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Abstra
t

Uni�
ation of 
on
ept des
riptions was introdu
ed by Baader and Narendran as a tool

for dete
ting redundan
ies in knowledge bases. It was shown that uni�
ation in the small

des
ription logi
 FL

0

, whi
h allows for 
onjun
tion, value restri
tion, and the top 
on
ept

only, is already ExpTime-
omplete. The present paper shows that the 
omplexity does

not in
rease if one additionally allows for 
omposition, union, and transitive 
losure of

roles. It also shows that mat
hing (whi
h is polynomial in FL

0

) is PSpa
e-
omplete in the

extended des
ription logi
. These results are proved via a redu
tion to linear equations

over regular languages, whi
h are then solved using automata. The obtained results are

also of interest in formal language theory.

1 Introdu
tion

Knowledge representation languages based on Des
ription Logi
s (DL) 
an be used to rep-

resent the terminologi
al knowledge of an appli
ation domain in a stru
tured and formally

well-understood way [9, 4℄. With the help of these languages, the important notions of the

domain 
an be des
ribed by 
on
ept des
riptions , i.e., expressions that are built from atomi



on
epts (unary predi
ates) and atomi
 roles (binary predi
ates) using the 
on
ept and role


onstru
tors provided by the DL language. Atomi
 
on
epts and 
on
ept des
riptions repre-

sent sets of individuals, whereas roles and role des
riptions represent binary relations between

individuals.

Uni�
ation of 
on
ept des
riptions was introdu
ed by Baader and Narendran [7℄ as a new

inferen
e servi
e for dete
ting and avoiding redundan
ies in DL knowledge bases. Uni�
ation


onsiders 
on
ept patterns, i.e., 
on
ept des
riptions with variables, and tries to make these

des
riptions equivalent by repla
ing the variables by appropriate 
on
ept des
riptions. The

te
hni
al results in [7℄ were 
on
erned with uni�
ation in the small DL FL

0

, whi
h allows for


onjun
tion of 
on
epts (C uD), value restri
tion (8R:C), and the top 
on
ept (>). It is shown

that uni�
ation of FL

0

-
on
ept des
riptions is equivalent to solving systems of linear equations

over �nite languages, and that this problem is ExpTime-
omplete.

In the present paper, we study uni�
ation in FL

reg

, the DL that extends FL

0

by the role


onstru
tors identity role ("), empty role (;), union (R[S), 
omposition (R ÆS), and re
exive-

transitive 
losure (R

�

).

1

Uni�
ation of FL

reg

-
on
ept des
riptions is again equivalent to solving

systems of linear language equations, but the �nite languages are now repla
ed by regular

1

Transitive 
losure then 
orresponds to the expression R Æ R

�

.
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languages. The �rst 
ontribution of the present paper is to show that de
iding the solvability

of su
h equations is, as in the �nite 
ase, ExpTime-
omplete. At �rst sight one might think

that it is suÆ
ient to show that the problem is in ExpTime, sin
e ExpTime-hardness already

holds for the \simpler" 
ase of uni�
ation in FL

0

. However, uni�
ation in FL

reg

is not a priori

at least as hard as uni�
ation in FL

0

sin
e the set of potential solutions in
reases. Thus, an

FL

0

-uni�
ation problem (whi
h 
an also be viewed as an FL

reg

-uni�
ation problem) may be

solvable in FL

reg

, but not in FL

0

. (We will see su
h an example later on.)

Our 
omplexity results are by redu
tion to/from de
ision problems for tree-automata. Whereas

for equations over �nite languages automata on �nite trees 
ould be used, we now 
onsider

automata working on in�nite trees. As a by-produ
t of the redu
tion to tree automata, we also

show that, if a system of linear equations has some (possibly irregular) solution, then it also

has a regular one. That is, restri
ting solutions to substitutions that map variables to regular

languages does not make a di�eren
e in terms of the solvability of an equation.

Equations over regular languages have already been 
onsidered by Leiss [11, 10℄. However,

he does not provide any de
idability or 
omplexity results for the 
ase we are interested in.

Closely related to the problem of solving linear language equations is the problem of solving set


onstraints [1℄, i.e., relations between sets of terms. Set 
onstraints are usually more general

than the kind of equations we are dealing with here. The 
ase we 
onsider here 
orresponds

most 
losely to positive set 
onstraints for terms over unary and nullary fun
tion symbols where

only union of sets is allowed. For solvability of positive set 
onstraints over (at least two) unary

and (at least one) nullary fun
tion symbols, ExpTime-
ompleteness is shown in [1℄. However,

this result does not dire
tly imply the 
orresponding result for our 
ase. On the one hand, for

set 
onstraints one 
onsiders equations with �nite languages as 
oeÆ
ients, whereas we allow

for regular languages as 
oeÆ
ients. It is, however, easy to see that regular 
oeÆ
ients 
an be

expressed using set 
onstraints. On the other hand, for set 
onstraints one allows for arbitrary

(possibly) in�nite solutions, whereas we restri
t the attention to regular solutions. Using the

(new) result that the restri
tion to regular sets does not 
hange the solvability of an equation,

our exponential upper bound also follows from the 
omplexity result in [1℄. The hardness result

in [1℄ does not dire
tly 
arry over sin
e even positive set 
onstraints allow for more 
omplex

types of equations than the linear ones 
onsidered here.

Mat
hing is a spe
ial 
ase of uni�
ation where only one of the patterns 
ontains variables. In

[7℄ it was shown that mat
hing in FL

0

is polynomial, and in [6℄ this result was extended to the

more expressive DL ALN . We will show that mat
hing in FL

reg

is PSpa
e-
omplete.

In 
ase a uni�
ation/mat
hing problem is solvable, one is usually interested in obtaining an

a
tual solution. In the 
ontext of mat
hing in des
ription logi
s, it has been argued [8, 5℄ that

not all solutions of a mat
hing problem are of interest to a user. Therefore, one must look for

solutions with 
ertain desired properties; for instan
e, least solutions where all variables are

substituted by 
on
ept des
riptions that are as spe
i�
 as possible turned out to be appropriate

in some 
ontexts [8, 12℄. For mat
hing in FL

0

and FL

reg

, solvable problems always have a

least solution. For uni�
ation, we will show that this is only true for FL

reg

.

2 Uni�
ation in FL

reg

Let us �rst introdu
e FL

0

- and FL

reg

-
on
ept des
riptions. Starting from the �nite and disjoint

sets N

C

of 
on
ept names and N

R

of role names, FL

0

-
on
ept des
riptions are built using the


on
ept 
onstru
tors 
onjun
tion (C u D), value restri
tion (8r:C), and the top 
on
ept (>).

FL

reg

extends FL

0

by additionally allowing for the role 
onstru
tors identity role ("), empty

role (;), union (R[S), 
omposition (RÆS), and re
exive-transitive 
losure (R

�

). As an example,


onsider the FL

reg

-
on
ept des
ription Woman u 8
hild

�

:Woman; whi
h represents the set of

2



Syntax Semanti
s FL

0

FL

reg

> �

I

x x

C uD C

I

\D

I

x x

8R:C fx 2 �

I

j 8y : (x; y) 2 R

I

! y 2 C

I

g x x

" f(x; x) j x 2 �

I

g x

; ; x

R Æ S f(x; z) j 9y : (x; y) 2 R

I

^ (y; z) 2 S

I

g x

R

�

S

n�0

(R

I

)

n

x

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

all women with only female o�spring.

Role names will be denoted by lower 
ase letters (r; s; : : : 2 N

R

), and 
omplex roles by upper


ase letters (R;S; T : : :). Note that a 
omplex role 
an be viewed as a regular expression over

N

R

where " is taken as the empty word, role names as elements of the alphabet, the empty

role as the empty language, union as union of languages, 
omposition as 
on
atenation, and

re
exive-transitive 
losure as Kleene star. Therefore, we sometimes view a 
omplex role R as a

regular expression. In the following, we will abuse notation by identifying regular expressions

with the languages they des
ribe. In parti
ular, if R and R

0

are regular expressions, then

R = R

0

will mean that the 
orresponding languages are equal.

As usual, the semanti
s of 
on
ept and role des
riptions is de�ned in terms of an interpreta-

tion I = (�

I

; �

I

). The domain �

I

of I is a non-empty set and the interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a set A

I

� �

I

and ea
h role name r 2 N

R

to a binary

relation r

I

� �

I

��

I

. The extension of �

I

to arbitrary 
on
ept and role des
riptions is de�ned

indu
tively, as shown in the se
ond 
olumn of Table 1. The interested reader may note that

FL

reg

-
on
ept des
riptions 
an also be viewed as 
on
epts de�ned by 
y
li
 FL

0

-TBoxes in-

terpreted with the greatest �xed-point semanti
s [2℄. The 
on
ept des
ription D subsumes the

des
ription C (C v D) i� C

I

� D

I

for all interpretations I. Two 
on
ept des
riptions C;D

are equivalent (C � D) i� they subsume ea
h other.

In order to de�ne uni�
ation of 
on
ept des
riptions, we �rst have to introdu
e the notions


on
ept patterns and substitutions operating on 
on
ept patters. To this purpose, we need a

set of 
on
ept variables N

X

(disjoint fromN

C

[N

R

). FL

reg

-
on
ept patterns are FL

reg

-
on
ept

des
riptions de�ned over the set N

C

[N

X

of 
on
ept names and the set N

R

of role names. For

example, given A 2 N

C

, X 2 N

X

, and r 2 N

R

, 8r:A u 8r

�

:X is an FL

reg

-
on
ept pattern.

A substitution � is a mapping from N

X

into the set of all FL

reg

-
on
ept des
riptions. This

mapping is extended from variables to 
on
ept patterns in the obvious way, i.e.,

� �(>) := > and �(A) := A for all A 2 N

C

,

� �(C uD) := �(C) u �(D) and �(8R:C) := 8R:�(C).

De�nition 1 An FL

reg

-uni�
ation problem is of the form C �

?

D, where C, D are FL

reg

-


on
ept patterns. The substitution � is a uni�er of this problem i� �(C) � �(D). In this 
ase,

the uni�
ation problem is solvable, and C and D are 
alled uni�able.

For example, the substitution � = fX 7! 8r Æ r

�

:A; Y 7! 8r:Ag is a uni�er of the uni�
ation

problem

8s:8r:A u 8r:A u 8r:X �

?

X u 8s:Y: (1)
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Note that this problem 
an also be viewed as an FL

0

-uni�
ation problem. However, in this 
ase

it does not have a solution sin
e there are no FL

0

-
on
ept des
riptions that, when substituted

for X and Y , make the two 
on
ept patterns equivalent.

For readers interested in uni�
ation theory, let us point out that (just as for FL

0

[7℄), uni�
ation

in FL

reg


an be viewed as uni�
ation modulo an appropriate equational theory, and that (like

the theory 
orresponding to FL

0

) this theory is of uni�
ation type zero.

3 Redu
tion to regular language equations

We now show how uni�
ation in FL

reg


an be redu
ed to solving linear equations over regular

languages built using the alphabet N

R

of role names.

The equations we are interested in are built as follows. Let � be a �nite alphabet. For languages

L;M � �

�

, their 
on
atenation is de�ned by LM := fvw j v 2 L;w 2 Mg. Let X

1

; : : : ; X

n

be variables. Given regular languages S

0

; S

1

; : : : ; S

n

; T

0

; T

1

; : : : ; T

n

2

over N

R

, a linear equation

over regular languages is of the form

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

[ T

1

X

1

[ � � � [ T

n

X

n

(2)

A (regular, �nite) solution � of this equation is a substitution assigning to ea
h variable a

(regular, �nite) language over � su
h that the equation holds. We are parti
ularly interested

in regular solutions sin
e these 
an be turned into FL

reg

-
on
ept des
riptions.

A system of regular language equations is a �nite set of regular language equations. A sub-

stitution � solves su
h a system if it solves every equation in it simultaneously. A system of

equations 
an easily (in linear time) be turned into a single equation with the same set of solu-

tions by 
on
atenating all 
onstant languages in an equation with a role r (a new role for every

equation), i.e., the languages S

i

and T

i

are repla
ed by frgS

i

and frgT

i

. Then the di�erent

equations 
an be put together into a single equation without 
ausing any interferen
e (see [7℄

for details). Hen
e, for our 
omplexity analysis we 
an fo
us on single equations.

To establish the redu
tion from uni�
ation in FL

reg

to solvability of linear equations over

regular languages, FL

reg

-
on
ept patterns are written in the following normal form:

u

A2N

C

8R

A

:A u u

X2N

X

8R

X

:X;

where R

A

and R

X

are regular expressions over N

R

. Every 
on
ept pattern 
an (in polynomial

time) be turned into su
h a normal form by exhaustively applying the following equivalen
e

preserving rule: 8R:Cu8R

0

:C �! 8(R[R

0

):C; where R;R

0

are regular expressions overN

R

and

C is some FL

reg

-
on
ept pattern. Corre
tness of our redu
tion from uni�
ation to solvability of

linear equations depends on the following (easily provable [2, 3℄) 
hara
terization of equivalen
e:

Lemma 2 Let C;D be FL

reg

-
on
ept des
riptions su
h that

C � u

A2N

C

8S

A

:A and D � u

A2N

C

8T

A

:A:

Then C � D i� S

A

= T

A

for all A 2 N

C

.

As an easy 
onsequen
e, we obtain the following theorem, whi
h shows that uni�
ation in FL

reg

is equivalent via linear time redu
tions to solving regular language equations.

2

We assume that these languages are given by regular expressions or nondeterministi
 �nite automata.
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Theorem 3 Let C;D be FL

reg

-
on
ept patterns su
h that

C � u

A2N

C

8S

A

:A u u

X2N

X

8S

X

:X and D � u

A2N

C

8T

A

:A u u

X2N

X

8T

X

:X:

Then C;D are uni�able i�, for all A 2 N

C

, the regular language equation E

C;D

(A) below has

a solution:

S

A

[

[

X2N

X

S

X

X

A

= T

A

[

[

X2N

X

T

X

X

A

Note that the language equations in this system do not share variables, and thus they 
an

be solved separately. In the equation E

C;D

(A), the variable X

A

is a new 
opy of X 2 N

X

.

Di�erent equations have di�erent 
opies.

Continuing our example, from the uni�
ation problem (1) we obtain the following language

equation (assuming N

C

= fAg):

fr; srg [ frgX

A

= f"gX

A

[ fsgY

A

A solution of this equation is X

A

= rr

�

and Y

A

= r, whi
h 
orresponds to the solution � of (1).

4 The de
ision problem

The �rst theorem of this paper gives the exa
t 
omplexity of solving systems of linear equations

over regular languages.

Theorem 4 De
iding (regular) solvability of (systems of) equations of the form (2) is an

ExpTime-
omplete problem.

As an immediate 
onsequen
e, uni�
ation in FL

reg

is ExpTime-
omplete as well.

The upper 
omplexity bound.

To prove that the problem 
an be solved in ExpTime, it suÆ
es to 
on
entrate on a single

equation. Moreover, instead of (2) we 
onsider equations where the variables o

ur in front of

the 
oeÆ
ients. Su
h an equation 
an easily be obtained from (2) by 
onsidering the mirror

images (or reverse) of the 
oeÆ
ient languages. That is, we go from a language L � N

�

R

to its

mirror image L

mi

:= fr

m

� � � r

1

j r

1

� � � r

m

2 Lg. The mirror equation of (2) is of the form

S

mi

0

[X

1

S

mi

1

[ � � � [X

n

S

mi

n

= T

mi

0

[X

1

T

mi

1

[ � � � [X

n

T

mi

n

: (3)

Obviously, the mirror images of solutions of (3) are exa
tly the solutions of (2).

To test (3) for solvability, we build a looping tree-automaton B, i.e., a B�u
hi tree-automaton

where all states are �nal. Let us brie
y introdu
e in�nite trees and looping tree-automata (see

[14℄ for details). Let � be a �nite alphabet and, w.l.o.g., N

R

= f1; : : : ; kg. A �-labeled k-ary

in�nite tree t is a mapping from N

�

R

into �. (In parti
ular, the nodes of t 
an be viewed as

words over N

R

.) In 
ase � is a singleton, t is 
alled unlabeled. A looping tree-automaton A is a

tuple (Q;�; I;�) where Q is the �nite set of states of A, � is a �nite alphabet, I � Q is the set

of initial states, and � � Q���Q

k

is the transition relation. (Note that we do not de�ne �nal

states. Also, we will omit � in 
ase it is a singleton.) A run r of A on the tree t is a Q-labeled

5



k-ary tree su
h that (r(u); t(u); r(u1); : : : ; r(uk)) 2 �. It is 
alled su

essful if r(") 2 I . The

tree language a

epted by A is L(A) := ft j there exists a su

essful run of A on tg.

Our looping tree-automaton B will work on the (unique) unlabeled k-ary in�nite tree t (thus

L(B) will be the empty set or ftg). The idea underlying the 
onstru
tion is as follows. A

Q-labeled k-ary in�nite tree r 
an be used to des
ribe sets of words by taking those words u

for whi
h the label r(u) satis�es a 
ertain property. In prin
iple, a run of B on t represents i)

a set of words over N

R

obtained by instantiating the equation with one of its solutions (
alled

solution sets in the following), and ii) the solution itself, i.e., the languages substituted for the

variables. To a
hieve this, while working its way down t, in every step B guesses whether the


urrent node (or more pre
isely the word it represents) a) belongs to the solution set, and b) to

the language substituted for X

i

(i = 1; : : : ; n). In addition, B 
he
ks whether the guesses made

a
tually yield a solution.

Formally, B = (Q; I;�) is de�ned as follows. (We provide a more detailed explanation after

the de�nition.) Let A

S;i

= (Q

S;i

; N

R

; q

S;i

;�

S;i

; F

S;i

) and A

T;i

= (Q

T;i

; N

R

; q

T;i

; �

T;i

; F

T;i

)

be (nondeterministi
) �nite automata a

epting the languages S

mi

i

and T

mi

i

(i = 0; : : : ; n),

respe
tively. We assume (w.l.o.g.) that the set of states of these automata are pairwise disjoint.

Let N := f0; 1; : : : ; ng, Q

S

(Q

T

) be the union of the sets Q

S;i

(Q

T;i

), i = 0; : : : ; n, and F

S

(F

T

)

be the union of the sets F

S;i

(F

T;i

).

1. Q := 2

N

� 2

Q

S

� 2

Q

T

;

2. I := f(G;L;R) j G � N , L = fq

S;0

g [ fq

S;i

j i 2 Gg, and

R := fq

T;0

g [ fq

T;i

j i 2 Gg;

3. � 
onsists of all tuples ((G

0

; L

0

; R

0

); (G

1

; L

1

; R

1

); : : : ; (G

k

; L

k

; R

k

)) 2 Q�Q

k

su
h that

(a) 0 2 G

0

i� L

0

\ F

S

6= ; i� R

0

\ F

T

6= ;;

(b) for all i = 1; : : : ; k,

L

i

:= su
(L

0

; i) [ fq

S;j

j j 2 G

i

g and R

i

:= su
(R

0

; i) [ fq

T;j

j j 2 G

i

g; where

su
(L

0

; i) := fq j there exists q

0

and j with q

0

2 L

0

\Q

S;j

and (q

0

; i; q) 2 �

S;j

g and

su
(R

0

; i) is de�ned analogously.

Intuitively, B uses the �rst 
omponent of its states to guess whether a node (the word it

represents) belongs to the solution set and/or to one of the variables X

i

. That is, given a state

(G;L;R), 0 2 G means that the 
urrent node belongs to the solution set and i 2 G means that

the node belongs to X

i

(more a

urately, to the language substituted for X

i

). The other two


omponents are used to do the book-keeping ne
essary to 
he
k whether the guesses a
tually

yield a solution. To understand their rôle, assume that r is a run of B on t. W.l.o.g. we 
onsider

the se
ond 
omponent. If r(u) = (G;L;R) and j 2 G, for some j 6= 0, then u belongs to X

j

,

and thus uv belongs to X

j

S

mi

j

for all v 2 S

mi

j

. Consequently, if r(uv) = (G

0

; L

0

; R

0

), then

we must have 0 2 G

0

. To enfor
e this, q

S;j

(the initial state of the automaton A

S;j

a

epting

S

mi

j

) is added to L. The transitions of B then simulate the transitions of A

S;j

in the se
ond


omponent. Thus, in r(uv) the set L

0


ontains a �nal state of A

S;j

, and now (3a) implies that

0 2 G

0

must hold. Conversely, if 0 2 G

0

, then L

0

must 
ontain a �nal state of some of the

automata A

S;i

(i = 0; : : : ; n).

Given a su

essful run r of B, it is now easy to prove that the substitution �

r

:

�

r

(X

i

) := fu j r(u) = (G;L;R) and i 2 Gg

is a solution of (3). Conversely, it is not hard to show that a given solution of (3) indu
es a

su

essful run of B.

6



Lemma 5 There is a one-to-one 
orresponden
e between solutions of (3) and su

essful runs

of B.

The lemma implies that equation (3) has a solution i� B has a su

essful run (i.e., L(B) 6= ;).

The size of the set of states of B is exponential in the size of equation (3), where the size of

the regular sets S

mi

i

and T

mi

i

are measured by the size of nondeterministi
 �nite automata

a

epting these sets. Sin
e the emptiness problem for B�u
hi tree-automata (and thus looping

tree-automata) 
an be solved in polynomial time in the size of the automaton [14℄ (and a
tually

in linear time for looping automata), this yields the desired exponential time algorithm for

de
iding the solvability of equation (3). However, the existen
e of a solution does not a priori

imply that there is also a regular one. Thus, we must still show that regular solvability 
an also

be de
ided in ExpTime.

It is well-known [14℄ that a B�u
hi-automaton has a su

essful run i� it has a regular (or rational)

run. It is easy to show that the solution 
orresponding to a regular run is a regular solution.

Proposition 6 If (3) has a solution, then it also has a regular one.

This proposition also follows from our results in Se
tion 5.

The lower 
omplexity bound.

The hardness result 
an be shown similarly to the proof by Baader and Narendran [7℄ for sys-

tems of equations over �nite languages. In their proof, the interse
tion emptiness problem for

deterministi
 root-to-frontier automata on �nite trees, whi
h has been shown to be ExpTime-


omplete by Seidl [13℄, is redu
ed to the solvability of systems of equations over �nite languages.

The interse
tion emptiness problem is de�ned as follows: given a sequen
e A

1

; : : : ;A

n

of de-

terministi
 root-to-frontier automata over the same ranked alphabet �, de
ide whether there

exists a tree t a

epted by A

1

; : : : ;A

n

.

Instead of deterministi
 root-to-frontier automata we will here use deterministi
 looping tree-

automata: a looping tree-automaton is deterministi
 if it has one initial state and, for every

state q and symbol f , there exists at most one transition of the form (q; f; : : :). We will show

that Seidl's result easily 
arries over to these automata. However, we need to 
onsider looping

tree-automata over in�nite trees labeled by elements of a ranked alphabet. That is, the number

of su

essors of a node varies depending on the arity of the label atta
hed to the node. Modifying

the de�nition of looping tree-automata to work on these trees is straightforward.

Proposition 7 The interse
tion emptiness problem for looping tree-automata over a ranked

alphabet is ExpTime-hard.

This 
an be shown by redu
ing the interse
tion emptiness problem for root-to-frontier automata

to the interse
tion emptiness problem for looping tree-automata. The main idea is to turn every

�nite tree t into an in�nite tree

b

t by adding a new symbol # (say of rank 1) to the alphabet,

and extending the �nite tree at every leaf by atta
hing the in�nite tree labeled by # only. A

given root-to-frontier automaton A 
an then easily be modi�ed to a looping tree-automaton

B su
h that every su

essful run of A on t 
orresponds to a su

essful run of B on

b

t and vi
e

versa.

It remains to show how the interse
tion emptiness problem for looping tree-automata 
an be

redu
ed to the solvability of systems of linear equations over regular languages. In the following,

let � be a ranked alphabet. Seidl's result implies that it suÆ
es to restri
t the attention to

symbols of rank 1 and 2.

7



We represent an in�nite tree t over the ranked alphabet � by an in�nite set S(t) of words

over � [ f1; 2g. This set 
ontains one element for every node of the tree. Given a node u,

the 
orresponding word des
ribes the path from this node to the root of the tree by listing

the labels of the nodes v on this path together with the information whether v is the �rst or

se
ond su

essor of its parent node. To be more pre
ise, if t = f(t

1

; t

2

) is the tree whose root

is labeled with f and has the two su

essor trees t

1

and t

2

, then S(t) := f"g [ fu1f j u 2

S(t

1

)g [ fu2f j u 2 S(t

2

)g. A

ordingly, if t = g(t

0

), then S(t) := f"g [ fu1g j u 2 S(t

0

)g.

For example, if f is binary, g is unary, and t is the in�nite tree labeled with g only, then

S(f(t; t)) = f"g[ (1g)

�

1f [ (1g)

�

2f . Given a node u in t we denote the word representing u in

S(t) by w

t

(u). In the example, w

f(t;t)

(211) = 1g1g2f .

Now, let A = (Q;�; q

0

;�) be a deterministi
 looping tree-automaton over the ranked alphabet

�. We 
onstru
t the following linear equation, where the variables X

(q;g)

range over (possibly

in�nite) sets of words over �

0

:= � [Q [ f1; 2g:

[

(q;g)2Su


fqgX

(q;g)

= fq

0

g [

[

(q;g;q

1

;:::;q

k

)2�

fq

1

1g; : : : ; q

k

kggX

(q;g)

; (4)

where Su
 denotes the set of tuples (q; g) for whi
h there exist q

1

; : : : ; q

k

with (q; g; q

1

; : : : ; q

k

) 2

�, and k denotes the rank of g.

We want to show that solutions of (4) indu
e a

epting runs of A and vi
e versa. Assuming

that (4) has the solution �, let us try to 
onstru
t a tree t and a su

essful run of A on t.

Sin
e q

0

o

urs on the right-hand side of (4), it must also o

ur on the left-hand side. Thus,

there must exist a symbol g su
h that (q

0

; g) 2 Su
 and " 2 �(X

(q

0

;g)

). Intuitively, this


orresponds to setting t(") := g and r(") := q

0

. Now, sin
e " 2 �(X

(q

0

;g)

), additional words

o

ur on the right-hand side of (4). Indeed, sin
e (q

0

; g) 2 Su
, there exist q

1

; : : : ; q

k

with

(q

0

; g; q

1

; : : : ; q

k

) 2 �. Thus, the words q

1

1g; : : : ; q

k

kg o

ur on the right-hand side. This


orresponds to setting r(1) := q

1

; : : : ; r(k) := q

k

. Let us look at q

1

1g. This word must also

o

ur on the left-hand side of (4). Thus, there must exist a symbol f with (q

1

; f) 2 Su
 and

1g 2 �(X

(q

1

;f)

). This 
orresponds to setting t(1) := f . Now, sin
e 1g 2 �(X

(q

1

;f)

), additional

words o

ur on the right-hand side of (4), and one 
ontinues just as in the 
ase " 2 �(X

(q

0

;g)

).

This illustrates that, if (4) is solvable, then one 
an 
onstru
t a tree t and an a

epting run r

of A on t. Moreover, it follows that S(t) � V

�

:=

S

(q;g)2Su


�(X

(q;g)

).

Conversely, if t 2 L(A) and r is the (unique) a

epting run of A on t, then we 
an use r to


onstru
t a solution � of (4) su
h that S(t) = V

�

:

�(X

(q;g)

) := fw

t

(u) j t(u) = g ^ r(u) = qg:

Lemma 8 If � solves (4), then there exists t 2 L(A) with S(t) � V

�

. Conversely, if t 2 L(A),

then there exists a solution � of (4) with S(t) = V

�

.

The in
lusion in the �rst part of the lemma may be stri
t. In fa
t, by the se
ond part, every

tree in L(A) yields a solution of (4). Sin
e the solutions of su
h linear equations are 
losed

under (argument-wise) union, there are solutions � representing more than one a

epted tree.

Be
ause of this fa
t, our redu
tion will depend on the following lemma.

Lemma 9 Let � be a solution of (4) and t a tree. If S(t) � V

�

, then t 2 L(A).

In 
ontrast to the previous lemma, Lemma 9 holds only be
ause the automaton A is assumed

to be deterministi
.

For the sake of simpli
ity, we assume in the proof of Lemma 9 that � 
onsists of symbols of

rank 2 only. Thus, every �-labeled tree is a mapping from f1; 2g

�

into �. The 
ase where �

also 
ontains symbols of rank 1 
an be handled analogously.
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In the following, let � be a solution of (4). Given a tree t with S(t) � V

�

, we must show that

t 2 L(A), i.e., there is a su

essful run of A on t. Before we 
an show this, we must introdu
e

some notation.

For a 2 f1; 2g, let a denote 2 if a = 1 and 1 if a = 2. Given a node u = u

1

� � �u

n

for

u

i

2 f1; 2g, let t

u

denote the �nite subtree of t whose set of nodes, dom(t

u

), 
onsists of all

prede
essors of u as well as the dire
t su

essors of these nodes, i.e., dom(t

u

) 
onsists of the

nodes ", u

1

: : : u

i

(i = 1; : : : ; n), and u

1

: : : u

i�1

u

i

(i = 1; : : : ; n). These nodes are labeled as in

t. Note that dom(t

"

) = f"g. A partial run p to u (of A on t) is a mapping from dom(t

u

) to

Q su
h that (i) p(") = q

0

, and (ii) (p(u

1

� � �u

i

); t(u

1

� � �u

i

); p(u

1

� � �u

i

1); p(u

1

� � �u

i

2)) 2 � for

all i = 0; : : : ; n�1. Put in another way, A 
an also be seen as a deterministi
 top-down tree

automaton working on �nite trees, and a partial run to u is a su

essful run of this automaton

on t

u

.

Re
all that, for u 2 f1; 2g

�

, w

t

(u) denotes the word in S(t) 
orresponding to u, i.e., if

u = u

1

� � �u

n

for u

i

2 f1; 2g, then w

t

(u) = u

n

a

n�1

� � �u

1

a

0

, where a

i�1

= t(u

1

� � �u

i�1

)

(i = 1; : : : ; n).

From the next lemma, Lemma 9 will easily follow.

Lemma 10 Let t be a �-labeled tree with S(t) � V

�

. Then, for every u 2 f0; 1g

�

, there exists

a state q 2 Q su
h that (q; t(u)) 2 Su
 and w

t

(u) 2 �(X

(q;t(u))

). Moreover, if q is a state

su
h that (q; t(u)) 2 Su
 and w

t

(u) 2 �(X

(q;t(u))

), then there exists a partial run p to u with

p(u) = q.

Before proving this lemma, we show how it 
an be used to prove Lemma 9. It suÆ
es to


onstru
t a su

esful run r of A on t.

Sin
e A is deterministi
, any partial run to a node u is uniquely determined by u. Let us 
all

this run p

u

. The determinism of A also implies that p

ui

for i 2 f1; 2g extends p

u

in the sense

that p

ui

(v) = p

u

(v) for all v 2 dom(t

u

). (Otherwise, the restri
tion of p

ui

to dom(t

u

) would

yield a partial run to u that di�ers from p

u

). Thus, a su

essful run r on t 
an be obtained by

iteratively extending the partial runs. Formally, we de�ne

r(u) := p

u

(u) for every u 2 f1; 2g

�

:

We show that this run is su

essful on t. First, note that r(") = p

"

(") = q

0

by de�nition of a

partial run. Also note that p

u1

= p

u2

sin
e t

u1

= t

u2

and A is deterministi
. Consequently,

(r(u); t(u); r(u1); r(u2)) = (p

u

(u); t(u); p

u1

(u1); p

u2

(u2)) = (p

u1

(u); t(u); p

u1

(u1); p

u1

(u2)) 2 �.

The se
ond identity holds sin
e p

u1

= p

u2

and the third tuple belongs to � sin
e p

u1

is a partial

run.

It remains to prove Lemma 10. We pro
eed by indu
tion on the length of u.

Let u = ". Sin
e S(t) � V

�

, there exists (q

0

; g) 2 Su
 with w

t

(1) = 1t(") 2 �(X

(q

0

;g)

). Thus,

q

0

1t(") o

urs on the left-hand side of (4) (when instantiated with �), and hen
e also

on the right-hand side. Consequently, there exists a state q with (q; t(")) 2 Su
 and

" 2 �(X

(q;t("))

).

Now, let q be a state su
h that (q; t(")) 2 Su
 and " 2 �(X

(q;t("))

). This means that q

o

urs on the left-hand side of (4), and thus also on the right-hand side. By 
onstru
tion

of (4), this 
an only be the 
ase if q = q

0

. This shows that w

t

(") = " 2 �(X

(q

0

;t("))

).

Moreover, with p(") := q

0

, p is a partial run to ".

Let u = u

1

� � �u

n

; n � 1. Sin
e S(t) � V

�

, we know that there exists (q

0

; g) 2 Su
 with

w

t

(u1) = 1t(u)w

t

(u) 2 �(X

(q

0

;g)

). This implies that q

0

1t(u)w

t

(u) o

urs on the left-hand

9



side of (4), and hen
e also on the right-hand side. Consequently, there exists a state q

with (q; t(u)) 2 Su
 and w

t

(u) 2 �(X

(q;t(u))

).

Now let q be a state su
h that (q; t(u)) 2 Su
 and w

t

(u) 2 �(X

(q;t(u))

). It remains to

show that there exists a partial run p to u with p(u) = q. Let v = u

1

: : : u

n�1

and assume

(w.l.o.g.) that u

n

= 1. Sin
e w

t

(u) = 1t(v)w

t

(v) 2 �(X

(q;t(u))

), the word q1t(v)w

t

(v)

o

urs in the left-hand side of (4), and thus in the right-hand side. Therefore, there must

exist q

0

; q

00

with (q

0

; t(v); q; q

00

) 2 � and w

t

(v) 2 �(X

(q

0

;t(v))

). By the indu
tion hypothesis,

there exists a partial run p

0

to v with p

0

(v) = q

0

. Given (q

0

; t(v); q; q

00

) 2 �, p

0


an be

extended to the the desired partial run p to u by setting p(v1) := q and p(v2) := q

00

.

This 
ompletes the proof of Lemma 10 and thus the proof of Lemma 9.

We are now ready to redu
e the interse
tion emptiness problem to solving a system of linear

equations. Let A

1

; : : : ;A

n

be deterministi
 looping-tree automata with pairwise disjoint sets

of states. For every A

i

, we 
onsider a system of equations E

i

that 
onsists of the equation of

the form (4) indu
ed by A

i

together with the equation

X =

[

(q;g)2Su


X

(q;g)

: (5)

Now, let E be the union of the systems E

i

(i = 1; : : : ; n). Note that we use the same variable

X for every equation E

i

. Otherwise, the equations E

i

do not share variables sin
e the set of

states of the automata A

i

were assumed to be pairwise disjoint.

We need to show that E has a solution i� L(A

1

) \ � � � \ L(A

n

) 6= ;. If there exists t 2

L(A

1

) \ � � � \ L(A

n

), then, a

ording to Lemma 8, for every i there exists a solution �

i

of

the equation 
orresponding to A

i

satisfying S(t) = V

�

i

. Let � be the substitution de�ned

by �(X

(q;g)

) := �

i

(X

(q;g)

) if q is a state of A

i

, and �(X) := S(t). Then � solves the system

E. Conversely, if � is a solution of E, then it solves equation (4) for every automaton A

i

.

In parti
ular, by Lemma 8, there exists a tree t

1

2 L(A

1

) su
h that S(t

1

) � V

�

. Sin
e �

solves the equation 
orresponding to A

i

, Lemma 9 thus yields t

1

2 L(A

i

) for every i. Thus,

t

1

2 L(A

1

) \ � � � \ L(A

n

). This 
ompletes the proof of the lower 
omplexity bound stated in

Theorem 4.

5 Least uni�ers and greatest solutions

In 
ase a uni�
ation problem is solvable, one is usually interested in obtaining an a
tual solution.

Sin
e a given uni�
ation problem may have in�nitely many uni�ers, one must de
ide whi
h ones

to prefer.

3

As mentioned in the introdu
tion, least uni�ers are of interest in some appli
ations.

The uni�er � is a least uni�er of an FL

reg

/FL

0

uni�
ation problem if it satis�es �(X) v �

0

(X)

for all uni�ers �

0

and variables X o

urring in the problem.

For FL

0

, least uni�ers need not exist. For example, assume that N

C

= fAg and N

R

= frg.

Then the (trivially solvable) uni�
ation problem X �

?

X does not have a least uni�er in FL

0

;

however, � with �(X) = 8r

�

:A is the least uni�er of this problem in FL

reg

.

It is easy to see that the least uni�er of a given FL

reg

uni�
ation problem 
orresponds to the

greatest regular solution of the 
orresponding formal language equations. The solution � is a

3

From the viewpoint of uni�
ation theory, we 
onsider ground uni�ers (i.e., substitutions whose images do

not 
ontain variables). Thus, it does not make sense to employ the usual instantiation pre-order on uni�ers.

Anyway, the equational theory 
orresponding to FL

reg

is of uni�
ation type zero, and thus most general uni�ers

or even �nite 
omplete sets of uni�ers need not exist.
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greatest solution of an equation of the form (2) (or (3)) i� it satis�es �

0

(X) � �(X) for all

solutions �

0

and variables X o

urring in the equation. Thus, we are interested in the existen
e

and 
omputability of greatest regular solutions of linear equations over regular languages.

The existen
e of a greatest solution of a solvable equation is obvious sin
e the set of solutions

is 
losed under union. In fa
t, if �

j

, j 2 J , are solutions of (3), then so is � with �(X) :=

S

j2J

�

j

(X) for all variables X o

urring in the equation. Thus, the greatest solution 
an be

obtained as the union over all solutions. However, this greatest solution 
an only be translated

into a least uni�er if it is regular. We will show that this is indeed always the 
ase.

Theorem 11 Every solvable equation of the form (3) has a greatest solution, and this solution

is regular. This solution may grow exponentially in the size of (3), and it 
an be 
omputed in

exponential time.

Assume that � is the greatest solution of a solvable equation of the form (3). We �rst show

that this solution is regular. Lemma 5 implies that there exists a 
orresponding run r

�

of the

automaton B obtained from the equation (
f. Se
tion 4). We pro
eed in three steps.

1. We restri
t B = (Q; I;�) to 
ontain only so-
alled a
tive states. The resulting automaton

is 
alled B

0

= (Q

0

; I

0

;�

0

).

2. Using B

0

, we show that r

�

is regular, i.e., for every q 2 Q

0

, the set fu 2 N

�

R

j r

�

(u) = qg

is regular.

3. From r

�

, �nite automata a

epting �(X

i

) are derived.

A state q of B is 
alled a
tive, if L(Q; fqg;�) 6= ;, i.e., starting from q there exists a su

essful

run of B. Otherwise, q is 
alled passive. The a
tive states 
an be 
omputed as follows. One

�rst eliminates all states q for whi
h there exist no transitions of the form (q; : : :). One also

eliminates all transitions 
ontaining these states. This pro
ess is iterated until no more states

are eliminated. It is easy to see that the remaining states are exa
tly the a
tive ones. Obviously,

this pro
edure needs time polynomial in the size of B. (There even exists a linear time algorithm

for this task.) Let B

0

= (Q

0

; I

0

;�

0

) denote the automaton obtained from B by eliminating all

passive states. (Note that L(B

0

) = ; i� I

0

= ;.)

To show that r

�

is regular, we need the following partial ordering � on transitions of a state q.

Let � = (q; q

1

; : : : ; q

k

); �

0

= (q; q

0

1

; : : : ; q

0

k

) 2 �

0

, q

i

= (G

i

; L

i

; R

i

), and q

0

i

= (G

0

i

; L

0

i

; R

0

i

). Then,

� � �

0

i� G

i

n f0g � G

0

i

n f0g for all i = 1; : : : ; k. Note that � is in fa
t antisymmetri
: If

� � �

0

and � � �

0

, then G

i

n f0g = G

0

i

n f0g for all i = 1; : : : ; k. Sin
e the sets L

i

; R

i

(L

0

i

; R

0

i

)

are uniquely determined by G

i

(G

0

i

) and 0 2 G

i

(0 2 G

0

i

) is determined by L

i

; R

i

(L

0

i

; R

0

i

), this

yields � = �

0

.

Now, let u 2 N

�

R

. We 
laim that the transition � = (r

�

(u); q

1

; : : : ; q

k

) 2 �

0

, where q

i

= r

�

(ui) =:

(G

i

; L

i

; R

i

), is the greatest transition among the transitions of r

�

(u) in B

0

. Otherwise, there

exists a transition �

0

= (r

�

(u); q

0

1

; : : : ; q

0

k

) 2 �

0

, where q

0

i

= (G

0

i

; L

0

i

; R

0

i

), and i 2 f1; : : : ; kg su
h

that G

0

i

n f0g 6� G

i

n f0g, i.e., there exists 0 6= j 2 G

0

i

n G

i

. We 
an 
onstru
t a new run r

0

of B

0

that uses �

0

at node u instead of �. Sin
e, by de�nition of B

0

, the states q

0

i

in �

0

are all

a
tive, starting from these states there exist runs in B

0

. Thus, a su

essful run r

0

using this

transition at u really exists. This run 
orresponds to a solution of (3). However, in this solution

ui belongs to X

j

whereas this is not the 
ase for the greatest solution, a 
ontradi
tion. Thus,

� must be the greatest transition.

As a 
onsequen
e, if B

0

is in the same state at di�erent nodes, then the same transition (namely,

the greatest) is used by the run r

�

. From this, it easily follows that r

�

is regular: given q 2 Q

0

,

the following (deterministi
) �nite automaton A

q

= (Q

00

; f1; : : : ; kg; q

I

;�

00

; fqg) a

epts the set

fu j r

�

(u) = qg:

11



� Q

00

:= Q

0

;

� q

I

:= r

�

(");

� �

00

:= f(q; i; q

i

) j (q; q

1

; : : : ; q

k

) is the greatest transition of q in �

0

and i = 1; : : : ; kg.

If in A

q

the set of �nal states is f(G;L;R) 2 Q

0

j i 2 Gg instead of fqg, then this automaton

a

epts the language substituted for X

i

in the greatest solution. Thus, the greatest solution of

(3) is regular. Finally, sin
e B

0

and A

q


an be 
omputed in time exponential in the size of (3),

the upper 
omplexity bound for 
omputing the greatest solution follows as well.

It remains to show that the size of the greatest solution may indeed grow exponentially. To

this purpose, 
onsider the equation

L

1

f1g [ � � � [ L

k

fkg = L

1

f1g [ � � �L

k

fkg [Xf1; : : : ; kg; (6)

where the L

i

s are regular languages over N

R

. Obviously, the greatest solution is the one that

repla
es X by L

1

\ � � � \L

k

. From results shown in [15℄ it follows that the size of automata a
-


epting this interse
tion may grow exponentially in the size of automata a

epting L

1

; : : : ; L

k

.

4

6 Mat
hing in FL

reg

Mat
hing is the spe
ial 
ase of uni�
ation where the pattern D on the right-hand side of the

equation C �

?

D does not 
ontain variables. As an easy 
onsequen
e of Theorem 3, mat
hing

in FL

reg


an be redu
ed (in linear time) to solving linear equations over regular languages of

the following form:

S

0

[ S

1

X

1

[ � � � [ S

n

X

n

= T

0

: (7)

For FL

0

, one obtains the same kind of equations, but there S

0

; : : : ; S

n

; T

0

are �nite languages,

and one is interested in �nite solvability. In [7℄ it was shown that mat
hing in FL

0

is polynomial,

and in [6℄ this result was extended to the DL ALN .

For FL

reg

, mat
hing is at least PSpa
e-hard sin
e equality of regular languages is a PSpa
e-


omplete problem if one assumes that the languages are given by regular expressions or nonde-

terministi
 �nite automata. Thus, the equivalen
e problem in FL

reg

is already PSpa
e-
omplete

(this 
orresponds to the 
ase n = 0 in equation (7)). We 
an show that mat
hing is not harder

than testing for equivalen
e.

Theorem 12 Mat
hing in FL

reg

is a PSpa
e-
omplete problem.

It remains to be shown that solvability of equations of the form (7) 
an be de
ided within

polynomial spa
e. Again, we 
onsider the mirror equation

S

mi

0

[X

1

S

mi

1

[ � � � [X

n

S

mi

n

= T

mi

0

(8)

in pla
e of the original equation (7). The main idea underlying the proof of Theorem 12 is that

su
h an equation has a solution i� a 
ertain 
andidate solution solves the equation.

Lemma 13 Let L

i

:= fw j fwgS

mi

i

� T

mi

0

g. Then equation (8) has a solution i�

S

mi

0

[ L

1

S

mi

1

[ � � � [ L

n

S

mi

n

= T

mi

0

: (9)

In this 
ase, the L

i

s yield a greatest solution of (8).

4

Although these results have been shown for deterministi
 �nite automata, they easily 
arry over to the

nondeterministi
 
ase.
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The proof of this lemma is similar to the one for the 
ase of �nite languages given in [7℄. It

remains to be shown that the validity of identity (9) 
an be tested within polynomial spa
e (in

the size of nondeterministi
 �nite automata for the languages S

mi

0

; : : : ; S

mi

n

; T

mi

0

). By de�nition

of the sets L

i

, the in
lusion from left-to-right holds i� S

mi

0

� T

mi

0

. Obviously, this 
an be tested

in PSpa
e.

How to derive a PSpa
e-test for the in
lusion in the other dire
tion is not that obvious. Here,

we sket
h how the in
lusion T

mi

0

� L

1

S

mi

1


an be tested (the extension to the union in identity

(9) is then simple). First, we de�ne an exponentially large automaton for L

1

S

mi

1

. However, the

representation of ea
h state of this automaton requires only polynomial spa
e, and navigation

in this automaton (i.e., determining initial states, �nal states, and state transitions) 
an also

be realized within polynomial spa
e. Thus, if we 
onstru
t the automaton on-the-
y, we stay

within PSpa
e.

An automaton B for L

1

= fw j fwgS

mi

1

� T

mi

0

g 
an be obtained as follows. We 
onstru
t the

usual deterministi
 powerset automaton from the given nondeterministi
 automaton A for T

mi

0

.

The only di�eren
e is the de�nition of the �nal states. A state P of B (i.e., a subset of the set

of states of A) is a �nal state i� S

mi

1

� L

A

(P ), where L

A

(P ) is the language a

epted by A if

P is taken as its set of initial states. It is easy to see that the automaton B obtained this way

indeed a

epts L

1

, and that we 
an navigate in this automaton within PSpa
e. In parti
ular,

note that testing whether a state P of this automaton is a �nal state is a PSpa
e-
omplete

problem.

The automaton C for L

1

S

mi

1

has as states tuples, where the �rst 
omponent is a state of B

and the se
ond 
omponent is a set of states of A

1

, the nondeterministi
 automaton for S

mi

1

.

Transitions in the �rst 
omponent are those of B. In the se
ond 
omponent, they are in prin
iple

the transitions of the powerset automaton 
orresponding to A

1

, with the following di�eren
e:

if, on input r, the automaton B rea
hes a �nal state, then in the se
ond 
omponent we extend

the set rea
hed with r in the powerset automaton of A

1

by the initial states of A

1

. Final states

of C are those whose se
ond 
omponent 
ontains a �nal state of A

1

. The initial state is (I; J),

where I is the initial state of B and J is the set of initial states of A

1

or empty, depending on

whether I is a �nal state of B or not. Again, it is easy to see that navigation in C is possible

within PSpa
e.

To de
ide whether T

mi

0

� L

1

S

mi

1

, we try to \guess" a 
ounterexample (re
all that PSpa
e =

NPSpa
e). This is a word that is in T

mi

0

, but not in L

1

S

mi

1

. The length of a minimal su
h word


an be bounded by the produ
t of the size of A (the nondeterministi
 automaton for T

mi

0

) and

the size of C (the deterministi
 automaton for L

1

S

mi

1

). We traverse A and C simultaneously,

and have a 
ounterexample if A is in a �nal state and C is not. The next letter and the su

essor

state in A is guessed, and the su

essor state in C 
an be 
omputed in PSpa
e. In addition, we

use an exponential 
ounter (requiring only polynomial spa
e) that terminates the sear
h if the

(exponential) bound on the length of a minimal 
ounterexample is rea
hed.

7 Con
lusion

We have shown that uni�
ation in FL

reg

is equivalent via linear time redu
tions to solvability

of linear equations over regular languages, and that these problems are ExpTime-
omplete.

If we restri
t the attention to mat
hing problems (equations where one side does not 
ontain

variables), then the problem is PSpa
e-
omplete. In both 
ases, solvable problems (equations)

have least (greatest) solutions, whi
h may be exponential in the size of the problem (equation),

5

and whi
h 
an be 
omputed in exponential time. In addition to the appli
ation for des
ription

5

Note that equation (6) a
tually 
orresponds to a mat
hing problem.
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logi
s, we think that the results on solving linear equations over regular languages are also of

interest in their own right (e.g., in formal language theory).

From the des
ription logi
 point of view, one is of 
ourse also interested in uni�
ation in

more expressive DLs, but this appears to be a hard problem. Re
ently, we have extended the

de
idability results to the DL obtained from FL

reg

by adding in
onsisten
y (?). Surprisingly,

it is not 
lear how to handle the 
orresponding extension of FL

0

.
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