 2 N

�

R

with u = vw. It reversely holds that V

0

� U

0

�N

�

R

, again

implying words u

0

2 U

0

and w

0

2 N

�

R

so that v = u

0

w

0

. Therefore, we
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yield u = vw = u

0

w

0

w. This implies w = w

0

= ", be
ause otherwise U

0

would not be pre�x free, 
ontaining a pre�x of u. With w equal to ",

we �nally obtain u 2 V

0

, whi
h had to be shown.

Observe, that the N

�

R

-
losure of a language L is uniquely de�ned by the

pre�x free version of L. We 
an also use pre�x free languages to guarantee

a suÆx 
ondition when representing the left quotient of the N

�

R

-
losure of a

language:

Lemma 22 Left quotients and pre�x free languages

Let U � N

�

R

be a �nite language and let w 2 N

�

R

. Then there exists a �nite

language L � N

�

R

su
h that,

1. L�N

�

R

= w

�1

(U �N

�

R

) and

2. L is pre�x free and

3. L 
ontains only suÆxes of words in U .

Proof. A

ording to [2℄, there exists a �nite language L

0

with L

0

�N

�

R

= w

�1

�

(U �N

�

R

). Due to Lemma 21, we know that this also holds for L := pf (L

0

). We

now show that L 
ontains only suÆxes of U , whi
h is suÆ
ient for our 
laim.

Assume a word v 2 L, whi
h is no suÆx of any word in U . Observe, that this

implies v 6= " be
ause otherwise v would be a trivial suÆx of any word in U .

By de�nition of L, we know that v is an element of w

�1

�(U �N

�

R

). Thus, there

exists a word u 2 U and a word x 2 N

+

R

su
h that wv = ux 2 U �N

�

R

. We

ex
lude x = ", be
ause then v would be a suÆx of u. Denote by s the last


hara
ter of v, i.e. take s 2 N

R

and v

0

2 N

�

R

su
h that v = v

0

s. Analogously,

let x = x

0

s for an appropriate x

0

2 N

�

R

. Then we 
an 
on
lude that v

0

2 L,

be
ause wv

0

= ux

0

is an element of U �N

�

R

. This implies a 
ontradi
tion to

the language L being pre�x free.

3.3.2 Redu
ed normal forms

In FL

?

, FL

:

, and ALN , equivalent 
on
ept des
riptions in normal form


an di�er in size to an arbitrary extent. For instan
e, 8f"g:? u 8U

A

:A is

equivalent to 8f"g:? for every role language U

A

. For a simpli�ed proof of

termination, we require normal forms whi
h impose stronger limitations on

the size of 
on
ept des
riptions equivalent to or subsuming ea
h other. For

this purpose, redu
ed normal forms for FL

?

, FL

:

, and ALN are introdu
ed.
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Redu
ed normal forms for FL

?

FL

?

FL

?

The redu
ed normal form of FL

?

-
on
ept des
riptions is de�ned by spe
ify-

ing an operation to transform an arbitrary FL

?

-
on
ept des
ription into its


orresponding redu
ed normal form.

De�nition 23 Let C be an FL

?

-
on
ept des
ription in U-labeled normal

form. Its 
orresponding U

#

-labeled redu
ed normal form C

#

is de�ned as

follows:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A

where for A 2 C:

U

#

?

:= pf (U

?

)

U

#

A

:= U

A

n U

#

?

�N

�

R

A 
on
ept des
ription C is 
alled redu
ed, if C is in normal form and if it


oin
ides with C

#

in every o

urring role language. The notion of redu
tion


an be extended to substitutions. For a substitution �, the redu
ed substitution

�

#

is established by de�ning �

#

(X) := �(X)

#

for every variable X in the

domain of �.

The above de�nition implies as immediate 
onsequen
es the following

simple properties, whi
h are stated without proof.

Corollary 24 Properties

Let C be an FL

?

-
on
ept des
riptions in U-labeled normal form. Then,

1. U

#

?

is pre�x free and U

#

A

\ U

#

?

�N

�

R

is empty for every A 2 C

2. The redu
ed normal form C

#


an be 
omputed in polynomial time in the

size of C.

It will be parti
ularly useful that there is no overlap between the role

language U

#

?

and the N

�

R

-
losure of U

#

A

. The role languages for C

#


an be


onstru
ted in polynomial time using treelike automata, for whi
h the 
om-

plement and theN

�

R

-
losure 
an be 
omputed in linear time. It also takes only

polynomial time to make a given �nite role language pre�x free. The ability

to 
ompute redu
ed normal forms in polynomial time will not be required

in the remainder of this 
hapter. Nevertheless, it might be an important

property in the 
ontext of presenting the output of mat
hing algorithms in

a 
ompa
t way.



3 MATCHING UNDER SUBSUMPTION CONDITIONS 22

Re
all that pf in Se
tion was de�ned to make the input language pre�x

free. The purpose of redu
ed normal forms is to simplify the 
hara
terization

of subsumption and equivalen
e. One 
an see that in the above de�nition

exa
tly those languages are made pre�x free, whose N

�

R

-
losure appears in the


hara
terization of the subsumption proposed in Lemma 1. Furthermore, by

subtra
ting the N

�

R

-
losure from the other role languages, we make sure that

all unions in the 
hara
terising 
onditions are disjoint. In the next lemma

we will see that this is suÆ
ient to redu
e equivalen
e to equality.

Lemma 25 Properties

Let B;C;D be FL

?

-
on
ept des
riptions. Let B be in W -labeled normal

form, let C be in U-labeled redu
ed normal form, and D in V -labeled redu
ed

normal form. Then,

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [ C

3. C � D i� one of the following 
onditions holds:

(a) U

?

� V

?

and V

A

� U

A

[ U

?

�N

�

R

for all A 2 C

(b) U

?

= V

?

and U

A

� V

A

for all A 2 C and there exists an A 2 C with

U

A

� V

A

.

Proof. 1. We have seen in Lemma 1 that it is suÆ
ient to prove the

following two 
onditions:

� W

?

�N

�

R

=W

#

?

�N

�

R

� W

A

[W

?

�N

�

R

= W

#

A

[W

#

?

�N

�

R

for all A 2 C.

The �rst 
ondition was shown as a property of pre�x free languages

in Lemma 21. For the se
ond 
ondition, we 
an therefore 
on
lude for

every A thatW

#

A

[W

#

?

�N

�

R

is equal toW

#

A

[W

?

�N

�

R

. We may add (W

A

\

W

?

�N

�

R

), whi
h is a subset of W

?

�N

�

R

, thus yielding W

#

A

[ (W

A

\W

?

�

N

�

R

)[W

?

�N

�

R

. A

ording to the de�nition of redu
ed normal forms,W

A

equals W

#

A

[ (W

A

\W

?

�N

�

R

). Therefore, W

#

A

[ (W

A

\W

?

�N

�

R

)[W

?

�N

�

R

equals W

A

[W

?

�N

�

R

.

2. (\(") is trivial. (\)") Assume C � D. Due to Lemma 1, this again

is equivalent to U

?

�N

�

R

= V

?

�N

�

R

and U

A

[U

?

�N

�

R

= V

A

[V

?

�N

�

R

for all

A 2 C. Sin
e C andD are assumed to be redu
ed, this implies U

?

= V

?

,

a

ording to the properties of pre�x free sets. Furthermore, due to
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the de�nition of redu
ed normal forms, U

A

and U

?

�N

�

R

are disjoint for

every A. The same applies to V

A

and V

?

�N

�

R

. Therefore, U

A

[U

?

�N

�

R

=

V

A

[ V

?

�N

�

R

implies U

A

= V

A

for all A, whi
h was to be shown.

3. (\)") Assume C � D. Then we again have U

?

�N

�

R

� V

?

�N

�

R

. We

distinguish two 
ases depending on whether the in
lusion is stri
t or

not.

Stri
t in
lusion: If U

?

�N

�

R

� V

?

�N

�

R

, we 
an infer U

?

� V

?

, as shown

in Lemma 21. We know from the 
hara
terization of the subsumption

that U

A

[ U

?

�N

�

R

� V

A

[ V

?

�N

�

R

for all A 2 C. We may remove V

?

�N

�

R

from the right-hand side of the in
lusion, yielding the assertion for 
ase

(a), V

A

� U

A

[ U

?

�N

�

R

.

Equality: If U

?

�N

�

R

= V

?

�N

�

R

, we have U

?

= V

?

, be
ause C and D

are redu
ed and therefore U

?

and V

?

are pre�x free. The subsumption

C � D also implies that U

A

[ U

?

�N

�

R

� V

A

[ V

?

�N

�

R

for every A. The

unions on both sides of the in
lusion are disjoint, as stated in Corollary

24. Taking advantage of the equality of U

?

�N

�

R

and V

?

�N

�

R

, we obtain

U

A

� V

A

for every A 2 C. There has to be one A with a stri
t in
lusion

U

A

� V

A

. Otherwise, C and D would agree on all role languages,

implying equivalen
e as shown in (2). Thus, the assertion for 
ase (b)

holds.

(\(") We have to show that both 
onditions for the subsumption as

stated in Lemma 1 are met. Assuming 
ase (b), this 
an be seen imme-

diately. Consider 
ase (a). If U

?

� V

?

holds, the �rst 
ondition for the

subsumption is met as a 
onsequen
e of Lemma 21, obtaining U

?

�N

�

R

�

V

?

�N

�

R

. We have assumed that V

A

� U

A

[ U

?

�N

�

R

. Adding V

?

�N

�

R

on

both sides yields V

A

[ V

?

�N

�

R

� U

A

[ U

?

�N

�

R

[ V

?

�N

�

R

. As V

?

�N

�

R

is

a subset of U

?

�N

�

R

, this is equivalent to V

A

[ V

?

�N

�

R

� U

A

[ U

?

�N

�

R

.

Thus, the se
ond 
ondition of the subsumption is met for every A 2 C.

We yield stri
t subsumption C � D, be
ause otherwise U

?

= V

?

.

Redu
ed normal forms for FL

:

FL

:

FL

:

For FL

:

, we follow the same pattern as seen in the previous se
tion. Firstly,

the redu
tion operation is expanded in su
h a way that it works with negated

atomi
 
on
epts as well.
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De�nition 26 Redu
ed normal form

Let C be an FL

:

-
on
ept des
ription in U-labeled normal form. Like in

De�nition 23, de�ne its 
orresponding redu
ed normal form C

#

by modifying

the role languages:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

where for A 2 C:

U

#

?

:= pf (U

?

[

[

A2C

U

A

\ U

:A

)

U

#

A

:= U

A

n U

#

?

�N

�

R

Again, if C is redu
ed, then its role languages are identi
al to those of

C

#

. We extend the notion of redu
tion to substitutions as in De�nition 23.

Observe that in this de�nition the role language U

?

referring to the bot-

tom 
on
ept may in
rease in size when normalized. Contrary to FL

?

, it is

possible to have in
onsisten
ies without involving the bottom 
on
ept. The

redu
ed normal form for FL

:

aims at making all impli
it in
onsisten
ies ex-

pli
it, i.e. whenever an expression like 8w:(Au:A) o

urs, w is removed from

the role languages referring to A and :A and is in
luded in the language for

the bottom 
on
ept. The de�nition of ex
luding words again implies some

inportant properties, whi
h are stated below without proof.

Corollary 27 Properties

Let C be an FL

:

-
on
ept des
riptions in U-labeled normal form. Then,

1. U

#

?

is pre�x free and U

#

?

= (U

#

?

)b.

2. U

#

H

\ (U

#

?

)b�N

�

R

is empty for every H 2 C [ f:A j A 2 Cg.

3. U

#

A

\ U

#

:A

is empty for every A 2 C.

4. The redu
ed normal form C

#


an be 
omputed in polynomial time in the

size of C.

Sin
e (U

#

?

)b is de�ned as U

#

?

[

S

A2C

(U

#

A

\ U

#

:A

), the above assertions are

readily obtained from the de�nition of redu
ed normal forms. Computing

the redu
ed normal form in polynomial time 
an again be a

omplished by

employing treelike automata. By virtue of these properties, we again a
hieve

the desired simpli�
ation for the 
hara
terization of the subsumption. In the

next lemma it is shown that the results obtained for FL

:

resemble those for

FL

?

seen in the last se
tion.
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Lemma 28 Properties

Let B;C;D be FL

:

-
on
ept des
riptions. Let B be inW -labeled normal form,

let C be in U-labeled redu
ed normal form, and D in V -labeled redu
ed normal

form. Let H := C [ f:A j A 2 Cg. Then,

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [ H

3. C � D i� one of the following 
onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[ U

?

�N

�

R

for all H 2 H

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with

U

A

� V

A

.

Proof. 1. Due to Lemma 3, it is suÆ
ient to prove that the following


onditions hold:

�




W

?

�N

�

R

= (W

#

?

)b�N

�

R

� W

H

[




W

?

�N

�

R

=W

#

H

[ (W

#

?

)b�N

�

R

for all H 2 H.

First 
ondition: By de�nition,




W

?

�N

�

R

equals (W

?

[

S

A2C

W

A

\W

:A

)�

N

�

R

, whi
h is equivalent to the pre�x free version pf (W

?

[

S

A2C

W

A

\

W

:A

)�N

�

R

, as we have seen in Lemma 21. Applying the de�nition of

redu
ed normal forms, this is equivalent to W

#

?

�N

�

R

. The interse
tion

of W

#

A

and W

#

:A

is empty for every A 2 C, as stated in Corrolary 27.

We may therefore add (

S

A2C

W

#

A

\W

#

:A

) to the expression, so that we

end up with (W

#

?

[

S

A2C

W

#

A

\W

#

:A

)�N

�

R

. This equals (W

#

?

)b�N

�

R

, as


an be veri�ed from the de�nition.

Se
ond 
ondition: Taking advantage of (1), we 
an see that W

#

H

[

(W

#

?

)b�N

�

R

is equal to W

#

H

[




W

?

�N

�

R

for every H 2 H. We may add a

subset of the se
ond term, yielding the expression W

#

H

[ (W

H

\




W

?

�

N

�

R

)[




W

?

�N

�

R

. The languageW

#

H

is de�ned as W

H

nW

#

?

�N

�

R

. As stated

in Corollary 27, this equalsW

H

n(W

#

?

)b�N

�

R

, whi
h in (1) is shown equal

to W

H

n




W

?

�N

�

R

. The expression W

#

H

[ (W

H

\




W

?

�N

�

R

) [




W

?

�N

�

R


an

therefore be simpli�ed to W

H

[




W

?

�N

�

R

, yielding the desired result.

2. (\(") Trivial. (\)") A

ording to Corollary 27, we have

b

U

?

= U

?

and

b

V

?

= V

?

. When repla
ing these role languages, the proposition

and the 
hara
terization of the subsumption are analogous to those for
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FL

?

. Consequently, the proof is identi
al to (2) in the previous Lemma

25.

3 Again, taking into a

ount that

b

U

?

= U

?

and

b

V

?

= V

?

, we 
an prove

the proposition in the same way as seen in (3) in the previous lemma.

One 
an see that the additional 
omplexity of 
on
ept des
riptions in FL

:

is hidden in the redu
ed normal form.

Redu
ed normal forms for ALNALN

ALN

When introdu
ing redu
ed normal forms for ALN -
on
ept des
riptions, we

have to fa
e two additional problems. Firstly, the set of all in
onsisten
ies

expli
itly o

urring or impli
itly in
luded in a 
on
ept des
ription 
annot be

obtained in su
h a straightforward way as in the previous two logi
s. Se
-

ondly, we also have to 
ope with number restri
tions. In the following de�-

nition, we utilize the notion of ex
luding words, whi
h have been introdu
ed

in De�nition 2 in the 
ontext of the 
hara
terization of subsumption.

De�nition 29 Redu
ed normal form

Let C be an ALN -
on
ept des
ription in U-labeled normal form. De�ne the

redu
ed normal form of C by modifying its role languages. It has been stated

in [2℄ that there exists a �nite language U

E

C

with E

C

= U

E

C

�N

�

R

. Using this

language, de�ne C

#

as:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

u u

(�nR)2N

�

8U

#

(�nR)

:(� nR) u u

(�nR)2N

�

8U

#

(�nR)

:(� nR)

where for A 2 C, (� nR) 2 N

�

, and (� nR) 2 N

�

:

U

#

?

:= pf (U

E

C

)

U

#

A

:= U

A

n E

C

U

#

:A

:= U

:A

n E

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

n E

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

n E

C

�R

�1
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Analogous to the previous 
ases, the notion of redu
tion is extended to sub-

stitutions.

In spite of the formally more 
omplex de�nition, the obje
tive of the

above normal form is equal to those seen before. In
onsisten
ies are made

expli
it by augmenting the role language of the bottom 
on
ept and the other

role languages are minimized as mu
h as possible. Observe that the redu
ed

role language U

#

?

in fa
t is well-de�ned, be
ause for languages of the form

L�N

�

R

the set pf (L) is unique. The de�nition of redu
ed normal forms again

implies some basi
 properties, whi
h are presented in the 
orollary below.

Corollary 30 Properties

Let C be an ALN -
on
ept des
riptions in U-labeled normal form. Then,

1. U

#

?

is pre�x free

2. U

#

H

\ E

C

# is empty for every H := C [ f:A j A 2 Cg [ N

�

.

Furthermore, U

#

(�nR)

\ E

C

#
�R

�1

is empty for every (� nR) 2 N

�

3.

S

m�n

U

#

(�mR)

= U

#

(�nR)

for all (� nR) 2 N

�

and analogously for all

(� nR) 2 N

�

4. The redu
ed normal form C

#


an be 
omputed in polynomial time in the

size of C.

As stated in [2℄, a role language U

E

C

with E

C

= U

E

C

�N

�

R


an be 
omputed

in polynomial time. With the aid of treelike automata, it therefore takes

only polynomial time to 
ompute the redu
ed normal form of C. In order

to examine the properties of our normal form 
loser, we have to pro
ure a

better 
hara
terization for the set of ex
luding words from [12℄. The following

de�nition is ne
essary in preparation.

De�nition 31 Required words

Let C be an ALN -
on
ept des
ription in U-labeled normal form. Let v and v

0

be words over N

R

. Let jvj =: m and jvv

0

j =: n and v

0

=: R

m+1

: : : R

n

. Then

vv

0

is required by C starting from v i� for all i 2 fm; : : : ; n� 1g there exist

positive integers k

i+1

� 1 su
h that vR

m+1

: : : R

i

2 U

(�k

i+1

R

i+1

)

.

Intuitively, the 
ontinuation vv

0

is required by a 
on
ept des
ription C

starting from v, i� there is a sequen
e of (�)-number restri
tions for every

pre�x of vv

0

between v and vv

0

demanding the presen
e of the respe
tive
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following pre�x. For example, assume N

R

:= fR; Sg and let C := A u

8fRS;RSRg:(� 1R)u 8fRSRg:(� 2S). Then the words RSRR and RSRS

are required by C starting from RS.

With the notion of required words we 
an 
hara
terize ex
luding words

for ALN -
on
ept des
riptions by the following lemma.

Lemma 32 Chara
terization of ex
luding words

Let C be an ALN -
on
ept des
ription in U-labeled normal form. Let w be a

word over N

R

. Then w 2 E

C

i�

1. there exists a pre�x v 2 N

�

R

of w and a word v

0

2 N

�

R

su
h that vv

0

is

required by C starting from v and

(a) vv

0

2 U

?

, or

(b) there is an atomi
 
on
ept A 2 C with vv

0

2 U

A

\ U

:A

, or

(
) there are number restri
tions (� lR) 2 N

�

and (� rR) 2 N

�

su
h

that l > r and v 2 U

(�lR)

\ U

(�rR)

; or

2. there exists a pre�x vR of w (with v 2 N

�

R

; R 2 N

R

) su
h that v 2 U

(�0R)

.

Now we are set to examine redu
ed normal forms in detail. Before ad-

dressing the standard questions of 
orre
tness, equivalen
e, and subsumption,

however, we �rst introdu
e one auxiliary result regarding the notion of ex-


luding words, whi
h will be required in Lemma 35. In the next lemma, it

is shown that transforming a 
on
ept des
ription into redu
ed normal forms

does not 
hange its properties in respe
t to required words.

Lemma 33 Required words and redu
ed normal forms

Let C be an ALN -
on
ept des
ription in U-labeled normal form and let v; v

0

be words over N

R

. Then, if vv

0

is required by C

#

starting from v then vv

0

is

required by C starting from v.

Proof. To simplify the notation throughout this proof, denote jvj =: s,

jvv

0

j =: t, and vv

0

=: R

1

R

2

: : : R

t

. If vv

0

is required by C

#

starting from

v, then by de�nition it holds for all i 2 fs; : : : ; t � 1g that there exists a

positive integer k � 1, so that R

1

: : : R

i

2 U

#

(�kR

i+1

)

. By de�nition of redu
ed

normal forms, this implies that R

1

: : : R

i

2

S

n�k

U

(�nR

i+1

)

nE

C

. No n under

the union is smaller than k. Consequently, there exists an integer k

0

� k so

that R

1

: : : R

i

is an element of U

(�k

0

R

i+1

)

nE

C

. Obviously, we 
an in
lude all

the words subtra
ted by E

C

, thus obtaining that R

1

: : : R

i

2 U

(�k

0

R

i+1

)

. This

is equivalent to vv

0

being required by C starting from v, whi
h was to be

shown
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A simpli�ed 
hara
terization for the set of ex
luding words is now pro-

posed for 
on
ept des
riptions in redu
ed normal form. It is shown by the

next lemma that only 
ase (1a) of the 
hara
terization given in Lemma 32 is

relevant for the redu
ed normal form of 
on
ept des
riptions.

Lemma 34 Ex
luding words and redu
ed normal forms

Let C be an ALN -
on
ept des
ription in U-labeled normal form. Let w be a

word over N

R

. Then, w 2 E

C

#
i� there exists a pre�x v 2 N

�

R

of w and a

word v

0

2 N

�

R

with: vv

0

is required by C

#

starting from v and vv

0

2 U

?

.

Proof. Consider a word w 2 E

C

#. It is suÆ
ient to prove that the Cases

(1b), (1
), or (2) spe
i�ed in the 
hara
terization of E

C

#
do not apply.

Case (1b): Then there exists a pre�x v 2 N

�

R

of w, a word v

0

2 N

�

R

,

and an atomi
 
on
ept A 2 C, so that vv

0

is required by C

#

starting from

v and vv

0

2 (U

#

A

\ U

#

:A

). Applying the de�nition of redu
ed normal forms,

this implies that vv

0

is an element of U

A

\ U

:A

, but no element of E

C

.

By De�nition of the semanti
s of ALN -
on
ept des
riptions, this implies

C v 8vv

0

:?. As a 
onsequen
e of De�nition 2, this implies vv

0

2 E

C

, in


ontradi
tion to the above �nding that vv

0

62 E

C

.

Case (1
): Then we have an analogous word vv

0

and nonnegative numbers

l > r with vv

0

2 U

(�lR)

\ U

(�rR)

. Again by de�nition of redu
ed normal

forms, we 
on
lude that vv

0

is an element of the interse
tion

S

l

0

�l

U

(�l

0

R)

\

S

r

0

�r

U

(�r

0

R)

, but it is not in E

C

. Therefore, we 
an �nd integers l

0

� l and

r

0

� r su
h that vv

0

2 U

(�l

0

R)

\U

(�r

0

R)

. Analogous to 
ase (1b), the semanti
s

of ALN then implies C v 8vv

0

:?. Due to De�nition 2, this entails vv

0

2 E

C

,


ontradi
ting the above statement.

Case (2): We prove that in the redu
ed normal form C

#

the role language

U

#

(�0R)

is empty for every atomi
 role R 2 N

R

. As 0 is the least nonnegative

integer, for every atomi
 roleR 2 N

R

the de�nition of U

#

(�0R)


an be simpli�ed

to U

(�0R)

n E

C

�R

�1

, omitting the union. Therefore, if U

#

(�0R)

is not empty,

it 
ontains an element of U

(�0R)

. Thus, assume w 2 U

(�0R)

for a word w.

A

ording to the de�nition of number restri
tions, this implies that w has no

su

essors in regard to R. Consequently, wR 2 E

C

. Obviously, we 
an infer

w 2 E

C

�R

�1

. In the de�nition of U

#

(�0R)

, the set E

C

�R

�1

is subtra
ted from

the rest, implying w 62 U

#

(�0R)

. Case (2) does therefore not apply to C

#

.

The above result suggests a simpler proof of the 
orre
tness of the normal

form. The standard questions, 
orre
tness and modi�ed 
hara
terizations for

equivalen
e and subsumption, are addressed in the next lemma.
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Lemma 35 Properties

Let B;C;D be ALN -
on
ept des
riptions. Let B be in W -labeled normal

form, let C be in U-labeled redu
ed normal form, and D in V -labeled redu
ed

normal form. Let H := C [ f:A j A 2 Cg [ N

�

[N

�

. Then,

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [ H

3. C � D i� one of the following 
onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[ U

?

�N

�

R

for all H 2 H n N

�

and

V

H

� U

H

[ U

?

�N

�

R

[ U

?

�R

�1

for all (� nR) := H 2 N

�

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with

U

A

� V

A

.

Proof. 1. In Lemma 4, equivalen
e of ALN -
on
ept de
riptions was is


hara
terized by the following 
onditions. For A 2 C, (� mR) 2 N

�

,

and (� mR) 2 N

�

:

(a) E

B

# = E

B

(b) W

#

A

[ E

B

# =W

A

[ E

B

(
) W

#

:A

[ E

B

# =W

:A

[ E

B

(d)

S

m�n

W

#

(�mR)

[ E

B

# =

S

m�n

W

(�mR)

[ E

B

(e)

S

m�n

W

#

(�mR)

[ E

B

# �R

�1

=

S

m�n

W

(�mR)

[ E

B

�R

�1

Condition 1: Prove E

B

#
� E

B

. Consider an arbitrary w 2 E

B

#
. Due to

the simpli�ed 
hara
terization of ex
lusion for redu
ed normal forms,

this implies that there exists a pre�x v 2 N

�

R

of w and a word v

0

2 N

�

R

su
h that vv

0

is required by B starting from v and vv

0

2 W

#

?

. A

ording

to De�nition 26, this implies that vv

0

is in pf (W

E

B

) � E

B

for an

appropriate �nite language W

E

B

with E

B

= W

E

B

�N

�

R

. Due to Lemma

33, we know that vv

0

is required by B starting from v. Sin
e vv

0

2 E

B

,

this implies v 2 E

B

. As E

B

is N

�

R

-
losed and as v is a pre�x of w, we

obtain w 2 E

B

.

Prove E

B

� E

B

#
. If w 2 E

B

then there exists a pre�x w

0

of w and a

word w

00

2 N

�

R

, so that w = w

0

w

00

and w

0

is an element of pf (W

E

B

).

Applying the de�nition of redu
ed normal forms, we have w

0

2 W

#

?

.

This implies B

#

v 8w

0

:?, whi
h is subsumed by 8w

0

w

00

:?, a

ording
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to the semanti
s of ?. Due to the de�nition of E

B

, this yields w

0

w

00

=

w 2 E

B

#
.

Combining the above two results, we obtain E

B

# = E

B

, whi
h was to

be shown.

Condition 2 and 3: Taking into a

ount the result of (1), it holds that

W

#

A

[ E

B

# is equal toW

#

A

[E

B

for every A 2 C. Applying the de�nition

of W

#

A

yields the expression (W

A

n E

B

) [ E

B

, whi
h is obviously equal

to W

A

[ E

B

. The same argument holds for negated atomi
 
on
epts

:A.

Condition 4 and 5: Again, the result of (1) and the de�nition of

W

#

(�mR)

enable us to expand

S

m�n

W

#

(�mR)

[ E

B

#
to the expression

S

m�n

(

S

p�m

W

(�pR)

n E

B

) [ E

B

. By applying distributivity over the

union, we obtain (

S

m�n

S

p�m

W

(�pR)

) nE

B

[E

B

, whi
h 
an be simpli-

�ed to (

S

m�n

W

(�mR)

) nE

B

[E

B

. We 
an omit subtra
ting E

B

before

adding it again, so that we �nally have (

S

m�n

W

(�mR)

) [ E

B

.

In (1) we have seen that E

B

#
= E

B

. This implies E

B

#
�R

�1

= E

B

�R

�1

for every atomi
 role R. Consequently, the above argument applies to


ondition 5 as well.

2. (\(") Trivial. (\)") If C � D, then the 
hara
terization of the

subsumption allows us to 
on
lude the following 
onditions again:

(a) E

C

= E

D

(b) U

A

[ E

C

= V

A

[ E

D

(
) U

:A

[ E

C

= V

:A

[ E

D

(d)

S

m�n

U

(�mR)

[ E

C

=

S

m�n

V

(�mR)

[ E

D

(e)

S

m�n

U

(�mR)

[ E

C

�R

�1

=

S

m�n

V

(�mR)

[ E

D

�R

�1

Taking advantage of Lemma 21, we 
an infer from 
ondition 1 that

pf (U

E

C

) = pf (V

E

D

), whi
h is equivalent to U

?

= V

?

, sin
e both 
on
ept

des
riptions are assumed to be redu
ed. Due to redu
tion, it also holds

that U

A

= U

A

n E

C

and analogously V

A

= V

A

n E

D

. Therefore, the

unions in 
ondition 2 are disjoint. Be
ause of 
ondition 1 we may

repla
e E

D

by E

C

in 
ondition 2, whi
h yields U

A

= V

A

. The same

argument applies to 
ondition 3. Be
ause C and D are redu
ed, the

role languages U

(�mR)

and U

(�mR)

already 
ontain the union over all
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lesser and the union over all greater numbers respe
tively, as stated in

Corollary 30. In 
ondition 4 and 5, we may therefore ommit the unions

over m. Moreover, the role languages in 
ondition 4 and 5 are de�ned

as disjoint to E

C

and E

D

respe
tively, so that �nally the argument

for 
onditions 2 and 3 also applies, yielding U

(�nR)

= V

(�nR)

for every

number restri
tion (� nR) 2 N

�

and analogously U

(�nR)

= V

(�nR)

for

every (� nR) 2 N

�

.

3. (\)") If C � D, then from the 
hara
terization of subsumption we

know that E

C

� E

D

. We �rst 
onsider the 
ase that this in
lusion is

stri
t, then the 
ase of equality of the languages.

E

C

� E

D

: Then, as stated in [2℄, there are �nite languages U

E

C

and

V

E

D

su
h that pf (U

E

C

)�N

�

R

� pf (V

E

D

)�N

�

R

. Due to the de�nition of

redu
ed normal forms, this is equivalent to the in
lusion U

?

�N

�

R

�

V

?

�N

�

R

. A

ording to Lemma 21, we 
an then infer U

?

� V

?

. Sin
e

C � D, we know from the 
hara
terization of subsumption that U

H

[

E

C

� V

H

[E

D

for all H 2 C [f:A j A 2 Cg. As mentioned above, this

in
lusion is equivalent to U

H

[ U

?

�N

�

R

� V

H

[ V

?

�N

�

R

. We may drop

the term V

?

�N

�

R

on the right-hand side, obtaining the desired result for

all H 2 C [ f:A j A 2 Cg.

For (� nR) 2 N

�

, we similarly yield

[

m�n

U

(�mR)

[ U

?

�N

�

R

=

[

m�n

V

(�mR)

[ V

?

�N

�

R

.

As mentioned before, the union over all m � n 
an be omitted. Drop-

ping the term V

?

�N

�

R

on the right-hand side of the in
lusion afterwards

analogously produ
es V

H

� U

H

[ U

?

�N

�

R

, whi
h was to be shown.

This analogy does not hold for �-number restri
tions, where we need

to 
ope with the right quotient (�R

�1

) in the respe
tive equations: For

every (� nR) := H 2 N

�

, we obtain U

H

[ U

?

�N

�

R

�R

�1

� V

H

[ V

?

�N

�

R

�

R

�1

. We may drop the expression V

?

�N

�

R

�R

�1

on the right-hand side of

the in
lusion. Furthermore, as stated in [2℄, U �N

�

R

�R

�1

equals U �N

�

R

[

U �R

�1

for every �nite language U over N

R

and R 2 N

R

. Consequently,

the in
lusion 
an be simpli�ed to U

H

[ U

?

�N

�

R

[ U

?

�R

�1

� V

H

, whi
h

we wanted to show.

E

C

= E

D

: As shown in (2), the redu
ed normal form of C and D then

allows us to infer U

?

�N

�

R

= V

?

�N

�

R

, whi
h yields U

?

= V

?

, as both
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languages are pre�x free. The 
hara
terization of the subsumption

furthermore allows us to 
on
lude that U

H

� V

H

for every H 2 H.

Obviously, C and D 
annot agree on all role languages, sin
e this would

imply C � D, in 
ontradi
tion to the assumption. Consequently, there

is one H 2 H su
h that U

H

� V

H

.

(\(") In 
ase (b), it is not diÆ
ult to verify that the 
onditions for

subsumption stated in Lemma 4 are met. Assume Case (a). From

U

?

� V

?

we 
an infer by Lemma 21 that U

?

�N

�

R

� V

?

�N

�

R

. Sin
e C

and D are redu
ed, this implies E

C

� E

D

, mat
hing the �rst 
ondition

for subsumption. As assumed, for every H 2 H n N

�

it holds that

V

H

� U

H

[ U

?

�N

�

R

. We have already seen in (3) that U

?

�N

�

R

equals

E

C

. Therefore, after adding the language E

D

on both sides of the

in
lusion we have V

H

[ E

D

� U

H

[ E

C

[ E

D

. Sin
e E

D

is a subset of

E

C

, we obtain V

H

[ E

D

� U

H

[ E

C

. For H 2 C [ f:A j A 2 Cg, this

equals 
onditions 2 and 3 for the subsumption as stated in Lemma 4.

A

ording to Corollary 30, for all (� nR) 2 N

�

the language U

(�nR)

is equal to the union

S

m�n

U

(�nR)

, so that the in
lusion V

H

[ E

D

�

U

H

[E

C


an be expanded to

S

m�n

V

(�mR)

[E

D

�

S

m�n

U

(�mR)

[E

C

,

whi
h meets 
ondition 4 for the subsumption.

For (� nR) 2 N

�

, we have assumed V

(�nR)

� U

(�nR)

[U

?

�N

�

R

[U

?

�R

�1

.

As mentioned above for the reverse dire
tion of (3), we 
an repla
e

U

?

�N

�

R

[ U

?

�R

�1

by U

?

�N

�

R

�R

�1

, whi
h is equal to E

C

�R

�1

. Following

a similar line as for the�-number restri
tions, E

D

�R

�1

is added on both

sides of the in
lusion, yielding V

(�nR)

[ E

D

�R

�1

� U

(�nR)

[ E

C

�R

�1

[

E

D

�R

�1

. As E

C

is a superset of E

D

and as also both languages are of

the form L�N

�

R

for some �nite language L, it is easy to see that E

C

�R

�1

is a superset of E

C

�R

�1

for every R 2 N

R

. The in
lusion therefore

simpli�es to V

(�nR)

[E

D

�R

�1

� U

(�nR)

[E

C

�R

�1

. Exploiting Corollary

30, the languages U

(�nR)

and V

(�nR)


an be repla
ed by the respe
tive

unions over all m � n, thus mat
hing 
ondition 5 of the subsumption


onditions of Lemma 4. Consequently, all 
onditions for subsumption

are met. We obtain stri
t subsumption, be
ause (2) would otherwise

imply U

?

= V

?

, 
ontradi
ting U

?

� V

?

.
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3.4 Termination

Let the substitutions �

t

be de�ned in Se
tion 3.1. We assume that every

�

t

(X) is given in U

t;X

-labeled redu
ed normal form, and that C (as de�ned

in Algorithm 16) is in U -labeled redu
ed normal form. Then, termination fol-

lows from the fa
t that every solvable mat
hing problem under subsumption


onditions has a mat
her that only uses 
on
ept names already 
ontained

in the mat
hing problem M , denoted by the set C � N

C

, and the following

three properties of the languages U

t;X

H

and U

H

for H 2 C [ f?g. In the

formulation of these properties we impli
itly assume that the substitution �

t

is de�ned whenever we talk about one of the languages U

t;X

H

.

1. SuÆx property

For every variable X and every H 2 C [ f?g, the set U

t;X

H


ontains

only suÆ
es of U

H

.

2. Deletion property

For every word w, if w 2 U

t;X

H

n U

t+1;X

H

, then w 62 U

t

0

;X

H

for any t

0

> t.

3. Stri
tness property

If �

t

and �

t+1

are de�ned and �

t

6� �

t+1

, then there exists an H 2

C [ f?g, a variable X, and a word w su
h that w 2 U

t;X

H

n U

t+1;X

H

.

Note that these properties would not hold if we did not use redu
ed normal

forms. In the following three subse
tions the above termination 
onditions

are shown valid individually for FL

?

, FL

:

, and ALN . With these prerequi-

sites we 
an provide a general proof of termination in Se
tion 3.4.4, yielding

a polynomial time upper bound for the three logi
s under 
onsideration.

3.4.1 Termination properties in FL

?

Let us brie
y re
all our point of departure. We 
onsider the algorithm

mat
h

v

FL

?

, applied to an FL

?

-mat
hing problem under subsumption 
on-

ditions M of the form hC �

?

D;Si. M is de�ned over a �nite set X of

variables. We assume C in U -labeled redu
ed normal form and D in V -

labeled normal form. For every subsumption 
ondition X v

?

E in S, we

assume E in V

X

-labeled normal form. Denote by T (mat
h

v

FL

?

;M) the in-

dex set of all substitutions 
omputed during the exe
ution of the algorithm

mat
h

v

FL

?

upon input M . For every t 2 T (mat
h

v

FL

?

;M) and for every

variable X, assume �

t

(X) in U

t;X

-labeled redu
ed normal form.
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In order to show the validity of the suÆx property, the solution languages

introdu
ed in De�nition 7 are used to derive a re
ursive relationship with

respe
t to t between the role languages o

urring in 
onse
utive substitutions

�

t

. We 
an then infer the desired properties from �

0

upward by indu
tion.

Lemma 36 SuÆx property in FL

?

For all t 2 T (mat
h

v

FL

?

;M) and for all X 2 X it holds that:

1. U

t;X

?


ontains only suÆxes of U

?

.

2. U

t;X

A


ontains only suÆxes of U

A

for every A 2 C.

Proof. 1. When performing step t of the algorithm mat
h

v

FL

?

(M), the

following system of mat
hing problems must be solved.

8U

?

:? u u

A2C

8U

A

:A �

?

8V

?

:? u u

A2C

8V

A

:A u u

X2X

8V

X

:X

8U

t;X

?

:? u u

A2C

8U

t;X

A

:A v

?

8V

X

?

:? u u

A2C

8V

X

A

:A u u

X

0

2X

8V

X

X

0

:X

0

,

where the se
ond line represents one equation for every X 2 X . As

stated in Se
tion 2.2, this system 
an be 
ombined into a single mat
h-

ing problem with little diÆ
ulty. For the resulting mat
hing problem,

setting up the solvability equations proposed in De�nition 6 and apply-

ing Lemma 7, we yield the following solution language for the bottom-


on
ept.

U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

) (�)

Due to the notation introdu
ed for the solutions �

t

, here U

t+1;X

?

�N

�

R

takes the pla
e of

b

L

X

?

used in Lemma 7 to denote the solution language

for the ?-
on
ept. We have to show that the U

t+1;X

?


ontains only

suÆxes of U

?

.

A

ording to Lemma 22, for every �nite language U and for every

word w there exists a �nite pre�x free language L su
h that �rstly,

L�N

�

R

= w

�1

(U �N

�

R

); and se
ondly, L 
ontains only suÆxes of U . Using

this result we now show the proposition for U

t;X

?

by indu
tion over the

number of steps t the algorithm mat
h

v

FL

?

(M) takes.

(t = 0): A

ording to equation (�), it holds that

U

0;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

?

�N

�

R

). (�

0

)
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At �rst, we show that the suÆx property does not get lost when inter-

se
ting languages of the form L�N

�

R

with that property. It is shown in

[2℄ that for �nite languages L and L

0

the interse
tion L�N

�

R

\ L

0

�N

�

R

is

equal to ((L \ L

0

�N

�

R

) [ (L

0

\ L�N

�

R

))�N

�

R

.

Obviously, (L \ L

0

�N

�

R

) [ (L

0

\ L�N

�

R

) is a subset of the union L [ L

0

.

This implies that the interse
tion L�N

�

R

\ L

0

�N

�

R


an be represented as

L

00

�N

�

R

su
h that every element of L

00


omes from L or from L

0

.

Be
ause of Lemma 22, it holds for every X 2 X and for every w 2 V

X

that the language w

�1

(U

?

�N

�

R

) 
an be represented as L�N

�

R

, where L


ontains only suÆxes of U

?

. We have just seen that the suÆx property

is respe
ted by the interse
tion. Thus, the entire right-hand side of

equation (�

0

) is of the form L�N

�

R

, where L 
ontains only suÆxes of

U

?

. pf (L) is a subset of L and therefore 
ontains only suÆxes as well.

pf (L)�N

�

R

also represents the right-hand side of (�

0

), as we know from

Lemma 21. From the de�nition of redu
ed normal forms in FL

?

we

also know that U

0;X

?

is pre�x free. Lemma 21 now implies that U

0;X

?

is

equal to pf (L), 
ompleting our argument.

(t > 0): Due to indu
tion, we may assume that all role languages on the

right-hand side of equation (�) 
ontain only suÆxes of U

?

. Analogous

to the argument for the 
ase t = 0, the suÆx property is valid for

U

t+1;X

?

as well.

2. Consider U

t;X

A

for an arbitrary A 2 C. Starting again with the system

of mat
hing equations proposed in (1) and taking into a

ount the def-

inition of the solution languages in Lemma 13, we obtain the following
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result for U

t;X

A

.

U

t+1;X

A

=

\

w2V

X

w

�1

(U

A

[ U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

A

[ U

t;X

?

�N

�

R

)

n U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

A

[ U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

A

[ U

t;X

?

�N

�

R

)

| {z }

M

1

n

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

)

| {z }

M

2

!

�

[

w2V

X

w

�1

(U

A

) [

[

X

0

2X

[

w2V

X

X

0

w

�1

(U

t;X

A

)

The equality to M

1

nM

2

is obtained by repla
ing U

t+1;X

?

�N

�

R

with the

right-hand side of equation (�). The last step in the above sequen
e

remains to be shown. Consider an arbitrary word v in U

t+1;X

A

= M

1

n

M

2

. Sin
e v is not an element of M

2

, there exists a word w 2 V

X

or a

word w

0

2 V

X

X

0

su
h that v is no element of w

�1

(U

?

�N

�

R

) or no element

of w

�1

(U

t;X

?

�N

�

R

). Assume the �rst 
ase, i.e. v 62 w

�1

(U

?

�N

�

R

). As v

is an element of M

1

, obviously v 2 w

�1

(U

A

[ U

?

�N

�

R

), whi
h implies

v 2 w

�1

(U

A

). Thus, v is a suÆx of a word in U

A

. The se
ond 
ase

is analogous, yielding that v is a pre�x of a word in U

t;X

A

. Thus, the

in
lusion 
laimed above holds.

Sin
e U

A

and all U

t;X

A

are �nite languages, it is not diÆ
ult to see

that the left quotients w

�1

(U

A

) and w

�1

(U

t;X

H

) for every word w only


ontain suÆxes of U

A

and U

t;X

A

respe
tively. We still have to ensure

that the suÆx property is respe
ted by the union. This 
an be shown

indu
tively similar to the proof seen in (1) for the interse
tion. In 
ase

of the union, however, the indu
tion argument is by far simpler, sin
e

for �nite languages L; L

0

the union L�N

�

R

[L

0

�N

�

R

is equal to (L[L

0

)�N

�

R

.

For the proof of the deletion property, the 
hara
terization of the sub-

sumption for redu
ed normal forms 
an be utilized to rule out words reap-

pearing after being deleted. A subsumption argument, of 
ourse, 
an only



3 MATCHING UNDER SUBSUMPTION CONDITIONS 38

be used sin
e we know from the proof of 
orre
tess that the solutions �

t

in

fa
t are subsumed by its respe
tive su

essors �

t+1

.

Lemma 37 Deletion property in FL

?

mat
h

v

FL

?

(M) meets the deletion property.

Proof. We �rst prove the deletion property for role languages referring to

the ?-
on
ept and then 
onsider those referring to atomi
 
on
epts A 2 C.

?-
on
ept: Assume that 
ontrary to our 
laim a word w 
an reappear

for greater values of t after being deleted from a role language at a 
ertain

point during the exe
ution of the algorithm. Thus, assume for w 2 N

�

R

that

w 2 U

t;X

?

and w 62 U

t

0

;X

?

but �nally w 2 U

t

0

+1;X

?

for some X 2 X and for

nonnegative integers t < t

0

2 T (mat
h

v

FL

?

;M).

We know from Lemma 17 that �

t

v �

t

0

v �

t

0

+1

. As all substitutions are

redu
ed we further know due to our assumption, that �

t

(X

j

) 6� �

t

0

(X

j

) 6�

�

t

0

+1

(X

j

). From this we 
an infer by means of Lemma 25 that U

t;X

?

� U

t

0

;X

?

�

U

t

0

+1;X

?

.

We have assumed that w 2 U

t

0

+1;X

?

. The above relation then for U

t

0

;X

?

demands that U

t

0

;X

?


ontains a pre�x w

0

of w. As w is no element of U

t

0

;X

?

,

this is a nontrivial pre�x. Similarly we �nd that U

t;X

?


ontains a pre�x of w

0

or w

0

itself. The language U

t;X

?

, however, initially was assumed to 
ontain w

as well, yielding a 
ontradi
tion to U

t;X

?

being pre�x free.

A-
on
ept: Assume similarly for a word w 2 N

�

R

that w 2 U

t;X

A

and

w 62 U

t

0

;X

A

but �nally w 2 U

t

0

+1;X

A

for some X 2 X , for A 2 C, and for

nonnegative integers t < t

0

2 (mat
h

v

FL

?

;M). Sin
e �

t

v �

t

0

v �

t

0

+1

and as

also all substitutions are redu
ed we obtain as a 
onsequen
e of Lemma 25:

U

t;X

A

_

[ U

t;X

?

�N

�

R

� U

t

0

;X

A

_

[ U

t

0

;X

?

�N

�

R

� U

t

0

+1;X

A

_

[ U

t

0

+1;X

?

�N

�

R

.

We have assumed that w 2 U

t

0

+1;X

A

. Sin
e w is no element of U

t

0

;X

A

, the

subset relation implies that w 2 U

t

0

;X

?

�N

�

R

. From the 
hara
terization of the

subsumption we know that U

t;X

?

�N

�

R

� U

t

0

;X

?

�N

�

R

, whi
h in our 
ase implies

w 2 U

t;X

?

�N

�

R

. This 
ontradi
ts the disjointedness of the union with U

t;X

A

,

whi
h was shown in Lemma 25.

As the next lemma will show, the stri
tness property is obtained as an

immediate 
onsequen
e of Lemma 17 (soundness and 
ompleteness) and the


ara
terization of stri
t subsumption for redu
ed normal forms.
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Lemma 38 Stri
tness property

mat
h

v

FL

?

(M) meets the stri
tness property.

Proof. It is shown in Lemma 17 that �

t

v �

t+1

for every t 2 T (mat
h

v

FL

?

;M).

Sin
e the �xed point iteration in mat
h

v

FL

?

terminates in 
ase �

t

� �

t+1

,

we have �

t

� �

t+1

for every t as long as the iteration does not terminate.

The stri
t subsumption of the substitutions implies that for every t there is

a variable X 2 X su
h that �

t

(X) � �

t+1

(X).

Due to the 
hara
terization of stri
t subsumption for redu
ed normal

forms (Lemma 25), this implies that either U

t;X

?

� U

t+1;X

?

or U

t;X

A

� U

t+1;X

A

for some A 2 C. In both 
ases at least one word in one role language is

removed at the transition from �

t

to �

t+1

.

3.4.2 Termination properties in FL

:

For FL

:

, a separate proof of termination is omitted, be
ause we 
an exploit

the analogy to FL

?

. Verifying the termination properties again yields a

positive result, whi
h is stated below without proof. Let M be an FL

:

-

mat
hing problem under subsumption 
onditions.

Lemma 39 Termination properties in FL

:

mat
h

v

FL

:

(M) meets the suÆx, deletion and stri
tness property.

Let us dis
uss brie
y why we 
an expe
t to gain the same result for FL

:

in exa
tly the same way as seen for FL

?

. The idea is to show that due to the

redu
ed normal form of all substitutions �

t

o

urring during the exe
ution

of mat
h

v

FL

:

(M), the validity of the three termination properties 
an be

shown analogous to the proof for FL

?

. Re
all that the prerequisites for the

existen
e of a solution in FL

:

are stronger than in FL

?

. Nevertheless, on
e

the mat
hing problem is solvable, the solution assigned by �

t

is synta
ti
ally

similar to that in FL

?

|the only di�eren
e being the 
onstru
t

b

U instead of

U . This 
an be found when 
omparing Lemma 7 and Lemma 9, where the

solution languages are introdu
ed. In the presen
e of redu
ed normal forms

the di�eren
e between languages of the form

b

U and U disappears, as stated

in Corollary 27. Furthermore, a 
omparison of Lemma 25 and Lemma 28

yields the same 
hara
erization of equivalen
e and subsumption for redu
ed

normal forms in FL

?

and FL

:

. Hen
e, the results obtained for FL

:

are

analogous to those for FL

?

.
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3.4.3 Termination properties in ALN

The overall task of solving mat
hing problems in ALN is signi�
antly more

involved than in its sublanguages. However, most of the additional 
omplex-

ity is hidden in the notion of ex
luding words, whi
h has been studied in

depth in [12℄. On
e we know that sets of ex
luding words are of the form

L�N

�

R

for some �nite language L, we do not need to introdu
e new ideas to

prove the termination properties. By virtue of the redu
ed normal forms we

again �nd a situation analogous to FL

?

, though 
onsisting of 
onsiderably

larger equations. Let M denote an ALN -mat
hing problem under subsump-

tion 
onditions analogous to that de�ned in Se
tion 3.4.1.

Lemma 40 SuÆx property in ALN

For all t 2 T (mat
h

v

ALN

;M) and for all X 2 X it holds that:

1. U

t;X

?


ontains only suÆxes of U

?

.

2. U

t;X

A


ontains only suÆxes of U

A

for every A 2 C and U

t;X

:A


ontains only

suÆxes of U

:A

for every A 2 C.

3. U

t;X

(�nR)


ontains only suÆxes of U

(�nR)

for every (� nR) 2 N

�

.

4. U

t;X

(�nR)


ontains only suÆxes of U

(�nR)

[U

?

�R

�1

for every (� nR) 2 N

�

.

Proof. � At step t of the algorithm mat
h

v

ALN

(M), the following sys-

tem of mat
hing problems has to be solved:

8U

?

:? u u

A2C

8U

A

:A u u

A2C

8U

:A

::A

u u

(�nR)2N

�

8U

(�nR)

:(� nR) u u

(�nR)2N

�

8U

(�nR)

:(� nR)

�

?

8V

?

:? u u

A2C

8V

A

:A u u

A2C

8V

:A

::A

u u

(�nR)2N

�

8V

(�nR)

:(� nR) u u

(�nR)2N

�

8V

(�nR)

:(� nR)

u u

X2X

8V

X

:X
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and for every X 2 X :

8U

t;X

?

:? u u

A2C

8U

t;X

A

:A u u

A2C

8U

t;X

:A

::A

u u

(�nR)2N

�

8U

t;X

(�nR)

:(� nR) u u

(�nR)2N

�

8U

t;X

(�nR)

:(� nR)

v

?

8V

X

?

:? u u

A2C

8V

X

A

:A u u

A2C

8V

X

:A

::A

u u

(�nR)2N

�

8V

X

(�nR)

:(� nR) u u

(�nR)2N

�

8V

X

(�nR)

:(� nR)

u u

X

0

2X

8V

X

X

0

:X

0

This system 
an be 
ombined into a single mat
hing problem. For

the solution to this problem, Lemma 12 provides us with appropriate

solution languages. Regarding the ?-
on
ept, we obtain the following

result for the solution language U

t+1;X

?

assigned by �

t+1

(X

j

):

U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(E

t;X

C

) (�)

Again, due to our notation U

t+1;X

?

�N

�

R

takes the pla
e of

b

L

X

?

as used in

Lemma 12. Furthermore, E

C

denotes the set of C-ex
luding words and

analogously E

t;X

C

the set of ex
luding words for the mat
hing problem


orresponding to the variable X the above system of mat
hing prob-

lems.

We may assume C to be in redu
ed normal form. Consequently, it

holds that U

?

�N

�

R

= E

C

, as seen in De�nition 29. As �

t

is also in

redu
ed normal form, we furthermore obtain that U

t;X

?

�N

�

R

= E

t;X

C

for

every t 2 T (mat
h

v

ALN

;M). In Equation (�), we may therefore repla
e

E

C

by U

?

�N

�

R

and E

t;X

C

by U

t;X

?

�N

�

R

. This reveals the indu
tive relation

of the role languages:

U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

) (�

0

)

It is to prove that U

t+1;X

?


ontains only suÆxes of U

?

. Equation (�

0

) is

only a synta
ti
 variant of Equation (�) established in Lemma 36. As

U

t+1;X

?

is pre�x free, we 
an prove the 
laim following exa
tly the same

pattern as seen for FL

?

in Lemma 36.
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� From the system of mat
hing problems introdu
ed in (1), we now derive

solutions for role languages of the form U

t+1;X

A

referring to the atomi



on
ept A in �

t+1

(X

j

). By virtue of Lemma 12 we obtain:

U

t+1;X

A

=

\

w2V

X

w

�1

(U

A

[ E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

A

[ E

t;X

C

)

n U

t+1;X

?

�N

�

R

Taking into a

ount that U

?

�N

�

R

= E

C

and that U

t;X

?

�N

�

R

= E

t;j;C

,

we 
an apply the argument of Lemma 36 and repla
e the expression

U

t+1;X

?

�N

�

R

with the right-hand side of Equation (�

0

). Again, we 
an

obtain an upper bound for the resulting expression, yielding that

U

t+1;X

A

�

[

w2V

X

w

�1

(U

A

) [

[

X

0

2X

[

w2V

X

X

0

w

�1

(U

t;X

A

).

Be
ause U

A

and every U

t+1;X

A

is �nite, it is not diÆ
ult to prove that

w

�1

(U

A

) and every w

�1

(U

t+1;X

A

) 
ontain only suÆxes of U

A

. We know

from Lemma 36, that this property is respe
ted by the union, thus


ompleting the proof. For role languages U

t;X

:A

referring to negated

atomi
 
on
epts :A, exa
tly the same argument holds.

� We already know that �

t

is in redu
ed normal form for every t 2

T (mat
h

v

ALN

;M). Thus, we have for every number restri
tion (�

nR) 2 N

�

that

S

m�n

U

t;X

(�mR)

is equal to U

t;X

(�nR)

, i.e. the union 
an

be omitted. The same holds for C, whi
h is in redu
ed normal form as

well. Therefore, the expression

S

m�n

U

(�mR)

similarly 
an be repla
ed

by U

(�nR)

. This observation enables us to simplify the solution lan-

guage derived from the system of mat
hing problems proposed in (1).

By means of Lemma 12, we 
an infer for U

t+1;X

(�nR)

that:

U

t+1;X

(�nR)

=

\

w2V

X

w

�1

(

[

m�n

U

(�mR)

[ E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(

[

m�n

U

t;X

(�mR)

[ E

t;X

C

)

n U

t+1;X

?

�N

�

R

=

\

w2W

j

w

�1

(U

(�nR)

[ E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

(�nR)

[ E

t;X

C

)

n U

t+1;X

?

�N

�

R
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We 
an see that after removing the unions for the number restri
tions,

the above equation is synta
ti
ally identi
al to the one derived forA 2 C

in (2). The rest of the argument therefore is identi
al to what has been

proposed there.

� For (�)-number restri
tions, we 
an again remove the union-operator

in the same fashion as done in (3). However, we obtain slightly di�erent

results for the solution languages derived from the system of mat
hing

problems introdu
ed in (1). For U

t+1;X

(�nR)

we 
an infer that:

U

t+1;X

(�nR)

=

\

w2V

X

w

�1

(

[

m�n

U

(�mR)

[ E

C

�R

�1

)

\

\

X

0

2X

\

w2V

X

X

0

w

�1

(

[

m�n

U

t;X

(�mR)

[ E

t;X

C

�R

�1

)

n U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

(�nR)

[ (U

?

�N

�

R

)�R

�1

)

\

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

(�nR)

[ (U

t;X

?

�N

�

R

)�R

�1

)

n

0

�

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

)

1

A

| {z }

=:M

2

Observe, that in the se
ond step we 
ould repla
e E

C

by U

?

�N

�

R

and

E

t;X

C

by U

t;X

?

�N

�

R

. This repla
ement is valid be
ause C and �

t

are in

redu
ed normal form. However, the result deviates from the pattern

seen in the previous 
ases of this proof|the right-quotients of U

?

�N

�

R

and U

t;X

?

�N

�

R

o

ur instead of the original languages. Nevertheless,

we 
an simplify the right quotient thanks to the �niteness of U

?

and

U

t;X

?

: (U

?

�N

�

R

)�R

�1

equals U

?

�R

�1

[ U

?

�N

�

R

and similarly (U

t;X

?

�N

�

R

)�

R

�1


an be simpli�ed to U

t;X

?

�R

�1

[ U

t;X

?

�N

�

R

for all t and X. Sin
e

after this transformation all right quotients refer to �nite languages,

we 
an subtra
t M

2

and follow the argument familiar from Lemma 36.
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Consequently, we obtain:

U

t+1;X

(�nR)

�

[

w2V

X

w

�1

(U

(�nR)

[ U

?

�R

�1

)

[

[

X

0

2X

[

w2V

X

X

0

w

�1

(U

t;X

(�nR)

[ U

t;X

?

�R

�1

)

Finally, we 
an again employ an indu
tion argument to prove that every

U

t+1;X

(�nR)


ontains only suÆxes of U

(�nR)

[ U

?

�R

�1

.

After eliminating the union over number restri
tions and the right-quotient

for (�)-number restri
tions in the above equations, the resulting situation ap-

peared very similar to the analogous problems for FL

?

. Re
alling the 
hara
-

terizations of equivalen
e and subsumption for redu
ed normal forms in FL

?

and ALN , this is not surprising. By 
omparing Lemma 25 and Lemma 35,

we �nd almost the same 
onditions for subsumption. Note that we again

assumed C to be in redu
ed normal form.

Lemma 41 Deletion property in ALN

mat
h

v

ALN

(M) meets the deletion property.

Proof. At �rst, the assertion is proved for role languages referring to the

?-
on
ept and then for the remaining 
ases.

?-
on
ept: Assume that a word w 
an appear in a role language for

greater t after having been deleted, i.e. there exists a word w 2 N

�

R

, and

indi
es t < t

0

2 T (mat
h

v

ALN

;M) and an X 2 X su
h that w 2 U

t;X

?

and

w 62 U

t

0

;X

?

but w 2 U

t

0

+1;X

?

. We 
an now infer a 
ontradi
tion to U

t;X

?

being

pre�x free, as already done for FL

?

in Lemma 37.

As the substitutions �

t

, �

t

0

and �

t

0

+1

are redu
ed, we 
an infer from the

assumptions by virtue of the properties of redu
ed normal forms in ALN that

U

t;X

?

� U

t

0

;X

?

� U

t

0

+1;X

?

. The rest of the argument is analogous to Lemma 37.

We apply the de�nition of the multiset order (�) and infer that U

t;X

?

must


ontain a nontrivial pre�x of w as well as w itself.

Other 
ases: Assume similarly for a word w 2 N

�

R

that w 2 U

t;X

A

and

w 62 U

t

0

;X

A

, but w 2 U

t

0

+1;X

A

for an atomi
 
on
ept A 2 C, for some X 2 X ,

and for nonnegative integers t < t

0

2 T . Sin
e again �

t

v �

t

0

v �

t

0

+1

and

sin
e all substitutions are redu
ed, we yield by Lemma 35:

U

t;X

A

_

[ U

t;X

?

�N

�

R

� U

t

0

;X

A

_

[ U

t

0

;X

?

�N

�

R

� U

t

0

+1;X

A

_

[ U

t

0

+1;X

?

�N

�

R
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Now we 
an follow the argument employed in Lemma 37 to infer a 
ontra-

di
tion to the disjointness of the unions. It is shown in Lemma 35 that the

argument of disjoint unions also applies for negated atomi
 
on
ept and num-

ber restri
tions.

The proof of the stri
tness property for ALN is identi
al to the previous


ase for FL

?

. This 
an be readily seen|�rstly, Lemma 17 (soundness and


ompleteness) is valid for ALN as well; and se
ondly, the 
ara
terization of

stri
t subsumption for ALN -
on
ept des
riptions in Lemma 35 yields the

same superset relation for the role languages as used in Lemma 38. Sin
e

no other argument was ne
essary there, the same strategy works for ALN as

well. We may therefore state the result without proof, 
on
luding the proofs

of the termination properties:

Lemma 42 Stri
tness property

mat
h

v

ALN

(M) meets the stri
tness property.

3.4.4 General result

Given the three termination properties, it is now easy to show that the algo-

rithm halts after a polynomial number of steps. In fa
t, Property 1 (suÆx

property) yields a polynomial upper bound on the size of the role languages

U

t;X

H

. Property 3 (stri
tness property) shows that in every step of the itera-

tion at least one word is removed from one of these languages, and Property 2

(deletion property) ensures that words that have been removed 
annot reap-

pear. To sum up, we have shown the following theorem.

Theorem 43 Let L 2 fFL

?

;FL

:

;ALNg. The algorithm mat
h

v

L

is a poly-

nomial time algorithm that, given an L-mat
hing problem with subsumption


onditions, returns a least mat
her of this problem if it is solvable, and \fail"

otherwise.

It should be noted that the algorithm mat
h

v

L

does not work for L =

FL

0

. In the following se
tion we will therefore brie
y dis
uss the additional


onditions ne
essary to extend Theorem 43 to FL

0

.
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3.5 Mat
hing under subsumption 
onditions in FL

0

The language FL

0

does not allow for the bottom 
on
ept, and thus the

initialization step (Step 1) of Algorithm 16 is not possible. Instead of starting

with �(X) := ?, the algorithm 
an also start from the least mat
her of C �

?

D. In 
ase the side 
onditions do not introdu
e new variables (i.e., variables

not 
ontained in D), this modi�
ation works and yields a polynomial time

mat
hing algorithm. In 
ontrast, if new variables are introdu
ed, then we


an show that the size of the least mat
her may grow exponentially in the

size of the mat
hing problem. The following example, whi
h has also been

di
ussed in [2℄, illustrates this.

Example 44 LetN

R

= fR; Sg. For some n 2 N, assume X = fX

1

; : : : ; X

n

g.

Consider the (trivial) FL

0

-mat
hing problem > �

?

> under the subsumption


onditions fX

0

v

?

Ag [ fX

i+1

v

?

8fR; Sg:X

i

j 0 � i � n� 1g.

Combining the �rst subsumption 
ondition with the se
ond one yields

that every solution to the mat
hing problem has to respe
t the subsumption


ondition X

1

v 8fR; Sg:A. It is easy to see by indu
tion that for every

i 2 f1; : : : ; ng we have

X

i

v 8fR; Sg

2

i

:A;

denoting by fR; Sg

2

i

the the set of all words of length 2

i

over the alphabet

fR; Sg. Hen
e, for every solution � to the mat
hing problem it holds that

�(X

n

) must assign a role language of exponential size in n 
orresponding to

the atomi
 
on
ept A.

The above example suggests a solution strategy for FL

0

-mat
hing prob-

lems M =: hC �

?

D;S

0

i with new variables o

urring in subsumption 
on-

ditions. The strategy 
omprises six steps whi
h are explained below.

1. It is shown in [2℄ that we 
an transform S

0

into an equivalent set S

1

of

a
y
li
 subsumption 
onditions whose size is polynomial in the size of

S

0

.

2. Analogous to the above example, S

1

is then transformed into an equiva-

lent set S

2

su
h that every variable o

urring in S

2

either o

urs only on

left-hand sides of subsumption 
onditions or only on right-hand sides.

To this end the substitution fX 7! E j X v

?

E 2 S

1

g is applied to

the right-hand side E

0

of every subsumption 
ondition X

0

v

?

E

0

2 S

1

.

After at most jS

1

j iterations the set of subsumption 
onditions has the
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required form. As shown by the example, the size of S

2

may be expo-

nential in that of S

1

. Note that this modi�
ation would not preserve

equivalen
e in 
ase of stri
t subsumption 
onditions.

3. Every variable neither o

urring in C �

?

D nor on left-hand sides of

subsumption 
onditions in S

2

is now substituted by >, yielding S

3

.

4. Finally, S

4

is obtained from S

3

by removing every subsumption 
ondi-

tion X v

?

E where X o

urs neither in C �

?

D nor on any right-hand

side of any subsumption 
ondition in S

3

. Obviously, every variable

o

urring in S

4

also o

urs in the original mat
hing problem C �

?

D.

5. The problem hC �

?

D;S

4

i is then solved with the modi�ed algorithm

mat
h

v

FL

0

starting by solving C �

?

D instead of assigning ? to every

variable in D. Denote by � the solution returned in 
ase of a su

essful


omputation.

6. � assigns values only to variables o

urring in D. For a solution �

in
luding all variables in M we pro
eed as follows. For every variable

X o

urring only on right-hand sides of subsumption 
onditions in

S

3

(and not in C �

?

D), de�ne �(X) := >. For those variables X

o

urring only on left-hand sides, let �(X) := u

Xv

?

E2S

3

�(E).

One 
an see that the possible exponential blow-up in Step 2 makes the

above strategy an exponential time algorithm.

Nevertheless, the size of the substitutions for variables in D 
an still be

bounded polynomially, and if one is only interested in substitutions for these

variables, then these 
an still be 
omputed in polynomial time.

4 Mat
hing under general side 
onditions

Mat
hing under general side 
onditions (i.e., stri
t and non-stri
t subsump-

tion 
onditions) is more 
omplex than mat
hing under subsumption 
ondi-

tions for two reasons.

First, as already shown in [2℄, de
iding the solvability of an FL

0

-mat
hing

problem under stri
t (and a
y
li
) subsumption 
onditions is NP-hard. It is

easy to see that the same redu
tion works for the DLs FL

?

, FL

:

, and ALN .

Thus, assuming that P 6= NP, there 
annot exist a polynomial time algorithm


omputing mat
hers of mat
hing problems under general side 
onditions.
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Se
ond, as shown by the following example, solvable mat
hing problems

under stri
t subsumption 
onditions no longer need to have a least mat
her

(but rather �nitely many minimal mat
hers).

Example 45 Consider the FL

?

-mat
hing problem

A

1

u : : : u A

n

�

?

X

1

u : : : uX

n

under the stri
t subsumption 
onditions

fX

i+1

�

?

X

i

j 1 � i � n� 1g [ fX

1

�

?

>g.

The pure mat
hing problem enfor
es that ea
h X

i

must be repla
ed by a

(possibly empty) 
onjun
tion of 
on
ept names from fA

1

; : : : ; A

n

g. Thus,

the stri
t subsumption 
onditions 
an only be satis�ed if X

1

is repla
ed by

one of these names, X

2

by a 
onjun
tion of this name with an additional one,

et
. From this it is easy to derive that the mat
hers of the problem are of

the following form: given a permutation P := (p

1

; : : : ; p

n

) of (1; : : : ; n), the

substitution �

P

is de�ned by �

P

(X

i

) := A

p

1

u : : : u A

p

i

(1 � i � n). Thus,

there are n! non-equivalent mat
hers, and it is easy to see that ea
h of them

is minimal.

The new 
ontribution of this se
tion is a (non-deterministi
) algorithm,

mat
h

�

L

, that 
omputes mat
hers of L-mat
hing problems under general

side 
onditions for L 2 fFL

?

;FL

:

g. (We strongly 
onje
ture that a simi-

lar algorithm 
an also be used for ALN .) This non-deterministi
 algorithm

mat
hes the lower 
omplexity bound (NP hard) for the de
ision problem in

the following sense. The length of every 
omputation path of this algorithm

is polynomially bounded in the size of the given mat
hing problem. In 
ase

the problem is not solvable, every 
omputation returns \fail". Otherwise,

the su

essful 
omputation paths yield all minimal mat
hers. The algorithm

pro
eeds in two steps: �rst it eliminates 
y
les and then solves the resulting

mat
hing problem with a
y
li
 side 
onditions.

4.1 Eliminating 
y
les

In [2℄, FL

0

-mat
hing problems with 
y
li
 subsumption 
onditions are trans-

formed into equivalent ones with a
y
li
 subsumption 
onditions.

In this 
ontext, "-
y
les and role 
y
les must be distinguished. We say

that X dire
tly "-depends on Y i� there is a side 
ondition X � E su
h that
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Y o

urs in the top-level 
onjun
tion of E. Now, the notion \"-dependen
e"

is de�ned in the obvious way, and X lies on an "-
y
le i� it "-depends on

itself. For example, w.r.t. S := fX v

?

X u 8r:Y g, the variable X "-depends

on itself, and it depends on Y (but does not "-depend on Y ).

If an "-
y
le involves a stri
t subsumption 
ondition, then the problem is

unsolvable. Otherwise, "-
y
les 
an be removed by �rst repla
ing all variables

o

urring on su
h a 
y
le by the same variable. The remaining "-
y
les are

due to subsumption 
onditions of the formX v

?

XuE. But su
h a 
ondition

is equivalent to X v

?

E.

If X is a variable on a role 
y
le (i.e., a 
y
le that is not an "-
y
le), the

we 
an show that solutions (in FL

?

;FL

:

) must repla
e X by either > or ?.

The next lemma provides the relevant result.

Lemma 46 Solutions to role 
y
les

Let X �

?

8fvg:X be a subsumption 
ondition in an FL

?

-mat
hing problem

M , where v 6= ". Let � be a solution to M respe
ting the side 
ondition.

Then,

1. If � = v, then �(X) � ? or �(X) � >.

2. If � = �, then �(X) � ?.

Proof. � Without loss of generality we may assume that � is redu
ed.

Denote �(X) in U -labeled redu
ed normal form. If � respe
ts the side


ondition, then we have �(X) v 8fvg:�(X). The 
hara
terization of

subsumption (Lemma 1) implies that the 
onditions

U

?

�N

�

R

� fvg�U

?

�N

�

R

U

A

[ U

?

�N

�

R

� fvg�U

A

[ fvg�U

?

�N

�

R

hold for all A 2 C. We have to show that i) �(X) = ? and �(X) = >

solves X �

?

8W:X and that ii) these are the only valid solutions.

i) If �(X) = ?, then the redu
ed normal form implies that U

?

= f"g.

This yields the stri
t in
lusion U

?

�N

�

R

� fvg�U

?

�N

�

R

, sin
e v 6= ", and

also respe
ts the se
ond 
ondition, sin
e U

A

� U

A

holds for any 
hoi
e

of U

A

. Consequently, we �nd that �(X) � ? solves the side 
ondition

for � = v.

If �(X) = >, then we have U

?

= U

A

= ; whi
h for the �rst 
ondition

yields ; � ;. Hen
e, the �rst 
ondition for subsumption obviously
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holds, while for the se
ond one we get U

A

� W �U

A

for all A 2 C. This

holds, sin
e U

A

= ;. Hen
e, �(X) � ? solves the side 
ondition for

� = v.

Note that in 
ase U

?

= ; the assignment U

A

= ; is the only valid

solution for U

A

� W �U

A

and that no possible value for some U

A

yields

a stri
t in
lusion U

A

� W �U

A

.

ii) The previous remark implies that for any redu
ed solution �(X) 62

f?;>g solving the side 
ondition, the role language U

?


annot be

empty. Thus, assume u 2 U

?

n f"g. it 
an be shown that this im-

plies a 
ontradi
tion to U

?

being �nite and pre�x free.

�

Consequently, we 
an (non-deterministi
ally) guess su
h a substitution for

variables on role 
y
les. Note that the side 
onditions with su
h a variable

as left-hand side are either obviously unsolvable or give rise to additional

mat
hing problems. For example, if we repla
e X in X �

?

Y u 8r:X by ?

then the 
ondition ? �

?

Y u8r:? 
an be expressed by the mat
hing problem

? �

?

Z under the side 
ondition Z �

?

Y u 8r:?.

4.2 The algorithm handling a
y
li
 side 
onditions

In the following, let M = hC �

?

D;Si be an L-mat
hing problem (L 2

fFL

?

;FL

:

g) under a
y
li
 side 
onditions. Let S = fX

1

�

?

1

E

1

; : : : ; X

`

�

?

`

E

`

g

for distin
t variables X

1

; : : : ; X

`

and patterns E

1

; : : : ; E

`

su
h that E

i

does

not 
ontain the variables X

i

; : : : ; X

`

. (The 
ase where not all the left-hand

side variables are distin
t 
an be treated similarly.) We denote by S

v

the set

of side 
onditions obtained from S by repla
ing every �

i

by v.

Applied to input M , the algorithm mat
h

�

L

�rst 
alls mat
h

v

L

(hC �

?

D;S

v

i). If this yields \fail", then M is also unsolvable. Otherwise, the


omputed substitution � solves C �

?

D, but may still violate some of the

stri
t subsumption 
onditions. Starting with the violated side 
ondition with

the largest index, the algorithm tries to modify � su
h that this side 
ondition

is satis�ed.

Assume that X

k

�

?

E

k

is this side 
ondition. Sin
e � solves X

k

v

?

E

k

,

we thus know that �(X

k

) � �(E

k

). Thus, we must either make �(X

k

) more

spe
i�
 or �(E

k

) more general. Sin
e mat
h

v

L


omputes the least solution,

the �rst option 
annot lead to a solution of the overall system. Hen
e, we
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must try the se
ond one. The idea (whi
h will be explained in more detail

later) is that we 
onsider the redu
ed normal form of �(E

k

). We try to make

�(E

k

) more general by (non-deterministi
ally) 
hoosing one word from one of

its role languages and by removing this word by appropriately modifying the

role languages of the variables o

urring in E

k

. Sin
e we want to 
ompute

minimal mat
hers, we make as little 
hanges as possible in order to keep the

substitution as spe
i�
 as possible.

The new substitution �

0

obtained this way solves X

k

�

?

E

k

, and sin
e

we only modi�ed variables o

urring in E

k

, the side 
onditions with larger

index are still satis�ed. However, the side 
onditions with smaller index

(even the non-stri
t ones) as well as the mat
hing problem need no longer

be solved by �

0

. To over
ome this problem, mat
h

v

L

is used to 
ompute the

least substitution that (i) solves hC �

?

D;S

v

i, and (ii) subsumes �

0

. It 
an

be shown that the se
ond 
ondition (whi
h 
an be expressed by a system of

mat
hing problems) makes sure that the 
omputed substitution still solves

the stri
t subsumption 
onditions from index k to `. We 
an now 
ontinue

the modi�
ation pro
ess with this substitution.

Algorithm 47 Let M = hC �

?

D;Si be an L-mat
hing problem under

a
y
li
 side 
onditions. Then, mat
h

�

L

works as follows:

1. If mat
h

v

L

(hC �

?

D;S

v

i) returns \fail",

then return \fail";

2. k := `; � := mat
h

v

L

hfC �

?

Dg; S

v

i;

3. If k = 0, then return �;

If �(X

k

) �

k

�(E

k

), then 
ontinue with 5.

4. Guess modi�
ation �

0

of � for X

k

�

?

E

k

;

If �

0

(E

k

) � �(E

k

), then return \fail";

M

0

:= hfC �

?

Dg [ f�

0

(X

j

) v

?

X

j

j 1 � j � `g; S

v

i;

If mat
h

v

L

(M

0

) returns \fail", then return \fail";

� := mat
h

v

L

(M

0

)

5. k := k � 1; 
ontinue with 3.

4.3 How to guess modi�
ations

In order to introdu
e modi�
ations, we �rst sket
h the underlying idea for

FL

?

. Re
all that the goal is to make �(E

k

) more general by (non-determinis-
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ti
ally) 
hoosing one word w from one of its role languages and by removing

this word by appropriately modifying the role languages of the variables

o

urring in E

k

.

We 
all this a C-modi�
ation if w is pi
ked from a role language 
orre-

sponding to some atomi
 
on
ept A. In this 
ase, removing 
ertain words

from role languages of the variables in E suÆ
es to obtain a minimal modi-

�
ation.

In 
ase of a ?-modi�
ation, where w is pi
ked from the role language


orresponding to the ?-
on
ept, the removal of some word v in the role

language of a variable impli
itly removes every 
ontinuation vv

0

of v. To


orre
t this e�e
t, every word in fvg�N

R

is put ba
k whenever some v is

removed. In addition, sin
e v is also impli
itly removed from role languages


orresponding to atomi
 
on
epts, it is also transferred to su
h role languages.

This ensures that the 
omputed substitution is as spe
i�
 as possible. This

is vital both for the proof of 
orre
tness and to obtain all minimal solutions.

Before dealing with modi�
ations in terms of a formal de�nition (see

De�nition 49), the following example illustrates in more detail how the mod-

i�
ations work.

Example 48 Consider the FL

?

-mat
hing problem A u 8fr; sg:? �

?

X

1

u

8r:X

2

u8r:X

3

under the stri
t subsumption 
onditions X

2

�

?

X

1

; X

3

�

?

X

2

.

Exe
uting the above algorithm, we obtain in Step 2 as initial solution �

the following substitution:

fX

1

7! 8fr; sg:? u 8f"g:A;X

2

7! 8f"g:?; X

3

7! 8f"g:?g:

The iteration begins in Step 3 by 
he
king the se
ond side 
ondition,

whi
h is violated. Choosing a ?-modi�
ation in Step 4, we must 
hoose a

word from the role language f"g 
orresponding to ? in �(X

2

) = �(X

3

). In

this 
ase, we 
an only pi
k ". To keep the 
hange minimal, we do not simply

remove it, but rather repla
e it by fr; sg in the role language 
orresponding

to ? in �(X

2

). In addition, we transfer " to the role language 
orresponding

to A. This yields �

0

(X

2

) = 8fr; sg:? u 8f"g:A. The other variables remain

un
hanged.

In this 
ase, the substitution �

0

itself solves the mat
hing problem M

0


onsidered in Step 4, and thus mat
h

v

FL

?

(M

0

) returns �

0

.

In the se
ond iteration, we �nd in Step 3 that the �rst side 
ondition

X

2

�

?

X

1

no longer holds. In Step 4, we again 
hoose a ?-modi�
ation,
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and 
hoose the word r from the role language fr; sg 
orresponding to ? in

�(X

1

). The modi�
ation repla
es r by rr; rs and adds r to the role language


orresponding to A. This yields �

0

(X

1

) := 8frr; rs; sg:?u 8f"; rg:A. Again,

this substitution solves M

0

, and thus the new value of � is �

0

.

In the next iteration we have k = 0, ending the iteration in Step 3. The

algorithm �nally returns the substitution

fX

1

7! 8frr; rs; sg:? u 8f"; rg:A;X

2

7! 8fr; sg:? u 8f"g:A;X

3

7! 8f"g:?g:

Note that, in the �rst iteration step, it was not possible to apply a C-

modi�
ation sin
e the role language 
orresponding to A was empty. In the

se
ond step, we 
ould have applied a C-modi�
ation, removing " from the

role language 
orresponding to A in �(X

1

). Then, however, the system M

0

obtained this way would not have been solvable. In fa
t, it is easy to see

that the two mat
hing problems A u 8fr; sg:? �

?

X

1

u 8r:X

2

u 8r:X

3

and

8fr; sg:? v

?

X

1

o

urring in M

0


annot be solved simultaneously.

Modi�
ations in FL

?

In the following de�nition, modi�
ations in FL

?

are de�ned formally. Re
all

that in our mat
hing problem M := (C �

?

D; fX

j

�

?

j

E

j

j 1 � j � `g), C is

assumed in U -labeled redu
ed normal form and D is assumed in V -labeled

normal form. Furthermore, for the k-th side 
ondition X

k

�

?

k

E

k

, the 
on
ept

des
ription E

k

is assumed in V

X

k

-labeled normal form. Let �

0

denote the

substitution 
omputed in Step 2 of the algorithm and denote by �

0

t

(t � 1)

the respe
tive modi�
ation 
omputed in Step 4. Denote by �

t+1

the solution

of mat
h

v

FL

?

(M

0

) 
omputed in the t-th iteration of the algorithm. For every

t and for every variable X

k

, assume �

t

(X

k

) in U

t;X

k

-labeled redu
ed normal

form. In the following de�nition, modi�
ations need not be de�ned for the

�rst side 
ondition, be
ause the a
y
li
 stru
ture implies that E

1


ontains no

variables.

De�nition 49 Guessing modi�
ations in FL

?

Let H = f?g [ C and let k 2 f2; : : : ; `g, where �

k

= �. Consider a redu
ed

substitution �

t

with �

t

(X

k

) � �

t

(E

k

). A modi�
ation �

0

t

of �

t

is de�ned by

exe
uting one of the following alternatives:

� ?-modi�
ation

(Non-deterministi
ally) guess one word û 2 U

t;X

k

?

. For all j 2 f1; : : : ; k�
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1g, 
ompute

W

j

?

:=

[

w2V

X

k

X

j

w

�1

�fûg

Thus, W

j

?


ontains all suÆxes of û whi
h yield û in the produ
t V

X

k

j

�

W

j

?

. De�ne �

0

t

by spe
ifying the relevant role languages U

0t;X

j

H

for H 2

f?g [ C, i.e. denote every �

0

(X

j

) in U

0t;X

j

-labeled normal form.

1. U

0t;X

j

?

:= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

2. For all A 2 C, de�ne: U

0t;X

j

A

:= U

t;X

j

A

[ (W

j

?

\ U

t;X

j

?

)

� C-modi�
ation

(Non-deterministi
ally) guess one atomi
 
on
ept

^

A 2 C. For

^

A, guess

one word û 2 U

t;X

k

^

A

. Using û, for all j 2 f1; : : : ; k � 1g 
ompute

W

j

A

:=

S

w2V

X

k

X

j

w

�1

�fûg. Then de�ne:

U

0t;X

j

^

A

:= U

t;X

j

^

A

nW

j

A

and U

0t;X

j

H

:= U

t;X

j

H

for all H 2 f?g [ C n f

^

Ag.

Soundness and 
ompleteness for FL

?

and FL

:

is proved in Se
tion 4.4.

NP-
ompleteness is proved in Se
tion ??. We give two more examples in

order to show that i) modi�
ations deleting only one word do not always

suÆ
e and ii) mat
hing in Step 4 of the algorithm mat
h

�

L

is ne
essary. For

our examples, let N

C

= fAg and N

R

= fR; Sg.

Example 50 Consider the mat
hing problem

8frrr; rrs; rs; srrg:?u 8frr; srg:A �

?

8rr:X

1

u 8sr:X

2

u 8r:X

3

u 8r:X

4

under the following set of subsumption 
onditions.

fX

1

v

?

8fr; sg:?;

X

3

�

?

8frs; sg:X

1

u 8r:X

2

;

X

4

�

?

8s:? u 8f"; rg:X

3

g

Exe
uting algorithm mat
h

�

FL

?

yields as initial solution � in Step 2

fX

1

7! 8fr; sg:? u 8f"g:A;

X

2

7! 8r:? u 8f"g:A;

X

3

7! 8frr; rs; sg:? u 8r:A;

X

4

7! 8frr; rs; sg:? u 8r:Ag:



4 MATCHING UNDER GENERAL SIDE CONDITIONS 55

whi
h violates the third side 
ondition, as the test in Step 3 shows: �(X

4

)

is equivalent to �(8s:?u8f"; rg:X

3

). In Step 4, we 
hoose a ?-modi�
ation

and pi
k the word rs from the role language frr; rs; sg 
orresponding to

? in �(X

4

). Hen
e, we have W

3

?

= frs; sg, a

ording to the de�nition

of ?-modi�
ations. Thus, rs and s must be 
hanged in the role language


orresponding to ? in �(X

3

). The modi�ed solution �

0

now yields

�

0

(X

3

) = 8frr; rsr; rss; sr; ssg:?u 8fr; rs; sg:A,

while the other variables remain un
hanged. We �nd that �

0

solves the

mat
hing problem M

0

in Step 4, and thus mat
h

v

FL

?

(M

0

) yields �

0

.

In the se
ond iteration we �nd in Step 3 that the se
ond side 
ondition

is violated, sin
e �(X

3

) is equivalent to �(8frs; sg:X

1

u8r:X

2

). We 
hoose a

C-modi�
ation and pi
k the word rs from the role language fr; rs; sg 
orre-

sponding to A in �(X

3

). This yields W

1

A

= f"g and W

2

A

= fsg. Nevertheless,

the role language f"g 
orresponding to A in �(X

2

) does not 
ontain the word

s, while f"g 
orresponding to A in �(X

1

) obviously 
ontains ". We therefore

have

�

0

(X

1

) = 8fr; sg:?,

while the other variables remain un
hanged. Again �

0

solves the mat
hing

problemM

0

in Step 4, so that we have �

0

as new substitution �. In the third

iteration, we now �nd in Step 3 that the �rst side 
ondition holds, so that

the �nal result is the following.

fX

1

7! 8fr; sg:?;

X

2

7! 8r:? u 8f"g:A;

X

3

7! 8frr; rsr; rss; sr; ssg:?u 8fr; rs; sg:A;

X

4

7! 8frr; rs; sg:? u 8r:Ag

A 
loser examination reveals that for the third side 
ondition, neither pi
king

any word other than rs from fr; rs; sg in the ?-modi�
ation, nor performing

a C-modi�
ation would have been su

essful. Similarly, in the se
ond side


ondition only a C-modi�
ation is su

essful. Nevertheless, here we 
ould

have pi
ked the word s instead of rs, whi
h would not have altered the

solution, though.

The previous two examples might raise the question whether or not solv-

ing the mat
hing problemM

0

in Step 4 of every iteration of the the algorithm
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mat
h

�

FL

?

is ne
essary at all. The following example shows that there are


ases where mat
hing is needed.

Example 51 We examine the mat
hing problem

8frrr; rrsg:?u 8rr:A �

?

8rr:X

1

u 8r:X

2

uX

3

uX

4

under the following set of subsumption 
onditions.

fX

3

�

?

8rr:X

1

u 8r:X

2

;

X

4

�

?

X

3

g

Exe
uting algorithmmat
h

�

FL

?

again begins by 
omputing an initial solution

� in Step 2, yielding the following substitution.

fX

1

7! 8fr; sg:? u A;

X

2

7! 8frr; rsg:? u 8r:A;

X

3

7! 8frrr; rrsg:?u 8frrg:A;

X

4

7! 8frrr; rrsg:?u 8frrg:Ag

Obviously, in Step 3 we �nd that the se
ond side 
ondition is violated, making

it ne
essary to modify the role languages of �(X

3

), so that �(X

3

) � �

0

(X

3

).

Nevertheless, for the initial solution � we also �nd that the �rst side


ondition is violated as well, sin
e �(X

3

) is equivalent to �(8rr:X

1

u 8r:X

2

).

As a 
onsequen
e, any su

essful modi�
ation will result in a substitution

�

0

with �

0

(X

3

) 6� �

0

(8rr:X

1

u 8r:X

2

). Hen
e, �

0


an be no solution to the

mat
hing problem M

0

in Step 4.

The above examples may suÆ
e to give a rough impression of the algo-

rithm mat
h

�

FL

?

. We now introdu
e modi�
ations for FL

:

.

Modi�
ations in FL

:

The modi�
ation strategy for mat
h

�

FL

:

di�ers from the previous de�nition

for FL

?

in three ways. Here, in
onsisten
ies 
an not only be introdu
ed by

role languages referring to the ?-
on
ept, but also by intera
tions between

role languages referring to an atomi
 
on
ept A and its negation :A.

Consequently, removing the set W

j

?

from role languages referring to the

?-
on
ept alone does not suÆ
e for ?-modi�
ations. Furthermore, a ?-

modi�
ation 
an no longer add the interse
tion W

j

?

\ U

t;X

j

?

to every role
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language of the form U

t;X

j

H

, where H 6= ?. In this 
ase, W

j

?

\ U

t;X

j

?

would

appear in U

t;X

j

A

as well as in U

t;X

j

:A

for every A 2 C, rendering the removal from

all role languages referring to the ?-
on
ept useless. For ?-modi�
ations in

FL

:

, we non-deterministi
ally 
hoose a subset of W

j

?

\ U

t;X

j

?

to be added to

the role languages of the form U

t;X

j

H

.

For C-modi�
ations, the non-deterministi
 
hoi
e of an atomi
 
on
ept

^

A

must be generalized to all 
on
epts in C [ f:A j A 2 Cg. With these two


hanges we obtain the following de�nition for modi�
ations in FL

:

.

De�nition 52 Guessing modi�
ations in FL

:

Let H = f?g [ C [ f:A j A 2 Cg and let

X

k

�

?

u

H2H

8V

X

k

H

:H u

k�1

u

j=1

8V

X

k

X

j

:X

j

| {z }

E

k

be the k-th side 
ondition in an FL

:

-mat
hing problem with stri
t a
y
li
 side


onditions over the variables fX

1

; : : : ; X

`

g, where H 2 H and 1 � k � `. We

again 
onsider a redu
ed substitution �

t

with �

t

(X

k

) � �

t

(E

k

), where every

�

t

(X

j

) is denoted in U

t;X

j

-labeled normal form. A modi�
ation �

0

t

of �

t

is

de�ned by exe
uting one of the following alternatives:

� ?-modi�
ation

(Non-deterministi
ally) guess one word û 2 U

t;X

k

?

. For all j 2 f1; : : : ; k�

1g, 
ompute

W

j

?

:=

[

w2V

X

k

X

j

w

�1

�fûg

Thus, W

j

?


ontains all suÆxes of û whi
h yield û in the produ
t V

X

k

j

�

W

j

?

. De�ne �

0

t

by spe
ifying the relevant role languages U

0t;X

j

H

for H 2

f?g [ C, i.e. denote every �

0

(X

j

) in U

0t;X

j

-labeled normal form.

1. U

0t;X

j

?

:= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

2. For all H 2 H n f?g, (non-deterministi
ally) 
hoose a subset

^

W

j

� W

j

?

\ U

t;X

j

?

. Then de�ne:

U

0t;X

j

H

:=

�

U

t;X

j

H

n (U

t;X

j

H

\ U

t;X

j

:H

\W

j

?

)

�

[

^

W

j
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� C-modi�
ation

(Non-deterministi
ally) guess one atomi
 
on
ept

^

H 2 C [ f:A j A 2

Cg. For

^

H, guess one word û 2 U

t;X

k

^

H

. Using û, for all j 2 f1; : : : ; k�1g


ompute W

j

^

H

:=

S

w2V

X

k

X

j

w

�1

�fûg. Then de�ne:

U

0t;X

j

^

H

:= U

t;X

j

^

H

nW

j

^

H

and

U

0t;X

j

H

:= U

t;X

j

H

for all H 2 H n f

^

Hg.

In the next se
tion we will prove the algorithmsmat
h

�

FL

?

andmat
h

�

FL

:

to be 
orre
t. Knowing that the algorithm mat
h

v

L

always terminates it is

easy to see that termination also holds for mat
h

�

L

, where a �xed number of

mat
hing problems under subsumption 
onditions are solved. For this reason

we do not need to address the question of termination separately.

4.4 Soundness and 
ompleteness

With a formal de�nition of modi�
ations, we are now ready to prove sound-

ness and 
ompletess of the algorithm. We �rst address the 
ase L = FL

?

.

Soundness and 
ompleteness in FL

?

In preparation, we need to introdu
e some notation whi
h simpli�es denoting

the role words assigned to a 
on
ept pattern for some atomi
 
on
ept.

De�nition 53 Notation

Let E be an FL

?

-
on
ept pattern in V -labeled normal form over the role

alphabet N

R

and the set X of variables, i.e.

E := u

H2H

8U

H

:H u u

X2X

8V

X

:X,

where H := f?g [ C. For a substitution � and for all X 2 X , denote �(X)

in U

X

-labeled normal form. For every H 2 H, de�ne

�(E)j

H

:= U

H

[

[

X2X

V

X

�U

X

H

With the above notation, we 
an write �(E) as 8�(E)j

?

:?u u

A2C

8�(E)j

A

:A.

It is shown next that the modi�
ation strategy de�ned for FL

?

in De�ni-

tion 49 does produ
e a stri
t solution for the relevant side 
ondition. Hen
e,
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if for some side 
onditionX

k

�

?

E

k

o

urring in a solvable mat
hing problem

it holds that �

t

(X

k

) � �

t

(E

k

), then there is a modi�
ation yielding � � �

0

and �

0

(X

k

) � �

0

t

(E

k

).

Lemma 54 Stri
tness of modi�
ations in FL

?

Let �

�

be a redu
ed solution to M , let �

t

be a redu
ed substitution with

�

t

(X

k

) � �

t

(E

k

) for some k 2 f2; : : : ; `g with �

k

= �. Let �

t

� �

�

. Then

(non-deterministi
ally) modifying �

t

to �

0

t

yields � � �

0

and �

0

t

(X

k

) � �

0

t

(E

k

).

Proof. Two steps are suÆ
ient to prove the 
laim: i) every modi�
ation in

a

ordan
e with De�nition 49 yields � v �

0

and ii) there exists a modi�
ation

su
h that �

t

(X

k

) � �

0

t

(E

k

).

i) ?-modi�
ation: For every 
hoi
e of û and for every j it holds for �

0

t

that

U

0t;X

j

?

�N

�

R

= U

t;X

j

?

�N

�

R

nW

j

?

,

implying U

t;X

j

?

�N

�

R

� U

0t;X

j

?

�N

�

R

. For every A 2 C the in
lusion

^

W

j

A

� U

t;X

j

?

furthermore implies

U

t;X

j

A

[ U

t;X

j

?

�N

�

R

� U

0t;X

j

A

[ U

0t;X

j

?

�N

�

R

be
ause every word possibly gained by U

0t;X

j

A

is 
ontained in U

t;X

j

?

�N

�

R

. Conse-

quently, we obtain �

t

v �

0

t

. The se
ond part of the 
laim, whi
h is addressed

below in (ii), is suÆ
ient for stri
tness.

C-modi�
ation: The only di�eren
e between �

t

and �

0

t

is the deletion of

words in role languages referring to an atomi
 
on
ept

^

A 2 C. It is therefore

not diÆ
ult to see that �

t

v �

0

t

holds.

ii) We now present a guessing strategy to �nd a modi�
ation �

0

with

�

0

t

(X

k

) � �

0

t

(E

k

). To this end, two 
ases are distinguished.

(Case 1): �

t

(E

k

) and �

�

(E

k

) disagree on the ?-languages, i.e.

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

� �

�

(E

k

)j

?

�N

�

R

.

Thus, there are û 2 U

t;X

k

?

and x 2 N

�

R

su
h that ûx does not o

ur on

the right-hand side of the in
lusion. Consequently, û 62 �

�

(E

k

)j

?

�N

�

R

. Con-

stru
t �

0

by a ?-modi�
ation, pi
king one word û as introdu
ed above. By

de�nition, we then have

U

0t;X

j

?

= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

,
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where W

j

?

=

S

w2V

X

k

X

j

w

�1

�fûg.

(Case 2): �

t

(E

k

) and �

�

(E

k

) agree on the ?-languages in the sense that

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

= �

�

(E

k

)j

?

�N

�

R

.

As �

t

(E

k

) � �

�

(E

k

), this implies that there is an A 2 C and a word û 2 U

t;X

k

A

su
h that û 62 �

�

(E

k

)j

A

. For the modi�
ation, 
hoose

^

A := A and use one

word û as introdu
ed above.

It is to show now that both in both 
ases we have �

0

t

(X

k

) � �

0

t

(E

k

).

In Case 1, the de�nition of W

j

?

implies for the ?-part of �

0

(E

k

) that

�

0

t

(E

k

)j

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

n

k�1

[

j=1

V

X

k

X

j

�W

j

?

The word û o

urs both in �

t

(E

k

)j

?

�N

�

R

and in at least one produ
t V

X

k

X

j

�W

j

?

.

Sin
e U

0t;X

k

?

= U

t;X

k

?

, and sin
e U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

, we obtain

U

0t;X

k

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

. (�)

This is suÆ
ient for our 
laim, sin
e we have shown in (1) that �

t

v �

0

t

.

In Case 2, the de�nition of �

0

t

ensures that for

^

A we have

�

0

t

(E

k

)j

^

A

= �

t

(E

k

)j

^

A

n

k�1

[

j=1

V

X

k

X

j

�W

j

?

.

The word û o

urs in �

t

(E

k

)j

^

A

, sin
e U

t;X

k

^

A

= pf (�

t

(E

k

)j

^

A

) � �

t

(E

k

)j

^

A

,

3

and o

urs in at least one produ
t V

X

k

X

j

�W

j

?

, be
ause otherwise û 62 �

t

(E

k

)j

^

A

.

Thus, û 62 �

0

t

(E

k

)j

^

A

. We therefore obtain

�

t

(E

k

)j

^

A

[ �

t

(E

k

)j

?

�N

�

R

� �

0

t

(E

k

)j

^

A

[ �

0

t

(E

k

)j

?

�N

�

R

The in
lusion is stri
t, be
ause otherwise û 2 �

t

(E

k

)j

?

�N

�

R

, implying û 2

U

t;X

k

?

�N

�

R

in 
ontradi
tion to the redu
edness of �

t

. Together with (1), this


on
ludes our proof.

3

Re
all that pf makes a formal language pre�x free, as de�ned in De�nition 18.
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It has to be shown next that a modi�
ation yielding �

0

t

is minimal in the

sense that no other modi�
ation � at the same time i) lies between �

t

and �

0

t

in respe
t to the stri
t ordering � on substitutions, i.e. if �

t

� � � �

0

t

, and

ii) also yields stri
tness for the respe
tive side 
ondition, i.e. �

t

(E

k

) � �(E

k

).

This property justi�es that in the algorithm mat
h

�

FL

0

no modi�
ation tries

to make �(X

k

) more spe
i�
 when modifying a side 
ondition X

k

�

?

E

k

with

�(X

k

) � �(E

k

). The following lemma provides the ne
essary result, again

re
urring to the mat
hing problem as introdu
ed at the beginning of this

se
tion.

Lemma 55 Minimality of modi�
ations

Consider a substitution � su
h that �

t

� � v �

0

t

and �

t

(E

k

) � �(E

k

).

Then, � � �

0

t

.

Proof. Without loss of generality, we may assume �

t

, � , and �

0

t

to be re-

du
ed. Two 
ases are distinguished depending on whether �

0

t

was obtained

by a ?- or a C-modi�
ation.

?-modi�
ation: Then there exists a word û 2 �

t

(E

k

)j

?

su
h that û 62

�

0

t

(E

k

)j

?

. There are two possible reasons for �

t

(E

k

) � �(E

k

) to hold:

Case 1: �

t

(E

k

)j

?

�N

�

R

� �(E

k

)j

?

�N

�

R

. Sin
e � v �

0

t

, this implies that the

di�eren
e �

t

(E

k

)j

?

�N

�

R

n �(E

k

)j

?

�N

�

R

must be missing in �

0

t

(E

k

)j

?

�N

�

R

as well.

But �

0

t

(E

k

)j

?

�N

�

R

was obtained from �

t

(E

k

)j

?

�N

�

R

by removing as little as

possible to remove the word û. Hen
e, in �(E

k

)j

?

�N

�

R

no other words 
ould

have been removed, be
ause otherwise either �

0

t

(E

k

)j

?

�N

�

R

would be too small

or �

t

(E

k

) � �(E

k

) 
ould not hold. This implies �(E

k

)j

?

�N

�

R

= �

0

t

(E

k

)j

?

�N

�

R

For every A 2 C, we therefore have �(E

k

)j

A

� �

0

t

(E

k

)j

A

. On the other hand,

we know that the ?-modi�
ation has in
reased �

0

t

(E

k

)j

A

by W

j

?

\ U

t;X

j

?

,

yielding �

0

t

(E

k

)j

A

� �

0

t

(E

k

)j

A

. This implies �(E

k

)j

A

= �

0

t

(E

k

)j

A

, be
ause

otherwise the ?-modi�
ation would not have added all of W

j

?

\ U

t;X

j

?

to the

role languages referring to A in all 
on
ept des
riptions �

0

t

(X

j

). Together

with � v �

0

t

and the redu
edness of the substitutions this is suÆ
ient for

� � �

0

t

.

Case 2: �

t

(E

k

)j

?

�N

�

R

= �(E

k

)j

?

�N

�

R

. Thus, i) there is some A 2 C su
h

that �

t

(E

k

)j

A

� �(E

k

)j

A

a and ii) we have �(E

k

)j

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

as a


onsequen
e of the ?-modi�
ation for �

0

t

. It 
an be shown that this implies

a 
ontradi
tion with � v �

0

t

, be
ause �(E

k

)j

A


ontains not enough words for

�(E

k

)j

A

[ �(E

k

)j

?

�N

�

R

� �(E

k

)j

A

[ �(E

k

)j

?

�N

�

R

to hold, whi
h is a ne
essary


ondition, as seen in the 
hara
terization of subsumption.
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C-modi�
ation: Then there exists an

^

A 2 C and a word û 2 �

t

(E

k

)j

^

A

su
h that û 62 �

0

t

(E

k

)j

?

. For � , we again have two 
ases to distinguish:

Case 1: �

t

(E

k

)j

?

�N

�

R

� �(E

k

)j

?

�N

�

R

. This implies a 
ontradi
tion with

the fa
t that the C-modi�
ation did not alter role languages in �

0

t

referring

to the ?-
on
ept, whi
h implies �

t

(E

k

)j

?

�N

�

R

= �

0

(

E

k

)j

?

�N

�

R

. Together with

�(E

k

)j

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

, this forbids the assumption of Case 1.

Case 2: �

t

(E

k

)j

?

�N

�

R

= �(E

k

)j

?

�N

�

R

. Again, this implies some A 2 C

su
h that �

t

(E

k

)j

A

� �(E

k

)j

A

. Sin
e we know that �(E

k

) � �

0

t

(E

k

) and

sin
e the C-modi�
ation is the only di�eren
e between �

t

(E

k

) and �

0

t

(E

k

),

we 
an 
on
lude that A =

^

A. On the one hand one 
an see that as few as

possible words are removed in �

0

t

(E

k

)j

A

to gain stri
tness while on the other

hand �(E

k

)j

A

� �

0

t

(E

k

)j

A

. Together with � v �

0

t

and the redu
edness of the

substitutions we get � � �

0

t

.

We are now prepared to prove soundness of the algorithm mat
h

v

FL

?

. To

this end, we need to make sure that side 
onditions remain valid on
e they

are modi�ed appropriately.

Lemma 56 Soundness

1. For every t and for every modi�
ation of �

t

yielding �

0

t

it holds that if

mat
h

v

FL

?

(M

0

) su

eeds in Step 4 of the algorithm, then

i) �

t

(X

j

) = �

t+1

(X

j

) for every j 2 fk; : : : ; `g

ii) �

t

� �

0

t

v �

t+1

.

2. If mat
h

�

FL

?

(M) returns the substitution �, then � solvesM (soundness).

Proof. 1. i) A

ording to De�nition 49, for j 2 fk; : : : ; `g the substitu-

tion �

0

t

assigns the same values to every variable X

j

as �

t

does. Due to

Lemma 54, the right-hand side of every side 
ondition 
an only be
ome

more general. Consequently, every value assigned to variables X

k

to

X

`

by �

0

t

is also a solution for the mat
hing problem de�ned for �

t+1

.

Exploiting the minimality of mat
h

v

?

and the assumption of redu
ed

normal forms 
on
ludes the argument.

ii) It was shown in Lemma 54 that �

t

� �

0

t

holds for every modi�
ation

�

0

t

. Subsumption �

0

t

v �

t+1

obviously holds be
ause of the mat
hing

problems modulo subsumption f�

0

t

(X

j

) v

?

X

j

j1 � j � `g whi
h are

in
luded in the mat
hing problem M

0

for �

t+1

.
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2. Assume that mat
h

v

?

(M) = �. Hen
e, � is the solution of a mat
hing

problem solved in Step 2 or Step 4 of the algorithm. In both 
ases,

obviously C �

?

D holds. Furthermore, the initial solution 
omputed

in Step 2 also respe
ts S

v

, where every side 
ondition from M is non-

stri
t. If the exe
ution of the algorithm has su

eeded, then in every

iteration from ` to 1 either the k-th side 
ondition was found valid

in Step 3 or guessing a modi�
ation in Step 4 has su

eeded. It is

obvious that in both 
ases every stri
t subsumption 
ondition under


onsideration has been met in the respe
tive iteration.

As S

v

is a
y
li
, we �nd as a 
onsequen
e of Part (1) that on
e a

side 
ondition is met it remains valid in subsequent iterations of the

algorithm. This holds for two reasons: i) the variables not modi�ed by a

modi�
ation �

0

t

remain un
hanged in �

0

t+1

and ii) the variables whi
h are

modi�ed are assigned more general 
on
ept des
riptions. Consequently,

if every iteration is su

essful, then �nally every side 
ondition is met

by the resulting substitution �.

In order to prove 
ompleteness, it is suÆ
ient to show that the algorithm

mat
h

�

FL

?

(M) su

essfully returns a solution if the input mat
hing problem

M is solvable.

Lemma 57 Completeness

Let �

�

be a redu
ed solution to M .

1. Then for every t there exists a modi�
ation for �

t

yielding �

0

t

, su
h that:

i) If �

0

t

v �

�

then �

t+1

v �

�

.

ii) �

0

t

v �

�

2. mat
h

�

FL

?

(M) returns a substitution � whi
h solves M (
ompleteness).

Proof. 1. i) Presupposing �

0

t

v �

�

it is not diÆ
ult to see that �

�

is

also a valid solution to the mat
hing problem de�ned in the algorithm

for �

t+1

. The additional requirements for �

t+1

are f�

0

t

(X

j

) v

?

X

j

j1 �

j � `g whi
h are met by �

�

due to �

0

t

v �

�

. The minimality of the

mat
hing algorithm mat
h

v

FL

?

then guarantees that �

t+1

v �

�

.

ii) For every j 2 f1; : : : ; `g, denote �

�

(X

j

) in U

�;X

j

-labeled normal

form. Proof by indu
tion over t.

(t = 0): Again, we begin by 
onsidering a ?-modi�
ation as introdu
ed

in the se
ond part of Lemma 54. Due to the minimality of mat
h

v

FL

?
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it holds that �

0

v �

�

. This implies U

0;X

j

?

�N

�

R

� U

�;X

j

?

�N

�

R

. As û 62

�

�

(E

k

)j

?

�N

�

R

, no produ
t U

�;X

j

?

�N

�

R


ontains words from W

j

?

. Sin
e

U

00;X

j

?

�N

�

R

= U

0;X

j

?

�N

�

R

nW

j

?

, we obtain U

00;X

j

?

�N

�

R

� U

�;X

j

?

�N

�

R

, whi
h

is the �rst 
ondition for subsumption.

For A 2 C, a ?-modi�
ation obviously guarantees that U

0;X

j

A

� U

00;X

j

A

.

We also know from (i) that U

0;X

j

?

�N

�

R

� U

00;X

j

?

�N

�

R

. As �

0

v �

�

implies

U

0;X

j

A

[ U

0;X

j

?

�N

�

R

� U

�;X

j

A

[ U

�;X

j

?

�N

�

R

, (�)

we may repla
e U

0;X

j

A

by U

00;X

j

A

. Now, why may we also repla
e the

produ
t U

0;X

j

?

�N

�

R

by the|smaller|language U

00;X

j

?

�N

�

R

? The language

U

00;X

j

?

�N

�

R

does not 
ontain a word from W

j

?

. We already know that

U

�;X

j

?

�N

�

R

does not either, so the only problem 
ould be U

�;X

j

A


ontain-

ing words fromW

j

?

. But sin
e U

00;X

j

A

is de�ned as U

t;X

j

A

[(U

�;X

j

A

\W

j

?

),

this 
ase is 
overed. This 
ompletes the proof for ?-modi�
ations.

For C-modi�
ations, we only have to 
onsider the se
ond 
ondition for

subsumption, be
ause role languages referring to the bottom 
on
ept

remain un
hanged. For all A 6=

^

A, nothing 
hanges as well. For

^

A,

only those words of U

0;X

j

A

are missing in U

00;X

j

A

whi
h do not o

ur in

U

�;X

j

A

also. Consequently, starting from equation (�) again we obtain

the result sought.

(t + 1): The indu
tion hypothesis states that �

0

t

v �

�

. Due to (i),

this implies �

t+1

v �

�

. With these �ndings the remaining proof is

analogous to the previous 
ase t = 0.

2. If M is solvable, the mat
hing problem hC �

?

D;S

v

i 
omputed in

Step 2 of the algorithm is solvable as well. Furthermore, we know

from Theorem 43 that the solutions 
omputed by mat
h

v

FL

?

are least

mat
hers with respe
t to the ordering v on substitutions. Hen
e, for

the initial solution � it holds that � � �

�

. Indu
tively, we 
an now

exploit the results of Lemma 54 and Part (1): Lemma 54 guarantees

that the modi�
ation probably ne
essary in the �rst iteration of the

algorithm su

eeds. A

ording to (ii), for the �rst modi�
ation �

0

1

we

also have �

0

1

� �

�

, whi
h by (i) implies �

2

v �

�

. If �

2

does not solve

M , then obviously we have �

2

� �

�

. Hen
e, in the next iteration we


an indu
tively apply the same argument.
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Consequently, we end up with a su

essful 
omputation yielding a so-

lution � with � v �

�

.

As a 
onsequen
e of the previous lemma, all minimal mat
hers (w.r.t.

subsumption of substitutions) are 
omputed. This 
an be readily seen when

using a minimal solution �

�

in the previous lemma, whi
h then implies that

the solution 
omputed by mat
h

v

FL

?

is equivalent to �

�

.

Soundness and 
ompleteness in FL

:

In FL

:

-
on
ept des
riptions, in
onsisten
ies 
an additionally be introdu
ed

by words o

urring in role languages referring to an atomi
 
on
ept and to its

negation. We need to alter the notation �(E)j

H

introdu
ed in the previous

part in order to respe
t this e�e
t for H = ?.

De�nition 58 Notation

Let E be an FL

:

-
on
ept pattern in V -labeled normal form over the role

alphabet N

R

and the set X of variables. For a substitution � and for all

X 2 X , denote �(X) in U

X

-labeled normal form. Then, de�ne

�(E)j

?

:= U

?

[

[

X2X

V

X

�U

X

?

[

[

A2C

�

[

X2X

(V

X

�U

X

A

) \

[

X2X

(V

X

�U

X

:A

)

�

In Lemma 59 we 
ould prove for every possible modi�
ation �

0

t

that �

t

v

�

0

t

. In 
ase of FL

:

, this is no longer possible, be
ause we depend stronger

on the properties of a stri
t solution �

v

. In the followng lemma we therefore

begin by spe
ifying a guessing strategy relative to �

�

.

Lemma 59 Stri
tness of Modi�
ations in FL

:

Let �

�

be a redu
ed solution to M , let �

t

be a redu
ed substitution with

�

t

(X

k

) � �

t

(E

k

) for some k 2 f2; : : : ; `g with �

k

= �. Let �

t

� �

�

. Then

(non-deterministi
ally) modifying �

t

to �

0

t

yields � � �

0

and �

0

t

(X

k

) � �

0

t

(E

k

).

Proof. We show that there exists a modi�
ation in a

ordan
e with De�-

nition 52 su
h that � v �

0

and �

0

t

(X

k

) � �

0

t

(E

k

). To this end, we present a

guessing strategy to �nd an appropriate modi�
ation �

0

, distinguishing two


ases.

(Case 1): �

t

(E

k

) and �

�

(E

k

) disagree on the ?-languages, i.e.

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

� �

�

(E

k

)j

?

�N

�

R

.
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This situation is analogous to the 
ase FL

?

, be
ause the left-hand side of

the equation is redu
ed, whi
h forbids in
onsisten
ies being introdu
ed by

intera
tions of atomi
 
on
epts and their negations. It is therefore suÆ
ient

to restri
t the 
hoi
e of û to the role language U

t;X

k

?

. Hen
e, we again 
on-

stru
t �

0

by a ?-modi�
ation, pi
king one word û as introdu
ed above. By

de�nition, we then have

U

0t;X

j

?

= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

,

where W

j

?

=

S

w2V

X

k

X

j

w

�1

�fûg. Nevertheless, an additional guess is ne
essary

for the se
ond part of the ?-modi�
ation. For every j 2 f1; : : : ; k � 1g and

for every H 2 H n f?g, 
hoose as

^

W

j

the interse
tion U

�;X

j

H

\W

j

?

. Hen
e,

U

0t;X

j

H

= ((U

t;X

j

H

n (U

t;X

j

H

\ U

t;X

j

:H

\W

j

?

)) [ (U

�;X

j

H

[W

j

?

)

(Case 2): This 
ase is analogous to the guessing strategy for modi�
ations

in FL

?

. If �

t

(E

k

) and �

�

(E

k

) agree on the ?-languages, we again have

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

= �

�

(E

k

)j

?

�N

�

R

.

As �

t

(E

k

) � �

�

(E

k

), this implies that there is an A 2 C and a word û 2 U

t;X

k

A

su
h that û 62 �

�

(E

k

)j

A

. For the modi�
ation, 
hoose

^

A := A and use one

word û as introdu
ed above.

In Case 1, we again �nd that

�

0

t

(E

k

)j

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

n

k�1

[

j=1

V

X

k

X

j

�W

j

?

.

Following the same argument as employed for FL

?

, we furthermore obtain

U

0t;X

k

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

,

whi
h is a ne
essary 
ondition for the stri
t subsumption �

t

(E

k

) � �

0

(E

k

).

The se
ond se
ond 
ondition for subsumption remains to be shown, i.e.:

U

0t;X

k

H

[ U

0t;X

k

?

��

�

� �

0

(E

k

)j

H

[ �

0

t

(E

k

)j

?

��

�

for all H 2 Hnf?g. Note that the substitution � is assumed redu
ed, whi
h

makes it possible to use the role language U

0t;X

k

?

instead of

^

U

0t;X

k

?

, as seen in
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the 
hara
terization of the subsumption. We 
an show the above in
lusion

by exploiting the fa
t that �

t

� �

�

. Sin
e after removing in
onsisten
ies

from the relevant role languages only the interse
tion U

�;X

j

H

[W

j

?

was added

to the role languages U

0t;X

j

H

, it is not diÆ
ult to see that � � �

0

holds as well.

In Case 2, the proof is analogous to that for FL

?

, be
ause the C-modi�
ation

for FL

:

also only removes words from role languages U

t;X

j

H

, where H 2

H n f?g.

Minimality of the modi�
ations 
an be shown similar to the proof for

FL

?

. The possibility of in
onsisten
ies introdu
ed by role words referring to

negated atomi
 
on
epts thereby is hidden by the notation de�ned in De�-

nition 58. With this prerequisite, the proof works analogous. Furthermore,

Lemma 56 only depends on the fa
ts i) that in the modi�
ation of �

t

(E

k

) the

variables in fX

k

; : : : ; X

`

g remain un
hanged, ii) that mat
h

v

FL

?


omputes

least mat
hers w.r.t. the ordering v on substitutions and iii) that modi�
a-

tions are su

essful for a solvable mat
hing problem. These fa
ts also hold

for FL

:

, as we have already seen. Consequently, the proof of soundness of

the algorithm mat
h

�

FL

:

is identi
al to Lemma 56.

Part (i) in the proof of 
ompleteness for FL

?

(Lemma 57) again only relies

on the minimality of the algorithm mat
h

v

FL

?

, so that the same argument


an be used for FL

:

. It 
an also be shown that (ii) is valid for modi�
ations

in FL

:

, i.e. we always have �

0

t

v �

�

. As seen in the se
ond part of Lemma 57,

these �ndings|in addition to the minimality of mat
hing under subsumption


onditions|are suÆ
ient to show 
ompleteness.

It is easy to see that the length of ea
h 
omputation bran
h of the nonde-

terminsti
 algorithm mat
h

�

L

is polynomially bounded. Be
ause mat
hing

under stri
t subsumption 
onditions in FL

?

and FL

:

is known to be NP-

hard, we obtain the following theorem.

Theorem 60 Let L 2 fFL

?

;FL

:

g. De
iding the solvability of L-mat
hing

problems under general side 
onditions is an NP-
omplete problem.
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