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Abstract

Whereas matching in Description Logics is now relatively well-
investigated, there are only very few formal results on matching under
additional side conditions, though these side conditions were already
present in the original paper by Borgida and McGuinness introducing
matching in DLs. The present report closes this gap for the DL ACN
and its sublanguages.
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1 Introduction

The traditional inference problems (like subsumption) in description logics
(DLs) are now well-investigated, which means that there exist complexity
results and algorithms for a great variety of DLs of differing expressive power
[9] as well as optimized implementations of the algorithms for expressive
DLs [11]. In contrast, matching concepts against patterns is a relatively new
inference problem in DLs, which has originally been introduced in [6, 13]
to help filter out the unimportant aspects of large concepts appearing in
knowledge bases of the CLASSIC system [8]. More recently, matching (as
well as the more general problem of unification) has been proposed as a
tool for detecting redundancies in knowledge bases [3] and to support the
integration of knowledge bases by prompting possible interschema assertions
[5].

All three applications have in common that one wants to search a large
knowledge base for concepts having a certain (not completely specified) form.
This “form” can be expressed with the help of so-called concept patterns, i.e.,
concept descriptions containing variables. For example, the pattern D :=
X MVchild.(Y M Female) looks for concepts that restrict the child role to fillers
that are Female, such as the concept C' := (> 1 child) MVchild.(FemaleRich).
In fact, applying the substitution o := {X ~ (>1child), Y — Rich} to the
pattern D yields a concept equivalent to C i.e., o is a solution (matcher) of
the matching problem C = D.!

This type of matching problems has been investigated in detail for sub-
languages of the DLs ACN and ALE in [2] and [1], respectively. In particular,
it was shown that, for sublanguages of ACN, solvable matching problems
always have a least matcher (w.r.t. subsumption), which can be computed in
polynomial time. For sublanguages of ALE, deciding solvability of matching
problems modulo equivalence is already NP-complete.

In [6, 13], the expressivity of matching problems was further enhanced
by allowing for additional side conditions on the variables (through the as-
construct): a (strict) subsumption condition is of the form X C* E (X C=* E)
where X is a variable and E a pattern, and it restricts the matchers to
substitutions satisfying o(X) C o(E) (0(X) C o(F)). Using a subsumption
condition, the matching problem of the above example can be written more

'We restrict our attention to such matching problems modulo equivalence since match-
ing modulo subsumption, as introduced in [6], can be reduced to matching modulo equiv-
alence [2].
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intuitively as X M Vchild.Z =" (> 1 child) M Vchild.(Female M Rich) under the
subsumption condition Z C° Female. One result of this paper is that also
more complex sets of subsumption conditions do not extend the expressive
power of matching problems (see below). However, they are often more
convenient to state. In contrast, strict subsumption conditions cannot always
be simulated by pure matching problems. They can, e.g., be used to avoid
trivial matches. For example, the pattern D' := X MVchild.Y matches every
concept since Vchild. T = T (where the top concept T stands for the set of all
individuals). The additional strict subsumption condition Y = T ensures
that we can only match concepts with a real restriction on child.

The first (rather restricted) formal results on matching under side condi-
tions were given in [2]: it was shown that matching under strict subsumption
conditions in the small DL FL, is already NP-hard, and that matching under
so-called acyclic subsumption conditions can be reduced to matching with-
out side conditions. However, [2] does not give a complexity upper bound for
matching under strict subsumption conditions and the reduction for acyclic
subsumption conditions given there is exponential.

This paper investigates in detail matching under side conditions in sublan-
guages of ACN. We will show that matching under subsumption conditions
can be reduced in polynomial time to matching without side conditions. In
particular, this implies that solvable matching problems under subsumption
conditions in sublanguages of ACN always have a least matcher, which can be
computed in polynomial time. For strict subsumption conditions, matching
is shown to be NP-complete in the sublanguages FL | and FL- of ACN.

2 Description logics

2.1 Syntax and semantics

Concept descriptions are inductively defined with the help of a set of con-
cept constructors, starting with a set Ng of concept names and a set Ng
of role names. In this paper, we consider concept descriptions built from
the constructors shown in Table 1. In the description logic FL,, concept
descriptions are formed using the constructors top-concept (T), conjunction
(CMD), and value restriction (¥r.C'). The description logic FL, additionally
provides us with the bottom concept (L), and FL_ also allows for primitive
negation (—P). Finally, ACN extends FL_ with number restrictions (> n r)
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‘ Syntax ‘ Semantics ‘ FLo ‘ FL| ‘ FL ‘ .AL'/\/"
T AT X X X X
cnbD ctnp? X X X X
vr.C {re AT |Vy: (z,y)ert myeCt} | x X b’ X
L 0 X X X
-P, P € N¢ AT\ Pt X X
GCnr),nelN| {ze A [ #ylmy €l on] x
(Snr),n €N | {ze A [ #y| @y €7} <n) x

Table 1: Syntax and semantics of concept descriptions.

and (< nr) (see Table 1).

As usual, the semantics of concept descriptions is defined in terms of an
interpretation T = (AT,-T). The domain AZ of T is a non-empty set and the
interpretation function - maps each concept name P € N¢ to a set PT C A%
and each role name r € Ng to a binary relation 72 C AZxAZ. The extension
of -Z to arbitrary concept descriptions is defined inductively, as shown in the
second column of Table 1.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description
C is subsumed by the description D (C T D) iff C* C D? holds for all
interpretations Z; C' and D are equivalent (C' = D) iff they subsume each
other; C'is strictly subsumed by D (C = D) iff C C D and C # D. For all
DLs listed in Table 1, subsumption can be decided in polynomial time using
a structural subsumption algorithm [7].

2.1.1 A normal form for concept descriptions

It is easy to see that any FL -concept description can be transformed into
an equivalent description that is either T or a (nonempty) conjunction of
descriptions of the form Vry.---Vr,.A, where r,...,r, are m > 0 (not
necessarily distinct) roles, and A is the bottom concept L or a concept name.
We abbreviate Vry.---Vr,.A by Vr{...r,.A, where r{...r,, is viewed as a
word over the alphabet Ny of all role names. If m = 0, then this is the empty
word ¢, and thus Ve.A is our “abbreviation” for A. In addition, instead of
Vw AN ...MVYw,. A we write VL.A where L := {wy,...,w,} is a finite set of
words over Np; we define V().A = T. Using these abbreviations, any FL -
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concept description C' containing only concept names in the finite set C C N¢
can be written as

C = VU, ..LTT1VU4.A
Aec

where Uy for H € C U {L} are finite sets of words over Ng (called role
languages). This representation of C' will subsequently be called its U-labeled
normal form.

As an example consider the FL -concept description C,, := Vr.(L M
Vr.L)nVr¥s.AMVs.A. Tts FLy-normal form C?, is V{r,rr}. L V{rs,s}.A.

Similar normal forms exist for concept descriptions in F£- and ACN.
In FL-, an additional role language for every negated atomic concept is
necessary; normal forms in ACN require an additional role language for every
negated atomic concept and one for every number restriction.

2.1.2 Characterization of subsumption

Normal forms as introduced in the previous section can be used to charac-
terize subsumption of concept descriptions. The relevant results for ACN
and its sublanguages are provided in [2]. For FL,, we obtain the following
lemma:

Lemma 1 Characterization of subsumption in FL |

Let C and D be FL | -concept descriptions. Let C' be in U-labeled normal
form and let D be in V-labeled normal form. Then, C' T D iff the following
two conditions hold:

1. U,-Nj, DV, -Nj,

2. Uy UUL-N;, D VAUVL-N% for all A€C.

In preparation of the characterization of subsumption in F£- and ACN,
we need to introduce the notion of excluding words.

Definition 2 FEzcluding words
Let C' be an FL--concept description in U-labeled normal form. Let D be an
ACN -concept description. For C, define the role language U, as follows:

ﬁL I:ULU U(UAQU—‘A)
AeC

For D, the set of D-excluding words s defined by:
Ep:={w e Ny |DLCVw.L}
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It can be shown that Ep = U 1N}, for every FL_-concept description
D in U-labeled normal form. Hence, in this case the notion of excluding
words can be characterized by U,;. We shall see in Definition 32 that a
characterization of excluding words for ACN -concept descriptions is more
complex. Subsumption of FL_-concept description can be characterized as
follows.

Lemma 3 Characterization of subsumption in FL-,

Let C and D be FL_-concept descriptions. Let C' be in U-labeled normal
form and let D be in V-labeled normal form. Then, C' T D iff the following
two_conditions hold:

1. U -Nj, DV -Nj},

2. Uy WU -N, D V4 UVL-N}, for all H e CU{-A|A € C}

Subsumption in ACN was characterized by Kiisters in [12], yielding the
following result.

Lemma 4 Characterization of subsumption in ACN

Let C, D be ACN -concept descriptions. Let C be in U-labeled normal form.
Let D be in V-labeled normal form. Then C' T D iff all of the following
conditions hold.

1. EC D) ED

2. UyUEc D VaUEp forall AeC

3. U.oUEcz DV, UFp forall AeC

. Umgn U(ng) U EC'R_l D) Umgn ‘/(SmR) U ED']:Z_1 for all (Z nR) S NZ
Note that two concept descriptions are equivalent if they subsume each

other. In order to characterize equivalence it is therefore sufficient to replace
all (D)-relations by (=) in the above four lemmae.

2.2 Matching in description logics

In order to define concept patterns, we additionally need a set Nx of concept
variables, which we assume to be disjoint from No U Ng. Informally, an
ACN -concept pattern is an ACN -concept description over the concept names
N¢ U Nx and the role names Npg, with the only exception that primitive
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negation must not be applied to variables. More formally, concept patterns
(denoted D, D') are defined using the following syntax rules:

D,D'— X |C|DnD | Vr.D,

where X € Ny, r € Ng, and C'is an ACN -concept description. For example,
if X,Y are concept variables, r a role name, and A, B concept names, then
D:=AnXnVr(BNY) is an ACN-concept pattern, but =X is not.

In analogy to the normal forms defined for concept descriptions, every
ACN -concept pattern D over a finite subset X C Ny of variables can be
written as

D = COn M Vx.X,
XeXx

where C is an ACN -concept description in V-labeled normal form. We call
this the V-labeled normal form of the concept pattern D. The notion of a
pattern, the normal form (and also the notions “substitution” and “matching
problem” introduced below) can be restricted to sublanguages of ACN in the
obvious way.

A substitution o is a mapping from Ny into the set of all ACN -concept
descriptions. This mapping is extended to concept patterns in the usual
way by replacing the occurrences of the variables X in the pattern by the
corresponding concept description o(X). For example, if we apply the sub-
stitution o := {X — AMB, Y — A} to the pattern D from above, we obtain
the description o(D) = AM AN BNVYr.(B M A). The result of applying a
substitution to an ACN-concept pattern is always an ACN -concept descrip-
tion. Note that this would no longer be the case if negation were allowed in
front of concept variables.

Subsumption can be extended to substitutions as follows: the substitution
o is subsumed by the substitution 7 (¢ C 7) iff 0(X) C 7(X) for all variables
X € Ny.

Definition 5 Let C be an ACN -concept description and D an ACN -concept
pattern. Then, C =° D is an ACN-matching problem. The substitution o is
a solution (matcher) of C' =" D iff C' = (D).

In the following, we will abbreviate a matching problem of the form C' =’
C D as C C° D. This notation is justified by the fact that o solves
C="CnDiff CCo(D).

A matching problem can either be viewed as a decision problem, where
one asks whether the problem is solvable, or as a computation problem, where
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one asks for actual matchers of this problem (if any). Although the compu-
tation problem is usually the more interesting one, the decision problem can
serve as a starting point for the complexity analysis. In general, matching
problems may have several (even an infinite number of) solutions, and thus
the question arises which matcher to compute. Following [6, 2] we will here
concentrate on the problem of computing a least matcher (w.r.t. the ordering
C on substitutions).

Instead of a single matching problem, we may also consider finite systems
{C, =" Dy,...,Cp =" Dy} of such problems, which must be solved simul-
taneously. As shown in [2], solving such systems can, however, be reduced
to solving the single matching problem

Ve, .Cy 1 - -0Yr,,.Ch =5 Yry.Dy 1 - - 1Yr,,. Dy,

where the r; are pairwise distinct role names.

How to decide if a given matching problem is solvable and how to compute
least matchers has been addressed in [2] and [12]. The next two subsections
summarize the relevant results and recall some notions used in this context.

2.2.1 Solving the decision problem

In [2] and [12], matching modulo equivalence in FL,, FL- and ACN is re-
duced to solving equations over formal languages, which we will refer to as
solvability equations. By assigning appropriate values to the variables occur-
ring in these equations the decision problem can be reduced to testing certain
formal languages for equality. The structure of the languages involved guar-
antees that this test can be done by finite automata in polynomial time.

We begin by introducing solvability equations in FL,. Let (C' =’ D) be
an FL  -matching problem, where C'is in U-labeled normal form and D is in
V-labeled normal form.

Definition 6 Solvability equations for (C' =" D) in FL,

Ui-Np =ViNzU [ Ve Ny, (L)
Xex
UsUUL-Np=VaUuU-NpU | Vi€ (4)
Xex

for all A €C.



2 DESCRIPTION LOGICS 8

Solvability of the above system of equations is decided by assigning ap-
propriate formal languages to the occurring variables. The following lemma
specifies these formal languages.

Lemma 7 Testing solvability in FL
The system of equations (L), ((A) | A € C) has a solution iff:

1. For every X € X, replacing the expression £X-N% by the set Ef =
Nwev, W (UL-Ng) solves Equation (L).

2. For every A € C and for every X € X, replacing the variable £ by the
set Ly := Nyev, W (Ua UUL-Nj) solves Equation (A).

Hence, by inserting the languages specified in the above lemma into the
referring solvability equations, we obtain variable-free formal language equa-
tions valid if and only if the original matching problem is solvable. It is shown
in [2] that validity of these equations can be tested in polynomial time using
finite automata.

Analogous results exist for FL_, and ACN. Let (C =" D) be an FL--
matching problem, where C' and D are in U-labeled and V-labeled normal
forms respectively. Then the relevant solvability equations are defined as
follows.

Definition 8 Solvability equations for (C =" D) in FL.,

UL Np=VoNpU | Vel Ny U (| Int(A,-4)-Ny, (1)

Xex AeC
UaUUL N =VaUULNRU | Vg (4)
Xex
UaUULNp =V, UUNRU | Ve, (—A)
XeXx

for all A € C, where

Int(A, —A) = (VAU U VX-gff) N (vﬁAu U vx-ng).

XeXx Xex

Note that in the solvability equations for FL,, Equation (L) was com-
pletely independent of role languages referring to atomic concepts A € C. For
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FL_, this is no longer the case, because the conjunction of an atomic concept
and its negation is inconsistent. For that reason, the expression Int is in-
cluded in Equation (). The following lemma provides a test for solvability
in FL_.

Lemma 9 Testing solvability in FL-
The system of equations (L), ((A) | A € C),((=A) | A € C) has a solution iff:

1. For every A € C and for every X € X, replacing the variable £ by the
set LY = Vyev, W' -(Us UUL-N3) solves Equation (A).

2. For every A € C and for every X € X, replacing the variable £X, by
the set LY, := ey, W™ (U-a UUL-Np) solves Equation (A).

3. For every X € X, replacing the expression £ -N} by the set /[:)f =
Nwevy, W™ (UL-N3) together with the assignments proposed in (1) and
(2) solves Equation (L).

Note that the third condition requires “together with the assignments
proposed in (1) and (2)”. This is necessary because of the expression Int,
by which Equation (L) becomes dependent on the other assignments. For
ACN', we have to introduce some notation first. Let (C' =’ D) be an ACN-
matching problem, where C' and D are in U-labeled and V-labeled normal
forms respectively.

Definition 10 The following tuples of variables are defined for the sake of
readability.
£L=(61 X ed)
fe=(E1 | XeX AeQ)
EL=(, | XeXx AcQ)
&= (¢ >nR|X€X(>nR)€N>)
€<= (§(znp) | X € X, (S nR) € NQ)
Denote by o an arbitrary assignment of finite languages to the variables con-
tained in the tuples, i.e. a(éx) = Ly forall X € X and H € { L }UCU{—-A4 |

A€ CUNUNs =: H. Let o be the substitution corresponding to «, so
that for every X € X we have:

o) = [ ale).H
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Denote by Ep(§1,&c, &, &>, E<) the set of excluding words obtained for D
relative to the assignment a. Thus, let

ED (O‘(&_)a Oé(fc), Oz(f_.), O‘(SZ)a O‘(SS)) = E‘T(D)’

yielding the set of o(D)-excluding words after assigning the occurring vari-
ables.

The above construct is necessary, because the set of excluding words is
defined only for concept descriptions and not for concept patterns. Conse-
quently, we must assume some assignment of the concept variables occurring
on the right-hand side of the matching problem. With these preparations,
the following solvability equations are provided.

Definition 11 Solvability equations in ACN
With the notation of the above definition, define the following formal language
equations.

Ec = Ep(£1,&c,6-,85,6<) (L)
UsUEc=VaUEcU | Vxe& (A)
Xex
U, ,UE;=V_4,UFE:sU U Vsz(.A (_'A)
Xex
U UsmryU Ec = Vismry U Ec U U VX'fénR) (> nR)
m>n Xex

U Usmmy UEc R =Vicmmy UEc-R'U | Vae&uny  (S0'R)

m<n/ XeX

forall AeC,neN\{0},n €N, (>nR) € N5, and (< n'R) € N.

Again, Equation (L) takes into account role languages referring to other
concepts than the L -concept. However, this property is syntactically hidden
in the constructs Fec and Ep, which are defined as {w € Nj, | C C Vw.l}
and analogously for Fp, as introduced in Definition 2.

Lemma 12 Testing solvability in ACN
Let LY = (Nyev, w™"-Ec. Then there exists a finite set LY of polynomial
size in the input matching problem with LY-Ni = LY. 2 The system of

2As mentioned previously, this is shown in [2].
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equations (L), ((A) | A € C),((mA) | A € C),((>nR) | (> nR) € N5), ((
nR) | (< nR) € N<) then has a solution iff:

1. For every X € X and A € C, replacing the variable £ by the set
LY = (ﬂwEVX w ' (UaU Eg)) \ LY solves Equation (A).

2. For every X € X and A € C, replacing the variable X, by the set
LY, = (ﬂwEVX w™ (U4 U Eg)) \ LY solves Equation (—A).

3. For every X € X and (> nR) € N>, replacing the variable £, by the

set LénR) = (Nwevy W (Upsn Usnry U E¢)) \ L¥ solves Equation
(> nk).

4. For every X € X and (< nR) € N, replacing the variable £X, by

the set LénR) = (nwEVX w_l'(Umgn U(SnR) U EC'R_l)) \/[:)f solves
Equation (< nR).

5. For every X € X, replacing the variable £ by the set LY together with
the assignments proposed in (1)—(4) solves Equation (L).

Observe that in the above conditions a finite alternative to Ej, 1 is provided
and that L; , is subtracted from the other languages, thus producing poly-
nomially large languages as solutions to the equations. This is an immediate
consequence of [2], where it was shown that the above solution languages can
be computed in polynomial time.

2.2.2 Solving the computation problem

Apart from testing solvability, [2] also proposes solutions to be assigned to the
variables occurring in a matching problem and discusses their correctness and
complexity in detail. The following lemma simmarizes the relevant results.

Lemma 13 Solving matching problems
Let L € {FLy, FL,, FL-, ACN'}. Let M be an L-matching problem. Then
there exists an algorithm MATCH, with the following properties.

1. MATCH, (M) decides in polynomial time, whether the input matching
problem M has a solution or not. If M is solvable, then MATCH (M)
in polynomial time in the size of M computes a solution o which is
minimal in regard to the ordering T on substitutions.
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2. MATCH; does not introduce atomic concepts or number restrictions
which do not occur in the input matching problem M.

3. MATCH, also accepts a finite system of L-matching problems.

PROOF. 1. It remains to be shown that computing the actual solution to
a solvable matching problem also requires only polynomial time.

Solution in ALN: To show this for ACN -matching problems, we can
refer to results provided in [2]. It is shown that the languages LX used
for the solvability test in Lemma 12 in fact are least solutions to the
matching problem, which can be computed in polynomial time by finite
automata. Therefore, a solution ¢ with the desired properties can be
defined by assigning

X VLY. LN |‘| VLQ‘.AH I_I VLfA.ﬂA

M [l LX < M L >
(SnR)EN<v (<nR)" ( TLR) (>nR)EN>v (>nR)" ( TLR)

for every X € X. It can be shown that the assigned concept de-
scriptions are of polynomial size in the size of the original matching
problem. Since every role language of the form LX can be represented
by a treelike automaton [2], it takes only polynomial time to read off
the languages represented by these automata, i.e. to actually return
the computed solution.

Solutions in FL, and FL-: For these sublanguages of ACN', we must
first restrict the languages used in the solvability test to finite ones. The
rest of the argument then is identical to that for ACN. For FL, and
FL-, [2] again provides us with the necessary results: Finite solution
languages L can be obtained in the following way. Since L} can be
represented by a treelike automaton [2] for every X, we read oﬁ' a finite
language LY with L¥-N% = LY. Analogous to the languages defined
for .AL:N’ in Lemma 12 we now deﬁne languages L} by subtracting LX
from LX We can then assign to the variable X the conjunction

X+ VLY. LN MNVLYy.AN M VLY, —A
AeC AeC
for every X € X. Again, we yield a solution of polynomial size in

polynomial time. The argument for FL is identical except for negated
atomic concept missing in the concept descriptions finally assigned.
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Solutions in FLjy: Two arbitrary FLy-concept descriptions are equiva-
lent if and only if their FLy-normal forms agree on all role languages
involved. Therefore, infinite sets are not necessary at any step when
solving matching problems. It can be shown that the solvability equa-
tion and solution languages for FLy are equivalent to those for FLC;
after removing any constructs relating to the bottom-concept or its
role languages. The task of deciding solvability and computing solu-
tions to a given matching problem then apparently is of of polynomial
complexity.

2. Tt is shown in [2], that the solution specified above already has the de-
sired property. Especially, this implies that the solution of a matching
problem can be represented with the same set of role languages as the
matching problem.

3. In Section 2.2, we have already seen that systems of matching equations
can be represented by a single matching problem modulo subsumption
which is polynomial in the size of the original system. Thus, with the
results from (1) the proposition follows immediately. |

Hence, matching problems can be solved in polynomial time. Further-
more, we can find minimal solutions without introducing new atomic con-
cepts or number restrictions and we can admit systems of matching problems
as input. The following theorem summarizes the results obtained.

Theorem 14 Let £ € {FLy, FL, , FL,, ACN'}. Then there exists a polyno-
mial time matching algorithm, called MATCH, in the sequel, that computes
the least matcher of a given system of L-matching problems, if this system
has a solution, and returns “fail” otherwise.

2.3 Matching under side conditions

In this report, we focus on more general matching problems, those that allow
for additional side conditions.

Definition 15 A subsumption condition is of the form X T E where X is
a concept variable and E is a pattern; a strict subsumption condition s of
the form X C E where X and E are as above. A side condition is either a

subsumption condition or a strict subsumption condition. The substitution o
satisfies the side condition X p E for p € {C,C} iff o(X) p o(E).
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A matching problem under side conditions is a tuple M := (C =" D, S),
where C' =* D is a matching problem and S is a finite set of side condi-
tions. If the set S contains only subsumption conditions, then M is called
matching problem under subsumption conditions. The substitution o is a
solution (matcher) of M iff it is a matcher of C = D that satisfies every
side condition in S.

In the next section, we will restrict the attention to matching problems under
subsumption conditions. Section 4 then treats general matching problems
under side conditions. There it is useful to distinguish between cyclic and
acyclic sets of side conditions. In order to define matching problems under
acyclic side conditions, we say that a variable X directly depends on a variable
Y in S iff S contains a side condition X p E such that Y occurs in E. If
there are n > 1 variables X,..., X}, such that X; directly depends on X,
in S (1 <i<n-—1), then we say that X; depends on X,, in S. The set of
side conditions S is cyclic iff there is a variable X that depends on itself in
S; otherwise, S is acyclic.

3 Matching under subsumption conditions

Let £ be one of the DLs FL,, FL_, ACN'. We present a polynomial time al-
gorithm that, given an £-matching problems under subsumption conditions,
returns a least matcher (w.r.t. the ordering C on substitutions) if the problem
is solvable, and “fail” otherwise.

3.1 The algorithm handling subsumption conditions

In principle, the algorithm iterates the application of MATCH, until a fixpoint
is reached. However, the matcher computed in one step is used to modify
the matching problem to be solved in the next step. Given an L-matching
problem under subsumption conditions M := (C' =’ D, S) and a substitution
o, we define

M, ={C="D}U{c(X)C'E|XC"FEcS})

Recall that o(X) C° E abbreviates the matching problem o(X) =* o(X)NE.
Thus M, is a system of L£-matching problems without side conditions, to
which MATCH, can be applied.
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Algorithm 16 Let M := (C' =" D, S) be an L-matching problem under sub-
sumption conditions. Then, the algorithm MATCH%(M) works as follows:

1. o(X):= L for all variables X;

2. If MATCH (M) returns “fail”, then return “fail”;
else if 0 = MATCH(M,,), then return o;
else 0 := MATCH(M,); continue with 2.

Let oy denote the substitution defined in step 1 of the algorithm, and oy
(t > 1) the matcher computed in the ¢-th iteration of Step 2. Note that oy is
undefined if MATCH, returns “fail” in the ¢-th iteration or if the algorithm
has stopped before the ¢-th iteration.

To show that the algorithm is correct, we must show soundness, com-
pleteness, and termination, i.e., i) if the algorithm terminates and returns a
substitution, then this substitution in fact solves the problem; ii) if the al-
gorithm terminates and returns “fail”, then there indeed is no solution; and
iii) the algorithm halts on every input.

Soundness and completeness are addressed below in Section 3.2. Proving
termination of the algorithm is more involved, and the exact argument de-
pends on the DL £ under consideration. The proof is given in Section 3.4. Tt
depends on the so-called reduced normal form of concept descriptions, which
has to be introduced beforehand in Section 3.3.

3.2 Soundness and Completeness

The following lemma proves soundness and completeness of Algorithm 16.
The first two items establish a loop invariant.

Lemma 17 Let M := (C =" D,S) be an L-matching problem under sub-
sumption conditions.

1. If o, is defined and 7 is a solution of M, then o, C T.
2. If 04,0041 are defined, then oy C 0y 1.

3. If MATCHZ (M) returns the substitution o, then o solves M (sound-
ness).

4. If MATCH (M) returns “fail”, then M has no solution (completeness).
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PROOF. 1. Obviously, the claim is true for oy. Assume that o, C 7, and
that 0,1 is defined. To prove o, C 7, it is sufficient to show that 7
solves M,, since o441 is the least solution of M,,. Since 7 solves M, we
know that it solves C =" D and that 7(X) C 7(E) forall X C* E € S.
The induction assumption o; C 7 implies 04(X) C 7(X), and thus
0,(X) C 7(F), which shows that 7 solves M,,.

2. Obviously, oy C 7. Now assume that o,_; C o0;. Together with the
fact that o, solves M,, ., this implies that o, solves the system M,, .
Since o, is the least solution of M,, ,, we can conclude oy C 0y ;.

3. Assume that o = ;. By definition of MATCHE, C' = 0y(D). Tt remains
to show that o; solves the side conditions. We know that o, = 0,41 and
o141 solves M,,. Thus, 0y(X) C 0,1 (E) = oy(E) for every X C' E €
S.

4. Assume that MATCHZ (M) returns “fail,” and that o, is the last substi-
tution computed by the algorithm. Now assume that 7 solves M. As
in the proof of 1. we can show that 7 solves M,,. Consequently, M,,
is solvable, and thus MATCH(M,,) returns the least matcher of this
system, in contradiction to the assumption that MATCH%(M) returns
“fail” in this step of the iteration.

3.3 Reduced normal forms

Role languages occurring in concept descriptions may contain redundant
words, i.e., words that, when removed, yield equivalent concept descrip-
tions. For instance, in FL, it holds that: i) since Vw. L C Vwwv. L for every
w,v € Nj, we can require U, to be prefix-free, i.e., w,wv € U, implies
v = g; and ii) since YVw.L C Vwv.A, we can require Uy N (U, - Nj) = 0.
A normal form satisfying these conditions is called reduced normal form. A
formal definition of reduced normal forms for concept descriptions in FL |,
FL-,, and ACN is provided in Section 3.3.2. In preparation, we discuss some
properties of so-called prefiz-free formal languages.

3.3.1 Prefix free languages

We define prefix free languages as a specialization of formal languages [10]
by introducing a unary function to make a given formal language prefix free.
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Definition 18 Prefiz free languages

pf: P(Ng) = P(Ng)
L L\ (L-Nf)

A language U C Nj, is called prefix free if and only if U = pf(U).

Intuitively, pf(L) for every word w € L removes all nontrivial contin-
uations of w. The result is that for every word w € pf(L), all nontrivial
prefixes of w are missing in pf(L). To examine the properties of prefix free
sets in greater detail, we must first introduce an appropriate order over finite
languages. The definition of multiset orders is taken from [4], where their
properties are discussed in depth. However, we employ multiset orders over
formal languages and do not need to introduce multisets, which generalize
the notion of sets by admitting multiple occurrences of elements.

Definition 19 Multiset order for finite languages

Define (=) as a multiset order with (>,,) on Nj,.. Thus, for finite languages
U, V. C N}, it holds that V' > U if and only if there exist finite languages
X,Y C Ny, such that:

1.0 AXCV
2.U=(V\X)UuY
3 VyeYdre Xz <,y

According to the definition, finite languages U and V are in prefix order,
ie. U > V, if and only if U can be transformed into V' by performing
a modification of the following type one or more times: remove a word u
from U and replace it by a finite number of words from {u}-N;,. Thus, u is
replaced by a finite number of (nontrivial) continuations of u. Note that in
this modification, u may be removed without substituting any words. This
is allowed because in the definition above, the language Y may be empty.
The following example illustrates this.

Example 20 Multiset order

Let Np := {a,b,c}. Then {a,ab,c} > {ab,ac,caa,cab,ccc}. The defi-
nition of the multiset order is satisfied by taking X := {a,c} and V :=
{ac, caa, cab, ccc}. On the other hand, we also obtain {a,ab,c} = {ca} by
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taking X := {a,ab,c} and Y := {ca}. Observe that the relation U > V does
not imply an obvious relation for the cardinality of the languages or for the
length of the longest word contained in them.

The multiset order can be used to simplify comparing the Np-closure of
two given languages. This is addressed by the following lemma.

Lemma 21 Nj-closures and prefic free languages
Let U,V C Ny, be finite languages over Ng. Then,
1. U-Nj, = pf (U)-N;

2. U-Ni, C V-N% iff pf(U) < pf(V)
9. U-Nj = V-N% iff pf(U) = pf (V).

PROOF. For the sake of brevity, denote pf (U) by U’ throughout this lemma.
Analogously, denote pf (V) by V.

1. Since U’ is a subset of U and since the sets on both sides of the equation
are Nj-closed, it is sufficient to show that U \ U’ is a subset of U’-N7,.
Thus, consider w € U \ U'. Then, by definition of prefix free sets,
w € U-Nj. This implies, that in U there exists a word u € U of
minimal length and a word v € Ny so that w = uv. Consequently,
u & U-Nj, because in this case the length of u would not be minimal.
So we have u € U’', implying that w = uv € U'-Np,.

2. (“«<”) If U" < V' then, by Definition 18, there exist finite sets X,}Y C
N}, with:
(a) D £ X CV'
(b) U'=(V'\X)UY
(c) Vy e Y3z € X:x <, y.
We first prove the non-strict version of the claim, i.e. U-Nj, C V-Nj,,
and then show that the inclusion is strict.

Nonstrict inclusion: As U’ equals (V' \ X) UY, it is sufficient to show
that Y C V'-Nj. Thus, consider an arbitrary y € Y. Because of
Property 3 of multiset orders it holds that there is an x € X C V' so
that z <,, y. Being less in regard to the prefix order implies, that we
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obtain y = xw for an appropriate w € Nj. Since x € V', this yields
y = zw € V'-Nj, completing the proof.

Strictness of the inclusion: Consider an arbitrary z € X C V'. Ac-
cording to Property 1 of multiset orders, such an x in fact exists. =z
is no element of (V'\ X), because V' is prefix free and thus contains
no prefix of x. Now, if x € Y then Property 3 demands that there is
another word 2’ € X so that 2’ <,, X. This would be a contradiction
to V' being prefix free, and therefore: = ¢ U'-Ny,.

(“=") Assume U'-Nj, C V'-Nj},. Taking advantage of (1), this is equiv-
alent to the original proposition. Define finite languages X,Y in the
following way: X := V'\ U’ and Y := U’ \ V'. We will show that
these languages match conditions 1, 2, and 3 stated in the definition of
multiset orders.

Property 1: Trivial. X is obviously defined as a subset of V'. If X is
empty, then U’ O V') which would rule out U’-N}, C V'-Nj},, conflicting
with the assumption above.

Property 2: Applying the definitions of X and y, we can expand (V'
X)UY to the expression (V'\ (V'\U")) U U"\ V', which simplifies
to (U'NV') U U"\ V'. This is obviously equivalent to U’.

Property 3: Consider an arbitrary y € Y = U’ \ V'. From Property
2 of the multiset order we know that Y C U’ C V'-Nj. Thus, there
are words v € V' and w € Nj, such that y = vw. This implies w # &,
because otherwise y, being equal to v, would be an element of V'. If w
is not empty, then v and y are in prefix relation: v <,, y. Consequently,
v is no element of U’, because then U’ would not be prefix free. This
implies v € V' \ U’, which by definition is equivalent to v € X.

3. (“«") This is an immediate consequence of (1). If U’ equals V', then
obviously U'-N}, = V'-N},, which implies U-N}, = V-Nj, as shown in
(1). (“=") Reversely assume that U'-Nj, = V'-N},. According to (1),
this is equivalent to the original proposition. It is sufficient to prove
the inclusion U’ C V', since the reverse inclusion follows by symmetry.

Consider an arbitrary u € U’. According to the above assumption we
have U' C V'-Nj, which implies the existence of words v € V' and
w € Nj, with v = vw. It reversely holds that V' C U'"-Nj, again
implying words v’ € U’ and w' € N}, so that v = w'w'. Therefore, we
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yield v = vw = v'w'w. This implies w = w’' = ¢, because otherwise U’
would not be prefix free, containing a prefix of u. With w equal to ¢,
we finally obtain u € V', which had to be shown. |

Observe, that the Nj-closure of a language L is uniquely defined by the
prefix free version of L. We can also use prefix free languages to guarantee
a suffix condition when representing the left quotient of the Nj-closure of a
language:

Lemma 22 Left quotients and prefix free languages

Let U C Ny, be a finite language and let w € Ny,. Then there exists a finite
language L C Ny, such that,

1. L-Nj; = w Y(U-N%) and

2. L s prefix free and

3. L contains only suffizes of words in U.

PROOF. According to [2], there exists a finite language L' with L'-N} = w™'-

(U-N},). Due to Lemma 21, we know that this also holds for L := pf(L’). We
now show that L contains only suffixes of U, which is sufficient for our claim.
Assume a word v € L, which is no suffix of any word in U. Observe, that this
implies v # € because otherwise v would be a trivial suffix of any word in U.
By definition of L, we know that v is an element of w'-(U-N3}). Thus, there
exists a word u € U and a word € N} such that wv = uz € U-Nj. We
exclude x = e, because then v would be a suffix of u. Denote by s the last
character of v, i.e. take s € Ng and v' € Nj, such that v = v's. Analogously,
let © = 2's for an appropriate 2’ € Nj,. Then we can conclude that v' € L,
because wv' = uz' is an element of U-Nj,. This implies a contradiction to
the language L being prefix free. |

3.3.2 Reduced normal forms

In FL,, FL-, and ACN, equivalent concept descriptions in normal form
can differ in size to an arbitrary extent. For instance, V{c}.L M VU4.A is
equivalent to V{c}. L for every role language U,. For a simplified proof of
termination, we require normal forms which impose stronger limitations on
the size of concept descriptions equivalent to or subsuming each other. For
this purpose, reduced normal forms for FL, FL_, and ACN are introduced.
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Reduced normal forms for FLC,

The reduced normal form of FL | -concept descriptions is defined by specify-
ing an operation to transform an arbitrary FL | -concept description into its
corresponding reduced normal form.

Definition 23 Let C' be an FL, -concept description in U-labeled normal
form. Its corresponding U+-labeled reduced normal form CY is defined as
follows:

Ct:=VU!. L1 ik VUL A

where for A € C: .
Ut == pf(UL)

Ui =Us\U{-N}

A concept description C' is called reduced, if C' is in normal form and if it
coincides with C* in every occurring role language. The notion of reduction
can be extended to substitutions. For a substitution o, the reduced substitution
ot is established by defining o*(X) := o(X)¥ for every variable X in the
domain of o.

The above definition implies as immediate consequences the following
simple properties, which are stated without proof.

Corollary 24 Properties
Let C' be an FL, -concept descriptions in U-labeled normal form. Then,
1. Ui s prefix free and Uj‘ N Uj-]\fj{z is empty for every A € C

2. The reduced normal form C*¥ can be computed in polynomial time in the
size of C.

It will be particularly useful that there is no overlap between the role
language Ui and the Np-closure of Uf‘. The role languages for C*¥ can be
constructed in polynomial time using treelike automata, for which the com-
plement and the Np-closure can be computed in linear time. It also takes only
polynomial time to make a given finite role language prefix free. The ability
to compute reduced normal forms in polynomial time will not be required
in the remainder of this chapter. Nevertheless, it might be an important
property in the context of presenting the output of matching algorithms in
a compact way.
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Recall that pf in Section was defined to make the input language prefix
free. The purpose of reduced normal forms is to simplify the characterization
of subsumption and equivalence. One can see that in the above definition
exactly those languages are made prefix free, whose Nj-closure appears in the
characterization of the subsumption proposed in Lemma 1. Furthermore, by
subtracting the Nj-closure from the other role languages, we make sure that
all unions in the characterising conditions are disjoint. In the next lemma
we will see that this is sufficient to reduce equivalence to equality.

Lemma 25 Properties
Let B,C,D be FL | -concept descriptions. Let B be in W-labeled normal
form, let C' be in U-labeled reduced normal form, and D in V -labeled reduced
normal form. Then,
1. B=B*
2.C=D iff Us =Vy forall H e {L}UC
3. C T D iff one of the following conditions holds:
(a) U >V and Va CULUU_ N}, for all A€ C

(b) U, =V, and Uy D Vy for all A € C and there exists an A € C with
Ujs D Vy.

PrOOF. 1. We have seen in Lemma 1 that it is sufficient to prove the
following two conditions:

o W, -Ny=W/N;
o WAUW, -Niy=W,UW/!-N; forall A eC.

The first condition was shown as a property of prefix free languages
in Lemma 21. For the second condition, we can therefore conclude for
every A that WUWY N is equal to WiUW, -Nj. We may add (W, N
W -N},), which is a subset of W, -Nj, thus yielding Wj UWanW,-
N})UW N}, According to the definition of reduced normal forms, W4
equals WU (W4 NW_-N3). Therefore, WU (WaNW -N&)UW,-N§
equals W, UW -Np,.

2. (“«") is trivial. (“=") Assume C' = D. Due to Lemma 1, this again
is equivalent to U, -Nj, = V| -Nj, and Uy UU, -Nj, = V4 UV | -N}, for all
A € C. Since C and D are assumed to be reduced, thisimpliesU, =V,
according to the properties of prefix free sets. Furthermore, due to
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the definition of reduced normal forms, U4 and U, - N}, are disjoint for
every A. The same applies to V4 and V| -Nj,. Therefore, UyUU, -Nj, =
Va UV, -Nj, implies Uy = V4 for all A, which was to be shown.

3. (“=") Assume C C— D. Then we again have U,-Nj D V| -Nj. We
distinguish two cases depending on whether the inclusion is strict or
not.

Strict inclusion: If U, -Nj D V| -Nj, we can infer U; > V|, as shown
in Lemma 21. We know from the characterization of the subsumption
that Us WU, -Nj D V4 UV, -Nj for all A € C. We may remove V| -Nj,
from the right-hand side of the inclusion, yielding the assertion for case
(a), VyCUsU UJ_NE

Equality: If U,-Nj; = V| -N},, we have U, = V|, because C' and D
are reduced and therefore U, and V| are prefix free. The subsumption
C C D also implies that Uy UU,-N}, D V4 UV, -Nj, for every A. The
unions on both sides of the inclusion are disjoint, as stated in Corollary
24. Taking advantage of the equality of U,-Nj and V| -Nj, we obtain
Uy D V4 forevery A € C. There has to be one A with a strict inclusion
Uy D V4. Otherwise, C' and D would agree on all role languages,

implying equivalence as shown in (2). Thus, the assertion for case (b)
holds.

(“<=”) We have to show that both conditions for the subsumption as
stated in Lemma 1 are met. Assuming case (b), this can be seen imme-
diately. Consider case (a). If U; > V| holds, the first condition for the
subsumption is met as a consequence of Lemma 21, obtaining U, -Nj D
Vi -Nj,. We have assumed that Vy C Uy UU,-N},. Adding V| -N}, on
both sides yields V4 UV -Nj, C Uy U U, N}, UV, -Nj. As V| -N}, is
a subset of U, -Njp, this is equivalent to Vy UV -Nj C Uy UU,-Nj,.
Thus, the second condition of the subsumption is met for every A € C.
We yield strict subsumption C' T D, because otherwise U; =V,. B

Reduced normal forms for FL.,

For FL_, we follow the same pattern as seen in the previous section. Firstly,
the reduction operation is expanded in such a way that it works with negated
atomic concepts as well.
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Definition 26 Reduced normal form

Let C be an FL--concept description in U-labeled normal form. Like in
Definition 23, define its corresponding reduced normal form C*¥ by modifying
the role languages:

Ct:=VU!.LN MNYULAN T VU, -A
AeC AeC

where for A € C:
Ut =pf(ULU | JUaNU-2)

AeC

Ul == Ua \Ut-N;,

Again, if C is reduced, then its role languages are identical to those of
Ct. We extend the notion of reduction to substitutions as in Definition 23.

Observe that in this definition the role language U, referring to the bot-
tom concept may increase in size when normalized. Contrary to FL |, it is
possible to have inconsistencies without involving the bottom concept. The
reduced normal form for FL_ aims at making all implicit inconsistencies ex-
plicit, i.e. whenever an expression like Vw.(AM—A) occurs, w is removed from
the role languages referring to A and —A and is included in the language for
the bottom concept. The definition of excluding words again implies some
inportant properties, which are stated below without proof.

Corollary 27 Properties
Let C' be an FL--concept descriptions in U-labeled normal form. Then,
1. Ui is prefiz free and Ut = (Ui)A.

2. Uy N (UYY-N3 is empty for every H € CU{-A | A € C}.
3. Uj N UfA is empty for every A € C.

4. The reduced normal form C* can be computed in polynomial time in the
size of C.

Since (U) is defined as Ut U UAGC(Uj NU*,), the above assertions are
readily obtained from the definition of reduced normal forms. Computing
the reduced normal form in polynomial time can again be accomplished by
employing treelike automata. By virtue of these properties, we again achieve
the desired simplification for the characterization of the subsumption. In the
next lemma it is shown that the results obtained for FL_, resemble those for
FL | seen in the last section.
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Lemma 28 Properties

Let B,C, D be FL_-concept descriptions. Let B be in W -labeled normal form,
let C' be in U-labeled reduced normal form, and D in V -labeled reduced normal
form. Let H :=CU{—-A| A €C}. Then,

1. B=B*

3. C'C D iff one of the following conditions holds:
(a) U >V, and Vg CUg UU,-N}, for all H € H

(b) U, =V, and Uy D Vi for all H € H and there exists an H € H with
Ujs DVy.

PROOF. 1. Due to Lemma 3, it is sufficient to prove that the following
conditions hold:

o W.-Ni= (W -N;,
o Wy UW_-Nj=W5hU (W Ny for all H € .

First condition: By definition, W\L-N}"% equals (W, UJ e WaNW_y)-
N, which is equivalent to the prefix free version pf (W, U|J, e WaN
W_4)-Nj, as we have seen in Lemma 21. Applying the definition of
reduced normal forms, this is equivalent to Wi-N}‘z. The intersection
of Wj and Wf 4 1s empty for every A € C, as stated in Corrolary 27.
We may therefore add (| .. WA ,) to the expression, so that we
end up with (W} U . Wi N W*,)-Nj. This equals (W})-Nj, as
can be verified from the definition.

Second condition: Taking advantage of (1), we can see that Wé U
(WHY™-N3 is equal to W}, U /I/IZ-N;} for every H € H. We may add a
subset, of the second term, yielding the expression W}I U Wy n /VI?L-
N} UW\L-N}%. The language Wy is defined as Wy \ W{-Nj. As stated
in Corollary 27, this equals W \ (W) ™-Nj, which in (1) is shown equal
to Wy \ /I/I?L-Nl*z. The expression W U (Wy N /I/I?L-N}*%) U /I/Il-N,’“2 can
therefore be simplified to Wy U /WL-N;}, yielding the desired result.

2. (“<”) Trivial. (“=") According to Corollary 27, we have U, = U,
and V|, =V,. When replacing these role languages, the proposition
and the characterization of the subsumption are analogous to those for
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FL . Consequently, the proof is identical to (2) in the previous Lemma
25.

3 Again, taking into account that ﬁl = U, and VL = V|, we can prove
the proposition in the same way as seen in (3) in the previous lemma. |

One can see that the additional complexity of concept descriptions in FL_,
is hidden in the reduced normal form.

Reduced normal forms for ACN

When introducing reduced normal forms for ACN -concept descriptions, we
have to face two additional problems. Firstly, the set of all inconsistencies
explicitly occurring or implicitly included in a concept description cannot be
obtained in such a straightforward way as in the previous two logics. Sec-
ondly, we also have to cope with number restrictions. In the following defi-
nition, we utilize the notion of excluding words, which have been introduced
in Definition 2 in the context of the characterization of subsumption.

Definition 29 Reduced normal form
Let C' be an ACN -concept description in U-labeled normal form. Define the
reduced normal form of C by modifying its role languages. It has been stated
in [2] that there exists a finite language U, with Ec = Ug.-Ny,. Using this
language, define C* as:
Ct:=VUL.LN M YULAN M VYUY, -A
AeC AeC

N VUL, (>oR)0 11 VUL, o (< nR)

(>nR)eNs (PR (<nR)eNg  (SnR
where for A € C, (< nR) € N¢, and (> nR) € N>:
UL = pf (Uso)
Ul = Uy \ Ec
U—%A = U4 \ EC

U(ian) = U Usmr) \ Ec
m>n
Utenry = U Utcmr) \ Ec-R™!

m<n
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Analogous to the previous cases, the notion of reduction is extended to sub-
stitutions.

In spite of the formally more complex definition, the objective of the
above normal form is equal to those seen before. Inconsistencies are made
explicit by augmenting the role language of the bottom concept and the other
role languages are minimized as much as possible. Observe that the reduced
role language Ui in fact is well-defined, because for languages of the form
L-Nj, the set pf(L) is unique. The definition of reduced normal forms again
implies some basic properties, which are presented in the corollary below.

Corollary 30 Properties
Let C be an ACN -concept descriptions in U-labeled normal form. Then,
1. Ui s prefir free

2. Uy, N Ecy is empty for every H:=CU{=A| AcCyUN.
Furthermore, U(LSnR) N Eci-R™ 1 is empty for every (< nR) € N

3. Umsn U(isz) = U(ian) for all (> nR) € N> and analogously for all
(S TLR) € NS

4. The reduced normal form C* can be computed in polynomial time in the

size of C.

As stated in [2], a role language Ug,, with E¢ = Ug,-Nj, can be computed
in polynomial time. With the aid of treelike automata, it therefore takes
only polynomial time to compute the reduced normal form of C'. In order
to examine the properties of our normal form closer, we have to procure a
better characterization for the set of excluding words from [12]. The following
definition is necessary in preparation.

Definition 31 Required words
Let C be an ACN -concept description in U-labeled normal form. Let v and v’
be words over Ng. Let |v| =:m and |vv'| =:n and v' =: Ry11...R,. Then
v’ is required by C starting from v iff for all i € {m,...,n — 1} there exist
positive integers ki1 > 1 such that R, 1 ... Ry € Uk iRty
Intuitively, the continuation vv’ is required by a concept description C'
starting from v, iff there is a sequence of (>)-number restrictions for every
prefix of vv’ between v and vv' demanding the presence of the respective
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following prefix. For example, assume Ng := {R,S} and let C' := AT
V{RS,RSR}.(> 1R)MVY{RSR}.(> 2S). Then the words RSRR and RSRS
are required by C' starting from RS.

With the notion of required words we can characterize excluding words
for ACN -concept descriptions by the following lemma.

Lemma 32 Characterization of excluding words
Let C be an ACN -concept description in U-labeled normal form. Let w be a
word over Ng. Then w € E¢ iff
1. there exists a prefit v € N}, of w and a word v' € N}, such that vv' is
required by C starting from v and
(a) vv' € Uy, or
(b) there is an atomic concept A € C with vv' € Us NU-4, or
(¢) there are number restrictions (> IR) € N> and (< rR) € N> such
that I > r and v € Uisiry N U<yrr); or

2. there exists a prefiv vR of w (with v € N, R € Ng) such that v € Ui<op).

Now we are set to examine reduced normal forms in detail. Before ad-
dressing the standard questions of correctness, equivalence, and subsumption,
however, we first introduce one auxiliary result regarding the notion of ex-
cluding words, which will be required in Lemma 35. In the next lemma, it
is shown that transforming a concept description into reduced normal forms
does not change its properties in respect to required words.

Lemma 33 Required words and reduced normal forms

Let C be an ACN -concept description in U-labeled normal form and let v,v'
be words over Ng. Then, if vv' is required by C* starting from v then vv' is
required by C starting from v.

ProoOF. To simplify the notation throughout this proof, denote |v| =: s,
lvv'| =: t, and vv' =: RiRy...R;. If vv' is required by C* starting from
v, then by definition it holds for all ¢ € {s,...,t — 1} that there exists a
positive integer £ > 1, so that Ry ... R; € U(¢>kRi+1)‘ By definition of reduced
normal forms, this implies that R, ... R; € U, -, Usnrigy) \ Ec. No n under
the union is smaller than k. Consequently, there exists an integer k' > & so
that Ry ... R; is an element of Uspg,, ) \ E¢. Obviously, we can include all
the words subtracted by E¢, thus obtaining that R, ... R; € Usyg,,,). This
is equivalent to vv’ being required by C' starting from v, which was to be
shown |
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A simplified characterization for the set of excluding words is now pro-
posed for concept descriptions in reduced normal form. It is shown by the
next lemma that only case (1a) of the characterization given in Lemma 32 is
relevant for the reduced normal form of concept descriptions.

Lemma 34 Fzcluding words and reduced normal forms

Let C be an ACN -concept description in U-labeled normal form. Let w be a
word over Ng. Then, w € Egy iff there exists a prefir v € Ny, of w and a
word v' € N with: vv' is required by C* starting from v and vv' € U,

Proor. Consider a word w € Eq.. It is sufficient to prove that the Cases
(1b), (1c), or (2) specified in the characterization of E-, do not apply.

Case (1b): Then there exists a prefix v € Nj of w, a word v' € Nj,
and an atomic concept A € C, so that vv' is required by C* starting from
v and vv' € (Uj1 N UﬁA). Applying the definition of reduced normal forms,
this implies that vv' is an element of Uy N U.4, but no element of Eg.
By Definition of the semantics of ACN-concept descriptions, this implies
C C Vou'.L. As a consequence of Definition 2, this implies vv' € Eg, in
contradiction to the above finding that vv' & Ec.

Case (1c): Then we have an analogous word vv’ and nonnegative numbers
[ > r with vv' € Usiry N Ui<rr). Again by definition of reduced normal
forms, we conclude that vv’ is an element of the intersection J,, Usrry N
U, <, Ui<rry, but it is not in E. Therefore, we can find integers I’ > [ and
r" < r such that v’ € Uirr)NU<r gy. Analogous to case (1b), the semantics
of ACN then implies C' C Vvv'. L. Due to Definition 2, this entails vv’ € Eg,
contradicting the above statement.

Case (2): We prove that in the reduced normal form C* the role language
U(¢<0R) is empty for every atomic role R € Ng. As 0 is the least nonnegative
integer, for every atomic role R € Ny the definition of U(i<0 ) can be simplified
to U<or) \ Ec-R™', omitting the union. Therefore, ifT](<OR) is not empty,
it contains an element of U<ory. Thus, assume w € Ui<og) for a word w.
According to the definition of number restrictions, this implies that w has no
successors in regard to R. Consequently, wR € Es. Obviously, we can infer
w € Eo-R™". In the definition of U(¢<0R), the set Fo-R™! is subtracted from
the rest, implying w & U(<or). Case (2) does therefore not apply to C*. |

The above result suggests a simpler proof of the correctness of the normal
form. The standard questions, correctness and modified characterizations for
equivalence and subsumption, are addressed in the next lemma.
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Lemma 35 Properties

Let B,C,D be ACN -concept descriptions. Let B be in W-labeled normal
form, let C' be in U-labeled reduced normal form, and D in V -labeled reduced
normal form. Let H :=CU{—=A| A€ C}UNcUNs. Then,

1. B=B*

3. C'C D iff one of the following conditions holds:
(a) UL >V and Vg CUxg VU, -Nj, for all H € H\ N< and
Vg CUxg U UJ_'N})%U UJ_'R_l fOT‘ all (S nR) =H € NS
(b) U, =V, and Uy D Vi for all H € H and there exists an H € H with
Usg D Vy.

PROOF. 1. In Lemma 4, equivalence of ACN-concept decriptions was is
characterized by the following conditions. For A € C, (< mR) € N,
and (> mR) € Ns:

UmZn WJ/ZmR) U EBl‘ = UmZn W(ZmR) U EB

Condition 1: Prove Fp, C Ep. Consider an arbitrary w € Eg;. Due to
the simplified characterization of exclusion for reduced normal forms,
this implies that there exists a prefix v € N}, of w and a word v € N,
such that vv' is required by B starting from v and vv’ € Wi According
to Definition 26, this implies that v’ is in pf(Wg,) C Ep for an
appropriate finite language Wg, with Ep = Wg,-Nj. Due to Lemma
33, we know that vv' is required by B starting from v. Since vv' € Ep,
this implies v € Ep. As Ep is Nj-closed and as v is a prefix of w, we
obtain w € Ep.

Prove Eg C Ep,. If w € Ep then there exists a prefix w' of w and a
word w" € Nj, so that w = w'w” and w' is an element of pf(Wg,).
Applying the definition of reduced normal forms, we have w' € Wj
This implies B* C Vaw'.L, which is subsumed by Yw'w”.L, according
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to the semantics of L. Due to the definition of Epg, this yields w'w" =
w e EBl.

Combining the above two results, we obtain Fz, = Ep, which was to
be shown.

Condition 2 and 3: Taking into account the result of (1), it holds that
Wj U Epu is equal to WXUEB for every A € C. Applying the definition
of W yields the expression (W4 \ Ep) U Ep, which is obviously equal
to W4 U Eg. The same argument holds for negated atomic concepts
-A.

Condition 4 and 5: Again, the result of (1) and the definition of

W(igm}z) enable us to expand Umz“ W(ing) U Eg. to the expression
UmZn(U;DZm Wispr) \ Eg) U Ep. By applying distributivity over the

union, we obtain (U,,>, Up>m Wepr)) \ Ep U Ep, which can be simpli-

fied to (U, sn Wiemr)) \ Ep U Eg. We can omit subtracting Ep before
adding it again, so that we finally have (U,,s, Wemr) U Ep.

In (1) we have seen that Ep, = Ep. This implies Eg-R™' = Eg-R™!
for every atomic role R. Consequently, the above argument applies to
condition 5 as well.

2. (“«”") Trivial. (“=”) If C = D, then the characterization of the
subsumption allows us to conclude the following conditions again:

)
)
(¢c) UmaUEc =V_4,UEp
(d) Upnsn Usmry U Ec = Upsn Viomry U Ep
) Unen Ucmry U Ec-R™" = U,,<,, Vicmry U Ep-R™!

—
@

Taking advantage of Lemma 21, we can infer from condition 1 that
pf(Ug.) = pf(Vg,), which is equivalent to U; =V, since both concept
descriptions are assumed to be reduced. Due to reduction, it also holds
that Uy = Uys \ Ec and analogously V4 = V4 \ Ep. Therefore, the
unions in condition 2 are disjoint. Because of condition 1 we may
replace Ep by E¢ in condition 2, which yields Uy = V4. The same
argument applies to condition 3. Because C' and D are reduced, the
role languages U<,,r) and Ui>pp) already contain the union over all



3 MATCHING UNDER SUBSUMPTION CONDITIONS 32

lesser and the union over all greater numbers respectively, as stated in
Corollary 30. In condition 4 and 5, we may therefore ommit the unions
over m. Moreover, the role languages in condition 4 and 5 are defined
as disjoint to EFx and Ep respectively, so that finally the argument
for conditions 2 and 3 also applies, yielding U<,r) = V(<nr) for every
number restriction (< nR) € ./\/'5 and analogously Us,r) = Vi>nr) for
every (> nR) € Ns.

3. (“=7) If C C D, then from the characterization of subsumption we
know that Ex O Ep. We first consider the case that this inclusion is
strict, then the case of equality of the languages.

Ec D Ep: Then, as stated in [2], there are finite languages Ug, and
Vig, such that pf (Ur.)-Nj D pf(Ve,)Ng. Due to the definition of
reduced normal forms, this is equivalent to the inclusion U,-Nj D
Vi -N}. According to Lemma 21, we can then infer U; > V. Since
C C D, we know from the characterization of subsumption that Uy U
Ec D VyUEp forall H e CU{—A | A € C}. As mentioned above, this
inclusion is equivalent to Uy UU-Nj, O Vg UV, -Nj. We may drop
the term V| -V}, on the right-hand side, obtaining the desired result for
al He CU{—-A| Ae(C}.

For (> nR) € N>, we similarly yield

m>n m<n

As mentioned before, the union over all m > n can be omitted. Drop-
ping the term V- N}, on the right-hand side of the inclusion afterwards
analogously produces Vi C Uy U U, -Np,, which was to be shown.

This analogy does not hold for <-number restrictions, where we need
to cope with the right quotient (-R~!) in the respective equations: For
every (< nR) := H € N, we obtain Uy UU-Nj-R™' D Vg UV, -Nj,-
R~'. We may drop the expression V| -Nj-R~" on the right-hand side of
the inclusion. Furthermore, as stated in [2], U-Ng-R™" equals U-Nj U
U-R~! for every finite language U over Ny and R € Ni. Consequently,
the inclusion can be simplified to Uy UU,-Nj UU-R™' D Vi, which
we wanted to show.

Ec = Ep: As shown in (2), the reduced normal form of C' and D then
allows us to infer U,-Nj, = V| -Nj, which yields U, = V|, as both
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languages are prefix free. The characterization of the subsumption
furthermore allows us to conclude that Uy D Vg for every H € H.
Obviously, C' and D cannot agree on all role languages, since this would
imply C' = D, in contradiction to the assumption. Consequently, there
is one H € H such that Ugz D Vg.

(“<") In case (b), it is not difficult to verify that the conditions for
subsumption stated in Lemma 4 are met. Assume Case (a). From
U, > V| we can infer by Lemma 21 that U, -Nj D V| -Nj. Since C
and D are reduced, this implies - D Ep, matching the first condition
for subsumption. As assumed, for every H € H \ N< it holds that
Vi C Uy UU-Nj,. We have already seen in (3) that U, -Nj, equals
E¢. Therefore, after adding the language Ep on both sides of the
inclusion we have Vg U Ep C Uy U E- U Ep. Since Ep is a subset of
E¢, we obtain Vg U Ep CUg U Eq. For H e CU{-A | A € C}, this
equals conditions 2 and 3 for the subsumption as stated in Lemma 4.

According to Corollary 30, for all (> nR) € N> the language Uspr)
is equal to the union Um>n Uisnr), so that the inclusion Vy U Ep C
Up U E¢ can be expanded to |J,,~,, Vismr) U Ep C U,,>, Usmry U Ec,
which meets condition 4 for the subsumption. -

For (< nR) € N<, we have assumed Vi<,r) C Ui<pUU -NjUU -R™".
As mentioned above for the reverse direction of (3), we can replace
U Ny UU,-R™" by U, -Nj-R™', which is equal to Ec-R™". Following
a similar line as for the >-number restrictions, Ep-R ! is added on both
sides of the inclusion, yielding Vi<,p) U Ep-R™' C Ucppy U Ec-R™ U
Ep-R'. As E¢ is a superset of Ep and as also both languages are of
the form L-N}, for some finite language L, it is easy to see that Ec-R™!
is a superset of Eo-R™! for every R € Ngi. The inclusion therefore
simplifies to Vi<pg) UEp-R™" C Ui<nryU Ec-R ™. Exploiting Corollary
30, the languages U<, r) and V(<,r) can be replaced by the respective
unions over all m < n, thus matching condition 5 of the subsumption
conditions of Lemma 4. Consequently, all conditions for subsumption
are met. We obtain strict subsumption, because (2) would otherwise
imply U, = V|, contradicting U, > V.
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3.4 Termination

Let the substitutions o; be defined in Section 3.1. We assume that every
0¢(X) is given in U**-labeled reduced normal form, and that C' (as defined
in Algorithm 16) is in U-labeled reduced normal form. Then, termination fol-
lows from the fact that every solvable matching problem under subsumption
conditions has a matcher that only uses concept names already contained
in the matching problem M, denoted by the set C C N¢, and the following
three properties of the languages U™ and Uy for H € C U {L}. In the
formulation of these properties we implicitly assume that the substitution oy
is defined whenever we talk about one of the languages U;}X.

1. Suffiz property
For every variable X and every H € C U {L}, the set UEX contains
only suffices of Up.

2. Deletion property ,
For every word w, if w € U;}X \ UEJFI’X, then w ¢ U;{’X for any t' > t.

3. Strictness property
If o, and o4, are defined and o; # 04,1, then there exists an H €
CU{L}, a variable X, and a word w such that w € U \ U™,

Note that these properties would not hold if we did not use reduced normal
forms. In the following three subsections the above termination conditions
are shown valid individually for FL,, F£-, and ACN. With these prerequi-
sites we can provide a general proof of termination in Section 3.4.4, yielding
a polynomial time upper bound for the three logics under consideration.

3.4.1 Termination properties in FL

Let us briefly recall our point of departure. We consider the algorithm
MATCH%-LL, applied to an FL,-matching problem under subsumption con-
ditions M of the form (C' =" D,S). M is defined over a finite set X of
variables. We assume C' in U-labeled reduced normal form and D in V-
labeled normal form. For every subsumption condition X T’ E in S, we
assume E in V*-labeled normal form. Denote by T(MATCH%&, M) the in-
dex set of all substitutions computed during the execution of the algorithm
MATCH]E_ZL upon input M. For every t € T(MATCH%-LJ_,M) and for every
variable X, assume o;(X) in U%¥-labeled reduced normal form.



3 MATCHING UNDER SUBSUMPTION CONDITIONS 35

In order to show the validity of the suffix property, the solution languages
introduced in Definition 7 are used to derive a recursive relationship with
respect to ¢ between the role languages occurring in consecutive substitutions
0;. We can then infer the desired properties from oy upward by induction.

Lemma 36 Suffiz property in FL |
For all t € T(MATCH%EL, M) and for all X € X it holds that:

1. UiX contains only suffives of U, .

2. UZ’X contains only suffizes of Ux for every A € C.

ProOOF. 1. When performing step t of the algorithm MATCH%-EL(M), the
following system of matching problems must be solved.

VUL M VYULA="YYL LA T VYV AR T Y X
AeC AecC Xex
VU LN MYUY ACT YW LN Nyl An M1 vwE.x,
AeC AeC X'ex

where the second line represents one equation for every X € X. As
stated in Section 2.2, this system can be combined into a single match-
ing problem with little difficulty. For the resulting matching problem,
setting up the solvability equations proposed in Definition 6 and apply-
ing Lemma 7, we yield the following solution language for the bottom-
concept.

Uj:l_l’X-N;% _ m UJ_ N* m m UtX N*) (*)

weVyx X'ex weVX

Due to the notation introduced for the solutions oy, here Ut+1X Ny,
takes the place of LX used in Lemma 7 to denote the solution language
for the l-concept. We have to show that the Ut+1X contains only
suffixes of U .

According to Lemma 22, for every finite language U and for every
word w there exists a finite prefix free language L such that firstly,
L-N} = w™"(U-N}); and secondly, L contains only suffixes of U. Using
this result we now show the proposition for UiX by induction over the
number of steps ¢ the algorithm MATCH%EL(M) takes.

(t =0): According to equation (x), it holds that
UM Np= [ w ' (UL-Np). (+)

weVyx
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At first, we show that the suffix property does not get lost when inter-
secting languages of the form L-Nj, with that property. It is shown in
[2] that for finite languages L and L' the intersection L-Nj N L'-N}, is
equal to (LN L'-N})U (L' N L-Ny))-Nj,.

Obviously, (LN L'-Ny,) U (L' N L-N},) is a subset of the union L U L'.
This implies that the intersection L-Nj, N L'-N}, can be represented as
L"-Ny, such that every element of L"” comes from L or from L'.

Because of Lemma 22, it holds for every X € X and for every w € Vy
that the language w=' (U, -N3) can be represented as L-N}, where L
contains only suffixes of U,. We have just seen that the suffix property
is respected by the intersection. Thus, the entire right-hand side of
equation (') is of the form L-Nj,, where L contains only suffixes of
U,. pf(L) is a subset of L and therefore contains only suffixes as well.
pf(L)-Nj, also represents the right-hand side of (+), as we know from
Lemma 21. From the definition of reduced normal forms in FL, we
also know that U is prefix free. Lemma 21 now implies that U™ is
equal to pf(L), completing our argument.

(t > 0): Due to induction, we may assume that all role languages on the
right-hand side of equation (x) contain only suffixes of U, . Analogous
to the argument for the case ¢ = 0, the suffix property is valid for
UTHX as well.

2. Consider UZ’X for an arbitrary A € C. Starting again with the system
of matching equations proposed in (1) and taking into account the def-
inition of the solution languages in Lemma 13, we obtain the following
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result for U5~

U = (Y w0 uULNp N () () w YUUYN.NG)

wEVx X'eXx ’LUEVX

X *
\ U™ N,

= ﬂ (UAUUJ_ m ﬂ UUEXN}:’,)

weVyx XIEX’LUEV;((

N V e
t,X

O eein () ) e

weVx X,EXUJEV?

N -~ e

cJwwyuy U w

weVy X'eXx wEVA}fI

The equality to M; \ M, is obtained by replacing UTI’X-N}*% with the
right-hand side of equation (x). The last step in the above sequence
remains to be shown. Consider an arbitrary word v in U5 = M, \
Ms>. Since v is not an element of M,, there exists a word w € Vx or a
word w' € V¥ such that v is no element of w (U, -N3) or no element
of w‘l(UtX -N3). Assume the first case, i.e. v € w™' (UL -Ng). As v
is an element of M, obviously v € w™'(Us U U,-N}), which implies
v € w (Uys). Thus, v is a suffix of a word in Uy. The second case
is analogous, yielding that v is a prefix of a word in UZ’X. Thus, the
inclusion claimed above holds.

Since U, and all Uf;X are finite languages, it is not difficult to see
that the left quotients w™"(U,) and w="(U5~) for every word w only
contain suffixes of Uy and U%" respectively. We still have to ensure
that the suffix property is respected by the union. This can be shown
inductively similar to the proof seen in (1) for the intersection. In case
of the union, however, the induction argument is by far simpler, since
for finite languages L, L' the union L-NjUL'-N}, is equal to (LUL')-N},.

i

For the proof of the deletion property, the characterization of the sub-
sumption for reduced normal forms can be utilized to rule out words reap-
pearing after being deleted. A subsumption argument, of course, can only
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be used since we know from the proof of correctess that the solutions o; in
fact are subsumed by its respective successors oy 1.

Lemma 37 Deletion property in FL |
MATCH%-CL(M) meets the deletion property.

ProOF. We first prove the deletion property for role languages referring to
the L-concept and then consider those referring to atomic concepts A € C.

1 -concept: Assume that contrary to our claim a word w can reappear
for greater values of ¢ after being deleted from a role language at a certain
point during the execution of the algorithm. Thus, assume for w € N}, that
we U and w ¢ Ui’X but finally w € Ui’H’X for some X € X and for
nonnegative integers t < t' € T(MATCH%M, M).

We know from Lemma 17 that o, C oy C oy,1. As all substitutions are
reduced we further know due to our assumption, that o,(X;) # oy (X;) #
oy 41(X;). From this we can infer by means of Lemma 25 that U~ - Uil’X -
Ui,H’X-

We have assumed that w € UiJ’l’X. The above relation then for Ui’X

demands that Ui’X contains a prefix w' of w. As w is no element of Ui”X,
this is a nontrivial prefix. Similarly we find that UEX contains a prefix of w’
or w' itself. The language UEX, however, initially was assumed to contain w
as well, yielding a contradiction to UEX being prefix free.

A-concept: Assume similarly for a word w € Nj that w € U4 and
w ¢ UZ’X but finally w € UZH’X for some X € X, for A € C, and for
nonnegative integers t < t' € (MATCH%EL, M). Since 0, C op C opyq and as
also all substitutions are reduced we obtain as a consequence of Lemma 25:

U OUYS Ny o U OUt NNy o UMY o Ut TN,

We have assumed that w € Uerl’X. Since w is no element of Uz’X, the
subset relation implies that w € Ui”X-N;‘z. From the characterization of the
subsumption we know that UEX-NI"j2 D Ui’X-N}*z, which in our case implies
w € UYX-Nj;. This contradicts the disjointedness of the union with U},
which was shown in Lemma 25.

As the next lemma will show, the strictness property is obtained as an
immediate consequence of Lemma 17 (soundness and completeness) and the
caracterization of strict subsumption for reduced normal forms.
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Lemma 38 Strictness property
MATCH%-CL(M) meets the strictness property.

PROOF. Itisshown in Lemma 17 that o, C oy forevery ¢ € T(MATCH%M, M).

Since the fixed point iteration in MATCH]E_ZL terminates in case oy = 01,
we have o, o0y for every t as long as the iteration does not terminate.
The strict subsumption of the substitutions implies that for every ¢ there is
a variable X € X such that o4(X) C 0p41(X).

Due to the characterization of strict subsumption for reduced normal
forms (Lemma 25), this implies that either U™ = U or UYY o U
for some A € C. In both cases at least one word in one role language is

removed at the transition from o; to oy 1.

3.4.2 Termination properties in FL_,

For FL_, a separate proof of termination is omitted, because we can exploit
the analogy to FL,. Verifying the termination properties again yields a
positive result, which is stated below without proof. Let M be an FL_-
matching problem under subsumption conditions.

Lemma 39 Termination properties in FL-,
MATCH%L(M) meets the suffiz, deletion and strictness property.

Let us discuss briefly why we can expect to gain the same result for FL_
in exactly the same way as seen for 7L, . The idea is to show that due to the
reduced normal form of all substitutions o; occurring during the execution
of MATCHS. (M), the validity of the three termination properties can be
shown analogous to the proof for FL . Recall that the prerequisites for the
existence of a solution in FL_, are stronger than in FL . Nevertheless, once
the matching problem is solvable, the solution assigned by oy is syntactically
similar to that in FL | —the only difference being the construct U instead of
U. This can be found when comparing Lemma 7 and Lemma 9, where the
solution languages are introduced. In the presence of reduced normal forms
the difference between languages of the form U and U disappears, as stated
in Corollary 27. Furthermore, a comparison of Lemma 25 and Lemma 28
yields the same characerization of equivalence and subsumption for reduced
normal forms in FL£, and FL-.. Hence, the results obtained for FL_ are
analogous to those for FL, .
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3.4.3 Termination properties in ACN

The overall task of solving matching problems in ACN is significantly more
involved than in its sublanguages. However, most of the additional complex-
ity is hidden in the notion of excluding words, which has been studied in
depth in [12]. Once we know that sets of excluding words are of the form
L-N7, for some finite language L, we do not need to introduce new ideas to
prove the termination properties. By virtue of the reduced normal forms we
again find a situation analogous to FL,, though consisting of considerably
larger equations. Let M denote an ACN-matching problem under subsump-
tion conditions analogous to that defined in Section 3.4.1.

Lemma 40 Suffiz property in ACN
For allt € T(MATCH%W\[, M) and for all X € X it holds that:
1. UiX contains only suffives of U, .

2. UZ’X contains only suffizes of Uy for every A € C and Ui’f contains only
suffizes of U-4 for every A € C.

3. U(t’;;R) contains only suffives of Uspr) for every (> nR) € N.

4. U(t’jiR) contains only suffizes of U<,y UU-R™T for every (< nR) € N<.

PROOF. e At step t of the algorithm MATCHS,\ (M), the following sys-
tem of matching problems has to be solved:

YU, .LTTVYU4L AN T VYU 4,.—A
AeC AeC

(>nR)EN> (<SnR)EN<
?

YV .M Al;lc YV4. AT AI;IC VV_4.mA

NI Wenr(ZnR)N 11 VVicup).(<nR
enR)ens =P (= k) (<nRyen. © (SR (< nR)

I vy X
Xex
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and for every X € X
YUt 1N n YUY AN T YUY, A

eC AeC
n n vu

(>nR)EN> (Znk)”

(>nR) 0O YU

(<nR)EN< (snk)”
°

E.
AUy |‘| vvjf.A M Azlc vV —A

(< nR)

NIl > M <
(>nR)ENS vVv(>nR) ( nR) (<nR)EN< vv—(<nR) ( nR)

N vvE.X!
X'ex
This system can be combined into a single matching problem. For
the solution to this problem, Lemma 12 provides us with appropriate
solution languages. Regarding the |-concept, we obtain the following
result for the solution language Ui“’X assigned by 0,41 (X):

Ui—}-l,X.N;%: m ﬂ m -1 E.tX (%)

weVx X'ex weVX

Again, due to our notation UTI’X-N;% takes the place of /[:)f as used in
Lemma 12. Furthermore, Ex denotes the set of C-excluding words and
analogously EtCZX the set of excluding words for the matching problem
corresponding to the variable X the above system of matching prob-
lems.

We may assume C' to be in reduced normal form. Consequently, it
holds that U, -Nj = E¢, as seen in Definition 29. As o; is also in
reduced normal form, we furthermore obtain that U"~*-N% = ES* for
every t € T(MATCH%A%, M). In Equation (x), we may therefore replace
Ec by U -Nj and F~ by U Nj. This reveals the inductive relation
of the role languages:

UM Ny = () w ' (UNpn () () w ' (UN) (+)

weVx X'eX wevy,

It is to prove that U """ contains only suffixes of U,. Equation (') is
only a syntactic variant of Equation (x) established in Lemma 36. As
Ui“’X is prefix free, we can prove the claim following exactly the same
pattern as seen for FL, in Lemma 36.
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e From the system of matching problems introduced in (1), we now derive
solutions for role languages of the form UZ LY referring to the atomic
concept A in 0441(X;). By virtue of Lemma 12 we obtain:

UEY = ) (WU E)n () () w0 U EY)

weVx X'eX wev,

\DLN

Taking into account that U,-Nj = FE¢ and that UEX-NI*2 = E,;c,
we can apply the argument of Lemma 36 and replace the expression
U™ Y. N% with the right-hand side of Equation (¥'). Again, we can
obtain an upper bound for the resulting expression, yielding that

t+1 X U U U -1 U

weVx X'ex wEVX
Because Uy and every Ul“rl ~ s finite, it is not difficult to prove that
w™'(Uy) and every w™ (Ut+1’X) contain only suffixes of Uy. We know
from Lemma 36, that this property is respected by the union, thus
completing the proof. For role languages Ui’ff referring to negated
atomic concepts —A, exactly the same argument holds.

e We already know that o; is in reduced normal form for every t €
T(MATCHS\, M). Thus, we have for every number restriction (>
nR) € N> that U, ()fnR) is equal to U(>nR), i.e. the union can
be omitted. The same holds for C', which is in reduced normal form as
well. Therefore, the expression | J,,-,, Usmr) similarly can be replaced
by Uisngr). This observation enables us to simplify the solution lan-
guage derived from the system of matching problems proposed in (1).

By means of Lemma 12, we can infer for U(t;}‘; that:

Udom =) v ' (U UsmmUB)n () [ w'(J Um Y ES)

weVx m>n X'ex wEV;f, m>n

\UL N
= m w_l(U(>nR U Ec)N m m >nR EtX)

wEW; X'ex wEVX

X *
\ U N
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We can see that after removing the unions for the number restrictions,
the above equation is syntactically identical to the one derived for A € C
in (2). The rest of the argument therefore is identical to what has been
proposed there.

e For (<)-number restrictions, we can again remove the union-operator
in the same fashion as done in (3). However, we obtain slightly different
results for the solution languages derived from the system of matching
problems introduced in (1). For Ufi;lg we can infer that:

Uiy = () w (U Ucmry U Ec-R™Y)

weVyx m>n
-1 t,X t,X p—1
NN U U B R )
X'EXwEV;;, m>n

LX ars
\Ufr "Ng

= () v (Unr) U (UL-Np)-R™")

weVyx
n ﬂ ﬂ <nR U (U -Np)-R )
X'GXwEVX
wEVyY X'eX wevy,
N :?]\r/[z _

Observe, that in the second step we could replace E- by U,-Nj, and
ESY by UY.N%. This replacement is valid because C' and oy are in
reduced normal form. However, the result deviates from the pattern
seen in the previous cases of this proof—the right-quotients of U, -Np,
and UEX-N,*2 occur instead of the original languages. Nevertheless,
we can simplify the right quotient thanks to the finiteness of U, and
UYY: (U-N3)-R™' equals U;-R~' U U, -N} and similarly (U -Ng)-
R' can be simplified to U™ -R~1 U U*.N% for all t and X. Since
after this transformation all right quotients refer to finite languages,
we can subtract M, and follow the argument familiar from Lemma 36.
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Consequently, we obtain:

Uew € U w ' Ucnmy VULRTY)
weVy
o U U w0 u Uit R Y
X'EXwEV)ff

Finally, we can again employ an induction argument to prove that every
U(tiri}‘g contains only suffixes of U<,y UU-R 1. [ ]

After eliminating the union over number restrictions and the right-quotient
for (<)-number restrictions in the above equations, the resulting situation ap-
peared very similar to the analogous problems for L, . Recalling the charac-
terizations of equivalence and subsumption for reduced normal forms in FLC |
and ACN, this is not surprising. By comparing Lemma 25 and Lemma 35,
we find almost the same conditions for subsumption. Note that we again
assumed C' to be in reduced normal form.

Lemma 41 Deletion property in ACN
C )
MATCH 4. (M) meets the deletion property.

PROOF. At first, the assertion is proved for role languages referring to the
L -concept and then for the remaining cases.

L-concept: Assume that a word w can appear in a role language for
greater ¢ after having been deleted, i.e. there exists a word w € Nj, and
indices t < t' € T(MATCHG,,, M) and an X € X such that w € U and
w ¢ Ui’X but w € UiH’X. We can now infer a contradiction to U™ being
prefix free, as already done for F£, in Lemma 37.

As the substitutions oy, oy and oy, are reduced, we can infer from the
assumptions by virtue of the properties of reduced normal forms in ACN that
Ubx - Ui’X - UiH’X. The rest of the argument is analogous to Lemma 37.
We apply the definition of the multiset order (>) and infer that U™ must
contain a nontrivial prefix of w as well as w itself.

Other cases: Assume similarly for a word w € N} that w € U and
w & UZ’X, but w € UZH’X for an atomic concept A € C, for some X € X,
and for nonnegative integers ¢t < t' € T. Since again oy C oy C oy, and
since all substitutions are reduced, we yield by Lemma 35:

UZ’XUUEX'N}*{ 2 U UUtXN* D Ut+1XUUt+1X N*
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Now we can follow the argument employed in Lemma 37 to infer a contra-
diction to the disjointness of the unions. It is shown in Lemma 35 that the
argument of disjoint unions also applies for negated atomic concept and num-
ber restrictions. |

The proof of the strictness property for ACN is identical to the previous
case for FL,. This can be readily seen—firstly, Lemma 17 (soundness and
completeness) is valid for ACN as well; and secondly, the caracterization of
strict subsumption for ACN -concept descriptions in Lemma 35 yields the
same superset relation for the role languages as used in Lemma 38. Since
no other argument was necessary there, the same strategy works for ACN as
well. We may therefore state the result without proof, concluding the proofs
of the termination properties:

Lemma 42 Strictness property
MATCH (M) meets the strictness property.

3.4.4 General result

Given the three termination properties, it is now easy to show that the algo-
rithm halts after a polynomial number of steps. In fact, Property 1 (suffix
property) yields a polynomial upper bound on the size of the role languages
UEX. Property 3 (strictness property) shows that in every step of the itera-
tion at least one word is removed from one of these languages, and Property 2
(deletion property) ensures that words that have been removed cannot reap-
pear. To sum up, we have shown the following theorem.

Theorem 43 Let L € {FL,, FL., ACN'}. The algorithm MATCH% is a poly-
nomial time algorithm that, given an L-matching problem with subsumption
conditions, returns a least matcher of this problem if it is solvable, and “fail”
otherwise.

It should be noted that the algorithm MATCH% does not work for £ =
FLy. In the following section we will therefore briefly discuss the additional
conditions necessary to extend Theorem 43 to FL,.
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3.5 Matching under subsumption conditions in FL

The language FL, does not allow for the bottom concept, and thus the
initialization step (Step 1) of Algorithm 16 is not possible. Instead of starting
with o(X) := L, the algorithm can also start from the least matcher of C' ="
D. In case the side conditions do not introduce new variables (i.e., variables
not contained in D), this modification works and yields a polynomial time
matching algorithm. In contrast, if new variables are introduced, then we
can show that the size of the least matcher may grow exponentially in the
size of the matching problem. The following example, which has also been
dicussed in [2], illustrates this.

Example 44 Let Nr = {R,S}. Forsomen € IN, assume X = {Xy,..., X, }.
Consider the (trivial) FL-matching problem T =’ T under the subsumption
conditions { Xy C" A} U{X;;; C* V{R,S}.X; | 0<i<n—1}.

Combining the first subsumption condition with the second one yields
that every solution to the matching problem has to respect the subsumption
condition X; C V{R,S}.A. It is easy to see by induction that for every
i€{l,...,n} we have .

X; CV{R,S}* A,

denoting by {R, S}Zi the the set of all words of length 2° over the alphabet
{R, S}. Hence, for every solution ¢ to the matching problem it holds that
o(X,,) must assign a role language of exponential size in n corresponding to
the atomic concept A.

The above example suggests a solution strategy for FLy-matching prob-
lems M =: (C' =" D, S,) with new variables occurring in subsumption con-
ditions. The strategy comprises six steps which are explained below.

1. It is shown in [2] that we can transform S into an equivalent set S of

acyclic subsumption conditions whose size is polynomial in the size of
Sp.

2. Analogous to the above example, S is then transformed into an equiva-
lent set Sy such that every variable occurring in S5 either occurs only on
left-hand sides of subsumption conditions or only on right-hand sides.
To this end the substitution {X — E | X CY E € S} is applied to
the right-hand side E' of every subsumption condition X’ = E' € ;.
After at most | S| iterations the set of subsumption conditions has the
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required form. As shown by the example, the size of Sy may be expo-
nential in that of S;. Note that this modification would not preserve
equivalence in case of strict subsumption conditions.

3. Every variable neither occurring in C' =" D nor on left-hand sides of
subsumption conditions in Sy is now substituted by T, yielding Sj.

4. Finally, S, is obtained from S3 by removing every subsumption condi-
tion X C? F where X occurs neither in C' =’ D nor on any right-hand
side of any subsumption condition in S3. Obviously, every variable
occurring in Sy also occurs in the original matching problem C' =* D.

5. The problem (C' =" D, S,) is then solved with the modified algorithm
MATCH%_-EO starting by solving C' =” D instead of assigning L to every
variable in D. Denote by o the solution returned in case of a successful
computation.

6. o assigns values only to variables occurring in D. For a solution 6
including all variables in M we proceed as follows. For every variable
X occurring only on right-hand sides of subsumption conditions in
Ss (and not in C' =" D), define §(X) := T. For those variables X
occurring only on left-hand sides, let §(X) := [1 o(FE).
XC’EesS;
One can see that the possible exponential blow-up in Step 2 makes the
above strategy an exponential time algorithm.
Nevertheless, the size of the substitutions for variables in D can still be
bounded polynomially, and if one is only interested in substitutions for these
variables, then these can still be computed in polynomial time.

4 Matching under general side conditions

Matching under general side conditions (i.e., strict and non-strict subsump-
tion conditions) is more complex than matching under subsumption condi-
tions for two reasons.

First, as already shown in [2], deciding the solvability of an FL;-matching
problem under strict (and acyclic) subsumption conditions is NP-hard. It is
easy to see that the same reduction works for the DLs FC |, FL-,, and ACN.
Thus, assuming that P # NP, there cannot exist a polynomial time algorithm
computing matchers of matching problems under general side conditions.
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Second, as shown by the following example, solvable matching problems
under strict subsumption conditions no longer need to have a least matcher
(but rather finitely many minimal matchers).

Example 45 Consider the FL  -matching problem
An...nA4,="X,n...nxX,
under the strict subsumption conditions
{(X;n o' X |1<i<n—-1}u{X,Cc"T}L

The pure matching problem enforces that each X; must be replaced by a
(possibly empty) conjunction of concept names from {A;,..., A,}. Thus,
the strict subsumption conditions can only be satisfied if X is replaced by
one of these names, X5 by a conjunction of this name with an additional one,
etc. From this it is easy to derive that the matchers of the problem are of
the following form: given a permutation P := (py,...,p,) of (1,...,n), the
substitution o’ is defined by o”(X;) := A, M...MA,, (1 <i<n). Thus,
there are n! non-equivalent matchers, and it is easy to see that each of them
is minimal.

The new contribution of this section is a (non-deterministic) algorithm,
MATCHZ, that computes matchers of L-matching problems under general
side conditions for £ € {FL,,FL.}. (We strongly conjecture that a simi-
lar algorithm can also be used for ACN.) This non-deterministic algorithm
matches the lower complexity bound (NP hard) for the decision problem in
the following sense. The length of every computation path of this algorithm
is polynomially bounded in the size of the given matching problem. In case
the problem is not solvable, every computation returns “fail”. Otherwise,
the successful computation paths yield all minimal matchers. The algorithm
proceeds in two steps: first it eliminates cycles and then solves the resulting
matching problem with acyclic side conditions.

4.1 Eliminating cycles

In [2], FLy-matching problems with cyclic subsumption conditions are trans-
formed into equivalent ones with acyclic subsumption conditions.

In this context, e-cycles and role cycles must be distinguished. We say
that X directly e-depends on Y iff there is a side condition X p E such that
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Y occurs in the top-level conjunction of E. Now, the notion “c-dependence”
is defined in the obvious way, and X lies on an e-cycle iff it e-depends on
itself. For example, w.r.t. S := {X C? X NVr.Y'}, the variable X e-depends
on itself, and it depends on Y (but does not e-depend on Y').

If an e-cycle involves a strict subsumption condition, then the problem is
unsolvable. Otherwise, e-cycles can be removed by first replacing all variables
occurring on such a cycle by the same variable. The remaining e-cycles are
due to subsumption conditions of the form X CT° X ME. But such a condition
is equivalent to X C° E.

If X is a variable on a role cycle (i.e., a cycle that is not an e-cycle), the
we can show that solutions (in FL,, FL-) must replace X by either T or L.
The next lemma provides the relevant result.

Lemma 46 Solutions to role cycles

Let X p" V{v}.X be a subsumption condition in an FL | -matching problem
M, where v # €. Let o be a solution to M respecting the side condition.
Then,

1. If p=C, theno(X)=L oro(X)=T.

2. If p=0C, then o(X) = L.

PrOOF. e Without loss of generality we may assume that o is reduced.
Denote o(X) in U-labeled reduced normal form. If o respects the side
condition, then we have o(X) C V{v}.0(X). The characterization of
subsumption (Lemma 1) implies that the conditions

U,-Nj 2 {v}-U,-Nj,
UA U ULN}; 2 {U}'UA U {U}ULNE

hold for all A € C. We have to show that i) o(X) = L and o(X) =T
solves X p” VW.X and that ii) these are the only valid solutions.

i) If o(X) = L, then the reduced normal form implies that U, = {¢}.
This yields the strict inclusion U, N}, D {v}-U,-Nj, since v # ¢, and
also respects the second condition, since U4 O U4 holds for any choice
of Uy. Consequently, we find that o(X) = L solves the side condition
for p=LC.

If o(X) =T, then we have U, = Uy = () which for the first condition
yields § D (. Hence, the first condition for subsumption obviously



4 MATCHING UNDER GENERAL SIDE CONDITIONS 50

holds, while for the second one we get Uy O W-Uy for all A € C. This
holds, since Uy = (). Hence, o(X) = L solves the side condition for
p="L.

Note that in case U, = () the assignment Uy = () is the only valid
solution for U4 O W-U, and that no possible value for some U, yields
a strict inclusion Uy D W-Uy,.

ii) The previous remark implies that for any reduced solution o(X) ¢
{L, T} solving the side condition, the role language U, cannot be
empty. Thus, assume u € U, \ {€}. it can be shown that this im-
plies a contradiction to U, being finite and prefix free.

Consequently, we can (non-deterministically) guess such a substitution for
variables on role cycles. Note that the side conditions with such a variable
as left-hand side are either obviously unsolvable or give rise to additional
matching problems. For example, if we replace X in X =’ Y nVr.X by L
then the condition L. =7 Y MVr.L can be expressed by the matching problem
1 =" Z under the side condition Z 7 Y M Vr.L.

4.2 The algorithm handling acyclic side conditions

In the following, let M = (C' =" D,S) be an L-matching problem (£ €
{FL, FL-}) under acyclic side conditions. Let S = {X; pi E,..., X, p, E¢}
for distinct variables X1,..., X, and patterns E,..., E, such that E; does
not contain the variables Xj, ..., X;. (The case where not all the left-hand
side variables are distinct can be treated similarly.) We denote by Sr the set
of side conditions obtained from S by replacing every p; by C.

Applied to input M, the algorithm MATCHL first calls MATCHZ ((C' =7
D, Sg)). If this yields “fail”, then M is also unsolvable. Otherwise, the
computed substitution o solves C' =7 D, but may still violate some of the
strict subsumption conditions. Starting with the violated side condition with
the largest index, the algorithm tries to modify o such that this side condition
is satisfied.

Assume that X, —° Ej is this side condition. Since o solves X, C° E,
we thus know that o(Xy) = o(Ey). Thus, we must either make o(X}) more
specific or o(Fj) more general. Since MATCH% computes the least solution,
the first option cannot lead to a solution of the overall system. Hence, we
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must try the second one. The idea (which will be explained in more detail
later) is that we consider the reduced normal form of o(F}). We try to make
o(Ex) more general by (non-deterministically) choosing one word from one of
its role languages and by removing this word by appropriately modifying the
role languages of the variables occurring in Ej. Since we want to compute
minimal matchers, we make as little changes as possible in order to keep the
substitution as specific as possible.

The new substitution ¢’ obtained this way solves X; =’ Ej, and since
we only modified variables occurring in Ej, the side conditions with larger
index are still satisfied. However, the side conditions with smaller index
(even the non-strict ones) as well as the matching problem need no longer
be solved by ¢’. To overcome this problem, MATCH% is used to compute the
least substitution that (i) solves (C' =" D, Sc), and (ii) subsumes o'. It can
be shown that the second condition (which can be expressed by a system of
matching problems) makes sure that the computed substitution still solves
the strict subsumption conditions from index k£ to /. We can now continue
the modification process with this substitution.

Algorithm 47 Let M = (C =" D,S) be an L-matching problem under
acyclic side conditions. Then, MATCHE works as follows:
1. If MaTCHZ ((C' =" D, SK)) returns “fail”,
then return “fail”;

2. k:=1(; o:=wmarcHz{{C =" D}, Sc);

3. If k =0, then return o;
If 0(X%) pr 0(Ey), then continue with 5.

4. Guess modification o' of o for X;, C° Ej;
If o'(Ey) = o(Ey), then return “fail”;
M= {{C=" DYU{(X;) T X, 1< < 0}, 50);
If MATCHZ (M) returns “fail”, then return “fail”;
o := MATCHZ (M)

5. k:=k—1; continue with 3.

4.3 How to guess modifications

In order to introduce modifications, we first sketch the underlying idea for
FL . Recall that the goal is to make o(F}) more general by (non-determinis-



4 MATCHING UNDER GENERAL SIDE CONDITIONS 52

tically) choosing one word w from one of its role languages and by removing
this word by appropriately modifying the role languages of the variables
occurring in Ej.

We call this a C-modification if w is picked from a role language corre-
sponding to some atomic concept A. In this case, removing certain words
from role languages of the variables in F suffices to obtain a minimal modi-
fication.

In case of a L-modification, where w is picked from the role language
corresponding to the l-concept, the removal of some word v in the role
language of a variable implicitly removes every continuation vv’ of v. To
correct this effect, every word in {v}-Ng is put back whenever some v is
removed. In addition, since v is also implicitly removed from role languages
corresponding to atomic concepts, it is also transferred to such role languages.
This ensures that the computed substitution is as specific as possible. This
is vital both for the proof of correctness and to obtain all minimal solutions.

Before dealing with modifications in terms of a formal definition (see
Definition 49), the following example illustrates in more detail how the mod-
ifications work.

Example 48 Consider the FL -matching problem A MV{r, s}.L =" X; M
Vr. X, MVr. X5 under the strict subsumption conditions X, =% Xy, X3 =7 X,.

Executing the above algorithm, we obtain in Step 2 as initial solution o
the following substitution:

{Xi—>Y{r,s}.LnV{e}. A, Xo— V{c}. L, X5~ V{c}.L}.

The iteration begins in Step 3 by checking the second side condition,
which is violated. Choosing a |-modification in Step 4, we must choose a
word from the role language {¢} corresponding to L in o(Xs) = (X3). In
this case, we can only pick €. To keep the change minimal, we do not simply
remove it, but rather replace it by {r, s} in the role language corresponding
to L in 0(X3). In addition, we transfer & to the role language corresponding
to A. This yields o'(X3) = V{r, s}.L MV{e}.A. The other variables remain
unchanged.

In this case, the substitution o’ itself solves the matching problem M’
considered in Step 4, and thus MATCH%M(M’) returns o’

In the second iteration, we find in Step 3 that the first side condition
X, 7 X, no longer holds. In Step 4, we again choose a L-modification,
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and choose the word r from the role language {r, s} corresponding to L in
o(X7). The modification replaces r by rr,rs and adds r to the role language
corresponding to A. This yields o'(X) := V{rr,rs,s}. L NV{e,r}.A. Again,
this substitution solves M’, and thus the new value of o is ¢’.

In the next iteration we have k£ = 0, ending the iteration in Step 3. The
algorithm finally returns the substitution

{X1 = VY{rr,rs,s}. L OV{e,r}. A, Xo = V{r,s}. LNIV{c}. A, X3 — V{c}.1}.

Note that, in the first iteration step, it was not possible to apply a C-
modification since the role language corresponding to A was empty. In the
second step, we could have applied a C-modification, removing ¢ from the
role language corresponding to A in ¢(X;). Then, however, the system M’
obtained this way would not have been solvable. In fact, it is easy to see
that the two matching problems A MV{r,s}. L =" X, NVr.X, NVr.X; and
V{r,s}.1 C? X, occurring in M’ cannot be solved simultaneously.

Modifications in FL |

In the following definition, modifications in FL, are defined formally. Recall
that in our matching problem M := (C =" D, {X; p, E; |1 < j < (}), C'is
assumed in U-labeled reduced normal form and D is assumed in V-labeled
normal form. Furthermore, for the k-th side condition X}, pi E}., the concept
description Ej, is assumed in V**-labeled normal form. Let oy denote the
substitution computed in Step 2 of the algorithm and denote by o} (t > 1)
the respective modification computed in Step 4. Denote by o411 the solution
of MATCH%M(M ") computed in the ¢-th iteration of the algorithm. For every
t and for every variable Xy, assume o,(X}) in UbXk-labeled reduced normal
form. In the following definition, modifications need not be defined for the
first side condition, because the acyclic structure implies that F; contains no
variables.

Definition 49 Guessing modifications in FL |

Let H={1}UC and let k € {2,...,0}, where p, = C. Consider a reduced
substitution oy with oy(Xy) = o4(Fg). A modification o, of o, is defined by
executing one of the following alternatives:

e | -modification
(Non-deterministically) guess one word i € UY™*. Forallj € {1,..., k—
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1}, compute
wi= ] w'{a}
wevffj’“

Thus, Wi contains all suffizes of u which yield u in the product VjX’f-
Wi Define o} by specifying the relevant role languages UZ’Xj for H €
{L}UC, i.e. denote every o'(X;) in UYi-labeled normal form.

1 U = b\ W u (Ut nwd)-Ng

2. For all A € C, define: U :=UY U (Wi nUYY)

e C-modification X X
(Non-deterministically) guess one atomic concept A € C. For A, guess
one word U € UZ’X’“. Using @, for all j € {1,...,k — 1} compute
W = Uwev)fk w™'-{a}. Then define:

UZ,XJ- — UZ’XJ' \ W and Up™ :=UY for all H e {1} UC\ {A}.

Soundness and completeness for FL£, and FL- is proved in Section 4.4.
NP-completeness is proved in Section ??7. We give two more examples in
order to show that i) modifications deleting only one word do not always
suffice and ii) matching in Step 4 of the algorithm MATCHY is necessary. For
our examples, let No = {A} and Np = {R, S}.

Example 50 Consider the matching problem
V{rrr,rrs,rs,srry. LOY{rr,sr}. A = Vrr. X, OVsr. X, OVr. X3 NV X,
under the following set of subsumption conditions.
{X, " VY{r,s}.1,
X, C? V{rs,s}. X NVr.Xs,
X, C' Vs. L NV{e,7}.X3}
Executing algorithm MATCH][%L yields as initial solution o in Step 2
{X1 = V{r, s} LNOV{e}.A,
Xo—=Vr. LM V{€}A,
X3 = V{rr,rs,s}. L MVr.A,
Xy = Y{rr,rs,s}.LOVr.A}.
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which violates the third side condition, as the test in Step 3 shows: o(Xy)
is equivalent to o(Vs.L MVY{e,r}.X3). In Step 4, we choose a L-modification
and pick the word rs from the role language {rr,rs,s} corresponding to
L in o(X,). Hence, we have W} = {rs, s}, according to the definition
of L-modifications. Thus, rs and s must be changed in the role language
corresponding to L in o(X3). The modified solution ¢’ now yields

o' (X3) =V{rr,rsr,rss,sr,ss}. LIV{r,rs,s}.A,

while the other variables remain unchanged. We find that o’ solves the
matching problem M’ in Step 4, and thus MATCH%ZL(M’) yields o.

In the second iteration we find in Step 3 that the second side condition
is violated, since o(X3) is equivalent to o(V{rs, s}.X; MVr.Xy). We choose a
C-modification and pick the word rs from the role language {r,rs, s} corre-
sponding to A in o(X3). This yields W} = {¢} and W3 = {s}. Nevertheless,
the role language {¢} corresponding to A in o(X3) does not contain the word
s, while {e} corresponding to A in ¢(X) obviously contains . We therefore
have

o' (X1) =Y{r,s}.L,

while the other variables remain unchanged. Again o’ solves the matching
problem M’ in Step 4, so that we have ¢’ as new substitution o. In the third
iteration, we now find in Step 3 that the first side condition holds, so that
the final result is the following.

{X1— Y{r,s}.L,
Xy = Vr.Lnv{e}. A,
X3 = V{rr,rsr,rss,sr,ssh. L OV{r rs,s}.A,
Xy = Y{rr,rs,s}. L Vr.A}

A closer examination reveals that for the third side condition, neither picking
any word other than rs from {r,rs, s} in the | -modification, nor performing
a C-modification would have been successful. Similarly, in the second side
condition only a C-modification is successful. Nevertheless, here we could
have picked the word s instead of rs, which would not have altered the
solution, though.

The previous two examples might raise the question whether or not solv-
ing the matching problem M’ in Step 4 of every iteration of the the algorithm
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MATCH]':_ZL is necessary at all. The following example shows that there are
cases where matching is needed.

Example 51 We examine the matching problem
V{rrr,rrs}. LOVrr.A =" Vrr. X, AV Xy, N X3 1 X,
under the following set of subsumption conditions.

{X5 =T Vrr. X, OV Xy,
X, C' X3}

Executing algorithm MATCH]E%L again begins by computing an initial solution
o in Step 2, yielding the following substitution.

{X1—=Y{r,s}.LMA
Xo = Y{rr,rs}. L MVr.A,
X3 = Y{rrr,rrs}. L 1V{rr}.A,
Xy = Y{rrr,rrst. LOV{rr}.A}

Obviously, in Step 3 we find that the second side condition is violated, making
it necessary to modify the role languages of o(X3), so that o(X3) C o'(X3).

Nevertheless, for the initial solution o we also find that the first side
condition is violated as well, since o(Xj3) is equivalent to o(Vrr.X; M Vr.X,).
As a consequence, any successful modification will result in a substitution
o' with ¢'(X3) # o' (Vrr.X; MVr.Xy). Hence, o' can be no solution to the
matching problem M’ in Step 4.

The above examples may suffice to give a rough impression of the algo-
rithm MATCH%, . We now introduce modifications for FL-.

Modifications in FL_

The modification strategy for MATCHE, differs from the previous definition
for FL, in three ways. Here, inconsistencies can not only be introduced by
role languages referring to the _L-concept, but also by interactions between
role languages referring to an atomic concept A and its negation —A.
Consequently, removing the set Wi from role languages referring to the
L-concept alone does not suffice for |-modifications. Furthermore, a |-
modification can no longer add the intersection W{ N UEX" to every role
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language of the form U5, where H # L. In this case, W’ N U™ would
appear in U;’Xj as well as in Ui’fj for every A € C, rendering the removal from
all role languages referring to the I -concept useless. For | -modifications in
FL_,, we non-deterministically choose a subset of W7{ N Uin to be added to
the role languages of the form U;’[Xj.

For C-modifications, the non-deterministic choice of an atomic concept A
must be generalized to all concepts in CU {—A | A € C}. With these two
changes we obtain the following definition for modifications in FL_.

Definition 52 Guessing modifications in FL-,
Let H={L}UCU{=A|AecC} and let

X, 1w 0 h v X,
P ogew H j=1 X

Ey,

be the k-th side condition in an FL_-matching problem with strict acyclic side
conditions over the variables { Xy, ..., X,}, where H € H and 1 < k < (. We
again consider a reduced substitution o, with o(Xy) = 04(Ey), where every
01(X;) is denoted in U"i-labeled normal form. A modification o, of oy is
defined by executing one of the following alternatives:

e | -modification
(Non-deterministically) guess one worda € UY™ . Forallj € {1,..., k—
1}, compute

wi= ] w'{a}
wEV;;jk
Thus, Wi contains all suffizes of u which yield u in the product VjX’“-

Wi Define o} by specifying the relevant role languages UZ’Xj for H €
{L}UC, i.e. denote every o’'(X;) in UYi-labeled normal form.

/t,X]‘

L UMY = U\ W) UUTY nWi)Ng

2. For all H € H\ {L}, (non-deterministically) choose a subset
Wi C Wi nUN . Then define:
U™ =(U\ (U5 n U 0 W)U
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e C-modification A
(Non-deterministically) guess one atomic concept H € CU{=A [ A €
C}. For H, guess one word i € U;X’“ Using , for allj € {1,...,k—1}
compute W7 = UwEV;(jk wt{a}. Then define:

H

Ui = Uy for all He M\ {H}.

Ut = U\ W and

In the next section we will prove the algorithms MATCH%. and MATCHZ,.

to be correct. Knowing that the algorithm MATCH% always terminates it is
easy to see that termination also holds for MATCH, where a fixed number of
matching problems under subsumption conditions are solved. For this reason
we do not need to address the question of termination separately.

4.4 Soundness and completeness

With a formal definition of modifications, we are now ready to prove sound-
ness and completess of the algorithm. We first address the case £L = FL, .

Soundness and completeness in FL |

In preparation, we need to introduce some notation which simplifies denoting
the role words assigned to a concept pattern for some atomic concept.

Definition 53 Notation
Let E be an FL | -concept pattern in V-labeled normal form over the role
alphabet Ng and the set X of variables, i.e.

HeH XeX

where H := {L} UC. For a substitution o and for all X € X, denote o(X)
in UX -labeled normal form. For every H € H, define

o(B)lr=UsU |J Vx-Uj
Xex
With the above notation, we can write o(E) as Vo (E) |L.J_|_|A|_|c Vo (E)|4.A.
3

It is shown next that the modification strategy defined for FL, in Defini-
tion 49 does produce a strict solution for the relevant side condition. Hence,
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if for some side condition X, 7 Ej, occurring in a solvable matching problem
it holds that o;(X;) = 0(E)), then there is a modification yielding o C o’
and o'(Xy) C o} (Eg).

Lemma 54 Strictness of modifications in FL |

Let o be a reduced solution to M, let oy be a reduced substitution with
01 (Xy) = o4(Ey) for some k € {2,...,0} with pp, = C. Let oy, C o-. Then
(non-deterministically) modifying o, to o} yields o T o' and o}(Xy) T o,(Ey).

PROOF. Two steps are sufficient to prove the claim: i) every modification in
accordance with Definition 49 yields o C ¢’ and ii) there exists a modification
such that oy(Xy) C o] (Ey).
i) L-modification: For every choice of & and for every j it holds for o}
that
UL Njp = UL N\ W,

X .

implying UiX"-NI*2 > UM .N;,. For every A € C the inclusion WY C UEX"

furthermore implies
Ut uutNi Ny DU u Ut NG

because every word possibly gained by UZ’Xj is contained in Uin -Nj,. Conse-
quently, we obtain o, C o;. The second part of the claim, which is addressed
below in (ii), is sufficient for strictness.

C-modification: The only difference between o; and oy is the deletion of
words in role languages referring to an atomic concept A e C. 1t is therefore
not difficult to see that o, C o} holds.

ii) We now present a guessing strategy to find a modification ¢’ with
0,(Xg) C o;(Fy). To this end, two cases are distinguished.

(Case 1): 04(Ey) and o-(E}) disagree on the L-languages, i.e.

U™ Np = 0lBw)| Ny D 0 (Bi)liNp.

Thus, there are & € U™* and # € N} such that @z does not occur on
the right-hand side of the inclusion. Consequently, @ & o (Ej)|-Nj. Con-
struct ¢’ by a L-modification, picking one word @ as introduced above. By
definition, we then have

UMY = @\ W U (U N W) Ng,
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where W/ = Uwev)f_k w™{a}.

(Case 2): at(Ek)] and o-(E}) agree on the 1-languages in the sense that
U™ Ny, = 01(By)|1-Nj = o (Ey)| 1N,

As 0,(E},) C o (F}), this implies that there is an A € C and a word @, € U™
such that & & o-(FEy)|4. For the modification, choose A := A and use one
word ¢ as introduced above.

It is to show now that both in both cases we have o;(X}y) T o} (Ey).

In Case 1, the definition of W/ implies for the L-part of o’(E}) that

k—1
0 (Ex)| 1-Ng = 0u(Ey)| -Ng \ U V;?“Wi

j=1

The word @ occurs both in o, (FE))| - Nj and in at least one product V)?i’“Wi

Since U'"** = U and since U"**.N% = 0(Fy)| - N, we obtain
UL N D 0y(Ey)| 1Ny, (%)

This is sufficient for our claim, since we have shown in (1) that o, C 0.
In Case 2, the definition of o, ensures that for A we have

k-1
oy(B)li = o Bu)l i \ |J Vi, W
j=1
The word @ occurs in o,(E}y)| 4, since Ug’Xk = pf(ou(Ex)| 1) C ou(Ex)| 4, 3

and occurs in at least one product Vg’“-Wi, because otherwise 4 & o;(Ej)| 4.
Thus, @ & o,(E)| ;. We therefore obtain

ot(Ex)| 4 Y oe(Ep)| LN D 0y (Ep)| 4 U oy (Eg)| Ny,

The inclusion is strict, because otherwise 4 € oy(Ey)|.-N}, implying @ €
U“¥*.N% in contradiction to the reducedness of ;. Together with (1), this
concludes our proof.

3Recall that pf makes a formal language prefix free, as defined in Definition 18.
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It has to be shown next that a modification yielding o, is minimal in the
sense that no other modification 7 at the same time i) lies between o, and o
in respect to the strict ordering C on substitutions, i.e. if oy — 7 C o}, and
ii) also yields strictness for the respective side condition, i.e. o;(FE})) T 7(FE}).
This property justifies that in the algorithm MATCH%, no modification tries
to make o(X}) more specific when modifying a side condition X, = Ej with
0(X%) = o(Fy). The following lemma provides the necessary result, again
recurring to the matching problem as introduced at the beginning of this
section.

Lemma 55 Minimality of modifications
Consider a substitution T such that o, T 7 C o} and o4(Ey) T 7(E}).
Then, T = oy.

Proor. Without loss of generality, we may assume oy, 7, and o, to be re-
duced. Two cases are distinguished depending on whether o; was obtained
by a L- or a C-modification.

1-modification: Then there exists a word 4 € o;(F%)|, such that & ¢
0,(F)|L. There are two possible reasons for o;(Ey) T 7(E}) to hold:

Case 1: 04(Fg)|L-Nj, D 7(Fg)|L-Nj. Since 7 C oy, this implies that the
difference oy (Ey)|-Nj \ 7(E)| - Ny must be missing in o}(Ey)| - N}, as well.
But o,(Ey)|-Nj, was obtained from o,(E))|.-N}j, by removing as little as
possible to remove the word 4. Hence, in 7(E}))|.-N}, no other words could
have been removed, because otherwise either o}(FE})| - N}, would be too small
or 0y(Eg) C 7(Ej) could not hold. This implies 7(Ey)|-Ny = 0,(Ex)|L-Nj
For every A € C, we therefore have 7(E})|4 2 0}(Eg)|a. On the other hand,
we know that the L-modification has increased o}(E})|4 by Wi N Uin,
yielding o}(Ex)|a D 0;(Ex)|a. This implies 7(Ej)|a = 0j(Ek)|a, because
otherwise the 1 -modification would not have added all of Wi N Uin to the
role languages referring to A in all concept descriptions o;(X;). Together
with 7 C o7 and the reducedness of the substitutions this is sufficient for
T = o.

Case 2: 0y(Ey)|.-Nj, = 7(E))|.-Nj. Thus, i) there is some A € C such
that o.(Ex)|a D 7(Ek)|a a and ii) we have 7(Ey)| -Nj D o0,(Ek)|L-Nj, as a
consequence of the L-modification for o}. It can be shown that this implies
a contradiction with 7 C o}, because 7(FE}))|4 contains not enough words for
T(Ex)|aUT(Eg)| LNy 2 7(Eg)|aUT(Ek)|L-Nj to hold, which is a necessary
condition, as seen in the characterization of subsumption.
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C-modification: Then there exists an A € C and a word @& € oy(Fy)|
such that @ & o;(Fy)|.. For 7, we again have two cases to distinguish:

Case 1: oy(Ey)|-Nj D 7(Ek)|L-Nj. This implies a contradiction with
the fact that the C-modification did not alter role languages in o; referring
to the L-concept, which implies oy(Ej)|-Ny = o(Eg)|1-Nj. Together with
T(Ex)|L-Ny, 2 0,(Ey)|1L-Ny, this forbids the assumption of Case 1.

Case 2: o0y(Ek)|1-Ny, = 7(Eg)|L-Nj. Again, this implies some A € C
such that o;(Eg)[a D 7(Ek)|a. Since we know that 7(Ey) C o}(FEx) and
since the C-modification is the only difference between o,(E)) and o} (E})),
we can conclude that A = A. On the one hand one can see that as few as
possible words are removed in o}(E})|4 to gain strictness while on the other
hand 7(Eg)|a 2 0;(E%)|a. Together with 7 C o] and the reducedness of the
substitutions we get 7 = o;. i

We are now prepared to prove soundness of the algorithm MATCH%-LL. To
this end, we need to make sure that side conditions remain valid once they
are modified appropriately.

Lemma 56 Soundness
1. For every t and for every modification of o, yielding o} it holds that if
MATCH%—LL(Z\/[’) succeeds in Step 4 of the algorithm, then
i) 0u(X;) = op1(X;) for every j € {k,..., (}
i) oy C 0y C opyn-

2. If MATCHY, (M) returns the substitution o, then o solves M (soundness).

PROOF. 1. i) According to Definition 49, for j € {k,..., ¢} the substitu-
tion o, assigns the same values to every variable X; as o, does. Due to
Lemma 54, the right-hand side of every side condition can only become
more general. Consequently, every value assigned to variables X} to
X, by o is also a solution for the matching problem defined for o, .
Exploiting the minimality of MATCH% and the assumption of reduced
normal forms concludes the argument.

ii) It was shown in Lemma 54 that o, C o} holds for every modification
o;. Subsumption o; C o041 obviously holds because of the matching
problems modulo subsumption {o}(X;) C° X;|1 < j < ¢} which are
included in the matching problem M’ for oy ;.
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2. Assume that MATCHT(M) = o. Hence, o is the solution of a matching
problem solved in Step 2 or Step 4 of the algorithm. In both cases,
obviously C' =° D holds. Furthermore, the initial solution computed
in Step 2 also respects St, where every side condition from M is non-
strict. If the execution of the algorithm has succeeded, then in every
iteration from ¢ to 1 either the k-th side condition was found valid
in Step 3 or guessing a modification in Step 4 has succeeded. Tt is
obvious that in both cases every strict subsumption condition under
consideration has been met in the respective iteration.

As St is acyclic, we find as a consequence of Part (1) that once a
side condition is met it remains valid in subsequent iterations of the
algorithm. This holds for two reasons: i) the variables not modified by a
modification o; remain unchanged in o7, ; and ii) the variables which are
modified are assigned more general concept descriptions. Consequently,
if every iteration is successful, then finally every side condition is met
by the resulting substitution o. |

In order to prove completeness, it is sufficient to show that the algorithm
MATCHZ, (M) successfully returns a solution if the input matching problem
M is solvable.

Lemma 57 Completeness

Let o be a reduced solution to M.

1. Then for every t there exists a modification for oy yielding o}, such that:
i) If o} C o then oyyq C 0.
ii) o, C or

2. MATCH%. (M) returns a substitution o which solves M (completeness).

PrROOF. 1. i) Presupposing o} C o it is not difficult to see that o is
also a valid solution to the matching problem defined in the algorithm
for 04,1. The additional requirements for o, are {o}(X;) C* X;|1 <
j < £} which are met by o~ due to o, C o-. The minimality of the
matching algorithm MATCH%-EL then guarantees that o,y C o-.

ii) For every j € {1,...,(}, denote o-(X;) in U~"i-labeled normal
form. Proof by induction over ¢.

(t = 0): Again, we begin by considering a | -modification as introduced
in the second part of Lemma 54. Due to the minimality of MATCH]E_ZL
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it holds that oy C o-. This implies UE’X"-N}‘% D UE’X]'-N;‘%. As i &
o= (Fx)|L-Np, no product UE’Xj-N,"‘2 contains words from W7. Since
UPN NG, = UPYNNG \ W we obtain U N3 D UT™Y N, which
is the first condition for subsumption.

For A € C, a L-modification obviously guarantees that U5 C U™,

We also know from (i) that UE’XJ'-N}*% 2 U'f’Xj-N}*z. As 0y C or implies

X

Uyt uUTY Ny DU UUTY NG, (%)

we may replace Ug’Xj by U;?’Xj . Now, why may we also replace the

product UE’Xj -N}, by the—smaller—language U'f’Xj ‘N7 The language
U'f’X"-]\fli‘2 does not contain a word from W/. We already know that
UE’Xj -N}, does not either, so the only problem could be UE’X" contain-
ing words from W9 . But since U, is defined as U™ U(UTY nW),
this case is covered. This completes the proof for |-modifications.

For C-modifications, we only have to consider the second condition for
subsumption, because role languages referring to the bottom concept
remain unchanged. For all A # A, nothing changes as well. For A,
only those words of U™ are missing in Uy which do not occur in
UE’Xj also. Consequently, starting from equation (x) again we obtain
the result sought.

(t + 1): The induction hypothesis states that o; C o-. Due to (i),
this implies 0,41 C o-. With these findings the remaining proof is
analogous to the previous case ¢ = 0.

2. If M is solvable, the matching problem (C =" D,Sc) computed in
Step 2 of the algorithm is solvable as well. Furthermore, we know
from Theorem 43 that the solutions computed by MATCH%-EL are least
matchers with respect to the ordering C on substitutions. Hence, for
the initial solution o it holds that ¢ C o-. Inductively, we can now
exploit the results of Lemma 54 and Part (1): Lemma 54 guarantees
that the modification probably necessary in the first iteration of the
algorithm succeeds. According to (ii), for the first modification o} we
also have o] C o, which by (i) implies 09 C o-. If oy does not solve
M, then obviously we have 0o [ o-. Hence, in the next iteration we
can inductively apply the same argument.
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Consequently, we end up with a successful computation yielding a so-
lution o with o C o-.

As a consequence of the previous lemma, all minimal matchers (w.r.t.
subsumption of substitutions) are computed. This can be readily seen when
using a minimal solution o in the previous lemma, which then implies that
the solution computed by MATCH%M is equivalent to o-.

Soundness and completeness in FL_

In FL_-concept descriptions, inconsistencies can additionally be introduced
by words occurring in role languages referring to an atomic concept and to its
negation. We need to alter the notation o(F)|y introduced in the previous
part in order to respect this effect for H = L.

Definition 58 Notation
Let E be an FL_-concept pattern in V-labeled normal form over the role

alphabet N and the set X of variables. For a substitution o and for all
X € X, denote o(X) in UX -labeled normal form. Then, define

o(E)|L=U.U U Vx-UF U U ( U (Vx-UF)N U (VX'Ui(A))

XeXx AeC Xex Xex

In Lemma 59 we could prove for every possible modification o} that o, C
o;. In case of FL-, this is no longer possible, because we depend stronger
on the properties of a strict solution or. In the followng lemma we therefore
begin by specifying a guessing strategy relative to o-.

Lemma 59 Strictness of Modifications in FL-

Let o~ be a reduced solution to M, let o; be a reduced substitution with
0i(Xx) = oy(Ey) for some k € {2,...,0} with pp = C. Let oy = o-. Then
(non-deterministically) modifying o, to o} yields o C o' and 0,(Xy) C o,(Ey).

ProOF. We show that there exists a modification in accordance with Defi-
nition 52 such that o C ¢’ and 0;(X}) = o0;(Ex). To this end, we present a
guessing strategy to find an appropriate modification o', distinguishing two
cases.

(Case 1): 0y(Ey) and o-(E}) disagree on the L-languages, i.e.

UL Ny, = ou(Bw)| N D or(Ee)|-Ny.



4 MATCHING UNDER GENERAL SIDE CONDITIONS 66

This situation is analogous to the case FL,, because the left-hand side of
the equation is reduced, which forbids inconsistencies being introduced by
interactions of atomic concepts and their negations. It is therefore sufficient
to restrict the choice of @ to the role language UEX’“. Hence, we again con-
struct ¢’ by a L-modification, picking one word @ as introduced above. By
definition, we then have

UMY = @\ W U (U N W) Ng,

where W/ =

J
for the second part of the L-modification. For every j € {1,...,k — 1} and
for every H € H \ {_L}, choose as W7 the intersection U~ N W7 . Hence,

wevYE w~'-{4}. Nevertheless, an additional guess is necessary
.

t,X;

Ui = (U U U nw))u U™ uwd)

(Case 2): This case is analogous to the guessing strategy for modifications
in FL, . If 0,(F)) and o-(E}) agree on the |-languages, we again have

U N} = 0y(Ey)|1-Nj = o (Ey)| 1 -Ni

As 0y(Ey) C o (FEy), this implies that there is an A € C and a word @ € U’
such that @& & o—(Fy)|4. For the modification, choose A := A and use one
word 4 as introduced above.

In Case 1, we again find that

k—1
01(Ee)|1-Nj, = 0u(Be) [ -Np \ [J V-,

j=1
Following the same argument as employed for FL,, we furthermore obtain
UP N D 0y(Eg)| 1N,

which is a necessary condition for the strict subsumption oy(Ey) C o' (E}).
The second second condition for subsumption remains to be shown, i.e.:

U WU 2 0! (Bl U oy (F)| 1%

for all H € H\ {L}. Note that the substitution o is assumed reduced, which
makes it possible to use the role language Uf’X’“ instead of Uf’X’“, as seen in
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the characterization of the subsumption. We can show the above inclusion
by exploiting the fact that o; T o-. Since after removing inconsistencies
from the relevant role languages only the intersection U E’Xj UW{ was added
to the role languages Ug’Xj, it is not difficult to see that o C ¢’ holds as well.
In Case 2, the proof is analogous to that for L |, because the C-modification
for FL_, also only removes words from role languages U;}Xj, where H €

H\{L}). |

Minimality of the modifications can be shown similar to the proof for
FL . The possibility of inconsistencies introduced by role words referring to
negated atomic concepts thereby is hidden by the notation defined in Defi-
nition 58. With this prerequisite, the proof works analogous. Furthermore,
Lemma 56 only depends on the facts i) that in the modification of o;(E}) the
variables in {X}, ..., X;} remain unchanged, ii) that MATCH%_-EL computes
least matchers w.r.t. the ordering C on substitutions and iii) that modifica-
tions are successful for a solvable matching problem. These facts also hold
for FL-, as we have already seen. Consequently, the proof of soundness of
the algorithm MATCHY,_ is identical to Lemma 56.

Part (i) in the proof of completeness for £, (Lemma 57) again only relies
on the minimality of the algorithm MATCH%—LL, so that the same argument
can be used for FL_. It can also be shown that (ii) is valid for modifications
in FL-, i.e. we always have o; C 0. As seen in the second part of Lemma 57,
these findings—in addition to the minimality of matching under subsumption
conditions—are sufficient to show completeness.

It is easy to see that the length of each computation branch of the nonde-
terminstic algorithm MATCHY is polynomially bounded. Because matching
under strict subsumption conditions in F£, and FL_ is known to be NP-
hard, we obtain the following theorem.

Theorem 60 Let L € {FL,,FL.}. Deciding the solvability of L-matching
problems under general side conditions is an NP-complete problem.
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