Aachen University of Technology

 Research group for Theoretical Computer Science
Matching under Side Conditions in Description Logics

Franz Baader
Sebastian Brandt
Ralf Küsters

LTCS-Report 01-02

Matching under Side Conditions in Description Logics

Franz Baader and Sebastian Brandt
LuFG Theoretical Computer Science
RWTH Aachen
Ralf Küsters
Institut für Informatik und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel

Abstract

Whereas matching in Description Logics is now relatively wellinvestigated, there are only very few formal results on matching under additional side conditions, though these side conditions were already present in the original paper by Borgida and McGuinness introducing matching in DLs. The present report closes this gap for the DL $\mathcal{A L N}$ and its sublanguages.

Contents

1 Introduction 1
2 Description logics 2
2.1 Syntax and semantics 2
2.1.1 A normal form for concept descriptions 3
2.1.2 Characterization of subsumption 4
2.2 Matching in description logics 5
2.2.1 Solving the decision problem 7
2.2.2 Solving the computation problem 11
2.3 Matching under side conditions 13
3 Matching under subsumption conditions 14
3.1 The algorithm handling subsumption conditions 14
3.2 Soundness and Completeness 15
3.3 Reduced normal forms 16
3.3.1 Prefix free languages 16
3.3.2 Reduced normal forms 20
3.4 Termination 34
3.4.1 Termination properties in $\mathcal{F} \mathcal{L}_{\perp}$ 34
3.4.2 Termination properties in $\mathcal{F L}$ 39
3.4.3 Termination properties in $\mathcal{A L N}$ 40
3.4.4 General result 45
3.5 Matching under subsumption conditions in $\mathcal{F} \mathcal{L}_{0}$ 46
4 Matching under general side conditions 47
4.1 Eliminating cycles 48
4.2 The algorithm handling acyclic side conditions 50
4.3 How to guess modifications 51
4.4 Soundness and completeness 58
References 67

1 Introduction

The traditional inference problems (like subsumption) in description logics (DLs) are now well-investigated, which means that there exist complexity results and algorithms for a great variety of DLs of differing expressive power [9] as well as optimized implementations of the algorithms for expressive DLs [11]. In contrast, matching concepts against patterns is a relatively new inference problem in DLs, which has originally been introduced in $[6,13]$ to help filter out the unimportant aspects of large concepts appearing in knowledge bases of the Classic system [8]. More recently, matching (as well as the more general problem of unification) has been proposed as a tool for detecting redundancies in knowledge bases [3] and to support the integration of knowledge bases by prompting possible interschema assertions [5].

All three applications have in common that one wants to search a large knowledge base for concepts having a certain (not completely specified) form. This "form" can be expressed with the help of so-called concept patterns, i.e., concept descriptions containing variables. For example, the pattern $D:=$ $X \sqcap \forall$ child. ($Y \sqcap$ Female) looks for concepts that restrict the child role to fillers that are Female, such as the concept $C:=(\geq 1$ child) $\sqcap \forall$ child.(Female \sqcap Rich). In fact, applying the substitution $\sigma:=\{X \mapsto(\geq 1$ child $), Y \mapsto$ Rich $\}$ to the pattern D yields a concept equivalent to C, i.e., σ is a solution (matcher) of the matching problem $C \equiv{ }^{?} D .{ }^{1}$

This type of matching problems has been investigated in detail for sublanguages of the DLs $\mathcal{A L N}$ and $\mathcal{A L E}$ in [2] and [1], respectively. In particular, it was shown that, for sublanguages of $\mathcal{A L N}$, solvable matching problems always have a least matcher (w.r.t. subsumption), which can be computed in polynomial time. For sublanguages of $\mathcal{A L E}$, deciding solvability of matching problems modulo equivalence is already NP-complete.

In $[6,13]$, the expressivity of matching problems was further enhanced by allowing for additional side conditions on the variables (through the asconstruct): a (strict) subsumption condition is of the form $X \sqsubseteq^{?} E\left(X \sqsubset^{?} E\right)$ where X is a variable and E a pattern, and it restricts the matchers to substitutions satisfying $\sigma(X) \sqsubseteq \sigma(E)(\sigma(X) \sqsubset \sigma(E))$. Using a subsumption condition, the matching problem of the above example can be written more

[^0]intuitively as $X \sqcap \forall$ child. $Z \equiv$? (≥ 1 child) $\sqcap \forall$ child. (Female \sqcap Rich) under the subsumption condition $Z \sqsubseteq^{?}$ Female. One result of this paper is that also more complex sets of subsumption conditions do not extend the expressive power of matching problems (see below). However, they are often more convenient to state. In contrast, strict subsumption conditions cannot always be simulated by pure matching problems. They can, e.g., be used to avoid trivial matches. For example, the pattern $D^{\prime}:=X \sqcap \forall$ child. Y matches every concept since \forall child. $\top \equiv \top$ (where the top concept \top stands for the set of all individuals). The additional strict subsumption condition $Y \sqsubset^{\text {? }} T$ ensures that we can only match concepts with a real restriction on child.

The first (rather restricted) formal results on matching under side conditions were given in [2]: it was shown that matching under strict subsumption conditions in the small DL $\mathcal{F} \mathcal{L}_{0}$ is already NP-hard, and that matching under so-called acyclic subsumption conditions can be reduced to matching without side conditions. However, [2] does not give a complexity upper bound for matching under strict subsumption conditions and the reduction for acyclic subsumption conditions given there is exponential.

This paper investigates in detail matching under side conditions in sublanguages of $\mathcal{A L N}$. We will show that matching under subsumption conditions can be reduced in polynomial time to matching without side conditions. In particular, this implies that solvable matching problems under subsumption conditions in sublanguages of $\mathcal{A L N}$ always have a least matcher, which can be computed in polynomial time. For strict subsumption conditions, matching is shown to be NP-complete in the sublanguages $\mathcal{F} \mathcal{L}_{\perp}$ and $\mathcal{F} \mathcal{L}_{\neg}$ of $\mathcal{A} \mathcal{L N}$.

2 Description logics

2.1 Syntax and semantics

Concept descriptions are inductively defined with the help of a set of concept constructors, starting with a set N_{C} of concept names and a set N_{R} of role names. In this paper, we consider concept descriptions built from the constructors shown in Table 1. In the description logic $\mathcal{F} \mathcal{L}_{0}$, concept descriptions are formed using the constructors top-concept (T), conjunction $(C \sqcap D)$, and value restriction $(\forall r . C)$. The description logic $\mathcal{F} \mathcal{L}_{\perp}$ additionally provides us with the bottom concept (\perp), and $\mathcal{F} \mathcal{L}_{\checkmark}$ also allows for primitive negation $(\neg P)$. Finally, $\mathcal{A L N}$ extends $\mathcal{F} \mathcal{L}_{\checkmark}$ with number restrictions $(\geq n r)$

Syntax	Semantics	\mathcal{F}_{0}	$\mathcal{F} \mathcal{L}_{\perp}$	$\mathcal{F} \mathcal{L}_{\neg}$	$\mathcal{A L N}$
\top	$\Delta^{\mathcal{I}}$	x	x	x	x
$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$	x	x	x	x
$\forall r . C$	$\left\{x \in \Delta^{\mathcal{I}} \mid \forall y:(x, y) \in r^{\mathcal{I}} \rightarrow y \in C^{\mathcal{I}}\right\}$	x	x	x	x
\perp	\emptyset		x	x	x
$\neg P, P \in N_{C}$	$\Delta^{\mathcal{I}} \backslash P^{\mathcal{I}}$			x	x
$(\geq n r), n \in \mathbb{N}$	$\left\{x \in \Delta^{\mathcal{I}} \mid \#\left\{y \mid(x, y) \in r^{\mathcal{I}}\right\} \geq n\right\}$				x
$(\leq n r), n \in \mathbb{N}$	$\left\{x \in \Delta^{\mathcal{I}} \mid \#\left\{y \mid(x, y) \in r^{\mathcal{I}}\right\} \leq n\right\}$				x

Table 1: Syntax and semantics of concept descriptions.
and $(\leq n r)$ (see Table 1).
As usual, the semantics of concept descriptions is defined in terms of an interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right)$. The domain $\Delta^{\mathcal{I}}$ of \mathcal{I} is a non-empty set and the interpretation function ${ }^{\mathcal{I}}$ maps each concept name $P \in N_{C}$ to a set $P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ and each role name $r \in N_{R}$ to a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$. The extension of $\cdot{ }^{\mathcal{I}}$ to arbitrary concept descriptions is defined inductively, as shown in the second column of Table 1.

One of the most important traditional inference services provided by DL systems is computing the subsumption hierarchy. The concept description C is subsumed by the description $D(C \sqsubseteq D)$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for all interpretations \mathcal{I}; C and D are equivalent $(C \equiv D)$ iff they subsume each other; C is strictly subsumed by $D(C \sqsubset D)$ iff $C \sqsubseteq D$ and $C \not \equiv D$. For all DLs listed in Table 1, subsumption can be decided in polynomial time using a structural subsumption algorithm [7].

2.1.1 A normal form for concept descriptions

It is easy to see that any $\mathcal{F} \mathcal{L}_{\perp}$-concept description can be transformed into an equivalent description that is either T or a (nonempty) conjunction of descriptions of the form $\forall r_{1} \cdots \forall r_{m}$. A, where r_{1}, \ldots, r_{m} are $m \geq 0$ (not necessarily distinct) roles, and A is the bottom concept \perp or a concept name. We abbreviate $\forall r_{1} \ldots \forall r_{m} . A$ by $\forall r_{1} \ldots r_{m}$. A, where $r_{1} \ldots r_{m}$ is viewed as a word over the alphabet N_{R} of all role names. If $m=0$, then this is the empty word ε, and thus $\forall \varepsilon . A$ is our "abbreviation" for A. In addition, instead of $\forall w_{1} \cdot A \sqcap \ldots \sqcap \forall w_{\ell} . A$ we write $\forall L . A$ where $L:=\left\{w_{1}, \ldots, w_{\ell}\right\}$ is a finite set of words over N_{R}; we define $\forall \emptyset . A \equiv \top$. Using these abbreviations, any $\mathcal{F} \mathcal{L}_{\perp^{-}}$
concept description C containing only concept names in the finite set $\mathcal{C} \subseteq N_{C}$ can be written as

$$
C \equiv \forall U_{\perp} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall U_{A} \cdot A
$$

where U_{H} for $H \in \mathcal{C} \cup\{\perp\}$ are finite sets of words over N_{R} (called role languages). This representation of C will subsequently be called its U-labeled normal form.

As an example consider the $\mathcal{F} \mathcal{L}_{\perp}$-concept description $C_{e x}:=\forall r .(\perp \sqcap$ $\forall r . \perp) \sqcap \forall r . \forall s . A \sqcap \forall s . A$. Its $\mathcal{F L}_{0}$-normal form $C_{e x}^{\prime}$ is $\forall\{r, r r\} . \perp \sqcap \forall\{r s, s\} . A$.

Similar normal forms exist for concept descriptions in $\mathcal{F} \mathcal{L}_{\neg}$ and $\mathcal{A L N}$. In $\mathcal{F L}_{7}$, an additional role language for every negated atomic concept is necessary; normal forms in $\mathcal{A L N}$ require an additional role language for every negated atomic concept and one for every number restriction.

2.1.2 Characterization of subsumption

Normal forms as introduced in the previous section can be used to characterize subsumption of concept descriptions. The relevant results for $\mathcal{A L N}$ and its sublanguages are provided in [2]. For $\mathcal{F} \mathcal{L}_{\perp}$, we obtain the following lemma:

Lemma 1 Characterization of subsumption in $\mathcal{F} \mathcal{L}_{\perp}$
Let C and D be $\mathcal{F} \mathcal{L}_{\perp}$-concept descriptions. Let C be in U-labeled normal form and let D be in V-labeled normal form. Then, $C \sqsubseteq D$ iff the following two conditions hold:

1. $U_{\perp} \cdot N_{R}^{*} \supseteq V_{\perp} \cdot N_{R}^{*}$
2. $U_{A} \cup U_{\perp} \cdot N_{R}^{*} \supseteq V_{A} \cup V_{\perp} \cdot N_{R}^{*}$ for all $A \in \mathcal{C}$.

In preparation of the characterization of subsumption in $\mathcal{F} \mathcal{L}_{\neg}$ and $\mathcal{A L N}$, we need to introduce the notion of excluding words.

Definition 2 Excluding words
Let C be an \mathcal{F}_{-}-concept description in U-labeled normal form. Let D be an $\mathcal{A L N}$-concept description. For C, define the role language \widehat{U}_{\perp} as follows:

$$
\widehat{U}_{\perp}:=U_{\perp} \cup \bigcup_{A \in \mathcal{C}}\left(U_{A} \cap U_{\neg A}\right)
$$

For D, the set of D-excluding words is defined by:

$$
E_{D}:=\left\{w \in N_{R}^{*} \mid D \sqsubseteq \forall w . \perp\right\}
$$

It can be shown that $E_{D}=\widehat{U}_{\perp} \cdot N_{R}^{*}$ for every $\mathcal{F} \mathcal{L}_{-}$-concept description D in U-labeled normal form. Hence, in this case the notion of excluding words can be characterized by \widehat{U}_{\perp}. We shall see in Definition 32 that a characterization of excluding words for $\mathcal{A L N}$-concept descriptions is more complex. Subsumption of $\mathcal{F} \mathcal{L}_{-}$-concept description can be characterized as follows.

Lemma 3 Characterization of subsumption in $\mathcal{F L}_{\checkmark}$
 form and let D be in V-labeled normal form. Then, $C \sqsubseteq D$ iff the following two conditions hold:

1. $\widehat{U}_{\perp} \cdot N_{R}^{*} \supseteq \widehat{V}_{\perp} \cdot N_{R}^{*}$
2. $U_{A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*} \supseteq V_{A} \cup \widehat{V}_{\perp} \cdot N_{R}^{*}$ for all $H \in \mathcal{C} \cup\{\neg A \mid A \in C\}$

Subsumption in $\mathcal{A K N}$ was characterized by Küsters in [12], yielding the following result.

Lemma 4 Characterization of subsumption in $\mathcal{A L N}$
Let C, D be $\mathcal{A} \mathcal{N}$-concept descriptions. Let C be in U-labeled normal form. Let D be in V-labeled normal form. Then $C \sqsubseteq D$ iff all of the following conditions hold.

1. $E_{C} \supseteq E_{D}$
2. $U_{A} \cup E_{C} \supseteq V_{A} \cup E_{D}$ for all $A \in \mathcal{C}$
3. $U_{\neg A} \cup E_{C} \supseteq V_{\neg A} \cup E_{D}$ for all $A \in \mathcal{C}$
4. $\bigcup_{m \geq n} U_{(\geq m R)} \cup E_{C} \supseteq \bigcup_{m \geq n} V_{(\geq m R)} \cup E_{D}$ for all $(\leq n R) \in \mathcal{N}_{\leq}$with $n \geq 1$
5. $\bigcup_{m \leq n} U_{(\leq m R)} \cup E_{C} \cdot R^{-1} \supseteq \bigcup_{m \leq n} V_{(\leq m R)} \cup E_{D} \cdot R^{-1}$ for all $(\geq n R) \in \mathcal{N}_{\geq}$

Note that two concept descriptions are equivalent if they subsume each other. In order to characterize equivalence it is therefore sufficient to replace all (\supseteq)-relations by $(=)$ in the above four lemmae.

2.2 Matching in description logics

In order to define concept patterns, we additionally need a set N_{X} of concept variables, which we assume to be disjoint from $N_{C} \cup N_{R}$. Informally, an $\mathcal{A L N}$-concept pattern is an $\mathcal{A L N}$-concept description over the concept names $N_{C} \cup N_{X}$ and the role names N_{R}, with the only exception that primitive
negation must not be applied to variables. More formally, concept patterns (denoted D, D^{\prime}) are defined using the following syntax rules:

$$
D, D^{\prime} \longrightarrow X|C| D \sqcap D^{\prime} \mid \forall r . D
$$

where $X \in N_{X}, r \in N_{R}$, and C is an $\mathcal{A} \mathcal{N}$-concept description. For example, if X, Y are concept variables, r a role name, and A, B concept names, then $D:=A \sqcap X \sqcap \forall r .(B \sqcap Y)$ is an $\mathcal{A L N}$-concept pattern, but $\neg X$ is not.

In analogy to the normal forms defined for concept descriptions, every $\mathcal{A L N}$-concept pattern D over a finite subset $\mathcal{X} \subseteq N_{X}$ of variables can be written as

$$
D \equiv C \sqcap \sqcap_{X \in \mathcal{X}} V_{X} \cdot X,
$$

where C is an $\mathcal{A L N}$-concept description in V-labeled normal form. We call this the V-labeled normal form of the concept pattern D. The notion of a pattern, the normal form (and also the notions "substitution" and "matching problem" introduced below) can be restricted to sublanguages of $\mathcal{A \mathcal { L }}$ in the obvious way.

A substitution σ is a mapping from N_{X} into the set of all $\mathcal{A L N}$-concept descriptions. This mapping is extended to concept patterns in the usual way by replacing the occurrences of the variables X in the pattern by the corresponding concept description $\sigma(X)$. For example, if we apply the substitution $\sigma:=\{X \mapsto A \sqcap B, Y \mapsto A\}$ to the pattern D from above, we obtain the description $\sigma(D)=A \sqcap A \sqcap B \sqcap \forall r .(B \sqcap A)$. The result of applying a substitution to an $\mathcal{A L N}$-concept pattern is always an $\mathcal{A L N}$-concept description. Note that this would no longer be the case if negation were allowed in front of concept variables.

Subsumption can be extended to substitutions as follows: the substitution σ is subsumed by the substitution $\tau(\sigma \sqsubseteq \tau)$ iff $\sigma(X) \sqsubseteq \tau(X)$ for all variables $X \in N_{X}$.

Definition 5 Let C be an $\mathcal{A} \mathcal{N}$-concept description and D an $\mathcal{A K N}$-concept pattern. Then, $C \equiv$? D is an $\mathcal{A} \mathcal{L N}$-matching problem. The substitution σ is a solution (matcher) of $C \equiv$? D iff $C \equiv \sigma(D)$.

In the following, we will abbreviate a matching problem of the form $C \equiv$? $C \sqcap D$ as $C \sqsubseteq^{?} D$. This notation is justified by the fact that σ solves $C \equiv ? ~{ }^{?} C \sqcap D$ iff $C \sqsubseteq \sigma(D)$.

A matching problem can either be viewed as a decision problem, where one asks whether the problem is solvable, or as a computation problem, where
one asks for actual matchers of this problem (if any). Although the computation problem is usually the more interesting one, the decision problem can serve as a starting point for the complexity analysis. In general, matching problems may have several (even an infinite number of) solutions, and thus the question arises which matcher to compute. Following [6, 2] we will here concentrate on the problem of computing a least matcher (w.r.t. the ordering \sqsubseteq on substitutions).

Instead of a single matching problem, we may also consider finite systems $\left\{C_{1} \equiv{ }^{?} D_{1}, \ldots, C_{m} \equiv ?{ }^{?} D_{m}\right\}$ of such problems, which must be solved simultaneously. As shown in [2], solving such systems can, however, be reduced to solving the single matching problem

$$
\forall r_{1} \cdot C_{1} \sqcap \cdots \sqcap \forall r_{m} \cdot C_{m} \equiv ? \forall r_{1} \cdot D_{1} \sqcap \cdots \sqcap \forall r_{m} \cdot D_{m}
$$

where the r_{i} are pairwise distinct role names.
How to decide if a given matching problem is solvable and how to compute least matchers has been addressed in [2] and [12]. The next two subsections summarize the relevant results and recall some notions used in this context.

2.2.1 Solving the decision problem

In [2] and [12], matching modulo equivalence in $\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{\urcorner}$and $\mathcal{A L N}$ is reduced to solving equations over formal languages, which we will refer to as solvability equations. By assigning appropriate values to the variables occurring in these equations the decision problem can be reduced to testing certain formal languages for equality. The structure of the languages involved guarantees that this test can be done by finite automata in polynomial time.

We begin by introducing solvability equations in $\mathcal{F} \mathcal{L}_{\perp}$. Let $\left(C \equiv{ }^{?} D\right)$ be an $\mathcal{F} \mathcal{L}_{\perp}$-matching problem, where C is in U-labeled normal form and D is in V-labeled normal form.

Definition 6 Solvability equations for $\left(C \equiv{ }^{?} D\right)$ in \mathcal{F}_{\perp}

$$
\begin{array}{r}
U_{\perp} \cdot N_{R}^{*}=V_{\perp} \cdot N_{R}^{*} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{\perp}^{X} \cdot N_{R}^{*} \\
U_{A} \cup U_{\perp} \cdot N_{R}^{*}=V_{A} \cup U_{\perp} \cdot N_{R}^{*} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{A}^{X} \tag{A}
\end{array}
$$

for all $A \in \mathcal{C}$.

Solvability of the above system of equations is decided by assigning appropriate formal languages to the occurring variables. The following lemma specifies these formal languages.

Lemma 7 Testing solvability in \mathcal{F}_{\perp}
The system of equations $(\perp),((A) \mid A \in \mathcal{C})$ has a solution iff:

1. For every $X \in \mathcal{X}$, replacing the expression $\xi_{\perp}^{X} \cdot N_{R}^{*}$ by the set $\widehat{L}_{\perp}^{X}:=$ $\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{\perp} \cdot N_{R}^{*}\right)$ solves Equation (\perp).
2. For every $A \in \mathcal{C}$ and for every $X \in \mathcal{X}$, replacing the variable ξ_{A}^{X} by the set $\widehat{L}_{A}^{X}:=\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{A} \cup U_{\perp} \cdot N_{R}^{*}\right)$ solves Equation (A).

Hence, by inserting the languages specified in the above lemma into the referring solvability equations, we obtain variable-free formal language equations valid if and only if the original matching problem is solvable. It is shown in [2] that validity of these equations can be tested in polynomial time using finite automata.

Analogous results exist for $\mathcal{F} \mathcal{L}_{\urcorner}$and $\mathcal{A L N}$. Let $\left(C \equiv{ }^{?} D\right)$ be an $\mathcal{L}_{乙^{-}}$matching problem, where C and D are in U-labeled and V-labeled normal forms respectively. Then the relevant solvability equations are defined as follows.

Definition 8 Solvability equations for $\left(C \equiv{ }^{?} D\right)$ in $\mathcal{F} \mathcal{L}$

$$
\begin{align*}
\widehat{U}_{\perp} \cdot N_{R}^{*} & =V_{\perp} \cdot N_{R}^{*} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{\perp}^{X} \cdot N_{R}^{*} \cup \bigcup_{A \in \mathcal{C}} \operatorname{Int}(A, \neg A) \cdot N_{R}^{*} \\
U_{A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*} & =V_{A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{A}^{X} \tag{A}\\
U_{\neg A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*} & =V_{\neg A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{\neg A}^{X}
\end{align*}
$$

for all $A \in \mathcal{C}$, where

$$
\operatorname{Int}(A, \neg A):=\left(V_{A} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{A}^{X}\right) \cap\left(V_{\neg A} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{\neg A}^{X}\right)
$$

Note that in the solvability equations for $\mathcal{F} \mathcal{L}_{\perp}$, Equation (\perp) was completely independent of role languages referring to atomic concepts $A \in \mathcal{C}$. For
$\mathcal{F} \mathcal{L}_{\checkmark}$ this is no longer the case, because the conjunction of an atomic concept and its negation is inconsistent. For that reason, the expression Int is included in Equation (\perp). The following lemma provides a test for solvability in $\mathcal{F L}_{7}$.

Lemma 9 Testing solvability in $\mathcal{F} \mathcal{L}_{\neg}$
The system of equations $(\perp),((A) \mid A \in \mathcal{C}),((\neg A) \mid A \in \mathcal{C})$ has a solution iff:

1. For every $A \in \mathcal{C}$ and for every $X \in \mathcal{X}$, replacing the variable ξ_{A}^{X} by the set $\widehat{L}_{A}^{X}:=\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*}\right)$ solves Equation (A).
2. For every $A \in \mathcal{C}$ and for every $X \in \mathcal{X}$, replacing the variable $\xi_{\neg A}^{X}$ by the set $\widehat{L}_{\neg A}^{X}:=\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{\neg A} \cup \widehat{U}_{\perp} \cdot N_{R}^{*}\right)$ solves Equation (A).
3. For every $X \in \mathcal{X}$, replacing the expression $\xi_{\perp}^{X} \cdot N_{R}^{*}$ by the set $\widehat{L}_{\perp}^{X}:=$ $\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{\perp} \cdot N_{R}^{*}\right)$ together with the assignments proposed in (1) and (2) solves Equation (\perp).

Note that the third condition requires "together with the assignments proposed in (1) and (2)". This is necessary because of the expression Int, by which Equation (\perp) becomes dependent on the other assignments. For $\mathcal{A L N}$, we have to introduce some notation first. Let $(C \equiv$? D) be an $\mathcal{A L N}$ matching problem, where C and D are in U-labeled and V-labeled normal forms respectively.

Definition 10 The following tuples of variables are defined for the sake of readability.

$$
\begin{aligned}
\xi_{\perp} & :=\left(\xi_{\perp}^{X} \mid X \in \mathcal{X}\right) \\
\xi_{\mathcal{C}} & :=\left(\xi_{A}^{X} \mid X \in \mathcal{X}, A \in \mathcal{C}\right) \\
\xi_{\neg} & :=\left(\xi_{\neg A}^{X} \mid X \in \mathcal{X}, A \in \mathcal{C}\right) \\
\xi_{\geq} & :=\left(\xi_{(\geq n R)}^{X} \mid X \in \mathcal{X},(\geq n R) \in \mathcal{N}_{\geq}\right) \\
\xi_{\leq} & :=\left(\xi_{(\leq n R)}^{X} \mid X \in \mathcal{X},(\leq n R) \in \mathcal{N}_{\leq}\right)
\end{aligned}
$$

Denote by α an arbitrary assignment of finite languages to the variables contained in the tuples, i.e. $\alpha\left(\xi_{H}^{X}\right)=L_{H}^{X}$ for all $X \in \mathcal{X}$ and $H \in\{\perp\} \cup \mathcal{C} \cup\{\neg A \mid$ $A \in \mathcal{C}\} \cup \mathcal{N}_{\leq} \cup \mathcal{N}_{\geq}=: \mathcal{H}$. Let σ be the substitution corresponding to α, so that for every $X \in \mathcal{X}$ we have:

$$
\sigma\left(\xi^{X}\right)=\sqcap_{H \in \mathcal{H}} \alpha\left(\xi_{H}^{X}\right) \cdot H
$$

Denote by $E_{D}\left(\xi_{\perp}, \xi_{\mathcal{C}}, \xi_{\neg}, \xi_{\geq}, \xi_{\leq}\right)$the set of excluding words obtained for D relative to the assignment α. Thus, let

$$
E_{D}\left(\alpha\left(\xi_{\perp}\right), \alpha\left(\xi_{\mathcal{C}}\right), \alpha\left(\xi_{\neg}\right), \alpha\left(\xi_{\geq}\right), \alpha\left(\xi_{\leq}\right)\right):=E_{\sigma(D)}
$$

yielding the set of $\sigma(D)$-excluding words after assigning the occurring variables.

The above construct is necessary, because the set of excluding words is defined only for concept descriptions and not for concept patterns. Consequently, we must assume some assignment of the concept variables occurring on the right-hand side of the matching problem. With these preparations, the following solvability equations are provided.

Definition 11 Solvability equations in $\mathcal{A L N}$
With the notation of the above definition, define the following formal language equations.

$$
\begin{align*}
E_{C} & =E_{D}\left(\xi_{\perp}, \xi_{\mathcal{C}}, \xi_{\neg}, \xi_{\geq}, \xi_{\leq}\right) \\
U_{A} \cup E_{C} & =V_{A} \cup E_{C} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{A}^{X} \tag{A}\\
U_{\neg A} \cup E_{C} & =V_{\neg A} \cup E_{C} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{\neg A}^{X} \\
\bigcup_{m \geq n} U_{(\geq m R)} \cup E_{C} & =V_{(\geq m R)} \cup E_{C} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{(\geq n R)}^{X} \\
\bigcup_{m \leq n^{\prime}} U_{(\leq m R)} \cup E_{C} \cdot R^{-1} & =V_{(\leq m R)} \cup E_{C} \cdot R^{-1} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot \xi_{\left(\leq n^{\prime} R\right)}^{X}
\end{align*}
$$

for all $A \in \mathcal{C}, n \in \mathbb{N} \backslash\{0\}, n^{\prime} \in \mathbb{N},(\geq n R) \in \mathcal{N}_{\geq}$, and $\left(\leq n^{\prime} R\right) \in \mathcal{N}_{\leq}$.
Again, Equation (\perp) takes into account role languages referring to other concepts than the \perp-concept. However, this property is syntactically hidden in the constructs E_{C} and E_{D}, which are defined as $\left\{w \in N_{R}^{*} \mid C \sqsubseteq \forall w . \perp\right\}$ and analogously for E_{D}, as introduced in Definition 2.

Lemma 12 Testing solvability in $\mathcal{A L N}$
Let $\widehat{L}_{\perp}^{X}:=\bigcap_{w \in V_{X}} w^{-1} \cdot E_{C}$. Then there exists a finite set L_{\perp}^{X} of polynomial size in the input matching problem with $L_{\perp}^{X} \cdot N_{R}^{*}=\widehat{L}_{\perp}^{X} .{ }^{2}$ The system of

[^1]equations $(\perp),((A) \mid A \in \mathcal{C}),((\neg A) \mid A \in \mathcal{C}),\left((\geq n R) \mid(\geq n R) \in \mathcal{N}_{\geq}\right),((\leq$ $\left.n R) \mid(\leq n R) \in \mathcal{N}_{\leq}\right)$then has a solution iff:

1. For every $X \in \mathcal{X}$ and $A \in \mathcal{C}$, replacing the variable ξ_{A}^{X} by the set $L_{A}^{X}:=\left(\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{A} \cup E_{C}\right)\right) \backslash \widehat{L}_{\perp}^{X}$ solves Equation (A).
2. For every $X \in \mathcal{X}$ and $A \in \mathcal{C}$, replacing the variable $\xi_{\neg A}^{X}$ by the set $L_{\neg A}^{X}:=\left(\bigcap_{w \in V_{X}} w^{-1} \cdot\left(U_{\neg A} \cup E_{C}\right)\right) \backslash \widehat{L}_{\perp}^{X}$ solves Equation $(\neg A)$.
3. For every $X \in \mathcal{X}$ and $(\geq n R) \in \mathcal{N}_{\geq}$, replacing the variable $\xi_{\neg A}^{X}$ by the set $L_{(\geq n R)}^{X}:=\left(\bigcap_{w \in V_{X}} w^{-1} \cdot\left(\bigcup_{m \geq n} U_{(\geq n R)} \cup E_{C}\right)\right) \backslash \widehat{L}_{\perp}^{X}$ solves Equation $(\geq n R)$.
4. For every $X \in \mathcal{X}$ and $(\leq n R) \in \mathcal{N}_{\leq}$, replacing the variable $\xi_{\neg A}^{X}$ by the set $L_{(\leq n R)}^{X}:=\left(\bigcap_{w \in V_{X}} w^{-1} \cdot\left(\bigcup_{m \leq n} U_{(\leq n R)} \cup E_{C} \cdot \mathcal{R}^{-1}\right)\right) \backslash \widehat{L}_{\perp}^{X}$ solves Equation $(\leq n R)$.
5. For every $X \in \mathcal{X}$, replacing the variable ξ_{\perp}^{X} by the set L_{\perp}^{X} together with the assignments proposed in (1)-(4) solves Equation (\perp).

Observe that in the above conditions a finite alternative to $\widehat{L}_{j, \perp}$ is provided and that $\widehat{L}_{j, \perp}$ is subtracted from the other languages, thus producing polynomially large languages as solutions to the equations. This is an immediate consequence of [2], where it was shown that the above solution languages can be computed in polynomial time.

2.2.2 Solving the computation problem

Apart from testing solvability, [2] also proposes solutions to be assigned to the variables occurring in a matching problem and discusses their correctness and complexity in detail. The following lemma simmarizes the relevant results.

Lemma 13 Solving matching problems
Let $\mathcal{L} \in\left\{\mathcal{F L}_{0}, \mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{7}, \mathcal{A L N}\right\}$. Let M be an \mathcal{L}-matching problem. Then there exists an algorithm $\mathrm{MATCH}_{\mathcal{L}}$ with the following properties.

1. $\mathrm{MATCH}_{\mathcal{L}}(M)$ decides in polynomial time, whether the input matching problem M has a solution or not. If M is solvable, then $\operatorname{MATCH}_{\mathcal{L}}(M)$ in polynomial time in the size of M computes a solution σ which is minimal in regard to the ordering \sqsubseteq on substitutions.
2. $\mathrm{MATCH}_{\mathcal{L}}$ does not introduce atomic concepts or number restrictions which do not occur in the input matching problem M.
3. $\mathrm{MATCH}_{\mathcal{L}}$ also accepts a finite system of \mathcal{L}-matching problems.

Proof. 1. It remains to be shown that computing the actual solution to a solvable matching problem also requires only polynomial time.
Solution in $\mathcal{A L N}$: To show this for $\mathcal{A L N}$-matching problems, we can refer to results provided in [2]. It is shown that the languages L_{*}^{X} used for the solvability test in Lemma 12 in fact are least solutions to the matching problem, which can be computed in polynomial time by finite automata. Therefore, a solution σ with the desired properties can be defined by assigning

$$
\begin{aligned}
X \longmapsto & \forall L_{\perp}^{X} \cdot \perp \sqcap \sqcap_{A \in \mathcal{C}} \forall L_{A}^{X} \cdot A \sqcap \sqcap_{A \in \mathcal{C}} \forall L_{\neg A}^{X} \cdot \neg A \\
& \sqcap \underset{(\leq n R) \in \mathcal{N}_{\leq}}{ } \forall L_{(\leq n R)}^{X} \cdot(\leq n R) \sqcap \prod_{(\geq n R) \in \mathcal{N} \geq} \forall L_{(\geq n R)}^{X} \cdot(\geq n R)
\end{aligned}
$$

for every $X \in \mathcal{X}$. It can be shown that the assigned concept descriptions are of polynomial size in the size of the original matching problem. Since every role language of the form L_{*}^{X} can be represented by a treelike automaton [2], it takes only polynomial time to read off the languages represented by these automata, i.e. to actually return the computed solution.
Solutions in $\mathcal{F} \mathcal{L}_{\perp}$ and $\mathcal{F} \mathcal{L}_{\neg}$: For these sublanguages of $\mathcal{A L N}$, we must first restrict the languages used in the solvability test to finite ones. The rest of the argument then is identical to that for $\mathcal{A L N}$. For $\mathcal{F} \mathcal{L}_{\perp}$ and $\mathcal{F} \mathcal{L}_{\square},[2]$ again provides us with the necessary results: Finite solution languages L_{A}^{X} can be obtained in the following way. Since \widehat{L}_{\perp}^{X} can be represented by a treelike automaton [2] for every X, we read off a finite language L_{\perp}^{X} with $L_{\perp}^{X} \cdot N_{R}^{*}=\widehat{L}_{\perp}^{X}$. Analogous to the languages defined for $\mathcal{A} \mathcal{N}$ in Lemma 12 we now define languages L_{A}^{X} by subtracting \widehat{L}_{\perp}^{X} from \widehat{L}_{A}^{X}. We can then assign to the variable X the conjunction

$$
X \longmapsto \forall L_{\perp}^{X} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall L_{A}^{X} \cdot A \sqcap \prod_{A \in \mathcal{C}} \forall L_{\neg A}^{X} \cdot \neg A
$$

for every $X \in \mathcal{X}$. Again, we yield a solution of polynomial size in polynomial time. The argument for $\mathcal{F} \mathcal{L}_{\perp}$ is identical except for negated atomic concept missing in the concept descriptions finally assigned.

Solutions in $\mathcal{F} \mathcal{L}_{0}$: Two arbitrary $\mathcal{F} \mathcal{L}_{0}$-concept descriptions are equivalent if and only if their $\mathcal{F} \mathcal{L}_{0}$-normal forms agree on all role languages involved. Therefore, infinite sets are not necessary at any step when solving matching problems. It can be shown that the solvability equation and solution languages for $\mathcal{F} \mathcal{L}_{0}$ are equivalent to those for $\mathcal{F} \mathcal{L}_{\perp}$ after removing any constructs relating to the bottom-concept or its role languages. The task of deciding solvability and computing solutions to a given matching problem then apparently is of of polynomial complexity.
2. It is shown in [2], that the solution specified above already has the desired property. Especially, this implies that the solution of a matching problem can be represented with the same set of role languages as the matching problem.
3. In Section 2.2, we have already seen that systems of matching equations can be represented by a single matching problem modulo subsumption which is polynomial in the size of the original system. Thus, with the results from (1) the proposition follows immediately.

Hence, matching problems can be solved in polynomial time. Furthermore, we can find minimal solutions without introducing new atomic concepts or number restrictions and we can admit systems of matching problems as input. The following theorem summarizes the results obtained.

Theorem 14 Let $\mathcal{L} \in\left\{\mathcal{F L}_{0}, \mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{\square}, \mathcal{A L N}\right\}$. Then there exists a polynomial time matching algorithm, called $\mathrm{MATCH}_{\mathcal{L}}$ in the sequel, that computes the least matcher of a given system of \mathcal{L}-matching problems, if this system has a solution, and returns "fail" otherwise.

2.3 Matching under side conditions

In this report, we focus on more general matching problems, those that allow for additional side conditions.

Definition $15 A$ subsumption condition is of the form $X \sqsubseteq^{?} E$ where X is a concept variable and E is a pattern; a strict subsumption condition is of the form $X \sqsubset E$ where X and E are as above. A side condition is either a subsumption condition or a strict subsumption condition. The substitution σ satisfies the side condition $X \rho E$ for $\rho \in\{\sqsubseteq, \sqsubset\}$ iff $\sigma(X) \rho \sigma(E)$.
A matching problem under side conditions is a tuple $M:=\left\langle C \equiv^{?} D, S\right\rangle$, where $C \equiv$? D is a matching problem and S is a finite set of side conditions. If the set S contains only subsumption conditions, then M is called matching problem under subsumption conditions. The substitution σ is a solution (matcher) of M iff it is a matcher of $C \equiv$? D that satisfies every side condition in S.

In the next section, we will restrict the attention to matching problems under subsumption conditions. Section 4 then treats general matching problems under side conditions. There it is useful to distinguish between cyclic and acyclic sets of side conditions. In order to define matching problems under acyclic side conditions, we say that a variable X directly depends on a variable Y in S iff S contains a side condition $X \rho E$ such that Y occurs in E. If there are $n \geq 1$ variables X_{1}, \ldots, X_{n} such that X_{i} directly depends on X_{i+1} in $S(1 \leq i \leq n-1)$, then we say that X_{1} depends on X_{n} in S. The set of side conditions S is cyclic iff there is a variable X that depends on itself in S; otherwise, S is acyclic.

3 Matching under subsumption conditions

Let \mathcal{L} be one of the $\operatorname{DLs} \mathcal{F}_{\perp}, \mathcal{F} \mathcal{L}_{\neg}, \mathcal{A} \mathcal{N}$. We present a polynomial time algorithm that, given an \mathcal{L}-matching problems under subsumption conditions, returns a least matcher (w.r.t. the ordering \sqsubseteq on substitutions) if the problem is solvable, and "fail" otherwise.

3.1 The algorithm handling subsumption conditions

In principle, the algorithm iterates the application of $\mathrm{MATCH}_{\mathcal{L}}$ until a fixpoint is reached. However, the matcher computed in one step is used to modify the matching problem to be solved in the next step. Given an \mathcal{L}-matching problem under subsumption conditions $M:=\left\langle C \equiv{ }^{?} D, S\right\rangle$ and a substitution σ, we define

$$
M_{\sigma}:=\{C \equiv ? ~ D\} \cup\left\{\sigma(X) \sqsubseteq^{?} E \mid X \sqsubseteq^{?} E \in S\right\} .
$$

Recall that $\sigma(X) \sqsubseteq^{?} E$ abbreviates the matching problem $\sigma(X) \equiv ?$ Thus M_{σ} is a system of \mathcal{L}-matching problems without side conditions, to which $\mathrm{MATCH}_{\mathcal{L}}$ can be applied.

Algorithm 16 Let $M:=\langle C \equiv ? ~ D, S\rangle$ be an \mathcal{L}-matching problem under subsumption conditions. Then, the algorithm $\operatorname{MATCH}_{\mathcal{L}}^{-}(M)$ works as follows:

1. $\sigma(X):=\perp$ for all variables X;
2. If $\operatorname{match}_{\mathcal{L}}\left(M_{\sigma}\right)$ returns "fail", then return "fail";
else if $\sigma \equiv \operatorname{MATCH}_{\mathcal{L}}\left(M_{\sigma}\right)$, then return σ;
else $\sigma:=\operatorname{MATCH}_{\mathcal{L}}\left(M_{\sigma}\right)$; continue with 2.
Let σ_{0} denote the substitution defined in step 1 of the algorithm, and σ_{t} $(t \geq 1)$ the matcher computed in the t-th iteration of Step 2. Note that σ_{t} is undefined if match $_{\mathcal{L}}$ returns "fail" in the t-th iteration or if the algorithm has stopped before the t-th iteration.

To show that the algorithm is correct, we must show soundness, completeness, and termination, i.e., i) if the algorithm terminates and returns a substitution, then this substitution in fact solves the problem; ii) if the algorithm terminates and returns "fail", then there indeed is no solution; and iii) the algorithm halts on every input.

Soundness and completeness are addressed below in Section 3.2. Proving termination of the algorithm is more involved, and the exact argument depends on the DL \mathcal{L} under consideration. The proof is given in Section 3.4. It depends on the so-called reduced normal form of concept descriptions, which has to be introduced beforehand in Section 3.3.

3.2 Soundness and Completeness

The following lemma proves soundness and completeness of Algorithm 16. The first two items establish a loop invariant.

Lemma 17 Let $M:=\left\langle C \equiv{ }^{?} D, S\right\rangle$ be an \mathcal{L}-matching problem under subsumption conditions.

1. If σ_{t} is defined and τ is a solution of M, then $\sigma_{t} \sqsubseteq \tau$.
2. If σ_{t}, σ_{t+1} are defined, then $\sigma_{t} \sqsubseteq \sigma_{t+1}$.
3. If мAtch $_{\overline{\mathcal{L}}}^{\check{\mathcal{L}}}(M)$ returns the substitution σ, then σ solves M (soundness).
4. If $\operatorname{MATCH}_{\overline{\mathcal{L}}}(M)$ returns "fail", then M has no solution (completeness).

Proof. 1. Obviously, the claim is true for σ_{0}. Assume that $\sigma_{t} \sqsubseteq \tau$, and that σ_{t+1} is defined. To prove $\sigma_{t+1} \sqsubseteq \tau$, it is sufficient to show that τ solves $M_{\sigma_{t}}$ since σ_{t+1} is the least solution of $M_{\sigma_{t}}$. Since τ solves M, we know that it solves $C \equiv^{?} D$ and that $\tau(X) \sqsubseteq \tau(E)$ for all $X \sqsubseteq^{?} E \in S$. The induction assumption $\sigma_{t} \sqsubseteq \tau$ implies $\sigma_{t}(X) \sqsubseteq \tau(X)$, and thus $\sigma_{t}(X) \sqsubseteq \tau(E)$, which shows that τ solves $M_{\sigma_{t}}$.
2. Obviously, $\sigma_{0} \sqsubseteq \sigma_{1}$. Now assume that $\sigma_{t-1} \sqsubseteq \sigma_{t}$. Together with the fact that σ_{t} solves $M_{\sigma_{t-1}}$, this implies that σ_{t+1} solves the system $M_{\sigma_{t-1}}$. Since σ_{t} is the least solution of $M_{\sigma_{t-1}}$, we can conclude $\sigma_{t} \sqsubseteq \sigma_{t+1}$.
3. Assume that $\sigma=\sigma_{t}$. By definition of $\operatorname{match}_{\overline{\mathcal{L}}}, C \equiv \sigma_{t}(D)$. It remains to show that σ_{t} solves the side conditions. We know that $\sigma_{t} \equiv \sigma_{t+1}$ and σ_{t+1} solves $M_{\sigma_{t}}$. Thus, $\sigma_{t}(X) \sqsubseteq \sigma_{t+1}(E) \equiv \sigma_{t}(E)$ for every $X \sqsubseteq^{?} E \in$ S.
4. Assume that match $\frac{ᄃ}{\mathcal{L}}(M)$ returns "fail," and that σ_{t} is the last substitution computed by the algorithm. Now assume that τ solves M. As in the proof of 1 . we can show that τ solves $M_{\sigma_{t}}$. Consequently, $M_{\sigma_{t}}$ is solvable, and thus $\operatorname{match}\left(M_{\sigma_{t}}\right)$ returns the least matcher of this system, in contradiction to the assumption that $\operatorname{MATCH}_{\mathcal{L}}^{ᄃ}(M)$ returns "fail" in this step of the iteration.

3.3 Reduced normal forms

Role languages occurring in concept descriptions may contain redundant words, i.e., words that, when removed, yield equivalent concept descriptions. For instance, in $\mathcal{F} \mathcal{L}_{\perp}$ it holds that: i) since $\forall w . \perp \sqsubseteq \forall w v . \perp$ for every $w, v \in N_{R}^{*}$, we can require U_{\perp} to be prefix-free, i.e., $w, w v \in U_{\perp}$ implies $v=\varepsilon$; and ii) since $\forall w . \perp \sqsubseteq \forall w v . A$, we can require $U_{A} \cap\left(U_{\perp} \cdot N_{R}^{*}\right)=\emptyset$. A normal form satisfying these conditions is called reduced normal form. A formal definition of reduced normal forms for concept descriptions in $\mathcal{F} \mathcal{L}_{\perp}$, \mathcal{F}_{7}, and $\mathcal{A L N}$ is provided in Section 3.3.2. In preparation, we discuss some properties of so-called prefix-free formal languages.

3.3.1 Prefix free languages

We define prefix free languages as a specialization of formal languages [10] by introducing a unary function to make a given formal language prefix free.

Definition 18 Prefix free languages

$$
\begin{aligned}
p f: \mathfrak{P}\left(N_{R}^{*}\right) & \rightarrow \mathfrak{P}\left(N_{R}^{*}\right) \\
L & \mapsto L \backslash\left(L \cdot N_{R}^{+}\right)
\end{aligned}
$$

A language $U \subseteq N_{R}^{*}$ is called prefix free if and only if $U=p f(U)$.
Intuitively, $p f(L)$ for every word $w \in L$ removes all nontrivial continuations of w. The result is that for every word $w \in p f(L)$, all nontrivial prefixes of w are missing in $p f(L)$. To examine the properties of prefix free sets in greater detail, we must first introduce an appropriate order over finite languages. The definition of multiset orders is taken from [4], where their properties are discussed in depth. However, we employ multiset orders over formal languages and do not need to introduce multisets, which generalize the notion of sets by admitting multiple occurrences of elements.

Definition 19 Multiset order for finite languages
Define (\succ) as a multiset order with $\left(>_{p r}\right)$ on N_{R}^{*}. Thus, for finite languages $U, V \subseteq N_{R}^{*}$ it holds that $V \succ U$ if and only if there exist finite languages $X, Y \subseteq N_{R}^{*}$ such that:

1. $\emptyset \neq X \subseteq V$
2. $U=(V \backslash X) \cup Y$
3. $\forall y \in Y \exists x \in X: x<_{p r} y$

According to the definition, finite languages U and V are in prefix order, i.e. $U \succ V$, if and only if U can be transformed into V by performing a modification of the following type one or more times: remove a word u from U and replace it by a finite number of words from $\{u\} \cdot N_{R}^{+}$. Thus, u is replaced by a finite number of (nontrivial) continuations of u. Note that in this modification, u may be removed without substituting any words. This is allowed because in the definition above, the language Y may be empty. The following example illustrates this.

Example 20 Multiset order
Let $N_{R}:=\{a, b, c\}$. Then $\{a, a b, c\} \succ\{a b, a c, c a a, c a b, c c c\}$. The definition of the multiset order is satisfied by taking $X:=\{a, c\}$ and $Y:=$ $\{a c, c a a, c a b, c c c\}$. On the other hand, we also obtain $\{a, a b, c\} \succ\{c a\}$ by
taking $X:=\{a, a b, c\}$ and $Y:=\{c a\}$. Observe that the relation $U \succ V$ does not imply an obvious relation for the cardinality of the languages or for the length of the longest word contained in them.

The multiset order can be used to simplify comparing the N_{R}^{*}-closure of two given languages. This is addressed by the following lemma.

Lemma $21 N_{R}^{*}$-closures and prefix free languages
Let $U, V \subseteq N_{R}^{*}$ be finite languages over N_{R}. Then,

1. $U \cdot N_{R}^{*}=p f(U) \cdot N_{R}^{*}$
2. $U \cdot N_{R}^{*} \subset V \cdot N_{R}^{*}$ iff $p f(U) \prec p f(V)$
3. $U \cdot N_{R}^{*}=V \cdot N_{R}^{*}$ iff $p f(U)=p f(V)$.

Proof. For the sake of brevity, denote $p f(U)$ by U^{\prime} throughout this lemma. Analogously, denote $p f(V)$ by V^{\prime}.

1. Since U^{\prime} is a subset of U and since the sets on both sides of the equation are N_{R}^{*}-closed, it is sufficient to show that $U \backslash U^{\prime}$ is a subset of $U^{\prime} \cdot N_{R}^{*}$. Thus, consider $w \in U \backslash U^{\prime}$. Then, by definition of prefix free sets, $w \in U \cdot N_{R}^{+}$. This implies, that in U there exists a word $u \in U$ of minimal length and a word $v \in N_{R}^{+}$so that $w=u v$. Consequently, $u \notin U \cdot N_{R}^{+}$, because in this case the length of u would not be minimal. So we have $u \in U^{\prime}$, implying that $w=u v \in U^{\prime} \cdot N_{R}^{*}$.
2. (" \Leftarrow ") If $U^{\prime} \prec V^{\prime}$ then, by Definition 18 , there exist finite sets $X, Y \subseteq$ N_{R}^{*} with:
(a) $\emptyset \neq X \subseteq V^{\prime}$
(b) $U^{\prime}=\left(V^{\prime} \backslash X\right) \cup Y$
(c) $\forall y \in Y \exists x \in X: x<_{p r} y$.

We first prove the non-strict version of the claim, i.e. $U \cdot N_{R}^{*} \subset V \cdot N_{R}^{*}$, and then show that the inclusion is strict.
Nonstrict inclusion: As U^{\prime} equals $\left(V^{\prime} \backslash X\right) \cup Y$, it is sufficient to show that $Y \subseteq V^{\prime} \cdot N_{R}^{*}$. Thus, consider an arbitrary $y \in Y$. Because of Property 3 of multiset orders it holds that there is an $x \in X \subseteq V^{\prime}$ so that $x<_{p r} y$. Being less in regard to the prefix order implies, that we
obtain $y=x w$ for an appropriate $w \in N_{R}^{*}$. Since $x \in V^{\prime}$, this yields $y=x w \in V^{\prime} \cdot N_{R}^{*}$, completing the proof.
Strictness of the inclusion: Consider an arbitrary $x \in X \subseteq V^{\prime}$. According to Property 1 of multiset orders, such an x in fact exists. x is no element of ($V^{\prime} \backslash X$), because V^{\prime} is prefix free and thus contains no prefix of x. Now, if $x \in Y$ then Property 3 demands that there is another word $x^{\prime} \in X$ so that $x^{\prime}<_{p r} X$. This would be a contradiction to V^{\prime} being prefix free, and therefore: $x \notin U^{\prime} \cdot N_{R}^{*}$.
(" \Rightarrow ") Assume $U^{\prime} \cdot N_{R}^{*} \subset V^{\prime} \cdot N_{R}^{*}$. Taking advantage of (1), this is equivalent to the original proposition. Define finite languages X, Y in the following way: $X:=V^{\prime} \backslash U^{\prime}$ and $Y:=U^{\prime} \backslash V^{\prime}$. We will show that these languages match conditions 1,2 , and 3 stated in the definition of multiset orders.

Property 1: Trivial. X is obviously defined as a subset of V^{\prime}. If X is empty, then $U^{\prime} \supseteq V^{\prime}$, which would rule out $U^{\prime} \cdot N_{R}^{*} \subset V^{\prime} \cdot N_{R}^{*}$, conflicting with the assumption above.
Property 2: Applying the definitions of X and y, we can expand ($V^{\prime} \backslash$ $X) \cup Y$ to the expression $\left(V^{\prime} \backslash\left(V^{\prime} \backslash U^{\prime}\right)\right) \cup U^{\prime} \backslash V^{\prime}$, which simplifies to $\left(U^{\prime} \cap V^{\prime}\right) \cup U^{\prime} \backslash V^{\prime}$. This is obviously equivalent to U^{\prime}.

Property 3: Consider an arbitrary $y \in Y=U^{\prime} \backslash V^{\prime}$. From Property 2 of the multiset order we know that $Y \subseteq U^{\prime} \subset V^{\prime} \cdot N_{R}^{*}$. Thus, there are words $v \in V^{\prime}$ and $w \in N_{R}^{*}$ such that $y=v w$. This implies $w \neq \varepsilon$, because otherwise y, being equal to v, would be an element of V^{\prime}. If w is not empty, then v and y are in prefix relation: $v<_{p r} y$. Consequently, v is no element of U^{\prime}, because then U^{\prime} would not be prefix free. This implies $v \in V^{\prime} \backslash U^{\prime}$, which by definition is equivalent to $v \in X$.
3. (" \Leftarrow ") This is an immediate consequence of (1). If U^{\prime} equals V^{\prime}, then obviously $U^{\prime} \cdot N_{R}^{*}=V^{\prime} \cdot N_{R}^{*}$, which implies $U \cdot N_{R}^{*}=V \cdot N_{R}^{*}$, as shown in (1). (" \Rightarrow ") Reversely assume that $U^{\prime} \cdot N_{R}^{*}=V^{\prime} \cdot N_{R}^{*}$. According to (1), this is equivalent to the original proposition. It is sufficient to prove the inclusion $U^{\prime} \subseteq V^{\prime}$, since the reverse inclusion follows by symmetry.
Consider an arbitrary $u \in U^{\prime}$. According to the above assumption we have $U^{\prime} \subseteq V^{\prime} \cdot N_{R}^{*}$, which implies the existence of words $v \in V^{\prime}$ and $w \in N_{R}^{*}$ with $u=v w$. It reversely holds that $V^{\prime} \subseteq U^{\prime} \cdot N_{R}^{*}$, again implying words $u^{\prime} \in U^{\prime}$ and $w^{\prime} \in N_{R}^{*}$ so that $v=u^{\prime} w^{\prime}$. Therefore, we
yield $u=v w=u^{\prime} w^{\prime} w$. This implies $w=w^{\prime}=\varepsilon$, because otherwise U^{\prime} would not be prefix free, containing a prefix of u. With w equal to ε, we finally obtain $u \in V^{\prime}$, which had to be shown.

Observe, that the N_{R}^{*}-closure of a language L is uniquely defined by the prefix free version of L. We can also use prefix free languages to guarantee a suffix condition when representing the left quotient of the N_{R}^{*}-closure of a language:

Lemma 22 Left quotients and prefix free languages
Let $U \subseteq N_{R}^{*}$ be a finite language and let $w \in N_{R}^{*}$. Then there exists a finite language $L \subset N_{R}^{*}$ such that,

1. $L \cdot N_{R}^{*}=w^{-1}\left(U \cdot N_{R}^{*}\right)$ and
2. L is prefix free and
3. L contains only suffixes of words in U.

Proof. According to [2], there exists a finite language L^{\prime} with $L^{\prime} \cdot N_{R}^{*}=w^{-1}$. $\left(U \cdot N_{R}^{*}\right)$. Due to Lemma 21, we know that this also holds for $L:=p f\left(L^{\prime}\right)$. We now show that L contains only suffixes of U, which is sufficient for our claim. Assume a word $v \in L$, which is no suffix of any word in U. Observe, that this implies $v \neq \varepsilon$ because otherwise v would be a trivial suffix of any word in U. By definition of L, we know that v is an element of $w^{-1} \cdot\left(U \cdot N_{R}^{*}\right)$. Thus, there exists a word $u \in U$ and a word $x \in N_{R}^{+}$such that $w v=u x \in U \cdot N_{R}^{*}$. We exclude $x=\varepsilon$, because then v would be a suffix of u. Denote by s the last character of v, i.e. take $s \in N_{R}$ and $v^{\prime} \in N_{R}^{*}$ such that $v=v^{\prime} s$. Analogously, let $x=x^{\prime} s$ for an appropriate $x^{\prime} \in N_{R}^{*}$. Then we can conclude that $v^{\prime} \in L$, because $w v^{\prime}=u x^{\prime}$ is an element of $U \cdot N_{R}^{*}$. This implies a contradiction to the language L being prefix free.

3.3.2 Reduced normal forms

In $\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{\neg}$, and $\mathcal{A L N}$, equivalent concept descriptions in normal form can differ in size to an arbitrary extent. For instance, $\forall\{\varepsilon\} . \perp \sqcap \forall U_{A} . A$ is equivalent to $\forall\{\varepsilon\} . \perp$ for every role language U_{A}. For a simplified proof of termination, we require normal forms which impose stronger limitations on the size of concept descriptions equivalent to or subsuming each other. For this purpose, reduced normal forms for $\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{\neg}$, and $\mathcal{A L N}$ are introduced.

Reduced normal forms for $\mathcal{F L}_{\perp}$

The reduced normal form of $\mathcal{F} \mathcal{L}_{\perp}$-concept descriptions is defined by specifying an operation to transform an arbitrary $\mathcal{F} \mathcal{L}_{\perp}$-concept description into its corresponding reduced normal form.

Definition 23 Let C be an \mathcal{F}_{\perp}-concept description in U-labeled normal form. Its corresponding U^{\downarrow}-labeled reduced normal form C^{\downarrow} is defined as follows:

$$
C^{\downarrow}:=\forall U_{\perp}^{\downarrow} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall U_{A}^{\downarrow} \cdot A
$$

where for $A \in \mathcal{C}$:

$$
\begin{aligned}
& U_{\perp}^{\downarrow}:=p f\left(U_{\perp}\right) \\
& U_{A}^{\downarrow}:=U_{A} \backslash U_{\perp}^{\downarrow} \cdot N_{R}^{*}
\end{aligned}
$$

A concept description C is called reduced, if C is in normal form and if it coincides with C^{\downarrow} in every occurring role language. The notion of reduction can be extended to substitutions. For a substitution σ, the reduced substitution σ^{\downarrow} is established by defining $\sigma^{\downarrow}(X):=\sigma(X)^{\downarrow}$ for every variable X in the domain of σ.

The above definition implies as immediate consequences the following simple properties, which are stated without proof.

Corollary 24 Properties

Let C be an $\mathcal{F} \mathcal{L}_{\perp}$-concept descriptions in U-labeled normal form. Then, 1. U_{\perp}^{\downarrow} is prefix free and $U_{A}^{\downarrow} \cap U_{\perp}^{\downarrow} \cdot N_{R}^{*}$ is empty for every $A \in \mathcal{C}$
2. The reduced normal form C^{\downarrow} can be computed in polynomial time in the size of C.

It will be particularly useful that there is no overlap between the role language U_{\perp}^{\downarrow} and the N_{R}^{*}-closure of U_{A}^{\downarrow}. The role languages for C^{\downarrow} can be constructed in polynomial time using treelike automata, for which the complement and the N_{R}^{*}-closure can be computed in linear time. It also takes only polynomial time to make a given finite role language prefix free. The ability to compute reduced normal forms in polynomial time will not be required in the remainder of this chapter. Nevertheless, it might be an important property in the context of presenting the output of matching algorithms in a compact way.

Recall that pf in Section was defined to make the input language prefix free. The purpose of reduced normal forms is to simplify the characterization of subsumption and equivalence. One can see that in the above definition exactly those languages are made prefix free, whose N_{R}^{*}-closure appears in the characterization of the subsumption proposed in Lemma 1. Furthermore, by subtracting the N_{R}^{*}-closure from the other role languages, we make sure that all unions in the characterising conditions are disjoint. In the next lemma we will see that this is sufficient to reduce equivalence to equality.

Lemma 25 Properties
Let B, C, D be $\mathcal{F} \mathcal{L}_{\perp}$-concept descriptions. Let B be in W-labeled normal form, let C be in U-labeled reduced normal form, and D in V-labeled reduced normal form. Then,

1. $B \equiv B^{\downarrow}$
2. $C \equiv D$ iff $U_{H}=V_{H}$ for all $H \in\{\perp\} \cup \mathcal{C}$
3. $C \sqsubset D$ iff one of the following conditions holds:
(a) $U_{\perp} \succ V_{\perp}$ and $V_{A} \subseteq U_{A} \cup U_{\perp} \cdot N_{R}^{*}$ for all $A \in \mathcal{C}$
(b) $U_{\perp}=V_{\perp}$ and $U_{A} \supseteq V_{A}$ for all $A \in \mathcal{C}$ and there exists an $A \in \mathcal{C}$ with $U_{A} \supset V_{A}$.

Proof. 1. We have seen in Lemma 1 that it is sufficient to prove the following two conditions:

- $W_{\perp} \cdot N_{R}^{*}=W_{\perp}^{\downarrow} \cdot N_{R}^{*}$
- $W_{A} \cup W_{\perp} \cdot N_{R}^{*}=W_{A}^{\downarrow} \cup W_{\perp}^{\downarrow} \cdot N_{R}^{*}$ for all $A \in \mathcal{C}$.

The first condition was shown as a property of prefix free languages in Lemma 21. For the second condition, we can therefore conclude for every A that $W_{A}^{\downarrow} \cup W_{\perp}^{\downarrow} \cdot N_{R}^{*}$ is equal to $W_{A}^{\downarrow} \cup W_{\perp} \cdot N_{R}^{*}$. We may add $\left(W_{A} \cap\right.$ $\left.W_{\perp} \cdot N_{R}^{*}\right)$, which is a subset of $W_{\perp} \cdot N_{R}^{*}$, thus yielding $W_{A}^{\downarrow} \cup\left(W_{A} \cap W_{\perp}\right.$. $\left.N_{R}^{*}\right) \cup W_{\perp} \cdot N_{R}^{*}$. According to the definition of reduced normal forms, W_{A} equals $W_{A}^{\downarrow} \cup\left(W_{A} \cap W_{\perp} \cdot N_{R}^{*}\right)$. Therefore, $W_{A}^{\downarrow} \cup\left(W_{A} \cap W_{\perp} \cdot N_{R}^{*}\right) \cup W_{\perp} \cdot N_{R}^{*}$ equals $W_{A} \cup W_{\perp} \cdot N_{R}^{*}$.
2. (" \Leftarrow ") is trivial. (" \Rightarrow ") Assume $C \equiv D$. Due to Lemma 1, this again is equivalent to $U_{\perp} \cdot N_{R}^{*}=V_{\perp} \cdot N_{R}^{*}$ and $U_{A} \cup U_{\perp} \cdot N_{R}^{*}=V_{A} \cup V_{\perp} \cdot N_{R}^{*}$ for all $A \in \mathcal{C}$. Since C and D are assumed to be reduced, this implies $U_{\perp}=V_{\perp}$, according to the properties of prefix free sets. Furthermore, due to
the definition of reduced normal forms, U_{A} and $U_{\perp} \cdot N_{R}^{*}$ are disjoint for every A. The same applies to V_{A} and $V_{\perp} \cdot N_{R}^{*}$. Therefore, $U_{A} \cup U_{\perp} \cdot N_{R}^{*}=$ $V_{A} \cup V_{\perp} \cdot N_{R}^{*}$ implies $U_{A}=V_{A}$ for all A, which was to be shown.
3. (" \Rightarrow ") Assume $C \sqsubset D$. Then we again have $U_{\perp} \cdot N_{R}^{*} \supseteq V_{\perp} \cdot N_{R}^{*}$. We distinguish two cases depending on whether the inclusion is strict or not.

Strict inclusion: If $U_{\perp} \cdot N_{R}^{*} \supset V_{\perp} \cdot N_{R}^{*}$, we can infer $U_{\perp} \succ V_{\perp}$, as shown in Lemma 21. We know from the characterization of the subsumption that $U_{A} \cup U_{\perp} \cdot N_{R}^{*} \supseteq V_{A} \cup V_{\perp} \cdot N_{R}^{*}$ for all $A \in \mathcal{C}$. We may remove $V_{\perp} \cdot N_{R}^{*}$ from the right-hand side of the inclusion, yielding the assertion for case (a), $V_{A} \subseteq U_{A} \cup U_{\perp} \cdot N_{R}^{*}$.

Equality: If $U_{\perp} \cdot N_{R}^{*}=V_{\perp} \cdot N_{R}^{*}$, we have $U_{\perp}=V_{\perp}$, because C and D are reduced and therefore U_{\perp} and V_{\perp} are prefix free. The subsumption $C \sqsubset D$ also implies that $U_{A} \cup U_{\perp} \cdot N_{R}^{*} \supseteq V_{A} \cup V_{\perp} \cdot N_{R}^{*}$ for every A. The unions on both sides of the inclusion are disjoint, as stated in Corollary 24. Taking advantage of the equality of $U_{\perp} \cdot N_{R}^{*}$ and $V_{\perp} \cdot N_{R}^{*}$, we obtain $U_{A} \supseteq V_{A}$ for every $A \in \mathcal{C}$. There has to be one A with a strict inclusion $U_{A} \supset V_{A}$. Otherwise, C and D would agree on all role languages, implying equivalence as shown in (2). Thus, the assertion for case (b) holds.
(" \Leftarrow ") We have to show that both conditions for the subsumption as stated in Lemma 1 are met. Assuming case (b), this can be seen immediately. Consider case (a). If $U_{\perp} \succ V_{\perp}$ holds, the first condition for the subsumption is met as a consequence of Lemma 21, obtaining $U_{\perp} \cdot N_{R}^{*} \supset$ $V_{\perp} \cdot N_{R}^{*}$. We have assumed that $V_{A} \subseteq U_{A} \cup U_{\perp} \cdot N_{R}^{*}$. Adding $V_{\perp} \cdot N_{R}^{*}$ on both sides yields $V_{A} \cup V_{\perp} \cdot N_{R}^{*} \subseteq U_{A} \cup U_{\perp} \cdot N_{R}^{*} \cup V_{\perp} \cdot N_{R}^{*}$. As $V_{\perp} \cdot N_{R}^{*}$ is a subset of $U_{\perp} \cdot N_{R}^{*}$, this is equivalent to $V_{A} \cup V_{\perp} \cdot N_{R}^{*} \subseteq U_{A} \cup U_{\perp} \cdot N_{R}^{*}$. Thus, the second condition of the subsumption is met for every $A \in \mathcal{C}$. We yield strict subsumption $C \sqsubset D$, because otherwise $U_{\perp}=V_{\perp}$.

Reduced normal forms for $\mathcal{F L}_{7}$

For \mathcal{F}_{\neg}, we follow the same pattern as seen in the previous section. Firstly, the reduction operation is expanded in such a way that it works with negated atomic concepts as well.

Definition 26 Reduced normal form

Let C be an \mathcal{F}_{-}-concept description in U-labeled normal form. Like in Definition 23, define its corresponding reduced normal form C^{\downarrow} by modifying the role languages:

$$
C^{\downarrow}:=\forall U_{\perp}^{\downarrow} \cdot \perp \sqcap \sqcap_{A \in \mathcal{C}} \forall U_{A}^{\downarrow} \cdot A \sqcap \sqcap_{A \in \mathcal{C}} \forall U_{\neg A}^{\downarrow} \cdot \neg A
$$

where for $A \in \mathcal{C}$:

$$
\begin{aligned}
U_{\perp}^{\downarrow} & :=p f\left(U_{\perp} \cup \bigcup_{A \in \mathcal{C}} U_{A} \cap U_{\neg A}\right) \\
U_{A}^{\downarrow} & :=U_{A} \backslash U_{\perp}^{\downarrow} \cdot N_{R}^{*}
\end{aligned}
$$

Again, if C is reduced, then its role languages are identical to those of C^{\downarrow}. We extend the notion of reduction to substitutions as in Definition 23.

Observe that in this definition the role language U_{\perp} referring to the bottom concept may increase in size when normalized. Contrary to $\mathcal{F} \mathcal{L}_{\perp}$, it is possible to have inconsistencies without involving the bottom concept. The reduced normal form for $\mathcal{F} \mathcal{L}_{\neg}$ aims at making all implicit inconsistencies explicit, i.e. whenever an expression like $\forall w \cdot(A \sqcap \neg A)$ occurs, w is removed from the role languages referring to A and $\neg A$ and is included in the language for the bottom concept. The definition of excluding words again implies some inportant properties, which are stated below without proof.

Corollary 27 Properties

 1. U_{\perp}^{\downarrow} is prefix free and $U_{\perp}^{\downarrow}=\left(U_{\perp}^{\downarrow}\right)^{\wedge}$.
2. $U_{H}^{\downarrow} \cap\left(U_{\perp}^{\downarrow}\right)^{\wedge} \cdot N_{R}^{*}$ is empty for every $H \in \mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$.
3. $U_{A}^{\downarrow} \cap U_{\neg A}^{\downarrow}$ is empty for every $A \in \mathcal{C}$.
4. The reduced normal form C^{\downarrow} can be computed in polynomial time in the size of C.

Since $\left(U_{\perp}^{\downarrow}\right)^{\wedge}$ is defined as $U_{\perp}^{\downarrow} \cup \bigcup_{A \in \mathcal{C}}\left(U_{A}^{\downarrow} \cap U_{\neg A}^{\downarrow}\right)$, the above assertions are readily obtained from the definition of reduced normal forms. Computing the reduced normal form in polynomial time can again be accomplished by employing treelike automata. By virtue of these properties, we again achieve the desired simplification for the characterization of the subsumption. In the next lemma it is shown that the results obtained for $\mathcal{F} \mathcal{L}_{\checkmark}$ resemble those for $\mathcal{F} \mathcal{L}_{\perp}$ seen in the last section.

Lemma 28 Properties
Let B, C, D be $\mathcal{F} \mathcal{L}_{ᄀ}$-concept descriptions. Let B be in W-labeled normal form, let C be in U-labeled reduced normal form, and D in V-labeled reduced normal form. Let $\mathcal{H}:=\mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$. Then,

1. $B \equiv B^{\downarrow}$
2. $C \equiv D$ iff $U_{H}=V_{H}$ for all $H \in\{\perp\} \cup \mathcal{H}$
3. $C \sqsubset D$ iff one of the following conditions holds:
(a) $U_{\perp} \succ V_{\perp}$ and $V_{H} \subseteq U_{H} \cup U_{\perp} \cdot N_{R}^{*}$ for all $H \in \mathcal{H}$
(b) $U_{\perp}=V_{\perp}$ and $U_{H} \supseteq V_{H}$ for all $H \in \mathcal{H}$ and there exists an $H \in \mathcal{H}$ with $U_{A} \supset V_{A}$.

Proof. 1. Due to Lemma 3, it is sufficient to prove that the following conditions hold:

- $\widehat{W}_{\perp} \cdot N_{R}^{*}=\left(W_{\perp}^{\downarrow}\right)^{\wedge} \cdot N_{R}^{*}$
- $W_{H} \cup \widehat{W}_{\perp} \cdot N_{R}^{*}=W_{H}^{\downarrow} \cup\left(W_{\perp}^{\downarrow}\right)^{\wedge} \cdot N_{R}^{*}$ for all $H \in \mathcal{H}$.

First condition: By definition, $\widehat{W}_{\perp} \cdot N_{R}^{*}$ equals $\left(W_{\perp} \cup \bigcup_{A \in \mathcal{C}} W_{A} \cap W_{\neg A}\right)$. N_{R}^{*}, which is equivalent to the prefix free version $p f\left(W_{\perp} \cup \bigcup_{A \in \mathcal{C}} W_{A} \cap\right.$ $\left.W_{\neg A}\right) \cdot N_{R}^{*}$, as we have seen in Lemma 21. Applying the definition of reduced normal forms, this is equivalent to $W_{\perp}^{\downarrow} \cdot N_{R}^{*}$. The intersection of W_{A}^{\downarrow} and $W_{\neg A}^{\downarrow}$ is empty for every $A \in \mathcal{C}$, as stated in Corrolary 27 . We may therefore add $\left(\bigcup_{A \in \mathcal{C}} W_{A}^{\downarrow} \cap W_{\neg A}^{\downarrow}\right)$ to the expression, so that we end up with $\left(W_{\perp}^{\downarrow} \cup \bigcup_{A \in \mathcal{C}} W_{A}^{\downarrow} \cap W_{\neg A}^{\downarrow}\right) \cdot N_{R}^{*}$. This equals $\left(W_{\perp}^{\downarrow}\right)^{\wedge} \cdot N_{R}^{*}$, as can be verified from the definition.
Second condition: Taking advantage of (1), we can see that $W_{H}^{\downarrow} \cup$ $\left(W_{\perp}^{\downarrow}\right)^{\wedge} \cdot N_{R}^{*}$ is equal to $W_{H}^{\downarrow} \cup \widehat{W}_{\perp} \cdot N_{R}^{*}$ for every $H \in \mathcal{H}$. We may add a subset of the second term, yielding the expression $W_{H}^{\downarrow} \cup\left(W_{H} \cap \widehat{W}_{\perp}\right.$. $\left.N_{R}^{*}\right) \cup \widehat{W_{\perp}} \cdot N_{R}^{*}$. The language W_{H}^{\downarrow} is defined as $W_{H} \backslash W_{\perp}^{\downarrow} \cdot N_{R}^{*}$. As stated in Corollary 27, this equals $W_{H} \backslash\left(W_{\perp}^{\downarrow}\right)^{\wedge} \cdot N_{R}^{*}$, which in (1) is shown equal to $W_{H} \backslash \widehat{W}_{\perp} \cdot N_{R}^{*}$. The expression $W_{H}^{\downarrow} \cup\left(W_{H} \cap \widehat{W}_{\perp} \cdot N_{R}^{*}\right) \cup \widehat{W}_{\perp} \cdot N_{R}^{*}$ can therefore be simplified to $W_{H} \cup \widehat{W}_{\perp} \cdot N_{R}^{*}$, yielding the desired result.
2. (" \Leftarrow ") Trivial. (" \Rightarrow ") According to Corollary 27, we have $\widehat{U}_{\perp}=U_{\perp}$ and $\widehat{V}_{\perp}=V_{\perp}$. When replacing these role languages, the proposition and the characterization of the subsumption are analogous to those for
$\mathcal{F} \mathcal{L}_{\perp}$. Consequently, the proof is identical to (2) in the previous Lemma 25.

3 Again, taking into account that $\widehat{U}_{\perp}=U_{\perp}$ and $\widehat{V}_{\perp}=V_{\perp}$, we can prove the proposition in the same way as seen in (3) in the previous lemma.

One can see that the additional complexity of concept descriptions in $\mathcal{F} \mathcal{L}_{\urcorner}$ is hidden in the reduced normal form.

Reduced normal forms for $\mathcal{A C N}$

When introducing reduced normal forms for $\mathcal{A L N}$-concept descriptions, we have to face two additional problems. Firstly, the set of all inconsistencies explicitly occurring or implicitly included in a concept description cannot be obtained in such a straightforward way as in the previous two logics. Secondly, we also have to cope with number restrictions. In the following definition, we utilize the notion of excluding words, which have been introduced in Definition 2 in the context of the characterization of subsumption.

Definition 29 Reduced normal form

Let C be an $\mathcal{A L N}$-concept description in U-labeled normal form. Define the reduced normal form of C by modifying its role languages. It has been stated in [2] that there exists a finite language $U_{E_{C}}$ with $E_{C}=U_{E_{C}} \cdot N_{R}^{*}$. Using this language, define C^{\downarrow} as:

$$
\begin{aligned}
C^{\downarrow}:= & \forall U_{\perp}^{\downarrow} \cdot \perp \sqcap \sqcap_{A \in \mathcal{C}} \forall U_{A}^{\downarrow} \cdot A \sqcap \prod_{A \in \mathcal{C}} \forall U_{\neg A}^{\downarrow} \cdot \neg A \\
& \quad \sqcap_{(\geq n R) \in \mathcal{N}_{\geq}} \forall U_{(\geq n R)}^{\downarrow} \cdot(\geq n R) \sqcap \prod_{(\leq n R) \in \mathcal{N}_{\leq}} \forall U_{(\leq n R)}^{\downarrow} \cdot(\leq n R)
\end{aligned}
$$

where for $A \in \mathcal{C},(\leq n R) \in \mathcal{N}_{\leq}$, and $(\geq n R) \in \mathcal{N}_{\geq}$:

$$
\begin{aligned}
U_{\perp}^{\downarrow} & :=p f\left(U_{E_{C}}\right) \\
U_{A}^{\downarrow} & :=U_{A} \backslash E_{C} \\
U_{\neg A}^{\downarrow} & :=U_{\neg A} \backslash E_{C} \\
U_{(\geq n R)}^{\downarrow} & :=\bigcup_{m \geq n} U_{(\geq m R)} \backslash E_{C} \\
U_{(\leq n R)}^{\downarrow} & :=\bigcup_{m \leq n} U_{(\leq m R)} \backslash E_{C} \cdot R^{-1}
\end{aligned}
$$

Analogous to the previous cases, the notion of reduction is extended to substitutions.

In spite of the formally more complex definition, the objective of the above normal form is equal to those seen before. Inconsistencies are made explicit by augmenting the role language of the bottom concept and the other role languages are minimized as much as possible. Observe that the reduced role language U_{\perp}^{\downarrow} in fact is well-defined, because for languages of the form $L \cdot N_{R}^{*}$ the set $p f(L)$ is unique. The definition of reduced normal forms again implies some basic properties, which are presented in the corollary below.

Corollary 30 Properties
Let C be an $\mathcal{A L N}$-concept descriptions in U-labeled normal form. Then, 1. U_{\perp}^{\downarrow} is prefix free
2. $U_{H}^{\downarrow} \cap E_{C \downarrow}$ is empty for every $\mathcal{H}:=\mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\} \cup \mathcal{N} \geq$.

Furthermore, $U_{(\leq n R)}^{\downarrow} \cap E_{C \downarrow} \cdot R^{-1}$ is empty for every $(\leq n R) \in \mathcal{N}_{\leq}$
3. $\bigcup_{m \geq n} U_{(\geq m R)}^{\downarrow}=U_{(\geq n R)}^{\downarrow}$ for all $(\geq n R) \in \mathcal{N} \geq$ and analogously for all $(\leq n \bar{R}) \in \mathcal{N}_{\leq}$
4. The reduced normal form C^{\downarrow} can be computed in polynomial time in the size of C.

As stated in [2], a role language $U_{E_{C}}$ with $E_{C}=U_{E_{C}} \cdot N_{R}^{*}$ can be computed in polynomial time. With the aid of treelike automata, it therefore takes only polynomial time to compute the reduced normal form of C. In order to examine the properties of our normal form closer, we have to procure a better characterization for the set of excluding words from [12]. The following definition is necessary in preparation.

Definition 31 Required words
Let C be an $\mathcal{A L N}$-concept description in U-labeled normal form. Let v and v^{\prime} be words over N_{R}. Let $|v|=: m$ and $\left|v v^{\prime}\right|=: n$ and $v^{\prime}=: R_{m+1} \ldots R_{n}$. Then $v v^{\prime}$ is required by C starting from v iff for all $i \in\{m, \ldots, n-1\}$ there exist positive integers $k_{i+1} \geq 1$ such that $v R_{m+1} \ldots R_{i} \in U_{\left(\geq k_{i+1} R_{i+1}\right)}$.

Intuitively, the continuation $v v^{\prime}$ is required by a concept description C starting from v, iff there is a sequence of (\geq)-number restrictions for every prefix of $v v^{\prime}$ between v and $v v^{\prime}$ demanding the presence of the respective
following prefix. For example, assume $N_{R}:=\{R, S\}$ and let $C:=A \sqcap$ $\forall\{R S, R S R\} .(\geq 1 R) \sqcap \forall\{R S R\} .(\geq 2 S)$. Then the words $R S R R$ and $R S R S$ are required by C starting from $R S$.

With the notion of required words we can characterize excluding words for $\mathcal{A L N}$-concept descriptions by the following lemma.

Lemma 32 Characterization of excluding words
Let C be an $\mathcal{A L N}$-concept description in U-labeled normal form. Let w be a word over N_{R}. Then $w \in E_{C}$ iff

1. there exists a prefix $v \in N_{R}^{*}$ of w and a word $v^{\prime} \in N_{R}^{*}$ such that $v v^{\prime}$ is required by C starting from v and
(a) $v v^{\prime} \in U_{\perp}$, or
(b) there is an atomic concept $A \in \mathcal{C}$ with $v v^{\prime} \in U_{A} \cap U_{\neg A}$, or
(c) there are number restrictions $(\geq l R) \in \mathcal{N} \geq$ and $(\leq r R) \in \mathcal{N}_{\geq}$such that $l>r$ and $v \in U_{(\geq l R)} \cap U_{(\leq r R)}$; or
2. there exists a prefix $v R$ of w (with $v \in N_{R}^{*}, R \in N_{R}$) such that $v \in U_{(\leq 0 R)}$.

Now we are set to examine reduced normal forms in detail. Before addressing the standard questions of correctness, equivalence, and subsumption, however, we first introduce one auxiliary result regarding the notion of excluding words, which will be required in Lemma 35. In the next lemma, it is shown that transforming a concept description into reduced normal forms does not change its properties in respect to required words.

Lemma 33 Required words and reduced normal forms
Let C be an $\mathcal{A L N}$-concept description in U-labeled normal form and let v, v^{\prime} be words over N_{R}. Then, if $v v^{\prime}$ is required by C^{\downarrow} starting from v then $v v^{\prime}$ is required by C starting from v.

Proof. To simplify the notation throughout this proof, denote $|v|=: s$, $\left|v v^{\prime}\right|=: t$, and $v v^{\prime}=: R_{1} R_{2} \ldots R_{t}$. If $v v^{\prime}$ is required by C^{\downarrow} starting from v, then by definition it holds for all $i \in\{s, \ldots, t-1\}$ that there exists a positive integer $k \geq 1$, so that $R_{1} \ldots R_{i} \in U_{\left(\geq k R_{i+1}\right)}^{\downarrow}$. By definition of reduced normal forms, this implies that $R_{1} \ldots R_{i} \in \bigcup_{n>k} U_{\left(\geq n R_{i+1}\right)} \backslash E_{C}$. No n under the union is smaller than k. Consequently, there exists an integer $k^{\prime} \geq k$ so that $R_{1} \ldots R_{i}$ is an element of $U_{\left(\geq k^{\prime} R_{i+1}\right)} \backslash E_{C}$. Obviously, we can include all the words subtracted by E_{C}, thus obtaining that $R_{1} \ldots R_{i} \in U_{\left(\geq k^{\prime} R_{i+1}\right)}$. This is equivalent to $v v^{\prime}$ being required by C starting from v, which was to be shown

A simplified characterization for the set of excluding words is now proposed for concept descriptions in reduced normal form. It is shown by the next lemma that only case (1a) of the characterization given in Lemma 32 is relevant for the reduced normal form of concept descriptions.

Lemma 34 Excluding words and reduced normal forms
Let C be an $\mathcal{A L N}$-concept description in U-labeled normal form. Let w be a word over N_{R}. Then, $w \in E_{C \downarrow}$ iff there exists a prefix $v \in N_{R}^{*}$ of w and a word $v^{\prime} \in N_{R}^{*}$ with: $v v^{\prime}$ is required by C^{\downarrow} starting from v and $v v^{\prime} \in U_{\perp}$.

Proof. Consider a word $w \in E_{C^{\downarrow}}$. It is sufficient to prove that the Cases (1b), (1c), or (2) specified in the characterization of $E_{C^{\downarrow}}$ do not apply.

Case (1b): Then there exists a prefix $v \in N_{R}^{*}$ of w, a word $v^{\prime} \in N_{R}^{*}$, and an atomic concept $A \in \mathcal{C}$, so that $v v^{\prime}$ is required by C^{\downarrow} starting from v and $v v^{\prime} \in\left(U_{A}^{\downarrow} \cap U_{\neg A}^{\downarrow}\right)$. Applying the definition of reduced normal forms, this implies that $v v^{\prime}$ is an element of $U_{A} \cap U_{\neg A}$, but no element of E_{C}. By Definition of the semantics of $\mathcal{A L N}$-concept descriptions, this implies $C \sqsubseteq \forall v v^{\prime} . \perp$. As a consequence of Definition 2, this implies $v v^{\prime} \in E_{C}$, in contradiction to the above finding that $v v^{\prime} \notin E_{C}$.

Case (1c): Then we have an analogous word $v v^{\prime}$ and nonnegative numbers $l>r$ with $v v^{\prime} \in U_{(\geq l R)} \cap U_{(\leq r R)}$. Again by definition of reduced normal forms, we conclude that $v v^{\prime}$ is an element of the intersection $\bigcup_{l^{\prime} \geq l} U_{\left(\geq l^{\prime} R\right)} \cap$ $\bigcup_{r^{\prime}<r} U_{\left(\leq r^{\prime} R\right)}$, but it is not in E_{C}. Therefore, we can find integers $l^{\prime} \geq l$ and $r^{\prime} \leq r$ such that $v v^{\prime} \in U_{\left(\geq l^{\prime} R\right)} \cap U_{\left(\leq r^{\prime} R\right)}$. Analogous to case (1b), the semantics of $\mathcal{A L N}$ then implies $C \sqsubseteq \forall v v^{\prime} . \perp$. Due to Definition 2, this entails $v v^{\prime} \in E_{C}$, contradicting the above statement.

Case (2): We prove that in the reduced normal form C^{\downarrow} the role language $U_{(\leq 0 R)}^{\downarrow}$ is empty for every atomic role $R \in N_{R}$. As 0 is the least nonnegative integer, for every atomic role $R \in N_{R}$ the definition of $U_{(\leq 0 R)}^{\downarrow}$ can be simplified to $U_{(\leq 0 R)} \backslash E_{C} \cdot R^{-1}$, omitting the union. Therefore, if $\bar{U}_{(\leq 0 R)}^{\downarrow}$ is not empty, it contains an element of $U_{(\leq 0 R)}$. Thus, assume $w \in U_{(\leq 0 R)}$ for a word w. According to the definition of number restrictions, this implies that w has no successors in regard to R. Consequently, $w R \in E_{C}$. Obviously, we can infer $w \in E_{C} \cdot R^{-1}$. In the definition of $U_{(\leq 0 R)}^{\downarrow}$, the set $E_{C} \cdot R^{-1}$ is subtracted from the rest, implying $w \notin U^{\downarrow}{ }_{(\leq 0 R)}$. Case (2) does therefore not apply to C^{\downarrow}.

The above result suggests a simpler proof of the correctness of the normal form. The standard questions, correctness and modified characterizations for equivalence and subsumption, are addressed in the next lemma.

Lemma 35 Properties

Let B, C, D be $\mathcal{A L N}$-concept descriptions. Let B be in W-labeled normal form, let C be in U-labeled reduced normal form, and D in V-labeled reduced normal form. Let $\mathcal{H}:=\mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\} \cup \mathcal{N}_{\leq} \cup \mathcal{N} \geq$. Then,

1. $B \equiv B^{\downarrow}$
2. $C \equiv D$ iff $U_{H}=V_{H}$ for all $H \in\{\perp\} \cup \mathcal{H}$
3. $C \sqsubset D$ iff one of the following conditions holds:
(a) $U_{\perp} \succ V_{\perp}$ and $V_{H} \subseteq U_{H} \cup U_{\perp} \cdot N_{R}^{*}$ for all $H \in \mathcal{H} \backslash \mathcal{N}_{\leq}$and $V_{H} \subseteq U_{H} \cup U_{\perp} \cdot N_{R}^{*} \cup U_{\perp} \cdot R^{-1}$ for all $(\leq n R):=H \in \mathcal{N}_{\leq}$
(b) $U_{\perp}=V_{\perp}$ and $U_{H} \supseteq V_{H}$ for all $H \in \mathcal{H}$ and there exists an $H \in \mathcal{H}$ with $U_{A} \supset V_{A}$.

Proof. 1. In Lemma 4, equivalence of $\mathcal{A L N}$-concept decriptions was is characterized by the following conditions. For $A \in \mathcal{C},(\leq m R) \in \mathcal{N}_{\leq}$, and $(\geq m R) \in \mathcal{N}_{\geq}$:
(a) $E_{B \downarrow}=E_{B}$
(b) $W_{A}^{\downarrow} \cup E_{B \downarrow}=W_{A} \cup E_{B}$
(c) $W_{\neg A}^{\downarrow} \cup E_{B \downarrow}=W_{\neg A} \cup E_{B}$
(d) $\bigcup_{m \geq n} W_{(\geq m R)}^{\downarrow} \cup E_{B \downarrow}=\bigcup_{m \geq n} W_{(\geq m R)} \cup E_{B}$
(e) $\bigcup_{m \leq n} W_{(\leq m R)}^{\downarrow} \cup E_{B \downarrow} \cdot R^{-1}=\bigcup_{m \leq n} W_{(\leq m R)} \cup E_{B} \cdot R^{-1}$

Condition 1: Prove $E_{B \downarrow} \subseteq E_{B}$. Consider an arbitrary $w \in E_{B \downarrow}$. Due to the simplified characterization of exclusion for reduced normal forms, this implies that there exists a prefix $v \in N_{R}^{*}$ of w and a word $v^{\prime} \in N_{R}^{*}$ such that $v v^{\prime}$ is required by B starting from v and $v v^{\prime} \in W_{\perp}^{\downarrow}$. According to Definition 26, this implies that $v v^{\prime}$ is in $p f\left(W_{E_{B}}\right) \subseteq E_{B}$ for an appropriate finite language $W_{E_{B}}$ with $E_{B}=W_{E_{B}} \cdot N_{R}^{*}$. Due to Lemma 33, we know that $v v^{\prime}$ is required by B starting from v. Since $v v^{\prime} \in E_{B}$, this implies $v \in E_{B}$. As E_{B} is N_{R}^{*}-closed and as v is a prefix of w, we obtain $w \in E_{B}$.
Prove $E_{B} \subseteq E_{B \downarrow}$. If $w \in E_{B}$ then there exists a prefix w^{\prime} of w and a word $w^{\prime \prime} \in N_{R}^{*}$, so that $w=w^{\prime} w^{\prime \prime}$ and w^{\prime} is an element of $p f\left(W_{E_{B}}\right)$. Applying the definition of reduced normal forms, we have $w^{\prime} \in W_{\perp}^{\downarrow}$. This implies $B^{\downarrow} \sqsubseteq \forall w^{\prime} . \perp$, which is subsumed by $\forall w^{\prime} w^{\prime \prime} . \perp$, according
to the semantics of \perp. Due to the definition of E_{B}, this yields $w^{\prime} w^{\prime \prime}=$ $w \in E_{B \downarrow}$.

Combining the above two results, we obtain $E_{B \downarrow}=E_{B}$, which was to be shown.

Condition 2 and 3: Taking into account the result of (1), it holds that $W_{A}^{\downarrow} \cup E_{B \downarrow}$ is equal to $W_{A}^{\downarrow} \cup E_{B}$ for every $A \in \mathcal{C}$. Applying the definition of W_{A}^{\downarrow} yields the expression $\left(W_{A} \backslash E_{B}\right) \cup E_{B}$, which is obviously equal to $W_{A} \cup E_{B}$. The same argument holds for negated atomic concepts $\neg A$.
Condition 4 and 5: Again, the result of (1) and the definition of $W_{(\geq m R)}^{\downarrow}$ enable us to expand $\bigcup_{m \geq n} W_{(\geq m R)}^{\downarrow} \cup E_{B \downarrow}$ to the expression $\bigcup_{m \geq n}\left(\bigcup_{p \geq m} W_{(\geq p R)} \backslash E_{B}\right) \cup E_{B}$. By applying distributivity over the union, we obtain $\left(\bigcup_{m \geq n} \bigcup_{p \geq m} W_{(\geq p R)}\right) \backslash E_{B} \cup E_{B}$, which can be simplified to $\left(\bigcup_{m \geq n} W_{(\geq m R)}\right) \backslash E_{B} \cup E_{B}$. We can omit subtracting E_{B} before adding it again, so that we finally have $\left(\bigcup_{m \geq n} W_{(\geq m R)}\right) \cup E_{B}$.
In (1) we have seen that $E_{B \downarrow}=E_{B}$. This implies $E_{B \downarrow} \cdot R^{-1}=E_{B} \cdot R^{-1}$ for every atomic role R. Consequently, the above argument applies to condition 5 as well.
2. (" \Leftarrow ") Trivial. (" \Rightarrow ") If $C \equiv D$, then the characterization of the subsumption allows us to conclude the following conditions again:
(a) $E_{C}=E_{D}$
(b) $U_{A} \cup E_{C}=V_{A} \cup E_{D}$
(c) $U_{\neg A} \cup E_{C}=V_{\neg A} \cup E_{D}$
(d) $\bigcup_{m \geq n} U_{(\geq m R)} \cup E_{C}=\bigcup_{m \geq n} V_{(\geq m R)} \cup E_{D}$
(e) $\bigcup_{m \leq n} U_{(\leq m R)} \cup E_{C} \cdot R^{-1}=\bigcup_{m \leq n} V_{(\leq m R)} \cup E_{D} \cdot R^{-1}$

Taking advantage of Lemma 21, we can infer from condition 1 that $p f\left(U_{E_{C}}\right)=p f\left(V_{E_{D}}\right)$, which is equivalent to $U_{\perp}=V_{\perp}$, since both concept descriptions are assumed to be reduced. Due to reduction, it also holds that $U_{A}=U_{A} \backslash E_{C}$ and analogously $V_{A}=V_{A} \backslash E_{D}$. Therefore, the unions in condition 2 are disjoint. Because of condition 1 we may replace E_{D} by E_{C} in condition 2 , which yields $U_{A}=V_{A}$. The same argument applies to condition 3. Because C and D are reduced, the role languages $U_{(\leq m R)}$ and $U_{(\geq m R)}$ already contain the union over all
lesser and the union over all greater numbers respectively, as stated in Corollary 30. In condition 4 and 5 , we may therefore ommit the unions over m. Moreover, the role languages in condition 4 and 5 are defined as disjoint to E_{C} and E_{D} respectively, so that finally the argument for conditions 2 and 3 also applies, yielding $U_{(\leq n R)}=V_{(\leq n R)}$ for every number restriction $(\leq n R) \in \mathcal{N}_{\leq}$and analogously $U_{(\geq n R)}=V_{(\geq n R)}$ for every $(\geq n R) \in \mathcal{N}>$.
3. (" \Rightarrow ") If $C \sqsubset D$, then from the characterization of subsumption we know that $E_{C} \supseteq E_{D}$. We first consider the case that this inclusion is strict, then the case of equality of the languages.
$E_{C} \supset E_{D}$: Then, as stated in [2], there are finite languages $U_{E_{C}}$ and $V_{E_{D}}$ such that $p f\left(U_{E_{C}}\right) \cdot N_{R}^{*} \supset p f\left(V_{E_{D}}\right) \cdot N_{R}^{*}$. Due to the definition of reduced normal forms, this is equivalent to the inclusion $U_{\perp} \cdot N_{R}^{*} \supset$ $V_{\perp} \cdot N_{R}^{*}$. According to Lemma 21, we can then infer $U_{\perp} \succ V_{\perp}$. Since $C \sqsubset D$, we know from the characterization of subsumption that $U_{H} \cup$ $E_{C} \supseteq V_{H} \cup E_{D}$ for all $H \in \mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$. As mentioned above, this inclusion is equivalent to $U_{H} \cup U_{\perp} \cdot N_{R}^{*} \supseteq V_{H} \cup V_{\perp} \cdot N_{R}^{*}$. We may drop the term $V_{\perp} \cdot N_{R}^{*}$ on the right-hand side, obtaining the desired result for all $H \in \mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$.

For $(\geq n R) \in \mathcal{N}_{\geq}$, we similarly yield

$$
\bigcup_{m \geq n} U_{(\leq m R)} \cup U_{\perp} \cdot N_{R}^{*}=\bigcup_{m \leq n} V_{(\leq m R)} \cup V_{\perp} \cdot N_{R}^{*} .
$$

As mentioned before, the union over all $m \geq n$ can be omitted. Dropping the term $V_{\perp} \cdot N_{R}^{*}$ on the right-hand side of the inclusion afterwards analogously produces $V_{H} \subseteq U_{H} \cup U_{\perp} \cdot N_{R}^{*}$, which was to be shown.
This analogy does not hold for \leq-number restrictions, where we need to cope with the right quotient $\left(\cdot R^{-1}\right)$ in the respective equations: For every $(\leq n R):=H \in \mathcal{N}_{\leq}$, we obtain $U_{H} \cup U_{\perp} \cdot N_{R}^{*} \cdot R^{-1} \supseteq V_{H} \cup V_{\perp} \cdot N_{R}^{*}$. R^{-1}. We may drop the expression $V_{\perp} \cdot N_{R}^{*} \cdot R^{-1}$ on the right-hand side of the inclusion. Furthermore, as stated in [2], $U \cdot N_{R}^{*} \cdot R^{-1}$ equals $U \cdot N_{R}^{*} \cup$ $U \cdot R^{-1}$ for every finite language U over N_{R} and $R \in N_{R}$. Consequently, the inclusion can be simplified to $U_{H} \cup U_{\perp} \cdot N_{R}^{*} \cup U_{\perp} \cdot R^{-1} \supseteq V_{H}$, which we wanted to show.
$E_{C}=E_{D}$: As shown in (2), the reduced normal form of C and D then allows us to infer $U_{\perp} \cdot N_{R}^{*}=V_{\perp} \cdot N_{R}^{*}$, which yields $U_{\perp}=V_{\perp}$, as both
languages are prefix free. The characterization of the subsumption furthermore allows us to conclude that $U_{H} \supset V_{H}$ for every $H \in \mathcal{H}$. Obviously, C and D cannot agree on all role languages, since this would imply $C \equiv D$, in contradiction to the assumption. Consequently, there is one $H \in \mathcal{H}$ such that $U_{H} \supset V_{H}$.
(" \Leftarrow ") In case (b), it is not difficult to verify that the conditions for subsumption stated in Lemma 4 are met. Assume Case (a). From $U_{\perp} \succ V_{\perp}$ we can infer by Lemma 21 that $U_{\perp} \cdot N_{R}^{*} \supset V_{\perp} \cdot N_{R}^{*}$. Since C and D are reduced, this implies $E_{C} \supset E_{D}$, matching the first condition for subsumption. As assumed, for every $H \in \mathcal{H} \backslash \mathcal{N}_{\leq}$it holds that $V_{H} \subseteq U_{H} \cup U_{\perp} \cdot N_{R}^{*}$. We have already seen in (3) that $U_{\perp} \cdot N_{R}^{*}$ equals E_{C}. Therefore, after adding the language E_{D} on both sides of the inclusion we have $V_{H} \cup E_{D} \subseteq U_{H} \cup E_{C} \cup E_{D}$. Since E_{D} is a subset of E_{C}, we obtain $V_{H} \cup E_{D} \subseteq U_{H} \cup E_{C}$. For $H \in \mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$, this equals conditions 2 and 3 for the subsumption as stated in Lemma 4.

According to Corollary 30, for all $(\geq n R) \in \mathcal{N}_{\geq}$the language $U_{(\geq n R)}$ is equal to the union $\bigcup_{m>n} U_{(\geq n R)}$, so that the inclusion $V_{H} \cup E_{D} \subseteq$ $U_{H} \cup E_{C}$ can be expanded to $\bigcup_{m \geq n} V_{(\geq m R)} \cup E_{D} \subseteq \bigcup_{m \geq n} U_{(\geq m R)} \cup E_{C}$, which meets condition 4 for the subsumption.
For $(\leq n R) \in \mathcal{N}_{\leq}$, we have assumed $V_{(\leq n R)} \subseteq U_{(\leq n R)} \cup U_{\perp} \cdot N_{R}^{*} \cup U_{\perp} \cdot R^{-1}$. As mentioned above for the reverse direction of (3), we can replace $U_{\perp} \cdot N_{R}^{*} \cup U_{\perp} \cdot R^{-1}$ by $U_{\perp} \cdot N_{R}^{*} \cdot R^{-1}$, which is equal to $E_{C} \cdot R^{-1}$. Following a similar line as for the \geq-number restrictions, $E_{D} \cdot R^{-1}$ is added on both sides of the inclusion, yielding $V_{(\leq n R)} \cup E_{D} \cdot R^{-1} \subseteq U_{(\leq n R)} \cup E_{C} \cdot R^{-1} \cup$ $E_{D} \cdot R^{-1}$. As E_{C} is a superset of E_{D} and as also both languages are of the form $L \cdot N_{R}^{*}$ for some finite language L, it is easy to see that $E_{C} \cdot R^{-1}$ is a superset of $E_{C} \cdot R^{-1}$ for every $R \in N_{R}$. The inclusion therefore simplifies to $V_{(\leq n R)} \cup E_{D} \cdot R^{-1} \subseteq U_{(\leq n R)} \cup E_{C} \cdot R^{-1}$. Exploiting Corollary 30, the languages $U_{(\leq n R)}$ and $V_{(\leq n R)}$ can be replaced by the respective unions over all $m \leq n$, thus matching condition 5 of the subsumption conditions of Lemma 4. Consequently, all conditions for subsumption are met. We obtain strict subsumption, because (2) would otherwise imply $U_{\perp}=V_{\perp}$, contradicting $U_{\perp} \succ V_{\perp}$.

3.4 Termination

Let the substitutions σ_{t} be defined in Section 3.1. We assume that every $\sigma_{t}(X)$ is given in $U^{t, X}$-labeled reduced normal form, and that C (as defined in Algorithm 16) is in U-labeled reduced normal form. Then, termination follows from the fact that every solvable matching problem under subsumption conditions has a matcher that only uses concept names already contained in the matching problem M, denoted by the set $\mathcal{C} \subseteq N_{C}$, and the following three properties of the languages $U_{H}^{t, X}$ and U_{H} for $H \in \mathcal{C} \cup\{\perp\}$. In the formulation of these properties we implicitly assume that the substitution σ_{t} is defined whenever we talk about one of the languages $U_{H}^{t, X}$.

1. Suffix property

For every variable X and every $H \in \mathcal{C} \cup\{\perp\}$, the set $U_{H}^{t, X}$ contains only suffices of U_{H}.
2. Deletion property

For every word w, if $w \in U_{H}^{t, X} \backslash U_{H}^{t+1, X}$, then $w \notin U_{H}^{t^{\prime}, X}$ for any $t^{\prime}>t$.
3. Strictness property

If σ_{t} and σ_{t+1} are defined and $\sigma_{t} \not \equiv \sigma_{t+1}$, then there exists an $H \in$ $\mathcal{C} \cup\{\perp\}$, a variable X, and a word w such that $w \in U_{H}^{t, X} \backslash U_{H}^{t+1, X}$.

Note that these properties would not hold if we did not use reduced normal forms. In the following three subsections the above termination conditions are shown valid individually for $\mathcal{F}_{\perp}, \mathcal{F} \mathcal{L}_{\urcorner}$, and $\mathcal{A L N}$. With these prerequisites we can provide a general proof of termination in Section 3.4.4, yielding a polynomial time upper bound for the three logics under consideration.

3.4.1 Termination properties in $\mathcal{F L}_{\perp}$

Let us briefly recall our point of departure. We consider the algorithm MATCH $\frac{\overline{\mathcal{F}}_{\perp}}{}$, applied to an $\mathcal{F} \mathcal{L}_{\perp}$-matching problem under subsumption conditions M of the form $\langle C \equiv$? $D, S\rangle . M$ is defined over a finite set \mathcal{X} of variables. We assume C in U-labeled reduced normal form and D in V labeled normal form. For every subsumption condition $X \sqsubseteq^{?} E$ in S, we assume E in V^{X}-labeled normal form. Denote by $T\left(\right.$ match $\left._{\overline{\mathcal{F}}}^{\mathcal{L}}, ~, M\right)$ the index set of all substitutions computed during the execution of the algorithm
 variable \bar{X}, assume $\sigma_{t}(X)$ in $U^{t, X}$-labeled reduced normal form.

In order to show the validity of the suffix property, the solution languages introduced in Definition 7 are used to derive a recursive relationship with respect to t between the role languages occurring in consecutive substitutions σ_{t}. We can then infer the desired properties from σ_{0} upward by induction.

Lemma 36 Suffix property in \mathcal{F}_{\perp}
For all $t \in T\left(\right.$ мATCH $\left._{\mathcal{F}_{\mathcal{F}_{\perp}}}^{ᄃ}, M\right)$ and for all $X \in \mathcal{X}$ it holds that:

1. $U_{\perp}^{t, X}$ contains only suffixes of U_{\perp}.
2. $U_{A}^{t, X}$ contains only suffixes of U_{A} for every $A \in \mathcal{C}$.

Proof. 1. When performing step t of the algorithm match $\underset{\mathcal{F} \mathcal{F}_{\perp}}{ᄃ}(M)$, the following system of matching problems must be solved.

$$
\begin{gathered}
\forall U_{\perp} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall U_{A} \cdot A \equiv ? \forall V_{\perp} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall V_{A} \cdot A \sqcap \sqcap_{X \in \mathcal{X}} \forall V_{X} \cdot X \\
\forall U_{\perp}^{t, X} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall U_{A}^{t, X} \cdot A
\end{gathered} \sqsubseteq^{?} \forall V_{\perp}^{X} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall V_{A}^{X} \cdot A \sqcap \prod_{X^{\prime} \in \mathcal{X}} \forall V_{X^{\prime}}^{X} \cdot X^{\prime}, ~ l
$$

where the second line represents one equation for every $X \in \mathcal{X}$. As stated in Section 2.2, this system can be combined into a single matching problem with little difficulty. For the resulting matching problem, setting up the solvability equations proposed in Definition 6 and applying Lemma 7, we yield the following solution language for the bottomconcept.

$$
\begin{equation*}
U_{\perp}^{t+1, X} \cdot N_{R}^{*}=\bigcap_{w \in V_{X}} w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right) \tag{*}
\end{equation*}
$$

Due to the notation introduced for the solutions σ_{t}, here $U_{\perp}^{t+1, X} \cdot N_{R}^{*}$ takes the place of \widehat{L}_{\perp}^{X} used in Lemma 7 to denote the solution language for the \perp-concept. We have to show that the $U_{\perp}^{t+1, X}$ contains only suffixes of U_{\perp}.
According to Lemma 22, for every finite language U and for every word w there exists a finite prefix free language L such that firstly, $L \cdot N_{R}^{*}=w^{-1}\left(U \cdot N_{R}^{*}\right)$; and secondly, L contains only suffixes of U. Using this result we now show the proposition for $U_{\perp}^{t, X}$ by induction over the number of steps t the algorithm матСн $\overline{\mathcal{F}}_{\perp} \mathcal{L}_{\perp}(M)$ takes.
$(t=0)$: According to equation (*), it holds that

$$
U_{\perp}^{0, X} \cdot N_{R}^{*}=\bigcap_{w \in V_{X}} w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right)
$$

At first, we show that the suffix property does not get lost when intersecting languages of the form $L \cdot N_{R}^{*}$ with that property. It is shown in [2] that for finite languages L and L^{\prime} the intersection $L \cdot N_{R}^{*} \cap L^{\prime} \cdot N_{R}^{*}$ is equal to $\left(\left(L \cap L^{\prime} \cdot N_{R}^{*}\right) \cup\left(L^{\prime} \cap L \cdot N_{R}^{*}\right)\right) \cdot N_{R}^{*}$.
Obviously, $\left(L \cap L^{\prime} \cdot N_{R}^{*}\right) \cup\left(L^{\prime} \cap L \cdot N_{R}^{*}\right)$ is a subset of the union $L \cup L^{\prime}$. This implies that the intersection $L \cdot N_{R}^{*} \cap L^{\prime} \cdot N_{R}^{*}$ can be represented as $L^{\prime \prime} \cdot N_{R}^{*}$ such that every element of $L^{\prime \prime}$ comes from L or from L^{\prime}.
Because of Lemma 22, it holds for every $X \in \mathcal{X}$ and for every $w \in V_{X}$ that the language $w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right)$ can be represented as $L \cdot N_{R}^{*}$, where L contains only suffixes of U_{\perp}. We have just seen that the suffix property is respected by the intersection. Thus, the entire right-hand side of equation $\left(*^{\prime}\right)$ is of the form $L \cdot N_{R}^{*}$, where L contains only suffixes of $U_{\perp} . p f(L)$ is a subset of L and therefore contains only suffixes as well. $p f(L) \cdot N_{R}^{*}$ also represents the right-hand side of $\left(*^{\prime}\right)$, as we know from Lemma 21. From the definition of reduced normal forms in $\mathcal{F} \mathcal{L}_{\perp}$ we also know that $U_{\perp}^{0, X}$ is prefix free. Lemma 21 now implies that $U_{\perp}^{0, X}$ is equal to $p f(L)$, completing our argument.
$(t>0)$: Due to induction, we may assume that all role languages on the right-hand side of equation $(*)$ contain only suffixes of U_{\perp}. Analogous to the argument for the case $t=0$, the suffix property is valid for $U_{\perp}^{t+1, X}$ as well.
2. Consider $U_{A}^{t, X}$ for an arbitrary $A \in \mathcal{C}$. Starting again with the system of matching equations proposed in (1) and taking into account the definition of the solution languages in Lemma 13, we obtain the following
result for $U_{A}^{t, X}$.

$$
\begin{aligned}
U_{A}^{t+1, X}= & \bigcap_{w \in V_{X}} w^{-1}\left(U_{A} \cup U_{\perp} \cdot N_{R}^{*}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{A}^{t, X} \cup U_{\perp}^{t, X} \cdot N_{R}^{*}\right) \\
& \backslash U_{\perp}^{t+1, X} \cdot N_{R}^{*} \\
= & \underbrace{}_{\bigcap_{w \in V_{X}} w^{-1}\left(U_{A} \cup U_{\perp} \cdot N_{R}^{*}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{A}^{t, X} \cup U_{\perp}^{t, X} \cdot N_{R}^{*}\right)} \\
& \backslash \underbrace{\bigcap_{w \in V_{X}} w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right)}_{M_{1}} \\
\vdots & \bigcup_{w \in V_{X}} w^{-1}\left(U_{A}\right) \cup \bigcup_{X^{\prime} \in \mathcal{X}} \bigcup_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{A}^{t, X}\right)
\end{aligned}
$$

The equality to $M_{1} \backslash M_{2}$ is obtained by replacing $U_{\perp}^{t+1, X} \cdot N_{R}^{*}$ with the right-hand side of equation $(*)$. The last step in the above sequence remains to be shown. Consider an arbitrary word v in $U_{A}^{t+1, X}=M_{1} \backslash$ M_{2}. Since v is not an element of M_{2}, there exists a word $w \in V_{X}$ or a word $w^{\prime} \in V_{X^{\prime}}^{X}$ such that v is no element of $w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right)$ or no element of $w^{-1}\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right)$. Assume the first case, i.e. $v \notin w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right)$. As v is an element of M_{1}, obviously $v \in w^{-1}\left(U_{A} \cup U_{\perp} \cdot N_{R}^{*}\right)$, which implies $v \in w^{-1}\left(U_{A}\right)$. Thus, v is a suffix of a word in U_{A}. The second case is analogous, yielding that v is a prefix of a word in $U_{A}^{t, X}$. Thus, the inclusion claimed above holds.
Since U_{A} and all $U_{A}^{t, X}$ are finite languages, it is not difficult to see that the left quotients $w^{-1}\left(U_{A}\right)$ and $w^{-1}\left(U_{H}^{t, X}\right)$ for every word w only contain suffixes of U_{A} and $U_{A}^{t, X}$ respectively. We still have to ensure that the suffix property is respected by the union. This can be shown inductively similar to the proof seen in (1) for the intersection. In case of the union, however, the induction argument is by far simpler, since for finite languages L, L^{\prime} the union $L \cdot N_{R}^{*} \cup L^{\prime} \cdot N_{R}^{*}$ is equal to $\left(L \cup L^{\prime}\right) \cdot N_{R}^{*}$.

For the proof of the deletion property, the characterization of the subsumption for reduced normal forms can be utilized to rule out words reappearing after being deleted. A subsumption argument, of course, can only
be used since we know from the proof of correctess that the solutions σ_{t} in fact are subsumed by its respective successors σ_{t+1}.

Lemma 37 Deletion property in \mathcal{F}_{\perp} MATCH $_{\overline{\mathcal{F}}}^{\mathcal{F}_{\perp}}, ~(M)$ meets the deletion property.

Proof. We first prove the deletion property for role languages referring to the \perp-concept and then consider those referring to atomic concepts $A \in \mathcal{C}$.
\perp-concept: Assume that contrary to our claim a word w can reappear for greater values of t after being deleted from a role language at a certain point during the execution of the algorithm. Thus, assume for $w \in N_{R}^{*}$ that $w \in U_{\perp}^{t, X}$ and $w \notin U_{\perp}^{t^{\prime}, X}$ but finally $w \in U_{\perp}^{t^{\prime}+1, X}$ for some $X \in \mathcal{X}$ and for nonnegative integers $t<t^{\prime} \in T\left(\right.$ match $\left._{\overline{\mathcal{F}}}^{\mathcal{F}_{\perp}}, M\right)$.

We know from Lemma 17 that $\sigma_{t} \sqsubseteq \sigma_{t^{\prime}} \sqsubseteq \sigma_{t^{\prime}+1}$. As all substitutions are reduced we further know due to our assumption, that $\sigma_{t}\left(X_{j}\right) \not \equiv \sigma_{t^{\prime}}\left(X_{j}\right) \not \equiv$ $\sigma_{t^{\prime}+1}\left(X_{j}\right)$. From this we can infer by means of Lemma 25 that $U_{\perp}^{t, X} \succ U_{\perp}^{t^{j}, X} \succ$ $U_{\perp}^{t^{\prime}+1, X}$.

We have assumed that $w \in U_{\perp}^{t^{\prime}+1, X}$. The above relation then for $U^{t^{\prime}, X}$ demands that $U_{\perp}^{t^{\prime}, X}$ contains a prefix w^{\prime} of w. As w is no element of $U_{\perp}^{t^{\prime}, X}$, this is a nontrivial prefix. Similarly we find that $U_{\perp}^{t, X}$ contains a prefix of w^{\prime} or w^{\prime} itself. The language $U_{\perp}^{t, X}$, however, initially was assumed to contain w as well, yielding a contradiction to $U_{\perp}^{t, X}$ being prefix free.
A-concept: Assume similarly for a word $w \in N_{R}^{*}$ that $w \in U_{A}^{t, X}$ and $w \notin U_{A}^{t^{\prime}, X}$ but finally $w \in U_{A}^{t^{\prime}+1, X}$ for some $X \in \mathcal{X}$, for $A \in \mathcal{C}$, and for nonnegative integers $t<t^{\prime} \in\left(\operatorname{MATCH}_{\mathcal{F}_{\mathcal{L}}}^{ᄃ}, M\right)$. Since $\sigma_{t} \sqsubseteq \sigma_{t^{\prime}} \sqsubseteq \sigma_{t^{\prime}+1}$ and as also all substitutions are reduced we obtain as a consequence of Lemma 25:

$$
U_{A}^{t, X} \dot{\cup} U_{\perp}^{t, X} \cdot N_{R}^{*} \supseteq U_{A}^{t^{\prime}, X} \dot{\cup} U_{\perp}^{t^{\prime}, X} \cdot N_{R}^{*} \supseteq U_{A}^{t^{\prime}+1, X} \dot{\cup} U_{\perp}^{t^{\prime}+1, X} \cdot N_{R}^{*} .
$$

We have assumed that $w \in U_{A}^{t^{\prime}+1, X}$. Since w is no element of $U_{A}^{t^{\prime}, X}$, the subset relation implies that $w \in U_{\perp}^{t^{\prime}, X} . N_{R}^{*}$. From the characterization of the subsumption we know that $U_{\perp}^{t, X} \cdot N_{R}^{*} \supseteq U_{\perp}^{t^{\prime}, X} \cdot N_{R}^{*}$, which in our case implies $w \in U_{\perp}^{t, X} \cdot N_{R}^{*}$. This contradicts the disjointedness of the union with $U_{A}^{t, X}$, which was shown in Lemma 25.

As the next lemma will show, the strictness property is obtained as an immediate consequence of Lemma 17 (soundness and completeness) and the caracterization of strict subsumption for reduced normal forms.

Lemma 38 Strictness property $\mathrm{MATCH}_{\overline{\mathcal{F}}}^{\mathcal{L}_{\perp}} \overline{L_{1}}(M)$ meets the strictness property.

Proof. It is shown in Lemma 17 that $\sigma_{t} \sqsubseteq \sigma_{t+1}$ for every $t \in T\left(\right.$ match $\left._{\overline{\mathcal{F}}}^{\mathcal{F}_{\perp}}, M\right)$. Since the fixed point iteration in мATCH $_{\overline{\mathcal{F}} \mathcal{L}_{\perp}}$ terminates in case $\sigma_{t} \equiv \sigma_{t+1}$, we have $\sigma_{t} \sqsubset \sigma_{t+1}$ for every t as long as the iteration does not terminate. The strict subsumption of the substitutions implies that for every t there is a variable $X \in \mathcal{X}$ such that $\sigma_{t}(X) \sqsubset \sigma_{t+1}(X)$.

Due to the characterization of strict subsumption for reduced normal forms (Lemma 25), this implies that either $U_{\perp}^{t, X} \succ U_{\perp}^{t+1, X}$ or $U_{A}^{t, X} \supset U_{A}^{t+1, X}$ for some $A \in \mathcal{C}$. In both cases at least one word in one role language is removed at the transition from σ_{t} to σ_{t+1}.

3.4.2 Termination properties in $\mathcal{F} \mathcal{L}_{\urcorner}$

For $\mathcal{F L}_{-}$, a separate proof of termination is omitted, because we can exploit the analogy to $\mathcal{F} \mathcal{L}_{\perp}$. Verifying the termination properties again yields a positive result, which is stated below without proof. Let M be an $\mathcal{F} \mathcal{L}_{7^{-}}$ matching problem under subsumption conditions.

Lemma 39 Termination properties in $\mathcal{F} \mathcal{L}_{\checkmark}$ $\operatorname{MATCH}_{\overline{\mathcal{F}}}^{\mathcal{L}_{-}}(M)$ meets the suffix, deletion and strictness property.

Let us discuss briefly why we can expect to gain the same result for $\mathcal{F} \mathcal{L}_{\checkmark}$ in exactly the same way as seen for $\mathcal{F} \mathcal{L}_{\perp}$. The idea is to show that due to the reduced normal form of all substitutions σ_{t} occurring during the execution of MATCн $\underset{\mathcal{F}_{\mathcal{L}}}{ᄃ_{-}}(M)$, the validity of the three termination properties can be shown analogous to the proof for $\mathcal{F} \mathcal{L}_{\perp}$. Recall that the prerequisites for the existence of a solution in $\mathcal{F} \mathcal{L}_{\neg}$ are stronger than in $\mathcal{F} \mathcal{L}_{\perp}$. Nevertheless, once the matching problem is solvable, the solution assigned by σ_{t} is syntactically similar to that in $\mathcal{F} \mathcal{L}_{\perp}$-the only difference being the construct \widehat{U} instead of U. This can be found when comparing Lemma 7 and Lemma 9, where the solution languages are introduced. In the presence of reduced normal forms the difference between languages of the form \widehat{U} and U disappears, as stated in Corollary 27. Furthermore, a comparison of Lemma 25 and Lemma 28 yields the same characerization of equivalence and subsumption for reduced normal forms in $\mathcal{F} \mathcal{L}_{\perp}$ and $\mathcal{F} \mathcal{L}_{\neg}$. Hence, the results obtained for $\mathcal{F} \mathcal{L}_{\urcorner}$are analogous to those for $\mathcal{F} \mathcal{L}_{\perp}$.

3.4.3 Termination properties in $\mathcal{A L N}$

The overall task of solving matching problems in $\mathcal{A L N}$ is significantly more involved than in its sublanguages. However, most of the additional complexity is hidden in the notion of excluding words, which has been studied in depth in [12]. Once we know that sets of excluding words are of the form $L \cdot N_{R}^{*}$ for some finite language L, we do not need to introduce new ideas to prove the termination properties. By virtue of the reduced normal forms we again find a situation analogous to $\mathcal{F} \mathcal{L}_{\perp}$, though consisting of considerably larger equations. Let M denote an $\mathcal{A L N}$-matching problem under subsumption conditions analogous to that defined in Section 3.4.1.

Lemma 40 Suffix property in $\mathcal{A L N}$
For all $t \in T\left(\right.$ метсн $\left._{\overline{\mathcal{A}} \mathcal{L}}^{ᄃ}, M\right)$ and for all $X \in \mathcal{X}$ it holds that:

1. $U_{\perp}^{t, X}$ contains only suffixes of U_{\perp}.
2. $U_{A}^{t, X}$ contains only suffixes of U_{A} for every $A \in \mathcal{C}$ and $U_{\neg A}^{t, X}$ contains only suffixes of $U_{\neg A}$ for every $A \in \mathcal{C}$.
3. $U_{(\geq n R)}^{t, X}$ contains only suffixes of $U_{(\geq n R)}$ for every $(\geq n R) \in \mathcal{N}_{\geq}$.
4. $U_{(\leq n R)}^{t, X}$ contains only suffixes of $U_{(\leq n R)} \cup U_{\perp} \cdot R^{-1}$ for every $(\leq n R) \in \mathcal{N}_{\leq}$.

Proof. - At step t of the algorithm MATCH $\underset{\mathcal{A} \mathcal{L N}}{ᄃ}(M)$, the following system of matching problems has to be solved:

$$
\begin{gathered}
\forall U_{\perp} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall U_{A} \cdot A \sqcap \prod_{A \in \mathcal{C}} \forall U_{\neg A} \cdot \neg A \\
\sqcap \underset{(\geq n R) \in \mathcal{N}_{\geq}}{ } \forall U_{(\geq n R)} \cdot(\geq n R) \sqcap \prod_{(\leq n R) \in \mathcal{N}_{\leq}} \forall U_{(\leq n R)} \cdot(\leq n R) \\
\equiv ? \\
\forall V_{\perp} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall V_{A} \cdot A \sqcap \prod_{A \in \mathcal{C}} \forall V_{\neg A} \cdot \neg A \\
\sqcap_{(\geq n R) \in \mathcal{N}_{\geq}} \forall V_{(\geq n R) \cdot} \cdot(\geq n R) \sqcap \prod_{(\leq n R) \in \mathcal{N}_{\leq}} \forall V_{(\leq n R)} \cdot(\leq n R) \\
\sqcap \prod_{X \in \mathcal{X}} \forall V_{X} \cdot X
\end{gathered}
$$

and for every $X \in \mathcal{X}$:

$$
\begin{gathered}
\forall U_{\perp}^{t, X} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall U_{A}^{t, X} \cdot A \sqcap \prod_{A \in \mathcal{C}} \forall U_{\neg A}^{t, X} \cdot \neg A \\
\sqcap \prod_{(\geq n R) \in \mathcal{N}_{\geq}} \forall U_{(\geq n R)}^{t, X} \cdot(\geq n R) \sqcap \prod_{(\leq n R) \in \mathcal{N}_{\leq}} \forall U_{(\leq n R)}^{t, X} \cdot(\leq n R) \\
\sqsubseteq^{?} \\
\forall V_{\perp}^{X} \cdot \perp \sqcap \prod_{A \in \mathcal{C}} \forall V_{A}^{X} \cdot A \sqcap \prod_{A \in \mathcal{C}} \forall V_{\neg A}^{X} \cdot \neg A \\
\sqcap \prod_{(\geq n R) \in \mathcal{N}_{\geq}} \forall V_{(\geq n R)}^{X} \cdot(\geq n R) \sqcap \prod_{(\leq n R) \in \mathcal{N}_{\leq}} \forall V_{(\leq n R)}^{X} \cdot(\leq n R) \\
\sqcap_{X^{\prime} \in \mathcal{X}} \forall V_{X^{\prime}}^{X} \cdot X^{\prime}
\end{gathered}
$$

This system can be combined into a single matching problem. For the solution to this problem, Lemma 12 provides us with appropriate solution languages. Regarding the \perp-concept, we obtain the following result for the solution language $U_{\perp}^{t+1, X}$ assigned by $\sigma_{t+1}\left(X_{j}\right)$:

$$
\begin{equation*}
U_{\perp}^{t+1, X} \cdot N_{R}^{*}=\bigcap_{w \in V_{X}} w^{-1}\left(E_{C}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(E_{C}^{t, X}\right) \tag{*}
\end{equation*}
$$

Again, due to our notation $U_{\perp}^{t+1, X} \cdot N_{R}^{*}$ takes the place of \widehat{L}_{\perp}^{X} as used in Lemma 12. Furthermore, E_{C} denotes the set of C-excluding words and analogously $E_{C}^{t, X}$ the set of excluding words for the matching problem corresponding to the variable X the above system of matching problems.

We may assume C to be in reduced normal form. Consequently, it holds that $U_{\perp} \cdot N_{R}^{*}=E_{C}$, as seen in Definition 29. As σ_{t} is also in reduced normal form, we furthermore obtain that $U_{\perp}^{t, X} \cdot N_{R}^{*}=E_{C}^{t, X}$ for every $t \in T$ (матсн $\left.{ }_{\mathcal{A}}^{\overline{\mathcal{A}}} \boldsymbol{\mathcal { N }}, M\right)$. In Equation ($*$), we may therefore replace E_{C} by $U_{\perp} \cdot N_{R}^{*}$ and $E_{C}^{t, X}$ by $U_{\perp}^{t, X} \cdot N_{R}^{*}$. This reveals the inductive relation of the role languages:

$$
U_{\perp}^{t+1, X} \cdot N_{R}^{*}=\bigcap_{w \in V_{X}} w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right)
$$

It is to prove that $U_{\perp}^{t+1, X}$ contains only suffixes of U_{\perp}. Equation $\left(*^{\prime}\right)$ is only a syntactic variant of Equation (*) established in Lemma 36. As $U_{\perp}^{t+1, X}$ is prefix free, we can prove the claim following exactly the same pattern as seen for $\mathcal{F} \mathcal{L}_{\perp}$ in Lemma 36 .

- From the system of matching problems introduced in (1), we now derive solutions for role languages of the form $U_{A}^{t+1, X}$ referring to the atomic concept A in $\sigma_{t+1}\left(X_{j}\right)$. By virtue of Lemma 12 we obtain:

$$
\begin{aligned}
U_{A}^{t+1, X}= & \bigcap_{w \in V_{X}} w^{-1}\left(U_{A} \cup E_{C}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{A}^{t, X} \cup E_{C}^{t, X}\right) \\
& \backslash U_{\perp}^{t+1, X} \cdot N_{R}^{*}
\end{aligned}
$$

Taking into account that $U_{\perp} \cdot N_{R}^{*}=E_{C}$ and that $U_{\perp}^{t, X} \cdot N_{R}^{*}=E_{t, j, C}$, we can apply the argument of Lemma 36 and replace the expression $U_{\perp}^{t+1, X} \cdot N_{R}^{*}$ with the right-hand side of Equation ($*^{\prime}$). Again, we can obtain an upper bound for the resulting expression, yielding that

$$
U_{A}^{t+1, X} \subseteq \bigcup_{w \in V_{X}} w^{-1}\left(U_{A}\right) \cup \bigcup_{X^{\prime} \in \mathcal{X}} \bigcup_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{A}^{t, X}\right) .
$$

Because U_{A} and every $U_{A}^{t+1, X}$ is finite, it is not difficult to prove that $w^{-1}\left(U_{A}\right)$ and every $w^{-1}\left(U_{A}^{t+1, X}\right)$ contain only suffixes of U_{A}. We know from Lemma 36, that this property is respected by the union, thus completing the proof. For role languages $U_{\neg A}^{t, X}$ referring to negated atomic concepts $\neg A$, exactly the same argument holds.

- We already know that σ_{t} is in reduced normal form for every $t \in$ $T\left(\right.$ match $\left._{\mathcal{A} \mathcal{L N}}^{ᄃ}, M\right)$. Thus, we have for every number restriction $(\geq$ $n R) \in \mathcal{N}_{\geq}$that $\bigcup_{m \geq n} U_{(\geq m R)}^{t, X}$ is equal to $U_{(\geq n R)}^{t, X}$, i.e. the union can be omitted. The same holds for C, which is in reduced normal form as well. Therefore, the expression $\bigcup_{m>n} U_{(\geq m R)}$ similarly can be replaced by $U_{(\geq n R)}$. This observation enables us to simplify the solution language derived from the system of matching problems proposed in (1). By means of Lemma 12, we can infer for $U_{(\geq n R)}^{t+1, X}$ that:

$$
\begin{aligned}
U_{(\geq n R)}^{t+1, X}= & \bigcap_{w \in V_{X}} w^{-1}\left(\bigcup_{m \geq n} U_{(\geq m R)} \cup E_{C}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(\bigcup_{m \geq n} U_{(\geq m R)}^{t, X} \cup E_{C}^{t, X}\right) \\
& \backslash U_{\perp}^{t+1, X} \cdot N_{R}^{*} \\
= & \bigcap_{w \in W_{j}} w^{-1}\left(U_{(\geq n R)} \cup E_{C}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{(\geq n R)}^{t, X} \cup E_{C}^{t, X}\right) \\
& \backslash U_{\perp}^{t+1, X} \cdot N_{R}^{*}
\end{aligned}
$$

We can see that after removing the unions for the number restrictions, the above equation is syntactically identical to the one derived for $A \in \mathcal{C}$ in (2). The rest of the argument therefore is identical to what has been proposed there.

- For (\leq)-number restrictions, we can again remove the union-operator in the same fashion as done in (3). However, we obtain slightly different results for the solution languages derived from the system of matching problems introduced in (1). For $U_{(\leq n R)}^{t+1, X}$ we can infer that:

$$
\begin{aligned}
U_{(\leq n R)}^{t+1, X}= & \bigcap_{w \in V_{X}} w^{-1}\left(\bigcup_{m \geq n} U_{(\leq m R)} \cup E_{C} \cdot R^{-1}\right) \\
& \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(\bigcup_{m \geq n} U_{(\leq m R)}^{t, X} \cup E_{C}^{t, X} \cdot R^{-1}\right) \\
& \backslash U_{\perp}^{t+1, X} \cdot N_{R}^{*} \\
= & \bigcap_{w \in V_{X}} w^{-1}\left(U_{(\leq n R)} \cup\left(U_{\perp} \cdot N_{R}^{*}\right) \cdot R^{-1}\right) \\
& \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{(\leq n R)}^{t, X} \cup\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right) \cdot R^{-1}\right) \\
& \backslash \underbrace{\left(\bigcap_{w \in V_{X}} w^{-1}\left(U_{\perp} \cdot N_{R}^{*}\right) \cap \bigcap_{X^{\prime} \in \mathcal{X}} \bigcap_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right)\right)}_{=: M_{2}}
\end{aligned}
$$

Observe, that in the second step we could replace E_{C} by $U_{\perp} \cdot N_{R}^{*}$ and $E_{C}^{t, X}$ by $U_{\perp}^{t, X} \cdot N_{R}^{*}$. This replacement is valid because C and σ_{t} are in reduced normal form. However, the result deviates from the pattern seen in the previous cases of this proof-the right-quotients of $U_{\perp} \cdot N_{R}^{*}$ and $U_{\perp}^{t, X} \cdot N_{R}^{*}$ occur instead of the original languages. Nevertheless, we can simplify the right quotient thanks to the finiteness of U_{\perp} and $U_{\perp}^{t, X}:\left(U_{\perp} \cdot N_{R}^{*}\right) \cdot R^{-1}$ equals $U_{\perp} \cdot R^{-1} \cup U_{\perp} \cdot N_{R}^{*}$ and similarly $\left(U_{\perp}^{t, X} \cdot N_{R}^{*}\right)$. R^{-1} can be simplified to $U_{\perp}^{t, \bar{X}} \cdot R^{-1} \cup U_{\perp}^{t, X} \cdot N_{R}^{*}$ for all t and \bar{X}. Since after this transformation all right quotients refer to finite languages, we can subtract M_{2} and follow the argument familiar from Lemma 36 .

Consequently, we obtain:

$$
\begin{aligned}
U_{(\leq n R)}^{t+1, X} \subseteq & \bigcup_{w \in V_{X}} w^{-1}\left(U_{(\leq n R)} \cup U_{\perp} \cdot R^{-1}\right) \\
& \cup \bigcup_{X^{\prime} \in \mathcal{X}} \bigcup_{w \in V_{X^{\prime}}^{X}} w^{-1}\left(U_{(\leq n R)}^{t, X} \cup U_{\perp}^{t, X} \cdot R^{-1}\right)
\end{aligned}
$$

Finally, we can again employ an induction argument to prove that every $U_{(\leq n R)}^{t+1, X}$ contains only suffixes of $U_{(\leq n R)} \cup U_{\perp} \cdot R^{-1}$.

After eliminating the union over number restrictions and the right-quotient for (\leq)-number restrictions in the above equations, the resulting situation appeared very similar to the analogous problems for $\mathcal{F} \mathcal{L}_{\perp}$. Recalling the characterizations of equivalence and subsumption for reduced normal forms in $\mathcal{F} \mathcal{L}_{\perp}$ and $\mathcal{A L N}$, this is not surprising. By comparing Lemma 25 and Lemma 35, we find almost the same conditions for subsumption. Note that we again assumed C to be in reduced normal form.

Lemma 41 Deletion property in $\mathcal{A L N}$ МАТСН $\overline{\mathcal{A}}^{ᄃ} \mathcal{N}(M)$ meets the deletion property.

Proof. At first, the assertion is proved for role languages referring to the \perp-concept and then for the remaining cases.
\perp-concept: Assume that a word w can appear in a role language for greater t after having been deleted, i.e. there exists a word $w \in N_{R}^{*}$, and indices $t<t^{\prime} \in T\left(\operatorname{match}_{\overline{\mathcal{A}} \mathcal{N}}^{ᄃ}, M\right)$ and an $X \in \mathcal{X}$ such that $w \in U_{\perp}^{t, X}$ and $w \notin U_{\perp}^{t^{\prime}, X}$ but $w \in U_{\perp}^{t^{\prime}+1, X}$. We can now infer a contradiction to $U_{\perp}^{t, \bar{X}}$ being prefix free, as already done for \mathcal{F}_{\perp} in Lemma 37.

As the substitutions $\sigma_{t}, \sigma_{t^{\prime}}$ and $\sigma_{t^{\prime}+1}$ are reduced, we can infer from the assumptions by virtue of the properties of reduced normal forms in $\mathcal{A L N}$ that $U_{\perp}^{t, X} \succ U_{\perp}^{t^{\prime}, X} \succ U_{\perp}^{t^{\prime}+1, X}$. The rest of the argument is analogous to Lemma 37. We apply the definition of the multiset order (\succ) and infer that $U_{\perp}^{t, X}$ must contain a nontrivial prefix of w as well as w itself.

Other cases: Assume similarly for a word $w \in N_{R}^{*}$ that $w \in U_{A}^{t, X}$ and $w \notin U_{A}^{t^{\prime}, X}$, but $w \in U_{A}^{t^{t}+1, X}$ for an atomic concept $A \in \mathcal{C}$, for some $X \in \mathcal{X}$, and for nonnegative integers $t<t^{\prime} \in T$. Since again $\sigma_{t} \sqsubseteq \sigma_{t^{\prime}} \sqsubseteq \sigma_{t^{\prime}+1}$ and since all substitutions are reduced, we yield by Lemma 35:

$$
U_{A}^{t, X} \dot{\cup} U_{\perp}^{t, X} \cdot N_{R}^{*} \supseteq U_{A}^{t^{\prime}, X} \dot{\cup} U_{\perp}^{t^{\prime}, X} \cdot N_{R}^{*} \supseteq U_{A}^{t^{\prime}+1, X} \dot{\cup} U_{\perp}^{t^{\prime}+1, X} \cdot N_{R}^{*}
$$

Now we can follow the argument employed in Lemma 37 to infer a contradiction to the disjointness of the unions. It is shown in Lemma 35 that the argument of disjoint unions also applies for negated atomic concept and number restrictions.

The proof of the strictness property for $\mathcal{A L N}$ is identical to the previous case for $\mathcal{F} \mathcal{L}_{\perp}$. This can be readily seen-firstly, Lemma 17 (soundness and completeness) is valid for $\mathcal{A L N}$ as well; and secondly, the caracterization of strict subsumption for $\mathcal{A L N}$-concept descriptions in Lemma 35 yields the same superset relation for the role languages as used in Lemma 38. Since no other argument was necessary there, the same strategy works for $\mathcal{A L N}$ as well. We may therefore state the result without proof, concluding the proofs of the termination properties:

Lemma 42 Strictness property
MATCH ${ }_{\overline{\mathcal{A}} \mathcal{L N}}^{ᄃ}(M)$ meets the strictness property.

3.4.4 General result

Given the three termination properties, it is now easy to show that the algorithm halts after a polynomial number of steps. In fact, Property 1 (suffix property) yields a polynomial upper bound on the size of the role languages $U_{H}^{t, X}$. Property 3 (strictness property) shows that in every step of the iteration at least one word is removed from one of these languages, and Property 2 (deletion property) ensures that words that have been removed cannot reappear. To sum up, we have shown the following theorem.

Theorem 43 Let $\mathcal{L} \in\left\{\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F}_{\neg}, \mathcal{A L N}\right\}$. The algorithm MATCH $_{\overline{\mathcal{L}}}$ is a polynomial time algorithm that, given an \mathcal{L}-matching problem with subsumption conditions, returns a least matcher of this problem if it is solvable, and "fail" otherwise.

It should be noted that the algorithm матсн $\frac{\square}{\mathcal{L}}$ does not work for $\mathcal{L}=$ $\mathcal{F} \mathcal{L}_{0}$. In the following section we will therefore briefly discuss the additional conditions necessary to extend Theorem 43 to $\mathcal{F L}_{0}$.

3.5 Matching under subsumption conditions in $\mathcal{F} \mathcal{L}_{0}$

The language $\mathcal{F} \mathcal{L}_{0}$ does not allow for the bottom concept, and thus the initialization step (Step 1) of Algorithm 16 is not possible. Instead of starting with $\sigma(X):=\perp$, the algorithm can also start from the least matcher of $C \equiv$? D. In case the side conditions do not introduce new variables (i.e., variables not contained in D), this modification works and yields a polynomial time matching algorithm. In contrast, if new variables are introduced, then we can show that the size of the least matcher may grow exponentially in the size of the matching problem. The following example, which has also been dicussed in [2], illustrates this.

Example 44 Let $N_{R}=\{R, S\}$. For some $n \in \mathbb{N}$, assume $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$. Consider the (trivial) $\mathcal{F} \mathcal{L}_{0}$-matching problem $T \equiv$? \top under the subsumption conditions $\left\{X_{0} \sqsubseteq^{?} A\right\} \cup\left\{X_{i+1} \sqsubseteq^{?} \forall\{R, S\} . X_{i} \mid 0 \leq i \leq n-1\right\}$.

Combining the first subsumption condition with the second one yields that every solution to the matching problem has to respect the subsumption condition $X_{1} \sqsubseteq \forall\{R, S\}$.A. It is easy to see by induction that for every $i \in\{1, \ldots, n\}$ we have

$$
X_{i} \sqsubseteq \forall\{R, S\}^{2^{i}} . A,
$$

denoting by $\{R, S\}^{2^{i}}$ the the set of all words of length 2^{i} over the alphabet $\{R, S\}$. Hence, for every solution σ to the matching problem it holds that $\sigma\left(X_{n}\right)$ must assign a role language of exponential size in n corresponding to the atomic concept A.

The above example suggests a solution strategy for $\mathcal{F} \mathcal{L}_{0}$-matching problems $M=:\left\langle C \equiv{ }^{?} D, S_{0}\right\rangle$ with new variables occurring in subsumption conditions. The strategy comprises six steps which are explained below.

1. It is shown in [2] that we can transform S_{0} into an equivalent set S_{1} of acyclic subsumption conditions whose size is polynomial in the size of S_{0}.
2. Analogous to the above example, S_{1} is then transformed into an equivalent set S_{2} such that every variable occurring in S_{2} either occurs only on left-hand sides of subsumption conditions or only on right-hand sides. To this end the substitution $\left\{X \mapsto E \mid X \sqsubseteq^{?} E \in S_{1}\right\}$ is applied to the right-hand side E^{\prime} of every subsumption condition $X^{\prime} \sqsubseteq^{?} E^{\prime} \in S_{1}$. After at most $\left|S_{1}\right|$ iterations the set of subsumption conditions has the
required form. As shown by the example, the size of S_{2} may be exponential in that of S_{1}. Note that this modification would not preserve equivalence in case of strict subsumption conditions.
3. Every variable neither occurring in $C \equiv$? D nor on left-hand sides of subsumption conditions in S_{2} is now substituted by T , yielding S_{3}.
4. Finally, S_{4} is obtained from S_{3} by removing every subsumption condition $X \sqsubseteq^{?} E$ where X occurs neither in $C \equiv$? D nor on any right-hand side of any subsumption condition in S_{3}. Obviously, every variable occurring in S_{4} also occurs in the original matching problem $C \equiv{ }^{?} D$.
5. The problem $\left\langle C \equiv{ }^{?} D, S_{4}\right\rangle$ is then solved with the modified algorithm MATCH $\overline{\mathcal{F}}_{\mathcal{L}_{0}}^{ᄃ}$ starting by solving $C \equiv$? D instead of assigning \perp to every variable in D. Denote by σ the solution returned in case of a successful computation.
6. σ assigns values only to variables occurring in D. For a solution θ including all variables in M we proceed as follows. For every variable X occurring only on right-hand sides of subsumption conditions in S_{3} (and not in $C \equiv$? D), define $\theta(X):=\top$. For those variables X occurring only on left-hand sides, let $\theta(X):=\prod_{X \unrhd^{?} E \in S_{3}} \sigma(E)$.
One can see that the possible exponential blow-up in Step 2 makes the above strategy an exponential time algorithm.

Nevertheless, the size of the substitutions for variables in D can still be bounded polynomially, and if one is only interested in substitutions for these variables, then these can still be computed in polynomial time.

4 Matching under general side conditions

Matching under general side conditions (i.e., strict and non-strict subsumption conditions) is more complex than matching under subsumption conditions for two reasons.

First, as already shown in [2], deciding the solvability of an $\mathcal{F} \mathcal{L}_{0}$-matching problem under strict (and acyclic) subsumption conditions is NP-hard. It is easy to see that the same reduction works for the DLs $\mathcal{F L}_{\perp}, \mathcal{F} \mathcal{L}_{7}$, and $\mathcal{A L N}$. Thus, assuming that $\mathrm{P} \neq \mathrm{NP}$, there cannot exist a polynomial time algorithm computing matchers of matching problems under general side conditions.

Second, as shown by the following example, solvable matching problems under strict subsumption conditions no longer need to have a least matcher (but rather finitely many minimal matchers).

Example 45 Consider the $\mathcal{F} \mathcal{L}_{\perp}$-matching problem

$$
A_{1} \sqcap \ldots \sqcap A_{n} \equiv ? X_{1} \sqcap \ldots \sqcap X_{n}
$$

under the strict subsumption conditions

$$
\left\{X_{i+1} \sqsubset^{?} X_{i} \mid 1 \leq i \leq n-1\right\} \cup\left\{X_{1} \sqsubset^{?} \top\right\} .
$$

The pure matching problem enforces that each X_{i} must be replaced by a (possibly empty) conjunction of concept names from $\left\{A_{1}, \ldots, A_{n}\right\}$. Thus, the strict subsumption conditions can only be satisfied if X_{1} is replaced by one of these names, X_{2} by a conjunction of this name with an additional one, etc. From this it is easy to derive that the matchers of the problem are of the following form: given a permutation $P:=\left(p_{1}, \ldots, p_{n}\right)$ of $(1, \ldots, n)$, the substitution σ^{P} is defined by $\sigma^{P}\left(X_{i}\right):=A_{p_{1}} \sqcap \ldots \sqcap A_{p_{i}}(1 \leq i \leq n)$. Thus, there are n ! non-equivalent matchers, and it is easy to see that each of them is minimal.

The new contribution of this section is a (non-deterministic) algorithm, match $_{\mathcal{L}}^{\ulcorner }$, that computes matchers of \mathcal{L}-matching problems under general side conditions for $\mathcal{L} \in\left\{\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{\square}\right\}$. (We strongly conjecture that a similar algorithm can also be used for $\mathcal{A L N}$.) This non-deterministic algorithm matches the lower complexity bound (NP hard) for the decision problem in the following sense. The length of every computation path of this algorithm is polynomially bounded in the size of the given matching problem. In case the problem is not solvable, every computation returns "fail". Otherwise, the successful computation paths yield all minimal matchers. The algorithm proceeds in two steps: first it eliminates cycles and then solves the resulting matching problem with acyclic side conditions.

4.1 Eliminating cycles

In [2], $\mathcal{F} \mathcal{L}_{0}$-matching problems with cyclic subsumption conditions are transformed into equivalent ones with acyclic subsumption conditions.

In this context, ε-cycles and role cycles must be distinguished. We say that X directly ε-depends on Y iff there is a side condition $X \rho E$ such that
Y occurs in the top-level conjunction of E. Now, the notion " ε-dependence" is defined in the obvious way, and X lies on an ε-cycle iff it ε-depends on itself. For example, w.r.t. $S:=\left\{X \sqsubseteq^{?} X \sqcap \forall r . Y\right\}$, the variable $X \varepsilon$-depends on itself, and it depends on Y (but does not ε-depend on Y).

If an ε-cycle involves a strict subsumption condition, then the problem is unsolvable. Otherwise, ε-cycles can be removed by first replacing all variables occurring on such a cycle by the same variable. The remaining ε-cycles are due to subsumption conditions of the form $X \sqsubseteq^{?} X \sqcap E$. But such a condition is equivalent to $X \sqsubseteq^{?} E$.

If X is a variable on a role cycle (i.e., a cycle that is not an ε-cycle), the we can show that solutions (in $\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F} \mathcal{L}_{\urcorner}$) must replace X by either \top or \perp. The next lemma provides the relevant result.

Lemma 46 Solutions to role cycles
Let $X \rho^{?} \forall\{v\} . X$ be a subsumption condition in an \mathcal{F}_{\perp}-matching problem M, where $v \neq \varepsilon$. Let σ be a solution to M respecting the side condition. Then,

1. If $\rho=\sqsubseteq$, then $\sigma(X) \equiv \perp$ or $\sigma(X) \equiv \top$.
2. If $\rho=\sqsubset$, then $\sigma(X) \equiv \perp$.

Proof. - Without loss of generality we may assume that σ is reduced. Denote $\sigma(X)$ in U-labeled reduced normal form. If σ respects the side condition, then we have $\sigma(X) \sqsubseteq \forall\{v\} . \sigma(X)$. The characterization of subsumption (Lemma 1) implies that the conditions

$$
\begin{aligned}
U_{\perp} \cdot N_{R}^{*} & \supseteq\{v\} \cdot U_{\perp} \cdot N_{R}^{*} \\
U_{A} \cup U_{\perp} \cdot N_{R}^{*} & \supseteq\{v\} \cdot U_{A} \cup\{v\} \cdot U_{\perp} \cdot N_{R}^{*}
\end{aligned}
$$

hold for all $A \in \mathcal{C}$. We have to show that i) $\sigma(X)=\perp$ and $\sigma(X)=\top$ solves $X \rho^{?} \forall W . X$ and that ii) these are the only valid solutions.
i) If $\sigma(X)=\perp$, then the reduced normal form implies that $U_{\perp}=\{\varepsilon\}$. This yields the strict inclusion $U_{\perp} \cdot N_{R}^{*} \supset\{v\} \cdot U_{\perp} \cdot N_{R}^{*}$, since $v \neq \varepsilon$, and also respects the second condition, since $U_{A} \supseteq U_{A}$ holds for any choice of U_{A}. Consequently, we find that $\sigma(X) \equiv \perp$ solves the side condition for $\rho=\sqsubseteq$.

If $\sigma(X)=\top$, then we have $U_{\perp}=U_{A}=\emptyset$ which for the first condition yields $\emptyset \supseteq \emptyset$. Hence, the first condition for subsumption obviously
holds, while for the second one we get $U_{A} \supseteq W \cdot U_{A}$ for all $A \in \mathcal{C}$. This holds, since $U_{A}=\emptyset$. Hence, $\sigma(X) \equiv \perp$ solves the side condition for $\rho=\sqsubseteq$.
Note that in case $U_{\perp}=\emptyset$ the assignment $U_{A}=\emptyset$ is the only valid solution for $U_{A} \supseteq W \cdot U_{A}$ and that no possible value for some U_{A} yields a strict inclusion $U_{A} \supset W \cdot U_{A}$.
ii) The previous remark implies that for any reduced solution $\sigma(X) \notin$ $\{\perp, \top\}$ solving the side condition, the role language U_{\perp} cannot be empty. Thus, assume $u \in U_{\perp} \backslash\{\varepsilon\}$. it can be shown that this implies a contradiction to U_{\perp} being finite and prefix free.

Consequently, we can (non-deterministically) guess such a substitution for variables on role cycles. Note that the side conditions with such a variable as left-hand side are either obviously unsolvable or give rise to additional matching problems. For example, if we replace X in $X \sqsubset^{?} Y \sqcap \forall r . X$ by \perp then the condition $\perp \sqsubset^{?} Y \sqcap \forall r . \perp$ can be expressed by the matching problem $\perp \equiv^{?} Z$ under the side condition $Z \sqsubset^{?} Y \sqcap \forall r . \perp$.

4.2 The algorithm handling acyclic side conditions

In the following, let $M=\left\langle C \equiv{ }^{?} D, S\right\rangle$ be an \mathcal{L}-matching problem $(\mathcal{L} \in$ $\left.\left\{\mathcal{F} \mathcal{L}_{\perp}, \mathcal{F L}_{\neg}\right\}\right)$ under acyclic side conditions. Let $S=\left\{X_{1} \rho_{1}^{?} E_{1}, \ldots, X_{\ell} \rho_{\ell}^{?} E_{\ell}\right\}$ for distinct variables X_{1}, \ldots, X_{ℓ} and patterns E_{1}, \ldots, E_{ℓ} such that E_{i} does not contain the variables X_{i}, \ldots, X_{ℓ}. (The case where not all the left-hand side variables are distinct can be treated similarly.) We denote by S_{\sqsubseteq} the set of side conditions obtained from S by replacing every ρ_{i} by \sqsubseteq.

Applied to input M, the algorithm MATCH ${ }_{\mathcal{L}}^{\ulcorner }$first calls MATCH $_{\overline{\mathcal{L}}}(\langle C \equiv$? $\left.\left.D, S_{\sqsubseteq}\right\rangle\right)$. If this yields "fail", then M is also unsolvable. Otherwise, the computed substitution σ solves $C \equiv$? D, but may still violate some of the strict subsumption conditions. Starting with the violated side condition with the largest index, the algorithm tries to modify σ such that this side condition is satisfied.

Assume that $X_{k} \square^{?} E_{k}$ is this side condition. Since σ solves $X_{k} \sqsubseteq^{?} E_{k}$, we thus know that $\sigma\left(X_{k}\right) \equiv \sigma\left(E_{k}\right)$. Thus, we must either make $\sigma\left(X_{k}\right)$ more specific or $\sigma\left(E_{k}\right)$ more general. Since MATCH ${ }_{\mathcal{L}}^{\complement}$ computes the least solution, the first option cannot lead to a solution of the overall system. Hence, we
must try the second one. The idea (which will be explained in more detail later) is that we consider the reduced normal form of $\sigma\left(E_{k}\right)$. We try to make $\sigma\left(E_{k}\right)$ more general by (non-deterministically) choosing one word from one of its role languages and by removing this word by appropriately modifying the role languages of the variables occurring in E_{k}. Since we want to compute minimal matchers, we make as little changes as possible in order to keep the substitution as specific as possible.

The new substitution σ^{\prime} obtained this way solves $X_{k} \sqsubset^{?} E_{k}$, and since we only modified variables occurring in E_{k}, the side conditions with larger index are still satisfied. However, the side conditions with smaller index (even the non-strict ones) as well as the matching problem need no longer be solved by σ^{\prime}. To overcome this problem, match $\frac{\llcorner }{\mathcal{L}}$ is used to compute the least substitution that (i) solves $\left\langle C \equiv ? ~ D, S_{\sqsubseteq}\right\rangle$, and (ii) subsumes σ^{\prime}. It can be shown that the second condition (which can be expressed by a system of matching problems) makes sure that the computed substitution still solves the strict subsumption conditions from index k to ℓ. We can now continue the modification process with this substitution.
Algorithm 47 Let $M=\langle C \equiv$? $D, S\rangle$ be an \mathcal{L}-matching problem under acyclic side conditions. Then, MATCH $\underset{\mathcal{L}}{\llcorner }$ works as follows:

1. If $\operatorname{match}_{\mathcal{L}}^{ᄃ}\left(\left\langle C \equiv\right.\right.$? $\left.\left.D, S_{\sqsubseteq}\right\rangle\right)$ returns "fail", then return "fail";
2. $k:=\ell ; \quad \sigma:=\operatorname{MATCH}_{\overline{\mathcal{L}}}^{\complement}\left\langle\{C \equiv\right.$? $\left.D\}, S_{\sqsubseteq}\right\rangle$;
3. If $k=0$, then return σ;

If $\sigma\left(X_{k}\right) \rho_{k} \sigma\left(E_{k}\right)$, then continue with 5.
4. Guess modification σ^{\prime} of σ for $X_{k} \square^{?} E_{k}$;

If $\sigma^{\prime}\left(E_{k}\right) \equiv \sigma\left(E_{k}\right)$, then return "fail";
$M^{\prime}:=\left\langle\{C \equiv ? ~ D\} \cup\left\{\sigma^{\prime}\left(X_{j}\right) \sqsubseteq^{?} X_{j} \mid 1 \leq j \leq \ell\right\}, S_{\sqsubseteq}\right\rangle ;$
If $\operatorname{match} \frac{ᄃ}{\mathcal{L}}\left(M^{\prime}\right)$ returns "fail", then return "fail"; $\sigma:=\operatorname{MATCH}_{\overline{\mathcal{L}}}^{\stackrel{ᄃ}{L}}\left(M^{\prime}\right)$
5. $k:=k-1$; continue with 3 .

4.3 How to guess modifications

In order to introduce modifications, we first sketch the underlying idea for $\mathcal{F} \mathcal{L}_{\perp}$. Recall that the goal is to make $\sigma\left(E_{k}\right)$ more general by (non-determinis-
tically) choosing one word w from one of its role languages and by removing this word by appropriately modifying the role languages of the variables occurring in E_{k}.

We call this a \mathcal{C}-modification if w is picked from a role language corresponding to some atomic concept A. In this case, removing certain words from role languages of the variables in E suffices to obtain a minimal modification.

In case of a \perp-modification, where w is picked from the role language corresponding to the \perp-concept, the removal of some word v in the role language of a variable implicitly removes every continuation $v v^{\prime}$ of v. To correct this effect, every word in $\{v\} \cdot N_{R}$ is put back whenever some v is removed. In addition, since v is also implicitly removed from role languages corresponding to atomic concepts, it is also transferred to such role languages. This ensures that the computed substitution is as specific as possible. This is vital both for the proof of correctness and to obtain all minimal solutions.

Before dealing with modifications in terms of a formal definition (see Definition 49), the following example illustrates in more detail how the modifications work.

Example 48 Consider the \mathcal{F}_{\perp}-matching problem $A \sqcap \forall\{r, s\} . \perp \equiv{ }^{?} X_{1} \sqcap$ $\forall r . X_{2} \sqcap \forall r . X_{3}$ under the strict subsumption conditions $X_{2} \sqsubset^{?} X_{1}, X_{3} \sqsubset^{?} X_{2}$.

Executing the above algorithm, we obtain in Step 2 as initial solution σ the following substitution:

$$
\left\{X_{1} \mapsto \forall\{r, s\} . \perp \sqcap \forall\{\varepsilon\} . A, X_{2} \mapsto \forall\{\varepsilon\} . \perp, X_{3} \mapsto \forall\{\varepsilon\} . \perp\right\} .
$$

The iteration begins in Step 3 by checking the second side condition, which is violated. Choosing a \perp-modification in Step 4, we must choose a word from the role language $\{\varepsilon\}$ corresponding to \perp in $\sigma\left(X_{2}\right)=\sigma\left(X_{3}\right)$. In this case, we can only pick ε. To keep the change minimal, we do not simply remove it, but rather replace it by $\{r, s\}$ in the role language corresponding to \perp in $\sigma\left(X_{2}\right)$. In addition, we transfer ε to the role language corresponding to A. This yields $\sigma^{\prime}\left(X_{2}\right)=\forall\{r, s\} . \perp \sqcap \forall\{\varepsilon\}$. A. The other variables remain unchanged.

In this case, the substitution σ^{\prime} itself solves the matching problem M^{\prime} considered in Step 4, and thus match $\underset{\mathcal{F}_{\perp}}{ᄃ}\left(M^{\prime}\right)$ returns σ^{\prime}.

In the second iteration, we find in Step 3 that the first side condition $X_{2} \sqsubset^{?} X_{1}$ no longer holds. In Step 4, we again choose a \perp-modification,
and choose the word r from the role language $\{r, s\}$ corresponding to \perp in $\sigma\left(X_{1}\right)$. The modification replaces r by $r r$, $r s$ and adds r to the role language corresponding to A. This yields $\sigma^{\prime}\left(X_{1}\right):=\forall\{r r, r s, s\} . \perp \sqcap \forall\{\varepsilon, r\} . A$. Again, this substitution solves M^{\prime}, and thus the new value of σ is σ^{\prime}.

In the next iteration we have $k=0$, ending the iteration in Step 3. The algorithm finally returns the substitution
$\left\{X_{1} \mapsto \forall\{r r, r s, s\} \cdot \perp \sqcap \forall\{\varepsilon, r\} . A, X_{2} \mapsto \forall\{r, s\} \cdot \perp \sqcap \forall\{\varepsilon\} \cdot A, X_{3} \mapsto \forall\{\varepsilon\} \cdot \perp\right\}$.
Note that, in the first iteration step, it was not possible to apply a \mathcal{C} modification since the role language corresponding to A was empty. In the second step, we could have applied a \mathcal{C}-modification, removing ε from the role language corresponding to A in $\sigma\left(X_{1}\right)$. Then, however, the system M^{\prime} obtained this way would not have been solvable. In fact, it is easy to see that the two matching problems $A \sqcap \forall\{r, s\} . \perp \equiv ?{ }^{?} X_{1} \sqcap \forall r . X_{2} \sqcap \forall r . X_{3}$ and $\forall\{r, s\} . \perp \sqsubseteq^{?} X_{1}$ occurring in M^{\prime} cannot be solved simultaneously.

Modifications in $\mathcal{F} \mathcal{L}_{\perp}$

In the following definition, modifications in $\mathcal{F} \mathcal{L}_{\perp}$ are defined formally. Recall that in our matching problem $M:=\left(C \equiv{ }^{?} D,\left\{X_{j} \rho_{j}^{?} E_{j} \mid 1 \leq j \leq \ell\right\}\right), C$ is assumed in U-labeled reduced normal form and D is assumed in V-labeled normal form. Furthermore, for the k-th side condition $X_{k} \rho_{k}^{?} E_{k}$, the concept description E_{k} is assumed in $V^{X_{k}}$-labeled normal form. Let σ_{0} denote the substitution computed in Step 2 of the algorithm and denote by $\sigma_{t}^{\prime}(t \geq 1)$ the respective modification computed in Step 4. Denote by σ_{t+1} the solution of MATCH $\underset{\mathcal{F} \mathcal{L}_{\perp}}{\perp}\left(M^{\prime}\right)$ computed in the t-th iteration of the algorithm. For every t and for every variable X_{k}, assume $\sigma_{t}\left(X_{k}\right)$ in $U^{t, X_{k}}$-labeled reduced normal form. In the following definition, modifications need not be defined for the first side condition, because the acyclic structure implies that E_{1} contains no variables.

Definition 49 Guessing modifications in \mathcal{F}_{\perp}
Let $\mathcal{H}=\{\perp\} \cup \mathcal{C}$ and let $k \in\{2, \ldots, \ell\}$, where $\rho_{k}=\sqsubset$. Consider a reduced substitution σ_{t} with $\sigma_{t}\left(X_{k}\right) \equiv \sigma_{t}\left(E_{k}\right)$. A modification σ_{t}^{\prime} of σ_{t} is defined by executing one of the following alternatives:

- \perp-modification
(Non-deterministically) guess one word $\hat{u} \in U_{\perp}^{t, X_{k}}$. For all $j \in\{1, \ldots, k-$
$1\}$, compute

$$
W_{\perp}^{j}:=\bigcup_{w \in V_{X_{j}}^{X_{k}}} w^{-1} \cdot\{\hat{u}\}
$$

Thus, W_{\perp}^{j} contains all suffixes of \hat{u} which yield \hat{u} in the product $V_{j}^{X_{k}}$. W_{\perp}^{j}. Define σ_{t}^{\prime} by specifying the relevant role languages $U_{H}^{t t, X_{j}}$ for $H \in$ $\{\perp\} \cup \mathcal{C}$, i.e. denote every $\sigma^{\prime}\left(X_{j}\right)$ in $U^{t, X_{j}}$-labeled normal form.

1. $U_{\perp}^{t, X_{j}}:=\left(U_{\perp}^{t, X_{j}} \backslash W_{\perp}^{j}\right) \cup\left(U_{\perp}^{t, X_{j}} \cap W_{\perp}^{j}\right) \cdot N_{R}$
2. For all $A \in \mathcal{C}$, define: $U_{A}^{t t, X_{j}}:=U_{A}^{t, X_{j}} \cup\left(W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}\right)$

- \mathcal{C}-modification
(Non-deterministically) guess one atomic concept $\hat{A} \in \mathcal{C}$. For \hat{A}, guess one word $\hat{u} \in U_{\hat{A}}^{t, X_{k}}$. Using \hat{u}, for all $j \in\{1, \ldots, k-1\}$ compute $W_{A}^{j}:=\bigcup_{w \in V_{X}^{X_{k}}} w^{-1} \cdot\{\hat{u}\}$. Then define:

$$
U_{\hat{A}}^{t, X_{j}}:=U_{\hat{A}}^{t, X_{j}} \backslash W_{A}^{j} \text { and } U_{H}^{\prime t, X_{j}}:=U_{H}^{t, X_{j}} \text { for all } H \in\{\perp\} \cup \mathcal{C} \backslash\{\hat{A}\}
$$

Soundness and completeness for $\mathcal{F L}_{\perp}$ and $\mathcal{F} \mathcal{L}_{\checkmark}$ is proved in Section 4.4. NP-completeness is proved in Section ??. We give two more examples in order to show that i) modifications deleting only one word do not always suffice and ii) matching in Step 4 of the algorithm match $_{\mathcal{L}}^{\ulcorner }$is necessary. For our examples, let $N_{C}=\{A\}$ and $N_{R}=\{R, S\}$.

Example 50 Consider the matching problem

$$
\forall\{r r r, r r s, r s, s r r\} \cdot \perp \sqcap \forall\{r r, s r\} . A \equiv ? \forall r r . X_{1} \sqcap \forall s r \cdot X_{2} \sqcap \forall r \cdot X_{3} \sqcap \forall r . X_{4}
$$

under the following set of subsumption conditions.

$$
\begin{aligned}
& \left\{X_{1} \sqsubseteq^{?} \cdot \forall\{r, s\} \cdot \perp,\right. \\
& X_{3} \sqsubset^{?} \forall\{r s, s\} \cdot X_{1} \sqcap \forall r \cdot X_{2}, \\
& \left.X_{4} \sqsubset^{?} \forall s \cdot \perp \sqcap \forall\{\varepsilon, r\} \cdot X_{3}\right\}
\end{aligned}
$$

Executing algorithm match $\mathcal{F}_{\mathcal{L}_{\perp}}^{ᄃ}$ yields as initial solution σ in Step 2

$$
\begin{aligned}
\left\{X_{1}\right. & \mapsto \forall\{r, s\} \cdot \perp \sqcap \forall\{\varepsilon\} . A, \\
X_{2} & \mapsto \forall r . \perp \sqcap \forall\{\varepsilon\} . A \\
X_{3} & \mapsto \forall\{r r, r s, s\} \cdot \perp \sqcap \forall r \cdot A, \\
X_{4} & \mapsto \forall\{r r, r s, s\} \cdot \perp \sqcap \forall r \cdot A\} .
\end{aligned}
$$

which violates the third side condition, as the test in Step 3 shows: $\sigma\left(X_{4}\right)$ is equivalent to $\sigma\left(\forall s . \perp \sqcap \forall\{\varepsilon, r\} . X_{3}\right)$. In Step 4 , we choose a \perp-modification and pick the word $r s$ from the role language $\{r r, r s, s\}$ corresponding to \perp in $\sigma\left(X_{4}\right)$. Hence, we have $W_{\perp}^{3}=\{r s, s\}$, according to the definition of \perp-modifications. Thus, $r s$ and s must be changed in the role language corresponding to \perp in $\sigma\left(X_{3}\right)$. The modified solution σ^{\prime} now yields

$$
\sigma^{\prime}\left(X_{3}\right)=\forall\{r r, r s r, r s s, s r, s s\} \cdot \perp \sqcap \forall\{r, r s, s\} \cdot A,
$$

while the other variables remain unchanged. We find that σ^{\prime} solves the matching problem M^{\prime} in Step 4, and thus match $\overline{\mathcal{F}}_{\mathcal{F}_{\perp}}\left(M^{\prime}\right)$ yields σ^{\prime}.

In the second iteration we find in Step 3 that the second side condition is violated, since $\sigma\left(X_{3}\right)$ is equivalent to $\sigma\left(\forall\{r s, s\} \cdot X_{1} \sqcap \forall r . X_{2}\right)$. We choose a \mathcal{C}-modification and pick the word $r s$ from the role language $\{r, r s, s\}$ corresponding to A in $\sigma\left(X_{3}\right)$. This yields $W_{A}^{1}=\{\varepsilon\}$ and $W_{A}^{2}=\{s\}$. Nevertheless, the role language $\{\varepsilon\}$ corresponding to A in $\sigma\left(X_{2}\right)$ does not contain the word s, while $\{\varepsilon\}$ corresponding to A in $\sigma\left(X_{1}\right)$ obviously contains ε. We therefore have

$$
\sigma^{\prime}\left(X_{1}\right)=\forall\{r, s\} . \perp,
$$

while the other variables remain unchanged. Again σ^{\prime} solves the matching problem M^{\prime} in Step 4, so that we have σ^{\prime} as new substitution σ. In the third iteration, we now find in Step 3 that the first side condition holds, so that the final result is the following.

$$
\begin{aligned}
\left\{X_{1}\right. & \mapsto \forall\{r, s\} \cdot \perp \\
X_{2} & \mapsto \forall r \cdot \perp \sqcap \forall\{\varepsilon\} \cdot A \\
X_{3} & \mapsto \forall\{r r, r s r, r s s, s r, s s\} \cdot \perp \sqcap \forall\{r, r s, s\} \cdot A, \\
X_{4} & \mapsto \forall\{r r, r s, s\} \cdot \perp \sqcap \forall r \cdot A\}
\end{aligned}
$$

A closer examination reveals that for the third side condition, neither picking any word other than $r s$ from $\{r, r s, s\}$ in the \perp-modification, nor performing a \mathcal{C}-modification would have been successful. Similarly, in the second side condition only a \mathcal{C}-modification is successful. Nevertheless, here we could have picked the word s instead of $r s$, which would not have altered the solution, though.

The previous two examples might raise the question whether or not solving the matching problem M^{\prime} in Step 4 of every iteration of the the algorithm
$\operatorname{MATCH}_{\mathcal{\mathcal { F }}}^{\mathcal{L}_{\perp}}{ }^{\perp}$ is necessary at all. The following example shows that there are cases where matching is needed.

Example 51 We examine the matching problem

$$
\forall\{r r r, r r s\} . \perp \sqcap \forall r r . A \equiv ? \forall r r . X_{1} \sqcap \forall r . X_{2} \sqcap X_{3} \sqcap X_{4}
$$

under the following set of subsumption conditions.

$$
\begin{aligned}
&\left\{X_{3} \sqsubset^{?} \forall r r . X_{1} \sqcap \forall r . X_{2},\right. \\
&\left.X_{4} \sqsubset^{?} X_{3}\right\}
\end{aligned}
$$

Executing algorithm MATCH $\check{\mathcal{F}}_{\mathcal{L}_{\perp}}$ again begins by computing an initial solution σ in Step 2, yielding the following substitution.

$$
\begin{aligned}
\left\{X_{1}\right. & \mapsto \forall\{r, s\} \cdot \perp \sqcap A, \\
X_{2} & \mapsto \forall\{r r, r s\} \cdot \perp \sqcap \forall r \cdot A, \\
X_{3} & \mapsto \forall\{r r r, r r s\} \cdot \perp \sqcap \forall\{r r\} \cdot A, \\
X_{4} & \mapsto \forall\{r r r, r r s\} \cdot \perp \sqcap \forall\{r r\} \cdot A\}
\end{aligned}
$$

Obviously, in Step 3 we find that the second side condition is violated, making it necessary to modify the role languages of $\sigma\left(X_{3}\right)$, so that $\sigma\left(X_{3}\right) \sqsubset \sigma^{\prime}\left(X_{3}\right)$.

Nevertheless, for the initial solution σ we also find that the first side condition is violated as well, since $\sigma\left(X_{3}\right)$ is equivalent to $\sigma\left(\forall r r . X_{1} \sqcap \forall r . X_{2}\right)$. As a consequence, any successful modification will result in a substitution σ^{\prime} with $\sigma^{\prime}\left(X_{3}\right) \not \equiv \sigma^{\prime}\left(\forall r r . X_{1} \sqcap \forall r . X_{2}\right)$. Hence, σ^{\prime} can be no solution to the matching problem M^{\prime} in Step 4.

The above examples may suffice to give a rough impression of the algorithm MATCH $_{\mathcal{F}_{\mathcal{L}}}^{\ulcorner }$. We now introduce modifications for $\mathcal{F} \mathcal{L}_{\neg}$.

Modifications in $\mathcal{F} \mathcal{L}_{-}$

The modification strategy for match $\mathcal{\mathcal { F }}_{\mathcal{L}_{-}}$differs from the previous definition for $\mathcal{F} \mathcal{L}_{\perp}$ in three ways. Here, inconsistencies can not only be introduced by role languages referring to the \perp-concept, but also by interactions between role languages referring to an atomic concept A and its negation $\neg A$.

Consequently, removing the set W_{\perp}^{j} from role languages referring to the \perp-concept alone does not suffice for \perp-modifications. Furthermore, a \perp modification can no longer add the intersection $W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}$ to every role
language of the form $U_{H}^{t, X_{j}}$, where $H \neq \perp$. In this case, $W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}$ would appear in $U_{A}^{t, X_{j}}$ as well as in $U_{\neg A}^{t, X_{j}}$ for every $A \in \mathcal{C}$, rendering the removal from all role languages referring to the \perp-concept useless. For \perp-modifications in $\mathcal{F} \mathcal{L}_{\square}$, we non-deterministically choose a subset of $W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}$ to be added to the role languages of the form $U_{H}^{t_{H}, X_{j}}$.

For \mathcal{C}-modifications, the non-deterministic choice of an atomic concept \hat{A} must be generalized to all concepts in $\mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$. With these two changes we obtain the following definition for modifications in $\mathcal{F} \mathcal{L}_{\neg}$.

Definition 52 Guessing modifications in $\mathcal{F} \mathcal{L}_{\checkmark}$
Let $\mathcal{H}=\{\perp\} \cup \mathcal{C} \cup\{\neg A \mid A \in \mathcal{C}\}$ and let

$$
X_{k} \sqsubset^{?} \underbrace{\prod_{H \in \mathcal{H}} \forall V_{H}^{X_{k}} \cdot H \sqcap \prod_{j=1}^{k-1} \forall V_{X_{j}}^{X_{k}} \cdot X_{j}}_{E_{k}}
$$

be the k-th side condition in an $\mathcal{F L}_{-}$-matching problem with strict acyclic side conditions over the variables $\left\{X_{1}, \ldots, X_{\ell}\right\}$, where $H \in \mathcal{H}$ and $1 \leq k \leq \ell$. We again consider a reduced substitution σ_{t} with $\sigma_{t}\left(X_{k}\right) \equiv \sigma_{t}\left(E_{k}\right)$, where every $\sigma_{t}\left(X_{j}\right)$ is denoted in $U^{t, X_{j}}$-labeled normal form. A modification σ_{t}^{\prime} of σ_{t} is defined by executing one of the following alternatives:

- \perp-modification
(Non-deterministically) guess one word $\hat{u} \in U_{\perp}^{t, X_{k}}$. For all $j \in\{1, \ldots, k-$ 1 \}, compute

$$
W_{\perp}^{j}:=\bigcup_{w \in V_{x_{j}}^{x_{k}}} w^{-1} \cdot\{\hat{u}\}
$$

Thus, W_{\perp}^{j} contains all suffixes of \hat{u} which yield \hat{u} in the product $V_{j}^{X_{k}}$. W_{\perp}^{j}. Define σ_{t}^{\prime} by specifying the relevant role languages $U_{H}^{t, X_{j}}$ for $H \in$ $\{\perp\} \cup \mathcal{C}$, i.e. denote every $\sigma^{\prime}\left(X_{j}\right)$ in $U^{t, X_{j}}$-labeled normal form.

1. $U_{\perp}^{\prime t, X_{j}}:=\left(U_{\perp}^{t, X_{j}} \backslash W_{\perp}^{j}\right) \cup\left(U_{\perp}^{t, X_{j}} \cap W_{\perp}^{j}\right) \cdot N_{R}$
2. For all $H \in \mathcal{H} \backslash\{\perp\}$, (non-deterministically) choose a subset
$\hat{W}^{j} \subseteq W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}$. Then define:
$U_{H}^{t, \overline{X_{j}}}:=\left(U_{H}^{t, X_{j}^{+}} \backslash\left(U_{H}^{t, X_{j}} \cap U_{\neg H}^{t, X_{j}} \cap W_{\perp}^{j}\right)\right) \cup \hat{W}^{j}$

- \mathcal{C}-modification
(Non-deterministically) guess one atomic concept $\hat{H} \in \mathcal{C} \cup\{\neg A \mid A \in$ $\mathcal{C}\}$. For \hat{H}, guess one word $\hat{u} \in U_{\hat{H}}^{t, X_{k}}$. Using \hat{u}, for all $j \in\{1, \ldots, k-1\}$ compute $W_{\hat{H}}^{j}:=\bigcup_{w \in V_{X_{j}}^{X_{k}}} w^{-1} \cdot\{\hat{u}\}$. Then define:
$U_{\hat{H}}^{t, X_{j}}:=U_{\hat{H}}^{t, X_{j}} \backslash W_{\hat{H}}^{j}$ and
$U_{H}^{\prime t, X_{j}}:=U_{H}^{t, X_{j}}$ for all $H \in \mathcal{H} \backslash\{\hat{H}\}$.
 to be correct. Knowing that the algorithm MATCH $\frac{\square}{\mathcal{L}}$ always terminates it is easy to see that termination also holds for MATCH ${ }_{\mathcal{L}}^{\complement}$, where a fixed number of matching problems under subsumption conditions are solved. For this reason we do not need to address the question of termination separately.

4.4 Soundness and completeness

With a formal definition of modifications, we are now ready to prove soundness and completess of the algorithm. We first address the case $\mathcal{L}=\mathcal{F} \mathcal{L}_{\perp}$.

Soundness and completeness in $\mathcal{F} \mathcal{L}_{\perp}$

In preparation, we need to introduce some notation which simplifies denoting the role words assigned to a concept pattern for some atomic concept.

Definition 53 Notation

Let E be an \mathcal{F}_{\perp}-concept pattern in V-labeled normal form over the role alphabet N_{R} and the set \mathcal{X} of variables, i.e.

$$
E:=\sqcap_{H \in \mathcal{H}} \forall U_{H} \cdot H \sqcap \prod_{X \in \mathcal{X}} \forall V_{X} \cdot X,
$$

where $\mathcal{H}:=\{\perp\} \cup \mathcal{C}$. For a substitution σ and for all $X \in \mathcal{X}$, denote $\sigma(X)$ in U^{X}-labeled normal form. For every $H \in \mathcal{H}$, define

$$
\left.\sigma(E)\right|_{H}:=U_{H} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot U_{H}^{X}
$$

With the above notation, we can write $\sigma(E)$ as $\left.\left.\forall \sigma(E)\right|_{\perp \cdot \perp} \sqcap_{A \in \mathcal{C}} \forall \sigma(E)\right|_{A} \cdot A$.
It is shown next that the modification strategy defined for $\mathcal{F} \mathcal{L}_{\perp}$ in Definition 49 does produce a strict solution for the relevant side condition. Hence,
if for some side condition $X_{k} \sqsubset^{?} E_{k}$ occurring in a solvable matching problem it holds that $\sigma_{t}\left(X_{k}\right) \equiv \sigma_{t}\left(E_{k}\right)$, then there is a modification yielding $\sigma \sqsubset \sigma^{\prime}$ and $\sigma^{\prime}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$.

Lemma 54 Strictness of modifications in $\mathcal{F} \mathcal{L}_{\perp}$
Let σ_{\sqsubset} be a reduced solution to M, let σ_{t} be a reduced substitution with $\sigma_{t}\left(X_{k}\right) \equiv \sigma_{t}\left(E_{k}\right)$ for some $k \in\{2, \ldots, \ell\}$ with $\rho_{k}=\sqsubset$. Let $\sigma_{t} \sqsubset \sigma_{\sqsubset}$. Then (non-deterministically) modifying σ_{t} to σ_{t}^{\prime} yields $\sigma \sqsubset \sigma^{\prime}$ and $\sigma_{t}^{\prime}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$.

Proof. Two steps are sufficient to prove the claim: i) every modification in accordance with Definition 49 yields $\sigma \sqsubseteq \sigma^{\prime}$ and ii) there exists a modification such that $\sigma_{t}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$.
i) \perp-modification: For every choice of \hat{u} and for every j it holds for σ_{t}^{\prime} that

$$
U_{\perp}^{t, X_{j}} \cdot N_{R}^{*}=U_{\perp}^{t, X_{j}} \cdot N_{R}^{*} \backslash W_{\perp}^{j},
$$

implying $U_{\perp}^{t, X_{j}} \cdot N_{R}^{*} \supset U_{\perp}^{\prime t, X_{j}} \cdot N_{R}^{*}$. For every $A \in \mathcal{C}$ the inclusion $\hat{W}_{A}^{j} \subseteq U_{\perp}^{t, X_{j}}$ furthermore implies

$$
U_{A}^{t, X_{j}} \cup U_{\perp}^{t, X_{j}} \cdot N_{R}^{*} \supseteq U_{A}^{\prime t, X_{j}} \cup U_{\perp}^{t, X_{j}} \cdot N_{R}^{*}
$$

because every word possibly gained by $U_{A}^{t, X_{j}}$ is contained in $U_{\perp}^{t, X_{j}} \cdot N_{R}^{*}$. Consequently, we obtain $\sigma_{t} \sqsubseteq \sigma_{t}^{\prime}$. The second part of the claim, which is addressed below in (ii), is sufficient for strictness.
\mathcal{C}-modification: The only difference between σ_{t} and σ_{t}^{\prime} is the deletion of words in role languages referring to an atomic concept $\hat{A} \in \mathcal{C}$. It is therefore not difficult to see that $\sigma_{t} \sqsubseteq \sigma_{t}^{\prime}$ holds.
ii) We now present a guessing strategy to find a modification σ^{\prime} with $\sigma_{t}^{\prime}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$. To this end, two cases are distinguished.
(Case 1): $\sigma_{t}\left(E_{k}\right)$ and $\sigma_{\sqsubset}\left(E_{k}\right)$ disagree on the \perp-languages, i.e.

$$
U_{\perp}^{t, X_{k}} \cdot N_{R}^{*}=\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supset \sigma_{\sqsubset}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} .
$$

Thus, there are $\hat{u} \in U_{\perp}^{t, X_{k}}$ and $x \in N_{R}^{*}$ such that $\hat{u} x$ does not occur on the right-hand side of the inclusion. Consequently, $\left.\hat{u} \notin \sigma_{\sqsubset}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$. Construct σ^{\prime} by a \perp-modification, picking one word \hat{u} as introduced above. By definition, we then have

$$
U_{\perp}^{t, X_{j}}=\left(U_{\perp}^{t, X_{j}} \backslash W_{\perp}^{j}\right) \cup\left(U_{\perp}^{t, X_{j}} \cap W_{\perp}^{j}\right) \cdot N_{R},
$$

where $W_{\perp}^{j}=\bigcup_{w \in V_{X_{j}}^{X_{k}}} w^{-1} \cdot\{\hat{u}\}$.
(Case 2): $\sigma_{t}\left(E_{k}\right)$ and $\sigma_{\sqsubset}\left(E_{k}\right)$ agree on the \perp-languages in the sense that

$$
U_{\perp}^{t, X_{k}} \cdot N_{R}^{*}=\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\sigma_{\sqsubset}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} .
$$

As $\sigma_{t}\left(E_{k}\right) \sqsubset \sigma_{\sqsubset}\left(E_{k}\right)$, this implies that there is an $A \in \mathcal{C}$ and a word $\hat{u} \in U_{A}^{t, X_{k}}$ such that $\left.\hat{u} \notin \sigma_{\sqsubset}\left(E_{k}\right)\right|_{A}$. For the modification, choose $\hat{A}:=A$ and use one word \hat{u} as introduced above.

It is to show now that both in both cases we have $\sigma_{t}^{\prime}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$.
In Case 1, the definition of W_{\perp}^{j} implies for the \perp-part of $\sigma^{\prime}\left(E_{k}\right)$ that

$$
\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \backslash \bigcup_{j=1}^{k-1} V_{X_{j}}^{X_{k}} \cdot W_{\perp}^{j}
$$

The word \hat{u} occurs both in $\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ and in at least one product $V_{X_{j}}^{X_{k}} \cdot W_{\perp}^{j}$. Since $U_{\perp}^{\prime t, X_{k}}=U_{\perp}^{t, X_{k}}$, and since $U_{\perp}^{t, X_{k}} \cdot N_{R}^{*}=\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$, we obtain

$$
\begin{equation*}
\left.U_{\perp}^{\prime t, X_{k}} \cdot N_{R}^{*} \supset \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} . \tag{*}
\end{equation*}
$$

This is sufficient for our claim, since we have shown in (1) that $\sigma_{t} \sqsubseteq \sigma_{t}^{\prime}$.
In Case 2, the definition of σ_{t}^{\prime} ensures that for \hat{A} we have

$$
\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\hat{A}}=\left.\sigma_{t}\left(E_{k}\right)\right|_{\hat{A}} \backslash \bigcup_{j=1}^{k-1} V_{X_{j}}^{X_{k}} \cdot W_{\perp}^{j}
$$

The word \hat{u} occurs in $\left.\sigma_{t}\left(E_{k}\right)\right|_{\hat{A}}$, since $U_{\hat{A}}^{t, X_{k}}=\left.p f\left(\left.\sigma_{t}\left(E_{k}\right)\right|_{\hat{A}}\right) \subseteq \sigma_{t}\left(E_{k}\right)\right|_{\hat{A}},{ }^{3}$ and occurs in at least one product $V_{X_{j}}^{X_{k}} \cdot W_{\perp}^{j}$, because otherwise $\left.\hat{u} \notin \sigma_{t}\left(E_{k}\right)\right|_{\hat{A}}$. Thus, $\left.\hat{u} \notin \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\hat{A}}$. We therefore obtain

$$
\left.\left.\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\hat{A}} \cup \sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supset \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\hat{A}} \cup \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}
$$

The inclusion is strict, because otherwise $\left.\hat{u} \in \sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$, implying $\hat{u} \in$ $U_{\perp}^{t, X_{k}} \cdot N_{R}^{*}$ in contradiction to the reducedness of σ_{t}. Together with (1), this concludes our proof.

[^2]It has to be shown next that a modification yielding σ_{t}^{\prime} is minimal in the sense that no other modification τ at the same time i) lies between σ_{t} and σ_{t}^{\prime} in respect to the strict ordering \sqsubset on substitutions, i.e. if $\sigma_{t} \sqsubset \tau \sqsubset \sigma_{t}^{\prime}$, and ii) also yields strictness for the respective side condition, i.e. $\sigma_{t}\left(E_{k}\right) \sqsubset \tau\left(E_{k}\right)$. This property justifies that in the algorithm $\operatorname{MATCH}_{\mathcal{F} \mathcal{F}_{0}}^{\ulcorner }$no modification tries to make $\sigma\left(X_{k}\right)$ more specific when modifying a side condition $X_{k} \sqsubset^{?} E_{k}$ with $\sigma\left(X_{k}\right) \equiv \sigma\left(E_{k}\right)$. The following lemma provides the necessary result, again recurring to the matching problem as introduced at the beginning of this section.

Lemma 55 Minimality of modifications

Consider a substitution τ such that $\sigma_{t} \sqsubset \tau \sqsubseteq \sigma_{t}^{\prime}$ and $\sigma_{t}\left(E_{k}\right) \sqsubset \tau\left(E_{k}\right)$. Then, $\tau \equiv \sigma_{t}^{\prime}$.

Proof. Without loss of generality, we may assume σ_{t}, τ, and σ_{t}^{\prime} to be reduced. Two cases are distinguished depending on whether σ_{t}^{\prime} was obtained by a \perp - or a \mathcal{C}-modification.
\perp-modification: Then there exists a word $\left.\hat{u} \in \sigma_{t}\left(E_{k}\right)\right|_{\perp}$ such that $\hat{u} \notin$ $\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp}$. There are two possible reasons for $\sigma_{t}\left(E_{k}\right) \sqsubset \tau\left(E_{k}\right)$ to hold:

Case 1: $\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supset \tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$. Since $\tau \sqsubseteq \sigma_{t}^{\prime}$, this implies that the difference $\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \backslash \tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ must be missing in $\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ as well. But $\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ was obtained from $\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ by removing as little as possible to remove the word \hat{u}. Hence, in $\left.\tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ no other words could have been removed, because otherwise either $\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ would be too small or $\sigma_{t}\left(E_{k}\right) \sqsubset \tau\left(E_{k}\right)$ could not hold. This implies $\left.\tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ For every $A \in \mathcal{C}$, we therefore have $\left.\left.\tau\left(E_{k}\right)\right|_{A} \supseteq \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A}$. On the other hand, we know that the \perp-modification has increased $\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A}$ by $W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}$, yielding $\left.\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A} \supset \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A}$. This implies $\left.\tau\left(E_{k}\right)\right|_{A}=\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A}$, because otherwise the \perp-modification would not have added all of $W_{\perp}^{j} \cap U_{\perp}^{t, X_{j}}$ to the role languages referring to A in all concept descriptions $\sigma_{t}^{\prime}\left(X_{j}\right)$. Together with $\tau \sqsubseteq \sigma_{t}^{\prime}$ and the reducedness of the substitutions this is sufficient for $\tau \equiv \sigma_{t}^{\prime}$.

Case 2: $\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$. Thus, i) there is some $A \in \mathcal{C}$ such that $\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{A} \supset \tau\left(E_{k}\right)\right|_{A}$ a and ii) we have $\left.\left.\tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supset \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ as a consequence of the \perp-modification for σ_{t}^{\prime}. It can be shown that this implies a contradiction with $\tau \sqsubseteq \sigma_{t}^{\prime}$, because $\left.\tau\left(E_{k}\right)\right|_{A}$ contains not enough words for $\left.\left.\left.\left.\tau\left(E_{k}\right)\right|_{A} \cup \tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supseteq \tau\left(E_{k}\right)\right|_{A} \cup \tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$ to hold, which is a necessary condition, as seen in the characterization of subsumption.
\mathcal{C}-modification: Then there exists an $\hat{A} \in \mathcal{C}$ and a word $\left.\hat{u} \in \sigma_{t}\left(E_{k}\right)\right|_{\hat{A}}$ such that $\left.\hat{u} \notin \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp}$. For τ, we again have two cases to distinguish:

Case 1: $\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supset \tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$. This implies a contradiction with the fact that the \mathcal{C}-modification did not alter role languages in σ_{t}^{\prime} referring to the \perp-concept, which implies $\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\sigma_{(}^{\prime} E_{k}\right)\left.\right|_{\perp} \cdot N_{R}^{*}$. Together with $\left.\left.\tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supseteq \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$, this forbids the assumption of Case 1.

Case 2: $\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\tau\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$. Again, this implies some $A \in \mathcal{C}$ such that $\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{A} \supset \tau\left(E_{k}\right)\right|_{A}$. Since we know that $\tau\left(E_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$ and since the \mathcal{C}-modification is the only difference between $\sigma_{t}\left(E_{k}\right)$ and $\sigma_{t}^{\prime}\left(E_{k}\right)$, we can conclude that $A=\hat{A}$. On the one hand one can see that as few as possible words are removed in $\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A}$ to gain strictness while on the other hand $\left.\left.\tau\left(E_{k}\right)\right|_{A} \supseteq \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{A}$. Together with $\tau \sqsubseteq \sigma_{t}^{\prime}$ and the reducedness of the substitutions we get $\tau \equiv \sigma_{t}^{\prime}$.

We are now prepared to prove soundness of the algorithm MATCH $\underset{\mathcal{F}_{\mathcal{L}}}{ᄃ}$. To this end, we need to make sure that side conditions remain valid once they are modified appropriately.

Lemma 56 Soundness

1. For every t and for every modification of σ_{t} yielding σ_{t}^{\prime} it holds that if match $_{\overline{\mathcal{F}}_{\mathcal{L}}}^{\mathcal{L}_{1}}\left(M^{\prime}\right)$ succeeds in Step 4 of the algorithm, then
i) $\sigma_{t}\left(X_{j}\right)=\sigma_{t+1}\left(X_{j}\right)$ for every $j \in\{k, \ldots, \ell\}$
ii) $\sigma_{t} \sqsubset \sigma_{t}^{\prime} \sqsubseteq \sigma_{t+1}$.
2. If $\operatorname{MATCH}_{\mathcal{F}_{\perp}}^{ᄃ}(M)$ returns the substitution σ, then σ solves M (soundness).

Proof. 1. i) According to Definition 49 , for $j \in\{k, \ldots, \ell\}$ the substitution σ_{t}^{\prime} assigns the same values to every variable X_{j} as σ_{t} does. Due to Lemma 54, the right-hand side of every side condition can only become more general. Consequently, every value assigned to variables X_{k} to X_{ℓ} by σ_{t}^{\prime} is also a solution for the matching problem defined for σ_{t+1}. Exploiting the minimality of мАТСН $\frac{\complement}{\perp}$ and the assumption of reduced normal forms concludes the argument.
ii) It was shown in Lemma 54 that $\sigma_{t} \sqsubset \sigma_{t}^{\prime}$ holds for every modification σ_{t}^{\prime}. Subsumption $\sigma_{t}^{\prime} \sqsubseteq \sigma_{t+1}$ obviously holds because of the matching problems modulo subsumption $\left\{\sigma_{t}^{\prime}\left(X_{j}\right) \sqsubseteq^{?} X_{j} \mid 1 \leq j \leq \ell\right\}$ which are included in the matching problem M^{\prime} for σ_{t+1}.
2. Assume that $\operatorname{match} \stackrel{\sqsubseteq}{\perp}(M)=\sigma$. Hence, σ is the solution of a matching problem solved in Step 2 or Step 4 of the algorithm. In both cases, obviously $C \equiv$? D holds. Furthermore, the initial solution computed in Step 2 also respects S_{\sqsubset}, where every side condition from M is nonstrict. If the execution of the algorithm has succeeded, then in every iteration from ℓ to 1 either the k-th side condition was found valid in Step 3 or guessing a modification in Step 4 has succeeded. It is obvious that in both cases every strict subsumption condition under consideration has been met in the respective iteration.

As S_{\sqsubset} is acyclic, we find as a consequence of Part (1) that once a side condition is met it remains valid in subsequent iterations of the algorithm. This holds for two reasons: i) the variables not modified by a modification σ_{t}^{\prime} remain unchanged in σ_{t+1}^{\prime} and ii) the variables which are modified are assigned more general concept descriptions. Consequently, if every iteration is successful, then finally every side condition is met by the resulting substitution σ.

In order to prove completeness, it is sufficient to show that the algorithm MATCH $_{\mathcal{F}_{\mathcal{L}}}^{ᄃ}(M)$ successfully returns a solution if the input matching problem M is solvable.

Lemma 57 Completeness

Let σ_{\sqsubset} be a reduced solution to M.

1. Then for every t there exists a modification for σ_{t} yielding σ_{t}^{\prime}, such that:
i) If $\sigma_{t}^{\prime} \sqsubseteq \sigma_{\sqsubset}$ then $\sigma_{t+1} \sqsubseteq \sigma_{\sqsubset}$.
ii) $\sigma_{t}^{\prime} \sqsubseteq \sigma_{\sqsubset}$
2. match $_{\mathcal{F}_{\mathcal{L}_{\perp}}}^{{ }^{\perp}}(M)$ returns a substitution σ which solves M (completeness).

Proof. 1. i) Presupposing $\sigma_{t}^{\prime} \sqsubseteq \sigma_{\sqsubset}$ it is not difficult to see that σ_{\sqsubset} is also a valid solution to the matching problem defined in the algorithm for σ_{t+1}. The additional requirements for σ_{t+1} are $\left\{\sigma_{t}^{\prime}\left(X_{j}\right) \sqsubseteq^{?} X_{j} \mid 1 \leq\right.$ $j \leq \ell\}$ which are met by σ_{\sqsubseteq} due to $\sigma_{t}^{\prime} \sqsubseteq \sigma_{\sqsubset}$. The minimality of the matching algorithm мАТСн $\underset{\mathcal{F}}{\mathcal{E}} \mathcal{L}_{\perp}$ then guarantees that $\sigma_{t+1} \sqsubseteq \sigma_{\sqsubset}$.
ii) For every $j \in\{1, \ldots, \ell\}$, denote $\sigma_{\sqsubset}\left(X_{j}\right)$ in $U^{\sqsubset, X_{j}}$-labeled normal form. Proof by induction over t.
$(t=0)$: Again, we begin by considering a \perp-modification as introduced in the second part of Lemma 54. Due to the minimality of мATCH $\overline{\mathcal{F}}_{\mathcal{L}_{\perp}}$
it holds that $\sigma_{0} \sqsubseteq \sigma_{\sqsubset}$. This implies $U_{\perp}^{0, X_{j}} \cdot N_{R}^{*} \supseteq U_{\perp}^{\sqsubset, X_{j}} \cdot N_{R}^{*}$. As $\hat{u} \notin$ $\left.\sigma_{\sqsubset}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}$, no product $U_{\perp}^{\complement, X_{j}} \cdot N_{R}^{*}$ contains words from W_{\perp}^{j}. Since $U_{\perp}^{\prime 0, X_{j}} \cdot N_{R}^{*}=U_{\perp}^{0, X_{j}} \cdot N_{R}^{*} \backslash W_{\perp}^{j}$, we obtain $U_{\perp}^{\prime 0, X_{j}} \cdot N_{R}^{*} \supseteq U_{\perp}^{\complement, X_{j}} \cdot N_{R}^{*}$, which is the first condition for subsumption.
For $A \in \mathcal{C}$, a \perp-modification obviously guarantees that $U_{A}^{0, X_{j}} \subseteq U_{A}^{0, X_{j}}$. We also know from (i) that $U_{\perp}^{0, X_{j}} \cdot N_{R}^{*} \supseteq U_{\perp}^{\prime 0, X_{j}} \cdot N_{R}^{*}$. As $\sigma_{0} \sqsubseteq \sigma_{\sqsubset}$ implies

$$
\begin{equation*}
U_{A}^{0, X_{j}} \cup U_{\perp}^{0, X_{j}} \cdot N_{R}^{*} \supseteq U_{A}^{\complement, X_{j}} \cup U_{\perp}^{\complement, X_{j}} \cdot N_{R}^{*}, \tag{*}
\end{equation*}
$$

we may replace $U_{A}^{0, X_{j}}$ by $U_{A}^{0, X_{j}}$. Now, why may we also replace the product $U_{\perp}^{0, X_{j}} \cdot N_{R}^{*}$ by the-smaller-language $U_{\perp}^{\prime 0, X_{j}} \cdot N_{R}^{*}$? The language $U_{\perp}^{\prime 0, X_{j}} \cdot N_{R}^{*}$ does not contain a word from W_{\perp}^{j}. We already know that $U_{\perp}^{\sqsubset, x_{j}} \cdot N_{R}^{*}$ does not either, so the only problem could be $U_{A}^{\sqsubset, x_{j}}$ containing words from W_{\perp}^{j}. But since $U_{A}^{0, X_{j}}$ is defined as $U_{A}^{t, X_{j}} \cup\left(U_{A}^{\left\llcorner, X_{j}\right.} \cap W_{\perp}^{j}\right)$, this case is covered. This completes the proof for \perp-modifications.
For \mathcal{C}-modifications, we only have to consider the second condition for subsumption, because role languages referring to the bottom concept remain unchanged. For all $A \neq \hat{A}$, nothing changes as well. For \hat{A}, only those words of $U_{A}^{0, X_{j}}$ are missing in $U_{A}^{\prime 0, X_{j}}$ which do not occur in $U_{A}^{\complement, X_{j}}$ also. Consequently, starting from equation (*) again we obtain the result sought.
$(t+1)$: The induction hypothesis states that $\sigma_{t}^{\prime} \sqsubseteq \sigma_{\sqsubset}$. Due to (i), this implies $\sigma_{t+1} \sqsubseteq \sigma_{\sqsubset}$. With these findings the remaining proof is analogous to the previous case $t=0$.
2. If M is solvable, the matching problem $\left\langle C \equiv\right.$? $\left.D, S_{\sqsubseteq}\right\rangle$ computed in Step 2 of the algorithm is solvable as well. Furthermore, we know from Theorem 43 that the solutions computed by $\operatorname{match}_{\underline{\mathcal{F}}}^{\underline{\mathcal{F}_{\perp}}} \stackrel{\text { are least }}{ }$ matchers with respect to the ordering \sqsubseteq on substitutions. Hence, for the initial solution σ it holds that $\sigma \sqsubset \sigma_{\sqsubset}$. Inductively, we can now exploit the results of Lemma 54 and Part (1): Lemma 54 guarantees that the modification probably necessary in the first iteration of the algorithm succeeds. According to (ii), for the first modification σ_{1}^{\prime} we also have $\sigma_{1}^{\prime} \sqsubset \sigma_{\sqsubset}$, which by (i) implies $\sigma_{2} \sqsubseteq \sigma_{\sqsubset}$. If σ_{2} does not solve M, then obviously we have $\sigma_{2} \sqsubset \sigma_{\sqsubset}$. Hence, in the next iteration we can inductively apply the same argument.

Consequently, we end up with a successful computation yielding a solution σ with $\sigma \sqsubseteq \sigma_{\sqsubset}$.

As a consequence of the previous lemma, all minimal matchers (w.r.t. subsumption of substitutions) are computed. This can be readily seen when using a minimal solution σ_{\sqsubset} in the previous lemma, which then implies that the solution computed by MATCH $_{\overline{\mathcal{F}}}^{\perp}$

Soundness and completeness in $\mathcal{F} \mathcal{L}_{\urcorner}$
In $\mathcal{F} \mathcal{L}_{\checkmark}$-concept descriptions, inconsistencies can additionally be introduced by words occurring in role languages referring to an atomic concept and to its negation. We need to alter the notation $\left.\sigma(E)\right|_{H}$ introduced in the previous part in order to respect this effect for $H=\perp$.

Definition 58 Notation

Let E be an $\mathcal{F L}_{-}$-concept pattern in V-labeled normal form over the role alphabet N_{R} and the set \mathcal{X} of variables. For a substitution σ and for all $X \in \mathcal{X}$, denote $\sigma(X)$ in U^{X}-labeled normal form. Then, define

$$
\left.\sigma(E)\right|_{\perp}:=U_{\perp} \cup \bigcup_{X \in \mathcal{X}} V_{X} \cdot U_{\perp}^{X} \cup \bigcup_{A \in \mathcal{C}}\left(\bigcup_{X \in \mathcal{X}}\left(V_{X} \cdot U_{A}^{X}\right) \cap \bigcup_{X \in \mathcal{X}}\left(V_{X} \cdot U_{\neg A}^{X}\right)\right)
$$

In Lemma 59 we could prove for every possible modification σ_{t}^{\prime} that $\sigma_{t} \sqsubseteq$ σ_{t}^{\prime}. In case of $\mathcal{F L}_{\square}$, this is no longer possible, because we depend stronger on the properties of a strict solution σ_{\sqsubseteq}. In the followng lemma we therefore begin by specifying a guessing strategy relative to σ_{\sqsubset}.

Lemma 59 Strictness of Modifications in $\mathcal{F L}_{-}$
Let σ_{\sqsubset} be a reduced solution to M, let σ_{t} be a reduced substitution with $\sigma_{t}\left(X_{k}\right) \equiv \sigma_{t}\left(E_{k}\right)$ for some $k \in\{2, \ldots, \ell\}$ with $\rho_{k}=\sqsubset$. Let $\sigma_{t} \sqsubset \sigma_{\sqsubset}$. Then (non-deterministically) modifying σ_{t} to σ_{t}^{\prime} yields $\sigma \sqsubset \sigma^{\prime}$ and $\sigma_{t}^{\prime}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$.

Proof. We show that there exists a modification in accordance with Definition 52 such that $\sigma \sqsubseteq \sigma^{\prime}$ and $\sigma_{t}^{\prime}\left(X_{k}\right) \sqsubset \sigma_{t}^{\prime}\left(E_{k}\right)$. To this end, we present a guessing strategy to find an appropriate modification σ^{\prime}, distinguishing two cases.
(Case 1): $\sigma_{t}\left(E_{k}\right)$ and $\sigma_{\sqsubset}\left(E_{k}\right)$ disagree on the \perp-languages, i.e.

$$
U_{\perp}^{t, X_{k}} \cdot N_{R}^{*}=\left.\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \supset \sigma_{\sqsubset}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} .
$$

This situation is analogous to the case $\mathcal{F} \mathcal{L}_{\perp}$, because the left-hand side of the equation is reduced, which forbids inconsistencies being introduced by interactions of atomic concepts and their negations. It is therefore sufficient to restrict the choice of \hat{u} to the role language $U_{\perp}^{t_{\perp} X_{k}}$. Hence, we again construct σ^{\prime} by a \perp-modification, picking one word \hat{u} as introduced above. By definition, we then have

$$
U_{\perp}^{t, X_{j}}=\left(U_{\perp}^{t, X_{j}} \backslash W_{\perp}^{j}\right) \cup\left(U_{\perp}^{t, X_{j}} \cap W_{\perp}^{j}\right) \cdot N_{R},
$$

where $W_{\perp}^{j}=\bigcup_{w \in V_{X_{j}} x_{k}} w^{-1} .\{\hat{u}\}$. Nevertheless, an additional guess is necessary for the second part of the \perp-modification. For every $j \in\{1, \ldots, k-1\}$ and for every $H \in \mathcal{H} \backslash\{\perp\}$, choose as \hat{W}^{j} the intersection $U_{H}^{\sqsubset, X_{j}} \cap W_{\perp}^{j}$. Hence,

$$
U_{H}^{\prime t, X_{j}}=\left(\left(U_{H}^{t, X_{j}} \backslash\left(U_{H}^{t, X_{j}} \cap U_{\neg H}^{t, X_{j}} \cap W_{\perp}^{j}\right)\right) \cup\left(U_{H}^{\sqsubset, X_{j}} \cup W_{\perp}^{j}\right)\right.
$$

(Case 2): This case is analogous to the guessing strategy for modifications in $\mathcal{F} \mathcal{L}_{\perp}$. If $\sigma_{t}\left(E_{k}\right)$ and $\sigma_{\sqsubset}\left(E_{k}\right)$ agree on the \perp-languages, we again have

$$
U_{\perp}^{t, X_{k}} \cdot N_{R}^{*}=\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\sigma_{\sqsubset}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} .
$$

As $\sigma_{t}\left(E_{k}\right) \sqsubset \sigma_{\sqsubset}\left(E_{k}\right)$, this implies that there is an $A \in \mathcal{C}$ and a word $\hat{u} \in U_{A}^{t, X_{k}}$ such that $\left.\hat{u} \notin \sigma_{\sqsubset}\left(E_{k}\right)\right|_{A}$. For the modification, choose $\hat{A}:=A$ and use one word \hat{u} as introduced above.

In Case 1, we again find that

$$
\left.\sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*}=\left.\sigma_{t}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*} \backslash \bigcup_{j=1}^{k-1} V_{X_{j}}^{X_{k}} \cdot W_{\perp}^{j}
$$

Following the same argument as employed for $\mathcal{F} \mathcal{L}_{\perp}$, we furthermore obtain

$$
\left.U_{\perp}^{\prime t, X_{k}} \cdot N_{R}^{*} \supset \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot N_{R}^{*},
$$

which is a necessary condition for the strict subsumption $\sigma_{t}\left(E_{k}\right) \sqsubset \sigma^{\prime}\left(E_{k}\right)$. The second second condition for subsumption remains to be shown, i.e.:

$$
\left.\left.U_{H}^{\prime t, X_{k}} \cup U_{\perp}^{\prime t, X_{k}} \cdot \Sigma^{*} \supseteq \sigma^{\prime}\left(E_{k}\right)\right|_{H} \cup \sigma_{t}^{\prime}\left(E_{k}\right)\right|_{\perp} \cdot \Sigma^{*}
$$

for all $H \in \mathcal{H} \backslash\{\perp\}$. Note that the substitution σ is assumed reduced, which makes it possible to use the role language $U_{\perp}^{\prime t, X_{k}}$ instead of $\hat{U}_{\perp}^{\prime t, X_{k}}$, as seen in
the characterization of the subsumption. We can show the above inclusion by exploiting the fact that $\sigma_{t} \sqsubset \sigma_{\sqsubset}$. Since after removing inconsistencies from the relevant role languages only the intersection $U_{H}^{\left\ulcorner, X_{j}\right.} \cup W_{\perp}^{j}$ was added to the role languages $U_{H}^{t, t, X_{j}}$, it is not difficult to see that $\sigma \sqsubset \sigma^{\prime}$ holds as well.

In Case 2, the proof is analogous to that for $\mathcal{F} \mathcal{L}_{\perp}$, because the \mathcal{C}-modification for $\mathcal{F} \mathcal{L}_{\urcorner}$also only removes words from role languages $U_{H}^{t, X_{j}}$, where $H \in$ $\mathcal{H} \backslash\{\perp\}$.

Minimality of the modifications can be shown similar to the proof for $\mathcal{F} \mathcal{L}_{\perp}$. The possibility of inconsistencies introduced by role words referring to negated atomic concepts thereby is hidden by the notation defined in Definition 58. With this prerequisite, the proof works analogous. Furthermore, Lemma 56 only depends on the facts i) that in the modification of $\sigma_{t}\left(E_{k}\right)$ the variables in $\left\{X_{k}, \ldots, X_{\ell}\right\}$ remain unchanged, ii) that мATCH $_{\overline{\mathcal{F}}}^{\mathcal{L}},{ }_{\perp}$ computes least matchers w.r.t. the ordering \sqsubseteq on substitutions and iii) that modifications are successful for a solvable matching problem. These facts also hold for $\mathcal{F} \mathcal{L}_{\neg}$, as we have already seen. Consequently, the proof of soundness of the algorithm матсн $\check{\mathcal{F}}_{\mathcal{L}}$ is identical to Lemma 56.

Part (i) in the proof of completeness for $\mathcal{F L}_{\perp}$ (Lemma 57) again only relies on the minimality of the algorithm MATCH $_{\overline{\mathcal{F}}}^{\mathcal{L}} \mathcal{L}_{\perp}$, so that the same argument can be used for \mathcal{F}_{\neg}. It can also be shown that (ii) is valid for modifications in \mathcal{F}_{\neg}, i.e. we always have $\sigma_{t}^{\prime} \sqsubseteq \sigma_{\sqsubset}$. As seen in the second part of Lemma 57 , these findings - in addition to the minimality of matching under subsumption conditions-are sufficient to show completeness.

It is easy to see that the length of each computation branch of the nondeterminstic algorithm MATCH ${ }_{\mathcal{L}}^{\Sigma}$ is polynomially bounded. Because matching under strict subsumption conditions in $\mathcal{F} \mathcal{L}_{\perp}$ and $\mathcal{F} \mathcal{L}_{\checkmark}$ is known to be NPhard, we obtain the following theorem.

Theorem 60 Let $\mathcal{L} \in\left\{\mathcal{F}_{\perp}, \mathcal{F} \mathcal{L}_{\neg}\right\}$. Deciding the solvability of \mathcal{L}-matching problems under general side conditions is an NP-complete problem.

References

[1] F. Baader and R. Küsters. Matching in description logics with existential restrictions. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors,

Proceedings of the Seventh International Conference on Knowledge Representation and Reasoning (KR2000), pages 261-272, Breckenridge, CO, 2000. Morgan Kaufmann Publishers.
[2] F. Baader, R. Küsters, A. Borgida, and D. McGuinness. Matching in Description Logics. Journal of Logic and Computation, 9(3):411-447, 1999.
[3] F. Baader and P. Narendran. Unification of concept terms in description logics. In H. Prade, editor, Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98), pages 331-335, Brighton, UK, 1998. John Wiley \& Sons Ltd.
[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, New York, 1998.
[5] A. Borgida and R. Küsters. What's not in a name: Some Properties of a Purely Structural Approach to Integrating Large DL Knowledge Bases. In F. Baader and U. Sattler, editors, Proceedings of the 2000 International Workshop on Description Logics (DL2000), number 33 in CEUR-WS, Aachen, Germany, 2000. RWTH Aachen. Proceedings online available from http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33/.
[6] A. Borgida and D. L. McGuinness. Asking Queries about Frames. In L.C. Aiello, J. Doyle, and S.C. Shapiro, editors, Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR'96), pages 340-349, Cambridge, Massachusetts, USA, 1996. Morgan Kaufmann Publishers.
[7] A. Borgida and P. Patel-Schneider. A Semantics and Complete Algorithm for Subsumption in the CLASSIC Description Logic. Journal of Artificial Intelligence Research, 1:277-308, 1994.
[8] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. A. Resnick, and A. Borgida. Living with CLASSIC: When and how to use a KL-ONE-like language. In J. Sowa, editor, Principles of Semantic Networks, pages 401-456. Morgan Kaufmann Publishers, San Mateo, Calif., 1991.
[9] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning in description logics. In Gerhard Brewka, editor,

Principles of Knowledge Representation, Studies in Logic, Language and Information, pages 193-238. CSLI Publications, 1996.
[10] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory. Addison-Wesley Publ. Co., 1979.
[11] I. Horrocks. Using an expressive description logic: FaCT or fiction? In A.G. Cohn, L. Schubert, and S.C. Shapiro, editors, Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR'98), pages 636-647, Trento, Italy, 1998. Morgan Kaufmann Publishers.
[12] R. Küsters. Characterizing the Semantics of Terminological Cycles in $\mathcal{A L N}$ using Finite Automata. In Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR'98), pages 499-510, Trento, Italy, 1998. Morgan Kaufmann Publishers.
[13] D.L. McGuinness. Explaining Reasoning in Description Logics. PhD thesis, Department of Computer Science, Rutgers University, October, 1996. Also available as a Rutgers Technical Report LCSR-TR-277.

[^0]: ${ }^{1}$ We restrict our attention to such matching problems modulo equivalence since matching modulo subsumption, as introduced in [6], can be reduced to matching modulo equivalence [2].

[^1]: ${ }^{2}$ As mentioned previously, this is shown in [2].

[^2]: ${ }^{3}$ Recall that pf makes a formal language prefix free, as defined in Definition 18.

