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Abstrat

Whereas mathing in Desription Logis is now relatively well-

investigated, there are only very few formal results on mathing under

additional side onditions, though these side onditions were already

present in the original paper by Borgida and MGuinness introduing

mathing in DLs. The present report loses this gap for the DL ALN

and its sublanguages.
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1 INTRODUCTION 1

1 Introdution

The traditional inferene problems (like subsumption) in desription logis

(DLs) are now well-investigated, whih means that there exist omplexity

results and algorithms for a great variety of DLs of di�ering expressive power

[9℄ as well as optimized implementations of the algorithms for expressive

DLs [11℄. In ontrast, mathing onepts against patterns is a relatively new

inferene problem in DLs, whih has originally been introdued in [6, 13℄

to help �lter out the unimportant aspets of large onepts appearing in

knowledge bases of the Classi system [8℄. More reently, mathing (as

well as the more general problem of uni�ation) has been proposed as a

tool for deteting redundanies in knowledge bases [3℄ and to support the

integration of knowledge bases by prompting possible intershema assertions

[5℄.

All three appliations have in ommon that one wants to searh a large

knowledge base for onepts having a ertain (not ompletely spei�ed) form.

This \form" an be expressed with the help of so-alled onept patterns, i.e.,

onept desriptions ontaining variables. For example, the pattern D :=

X u8hild:(Y uFemale) looks for onepts that restrit the hild role to �llers

that are Female, suh as the onept C := (� 1 hild)u8hild:(FemaleuRih).

In fat, applying the substitution � := fX 7! (� 1 hild); Y 7! Rihg to the

pattern D yields a onept equivalent to C, i.e., � is a solution (mather) of

the mathing problem C �

?

D.

1

This type of mathing problems has been investigated in detail for sub-

languages of the DLs ALN and ALE in [2℄ and [1℄, respetively. In partiular,

it was shown that, for sublanguages of ALN , solvable mathing problems

always have a least mather (w.r.t. subsumption), whih an be omputed in

polynomial time. For sublanguages of ALE , deiding solvability of mathing

problems modulo equivalene is already NP-omplete.

In [6, 13℄, the expressivity of mathing problems was further enhaned

by allowing for additional side onditions on the variables (through the as-

onstrut): a (strit) subsumption ondition is of the formX v

?

E (X �

?

E)

where X is a variable and E a pattern, and it restrits the mathers to

substitutions satisfying �(X) v �(E) (�(X) � �(E)). Using a subsumption

ondition, the mathing problem of the above example an be written more

1

We restrit our attention to suh mathing problems modulo equivalene sine math-

ing modulo subsumption, as introdued in [6℄, an be redued to mathing modulo equiv-

alene [2℄.
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intuitively as X u 8hild:Z �

?

(� 1 hild) u 8hild:(Female u Rih) under the

subsumption ondition Z v

?

Female. One result of this paper is that also

more omplex sets of subsumption onditions do not extend the expressive

power of mathing problems (see below). However, they are often more

onvenient to state. In ontrast, strit subsumption onditions annot always

be simulated by pure mathing problems. They an, e.g., be used to avoid

trivial mathes. For example, the pattern D

0

:= X u 8hild:Y mathes every

onept sine 8hild:> � > (where the top onept > stands for the set of all

individuals). The additional strit subsumption ondition Y �

?

> ensures

that we an only math onepts with a real restrition on hild.

The �rst (rather restrited) formal results on mathing under side ondi-

tions were given in [2℄: it was shown that mathing under strit subsumption

onditions in the small DL FL

0

is already NP-hard, and that mathing under

so-alled ayli subsumption onditions an be redued to mathing with-

out side onditions. However, [2℄ does not give a omplexity upper bound for

mathing under strit subsumption onditions and the redution for ayli

subsumption onditions given there is exponential.

This paper investigates in detail mathing under side onditions in sublan-

guages of ALN . We will show that mathing under subsumption onditions

an be redued in polynomial time to mathing without side onditions. In

partiular, this implies that solvable mathing problems under subsumption

onditions in sublanguages of ALN always have a least mather, whih an be

omputed in polynomial time. For strit subsumption onditions, mathing

is shown to be NP-omplete in the sublanguages FL

?

and FL

:

of ALN .

2 Desription logis

2.1 Syntax and semantis

Conept desriptions are indutively de�ned with the help of a set of on-

ept onstrutors, starting with a set N

C

of onept names and a set N

R

of role names. In this paper, we onsider onept desriptions built from

the onstrutors shown in Table 1. In the desription logi FL

0

, onept

desriptions are formed using the onstrutors top-onept (>), onjuntion

(CuD), and value restrition (8r:C). The desription logi FL

?

additionally

provides us with the bottom onept (?), and FL

:

also allows for primitive

negation (:P ). Finally, ALN extends FL

:

with number restritions (� n r)
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Syntax Semantis FL

0

FL

?

FL

:

ALN

> �

I

x x x x

C uD C

I

\D

I

x x x x

8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g x x x x

? ; x x x

:P , P 2 N

C

�

I

n P

I

x x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

(� n r), n 2 N fx 2 �

I

j #fy j (x; y) 2 r

I

g � ng x

Table 1: Syntax and semantis of onept desriptions.

and (� n r) (see Table 1).

As usual, the semantis of onept desriptions is de�ned in terms of an

interpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set and the

interpretation funtion �

I

maps eah onept name P 2 N

C

to a set P

I

� �

I

and eah role name r 2 N

R

to a binary relation r

I

� �

I

��

I

. The extension

of �

I

to arbitrary onept desriptions is de�ned indutively, as shown in the

seond olumn of Table 1.

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription

C is subsumed by the desription D (C v D) i� C

I

� D

I

holds for all

interpretations I; C and D are equivalent (C � D) i� they subsume eah

other; C is stritly subsumed by D (C � D) i� C v D and C 6� D. For all

DLs listed in Table 1, subsumption an be deided in polynomial time using

a strutural subsumption algorithm [7℄.

2.1.1 A normal form for onept desriptions

It is easy to see that any FL

?

-onept desription an be transformed into

an equivalent desription that is either > or a (nonempty) onjuntion of

desriptions of the form 8r

1

: � � � 8r

m

:A, where r

1

; : : : ; r

m

are m � 0 (not

neessarily distint) roles, and A is the bottom onept ? or a onept name.

We abbreviate 8r

1

: � � � 8r

m

:A by 8r

1

: : : r

m

:A, where r

1

: : : r

m

is viewed as a

word over the alphabet N

R

of all role names. If m = 0, then this is the empty

word ", and thus 8":A is our \abbreviation" for A. In addition, instead of

8w

1

:Au : : :u 8w

`

:A we write 8L:A where L := fw

1

; : : : ; w

`

g is a �nite set of

words over N

R

; we de�ne 8;:A � >. Using these abbreviations, any FL

?

-



2 DESCRIPTION LOGICS 4

onept desription C ontaining only onept names in the �nite set C � N

C

an be written as

C � 8U

?

:? u u

A2C

8U

A

:A

where U

H

for H 2 C [ f?g are �nite sets of words over N

R

(alled role

languages). This representation of C will subsequently be alled its U-labeled

normal form.

As an example onsider the FL

?

-onept desription C

ex

:= 8r:(? u

8r:?) u 8r:8s:A u 8s:A. Its FL

0

-normal form C

0

ex

is 8fr; rrg:?u 8frs; sg:A.

Similar normal forms exist for onept desriptions in FL

:

and ALN .

In FL

:

, an additional role language for every negated atomi onept is

neessary; normal forms in ALN require an additional role language for every

negated atomi onept and one for every number restrition.

2.1.2 Charaterization of subsumption

Normal forms as introdued in the previous setion an be used to hara-

terize subsumption of onept desriptions. The relevant results for ALN

and its sublanguages are provided in [2℄. For FL

?

, we obtain the following

lemma:

Lemma 1 Charaterization of subsumption in FL

?

Let C and D be FL

?

-onept desriptions. Let C be in U-labeled normal

form and let D be in V -labeled normal form. Then, C v D i� the following

two onditions hold:

1. U

?

�N

�

R

� V

?

�N

�

R

2. U

A

[ U

?

�N

�

R

� V

A

[ V

?

�N

�

R

for all A 2 C.

In preparation of the haraterization of subsumption in FL

:

and ALN ,

we need to introdue the notion of exluding words.

De�nition 2 Exluding words

Let C be an FL

:

-onept desription in U-labeled normal form. Let D be an

ALN -onept desription. For C, de�ne the role language

b

U

?

as follows:

b

U

?

:= U

?

[

[

A2C

(U

A

\ U

:A

)

For D, the set of D-exluding words is de�ned by:

E

D

:= fw 2 N

�

R

j D v 8w:?g
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It an be shown that E

D

=

b

U

?

�N

�

R

for every FL

:

-onept desription

D in U -labeled normal form. Hene, in this ase the notion of exluding

words an be haraterized by

b

U

?

. We shall see in De�nition 32 that a

haraterization of exluding words for ALN -onept desriptions is more

omplex. Subsumption of FL

:

-onept desription an be haraterized as

follows.

Lemma 3 Charaterization of subsumption in FL

:

Let C and D be FL

:

-onept desriptions. Let C be in U-labeled normal

form and let D be in V -labeled normal form. Then, C v D i� the following

two onditions hold:

1.

b

U

?

�N

�

R

�

b

V

?

�N

�

R

2. U

A

[

b

U

?

�N

�

R

� V

A

[

b

V

?

�N

�

R

for all H 2 C [ f:AjA 2 Cg

Subsumption in ALN was haraterized by K�usters in [12℄, yielding the

following result.

Lemma 4 Charaterization of subsumption in ALN

Let C;D be ALN -onept desriptions. Let C be in U-labeled normal form.

Let D be in V -labeled normal form. Then C v D i� all of the following

onditions hold.

1. E

C

� E

D

2. U

A

[ E

C

� V

A

[ E

D

for all A 2 C

3. U

:A

[ E

C

� V

:A

[ E

D

for all A 2 C

4.

S

m�n

U

(�mR)

[E

C

�

S

m�n

V

(�mR)

[E

D

for all (� nR) 2 N

�

with n � 1

5.

S

m�n

U

(�mR)

[ E

C

�R

�1

�

S

m�n

V

(�mR)

[ E

D

�R

�1

for all (� nR) 2 N

�

Note that two onept desriptions are equivalent if they subsume eah

other. In order to haraterize equivalene it is therefore suÆient to replae

all (�)-relations by (=) in the above four lemmae.

2.2 Mathing in desription logis

In order to de�ne onept patterns, we additionally need a set N

X

of onept

variables, whih we assume to be disjoint from N

C

[ N

R

. Informally, an

ALN -onept pattern is an ALN -onept desription over the onept names

N

C

[ N

X

and the role names N

R

, with the only exeption that primitive
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negation must not be applied to variables. More formally, onept patterns

(denoted D;D

0

) are de�ned using the following syntax rules:

D;D

0

�! X j C j D uD

0

j 8r:D;

where X 2 N

X

, r 2 N

R

, and C is an ALN -onept desription. For example,

if X; Y are onept variables, r a role name, and A;B onept names, then

D := A uX u 8r:(B u Y ) is an ALN -onept pattern, but :X is not.

In analogy to the normal forms de�ned for onept desriptions, every

ALN -onept pattern D over a �nite subset X � N

X

of variables an be

written as

D � C u u

X2X

V

X

:X;

where C is an ALN -onept desription in V -labeled normal form. We all

this the V -labeled normal form of the onept pattern D. The notion of a

pattern, the normal form (and also the notions \substitution" and \mathing

problem" introdued below) an be restrited to sublanguages of ALN in the

obvious way.

A substitution � is a mapping from N

X

into the set of all ALN -onept

desriptions. This mapping is extended to onept patterns in the usual

way by replaing the ourrenes of the variables X in the pattern by the

orresponding onept desription �(X). For example, if we apply the sub-

stitution � := fX 7! AuB; Y 7! Ag to the pattern D from above, we obtain

the desription �(D) = A u A u B u 8r:(B u A). The result of applying a

substitution to an ALN -onept pattern is always an ALN -onept desrip-

tion. Note that this would no longer be the ase if negation were allowed in

front of onept variables.

Subsumption an be extended to substitutions as follows: the substitution

� is subsumed by the substitution � (� v �) i� �(X) v �(X) for all variables

X 2 N

X

.

De�nition 5 Let C be an ALN -onept desription and D an ALN -onept

pattern. Then, C �

?

D is an ALN -mathing problem. The substitution � is

a solution (mather) of C �

?

D i� C � �(D).

In the following, we will abbreviate a mathing problem of the form C �

?

C u D as C v

?

D. This notation is justi�ed by the fat that � solves

C �

?

C uD i� C v �(D).

A mathing problem an either be viewed as a deision problem, where

one asks whether the problem is solvable, or as a omputation problem, where
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one asks for atual mathers of this problem (if any). Although the ompu-

tation problem is usually the more interesting one, the deision problem an

serve as a starting point for the omplexity analysis. In general, mathing

problems may have several (even an in�nite number of) solutions, and thus

the question arises whih mather to ompute. Following [6, 2℄ we will here

onentrate on the problem of omputing a least mather (w.r.t. the ordering

v on substitutions).

Instead of a single mathing problem, we may also onsider �nite systems

fC

1

�

?

D

1

; : : : ; C

m

�

?

D

m

g of suh problems, whih must be solved simul-

taneously. As shown in [2℄, solving suh systems an, however, be redued

to solving the single mathing problem

8r

1

:C

1

u � � � u 8r

m

:C

m

�

?

8r

1

:D

1

u � � � u 8r

m

:D

m

where the r

i

are pairwise distint role names.

How to deide if a given mathing problem is solvable and how to ompute

least mathers has been addressed in [2℄ and [12℄. The next two subsetions

summarize the relevant results and reall some notions used in this ontext.

2.2.1 Solving the deision problem

In [2℄ and [12℄, mathing modulo equivalene in FL

?

, FL

:

and ALN is re-

dued to solving equations over formal languages, whih we will refer to as

solvability equations. By assigning appropriate values to the variables our-

ring in these equations the deision problem an be redued to testing ertain

formal languages for equality. The struture of the languages involved guar-

antees that this test an be done by �nite automata in polynomial time.

We begin by introduing solvability equations in FL

?

. Let (C �

?

D) be

an FL

?

-mathing problem, where C is in U -labeled normal form and D is in

V -labeled normal form.

De�nition 6 Solvability equations for (C �

?

D) in FL

?

U

?

�N

�

R

= V

?

�N

�

R

[

[

X2X

V

X

��

X

?

�N

�

R

(?)

U

A

[ U

?

�N

�

R

= V

A

[ U

?

�N

�

R

[

[

X2X

V

X

��

X

A

(A)

for all A 2 C.
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Solvability of the above system of equations is deided by assigning ap-

propriate formal languages to the ourring variables. The following lemma

spei�es these formal languages.

Lemma 7 Testing solvability in FL

?

The system of equations (?); ((A) j A 2 C) has a solution i�:

1. For every X 2 X , replaing the expression �

X

?

�N

�

R

by the set

b

L

X

?

:=

T

w2V

X

w

�1

�(U

?

�N

�

R

) solves Equation (?).

2. For every A 2 C and for every X 2 X , replaing the variable �

X

A

by the

set

b

L

X

A

:=

T

w2V

X

w

�1

�(U

A

[ U

?

�N

�

R

) solves Equation (A).

Hene, by inserting the languages spei�ed in the above lemma into the

referring solvability equations, we obtain variable-free formal language equa-

tions valid if and only if the original mathing problem is solvable. It is shown

in [2℄ that validity of these equations an be tested in polynomial time using

�nite automata.

Analogous results exist for FL

:

and ALN . Let (C �

?

D) be an FL

:

-

mathing problem, where C and D are in U -labeled and V -labeled normal

forms respetively. Then the relevant solvability equations are de�ned as

follows.

De�nition 8 Solvability equations for (C �

?

D) in FL

:

b

U

?

�N

�

R

= V

?

�N

�

R

[

[

X2X

V

X

��

X

?

�N

�

R

[

[

A2C

Int(A;:A)�N

�

R

(?)

U

A

[

b

U

?

�N

�

R

= V

A

[

b

U

?

�N

�

R

[

[

X2X

V

X

��

X

A

(A)

U

:A

[

b

U

?

�N

�

R

= V

:A

[

b

U

?

�N

�

R

[

[

X2X

V

X

��

X

:A

(:A)

for all A 2 C, where

Int(A;:A) :=

�

V

A

[

[

X2X

V

X

��

X

A

�

\

�

V

:A

[

[

X2X

V

X

��

X

:A

�

:

Note that in the solvability equations for FL

?

, Equation (?) was om-

pletely independent of role languages referring to atomi onepts A 2 C. For
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FL

:

this is no longer the ase, beause the onjuntion of an atomi onept

and its negation is inonsistent. For that reason, the expression Int is in-

luded in Equation (?). The following lemma provides a test for solvability

in FL

:

.

Lemma 9 Testing solvability in FL

:

The system of equations (?); ((A) j A 2 C); ((:A) j A 2 C) has a solution i�:

1. For every A 2 C and for every X 2 X , replaing the variable �

X

A

by the

set

b

L

X

A

:=

T

w2V

X

w

�1

�(U

A

[

b

U

?

�N

�

R

) solves Equation (A).

2. For every A 2 C and for every X 2 X , replaing the variable �

X

:A

by

the set

b

L

X

:A

:=

T

w2V

X

w

�1

�(U

:A

[

b

U

?

�N

�

R

) solves Equation (A).

3. For every X 2 X , replaing the expression �

X

?

�N

�

R

by the set

b

L

X

?

:=

T

w2V

X

w

�1

�(U

?

�N

�

R

) together with the assignments proposed in (1) and

(2) solves Equation (?).

Note that the third ondition requires \together with the assignments

proposed in (1) and (2)". This is neessary beause of the expression Int ,

by whih Equation (?) beomes dependent on the other assignments. For

ALN , we have to introdue some notation �rst. Let (C �

?

D) be an ALN -

mathing problem, where C and D are in U -labeled and V -labeled normal

forms respetively.

De�nition 10 The following tuples of variables are de�ned for the sake of

readability.

�

?

:= (�

X

?

j X 2 X )

�

C

:= (�

X

A

j X 2 X ; A 2 C)

�

:

:= (�

X

:A

j X 2 X ; A 2 C)

�

�

:= (�

X

(�nR)

j X 2 X ; (� nR) 2 N

�

)

�

�

:= (�

X

(�nR)

j X 2 X ; (� nR) 2 N

�

)

Denote by � an arbitrary assignment of �nite languages to the variables on-

tained in the tuples, i.e. �(�

X

H

) = L

X

H

for all X 2 X and H 2 f?g[C[f:A j

A 2 Cg [ N

�

[ N

�

=: H. Let � be the substitution orresponding to �, so

that for every X 2 X we have:

�(�

X

) = u

H2H

�(�

X

H

):H
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Denote by E

D

(�

?

; �

C

; �

:

; �

�

; �

�

) the set of exluding words obtained for D

relative to the assignment �. Thus, let

E

D

�

�(�

?

); �(�

C

); �(�

:

); �(�

�

); �(�

�

)

�

:= E

�(D)

;

yielding the set of �(D)-exluding words after assigning the ourring vari-

ables.

The above onstrut is neessary, beause the set of exluding words is

de�ned only for onept desriptions and not for onept patterns. Conse-

quently, we must assume some assignment of the onept variables ourring

on the right-hand side of the mathing problem. With these preparations,

the following solvability equations are provided.

De�nition 11 Solvability equations in ALN

With the notation of the above de�nition, de�ne the following formal language

equations.

E

C

= E

D

(�

?

; �

C

; �

:

; �

�

; �

�

) (?)

U

A

[ E

C

= V

A

[ E

C

[

[

X2X

V

X

��

X

A

(A)

U

:A

[ E

C

= V

:A

[ E

C

[

[

X2X

V

X

��

X

:A

(:A)

[

m�n

U

(�mR)

[ E

C

= V

(�mR)

[ E

C

[

[

X2X

V

X

��

X

(�nR)

(� nR)

[

m�n

0

U

(�mR)

[ E

C

�R

�1

= V

(�mR)

[ E

C

�R

�1

[

[

X2X

V

X

��

X

(�n

0

R)

(� n

0

R)

for all A 2 C, n 2 N n f0g, n

0

2 N, (� nR) 2 N

�

, and (� n

0

R) 2 N

�

.

Again, Equation (?) takes into aount role languages referring to other

onepts than the ?-onept. However, this property is syntatially hidden

in the onstruts E

C

and E

D

, whih are de�ned as fw 2 N

�

R

j C v 8w:?g

and analogously for E

D

, as introdued in De�nition 2.

Lemma 12 Testing solvability in ALN

Let

b

L

X

?

:=

T

w2V

X

w

�1

�E

C

. Then there exists a �nite set L

X

?

of polynomial

size in the input mathing problem with L

X

?

�N

�

R

=

b

L

X

?

.

2

The system of

2

As mentioned previously, this is shown in [2℄.
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equations (?); ((A) j A 2 C); ((:A) j A 2 C); ((� nR) j (� nR) 2 N

�

); ((�

nR) j (� nR) 2 N

�

) then has a solution i�:

1. For every X 2 X and A 2 C, replaing the variable �

X

A

by the set

L

X

A

:=

�

T

w2V

X

w

�1

�(U

A

[ E

C

)

�

n

b

L

X

?

solves Equation (A).

2. For every X 2 X and A 2 C, replaing the variable �

X

:A

by the set

L

X

:A

:=

�

T

w2V

X

w

�1

�(U

:A

[ E

C

)

�

n

b

L

X

?

solves Equation (:A).

3. For every X 2 X and (� nR) 2 N

�

, replaing the variable �

X

:A

by the

set L

X

(�nR)

:=

�

T

w2V

X

w

�1

�(

S

m�n

U

(�nR)

[ E

C

)

�

n

b

L

X

?

solves Equation

(� nR).

4. For every X 2 X and (� nR) 2 N

�

, replaing the variable �

X

:A

by

the set L

X

(�nR)

:=

�

T

w2V

X

w

�1

�(

S

m�n

U

(�nR)

[ E

C

�R

�1

)

�

n

b

L

X

?

solves

Equation (� nR).

5. For every X 2 X , replaing the variable �

X

?

by the set L

X

?

together with

the assignments proposed in (1){(4) solves Equation (?).

Observe that in the above onditions a �nite alternative to

b

L

j;?

is provided

and that

b

L

j;?

is subtrated from the other languages, thus produing poly-

nomially large languages as solutions to the equations. This is an immediate

onsequene of [2℄, where it was shown that the above solution languages an

be omputed in polynomial time.

2.2.2 Solving the omputation problem

Apart from testing solvability, [2℄ also proposes solutions to be assigned to the

variables ourring in a mathing problem and disusses their orretness and

omplexity in detail. The following lemma simmarizes the relevant results.

Lemma 13 Solving mathing problems

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let M be an L-mathing problem. Then

there exists an algorithm math

L

with the following properties.

1. math

L

(M) deides in polynomial time, whether the input mathing

problem M has a solution or not. If M is solvable, then math

L

(M)

in polynomial time in the size of M omputes a solution � whih is

minimal in regard to the ordering v on substitutions.
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2. math

L

does not introdue atomi onepts or number restritions

whih do not our in the input mathing problem M .

3. math

L

also aepts a �nite system of L-mathing problems.

Proof. 1. It remains to be shown that omputing the atual solution to

a solvable mathing problem also requires only polynomial time.

Solution in ALN : To show this for ALN -mathing problems, we an

refer to results provided in [2℄. It is shown that the languages L

X

�

used

for the solvability test in Lemma 12 in fat are least solutions to the

mathing problem, whih an be omputed in polynomial time by �nite

automata. Therefore, a solution � with the desired properties an be

de�ned by assigning

X 7�! 8L

X

?

:? u u

A2C

8L

X

A

:A u u

A2C

8L

X

:A

::A

u u

(�nR)2N

�

8L

X

(�nR)

:(� nR) u u

(�nR)2N

�

8L

X

(�nR)

:(� nR)

for every X 2 X . It an be shown that the assigned onept de-

sriptions are of polynomial size in the size of the original mathing

problem. Sine every role language of the form L

X

�

an be represented

by a treelike automaton [2℄, it takes only polynomial time to read o�

the languages represented by these automata, i.e. to atually return

the omputed solution.

Solutions in FL

?

and FL

:

: For these sublanguages of ALN , we must

�rst restrit the languages used in the solvability test to �nite ones. The

rest of the argument then is idential to that for ALN . For FL

?

and

FL

:

, [2℄ again provides us with the neessary results: Finite solution

languages L

X

A

an be obtained in the following way. Sine

b

L

X

?

an be

represented by a treelike automaton [2℄ for every X, we read o� a �nite

language L

X

?

with L

X

?

�N

�

R

=

b

L

X

?

. Analogous to the languages de�ned

for ALN in Lemma 12 we now de�ne languages L

X

A

by subtrating

b

L

X

?

from

b

L

X

A

. We an then assign to the variable X the onjuntion

X 7�! 8L

X

?

:? u u

A2C

8L

X

A

:A u u

A2C

8L

X

:A

::A

for every X 2 X . Again, we yield a solution of polynomial size in

polynomial time. The argument for FL

?

is idential exept for negated

atomi onept missing in the onept desriptions �nally assigned.



2 DESCRIPTION LOGICS 13

Solutions in FL

0

: Two arbitrary FL

0

-onept desriptions are equiva-

lent if and only if their FL

0

-normal forms agree on all role languages

involved. Therefore, in�nite sets are not neessary at any step when

solving mathing problems. It an be shown that the solvability equa-

tion and solution languages for FL

0

are equivalent to those for FL

?

after removing any onstruts relating to the bottom-onept or its

role languages. The task of deiding solvability and omputing solu-

tions to a given mathing problem then apparently is of of polynomial

omplexity.

2. It is shown in [2℄, that the solution spei�ed above already has the de-

sired property. Espeially, this implies that the solution of a mathing

problem an be represented with the same set of role languages as the

mathing problem.

3. In Setion 2.2, we have already seen that systems of mathing equations

an be represented by a single mathing problem modulo subsumption

whih is polynomial in the size of the original system. Thus, with the

results from (1) the proposition follows immediately.

Hene, mathing problems an be solved in polynomial time. Further-

more, we an �nd minimal solutions without introduing new atomi on-

epts or number restritions and we an admit systems of mathing problems

as input. The following theorem summarizes the results obtained.

Theorem 14 Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Then there exists a polyno-

mial time mathing algorithm, alled math

L

in the sequel, that omputes

the least mather of a given system of L-mathing problems, if this system

has a solution, and returns \fail" otherwise.

2.3 Mathing under side onditions

In this report, we fous on more general mathing problems, those that allow

for additional side onditions.

De�nition 15 A subsumption ondition is of the form X v

?

E where X is

a onept variable and E is a pattern; a strit subsumption ondition is of

the form X � E where X and E are as above. A side ondition is either a

subsumption ondition or a strit subsumption ondition. The substitution �

satis�es the side ondition X � E for � 2 fv;�g i� �(X) � �(E).
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A mathing problem under side onditions is a tuple M := hC �

?

D;Si,

where C �

?

D is a mathing problem and S is a �nite set of side ondi-

tions. If the set S ontains only subsumption onditions, then M is alled

mathing problem under subsumption onditions. The substitution � is a

solution (mather) of M i� it is a mather of C �

?

D that satis�es every

side ondition in S.

In the next setion, we will restrit the attention to mathing problems under

subsumption onditions. Setion 4 then treats general mathing problems

under side onditions. There it is useful to distinguish between yli and

ayli sets of side onditions. In order to de�ne mathing problems under

ayli side onditions, we say that a variableX diretly depends on a variable

Y in S i� S ontains a side ondition X � E suh that Y ours in E. If

there are n � 1 variables X

1

; : : : ; X

n

suh that X

i

diretly depends on X

i+1

in S (1 � i � n � 1), then we say that X

1

depends on X

n

in S. The set of

side onditions S is yli i� there is a variable X that depends on itself in

S; otherwise, S is ayli.

3 Mathing under subsumption onditions

Let L be one of the DLs FL

?

;FL

:

;ALN . We present a polynomial time al-

gorithm that, given an L-mathing problems under subsumption onditions,

returns a least mather (w.r.t. the orderingv on substitutions) if the problem

is solvable, and \fail" otherwise.

3.1 The algorithm handling subsumption onditions

In priniple, the algorithm iterates the appliation of math

L

until a �xpoint

is reahed. However, the mather omputed in one step is used to modify

the mathing problem to be solved in the next step. Given an L-mathing

problem under subsumption onditionsM := hC �

?

D;Si and a substitution

�, we de�ne

M

�

:= fC �

?

Dg [ f�(X) v

?

E j X v

?

E 2 Sg:

Reall that �(X) v

?

E abbreviates the mathing problem �(X) �

?

�(X)uE.

Thus M

�

is a system of L-mathing problems without side onditions, to

whih math

L

an be applied.
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Algorithm 16 Let M := hC �

?

D;Si be an L-mathing problem under sub-

sumption onditions. Then, the algorithm math

v

L

(M) works as follows:

1. �(X) := ? for all variables X;

2. If math

L

(M

�

) returns \fail", then return \fail";

else if � � math

L

(M

�

), then return �;

else � := math

L

(M

�

); ontinue with 2.

Let �

0

denote the substitution de�ned in step 1 of the algorithm, and �

t

(t � 1) the mather omputed in the t-th iteration of Step 2. Note that �

t

is

unde�ned if math

L

returns \fail" in the t-th iteration or if the algorithm

has stopped before the t-th iteration.

To show that the algorithm is orret, we must show soundness, om-

pleteness, and termination, i.e., i) if the algorithm terminates and returns a

substitution, then this substitution in fat solves the problem; ii) if the al-

gorithm terminates and returns \fail", then there indeed is no solution; and

iii) the algorithm halts on every input.

Soundness and ompleteness are addressed below in Setion 3.2. Proving

termination of the algorithm is more involved, and the exat argument de-

pends on the DL L under onsideration. The proof is given in Setion 3.4. It

depends on the so-alled redued normal form of onept desriptions, whih

has to be introdued beforehand in Setion 3.3.

3.2 Soundness and Completeness

The following lemma proves soundness and ompleteness of Algorithm 16.

The �rst two items establish a loop invariant.

Lemma 17 Let M := hC �

?

D;Si be an L-mathing problem under sub-

sumption onditions.

1. If �

t

is de�ned and � is a solution of M , then �

t

v � .

2. If �

t

; �

t+1

are de�ned, then �

t

v �

t+1

.

3. If math

v

L

(M) returns the substitution �, then � solves M (sound-

ness).

4. If math

v

L

(M) returns \fail", then M has no solution (ompleteness).
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Proof. 1. Obviously, the laim is true for �

0

. Assume that �

t

v � , and

that �

t+1

is de�ned. To prove �

t+1

v � , it is suÆient to show that �

solves M

�

t

sine �

t+1

is the least solution of M

�

t

. Sine � solves M , we

know that it solves C �

?

D and that �(X) v �(E) for all X v

?

E 2 S.

The indution assumption �

t

v � implies �

t

(X) v �(X), and thus

�

t

(X) v �(E), whih shows that � solves M

�

t

.

2. Obviously, �

0

v �

1

. Now assume that �

t�1

v �

t

. Together with the

fat that �

t

solvesM

�

t�1

, this implies that �

t+1

solves the systemM

�

t�1

.

Sine �

t

is the least solution of M

�

t�1

, we an onlude �

t

v �

t+1

.

3. Assume that � = �

t

. By de�nition of math

v

L

, C � �

t

(D). It remains

to show that �

t

solves the side onditions. We know that �

t

� �

t+1

and

�

t+1

solves M

�

t

. Thus, �

t

(X) v �

t+1

(E) � �

t

(E) for every X v

?

E 2

S.

4. Assume that math

v

L

(M) returns \fail," and that �

t

is the last substi-

tution omputed by the algorithm. Now assume that � solves M . As

in the proof of 1. we an show that � solves M

�

t

. Consequently, M

�

t

is solvable, and thus math(M

�

t

) returns the least mather of this

system, in ontradition to the assumption that math

v

L

(M) returns

\fail" in this step of the iteration.

3.3 Redued normal forms

Role languages ourring in onept desriptions may ontain redundant

words, i.e., words that, when removed, yield equivalent onept desrip-

tions. For instane, in FL

?

it holds that: i) sine 8w:? v 8wv:? for every

w; v 2 N

�

R

, we an require U

?

to be pre�x-free, i.e., w;wv 2 U

?

implies

v = "; and ii) sine 8w:? v 8wv:A, we an require U

A

\ (U

?

� N

�

R

) = ;.

A normal form satisfying these onditions is alled redued normal form. A

formal de�nition of redued normal forms for onept desriptions in FL

?

,

FL

:

, and ALN is provided in Setion 3.3.2. In preparation, we disuss some

properties of so-alled pre�x-free formal languages.

3.3.1 Pre�x free languages

We de�ne pre�x free languages as a speialization of formal languages [10℄

by introduing a unary funtion to make a given formal language pre�x free.
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De�nition 18 Pre�x free languages

pf : P(N

�

R

)! P(N

�

R

)

L 7! L n (L�N

+

R

)

A language U � N

�

R

is alled pre�x free if and only if U = pf (U).

Intuitively, pf (L) for every word w 2 L removes all nontrivial ontin-

uations of w. The result is that for every word w 2 pf (L), all nontrivial

pre�xes of w are missing in pf (L). To examine the properties of pre�x free

sets in greater detail, we must �rst introdue an appropriate order over �nite

languages. The de�nition of multiset orders is taken from [4℄, where their

properties are disussed in depth. However, we employ multiset orders over

formal languages and do not need to introdue multisets, whih generalize

the notion of sets by admitting multiple ourrenes of elements.

De�nition 19 Multiset order for �nite languages

De�ne (�) as a multiset order with (>

pr

) on N

�

R

. Thus, for �nite languages

U; V � N

�

R

it holds that V � U if and only if there exist �nite languages

X; Y � N

�

R

suh that:

1. ; 6= X � V

2. U = (V nX) [ Y

3. 8y 2 Y 9x 2 X : x <

pr

y

Aording to the de�nition, �nite languages U and V are in pre�x order,

i.e. U � V , if and only if U an be transformed into V by performing

a modi�ation of the following type one or more times: remove a word u

from U and replae it by a �nite number of words from fug�N

+

R

. Thus, u is

replaed by a �nite number of (nontrivial) ontinuations of u. Note that in

this modi�ation, u may be removed without substituting any words. This

is allowed beause in the de�nition above, the language Y may be empty.

The following example illustrates this.

Example 20 Multiset order

Let N

R

:= fa; b; g. Then fa; ab; g � fab; a; aa; ab; g. The de�-

nition of the multiset order is satis�ed by taking X := fa; g and Y :=

fa; aa; ab; g. On the other hand, we also obtain fa; ab; g � fag by
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taking X := fa; ab; g and Y := fag. Observe that the relation U � V does

not imply an obvious relation for the ardinality of the languages or for the

length of the longest word ontained in them.

The multiset order an be used to simplify omparing the N

�

R

-losure of

two given languages. This is addressed by the following lemma.

Lemma 21 N

�

R

-losures and pre�x free languages

Let U; V � N

�

R

be �nite languages over N

R

. Then,

1. U �N

�

R

= pf (U)�N

�

R

2. U �N

�

R

� V �N

�

R

i� pf (U) � pf (V )

3. U �N

�

R

= V �N

�

R

i� pf (U) = pf (V ).

Proof. For the sake of brevity, denote pf (U) by U

0

throughout this lemma.

Analogously, denote pf (V ) by V

0

.

1. Sine U

0

is a subset of U and sine the sets on both sides of the equation

are N

�

R

-losed, it is suÆient to show that U n U

0

is a subset of U

0

�N

�

R

.

Thus, onsider w 2 U n U

0

. Then, by de�nition of pre�x free sets,

w 2 U �N

+

R

. This implies, that in U there exists a word u 2 U of

minimal length and a word v 2 N

+

R

so that w = uv. Consequently,

u 62 U �N

+

R

, beause in this ase the length of u would not be minimal.

So we have u 2 U

0

, implying that w = uv 2 U

0

�N

�

R

.

2. (\(") If U

0

� V

0

then, by De�nition 18, there exist �nite sets X; Y �

N

�

R

with:

(a) ; 6= X � V

0

(b) U

0

= (V

0

nX) [ Y

() 8y 2 Y 9x 2 X : x <

pr

y.

We �rst prove the non-strit version of the laim, i.e. U �N

�

R

� V �N

�

R

,

and then show that the inlusion is strit.

Nonstrit inlusion: As U

0

equals (V

0

nX) [ Y , it is suÆient to show

that Y � V

0

�N

�

R

. Thus, onsider an arbitrary y 2 Y . Beause of

Property 3 of multiset orders it holds that there is an x 2 X � V

0

so

that x <

pr

y. Being less in regard to the pre�x order implies, that we
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obtain y = xw for an appropriate w 2 N

�

R

. Sine x 2 V

0

, this yields

y = xw 2 V

0

�N

�

R

, ompleting the proof.

Stritness of the inlusion: Consider an arbitrary x 2 X � V

0

. A-

ording to Property 1 of multiset orders, suh an x in fat exists. x

is no element of (V

0

n X), beause V

0

is pre�x free and thus ontains

no pre�x of x. Now, if x 2 Y then Property 3 demands that there is

another word x

0

2 X so that x

0

<

pr

X. This would be a ontradition

to V

0

being pre�x free, and therefore: x 62 U

0

�N

�

R

.

(\)") Assume U

0

�N

�

R

� V

0

�N

�

R

. Taking advantage of (1), this is equiv-

alent to the original proposition. De�ne �nite languages X; Y in the

following way: X := V

0

n U

0

and Y := U

0

n V

0

. We will show that

these languages math onditions 1, 2, and 3 stated in the de�nition of

multiset orders.

Property 1: Trivial. X is obviously de�ned as a subset of V

0

. If X is

empty, then U

0

� V

0

, whih would rule out U

0

�N

�

R

� V

0

�N

�

R

, oniting

with the assumption above.

Property 2: Applying the de�nitions of X and y, we an expand (V

0

n

X) [ Y to the expression (V

0

n (V

0

n U

0

)) [ U

0

n V

0

, whih simpli�es

to (U

0

\ V

0

) [ U

0

n V

0

. This is obviously equivalent to U

0

.

Property 3: Consider an arbitrary y 2 Y = U

0

n V

0

. From Property

2 of the multiset order we know that Y � U

0

� V

0

�N

�

R

. Thus, there

are words v 2 V

0

and w 2 N

�

R

suh that y = vw. This implies w 6= ",

beause otherwise y, being equal to v, would be an element of V

0

. If w

is not empty, then v and y are in pre�x relation: v <

pr

y. Consequently,

v is no element of U

0

, beause then U

0

would not be pre�x free. This

implies v 2 V

0

n U

0

, whih by de�nition is equivalent to v 2 X.

3. (\(") This is an immediate onsequene of (1). If U

0

equals V

0

, then

obviously U

0

�N

�

R

= V

0

�N

�

R

, whih implies U �N

�

R

= V �N

�

R

, as shown in

(1). (\)") Reversely assume that U

0

�N

�

R

= V

0

�N

�

R

. Aording to (1),

this is equivalent to the original proposition. It is suÆient to prove

the inlusion U

0

� V

0

, sine the reverse inlusion follows by symmetry.

Consider an arbitrary u 2 U

0

. Aording to the above assumption we

have U

0

� V

0

�N

�

R

, whih implies the existene of words v 2 V

0

and

w 2 N

�

R

with u = vw. It reversely holds that V

0

� U

0

�N

�

R

, again

implying words u

0

2 U

0

and w

0

2 N

�

R

so that v = u

0

w

0

. Therefore, we



3 MATCHING UNDER SUBSUMPTION CONDITIONS 20

yield u = vw = u

0

w

0

w. This implies w = w

0

= ", beause otherwise U

0

would not be pre�x free, ontaining a pre�x of u. With w equal to ",

we �nally obtain u 2 V

0

, whih had to be shown.

Observe, that the N

�

R

-losure of a language L is uniquely de�ned by the

pre�x free version of L. We an also use pre�x free languages to guarantee

a suÆx ondition when representing the left quotient of the N

�

R

-losure of a

language:

Lemma 22 Left quotients and pre�x free languages

Let U � N

�

R

be a �nite language and let w 2 N

�

R

. Then there exists a �nite

language L � N

�

R

suh that,

1. L�N

�

R

= w

�1

(U �N

�

R

) and

2. L is pre�x free and

3. L ontains only suÆxes of words in U .

Proof. Aording to [2℄, there exists a �nite language L

0

with L

0

�N

�

R

= w

�1

�

(U �N

�

R

). Due to Lemma 21, we know that this also holds for L := pf (L

0

). We

now show that L ontains only suÆxes of U , whih is suÆient for our laim.

Assume a word v 2 L, whih is no suÆx of any word in U . Observe, that this

implies v 6= " beause otherwise v would be a trivial suÆx of any word in U .

By de�nition of L, we know that v is an element of w

�1

�(U �N

�

R

). Thus, there

exists a word u 2 U and a word x 2 N

+

R

suh that wv = ux 2 U �N

�

R

. We

exlude x = ", beause then v would be a suÆx of u. Denote by s the last

harater of v, i.e. take s 2 N

R

and v

0

2 N

�

R

suh that v = v

0

s. Analogously,

let x = x

0

s for an appropriate x

0

2 N

�

R

. Then we an onlude that v

0

2 L,

beause wv

0

= ux

0

is an element of U �N

�

R

. This implies a ontradition to

the language L being pre�x free.

3.3.2 Redued normal forms

In FL

?

, FL

:

, and ALN , equivalent onept desriptions in normal form

an di�er in size to an arbitrary extent. For instane, 8f"g:? u 8U

A

:A is

equivalent to 8f"g:? for every role language U

A

. For a simpli�ed proof of

termination, we require normal forms whih impose stronger limitations on

the size of onept desriptions equivalent to or subsuming eah other. For

this purpose, redued normal forms for FL

?

, FL

:

, and ALN are introdued.
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Redued normal forms for FL

?

FL

?

FL

?

The redued normal form of FL

?

-onept desriptions is de�ned by speify-

ing an operation to transform an arbitrary FL

?

-onept desription into its

orresponding redued normal form.

De�nition 23 Let C be an FL

?

-onept desription in U-labeled normal

form. Its orresponding U

#

-labeled redued normal form C

#

is de�ned as

follows:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A

where for A 2 C:

U

#

?

:= pf (U

?

)

U

#

A

:= U

A

n U

#

?

�N

�

R

A onept desription C is alled redued, if C is in normal form and if it

oinides with C

#

in every ourring role language. The notion of redution

an be extended to substitutions. For a substitution �, the redued substitution

�

#

is established by de�ning �

#

(X) := �(X)

#

for every variable X in the

domain of �.

The above de�nition implies as immediate onsequenes the following

simple properties, whih are stated without proof.

Corollary 24 Properties

Let C be an FL

?

-onept desriptions in U-labeled normal form. Then,

1. U

#

?

is pre�x free and U

#

A

\ U

#

?

�N

�

R

is empty for every A 2 C

2. The redued normal form C

#

an be omputed in polynomial time in the

size of C.

It will be partiularly useful that there is no overlap between the role

language U

#

?

and the N

�

R

-losure of U

#

A

. The role languages for C

#

an be

onstruted in polynomial time using treelike automata, for whih the om-

plement and theN

�

R

-losure an be omputed in linear time. It also takes only

polynomial time to make a given �nite role language pre�x free. The ability

to ompute redued normal forms in polynomial time will not be required

in the remainder of this hapter. Nevertheless, it might be an important

property in the ontext of presenting the output of mathing algorithms in

a ompat way.
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Reall that pf in Setion was de�ned to make the input language pre�x

free. The purpose of redued normal forms is to simplify the haraterization

of subsumption and equivalene. One an see that in the above de�nition

exatly those languages are made pre�x free, whose N

�

R

-losure appears in the

haraterization of the subsumption proposed in Lemma 1. Furthermore, by

subtrating the N

�

R

-losure from the other role languages, we make sure that

all unions in the haraterising onditions are disjoint. In the next lemma

we will see that this is suÆient to redue equivalene to equality.

Lemma 25 Properties

Let B;C;D be FL

?

-onept desriptions. Let B be in W -labeled normal

form, let C be in U-labeled redued normal form, and D in V -labeled redued

normal form. Then,

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [ C

3. C � D i� one of the following onditions holds:

(a) U

?

� V

?

and V

A

� U

A

[ U

?

�N

�

R

for all A 2 C

(b) U

?

= V

?

and U

A

� V

A

for all A 2 C and there exists an A 2 C with

U

A

� V

A

.

Proof. 1. We have seen in Lemma 1 that it is suÆient to prove the

following two onditions:

� W

?

�N

�

R

=W

#

?

�N

�

R

� W

A

[W

?

�N

�

R

= W

#

A

[W

#

?

�N

�

R

for all A 2 C.

The �rst ondition was shown as a property of pre�x free languages

in Lemma 21. For the seond ondition, we an therefore onlude for

every A thatW

#

A

[W

#

?

�N

�

R

is equal toW

#

A

[W

?

�N

�

R

. We may add (W

A

\

W

?

�N

�

R

), whih is a subset of W

?

�N

�

R

, thus yielding W

#

A

[ (W

A

\W

?

�

N

�

R

)[W

?

�N

�

R

. Aording to the de�nition of redued normal forms,W

A

equals W

#

A

[ (W

A

\W

?

�N

�

R

). Therefore, W

#

A

[ (W

A

\W

?

�N

�

R

)[W

?

�N

�

R

equals W

A

[W

?

�N

�

R

.

2. (\(") is trivial. (\)") Assume C � D. Due to Lemma 1, this again

is equivalent to U

?

�N

�

R

= V

?

�N

�

R

and U

A

[U

?

�N

�

R

= V

A

[V

?

�N

�

R

for all

A 2 C. Sine C andD are assumed to be redued, this implies U

?

= V

?

,

aording to the properties of pre�x free sets. Furthermore, due to
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the de�nition of redued normal forms, U

A

and U

?

�N

�

R

are disjoint for

every A. The same applies to V

A

and V

?

�N

�

R

. Therefore, U

A

[U

?

�N

�

R

=

V

A

[ V

?

�N

�

R

implies U

A

= V

A

for all A, whih was to be shown.

3. (\)") Assume C � D. Then we again have U

?

�N

�

R

� V

?

�N

�

R

. We

distinguish two ases depending on whether the inlusion is strit or

not.

Strit inlusion: If U

?

�N

�

R

� V

?

�N

�

R

, we an infer U

?

� V

?

, as shown

in Lemma 21. We know from the haraterization of the subsumption

that U

A

[ U

?

�N

�

R

� V

A

[ V

?

�N

�

R

for all A 2 C. We may remove V

?

�N

�

R

from the right-hand side of the inlusion, yielding the assertion for ase

(a), V

A

� U

A

[ U

?

�N

�

R

.

Equality: If U

?

�N

�

R

= V

?

�N

�

R

, we have U

?

= V

?

, beause C and D

are redued and therefore U

?

and V

?

are pre�x free. The subsumption

C � D also implies that U

A

[ U

?

�N

�

R

� V

A

[ V

?

�N

�

R

for every A. The

unions on both sides of the inlusion are disjoint, as stated in Corollary

24. Taking advantage of the equality of U

?

�N

�

R

and V

?

�N

�

R

, we obtain

U

A

� V

A

for every A 2 C. There has to be one A with a strit inlusion

U

A

� V

A

. Otherwise, C and D would agree on all role languages,

implying equivalene as shown in (2). Thus, the assertion for ase (b)

holds.

(\(") We have to show that both onditions for the subsumption as

stated in Lemma 1 are met. Assuming ase (b), this an be seen imme-

diately. Consider ase (a). If U

?

� V

?

holds, the �rst ondition for the

subsumption is met as a onsequene of Lemma 21, obtaining U

?

�N

�

R

�

V

?

�N

�

R

. We have assumed that V

A

� U

A

[ U

?

�N

�

R

. Adding V

?

�N

�

R

on

both sides yields V

A

[ V

?

�N

�

R

� U

A

[ U

?

�N

�

R

[ V

?

�N

�

R

. As V

?

�N

�

R

is

a subset of U

?

�N

�

R

, this is equivalent to V

A

[ V

?

�N

�

R

� U

A

[ U

?

�N

�

R

.

Thus, the seond ondition of the subsumption is met for every A 2 C.

We yield strit subsumption C � D, beause otherwise U

?

= V

?

.

Redued normal forms for FL

:

FL

:

FL

:

For FL

:

, we follow the same pattern as seen in the previous setion. Firstly,

the redution operation is expanded in suh a way that it works with negated

atomi onepts as well.
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De�nition 26 Redued normal form

Let C be an FL

:

-onept desription in U-labeled normal form. Like in

De�nition 23, de�ne its orresponding redued normal form C

#

by modifying

the role languages:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

where for A 2 C:

U

#

?

:= pf (U

?

[

[

A2C

U

A

\ U

:A

)

U

#

A

:= U

A

n U

#

?

�N

�

R

Again, if C is redued, then its role languages are idential to those of

C

#

. We extend the notion of redution to substitutions as in De�nition 23.

Observe that in this de�nition the role language U

?

referring to the bot-

tom onept may inrease in size when normalized. Contrary to FL

?

, it is

possible to have inonsistenies without involving the bottom onept. The

redued normal form for FL

:

aims at making all impliit inonsistenies ex-

pliit, i.e. whenever an expression like 8w:(Au:A) ours, w is removed from

the role languages referring to A and :A and is inluded in the language for

the bottom onept. The de�nition of exluding words again implies some

inportant properties, whih are stated below without proof.

Corollary 27 Properties

Let C be an FL

:

-onept desriptions in U-labeled normal form. Then,

1. U

#

?

is pre�x free and U

#

?

= (U

#

?

)b.

2. U

#

H

\ (U

#

?

)b�N

�

R

is empty for every H 2 C [ f:A j A 2 Cg.

3. U

#

A

\ U

#

:A

is empty for every A 2 C.

4. The redued normal form C

#

an be omputed in polynomial time in the

size of C.

Sine (U

#

?

)b is de�ned as U

#

?

[

S

A2C

(U

#

A

\ U

#

:A

), the above assertions are

readily obtained from the de�nition of redued normal forms. Computing

the redued normal form in polynomial time an again be aomplished by

employing treelike automata. By virtue of these properties, we again ahieve

the desired simpli�ation for the haraterization of the subsumption. In the

next lemma it is shown that the results obtained for FL

:

resemble those for

FL

?

seen in the last setion.
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Lemma 28 Properties

Let B;C;D be FL

:

-onept desriptions. Let B be inW -labeled normal form,

let C be in U-labeled redued normal form, and D in V -labeled redued normal

form. Let H := C [ f:A j A 2 Cg. Then,

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [ H

3. C � D i� one of the following onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[ U

?

�N

�

R

for all H 2 H

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with

U

A

� V

A

.

Proof. 1. Due to Lemma 3, it is suÆient to prove that the following

onditions hold:

�



W

?

�N

�

R

= (W

#

?

)b�N

�

R

� W

H

[



W

?

�N

�

R

=W

#

H

[ (W

#

?

)b�N

�

R

for all H 2 H.

First ondition: By de�nition,



W

?

�N

�

R

equals (W

?

[

S

A2C

W

A

\W

:A

)�

N

�

R

, whih is equivalent to the pre�x free version pf (W

?

[

S

A2C

W

A

\

W

:A

)�N

�

R

, as we have seen in Lemma 21. Applying the de�nition of

redued normal forms, this is equivalent to W

#

?

�N

�

R

. The intersetion

of W

#

A

and W

#

:A

is empty for every A 2 C, as stated in Corrolary 27.

We may therefore add (

S

A2C

W

#

A

\W

#

:A

) to the expression, so that we

end up with (W

#

?

[

S

A2C

W

#

A

\W

#

:A

)�N

�

R

. This equals (W

#

?

)b�N

�

R

, as

an be veri�ed from the de�nition.

Seond ondition: Taking advantage of (1), we an see that W

#

H

[

(W

#

?

)b�N

�

R

is equal to W

#

H

[



W

?

�N

�

R

for every H 2 H. We may add a

subset of the seond term, yielding the expression W

#

H

[ (W

H

\



W

?

�

N

�

R

)[



W

?

�N

�

R

. The languageW

#

H

is de�ned as W

H

nW

#

?

�N

�

R

. As stated

in Corollary 27, this equalsW

H

n(W

#

?

)b�N

�

R

, whih in (1) is shown equal

to W

H

n



W

?

�N

�

R

. The expression W

#

H

[ (W

H

\



W

?

�N

�

R

) [



W

?

�N

�

R

an

therefore be simpli�ed to W

H

[



W

?

�N

�

R

, yielding the desired result.

2. (\(") Trivial. (\)") Aording to Corollary 27, we have

b

U

?

= U

?

and

b

V

?

= V

?

. When replaing these role languages, the proposition

and the haraterization of the subsumption are analogous to those for
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FL

?

. Consequently, the proof is idential to (2) in the previous Lemma

25.

3 Again, taking into aount that

b

U

?

= U

?

and

b

V

?

= V

?

, we an prove

the proposition in the same way as seen in (3) in the previous lemma.

One an see that the additional omplexity of onept desriptions in FL

:

is hidden in the redued normal form.

Redued normal forms for ALNALN

ALN

When introduing redued normal forms for ALN -onept desriptions, we

have to fae two additional problems. Firstly, the set of all inonsistenies

expliitly ourring or impliitly inluded in a onept desription annot be

obtained in suh a straightforward way as in the previous two logis. Se-

ondly, we also have to ope with number restritions. In the following de�-

nition, we utilize the notion of exluding words, whih have been introdued

in De�nition 2 in the ontext of the haraterization of subsumption.

De�nition 29 Redued normal form

Let C be an ALN -onept desription in U-labeled normal form. De�ne the

redued normal form of C by modifying its role languages. It has been stated

in [2℄ that there exists a �nite language U

E

C

with E

C

= U

E

C

�N

�

R

. Using this

language, de�ne C

#

as:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

u u

(�nR)2N

�

8U

#

(�nR)

:(� nR) u u

(�nR)2N

�

8U

#

(�nR)

:(� nR)

where for A 2 C, (� nR) 2 N

�

, and (� nR) 2 N

�

:

U

#

?

:= pf (U

E

C

)

U

#

A

:= U

A

n E

C

U

#

:A

:= U

:A

n E

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

n E

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

n E

C

�R

�1



3 MATCHING UNDER SUBSUMPTION CONDITIONS 27

Analogous to the previous ases, the notion of redution is extended to sub-

stitutions.

In spite of the formally more omplex de�nition, the objetive of the

above normal form is equal to those seen before. Inonsistenies are made

expliit by augmenting the role language of the bottom onept and the other

role languages are minimized as muh as possible. Observe that the redued

role language U

#

?

in fat is well-de�ned, beause for languages of the form

L�N

�

R

the set pf (L) is unique. The de�nition of redued normal forms again

implies some basi properties, whih are presented in the orollary below.

Corollary 30 Properties

Let C be an ALN -onept desriptions in U-labeled normal form. Then,

1. U

#

?

is pre�x free

2. U

#

H

\ E

C

# is empty for every H := C [ f:A j A 2 Cg [ N

�

.

Furthermore, U

#

(�nR)

\ E

C

#
�R

�1

is empty for every (� nR) 2 N

�

3.

S

m�n

U

#

(�mR)

= U

#

(�nR)

for all (� nR) 2 N

�

and analogously for all

(� nR) 2 N

�

4. The redued normal form C

#

an be omputed in polynomial time in the

size of C.

As stated in [2℄, a role language U

E

C

with E

C

= U

E

C

�N

�

R

an be omputed

in polynomial time. With the aid of treelike automata, it therefore takes

only polynomial time to ompute the redued normal form of C. In order

to examine the properties of our normal form loser, we have to proure a

better haraterization for the set of exluding words from [12℄. The following

de�nition is neessary in preparation.

De�nition 31 Required words

Let C be an ALN -onept desription in U-labeled normal form. Let v and v

0

be words over N

R

. Let jvj =: m and jvv

0

j =: n and v

0

=: R

m+1

: : : R

n

. Then

vv

0

is required by C starting from v i� for all i 2 fm; : : : ; n� 1g there exist

positive integers k

i+1

� 1 suh that vR

m+1

: : : R

i

2 U

(�k

i+1

R

i+1

)

.

Intuitively, the ontinuation vv

0

is required by a onept desription C

starting from v, i� there is a sequene of (�)-number restritions for every

pre�x of vv

0

between v and vv

0

demanding the presene of the respetive
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following pre�x. For example, assume N

R

:= fR; Sg and let C := A u

8fRS;RSRg:(� 1R)u 8fRSRg:(� 2S). Then the words RSRR and RSRS

are required by C starting from RS.

With the notion of required words we an haraterize exluding words

for ALN -onept desriptions by the following lemma.

Lemma 32 Charaterization of exluding words

Let C be an ALN -onept desription in U-labeled normal form. Let w be a

word over N

R

. Then w 2 E

C

i�

1. there exists a pre�x v 2 N

�

R

of w and a word v

0

2 N

�

R

suh that vv

0

is

required by C starting from v and

(a) vv

0

2 U

?

, or

(b) there is an atomi onept A 2 C with vv

0

2 U

A

\ U

:A

, or

() there are number restritions (� lR) 2 N

�

and (� rR) 2 N

�

suh

that l > r and v 2 U

(�lR)

\ U

(�rR)

; or

2. there exists a pre�x vR of w (with v 2 N

�

R

; R 2 N

R

) suh that v 2 U

(�0R)

.

Now we are set to examine redued normal forms in detail. Before ad-

dressing the standard questions of orretness, equivalene, and subsumption,

however, we �rst introdue one auxiliary result regarding the notion of ex-

luding words, whih will be required in Lemma 35. In the next lemma, it

is shown that transforming a onept desription into redued normal forms

does not hange its properties in respet to required words.

Lemma 33 Required words and redued normal forms

Let C be an ALN -onept desription in U-labeled normal form and let v; v

0

be words over N

R

. Then, if vv

0

is required by C

#

starting from v then vv

0

is

required by C starting from v.

Proof. To simplify the notation throughout this proof, denote jvj =: s,

jvv

0

j =: t, and vv

0

=: R

1

R

2

: : : R

t

. If vv

0

is required by C

#

starting from

v, then by de�nition it holds for all i 2 fs; : : : ; t � 1g that there exists a

positive integer k � 1, so that R

1

: : : R

i

2 U

#

(�kR

i+1

)

. By de�nition of redued

normal forms, this implies that R

1

: : : R

i

2

S

n�k

U

(�nR

i+1

)

nE

C

. No n under

the union is smaller than k. Consequently, there exists an integer k

0

� k so

that R

1

: : : R

i

is an element of U

(�k

0

R

i+1

)

nE

C

. Obviously, we an inlude all

the words subtrated by E

C

, thus obtaining that R

1

: : : R

i

2 U

(�k

0

R

i+1

)

. This

is equivalent to vv

0

being required by C starting from v, whih was to be

shown
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A simpli�ed haraterization for the set of exluding words is now pro-

posed for onept desriptions in redued normal form. It is shown by the

next lemma that only ase (1a) of the haraterization given in Lemma 32 is

relevant for the redued normal form of onept desriptions.

Lemma 34 Exluding words and redued normal forms

Let C be an ALN -onept desription in U-labeled normal form. Let w be a

word over N

R

. Then, w 2 E

C

#
i� there exists a pre�x v 2 N

�

R

of w and a

word v

0

2 N

�

R

with: vv

0

is required by C

#

starting from v and vv

0

2 U

?

.

Proof. Consider a word w 2 E

C

#. It is suÆient to prove that the Cases

(1b), (1), or (2) spei�ed in the haraterization of E

C

#
do not apply.

Case (1b): Then there exists a pre�x v 2 N

�

R

of w, a word v

0

2 N

�

R

,

and an atomi onept A 2 C, so that vv

0

is required by C

#

starting from

v and vv

0

2 (U

#

A

\ U

#

:A

). Applying the de�nition of redued normal forms,

this implies that vv

0

is an element of U

A

\ U

:A

, but no element of E

C

.

By De�nition of the semantis of ALN -onept desriptions, this implies

C v 8vv

0

:?. As a onsequene of De�nition 2, this implies vv

0

2 E

C

, in

ontradition to the above �nding that vv

0

62 E

C

.

Case (1): Then we have an analogous word vv

0

and nonnegative numbers

l > r with vv

0

2 U

(�lR)

\ U

(�rR)

. Again by de�nition of redued normal

forms, we onlude that vv

0

is an element of the intersetion

S

l

0

�l

U

(�l

0

R)

\

S

r

0

�r

U

(�r

0

R)

, but it is not in E

C

. Therefore, we an �nd integers l

0

� l and

r

0

� r suh that vv

0

2 U

(�l

0

R)

\U

(�r

0

R)

. Analogous to ase (1b), the semantis

of ALN then implies C v 8vv

0

:?. Due to De�nition 2, this entails vv

0

2 E

C

,

ontraditing the above statement.

Case (2): We prove that in the redued normal form C

#

the role language

U

#

(�0R)

is empty for every atomi role R 2 N

R

. As 0 is the least nonnegative

integer, for every atomi roleR 2 N

R

the de�nition of U

#

(�0R)

an be simpli�ed

to U

(�0R)

n E

C

�R

�1

, omitting the union. Therefore, if U

#

(�0R)

is not empty,

it ontains an element of U

(�0R)

. Thus, assume w 2 U

(�0R)

for a word w.

Aording to the de�nition of number restritions, this implies that w has no

suessors in regard to R. Consequently, wR 2 E

C

. Obviously, we an infer

w 2 E

C

�R

�1

. In the de�nition of U

#

(�0R)

, the set E

C

�R

�1

is subtrated from

the rest, implying w 62 U

#

(�0R)

. Case (2) does therefore not apply to C

#

.

The above result suggests a simpler proof of the orretness of the normal

form. The standard questions, orretness and modi�ed haraterizations for

equivalene and subsumption, are addressed in the next lemma.
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Lemma 35 Properties

Let B;C;D be ALN -onept desriptions. Let B be in W -labeled normal

form, let C be in U-labeled redued normal form, and D in V -labeled redued

normal form. Let H := C [ f:A j A 2 Cg [ N

�

[N

�

. Then,

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [ H

3. C � D i� one of the following onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[ U

?

�N

�

R

for all H 2 H n N

�

and

V

H

� U

H

[ U

?

�N

�

R

[ U

?

�R

�1

for all (� nR) := H 2 N

�

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with

U

A

� V

A

.

Proof. 1. In Lemma 4, equivalene of ALN -onept deriptions was is

haraterized by the following onditions. For A 2 C, (� mR) 2 N

�

,

and (� mR) 2 N

�

:

(a) E

B

# = E

B

(b) W

#

A

[ E

B

# =W

A

[ E

B

() W

#

:A

[ E

B

# =W

:A

[ E

B

(d)

S

m�n

W

#

(�mR)

[ E

B

# =

S

m�n

W

(�mR)

[ E

B

(e)

S

m�n

W

#

(�mR)

[ E

B

# �R

�1

=

S

m�n

W

(�mR)

[ E

B

�R

�1

Condition 1: Prove E

B

#
� E

B

. Consider an arbitrary w 2 E

B

#
. Due to

the simpli�ed haraterization of exlusion for redued normal forms,

this implies that there exists a pre�x v 2 N

�

R

of w and a word v

0

2 N

�

R

suh that vv

0

is required by B starting from v and vv

0

2 W

#

?

. Aording

to De�nition 26, this implies that vv

0

is in pf (W

E

B

) � E

B

for an

appropriate �nite language W

E

B

with E

B

= W

E

B

�N

�

R

. Due to Lemma

33, we know that vv

0

is required by B starting from v. Sine vv

0

2 E

B

,

this implies v 2 E

B

. As E

B

is N

�

R

-losed and as v is a pre�x of w, we

obtain w 2 E

B

.

Prove E

B

� E

B

#
. If w 2 E

B

then there exists a pre�x w

0

of w and a

word w

00

2 N

�

R

, so that w = w

0

w

00

and w

0

is an element of pf (W

E

B

).

Applying the de�nition of redued normal forms, we have w

0

2 W

#

?

.

This implies B

#

v 8w

0

:?, whih is subsumed by 8w

0

w

00

:?, aording
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to the semantis of ?. Due to the de�nition of E

B

, this yields w

0

w

00

=

w 2 E

B

#
.

Combining the above two results, we obtain E

B

# = E

B

, whih was to

be shown.

Condition 2 and 3: Taking into aount the result of (1), it holds that

W

#

A

[ E

B

# is equal toW

#

A

[E

B

for every A 2 C. Applying the de�nition

of W

#

A

yields the expression (W

A

n E

B

) [ E

B

, whih is obviously equal

to W

A

[ E

B

. The same argument holds for negated atomi onepts

:A.

Condition 4 and 5: Again, the result of (1) and the de�nition of

W

#

(�mR)

enable us to expand

S

m�n

W

#

(�mR)

[ E

B

#
to the expression

S

m�n

(

S

p�m

W

(�pR)

n E

B

) [ E

B

. By applying distributivity over the

union, we obtain (

S

m�n

S

p�m

W

(�pR)

) nE

B

[E

B

, whih an be simpli-

�ed to (

S

m�n

W

(�mR)

) nE

B

[E

B

. We an omit subtrating E

B

before

adding it again, so that we �nally have (

S

m�n

W

(�mR)

) [ E

B

.

In (1) we have seen that E

B

#
= E

B

. This implies E

B

#
�R

�1

= E

B

�R

�1

for every atomi role R. Consequently, the above argument applies to

ondition 5 as well.

2. (\(") Trivial. (\)") If C � D, then the haraterization of the

subsumption allows us to onlude the following onditions again:

(a) E

C

= E

D

(b) U

A

[ E

C

= V

A

[ E

D

() U

:A

[ E

C

= V

:A

[ E

D

(d)

S

m�n

U

(�mR)

[ E

C

=

S

m�n

V

(�mR)

[ E

D

(e)

S

m�n

U

(�mR)

[ E

C

�R

�1

=

S

m�n

V

(�mR)

[ E

D

�R

�1

Taking advantage of Lemma 21, we an infer from ondition 1 that

pf (U

E

C

) = pf (V

E

D

), whih is equivalent to U

?

= V

?

, sine both onept

desriptions are assumed to be redued. Due to redution, it also holds

that U

A

= U

A

n E

C

and analogously V

A

= V

A

n E

D

. Therefore, the

unions in ondition 2 are disjoint. Beause of ondition 1 we may

replae E

D

by E

C

in ondition 2, whih yields U

A

= V

A

. The same

argument applies to ondition 3. Beause C and D are redued, the

role languages U

(�mR)

and U

(�mR)

already ontain the union over all
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lesser and the union over all greater numbers respetively, as stated in

Corollary 30. In ondition 4 and 5, we may therefore ommit the unions

over m. Moreover, the role languages in ondition 4 and 5 are de�ned

as disjoint to E

C

and E

D

respetively, so that �nally the argument

for onditions 2 and 3 also applies, yielding U

(�nR)

= V

(�nR)

for every

number restrition (� nR) 2 N

�

and analogously U

(�nR)

= V

(�nR)

for

every (� nR) 2 N

�

.

3. (\)") If C � D, then from the haraterization of subsumption we

know that E

C

� E

D

. We �rst onsider the ase that this inlusion is

strit, then the ase of equality of the languages.

E

C

� E

D

: Then, as stated in [2℄, there are �nite languages U

E

C

and

V

E

D

suh that pf (U

E

C

)�N

�

R

� pf (V

E

D

)�N

�

R

. Due to the de�nition of

redued normal forms, this is equivalent to the inlusion U

?

�N

�

R

�

V

?

�N

�

R

. Aording to Lemma 21, we an then infer U

?

� V

?

. Sine

C � D, we know from the haraterization of subsumption that U

H

[

E

C

� V

H

[E

D

for all H 2 C [f:A j A 2 Cg. As mentioned above, this

inlusion is equivalent to U

H

[ U

?

�N

�

R

� V

H

[ V

?

�N

�

R

. We may drop

the term V

?

�N

�

R

on the right-hand side, obtaining the desired result for

all H 2 C [ f:A j A 2 Cg.

For (� nR) 2 N

�

, we similarly yield

[

m�n

U

(�mR)

[ U

?

�N

�

R

=

[

m�n

V

(�mR)

[ V

?

�N

�

R

.

As mentioned before, the union over all m � n an be omitted. Drop-

ping the term V

?

�N

�

R

on the right-hand side of the inlusion afterwards

analogously produes V

H

� U

H

[ U

?

�N

�

R

, whih was to be shown.

This analogy does not hold for �-number restritions, where we need

to ope with the right quotient (�R

�1

) in the respetive equations: For

every (� nR) := H 2 N

�

, we obtain U

H

[ U

?

�N

�

R

�R

�1

� V

H

[ V

?

�N

�

R

�

R

�1

. We may drop the expression V

?

�N

�

R

�R

�1

on the right-hand side of

the inlusion. Furthermore, as stated in [2℄, U �N

�

R

�R

�1

equals U �N

�

R

[

U �R

�1

for every �nite language U over N

R

and R 2 N

R

. Consequently,

the inlusion an be simpli�ed to U

H

[ U

?

�N

�

R

[ U

?

�R

�1

� V

H

, whih

we wanted to show.

E

C

= E

D

: As shown in (2), the redued normal form of C and D then

allows us to infer U

?

�N

�

R

= V

?

�N

�

R

, whih yields U

?

= V

?

, as both
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languages are pre�x free. The haraterization of the subsumption

furthermore allows us to onlude that U

H

� V

H

for every H 2 H.

Obviously, C and D annot agree on all role languages, sine this would

imply C � D, in ontradition to the assumption. Consequently, there

is one H 2 H suh that U

H

� V

H

.

(\(") In ase (b), it is not diÆult to verify that the onditions for

subsumption stated in Lemma 4 are met. Assume Case (a). From

U

?

� V

?

we an infer by Lemma 21 that U

?

�N

�

R

� V

?

�N

�

R

. Sine C

and D are redued, this implies E

C

� E

D

, mathing the �rst ondition

for subsumption. As assumed, for every H 2 H n N

�

it holds that

V

H

� U

H

[ U

?

�N

�

R

. We have already seen in (3) that U

?

�N

�

R

equals

E

C

. Therefore, after adding the language E

D

on both sides of the

inlusion we have V

H

[ E

D

� U

H

[ E

C

[ E

D

. Sine E

D

is a subset of

E

C

, we obtain V

H

[ E

D

� U

H

[ E

C

. For H 2 C [ f:A j A 2 Cg, this

equals onditions 2 and 3 for the subsumption as stated in Lemma 4.

Aording to Corollary 30, for all (� nR) 2 N

�

the language U

(�nR)

is equal to the union

S

m�n

U

(�nR)

, so that the inlusion V

H

[ E

D

�

U

H

[E

C

an be expanded to

S

m�n

V

(�mR)

[E

D

�

S

m�n

U

(�mR)

[E

C

,

whih meets ondition 4 for the subsumption.

For (� nR) 2 N

�

, we have assumed V

(�nR)

� U

(�nR)

[U

?

�N

�

R

[U

?

�R

�1

.

As mentioned above for the reverse diretion of (3), we an replae

U

?

�N

�

R

[ U

?

�R

�1

by U

?

�N

�

R

�R

�1

, whih is equal to E

C

�R

�1

. Following

a similar line as for the�-number restritions, E

D

�R

�1

is added on both

sides of the inlusion, yielding V

(�nR)

[ E

D

�R

�1

� U

(�nR)

[ E

C

�R

�1

[

E

D

�R

�1

. As E

C

is a superset of E

D

and as also both languages are of

the form L�N

�

R

for some �nite language L, it is easy to see that E

C

�R

�1

is a superset of E

C

�R

�1

for every R 2 N

R

. The inlusion therefore

simpli�es to V

(�nR)

[E

D

�R

�1

� U

(�nR)

[E

C

�R

�1

. Exploiting Corollary

30, the languages U

(�nR)

and V

(�nR)

an be replaed by the respetive

unions over all m � n, thus mathing ondition 5 of the subsumption

onditions of Lemma 4. Consequently, all onditions for subsumption

are met. We obtain strit subsumption, beause (2) would otherwise

imply U

?

= V

?

, ontraditing U

?

� V

?

.
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3.4 Termination

Let the substitutions �

t

be de�ned in Setion 3.1. We assume that every

�

t

(X) is given in U

t;X

-labeled redued normal form, and that C (as de�ned

in Algorithm 16) is in U -labeled redued normal form. Then, termination fol-

lows from the fat that every solvable mathing problem under subsumption

onditions has a mather that only uses onept names already ontained

in the mathing problem M , denoted by the set C � N

C

, and the following

three properties of the languages U

t;X

H

and U

H

for H 2 C [ f?g. In the

formulation of these properties we impliitly assume that the substitution �

t

is de�ned whenever we talk about one of the languages U

t;X

H

.

1. SuÆx property

For every variable X and every H 2 C [ f?g, the set U

t;X

H

ontains

only suÆes of U

H

.

2. Deletion property

For every word w, if w 2 U

t;X

H

n U

t+1;X

H

, then w 62 U

t

0

;X

H

for any t

0

> t.

3. Stritness property

If �

t

and �

t+1

are de�ned and �

t

6� �

t+1

, then there exists an H 2

C [ f?g, a variable X, and a word w suh that w 2 U

t;X

H

n U

t+1;X

H

.

Note that these properties would not hold if we did not use redued normal

forms. In the following three subsetions the above termination onditions

are shown valid individually for FL

?

, FL

:

, and ALN . With these prerequi-

sites we an provide a general proof of termination in Setion 3.4.4, yielding

a polynomial time upper bound for the three logis under onsideration.

3.4.1 Termination properties in FL

?

Let us briey reall our point of departure. We onsider the algorithm

math

v

FL

?

, applied to an FL

?

-mathing problem under subsumption on-

ditions M of the form hC �

?

D;Si. M is de�ned over a �nite set X of

variables. We assume C in U -labeled redued normal form and D in V -

labeled normal form. For every subsumption ondition X v

?

E in S, we

assume E in V

X

-labeled normal form. Denote by T (math

v

FL

?

;M) the in-

dex set of all substitutions omputed during the exeution of the algorithm

math

v

FL

?

upon input M . For every t 2 T (math

v

FL

?

;M) and for every

variable X, assume �

t

(X) in U

t;X

-labeled redued normal form.



3 MATCHING UNDER SUBSUMPTION CONDITIONS 35

In order to show the validity of the suÆx property, the solution languages

introdued in De�nition 7 are used to derive a reursive relationship with

respet to t between the role languages ourring in onseutive substitutions

�

t

. We an then infer the desired properties from �

0

upward by indution.

Lemma 36 SuÆx property in FL

?

For all t 2 T (math

v

FL

?

;M) and for all X 2 X it holds that:

1. U

t;X

?

ontains only suÆxes of U

?

.

2. U

t;X

A

ontains only suÆxes of U

A

for every A 2 C.

Proof. 1. When performing step t of the algorithm math

v

FL

?

(M), the

following system of mathing problems must be solved.

8U

?

:? u u

A2C

8U

A

:A �

?

8V

?

:? u u

A2C

8V

A

:A u u

X2X

8V

X

:X

8U

t;X

?

:? u u

A2C

8U

t;X

A

:A v

?

8V

X

?

:? u u

A2C

8V

X

A

:A u u

X

0

2X

8V

X

X

0

:X

0

,

where the seond line represents one equation for every X 2 X . As

stated in Setion 2.2, this system an be ombined into a single math-

ing problem with little diÆulty. For the resulting mathing problem,

setting up the solvability equations proposed in De�nition 6 and apply-

ing Lemma 7, we yield the following solution language for the bottom-

onept.

U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

) (�)

Due to the notation introdued for the solutions �

t

, here U

t+1;X

?

�N

�

R

takes the plae of

b

L

X

?

used in Lemma 7 to denote the solution language

for the ?-onept. We have to show that the U

t+1;X

?

ontains only

suÆxes of U

?

.

Aording to Lemma 22, for every �nite language U and for every

word w there exists a �nite pre�x free language L suh that �rstly,

L�N

�

R

= w

�1

(U �N

�

R

); and seondly, L ontains only suÆxes of U . Using

this result we now show the proposition for U

t;X

?

by indution over the

number of steps t the algorithm math

v

FL

?

(M) takes.

(t = 0): Aording to equation (�), it holds that

U

0;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

?

�N

�

R

). (�

0

)
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At �rst, we show that the suÆx property does not get lost when inter-

seting languages of the form L�N

�

R

with that property. It is shown in

[2℄ that for �nite languages L and L

0

the intersetion L�N

�

R

\ L

0

�N

�

R

is

equal to ((L \ L

0

�N

�

R

) [ (L

0

\ L�N

�

R

))�N

�

R

.

Obviously, (L \ L

0

�N

�

R

) [ (L

0

\ L�N

�

R

) is a subset of the union L [ L

0

.

This implies that the intersetion L�N

�

R

\ L

0

�N

�

R

an be represented as

L

00

�N

�

R

suh that every element of L

00

omes from L or from L

0

.

Beause of Lemma 22, it holds for every X 2 X and for every w 2 V

X

that the language w

�1

(U

?

�N

�

R

) an be represented as L�N

�

R

, where L

ontains only suÆxes of U

?

. We have just seen that the suÆx property

is respeted by the intersetion. Thus, the entire right-hand side of

equation (�

0

) is of the form L�N

�

R

, where L ontains only suÆxes of

U

?

. pf (L) is a subset of L and therefore ontains only suÆxes as well.

pf (L)�N

�

R

also represents the right-hand side of (�

0

), as we know from

Lemma 21. From the de�nition of redued normal forms in FL

?

we

also know that U

0;X

?

is pre�x free. Lemma 21 now implies that U

0;X

?

is

equal to pf (L), ompleting our argument.

(t > 0): Due to indution, we may assume that all role languages on the

right-hand side of equation (�) ontain only suÆxes of U

?

. Analogous

to the argument for the ase t = 0, the suÆx property is valid for

U

t+1;X

?

as well.

2. Consider U

t;X

A

for an arbitrary A 2 C. Starting again with the system

of mathing equations proposed in (1) and taking into aount the def-

inition of the solution languages in Lemma 13, we obtain the following
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result for U

t;X

A

.

U

t+1;X

A

=

\

w2V

X

w

�1

(U

A

[ U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

A

[ U

t;X

?

�N

�

R

)

n U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

A

[ U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

A

[ U

t;X

?

�N

�

R

)

| {z }

M

1

n

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

)

| {z }

M

2

!

�

[

w2V

X

w

�1

(U

A

) [

[

X

0

2X

[

w2V

X

X

0

w

�1

(U

t;X

A

)

The equality to M

1

nM

2

is obtained by replaing U

t+1;X

?

�N

�

R

with the

right-hand side of equation (�). The last step in the above sequene

remains to be shown. Consider an arbitrary word v in U

t+1;X

A

= M

1

n

M

2

. Sine v is not an element of M

2

, there exists a word w 2 V

X

or a

word w

0

2 V

X

X

0

suh that v is no element of w

�1

(U

?

�N

�

R

) or no element

of w

�1

(U

t;X

?

�N

�

R

). Assume the �rst ase, i.e. v 62 w

�1

(U

?

�N

�

R

). As v

is an element of M

1

, obviously v 2 w

�1

(U

A

[ U

?

�N

�

R

), whih implies

v 2 w

�1

(U

A

). Thus, v is a suÆx of a word in U

A

. The seond ase

is analogous, yielding that v is a pre�x of a word in U

t;X

A

. Thus, the

inlusion laimed above holds.

Sine U

A

and all U

t;X

A

are �nite languages, it is not diÆult to see

that the left quotients w

�1

(U

A

) and w

�1

(U

t;X

H

) for every word w only

ontain suÆxes of U

A

and U

t;X

A

respetively. We still have to ensure

that the suÆx property is respeted by the union. This an be shown

indutively similar to the proof seen in (1) for the intersetion. In ase

of the union, however, the indution argument is by far simpler, sine

for �nite languages L; L

0

the union L�N

�

R

[L

0

�N

�

R

is equal to (L[L

0

)�N

�

R

.

For the proof of the deletion property, the haraterization of the sub-

sumption for redued normal forms an be utilized to rule out words reap-

pearing after being deleted. A subsumption argument, of ourse, an only
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be used sine we know from the proof of orretess that the solutions �

t

in

fat are subsumed by its respetive suessors �

t+1

.

Lemma 37 Deletion property in FL

?

math

v

FL

?

(M) meets the deletion property.

Proof. We �rst prove the deletion property for role languages referring to

the ?-onept and then onsider those referring to atomi onepts A 2 C.

?-onept: Assume that ontrary to our laim a word w an reappear

for greater values of t after being deleted from a role language at a ertain

point during the exeution of the algorithm. Thus, assume for w 2 N

�

R

that

w 2 U

t;X

?

and w 62 U

t

0

;X

?

but �nally w 2 U

t

0

+1;X

?

for some X 2 X and for

nonnegative integers t < t

0

2 T (math

v

FL

?

;M).

We know from Lemma 17 that �

t

v �

t

0

v �

t

0

+1

. As all substitutions are

redued we further know due to our assumption, that �

t

(X

j

) 6� �

t

0

(X

j

) 6�

�

t

0

+1

(X

j

). From this we an infer by means of Lemma 25 that U

t;X

?

� U

t

0

;X

?

�

U

t

0

+1;X

?

.

We have assumed that w 2 U

t

0

+1;X

?

. The above relation then for U

t

0

;X

?

demands that U

t

0

;X

?

ontains a pre�x w

0

of w. As w is no element of U

t

0

;X

?

,

this is a nontrivial pre�x. Similarly we �nd that U

t;X

?

ontains a pre�x of w

0

or w

0

itself. The language U

t;X

?

, however, initially was assumed to ontain w

as well, yielding a ontradition to U

t;X

?

being pre�x free.

A-onept: Assume similarly for a word w 2 N

�

R

that w 2 U

t;X

A

and

w 62 U

t

0

;X

A

but �nally w 2 U

t

0

+1;X

A

for some X 2 X , for A 2 C, and for

nonnegative integers t < t

0

2 (math

v

FL

?

;M). Sine �

t

v �

t

0

v �

t

0

+1

and as

also all substitutions are redued we obtain as a onsequene of Lemma 25:

U

t;X

A

_

[ U

t;X

?

�N

�

R

� U

t

0

;X

A

_

[ U

t

0

;X

?

�N

�

R

� U

t

0

+1;X

A

_

[ U

t

0

+1;X

?

�N

�

R

.

We have assumed that w 2 U

t

0

+1;X

A

. Sine w is no element of U

t

0

;X

A

, the

subset relation implies that w 2 U

t

0

;X

?

�N

�

R

. From the haraterization of the

subsumption we know that U

t;X

?

�N

�

R

� U

t

0

;X

?

�N

�

R

, whih in our ase implies

w 2 U

t;X

?

�N

�

R

. This ontradits the disjointedness of the union with U

t;X

A

,

whih was shown in Lemma 25.

As the next lemma will show, the stritness property is obtained as an

immediate onsequene of Lemma 17 (soundness and ompleteness) and the

araterization of strit subsumption for redued normal forms.
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Lemma 38 Stritness property

math

v

FL

?

(M) meets the stritness property.

Proof. It is shown in Lemma 17 that �

t

v �

t+1

for every t 2 T (math

v

FL

?

;M).

Sine the �xed point iteration in math

v

FL

?

terminates in ase �

t

� �

t+1

,

we have �

t

� �

t+1

for every t as long as the iteration does not terminate.

The strit subsumption of the substitutions implies that for every t there is

a variable X 2 X suh that �

t

(X) � �

t+1

(X).

Due to the haraterization of strit subsumption for redued normal

forms (Lemma 25), this implies that either U

t;X

?

� U

t+1;X

?

or U

t;X

A

� U

t+1;X

A

for some A 2 C. In both ases at least one word in one role language is

removed at the transition from �

t

to �

t+1

.

3.4.2 Termination properties in FL

:

For FL

:

, a separate proof of termination is omitted, beause we an exploit

the analogy to FL

?

. Verifying the termination properties again yields a

positive result, whih is stated below without proof. Let M be an FL

:

-

mathing problem under subsumption onditions.

Lemma 39 Termination properties in FL

:

math

v

FL

:

(M) meets the suÆx, deletion and stritness property.

Let us disuss briey why we an expet to gain the same result for FL

:

in exatly the same way as seen for FL

?

. The idea is to show that due to the

redued normal form of all substitutions �

t

ourring during the exeution

of math

v

FL

:

(M), the validity of the three termination properties an be

shown analogous to the proof for FL

?

. Reall that the prerequisites for the

existene of a solution in FL

:

are stronger than in FL

?

. Nevertheless, one

the mathing problem is solvable, the solution assigned by �

t

is syntatially

similar to that in FL

?

|the only di�erene being the onstrut

b

U instead of

U . This an be found when omparing Lemma 7 and Lemma 9, where the

solution languages are introdued. In the presene of redued normal forms

the di�erene between languages of the form

b

U and U disappears, as stated

in Corollary 27. Furthermore, a omparison of Lemma 25 and Lemma 28

yields the same haraerization of equivalene and subsumption for redued

normal forms in FL

?

and FL

:

. Hene, the results obtained for FL

:

are

analogous to those for FL

?

.
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3.4.3 Termination properties in ALN

The overall task of solving mathing problems in ALN is signi�antly more

involved than in its sublanguages. However, most of the additional omplex-

ity is hidden in the notion of exluding words, whih has been studied in

depth in [12℄. One we know that sets of exluding words are of the form

L�N

�

R

for some �nite language L, we do not need to introdue new ideas to

prove the termination properties. By virtue of the redued normal forms we

again �nd a situation analogous to FL

?

, though onsisting of onsiderably

larger equations. Let M denote an ALN -mathing problem under subsump-

tion onditions analogous to that de�ned in Setion 3.4.1.

Lemma 40 SuÆx property in ALN

For all t 2 T (math

v

ALN

;M) and for all X 2 X it holds that:

1. U

t;X

?

ontains only suÆxes of U

?

.

2. U

t;X

A

ontains only suÆxes of U

A

for every A 2 C and U

t;X

:A

ontains only

suÆxes of U

:A

for every A 2 C.

3. U

t;X

(�nR)

ontains only suÆxes of U

(�nR)

for every (� nR) 2 N

�

.

4. U

t;X

(�nR)

ontains only suÆxes of U

(�nR)

[U

?

�R

�1

for every (� nR) 2 N

�

.

Proof. � At step t of the algorithm math

v

ALN

(M), the following sys-

tem of mathing problems has to be solved:

8U

?

:? u u

A2C

8U

A

:A u u

A2C

8U

:A

::A

u u

(�nR)2N

�

8U

(�nR)

:(� nR) u u

(�nR)2N

�

8U

(�nR)

:(� nR)

�

?

8V

?

:? u u

A2C

8V

A

:A u u

A2C

8V

:A

::A

u u

(�nR)2N

�

8V

(�nR)

:(� nR) u u

(�nR)2N

�

8V

(�nR)

:(� nR)

u u

X2X

8V

X

:X
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and for every X 2 X :

8U

t;X

?

:? u u

A2C

8U

t;X

A

:A u u

A2C

8U

t;X

:A

::A

u u

(�nR)2N

�

8U

t;X

(�nR)

:(� nR) u u

(�nR)2N

�

8U

t;X

(�nR)

:(� nR)

v

?

8V

X

?

:? u u

A2C

8V

X

A

:A u u

A2C

8V

X

:A

::A

u u

(�nR)2N

�

8V

X

(�nR)

:(� nR) u u

(�nR)2N

�

8V

X

(�nR)

:(� nR)

u u

X

0

2X

8V

X

X

0

:X

0

This system an be ombined into a single mathing problem. For

the solution to this problem, Lemma 12 provides us with appropriate

solution languages. Regarding the ?-onept, we obtain the following

result for the solution language U

t+1;X

?

assigned by �

t+1

(X

j

):

U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(E

t;X

C

) (�)

Again, due to our notation U

t+1;X

?

�N

�

R

takes the plae of

b

L

X

?

as used in

Lemma 12. Furthermore, E

C

denotes the set of C-exluding words and

analogously E

t;X

C

the set of exluding words for the mathing problem

orresponding to the variable X the above system of mathing prob-

lems.

We may assume C to be in redued normal form. Consequently, it

holds that U

?

�N

�

R

= E

C

, as seen in De�nition 29. As �

t

is also in

redued normal form, we furthermore obtain that U

t;X

?

�N

�

R

= E

t;X

C

for

every t 2 T (math

v

ALN

;M). In Equation (�), we may therefore replae

E

C

by U

?

�N

�

R

and E

t;X

C

by U

t;X

?

�N

�

R

. This reveals the indutive relation

of the role languages:

U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

) (�

0

)

It is to prove that U

t+1;X

?

ontains only suÆxes of U

?

. Equation (�

0

) is

only a syntati variant of Equation (�) established in Lemma 36. As

U

t+1;X

?

is pre�x free, we an prove the laim following exatly the same

pattern as seen for FL

?

in Lemma 36.
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� From the system of mathing problems introdued in (1), we now derive

solutions for role languages of the form U

t+1;X

A

referring to the atomi

onept A in �

t+1

(X

j

). By virtue of Lemma 12 we obtain:

U

t+1;X

A

=

\

w2V

X

w

�1

(U

A

[ E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

A

[ E

t;X

C

)

n U

t+1;X

?

�N

�

R

Taking into aount that U

?

�N

�

R

= E

C

and that U

t;X

?

�N

�

R

= E

t;j;C

,

we an apply the argument of Lemma 36 and replae the expression

U

t+1;X

?

�N

�

R

with the right-hand side of Equation (�

0

). Again, we an

obtain an upper bound for the resulting expression, yielding that

U

t+1;X

A

�

[

w2V

X

w

�1

(U

A

) [

[

X

0

2X

[

w2V

X

X

0

w

�1

(U

t;X

A

).

Beause U

A

and every U

t+1;X

A

is �nite, it is not diÆult to prove that

w

�1

(U

A

) and every w

�1

(U

t+1;X

A

) ontain only suÆxes of U

A

. We know

from Lemma 36, that this property is respeted by the union, thus

ompleting the proof. For role languages U

t;X

:A

referring to negated

atomi onepts :A, exatly the same argument holds.

� We already know that �

t

is in redued normal form for every t 2

T (math

v

ALN

;M). Thus, we have for every number restrition (�

nR) 2 N

�

that

S

m�n

U

t;X

(�mR)

is equal to U

t;X

(�nR)

, i.e. the union an

be omitted. The same holds for C, whih is in redued normal form as

well. Therefore, the expression

S

m�n

U

(�mR)

similarly an be replaed

by U

(�nR)

. This observation enables us to simplify the solution lan-

guage derived from the system of mathing problems proposed in (1).

By means of Lemma 12, we an infer for U

t+1;X

(�nR)

that:

U

t+1;X

(�nR)

=

\

w2V

X

w

�1

(

[

m�n

U

(�mR)

[ E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(

[

m�n

U

t;X

(�mR)

[ E

t;X

C

)

n U

t+1;X

?

�N

�

R

=

\

w2W

j

w

�1

(U

(�nR)

[ E

C

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

(�nR)

[ E

t;X

C

)

n U

t+1;X

?

�N

�

R
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We an see that after removing the unions for the number restritions,

the above equation is syntatially idential to the one derived forA 2 C

in (2). The rest of the argument therefore is idential to what has been

proposed there.

� For (�)-number restritions, we an again remove the union-operator

in the same fashion as done in (3). However, we obtain slightly di�erent

results for the solution languages derived from the system of mathing

problems introdued in (1). For U

t+1;X

(�nR)

we an infer that:

U

t+1;X

(�nR)

=

\

w2V

X

w

�1

(

[

m�n

U

(�mR)

[ E

C

�R

�1

)

\

\

X

0

2X

\

w2V

X

X

0

w

�1

(

[

m�n

U

t;X

(�mR)

[ E

t;X

C

�R

�1

)

n U

t+1;X

?

�N

�

R

=

\

w2V

X

w

�1

(U

(�nR)

[ (U

?

�N

�

R

)�R

�1

)

\

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

(�nR)

[ (U

t;X

?

�N

�

R

)�R

�1

)

n

0

�

\

w2V

X

w

�1

(U

?

�N

�

R

) \

\

X

0

2X

\

w2V

X

X

0

w

�1

(U

t;X

?

�N

�

R

)

1

A

| {z }

=:M

2

Observe, that in the seond step we ould replae E

C

by U

?

�N

�

R

and

E

t;X

C

by U

t;X

?

�N

�

R

. This replaement is valid beause C and �

t

are in

redued normal form. However, the result deviates from the pattern

seen in the previous ases of this proof|the right-quotients of U

?

�N

�

R

and U

t;X

?

�N

�

R

our instead of the original languages. Nevertheless,

we an simplify the right quotient thanks to the �niteness of U

?

and

U

t;X

?

: (U

?

�N

�

R

)�R

�1

equals U

?

�R

�1

[ U

?

�N

�

R

and similarly (U

t;X

?

�N

�

R

)�

R

�1

an be simpli�ed to U

t;X

?

�R

�1

[ U

t;X

?

�N

�

R

for all t and X. Sine

after this transformation all right quotients refer to �nite languages,

we an subtrat M

2

and follow the argument familiar from Lemma 36.
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Consequently, we obtain:

U

t+1;X

(�nR)

�

[

w2V

X

w

�1

(U

(�nR)

[ U

?

�R

�1

)

[

[

X

0

2X

[

w2V

X

X

0

w

�1

(U

t;X

(�nR)

[ U

t;X

?

�R

�1

)

Finally, we an again employ an indution argument to prove that every

U

t+1;X

(�nR)

ontains only suÆxes of U

(�nR)

[ U

?

�R

�1

.

After eliminating the union over number restritions and the right-quotient

for (�)-number restritions in the above equations, the resulting situation ap-

peared very similar to the analogous problems for FL

?

. Realling the hara-

terizations of equivalene and subsumption for redued normal forms in FL

?

and ALN , this is not surprising. By omparing Lemma 25 and Lemma 35,

we �nd almost the same onditions for subsumption. Note that we again

assumed C to be in redued normal form.

Lemma 41 Deletion property in ALN

math

v

ALN

(M) meets the deletion property.

Proof. At �rst, the assertion is proved for role languages referring to the

?-onept and then for the remaining ases.

?-onept: Assume that a word w an appear in a role language for

greater t after having been deleted, i.e. there exists a word w 2 N

�

R

, and

indies t < t

0

2 T (math

v

ALN

;M) and an X 2 X suh that w 2 U

t;X

?

and

w 62 U

t

0

;X

?

but w 2 U

t

0

+1;X

?

. We an now infer a ontradition to U

t;X

?

being

pre�x free, as already done for FL

?

in Lemma 37.

As the substitutions �

t

, �

t

0

and �

t

0

+1

are redued, we an infer from the

assumptions by virtue of the properties of redued normal forms in ALN that

U

t;X

?

� U

t

0

;X

?

� U

t

0

+1;X

?

. The rest of the argument is analogous to Lemma 37.

We apply the de�nition of the multiset order (�) and infer that U

t;X

?

must

ontain a nontrivial pre�x of w as well as w itself.

Other ases: Assume similarly for a word w 2 N

�

R

that w 2 U

t;X

A

and

w 62 U

t

0

;X

A

, but w 2 U

t

0

+1;X

A

for an atomi onept A 2 C, for some X 2 X ,

and for nonnegative integers t < t

0

2 T . Sine again �

t

v �

t

0

v �

t

0

+1

and

sine all substitutions are redued, we yield by Lemma 35:

U

t;X

A

_

[ U

t;X

?

�N

�

R

� U

t

0

;X

A

_

[ U

t

0

;X

?

�N

�

R

� U

t

0

+1;X

A

_

[ U

t

0

+1;X

?

�N

�

R
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Now we an follow the argument employed in Lemma 37 to infer a ontra-

dition to the disjointness of the unions. It is shown in Lemma 35 that the

argument of disjoint unions also applies for negated atomi onept and num-

ber restritions.

The proof of the stritness property for ALN is idential to the previous

ase for FL

?

. This an be readily seen|�rstly, Lemma 17 (soundness and

ompleteness) is valid for ALN as well; and seondly, the araterization of

strit subsumption for ALN -onept desriptions in Lemma 35 yields the

same superset relation for the role languages as used in Lemma 38. Sine

no other argument was neessary there, the same strategy works for ALN as

well. We may therefore state the result without proof, onluding the proofs

of the termination properties:

Lemma 42 Stritness property

math

v

ALN

(M) meets the stritness property.

3.4.4 General result

Given the three termination properties, it is now easy to show that the algo-

rithm halts after a polynomial number of steps. In fat, Property 1 (suÆx

property) yields a polynomial upper bound on the size of the role languages

U

t;X

H

. Property 3 (stritness property) shows that in every step of the itera-

tion at least one word is removed from one of these languages, and Property 2

(deletion property) ensures that words that have been removed annot reap-

pear. To sum up, we have shown the following theorem.

Theorem 43 Let L 2 fFL

?

;FL

:

;ALNg. The algorithm math

v

L

is a poly-

nomial time algorithm that, given an L-mathing problem with subsumption

onditions, returns a least mather of this problem if it is solvable, and \fail"

otherwise.

It should be noted that the algorithm math

v

L

does not work for L =

FL

0

. In the following setion we will therefore briey disuss the additional

onditions neessary to extend Theorem 43 to FL

0

.
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3.5 Mathing under subsumption onditions in FL

0

The language FL

0

does not allow for the bottom onept, and thus the

initialization step (Step 1) of Algorithm 16 is not possible. Instead of starting

with �(X) := ?, the algorithm an also start from the least mather of C �

?

D. In ase the side onditions do not introdue new variables (i.e., variables

not ontained in D), this modi�ation works and yields a polynomial time

mathing algorithm. In ontrast, if new variables are introdued, then we

an show that the size of the least mather may grow exponentially in the

size of the mathing problem. The following example, whih has also been

diussed in [2℄, illustrates this.

Example 44 LetN

R

= fR; Sg. For some n 2 N, assume X = fX

1

; : : : ; X

n

g.

Consider the (trivial) FL

0

-mathing problem > �

?

> under the subsumption

onditions fX

0

v

?

Ag [ fX

i+1

v

?

8fR; Sg:X

i

j 0 � i � n� 1g.

Combining the �rst subsumption ondition with the seond one yields

that every solution to the mathing problem has to respet the subsumption

ondition X

1

v 8fR; Sg:A. It is easy to see by indution that for every

i 2 f1; : : : ; ng we have

X

i

v 8fR; Sg

2

i

:A;

denoting by fR; Sg

2

i

the the set of all words of length 2

i

over the alphabet

fR; Sg. Hene, for every solution � to the mathing problem it holds that

�(X

n

) must assign a role language of exponential size in n orresponding to

the atomi onept A.

The above example suggests a solution strategy for FL

0

-mathing prob-

lems M =: hC �

?

D;S

0

i with new variables ourring in subsumption on-

ditions. The strategy omprises six steps whih are explained below.

1. It is shown in [2℄ that we an transform S

0

into an equivalent set S

1

of

ayli subsumption onditions whose size is polynomial in the size of

S

0

.

2. Analogous to the above example, S

1

is then transformed into an equiva-

lent set S

2

suh that every variable ourring in S

2

either ours only on

left-hand sides of subsumption onditions or only on right-hand sides.

To this end the substitution fX 7! E j X v

?

E 2 S

1

g is applied to

the right-hand side E

0

of every subsumption ondition X

0

v

?

E

0

2 S

1

.

After at most jS

1

j iterations the set of subsumption onditions has the
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required form. As shown by the example, the size of S

2

may be expo-

nential in that of S

1

. Note that this modi�ation would not preserve

equivalene in ase of strit subsumption onditions.

3. Every variable neither ourring in C �

?

D nor on left-hand sides of

subsumption onditions in S

2

is now substituted by >, yielding S

3

.

4. Finally, S

4

is obtained from S

3

by removing every subsumption ondi-

tion X v

?

E where X ours neither in C �

?

D nor on any right-hand

side of any subsumption ondition in S

3

. Obviously, every variable

ourring in S

4

also ours in the original mathing problem C �

?

D.

5. The problem hC �

?

D;S

4

i is then solved with the modi�ed algorithm

math

v

FL

0

starting by solving C �

?

D instead of assigning ? to every

variable in D. Denote by � the solution returned in ase of a suessful

omputation.

6. � assigns values only to variables ourring in D. For a solution �

inluding all variables in M we proeed as follows. For every variable

X ourring only on right-hand sides of subsumption onditions in

S

3

(and not in C �

?

D), de�ne �(X) := >. For those variables X

ourring only on left-hand sides, let �(X) := u

Xv

?

E2S

3

�(E).

One an see that the possible exponential blow-up in Step 2 makes the

above strategy an exponential time algorithm.

Nevertheless, the size of the substitutions for variables in D an still be

bounded polynomially, and if one is only interested in substitutions for these

variables, then these an still be omputed in polynomial time.

4 Mathing under general side onditions

Mathing under general side onditions (i.e., strit and non-strit subsump-

tion onditions) is more omplex than mathing under subsumption ondi-

tions for two reasons.

First, as already shown in [2℄, deiding the solvability of an FL

0

-mathing

problem under strit (and ayli) subsumption onditions is NP-hard. It is

easy to see that the same redution works for the DLs FL

?

, FL

:

, and ALN .

Thus, assuming that P 6= NP, there annot exist a polynomial time algorithm

omputing mathers of mathing problems under general side onditions.
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Seond, as shown by the following example, solvable mathing problems

under strit subsumption onditions no longer need to have a least mather

(but rather �nitely many minimal mathers).

Example 45 Consider the FL

?

-mathing problem

A

1

u : : : u A

n

�

?

X

1

u : : : uX

n

under the strit subsumption onditions

fX

i+1

�

?

X

i

j 1 � i � n� 1g [ fX

1

�

?

>g.

The pure mathing problem enfores that eah X

i

must be replaed by a

(possibly empty) onjuntion of onept names from fA

1

; : : : ; A

n

g. Thus,

the strit subsumption onditions an only be satis�ed if X

1

is replaed by

one of these names, X

2

by a onjuntion of this name with an additional one,

et. From this it is easy to derive that the mathers of the problem are of

the following form: given a permutation P := (p

1

; : : : ; p

n

) of (1; : : : ; n), the

substitution �

P

is de�ned by �

P

(X

i

) := A

p

1

u : : : u A

p

i

(1 � i � n). Thus,

there are n! non-equivalent mathers, and it is easy to see that eah of them

is minimal.

The new ontribution of this setion is a (non-deterministi) algorithm,

math

�

L

, that omputes mathers of L-mathing problems under general

side onditions for L 2 fFL

?

;FL

:

g. (We strongly onjeture that a simi-

lar algorithm an also be used for ALN .) This non-deterministi algorithm

mathes the lower omplexity bound (NP hard) for the deision problem in

the following sense. The length of every omputation path of this algorithm

is polynomially bounded in the size of the given mathing problem. In ase

the problem is not solvable, every omputation returns \fail". Otherwise,

the suessful omputation paths yield all minimal mathers. The algorithm

proeeds in two steps: �rst it eliminates yles and then solves the resulting

mathing problem with ayli side onditions.

4.1 Eliminating yles

In [2℄, FL

0

-mathing problems with yli subsumption onditions are trans-

formed into equivalent ones with ayli subsumption onditions.

In this ontext, "-yles and role yles must be distinguished. We say

that X diretly "-depends on Y i� there is a side ondition X � E suh that
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Y ours in the top-level onjuntion of E. Now, the notion \"-dependene"

is de�ned in the obvious way, and X lies on an "-yle i� it "-depends on

itself. For example, w.r.t. S := fX v

?

X u 8r:Y g, the variable X "-depends

on itself, and it depends on Y (but does not "-depend on Y ).

If an "-yle involves a strit subsumption ondition, then the problem is

unsolvable. Otherwise, "-yles an be removed by �rst replaing all variables

ourring on suh a yle by the same variable. The remaining "-yles are

due to subsumption onditions of the formX v

?

XuE. But suh a ondition

is equivalent to X v

?

E.

If X is a variable on a role yle (i.e., a yle that is not an "-yle), the

we an show that solutions (in FL

?

;FL

:

) must replae X by either > or ?.

The next lemma provides the relevant result.

Lemma 46 Solutions to role yles

Let X �

?

8fvg:X be a subsumption ondition in an FL

?

-mathing problem

M , where v 6= ". Let � be a solution to M respeting the side ondition.

Then,

1. If � = v, then �(X) � ? or �(X) � >.

2. If � = �, then �(X) � ?.

Proof. � Without loss of generality we may assume that � is redued.

Denote �(X) in U -labeled redued normal form. If � respets the side

ondition, then we have �(X) v 8fvg:�(X). The haraterization of

subsumption (Lemma 1) implies that the onditions

U

?

�N

�

R

� fvg�U

?

�N

�

R

U

A

[ U

?

�N

�

R

� fvg�U

A

[ fvg�U

?

�N

�

R

hold for all A 2 C. We have to show that i) �(X) = ? and �(X) = >

solves X �

?

8W:X and that ii) these are the only valid solutions.

i) If �(X) = ?, then the redued normal form implies that U

?

= f"g.

This yields the strit inlusion U

?

�N

�

R

� fvg�U

?

�N

�

R

, sine v 6= ", and

also respets the seond ondition, sine U

A

� U

A

holds for any hoie

of U

A

. Consequently, we �nd that �(X) � ? solves the side ondition

for � = v.

If �(X) = >, then we have U

?

= U

A

= ; whih for the �rst ondition

yields ; � ;. Hene, the �rst ondition for subsumption obviously
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holds, while for the seond one we get U

A

� W �U

A

for all A 2 C. This

holds, sine U

A

= ;. Hene, �(X) � ? solves the side ondition for

� = v.

Note that in ase U

?

= ; the assignment U

A

= ; is the only valid

solution for U

A

� W �U

A

and that no possible value for some U

A

yields

a strit inlusion U

A

� W �U

A

.

ii) The previous remark implies that for any redued solution �(X) 62

f?;>g solving the side ondition, the role language U

?

annot be

empty. Thus, assume u 2 U

?

n f"g. it an be shown that this im-

plies a ontradition to U

?

being �nite and pre�x free.

�

Consequently, we an (non-deterministially) guess suh a substitution for

variables on role yles. Note that the side onditions with suh a variable

as left-hand side are either obviously unsolvable or give rise to additional

mathing problems. For example, if we replae X in X �

?

Y u 8r:X by ?

then the ondition ? �

?

Y u8r:? an be expressed by the mathing problem

? �

?

Z under the side ondition Z �

?

Y u 8r:?.

4.2 The algorithm handling ayli side onditions

In the following, let M = hC �

?

D;Si be an L-mathing problem (L 2

fFL

?

;FL

:

g) under ayli side onditions. Let S = fX

1

�

?

1

E

1

; : : : ; X

`

�

?

`

E

`

g

for distint variables X

1

; : : : ; X

`

and patterns E

1

; : : : ; E

`

suh that E

i

does

not ontain the variables X

i

; : : : ; X

`

. (The ase where not all the left-hand

side variables are distint an be treated similarly.) We denote by S

v

the set

of side onditions obtained from S by replaing every �

i

by v.

Applied to input M , the algorithm math

�

L

�rst alls math

v

L

(hC �

?

D;S

v

i). If this yields \fail", then M is also unsolvable. Otherwise, the

omputed substitution � solves C �

?

D, but may still violate some of the

strit subsumption onditions. Starting with the violated side ondition with

the largest index, the algorithm tries to modify � suh that this side ondition

is satis�ed.

Assume that X

k

�

?

E

k

is this side ondition. Sine � solves X

k

v

?

E

k

,

we thus know that �(X

k

) � �(E

k

). Thus, we must either make �(X

k

) more

spei� or �(E

k

) more general. Sine math

v

L

omputes the least solution,

the �rst option annot lead to a solution of the overall system. Hene, we
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must try the seond one. The idea (whih will be explained in more detail

later) is that we onsider the redued normal form of �(E

k

). We try to make

�(E

k

) more general by (non-deterministially) hoosing one word from one of

its role languages and by removing this word by appropriately modifying the

role languages of the variables ourring in E

k

. Sine we want to ompute

minimal mathers, we make as little hanges as possible in order to keep the

substitution as spei� as possible.

The new substitution �

0

obtained this way solves X

k

�

?

E

k

, and sine

we only modi�ed variables ourring in E

k

, the side onditions with larger

index are still satis�ed. However, the side onditions with smaller index

(even the non-strit ones) as well as the mathing problem need no longer

be solved by �

0

. To overome this problem, math

v

L

is used to ompute the

least substitution that (i) solves hC �

?

D;S

v

i, and (ii) subsumes �

0

. It an

be shown that the seond ondition (whih an be expressed by a system of

mathing problems) makes sure that the omputed substitution still solves

the strit subsumption onditions from index k to `. We an now ontinue

the modi�ation proess with this substitution.

Algorithm 47 Let M = hC �

?

D;Si be an L-mathing problem under

ayli side onditions. Then, math

�

L

works as follows:

1. If math

v

L

(hC �

?

D;S

v

i) returns \fail",

then return \fail";

2. k := `; � := math

v

L

hfC �

?

Dg; S

v

i;

3. If k = 0, then return �;

If �(X

k

) �

k

�(E

k

), then ontinue with 5.

4. Guess modi�ation �

0

of � for X

k

�

?

E

k

;

If �

0

(E

k

) � �(E

k

), then return \fail";

M

0

:= hfC �

?

Dg [ f�

0

(X

j

) v

?

X

j

j 1 � j � `g; S

v

i;

If math

v

L

(M

0

) returns \fail", then return \fail";

� := math

v

L

(M

0

)

5. k := k � 1; ontinue with 3.

4.3 How to guess modi�ations

In order to introdue modi�ations, we �rst sketh the underlying idea for

FL

?

. Reall that the goal is to make �(E

k

) more general by (non-determinis-
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tially) hoosing one word w from one of its role languages and by removing

this word by appropriately modifying the role languages of the variables

ourring in E

k

.

We all this a C-modi�ation if w is piked from a role language orre-

sponding to some atomi onept A. In this ase, removing ertain words

from role languages of the variables in E suÆes to obtain a minimal modi-

�ation.

In ase of a ?-modi�ation, where w is piked from the role language

orresponding to the ?-onept, the removal of some word v in the role

language of a variable impliitly removes every ontinuation vv

0

of v. To

orret this e�et, every word in fvg�N

R

is put bak whenever some v is

removed. In addition, sine v is also impliitly removed from role languages

orresponding to atomi onepts, it is also transferred to suh role languages.

This ensures that the omputed substitution is as spei� as possible. This

is vital both for the proof of orretness and to obtain all minimal solutions.

Before dealing with modi�ations in terms of a formal de�nition (see

De�nition 49), the following example illustrates in more detail how the mod-

i�ations work.

Example 48 Consider the FL

?

-mathing problem A u 8fr; sg:? �

?

X

1

u

8r:X

2

u8r:X

3

under the strit subsumption onditions X

2

�

?

X

1

; X

3

�

?

X

2

.

Exeuting the above algorithm, we obtain in Step 2 as initial solution �

the following substitution:

fX

1

7! 8fr; sg:? u 8f"g:A;X

2

7! 8f"g:?; X

3

7! 8f"g:?g:

The iteration begins in Step 3 by heking the seond side ondition,

whih is violated. Choosing a ?-modi�ation in Step 4, we must hoose a

word from the role language f"g orresponding to ? in �(X

2

) = �(X

3

). In

this ase, we an only pik ". To keep the hange minimal, we do not simply

remove it, but rather replae it by fr; sg in the role language orresponding

to ? in �(X

2

). In addition, we transfer " to the role language orresponding

to A. This yields �

0

(X

2

) = 8fr; sg:? u 8f"g:A. The other variables remain

unhanged.

In this ase, the substitution �

0

itself solves the mathing problem M

0

onsidered in Step 4, and thus math

v

FL

?

(M

0

) returns �

0

.

In the seond iteration, we �nd in Step 3 that the �rst side ondition

X

2

�

?

X

1

no longer holds. In Step 4, we again hoose a ?-modi�ation,
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and hoose the word r from the role language fr; sg orresponding to ? in

�(X

1

). The modi�ation replaes r by rr; rs and adds r to the role language

orresponding to A. This yields �

0

(X

1

) := 8frr; rs; sg:?u 8f"; rg:A. Again,

this substitution solves M

0

, and thus the new value of � is �

0

.

In the next iteration we have k = 0, ending the iteration in Step 3. The

algorithm �nally returns the substitution

fX

1

7! 8frr; rs; sg:? u 8f"; rg:A;X

2

7! 8fr; sg:? u 8f"g:A;X

3

7! 8f"g:?g:

Note that, in the �rst iteration step, it was not possible to apply a C-

modi�ation sine the role language orresponding to A was empty. In the

seond step, we ould have applied a C-modi�ation, removing " from the

role language orresponding to A in �(X

1

). Then, however, the system M

0

obtained this way would not have been solvable. In fat, it is easy to see

that the two mathing problems A u 8fr; sg:? �

?

X

1

u 8r:X

2

u 8r:X

3

and

8fr; sg:? v

?

X

1

ourring in M

0

annot be solved simultaneously.

Modi�ations in FL

?

In the following de�nition, modi�ations in FL

?

are de�ned formally. Reall

that in our mathing problem M := (C �

?

D; fX

j

�

?

j

E

j

j 1 � j � `g), C is

assumed in U -labeled redued normal form and D is assumed in V -labeled

normal form. Furthermore, for the k-th side ondition X

k

�

?

k

E

k

, the onept

desription E

k

is assumed in V

X

k

-labeled normal form. Let �

0

denote the

substitution omputed in Step 2 of the algorithm and denote by �

0

t

(t � 1)

the respetive modi�ation omputed in Step 4. Denote by �

t+1

the solution

of math

v

FL

?

(M

0

) omputed in the t-th iteration of the algorithm. For every

t and for every variable X

k

, assume �

t

(X

k

) in U

t;X

k

-labeled redued normal

form. In the following de�nition, modi�ations need not be de�ned for the

�rst side ondition, beause the ayli struture implies that E

1

ontains no

variables.

De�nition 49 Guessing modi�ations in FL

?

Let H = f?g [ C and let k 2 f2; : : : ; `g, where �

k

= �. Consider a redued

substitution �

t

with �

t

(X

k

) � �

t

(E

k

). A modi�ation �

0

t

of �

t

is de�ned by

exeuting one of the following alternatives:

� ?-modi�ation

(Non-deterministially) guess one word û 2 U

t;X

k

?

. For all j 2 f1; : : : ; k�
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1g, ompute

W

j

?

:=

[

w2V

X

k

X

j

w

�1

�fûg

Thus, W

j

?

ontains all suÆxes of û whih yield û in the produt V

X

k

j

�

W

j

?

. De�ne �

0

t

by speifying the relevant role languages U

0t;X

j

H

for H 2

f?g [ C, i.e. denote every �

0

(X

j

) in U

0t;X

j

-labeled normal form.

1. U

0t;X

j

?

:= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

2. For all A 2 C, de�ne: U

0t;X

j

A

:= U

t;X

j

A

[ (W

j

?

\ U

t;X

j

?

)

� C-modi�ation

(Non-deterministially) guess one atomi onept

^

A 2 C. For

^

A, guess

one word û 2 U

t;X

k

^

A

. Using û, for all j 2 f1; : : : ; k � 1g ompute

W

j

A

:=

S

w2V

X

k

X

j

w

�1

�fûg. Then de�ne:

U

0t;X

j

^

A

:= U

t;X

j

^

A

nW

j

A

and U

0t;X

j

H

:= U

t;X

j

H

for all H 2 f?g [ C n f

^

Ag.

Soundness and ompleteness for FL

?

and FL

:

is proved in Setion 4.4.

NP-ompleteness is proved in Setion ??. We give two more examples in

order to show that i) modi�ations deleting only one word do not always

suÆe and ii) mathing in Step 4 of the algorithm math

�

L

is neessary. For

our examples, let N

C

= fAg and N

R

= fR; Sg.

Example 50 Consider the mathing problem

8frrr; rrs; rs; srrg:?u 8frr; srg:A �

?

8rr:X

1

u 8sr:X

2

u 8r:X

3

u 8r:X

4

under the following set of subsumption onditions.

fX

1

v

?

8fr; sg:?;

X

3

�

?

8frs; sg:X

1

u 8r:X

2

;

X

4

�

?

8s:? u 8f"; rg:X

3

g

Exeuting algorithm math

�

FL

?

yields as initial solution � in Step 2

fX

1

7! 8fr; sg:? u 8f"g:A;

X

2

7! 8r:? u 8f"g:A;

X

3

7! 8frr; rs; sg:? u 8r:A;

X

4

7! 8frr; rs; sg:? u 8r:Ag:
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whih violates the third side ondition, as the test in Step 3 shows: �(X

4

)

is equivalent to �(8s:?u8f"; rg:X

3

). In Step 4, we hoose a ?-modi�ation

and pik the word rs from the role language frr; rs; sg orresponding to

? in �(X

4

). Hene, we have W

3

?

= frs; sg, aording to the de�nition

of ?-modi�ations. Thus, rs and s must be hanged in the role language

orresponding to ? in �(X

3

). The modi�ed solution �

0

now yields

�

0

(X

3

) = 8frr; rsr; rss; sr; ssg:?u 8fr; rs; sg:A,

while the other variables remain unhanged. We �nd that �

0

solves the

mathing problem M

0

in Step 4, and thus math

v

FL

?

(M

0

) yields �

0

.

In the seond iteration we �nd in Step 3 that the seond side ondition

is violated, sine �(X

3

) is equivalent to �(8frs; sg:X

1

u8r:X

2

). We hoose a

C-modi�ation and pik the word rs from the role language fr; rs; sg orre-

sponding to A in �(X

3

). This yields W

1

A

= f"g and W

2

A

= fsg. Nevertheless,

the role language f"g orresponding to A in �(X

2

) does not ontain the word

s, while f"g orresponding to A in �(X

1

) obviously ontains ". We therefore

have

�

0

(X

1

) = 8fr; sg:?,

while the other variables remain unhanged. Again �

0

solves the mathing

problemM

0

in Step 4, so that we have �

0

as new substitution �. In the third

iteration, we now �nd in Step 3 that the �rst side ondition holds, so that

the �nal result is the following.

fX

1

7! 8fr; sg:?;

X

2

7! 8r:? u 8f"g:A;

X

3

7! 8frr; rsr; rss; sr; ssg:?u 8fr; rs; sg:A;

X

4

7! 8frr; rs; sg:? u 8r:Ag

A loser examination reveals that for the third side ondition, neither piking

any word other than rs from fr; rs; sg in the ?-modi�ation, nor performing

a C-modi�ation would have been suessful. Similarly, in the seond side

ondition only a C-modi�ation is suessful. Nevertheless, here we ould

have piked the word s instead of rs, whih would not have altered the

solution, though.

The previous two examples might raise the question whether or not solv-

ing the mathing problemM

0

in Step 4 of every iteration of the the algorithm
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math

�

FL

?

is neessary at all. The following example shows that there are

ases where mathing is needed.

Example 51 We examine the mathing problem

8frrr; rrsg:?u 8rr:A �

?

8rr:X

1

u 8r:X

2

uX

3

uX

4

under the following set of subsumption onditions.

fX

3

�

?

8rr:X

1

u 8r:X

2

;

X

4

�

?

X

3

g

Exeuting algorithmmath

�

FL

?

again begins by omputing an initial solution

� in Step 2, yielding the following substitution.

fX

1

7! 8fr; sg:? u A;

X

2

7! 8frr; rsg:? u 8r:A;

X

3

7! 8frrr; rrsg:?u 8frrg:A;

X

4

7! 8frrr; rrsg:?u 8frrg:Ag

Obviously, in Step 3 we �nd that the seond side ondition is violated, making

it neessary to modify the role languages of �(X

3

), so that �(X

3

) � �

0

(X

3

).

Nevertheless, for the initial solution � we also �nd that the �rst side

ondition is violated as well, sine �(X

3

) is equivalent to �(8rr:X

1

u 8r:X

2

).

As a onsequene, any suessful modi�ation will result in a substitution

�

0

with �

0

(X

3

) 6� �

0

(8rr:X

1

u 8r:X

2

). Hene, �

0

an be no solution to the

mathing problem M

0

in Step 4.

The above examples may suÆe to give a rough impression of the algo-

rithm math

�

FL

?

. We now introdue modi�ations for FL

:

.

Modi�ations in FL

:

The modi�ation strategy for math

�

FL

:

di�ers from the previous de�nition

for FL

?

in three ways. Here, inonsistenies an not only be introdued by

role languages referring to the ?-onept, but also by interations between

role languages referring to an atomi onept A and its negation :A.

Consequently, removing the set W

j

?

from role languages referring to the

?-onept alone does not suÆe for ?-modi�ations. Furthermore, a ?-

modi�ation an no longer add the intersetion W

j

?

\ U

t;X

j

?

to every role
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language of the form U

t;X

j

H

, where H 6= ?. In this ase, W

j

?

\ U

t;X

j

?

would

appear in U

t;X

j

A

as well as in U

t;X

j

:A

for every A 2 C, rendering the removal from

all role languages referring to the ?-onept useless. For ?-modi�ations in

FL

:

, we non-deterministially hoose a subset of W

j

?

\ U

t;X

j

?

to be added to

the role languages of the form U

t;X

j

H

.

For C-modi�ations, the non-deterministi hoie of an atomi onept

^

A

must be generalized to all onepts in C [ f:A j A 2 Cg. With these two

hanges we obtain the following de�nition for modi�ations in FL

:

.

De�nition 52 Guessing modi�ations in FL

:

Let H = f?g [ C [ f:A j A 2 Cg and let

X

k

�

?

u

H2H

8V

X

k

H

:H u

k�1

u

j=1

8V

X

k

X

j

:X

j

| {z }

E

k

be the k-th side ondition in an FL

:

-mathing problem with strit ayli side

onditions over the variables fX

1

; : : : ; X

`

g, where H 2 H and 1 � k � `. We

again onsider a redued substitution �

t

with �

t

(X

k

) � �

t

(E

k

), where every

�

t

(X

j

) is denoted in U

t;X

j

-labeled normal form. A modi�ation �

0

t

of �

t

is

de�ned by exeuting one of the following alternatives:

� ?-modi�ation

(Non-deterministially) guess one word û 2 U

t;X

k

?

. For all j 2 f1; : : : ; k�

1g, ompute

W

j

?

:=

[

w2V

X

k

X

j

w

�1

�fûg

Thus, W

j

?

ontains all suÆxes of û whih yield û in the produt V

X

k

j

�

W

j

?

. De�ne �

0

t

by speifying the relevant role languages U

0t;X

j

H

for H 2

f?g [ C, i.e. denote every �

0

(X

j

) in U

0t;X

j

-labeled normal form.

1. U

0t;X

j

?

:= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

2. For all H 2 H n f?g, (non-deterministially) hoose a subset

^

W

j

� W

j

?

\ U

t;X

j

?

. Then de�ne:

U

0t;X

j

H

:=

�

U

t;X

j

H

n (U

t;X

j

H

\ U

t;X

j

:H

\W

j

?

)

�

[

^

W

j
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� C-modi�ation

(Non-deterministially) guess one atomi onept

^

H 2 C [ f:A j A 2

Cg. For

^

H, guess one word û 2 U

t;X

k

^

H

. Using û, for all j 2 f1; : : : ; k�1g

ompute W

j

^

H

:=

S

w2V

X

k

X

j

w

�1

�fûg. Then de�ne:

U

0t;X

j

^

H

:= U

t;X

j

^

H

nW

j

^

H

and

U

0t;X

j

H

:= U

t;X

j

H

for all H 2 H n f

^

Hg.

In the next setion we will prove the algorithmsmath

�

FL

?

andmath

�

FL

:

to be orret. Knowing that the algorithm math

v

L

always terminates it is

easy to see that termination also holds for math

�

L

, where a �xed number of

mathing problems under subsumption onditions are solved. For this reason

we do not need to address the question of termination separately.

4.4 Soundness and ompleteness

With a formal de�nition of modi�ations, we are now ready to prove sound-

ness and ompletess of the algorithm. We �rst address the ase L = FL

?

.

Soundness and ompleteness in FL

?

In preparation, we need to introdue some notation whih simpli�es denoting

the role words assigned to a onept pattern for some atomi onept.

De�nition 53 Notation

Let E be an FL

?

-onept pattern in V -labeled normal form over the role

alphabet N

R

and the set X of variables, i.e.

E := u

H2H

8U

H

:H u u

X2X

8V

X

:X,

where H := f?g [ C. For a substitution � and for all X 2 X , denote �(X)

in U

X

-labeled normal form. For every H 2 H, de�ne

�(E)j

H

:= U

H

[

[

X2X

V

X

�U

X

H

With the above notation, we an write �(E) as 8�(E)j

?

:?u u

A2C

8�(E)j

A

:A.

It is shown next that the modi�ation strategy de�ned for FL

?

in De�ni-

tion 49 does produe a strit solution for the relevant side ondition. Hene,
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if for some side onditionX

k

�

?

E

k

ourring in a solvable mathing problem

it holds that �

t

(X

k

) � �

t

(E

k

), then there is a modi�ation yielding � � �

0

and �

0

(X

k

) � �

0

t

(E

k

).

Lemma 54 Stritness of modi�ations in FL

?

Let �

�

be a redued solution to M , let �

t

be a redued substitution with

�

t

(X

k

) � �

t

(E

k

) for some k 2 f2; : : : ; `g with �

k

= �. Let �

t

� �

�

. Then

(non-deterministially) modifying �

t

to �

0

t

yields � � �

0

and �

0

t

(X

k

) � �

0

t

(E

k

).

Proof. Two steps are suÆient to prove the laim: i) every modi�ation in

aordane with De�nition 49 yields � v �

0

and ii) there exists a modi�ation

suh that �

t

(X

k

) � �

0

t

(E

k

).

i) ?-modi�ation: For every hoie of û and for every j it holds for �

0

t

that

U

0t;X

j

?

�N

�

R

= U

t;X

j

?

�N

�

R

nW

j

?

,

implying U

t;X

j

?

�N

�

R

� U

0t;X

j

?

�N

�

R

. For every A 2 C the inlusion

^

W

j

A

� U

t;X

j

?

furthermore implies

U

t;X

j

A

[ U

t;X

j

?

�N

�

R

� U

0t;X

j

A

[ U

0t;X

j

?

�N

�

R

beause every word possibly gained by U

0t;X

j

A

is ontained in U

t;X

j

?

�N

�

R

. Conse-

quently, we obtain �

t

v �

0

t

. The seond part of the laim, whih is addressed

below in (ii), is suÆient for stritness.

C-modi�ation: The only di�erene between �

t

and �

0

t

is the deletion of

words in role languages referring to an atomi onept

^

A 2 C. It is therefore

not diÆult to see that �

t

v �

0

t

holds.

ii) We now present a guessing strategy to �nd a modi�ation �

0

with

�

0

t

(X

k

) � �

0

t

(E

k

). To this end, two ases are distinguished.

(Case 1): �

t

(E

k

) and �

�

(E

k

) disagree on the ?-languages, i.e.

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

� �

�

(E

k

)j

?

�N

�

R

.

Thus, there are û 2 U

t;X

k

?

and x 2 N

�

R

suh that ûx does not our on

the right-hand side of the inlusion. Consequently, û 62 �

�

(E

k

)j

?

�N

�

R

. Con-

strut �

0

by a ?-modi�ation, piking one word û as introdued above. By

de�nition, we then have

U

0t;X

j

?

= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

,
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where W

j

?

=

S

w2V

X

k

X

j

w

�1

�fûg.

(Case 2): �

t

(E

k

) and �

�

(E

k

) agree on the ?-languages in the sense that

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

= �

�

(E

k

)j

?

�N

�

R

.

As �

t

(E

k

) � �

�

(E

k

), this implies that there is an A 2 C and a word û 2 U

t;X

k

A

suh that û 62 �

�

(E

k

)j

A

. For the modi�ation, hoose

^

A := A and use one

word û as introdued above.

It is to show now that both in both ases we have �

0

t

(X

k

) � �

0

t

(E

k

).

In Case 1, the de�nition of W

j

?

implies for the ?-part of �

0

(E

k

) that

�

0

t

(E

k

)j

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

n

k�1

[

j=1

V

X

k

X

j

�W

j

?

The word û ours both in �

t

(E

k

)j

?

�N

�

R

and in at least one produt V

X

k

X

j

�W

j

?

.

Sine U

0t;X

k

?

= U

t;X

k

?

, and sine U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

, we obtain

U

0t;X

k

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

. (�)

This is suÆient for our laim, sine we have shown in (1) that �

t

v �

0

t

.

In Case 2, the de�nition of �

0

t

ensures that for

^

A we have

�

0

t

(E

k

)j

^

A

= �

t

(E

k

)j

^

A

n

k�1

[

j=1

V

X

k

X

j

�W

j

?

.

The word û ours in �

t

(E

k

)j

^

A

, sine U

t;X

k

^

A

= pf (�

t

(E

k

)j

^

A

) � �

t

(E

k

)j

^

A

,

3

and ours in at least one produt V

X

k

X

j

�W

j

?

, beause otherwise û 62 �

t

(E

k

)j

^

A

.

Thus, û 62 �

0

t

(E

k

)j

^

A

. We therefore obtain

�

t

(E

k

)j

^

A

[ �

t

(E

k

)j

?

�N

�

R

� �

0

t

(E

k

)j

^

A

[ �

0

t

(E

k

)j

?

�N

�

R

The inlusion is strit, beause otherwise û 2 �

t

(E

k

)j

?

�N

�

R

, implying û 2

U

t;X

k

?

�N

�

R

in ontradition to the reduedness of �

t

. Together with (1), this

onludes our proof.

3

Reall that pf makes a formal language pre�x free, as de�ned in De�nition 18.
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It has to be shown next that a modi�ation yielding �

0

t

is minimal in the

sense that no other modi�ation � at the same time i) lies between �

t

and �

0

t

in respet to the strit ordering � on substitutions, i.e. if �

t

� � � �

0

t

, and

ii) also yields stritness for the respetive side ondition, i.e. �

t

(E

k

) � �(E

k

).

This property justi�es that in the algorithm math

�

FL

0

no modi�ation tries

to make �(X

k

) more spei� when modifying a side ondition X

k

�

?

E

k

with

�(X

k

) � �(E

k

). The following lemma provides the neessary result, again

reurring to the mathing problem as introdued at the beginning of this

setion.

Lemma 55 Minimality of modi�ations

Consider a substitution � suh that �

t

� � v �

0

t

and �

t

(E

k

) � �(E

k

).

Then, � � �

0

t

.

Proof. Without loss of generality, we may assume �

t

, � , and �

0

t

to be re-

dued. Two ases are distinguished depending on whether �

0

t

was obtained

by a ?- or a C-modi�ation.

?-modi�ation: Then there exists a word û 2 �

t

(E

k

)j

?

suh that û 62

�

0

t

(E

k

)j

?

. There are two possible reasons for �

t

(E

k

) � �(E

k

) to hold:

Case 1: �

t

(E

k

)j

?

�N

�

R

� �(E

k

)j

?

�N

�

R

. Sine � v �

0

t

, this implies that the

di�erene �

t

(E

k

)j

?

�N

�

R

n �(E

k

)j

?

�N

�

R

must be missing in �

0

t

(E

k

)j

?

�N

�

R

as well.

But �

0

t

(E

k

)j

?

�N

�

R

was obtained from �

t

(E

k

)j

?

�N

�

R

by removing as little as

possible to remove the word û. Hene, in �(E

k

)j

?

�N

�

R

no other words ould

have been removed, beause otherwise either �

0

t

(E

k

)j

?

�N

�

R

would be too small

or �

t

(E

k

) � �(E

k

) ould not hold. This implies �(E

k

)j

?

�N

�

R

= �

0

t

(E

k

)j

?

�N

�

R

For every A 2 C, we therefore have �(E

k

)j

A

� �

0

t

(E

k

)j

A

. On the other hand,

we know that the ?-modi�ation has inreased �

0

t

(E

k

)j

A

by W

j

?

\ U

t;X

j

?

,

yielding �

0

t

(E

k

)j

A

� �

0

t

(E

k

)j

A

. This implies �(E

k

)j

A

= �

0

t

(E

k

)j

A

, beause

otherwise the ?-modi�ation would not have added all of W

j

?

\ U

t;X

j

?

to the

role languages referring to A in all onept desriptions �

0

t

(X

j

). Together

with � v �

0

t

and the reduedness of the substitutions this is suÆient for

� � �

0

t

.

Case 2: �

t

(E

k

)j

?

�N

�

R

= �(E

k

)j

?

�N

�

R

. Thus, i) there is some A 2 C suh

that �

t

(E

k

)j

A

� �(E

k

)j

A

a and ii) we have �(E

k

)j

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

as a

onsequene of the ?-modi�ation for �

0

t

. It an be shown that this implies

a ontradition with � v �

0

t

, beause �(E

k

)j

A

ontains not enough words for

�(E

k

)j

A

[ �(E

k

)j

?

�N

�

R

� �(E

k

)j

A

[ �(E

k

)j

?

�N

�

R

to hold, whih is a neessary

ondition, as seen in the haraterization of subsumption.
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C-modi�ation: Then there exists an

^

A 2 C and a word û 2 �

t

(E

k

)j

^

A

suh that û 62 �

0

t

(E

k

)j

?

. For � , we again have two ases to distinguish:

Case 1: �

t

(E

k

)j

?

�N

�

R

� �(E

k

)j

?

�N

�

R

. This implies a ontradition with

the fat that the C-modi�ation did not alter role languages in �

0

t

referring

to the ?-onept, whih implies �

t

(E

k

)j

?

�N

�

R

= �

0

(

E

k

)j

?

�N

�

R

. Together with

�(E

k

)j

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

, this forbids the assumption of Case 1.

Case 2: �

t

(E

k

)j

?

�N

�

R

= �(E

k

)j

?

�N

�

R

. Again, this implies some A 2 C

suh that �

t

(E

k

)j

A

� �(E

k

)j

A

. Sine we know that �(E

k

) � �

0

t

(E

k

) and

sine the C-modi�ation is the only di�erene between �

t

(E

k

) and �

0

t

(E

k

),

we an onlude that A =

^

A. On the one hand one an see that as few as

possible words are removed in �

0

t

(E

k

)j

A

to gain stritness while on the other

hand �(E

k

)j

A

� �

0

t

(E

k

)j

A

. Together with � v �

0

t

and the reduedness of the

substitutions we get � � �

0

t

.

We are now prepared to prove soundness of the algorithm math

v

FL

?

. To

this end, we need to make sure that side onditions remain valid one they

are modi�ed appropriately.

Lemma 56 Soundness

1. For every t and for every modi�ation of �

t

yielding �

0

t

it holds that if

math

v

FL

?

(M

0

) sueeds in Step 4 of the algorithm, then

i) �

t

(X

j

) = �

t+1

(X

j

) for every j 2 fk; : : : ; `g

ii) �

t

� �

0

t

v �

t+1

.

2. If math

�

FL

?

(M) returns the substitution �, then � solvesM (soundness).

Proof. 1. i) Aording to De�nition 49, for j 2 fk; : : : ; `g the substitu-

tion �

0

t

assigns the same values to every variable X

j

as �

t

does. Due to

Lemma 54, the right-hand side of every side ondition an only beome

more general. Consequently, every value assigned to variables X

k

to

X

`

by �

0

t

is also a solution for the mathing problem de�ned for �

t+1

.

Exploiting the minimality of math

v

?

and the assumption of redued

normal forms onludes the argument.

ii) It was shown in Lemma 54 that �

t

� �

0

t

holds for every modi�ation

�

0

t

. Subsumption �

0

t

v �

t+1

obviously holds beause of the mathing

problems modulo subsumption f�

0

t

(X

j

) v

?

X

j

j1 � j � `g whih are

inluded in the mathing problem M

0

for �

t+1

.
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2. Assume that math

v

?

(M) = �. Hene, � is the solution of a mathing

problem solved in Step 2 or Step 4 of the algorithm. In both ases,

obviously C �

?

D holds. Furthermore, the initial solution omputed

in Step 2 also respets S

v

, where every side ondition from M is non-

strit. If the exeution of the algorithm has sueeded, then in every

iteration from ` to 1 either the k-th side ondition was found valid

in Step 3 or guessing a modi�ation in Step 4 has sueeded. It is

obvious that in both ases every strit subsumption ondition under

onsideration has been met in the respetive iteration.

As S

v

is ayli, we �nd as a onsequene of Part (1) that one a

side ondition is met it remains valid in subsequent iterations of the

algorithm. This holds for two reasons: i) the variables not modi�ed by a

modi�ation �

0

t

remain unhanged in �

0

t+1

and ii) the variables whih are

modi�ed are assigned more general onept desriptions. Consequently,

if every iteration is suessful, then �nally every side ondition is met

by the resulting substitution �.

In order to prove ompleteness, it is suÆient to show that the algorithm

math

�

FL

?

(M) suessfully returns a solution if the input mathing problem

M is solvable.

Lemma 57 Completeness

Let �

�

be a redued solution to M .

1. Then for every t there exists a modi�ation for �

t

yielding �

0

t

, suh that:

i) If �

0

t

v �

�

then �

t+1

v �

�

.

ii) �

0

t

v �

�

2. math

�

FL

?

(M) returns a substitution � whih solves M (ompleteness).

Proof. 1. i) Presupposing �

0

t

v �

�

it is not diÆult to see that �

�

is

also a valid solution to the mathing problem de�ned in the algorithm

for �

t+1

. The additional requirements for �

t+1

are f�

0

t

(X

j

) v

?

X

j

j1 �

j � `g whih are met by �

�

due to �

0

t

v �

�

. The minimality of the

mathing algorithm math

v

FL

?

then guarantees that �

t+1

v �

�

.

ii) For every j 2 f1; : : : ; `g, denote �

�

(X

j

) in U

�;X

j

-labeled normal

form. Proof by indution over t.

(t = 0): Again, we begin by onsidering a ?-modi�ation as introdued

in the seond part of Lemma 54. Due to the minimality of math

v

FL

?
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it holds that �

0

v �

�

. This implies U

0;X

j

?

�N

�

R

� U

�;X

j

?

�N

�

R

. As û 62

�

�

(E

k

)j

?

�N

�

R

, no produt U

�;X

j

?

�N

�

R

ontains words from W

j

?

. Sine

U

00;X

j

?

�N

�

R

= U

0;X

j

?

�N

�

R

nW

j

?

, we obtain U

00;X

j

?

�N

�

R

� U

�;X

j

?

�N

�

R

, whih

is the �rst ondition for subsumption.

For A 2 C, a ?-modi�ation obviously guarantees that U

0;X

j

A

� U

00;X

j

A

.

We also know from (i) that U

0;X

j

?

�N

�

R

� U

00;X

j

?

�N

�

R

. As �

0

v �

�

implies

U

0;X

j

A

[ U

0;X

j

?

�N

�

R

� U

�;X

j

A

[ U

�;X

j

?

�N

�

R

, (�)

we may replae U

0;X

j

A

by U

00;X

j

A

. Now, why may we also replae the

produt U

0;X

j

?

�N

�

R

by the|smaller|language U

00;X

j

?

�N

�

R

? The language

U

00;X

j

?

�N

�

R

does not ontain a word from W

j

?

. We already know that

U

�;X

j

?

�N

�

R

does not either, so the only problem ould be U

�;X

j

A

ontain-

ing words fromW

j

?

. But sine U

00;X

j

A

is de�ned as U

t;X

j

A

[(U

�;X

j

A

\W

j

?

),

this ase is overed. This ompletes the proof for ?-modi�ations.

For C-modi�ations, we only have to onsider the seond ondition for

subsumption, beause role languages referring to the bottom onept

remain unhanged. For all A 6=

^

A, nothing hanges as well. For

^

A,

only those words of U

0;X

j

A

are missing in U

00;X

j

A

whih do not our in

U

�;X

j

A

also. Consequently, starting from equation (�) again we obtain

the result sought.

(t + 1): The indution hypothesis states that �

0

t

v �

�

. Due to (i),

this implies �

t+1

v �

�

. With these �ndings the remaining proof is

analogous to the previous ase t = 0.

2. If M is solvable, the mathing problem hC �

?

D;S

v

i omputed in

Step 2 of the algorithm is solvable as well. Furthermore, we know

from Theorem 43 that the solutions omputed by math

v

FL

?

are least

mathers with respet to the ordering v on substitutions. Hene, for

the initial solution � it holds that � � �

�

. Indutively, we an now

exploit the results of Lemma 54 and Part (1): Lemma 54 guarantees

that the modi�ation probably neessary in the �rst iteration of the

algorithm sueeds. Aording to (ii), for the �rst modi�ation �

0

1

we

also have �

0

1

� �

�

, whih by (i) implies �

2

v �

�

. If �

2

does not solve

M , then obviously we have �

2

� �

�

. Hene, in the next iteration we

an indutively apply the same argument.



4 MATCHING UNDER GENERAL SIDE CONDITIONS 65

Consequently, we end up with a suessful omputation yielding a so-

lution � with � v �

�

.

As a onsequene of the previous lemma, all minimal mathers (w.r.t.

subsumption of substitutions) are omputed. This an be readily seen when

using a minimal solution �

�

in the previous lemma, whih then implies that

the solution omputed by math

v

FL

?

is equivalent to �

�

.

Soundness and ompleteness in FL

:

In FL

:

-onept desriptions, inonsistenies an additionally be introdued

by words ourring in role languages referring to an atomi onept and to its

negation. We need to alter the notation �(E)j

H

introdued in the previous

part in order to respet this e�et for H = ?.

De�nition 58 Notation

Let E be an FL

:

-onept pattern in V -labeled normal form over the role

alphabet N

R

and the set X of variables. For a substitution � and for all

X 2 X , denote �(X) in U

X

-labeled normal form. Then, de�ne

�(E)j

?

:= U

?

[

[

X2X

V

X

�U

X

?

[

[

A2C

�

[

X2X

(V

X

�U

X

A

) \

[

X2X

(V

X

�U

X

:A

)

�

In Lemma 59 we ould prove for every possible modi�ation �

0

t

that �

t

v

�

0

t

. In ase of FL

:

, this is no longer possible, beause we depend stronger

on the properties of a strit solution �

v

. In the followng lemma we therefore

begin by speifying a guessing strategy relative to �

�

.

Lemma 59 Stritness of Modi�ations in FL

:

Let �

�

be a redued solution to M , let �

t

be a redued substitution with

�

t

(X

k

) � �

t

(E

k

) for some k 2 f2; : : : ; `g with �

k

= �. Let �

t

� �

�

. Then

(non-deterministially) modifying �

t

to �

0

t

yields � � �

0

and �

0

t

(X

k

) � �

0

t

(E

k

).

Proof. We show that there exists a modi�ation in aordane with De�-

nition 52 suh that � v �

0

and �

0

t

(X

k

) � �

0

t

(E

k

). To this end, we present a

guessing strategy to �nd an appropriate modi�ation �

0

, distinguishing two

ases.

(Case 1): �

t

(E

k

) and �

�

(E

k

) disagree on the ?-languages, i.e.

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

� �

�

(E

k

)j

?

�N

�

R

.
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This situation is analogous to the ase FL

?

, beause the left-hand side of

the equation is redued, whih forbids inonsistenies being introdued by

interations of atomi onepts and their negations. It is therefore suÆient

to restrit the hoie of û to the role language U

t;X

k

?

. Hene, we again on-

strut �

0

by a ?-modi�ation, piking one word û as introdued above. By

de�nition, we then have

U

0t;X

j

?

= (U

t;X

j

?

nW

j

?

) [ (U

t;X

j

?

\W

j

?

)�N

R

,

where W

j

?

=

S

w2V

X

k

X

j

w

�1

�fûg. Nevertheless, an additional guess is neessary

for the seond part of the ?-modi�ation. For every j 2 f1; : : : ; k � 1g and

for every H 2 H n f?g, hoose as

^

W

j

the intersetion U

�;X

j

H

\W

j

?

. Hene,

U

0t;X

j

H

= ((U

t;X

j

H

n (U

t;X

j

H

\ U

t;X

j

:H

\W

j

?

)) [ (U

�;X

j

H

[W

j

?

)

(Case 2): This ase is analogous to the guessing strategy for modi�ations

in FL

?

. If �

t

(E

k

) and �

�

(E

k

) agree on the ?-languages, we again have

U

t;X

k

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

= �

�

(E

k

)j

?

�N

�

R

.

As �

t

(E

k

) � �

�

(E

k

), this implies that there is an A 2 C and a word û 2 U

t;X

k

A

suh that û 62 �

�

(E

k

)j

A

. For the modi�ation, hoose

^

A := A and use one

word û as introdued above.

In Case 1, we again �nd that

�

0

t

(E

k

)j

?

�N

�

R

= �

t

(E

k

)j

?

�N

�

R

n

k�1

[

j=1

V

X

k

X

j

�W

j

?

.

Following the same argument as employed for FL

?

, we furthermore obtain

U

0t;X

k

?

�N

�

R

� �

0

t

(E

k

)j

?

�N

�

R

,

whih is a neessary ondition for the strit subsumption �

t

(E

k

) � �

0

(E

k

).

The seond seond ondition for subsumption remains to be shown, i.e.:

U

0t;X

k

H

[ U

0t;X

k

?

��

�

� �

0

(E

k

)j

H

[ �

0

t

(E

k

)j

?

��

�

for all H 2 Hnf?g. Note that the substitution � is assumed redued, whih

makes it possible to use the role language U

0t;X

k

?

instead of

^

U

0t;X

k

?

, as seen in
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the haraterization of the subsumption. We an show the above inlusion

by exploiting the fat that �

t

� �

�

. Sine after removing inonsistenies

from the relevant role languages only the intersetion U

�;X

j

H

[W

j

?

was added

to the role languages U

0t;X

j

H

, it is not diÆult to see that � � �

0

holds as well.

In Case 2, the proof is analogous to that for FL

?

, beause the C-modi�ation

for FL

:

also only removes words from role languages U

t;X

j

H

, where H 2

H n f?g.

Minimality of the modi�ations an be shown similar to the proof for

FL

?

. The possibility of inonsistenies introdued by role words referring to

negated atomi onepts thereby is hidden by the notation de�ned in De�-

nition 58. With this prerequisite, the proof works analogous. Furthermore,

Lemma 56 only depends on the fats i) that in the modi�ation of �

t

(E

k

) the

variables in fX

k

; : : : ; X

`

g remain unhanged, ii) that math

v

FL

?

omputes

least mathers w.r.t. the ordering v on substitutions and iii) that modi�a-

tions are suessful for a solvable mathing problem. These fats also hold

for FL

:

, as we have already seen. Consequently, the proof of soundness of

the algorithm math

�

FL

:

is idential to Lemma 56.

Part (i) in the proof of ompleteness for FL

?

(Lemma 57) again only relies

on the minimality of the algorithm math

v

FL

?

, so that the same argument

an be used for FL

:

. It an also be shown that (ii) is valid for modi�ations

in FL

:

, i.e. we always have �

0

t

v �

�

. As seen in the seond part of Lemma 57,

these �ndings|in addition to the minimality of mathing under subsumption

onditions|are suÆient to show ompleteness.

It is easy to see that the length of eah omputation branh of the nonde-

terminsti algorithm math

�

L

is polynomially bounded. Beause mathing

under strit subsumption onditions in FL

?

and FL

:

is known to be NP-

hard, we obtain the following theorem.

Theorem 60 Let L 2 fFL

?

;FL

:

g. Deiding the solvability of L-mathing

problems under general side onditions is an NP-omplete problem.
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