
LTCS{Report

Aahen University of Tehnology

Researh group for

Theoretial Computer Siene

Uni�ation in a Desription Logi

with Transitive Closure of Roles

Franz Baader Ralf K�usters

LTCS-Report 01-05

An abridged version will appear in Pro. LPAR'01 .

RWTH Aahen

LuFg Theoretishe Informatik

http://www-lti.informatik.rwth-aahen.de

Ahornstr. 55

52074 Aahen

Germany

Uni�ation in a Desription Logi

with Transitive Closure of Roles

Franz Baader

Theoretial Computer Siene,

RWTH Aahen

Ahornstra�e 55, 52074 Aahen, Germany

e-mail: baader�informatik.rwth-aahen.de

Ralf K�usters

Theoretial Computer Siene,

CAU Kiel

Olshausenstra�e 40, 24098 Kiel, Germany

e-mail: kuesters�ti.informatik.uni-kiel.de

Abstrat

Uni�ation of onept desriptions was introdued by Baader and Narendran as a tool

for deteting redundanies in knowledge bases. It was shown that uni�ation in the small

desription logi FL

0

, whih allows for onjuntion, value restrition, and the top onept

only, is already ExpTime-omplete. The present paper shows that the omplexity does

not inrease if one additionally allows for omposition, union, and transitive losure of

roles. It also shows that mathing (whih is polynomial in FL

0

) is PSpae-omplete in the

extended desription logi. These results are proved via a redution to linear equations

over regular languages, whih are then solved using automata. The obtained results are

also of interest in formal language theory.

1 Introdution

Knowledge representation languages based on Desription Logis (DL) an be used to rep-

resent the terminologial knowledge of an appliation domain in a strutured and formally

well-understood way [9, 4℄. With the help of these languages, the important notions of the

domain an be desribed by onept desriptions , i.e., expressions that are built from atomi

onepts (unary prediates) and atomi roles (binary prediates) using the onept and role

onstrutors provided by the DL language. Atomi onepts and onept desriptions repre-

sent sets of individuals, whereas roles and role desriptions represent binary relations between

individuals.

Uni�ation of onept desriptions was introdued by Baader and Narendran [7℄ as a new

inferene servie for deteting and avoiding redundanies in DL knowledge bases. Uni�ation

onsiders onept patterns, i.e., onept desriptions with variables, and tries to make these

desriptions equivalent by replaing the variables by appropriate onept desriptions. The

tehnial results in [7℄ were onerned with uni�ation in the small DL FL

0

, whih allows for

onjuntion of onepts (C uD), value restrition (8R:C), and the top onept (>). It is shown

that uni�ation of FL

0

-onept desriptions is equivalent to solving systems of linear equations

over �nite languages, and that this problem is ExpTime-omplete.

In the present paper, we study uni�ation in FL

reg

, the DL that extends FL

0

by the role

onstrutors identity role ("), empty role (;), union (R[S), omposition (R ÆS), and reexive-

transitive losure (R

�

).

1

Uni�ation of FL

reg

-onept desriptions is again equivalent to solving

systems of linear language equations, but the �nite languages are now replaed by regular

1

Transitive losure then orresponds to the expression R Æ R

�

.

1

languages. The �rst ontribution of the present paper is to show that deiding the solvability

of suh equations is, as in the �nite ase, ExpTime-omplete. At �rst sight one might think

that it is suÆient to show that the problem is in ExpTime, sine ExpTime-hardness already

holds for the \simpler" ase of uni�ation in FL

0

. However, uni�ation in FL

reg

is not a priori

at least as hard as uni�ation in FL

0

sine the set of potential solutions inreases. Thus, an

FL

0

-uni�ation problem (whih an also be viewed as an FL

reg

-uni�ation problem) may be

solvable in FL

reg

, but not in FL

0

. (We will see suh an example later on.)

Our omplexity results are by redution to/from deision problems for tree-automata. Whereas

for equations over �nite languages automata on �nite trees ould be used, we now onsider

automata working on in�nite trees. As a by-produt of the redution to tree automata, we also

show that, if a system of linear equations has some (possibly irregular) solution, then it also

has a regular one. That is, restriting solutions to substitutions that map variables to regular

languages does not make a di�erene in terms of the solvability of an equation.

Equations over regular languages have already been onsidered by Leiss [11, 10℄. However,

he does not provide any deidability or omplexity results for the ase we are interested in.

Closely related to the problem of solving linear language equations is the problem of solving set

onstraints [1℄, i.e., relations between sets of terms. Set onstraints are usually more general

than the kind of equations we are dealing with here. The ase we onsider here orresponds

most losely to positive set onstraints for terms over unary and nullary funtion symbols where

only union of sets is allowed. For solvability of positive set onstraints over (at least two) unary

and (at least one) nullary funtion symbols, ExpTime-ompleteness is shown in [1℄. However,

this result does not diretly imply the orresponding result for our ase. On the one hand, for

set onstraints one onsiders equations with �nite languages as oeÆients, whereas we allow

for regular languages as oeÆients. It is, however, easy to see that regular oeÆients an be

expressed using set onstraints. On the other hand, for set onstraints one allows for arbitrary

(possibly) in�nite solutions, whereas we restrit the attention to regular solutions. Using the

(new) result that the restrition to regular sets does not hange the solvability of an equation,

our exponential upper bound also follows from the omplexity result in [1℄. The hardness result

in [1℄ does not diretly arry over sine even positive set onstraints allow for more omplex

types of equations than the linear ones onsidered here.

Mathing is a speial ase of uni�ation where only one of the patterns ontains variables. In

[7℄ it was shown that mathing in FL

0

is polynomial, and in [6℄ this result was extended to the

more expressive DL ALN . We will show that mathing in FL

reg

is PSpae-omplete.

In ase a uni�ation/mathing problem is solvable, one is usually interested in obtaining an

atual solution. In the ontext of mathing in desription logis, it has been argued [8, 5℄ that

not all solutions of a mathing problem are of interest to a user. Therefore, one must look for

solutions with ertain desired properties; for instane, least solutions where all variables are

substituted by onept desriptions that are as spei� as possible turned out to be appropriate

in some ontexts [8, 12℄. For mathing in FL

0

and FL

reg

, solvable problems always have a

least solution. For uni�ation, we will show that this is only true for FL

reg

.

2 Uni�ation in FL

reg

Let us �rst introdue FL

0

- and FL

reg

-onept desriptions. Starting from the �nite and disjoint

sets N

C

of onept names and N

R

of role names, FL

0

-onept desriptions are built using the

onept onstrutors onjuntion (C u D), value restrition (8r:C), and the top onept (>).

FL

reg

extends FL

0

by additionally allowing for the role onstrutors identity role ("), empty

role (;), union (R[S), omposition (RÆS), and reexive-transitive losure (R

�

). As an example,

onsider the FL

reg

-onept desription Woman u 8hild

�

:Woman; whih represents the set of

2

Syntax Semantis FL

0

FL

reg

> �

I

x x

C uD C

I

\D

I

x x

8R:C fx 2 �

I

j 8y : (x; y) 2 R

I

! y 2 C

I

g x x

" f(x; x) j x 2 �

I

g x

; ; x

R Æ S f(x; z) j 9y : (x; y) 2 R

I

^ (y; z) 2 S

I

g x

R

�

S

n�0

(R

I

)

n

x

Table 1: Syntax and semantis of onept desriptions.

all women with only female o�spring.

Role names will be denoted by lower ase letters (r; s; : : : 2 N

R

), and omplex roles by upper

ase letters (R;S; T : : :). Note that a omplex role an be viewed as a regular expression over

N

R

where " is taken as the empty word, role names as elements of the alphabet, the empty

role as the empty language, union as union of languages, omposition as onatenation, and

reexive-transitive losure as Kleene star. Therefore, we sometimes view a omplex role R as a

regular expression. In the following, we will abuse notation by identifying regular expressions

with the languages they desribe. In partiular, if R and R

0

are regular expressions, then

R = R

0

will mean that the orresponding languages are equal.

As usual, the semantis of onept and role desriptions is de�ned in terms of an interpreta-

tion I = (�

I

; �

I

). The domain �

I

of I is a non-empty set and the interpretation funtion �

I

maps eah onept name A 2 N

C

to a set A

I

� �

I

and eah role name r 2 N

R

to a binary

relation r

I

� �

I

��

I

. The extension of �

I

to arbitrary onept and role desriptions is de�ned

indutively, as shown in the seond olumn of Table 1. The interested reader may note that

FL

reg

-onept desriptions an also be viewed as onepts de�ned by yli FL

0

-TBoxes in-

terpreted with the greatest �xed-point semantis [2℄. The onept desription D subsumes the

desription C (C v D) i� C

I

� D

I

for all interpretations I. Two onept desriptions C;D

are equivalent (C � D) i� they subsume eah other.

In order to de�ne uni�ation of onept desriptions, we �rst have to introdue the notions

onept patterns and substitutions operating on onept patters. To this purpose, we need a

set of onept variables N

X

(disjoint fromN

C

[N

R

). FL

reg

-onept patterns are FL

reg

-onept

desriptions de�ned over the set N

C

[N

X

of onept names and the set N

R

of role names. For

example, given A 2 N

C

, X 2 N

X

, and r 2 N

R

, 8r:A u 8r

�

:X is an FL

reg

-onept pattern.

A substitution � is a mapping from N

X

into the set of all FL

reg

-onept desriptions. This

mapping is extended from variables to onept patterns in the obvious way, i.e.,

� �(>) := > and �(A) := A for all A 2 N

C

,

� �(C uD) := �(C) u �(D) and �(8R:C) := 8R:�(C).

De�nition 1 An FL

reg

-uni�ation problem is of the form C �

?

D, where C, D are FL

reg

-

onept patterns. The substitution � is a uni�er of this problem i� �(C) � �(D). In this ase,

the uni�ation problem is solvable, and C and D are alled uni�able.

For example, the substitution � = fX 7! 8r Æ r

�

:A; Y 7! 8r:Ag is a uni�er of the uni�ation

problem

8s:8r:A u 8r:A u 8r:X �

?

X u 8s:Y: (1)

3

Note that this problem an also be viewed as an FL

0

-uni�ation problem. However, in this ase

it does not have a solution sine there are no FL

0

-onept desriptions that, when substituted

for X and Y , make the two onept patterns equivalent.

For readers interested in uni�ation theory, let us point out that (just as for FL

0

[7℄), uni�ation

in FL

reg

an be viewed as uni�ation modulo an appropriate equational theory, and that (like

the theory orresponding to FL

0

) this theory is of uni�ation type zero.

3 Redution to regular language equations

We now show how uni�ation in FL

reg

an be redued to solving linear equations over regular

languages built using the alphabet N

R

of role names.

The equations we are interested in are built as follows. Let � be a �nite alphabet. For languages

L;M � �

�

, their onatenation is de�ned by LM := fvw j v 2 L;w 2 Mg. Let X

1

; : : : ; X

n

be variables. Given regular languages S

0

; S

1

; : : : ; S

n

; T

0

; T

1

; : : : ; T

n

2

over N

R

, a linear equation

over regular languages is of the form

S

0

[S

1

X

1

[� � � [S

n

X

n

= T

0

[T

1

X

1

[� � � [T

n

X

n

(2)

A (regular, �nite) solution � of this equation is a substitution assigning to eah variable a

(regular, �nite) language over � suh that the equation holds. We are partiularly interested

in regular solutions sine these an be turned into FL

reg

-onept desriptions.

A system of regular language equations is a �nite set of regular language equations. A sub-

stitution � solves suh a system if it solves every equation in it simultaneously. A system of

equations an easily (in linear time) be turned into a single equation with the same set of solu-

tions by onatenating all onstant languages in an equation with a role r (a new role for every

equation), i.e., the languages S

i

and T

i

are replaed by frgS

i

and frgT

i

. Then the di�erent

equations an be put together into a single equation without ausing any interferene (see [7℄

for details). Hene, for our omplexity analysis we an fous on single equations.

To establish the redution from uni�ation in FL

reg

to solvability of linear equations over

regular languages, FL

reg

-onept patterns are written in the following normal form:

u

A2N

C

8R

A

:A u u

X2N

X

8R

X

:X;

where R

A

and R

X

are regular expressions over N

R

. Every onept pattern an (in polynomial

time) be turned into suh a normal form by exhaustively applying the following equivalene

preserving rule: 8R:Cu8R

0

:C �! 8(R[R

0

):C; where R;R

0

are regular expressions overN

R

and

C is some FL

reg

-onept pattern. Corretness of our redution from uni�ation to solvability of

linear equations depends on the following (easily provable [2, 3℄) haraterization of equivalene:

Lemma 2 Let C;D be FL

reg

-onept desriptions suh that

C � u

A2N

C

8S

A

:A and D � u

A2N

C

8T

A

:A:

Then C � D i� S

A

= T

A

for all A 2 N

C

.

As an easy onsequene, we obtain the following theorem, whih shows that uni�ation in FL

reg

is equivalent via linear time redutions to solving regular language equations.

2

We assume that these languages are given by regular expressions or nondeterministi �nite automata.

4

Theorem 3 Let C;D be FL

reg

-onept patterns suh that

C � u

A2N

C

8S

A

:A u u

X2N

X

8S

X

:X and D � u

A2N

C

8T

A

:A u u

X2N

X

8T

X

:X:

Then C;D are uni�able i�, for all A 2 N

C

, the regular language equation E

C;D

(A) below has

a solution:

S

A

[

[

X2N

X

S

X

X

A

= T

A

[

[

X2N

X

T

X

X

A

Note that the language equations in this system do not share variables, and thus they an

be solved separately. In the equation E

C;D

(A), the variable X

A

is a new opy of X 2 N

X

.

Di�erent equations have di�erent opies.

Continuing our example, from the uni�ation problem (1) we obtain the following language

equation (assuming N

C

= fAg):

fr; srg [frgX

A

= f"gX

A

[fsgY

A

A solution of this equation is X

A

= rr

�

and Y

A

= r, whih orresponds to the solution � of (1).

4 The deision problem

The �rst theorem of this paper gives the exat omplexity of solving systems of linear equations

over regular languages.

Theorem 4 Deiding (regular) solvability of (systems of) equations of the form (2) is an

ExpTime-omplete problem.

As an immediate onsequene, uni�ation in FL

reg

is ExpTime-omplete as well.

The upper omplexity bound.

To prove that the problem an be solved in ExpTime, it suÆes to onentrate on a single

equation. Moreover, instead of (2) we onsider equations where the variables our in front of

the oeÆients. Suh an equation an easily be obtained from (2) by onsidering the mirror

images (or reverse) of the oeÆient languages. That is, we go from a language L � N

�

R

to its

mirror image L

mi

:= fr

m

� � � r

1

j r

1

� � � r

m

2 Lg. The mirror equation of (2) is of the form

S

mi

0

[X

1

S

mi

1

[� � � [X

n

S

mi

n

= T

mi

0

[X

1

T

mi

1

[� � � [X

n

T

mi

n

: (3)

Obviously, the mirror images of solutions of (3) are exatly the solutions of (2).

To test (3) for solvability, we build a looping tree-automaton B, i.e., a B�uhi tree-automaton

where all states are �nal. Let us briey introdue in�nite trees and looping tree-automata (see

[14℄ for details). Let � be a �nite alphabet and, w.l.o.g., N

R

= f1; : : : ; kg. A �-labeled k-ary

in�nite tree t is a mapping from N

�

R

into �. (In partiular, the nodes of t an be viewed as

words over N

R

.) In ase � is a singleton, t is alled unlabeled. A looping tree-automaton A is a

tuple (Q;�; I;�) where Q is the �nite set of states of A, � is a �nite alphabet, I � Q is the set

of initial states, and � � Q���Q

k

is the transition relation. (Note that we do not de�ne �nal

states. Also, we will omit � in ase it is a singleton.) A run r of A on the tree t is a Q-labeled

5

k-ary tree suh that (r(u); t(u); r(u1); : : : ; r(uk)) 2 �. It is alled suessful if r(") 2 I . The

tree language aepted by A is L(A) := ft j there exists a suessful run of A on tg.

Our looping tree-automaton B will work on the (unique) unlabeled k-ary in�nite tree t (thus

L(B) will be the empty set or ftg). The idea underlying the onstrution is as follows. A

Q-labeled k-ary in�nite tree r an be used to desribe sets of words by taking those words u

for whih the label r(u) satis�es a ertain property. In priniple, a run of B on t represents i)

a set of words over N

R

obtained by instantiating the equation with one of its solutions (alled

solution sets in the following), and ii) the solution itself, i.e., the languages substituted for the

variables. To ahieve this, while working its way down t, in every step B guesses whether the

urrent node (or more preisely the word it represents) a) belongs to the solution set, and b) to

the language substituted for X

i

(i = 1; : : : ; n). In addition, B heks whether the guesses made

atually yield a solution.

Formally, B = (Q; I;�) is de�ned as follows. (We provide a more detailed explanation after

the de�nition.) Let A

S;i

= (Q

S;i

; N

R

; q

S;i

;�

S;i

; F

S;i

) and A

T;i

= (Q

T;i

; N

R

; q

T;i

; �

T;i

; F

T;i

)

be (nondeterministi) �nite automata aepting the languages S

mi

i

and T

mi

i

(i = 0; : : : ; n),

respetively. We assume (w.l.o.g.) that the set of states of these automata are pairwise disjoint.

Let N := f0; 1; : : : ; ng, Q

S

(Q

T

) be the union of the sets Q

S;i

(Q

T;i

), i = 0; : : : ; n, and F

S

(F

T

)

be the union of the sets F

S;i

(F

T;i

).

1. Q := 2

N

� 2

Q

S

� 2

Q

T

;

2. I := f(G;L;R) j G � N , L = fq

S;0

g [fq

S;i

j i 2 Gg, and

R := fq

T;0

g [fq

T;i

j i 2 Gg;

3. � onsists of all tuples ((G

0

; L

0

; R

0

); (G

1

; L

1

; R

1

); : : : ; (G

k

; L

k

; R

k

)) 2 Q�Q

k

suh that

(a) 0 2 G

0

i� L

0

\ F

S

6= ; i� R

0

\ F

T

6= ;;

(b) for all i = 1; : : : ; k,

L

i

:= su(L

0

; i) [fq

S;j

j j 2 G

i

g and R

i

:= su(R

0

; i) [fq

T;j

j j 2 G

i

g; where

su(L

0

; i) := fq j there exists q

0

and j with q

0

2 L

0

\Q

S;j

and (q

0

; i; q) 2 �

S;j

g and

su(R

0

; i) is de�ned analogously.

Intuitively, B uses the �rst omponent of its states to guess whether a node (the word it

represents) belongs to the solution set and/or to one of the variables X

i

. That is, given a state

(G;L;R), 0 2 G means that the urrent node belongs to the solution set and i 2 G means that

the node belongs to X

i

(more aurately, to the language substituted for X

i

). The other two

omponents are used to do the book-keeping neessary to hek whether the guesses atually

yield a solution. To understand their rôle, assume that r is a run of B on t. W.l.o.g. we onsider

the seond omponent. If r(u) = (G;L;R) and j 2 G, for some j 6= 0, then u belongs to X

j

,

and thus uv belongs to X

j

S

mi

j

for all v 2 S

mi

j

. Consequently, if r(uv) = (G

0

; L

0

; R

0

), then

we must have 0 2 G

0

. To enfore this, q

S;j

(the initial state of the automaton A

S;j

aepting

S

mi

j

) is added to L. The transitions of B then simulate the transitions of A

S;j

in the seond

omponent. Thus, in r(uv) the set L

0

ontains a �nal state of A

S;j

, and now (3a) implies that

0 2 G

0

must hold. Conversely, if 0 2 G

0

, then L

0

must ontain a �nal state of some of the

automata A

S;i

(i = 0; : : : ; n).

Given a suessful run r of B, it is now easy to prove that the substitution �

r

:

�

r

(X

i

) := fu j r(u) = (G;L;R) and i 2 Gg

is a solution of (3). Conversely, it is not hard to show that a given solution of (3) indues a

suessful run of B.

6

Lemma 5 There is a one-to-one orrespondene between solutions of (3) and suessful runs

of B.

The lemma implies that equation (3) has a solution i� B has a suessful run (i.e., L(B) 6= ;).

The size of the set of states of B is exponential in the size of equation (3), where the size of

the regular sets S

mi

i

and T

mi

i

are measured by the size of nondeterministi �nite automata

aepting these sets. Sine the emptiness problem for B�uhi tree-automata (and thus looping

tree-automata) an be solved in polynomial time in the size of the automaton [14℄ (and atually

in linear time for looping automata), this yields the desired exponential time algorithm for

deiding the solvability of equation (3). However, the existene of a solution does not a priori

imply that there is also a regular one. Thus, we must still show that regular solvability an also

be deided in ExpTime.

It is well-known [14℄ that a B�uhi-automaton has a suessful run i� it has a regular (or rational)

run. It is easy to show that the solution orresponding to a regular run is a regular solution.

Proposition 6 If (3) has a solution, then it also has a regular one.

This proposition also follows from our results in Setion 5.

The lower omplexity bound.

The hardness result an be shown similarly to the proof by Baader and Narendran [7℄ for sys-

tems of equations over �nite languages. In their proof, the intersetion emptiness problem for

deterministi root-to-frontier automata on �nite trees, whih has been shown to be ExpTime-

omplete by Seidl [13℄, is redued to the solvability of systems of equations over �nite languages.

The intersetion emptiness problem is de�ned as follows: given a sequene A

1

; : : : ;A

n

of de-

terministi root-to-frontier automata over the same ranked alphabet �, deide whether there

exists a tree t aepted by A

1

; : : : ;A

n

.

Instead of deterministi root-to-frontier automata we will here use deterministi looping tree-

automata: a looping tree-automaton is deterministi if it has one initial state and, for every

state q and symbol f , there exists at most one transition of the form (q; f; : : :). We will show

that Seidl's result easily arries over to these automata. However, we need to onsider looping

tree-automata over in�nite trees labeled by elements of a ranked alphabet. That is, the number

of suessors of a node varies depending on the arity of the label attahed to the node. Modifying

the de�nition of looping tree-automata to work on these trees is straightforward.

Proposition 7 The intersetion emptiness problem for looping tree-automata over a ranked

alphabet is ExpTime-hard.

This an be shown by reduing the intersetion emptiness problem for root-to-frontier automata

to the intersetion emptiness problem for looping tree-automata. The main idea is to turn every

�nite tree t into an in�nite tree

b

t by adding a new symbol # (say of rank 1) to the alphabet,

and extending the �nite tree at every leaf by attahing the in�nite tree labeled by # only. A

given root-to-frontier automaton A an then easily be modi�ed to a looping tree-automaton

B suh that every suessful run of A on t orresponds to a suessful run of B on

b

t and vie

versa.

It remains to show how the intersetion emptiness problem for looping tree-automata an be

redued to the solvability of systems of linear equations over regular languages. In the following,

let � be a ranked alphabet. Seidl's result implies that it suÆes to restrit the attention to

symbols of rank 1 and 2.

7

We represent an in�nite tree t over the ranked alphabet � by an in�nite set S(t) of words

over � [f1; 2g. This set ontains one element for every node of the tree. Given a node u,

the orresponding word desribes the path from this node to the root of the tree by listing

the labels of the nodes v on this path together with the information whether v is the �rst or

seond suessor of its parent node. To be more preise, if t = f(t

1

; t

2

) is the tree whose root

is labeled with f and has the two suessor trees t

1

and t

2

, then S(t) := f"g [fu1f j u 2

S(t

1

)g [fu2f j u 2 S(t

2

)g. Aordingly, if t = g(t

0

), then S(t) := f"g [fu1g j u 2 S(t

0

)g.

For example, if f is binary, g is unary, and t is the in�nite tree labeled with g only, then

S(f(t; t)) = f"g[(1g)

�

1f [(1g)

�

2f . Given a node u in t we denote the word representing u in

S(t) by w

t

(u). In the example, w

f(t;t)

(211) = 1g1g2f .

Now, let A = (Q;�; q

0

;�) be a deterministi looping tree-automaton over the ranked alphabet

�. We onstrut the following linear equation, where the variables X

(q;g)

range over (possibly

in�nite) sets of words over �

0

:= � [Q [f1; 2g:

[

(q;g)2Su

fqgX

(q;g)

= fq

0

g [

[

(q;g;q

1

;:::;q

k

)2�

fq

1

1g; : : : ; q

k

kggX

(q;g)

; (4)

where Su denotes the set of tuples (q; g) for whih there exist q

1

; : : : ; q

k

with (q; g; q

1

; : : : ; q

k

) 2

�, and k denotes the rank of g.

We want to show that solutions of (4) indue aepting runs of A and vie versa. Assuming

that (4) has the solution �, let us try to onstrut a tree t and a suessful run of A on t.

Sine q

0

ours on the right-hand side of (4), it must also our on the left-hand side. Thus,

there must exist a symbol g suh that (q

0

; g) 2 Su and " 2 �(X

(q

0

;g)

). Intuitively, this

orresponds to setting t(") := g and r(") := q

0

. Now, sine " 2 �(X

(q

0

;g)

), additional words

our on the right-hand side of (4). Indeed, sine (q

0

; g) 2 Su, there exist q

1

; : : : ; q

k

with

(q

0

; g; q

1

; : : : ; q

k

) 2 �. Thus, the words q

1

1g; : : : ; q

k

kg our on the right-hand side. This

orresponds to setting r(1) := q

1

; : : : ; r(k) := q

k

. Let us look at q

1

1g. This word must also

our on the left-hand side of (4). Thus, there must exist a symbol f with (q

1

; f) 2 Su and

1g 2 �(X

(q

1

;f)

). This orresponds to setting t(1) := f . Now, sine 1g 2 �(X

(q

1

;f)

), additional

words our on the right-hand side of (4), and one ontinues just as in the ase " 2 �(X

(q

0

;g)

).

This illustrates that, if (4) is solvable, then one an onstrut a tree t and an aepting run r

of A on t. Moreover, it follows that S(t) � V

�

:=

S

(q;g)2Su

�(X

(q;g)

).

Conversely, if t 2 L(A) and r is the (unique) aepting run of A on t, then we an use r to

onstrut a solution � of (4) suh that S(t) = V

�

:

�(X

(q;g)

) := fw

t

(u) j t(u) = g ^ r(u) = qg:

Lemma 8 If � solves (4), then there exists t 2 L(A) with S(t) � V

�

. Conversely, if t 2 L(A),

then there exists a solution � of (4) with S(t) = V

�

.

The inlusion in the �rst part of the lemma may be strit. In fat, by the seond part, every

tree in L(A) yields a solution of (4). Sine the solutions of suh linear equations are losed

under (argument-wise) union, there are solutions � representing more than one aepted tree.

Beause of this fat, our redution will depend on the following lemma.

Lemma 9 Let � be a solution of (4) and t a tree. If S(t) � V

�

, then t 2 L(A).

In ontrast to the previous lemma, Lemma 9 holds only beause the automaton A is assumed

to be deterministi.

For the sake of simpliity, we assume in the proof of Lemma 9 that � onsists of symbols of

rank 2 only. Thus, every �-labeled tree is a mapping from f1; 2g

�

into �. The ase where �

also ontains symbols of rank 1 an be handled analogously.

8

In the following, let � be a solution of (4). Given a tree t with S(t) � V

�

, we must show that

t 2 L(A), i.e., there is a suessful run of A on t. Before we an show this, we must introdue

some notation.

For a 2 f1; 2g, let a denote 2 if a = 1 and 1 if a = 2. Given a node u = u

1

� � �u

n

for

u

i

2 f1; 2g, let t

u

denote the �nite subtree of t whose set of nodes, dom(t

u

), onsists of all

predeessors of u as well as the diret suessors of these nodes, i.e., dom(t

u

) onsists of the

nodes ", u

1

: : : u

i

(i = 1; : : : ; n), and u

1

: : : u

i�1

u

i

(i = 1; : : : ; n). These nodes are labeled as in

t. Note that dom(t

"

) = f"g. A partial run p to u (of A on t) is a mapping from dom(t

u

) to

Q suh that (i) p(") = q

0

, and (ii) (p(u

1

� � �u

i

); t(u

1

� � �u

i

); p(u

1

� � �u

i

1); p(u

1

� � �u

i

2)) 2 � for

all i = 0; : : : ; n�1. Put in another way, A an also be seen as a deterministi top-down tree

automaton working on �nite trees, and a partial run to u is a suessful run of this automaton

on t

u

.

Reall that, for u 2 f1; 2g

�

, w

t

(u) denotes the word in S(t) orresponding to u, i.e., if

u = u

1

� � �u

n

for u

i

2 f1; 2g, then w

t

(u) = u

n

a

n�1

� � �u

1

a

0

, where a

i�1

= t(u

1

� � �u

i�1

)

(i = 1; : : : ; n).

From the next lemma, Lemma 9 will easily follow.

Lemma 10 Let t be a �-labeled tree with S(t) � V

�

. Then, for every u 2 f0; 1g

�

, there exists

a state q 2 Q suh that (q; t(u)) 2 Su and w

t

(u) 2 �(X

(q;t(u))

). Moreover, if q is a state

suh that (q; t(u)) 2 Su and w

t

(u) 2 �(X

(q;t(u))

), then there exists a partial run p to u with

p(u) = q.

Before proving this lemma, we show how it an be used to prove Lemma 9. It suÆes to

onstrut a suesful run r of A on t.

Sine A is deterministi, any partial run to a node u is uniquely determined by u. Let us all

this run p

u

. The determinism of A also implies that p

ui

for i 2 f1; 2g extends p

u

in the sense

that p

ui

(v) = p

u

(v) for all v 2 dom(t

u

). (Otherwise, the restrition of p

ui

to dom(t

u

) would

yield a partial run to u that di�ers from p

u

). Thus, a suessful run r on t an be obtained by

iteratively extending the partial runs. Formally, we de�ne

r(u) := p

u

(u) for every u 2 f1; 2g

�

:

We show that this run is suessful on t. First, note that r(") = p

"

(") = q

0

by de�nition of a

partial run. Also note that p

u1

= p

u2

sine t

u1

= t

u2

and A is deterministi. Consequently,

(r(u); t(u); r(u1); r(u2)) = (p

u

(u); t(u); p

u1

(u1); p

u2

(u2)) = (p

u1

(u); t(u); p

u1

(u1); p

u1

(u2)) 2 �.

The seond identity holds sine p

u1

= p

u2

and the third tuple belongs to � sine p

u1

is a partial

run.

It remains to prove Lemma 10. We proeed by indution on the length of u.

Let u = ". Sine S(t) � V

�

, there exists (q

0

; g) 2 Su with w

t

(1) = 1t(") 2 �(X

(q

0

;g)

). Thus,

q

0

1t(") ours on the left-hand side of (4) (when instantiated with �), and hene also

on the right-hand side. Consequently, there exists a state q with (q; t(")) 2 Su and

" 2 �(X

(q;t("))

).

Now, let q be a state suh that (q; t(")) 2 Su and " 2 �(X

(q;t("))

). This means that q

ours on the left-hand side of (4), and thus also on the right-hand side. By onstrution

of (4), this an only be the ase if q = q

0

. This shows that w

t

(") = " 2 �(X

(q

0

;t("))

).

Moreover, with p(") := q

0

, p is a partial run to ".

Let u = u

1

� � �u

n

; n � 1. Sine S(t) � V

�

, we know that there exists (q

0

; g) 2 Su with

w

t

(u1) = 1t(u)w

t

(u) 2 �(X

(q

0

;g)

). This implies that q

0

1t(u)w

t

(u) ours on the left-hand

9

side of (4), and hene also on the right-hand side. Consequently, there exists a state q

with (q; t(u)) 2 Su and w

t

(u) 2 �(X

(q;t(u))

).

Now let q be a state suh that (q; t(u)) 2 Su and w

t

(u) 2 �(X

(q;t(u))

). It remains to

show that there exists a partial run p to u with p(u) = q. Let v = u

1

: : : u

n�1

and assume

(w.l.o.g.) that u

n

= 1. Sine w

t

(u) = 1t(v)w

t

(v) 2 �(X

(q;t(u))

), the word q1t(v)w

t

(v)

ours in the left-hand side of (4), and thus in the right-hand side. Therefore, there must

exist q

0

; q

00

with (q

0

; t(v); q; q

00

) 2 � and w

t

(v) 2 �(X

(q

0

;t(v))

). By the indution hypothesis,

there exists a partial run p

0

to v with p

0

(v) = q

0

. Given (q

0

; t(v); q; q

00

) 2 �, p

0

an be

extended to the the desired partial run p to u by setting p(v1) := q and p(v2) := q

00

.

This ompletes the proof of Lemma 10 and thus the proof of Lemma 9.

We are now ready to redue the intersetion emptiness problem to solving a system of linear

equations. Let A

1

; : : : ;A

n

be deterministi looping-tree automata with pairwise disjoint sets

of states. For every A

i

, we onsider a system of equations E

i

that onsists of the equation of

the form (4) indued by A

i

together with the equation

X =

[

(q;g)2Su

X

(q;g)

: (5)

Now, let E be the union of the systems E

i

(i = 1; : : : ; n). Note that we use the same variable

X for every equation E

i

. Otherwise, the equations E

i

do not share variables sine the set of

states of the automata A

i

were assumed to be pairwise disjoint.

We need to show that E has a solution i� L(A

1

) \ � � � \ L(A

n

) 6= ;. If there exists t 2

L(A

1

) \ � � � \ L(A

n

), then, aording to Lemma 8, for every i there exists a solution �

i

of

the equation orresponding to A

i

satisfying S(t) = V

�

i

. Let � be the substitution de�ned

by �(X

(q;g)

) := �

i

(X

(q;g)

) if q is a state of A

i

, and �(X) := S(t). Then � solves the system

E. Conversely, if � is a solution of E, then it solves equation (4) for every automaton A

i

.

In partiular, by Lemma 8, there exists a tree t

1

2 L(A

1

) suh that S(t

1

) � V

�

. Sine �

solves the equation orresponding to A

i

, Lemma 9 thus yields t

1

2 L(A

i

) for every i. Thus,

t

1

2 L(A

1

) \ � � � \ L(A

n

). This ompletes the proof of the lower omplexity bound stated in

Theorem 4.

5 Least uni�ers and greatest solutions

In ase a uni�ation problem is solvable, one is usually interested in obtaining an atual solution.

Sine a given uni�ation problem may have in�nitely many uni�ers, one must deide whih ones

to prefer.

3

As mentioned in the introdution, least uni�ers are of interest in some appliations.

The uni�er � is a least uni�er of an FL

reg

/FL

0

uni�ation problem if it satis�es �(X) v �

0

(X)

for all uni�ers �

0

and variables X ourring in the problem.

For FL

0

, least uni�ers need not exist. For example, assume that N

C

= fAg and N

R

= frg.

Then the (trivially solvable) uni�ation problem X �

?

X does not have a least uni�er in FL

0

;

however, � with �(X) = 8r

�

:A is the least uni�er of this problem in FL

reg

.

It is easy to see that the least uni�er of a given FL

reg

uni�ation problem orresponds to the

greatest regular solution of the orresponding formal language equations. The solution � is a

3

From the viewpoint of uni�ation theory, we onsider ground uni�ers (i.e., substitutions whose images do

not ontain variables). Thus, it does not make sense to employ the usual instantiation pre-order on uni�ers.

Anyway, the equational theory orresponding to FL

reg

is of uni�ation type zero, and thus most general uni�ers

or even �nite omplete sets of uni�ers need not exist.

10

greatest solution of an equation of the form (2) (or (3)) i� it satis�es �

0

(X) � �(X) for all

solutions �

0

and variables X ourring in the equation. Thus, we are interested in the existene

and omputability of greatest regular solutions of linear equations over regular languages.

The existene of a greatest solution of a solvable equation is obvious sine the set of solutions

is losed under union. In fat, if �

j

, j 2 J , are solutions of (3), then so is � with �(X) :=

S

j2J

�

j

(X) for all variables X ourring in the equation. Thus, the greatest solution an be

obtained as the union over all solutions. However, this greatest solution an only be translated

into a least uni�er if it is regular. We will show that this is indeed always the ase.

Theorem 11 Every solvable equation of the form (3) has a greatest solution, and this solution

is regular. This solution may grow exponentially in the size of (3), and it an be omputed in

exponential time.

Assume that � is the greatest solution of a solvable equation of the form (3). We �rst show

that this solution is regular. Lemma 5 implies that there exists a orresponding run r

�

of the

automaton B obtained from the equation (f. Setion 4). We proeed in three steps.

1. We restrit B = (Q; I;�) to ontain only so-alled ative states. The resulting automaton

is alled B

0

= (Q

0

; I

0

;�

0

).

2. Using B

0

, we show that r

�

is regular, i.e., for every q 2 Q

0

, the set fu 2 N

�

R

j r

�

(u) = qg

is regular.

3. From r

�

, �nite automata aepting �(X

i

) are derived.

A state q of B is alled ative, if L(Q; fqg;�) 6= ;, i.e., starting from q there exists a suessful

run of B. Otherwise, q is alled passive. The ative states an be omputed as follows. One

�rst eliminates all states q for whih there exist no transitions of the form (q; : : :). One also

eliminates all transitions ontaining these states. This proess is iterated until no more states

are eliminated. It is easy to see that the remaining states are exatly the ative ones. Obviously,

this proedure needs time polynomial in the size of B. (There even exists a linear time algorithm

for this task.) Let B

0

= (Q

0

; I

0

;�

0

) denote the automaton obtained from B by eliminating all

passive states. (Note that L(B

0

) = ; i� I

0

= ;.)

To show that r

�

is regular, we need the following partial ordering � on transitions of a state q.

Let � = (q; q

1

; : : : ; q

k

); �

0

= (q; q

0

1

; : : : ; q

0

k

) 2 �

0

, q

i

= (G

i

; L

i

; R

i

), and q

0

i

= (G

0

i

; L

0

i

; R

0

i

). Then,

� � �

0

i� G

i

n f0g � G

0

i

n f0g for all i = 1; : : : ; k. Note that � is in fat antisymmetri: If

� � �

0

and � � �

0

, then G

i

n f0g = G

0

i

n f0g for all i = 1; : : : ; k. Sine the sets L

i

; R

i

(L

0

i

; R

0

i

)

are uniquely determined by G

i

(G

0

i

) and 0 2 G

i

(0 2 G

0

i

) is determined by L

i

; R

i

(L

0

i

; R

0

i

), this

yields � = �

0

.

Now, let u 2 N

�

R

. We laim that the transition � = (r

�

(u); q

1

; : : : ; q

k

) 2 �

0

, where q

i

= r

�

(ui) =:

(G

i

; L

i

; R

i

), is the greatest transition among the transitions of r

�

(u) in B

0

. Otherwise, there

exists a transition �

0

= (r

�

(u); q

0

1

; : : : ; q

0

k

) 2 �

0

, where q

0

i

= (G

0

i

; L

0

i

; R

0

i

), and i 2 f1; : : : ; kg suh

that G

0

i

n f0g 6� G

i

n f0g, i.e., there exists 0 6= j 2 G

0

i

n G

i

. We an onstrut a new run r

0

of B

0

that uses �

0

at node u instead of �. Sine, by de�nition of B

0

, the states q

0

i

in �

0

are all

ative, starting from these states there exist runs in B

0

. Thus, a suessful run r

0

using this

transition at u really exists. This run orresponds to a solution of (3). However, in this solution

ui belongs to X

j

whereas this is not the ase for the greatest solution, a ontradition. Thus,

� must be the greatest transition.

As a onsequene, if B

0

is in the same state at di�erent nodes, then the same transition (namely,

the greatest) is used by the run r

�

. From this, it easily follows that r

�

is regular: given q 2 Q

0

,

the following (deterministi) �nite automaton A

q

= (Q

00

; f1; : : : ; kg; q

I

;�

00

; fqg) aepts the set

fu j r

�

(u) = qg:

11

� Q

00

:= Q

0

;

� q

I

:= r

�

(");

� �

00

:= f(q; i; q

i

) j (q; q

1

; : : : ; q

k

) is the greatest transition of q in �

0

and i = 1; : : : ; kg.

If in A

q

the set of �nal states is f(G;L;R) 2 Q

0

j i 2 Gg instead of fqg, then this automaton

aepts the language substituted for X

i

in the greatest solution. Thus, the greatest solution of

(3) is regular. Finally, sine B

0

and A

q

an be omputed in time exponential in the size of (3),

the upper omplexity bound for omputing the greatest solution follows as well.

It remains to show that the size of the greatest solution may indeed grow exponentially. To

this purpose, onsider the equation

L

1

f1g [� � � [L

k

fkg = L

1

f1g [� � �L

k

fkg [Xf1; : : : ; kg; (6)

where the L

i

s are regular languages over N

R

. Obviously, the greatest solution is the one that

replaes X by L

1

\ � � � \L

k

. From results shown in [15℄ it follows that the size of automata a-

epting this intersetion may grow exponentially in the size of automata aepting L

1

; : : : ; L

k

.

4

6 Mathing in FL

reg

Mathing is the speial ase of uni�ation where the pattern D on the right-hand side of the

equation C �

?

D does not ontain variables. As an easy onsequene of Theorem 3, mathing

in FL

reg

an be redued (in linear time) to solving linear equations over regular languages of

the following form:

S

0

[S

1

X

1

[� � � [S

n

X

n

= T

0

: (7)

For FL

0

, one obtains the same kind of equations, but there S

0

; : : : ; S

n

; T

0

are �nite languages,

and one is interested in �nite solvability. In [7℄ it was shown that mathing in FL

0

is polynomial,

and in [6℄ this result was extended to the DL ALN .

For FL

reg

, mathing is at least PSpae-hard sine equality of regular languages is a PSpae-

omplete problem if one assumes that the languages are given by regular expressions or nonde-

terministi �nite automata. Thus, the equivalene problem in FL

reg

is already PSpae-omplete

(this orresponds to the ase n = 0 in equation (7)). We an show that mathing is not harder

than testing for equivalene.

Theorem 12 Mathing in FL

reg

is a PSpae-omplete problem.

It remains to be shown that solvability of equations of the form (7) an be deided within

polynomial spae. Again, we onsider the mirror equation

S

mi

0

[X

1

S

mi

1

[� � � [X

n

S

mi

n

= T

mi

0

(8)

in plae of the original equation (7). The main idea underlying the proof of Theorem 12 is that

suh an equation has a solution i� a ertain andidate solution solves the equation.

Lemma 13 Let L

i

:= fw j fwgS

mi

i

� T

mi

0

g. Then equation (8) has a solution i�

S

mi

0

[L

1

S

mi

1

[� � � [L

n

S

mi

n

= T

mi

0

: (9)

In this ase, the L

i

s yield a greatest solution of (8).

4

Although these results have been shown for deterministi �nite automata, they easily arry over to the

nondeterministi ase.

12

The proof of this lemma is similar to the one for the ase of �nite languages given in [7℄. It

remains to be shown that the validity of identity (9) an be tested within polynomial spae (in

the size of nondeterministi �nite automata for the languages S

mi

0

; : : : ; S

mi

n

; T

mi

0

). By de�nition

of the sets L

i

, the inlusion from left-to-right holds i� S

mi

0

� T

mi

0

. Obviously, this an be tested

in PSpae.

How to derive a PSpae-test for the inlusion in the other diretion is not that obvious. Here,

we sketh how the inlusion T

mi

0

� L

1

S

mi

1

an be tested (the extension to the union in identity

(9) is then simple). First, we de�ne an exponentially large automaton for L

1

S

mi

1

. However, the

representation of eah state of this automaton requires only polynomial spae, and navigation

in this automaton (i.e., determining initial states, �nal states, and state transitions) an also

be realized within polynomial spae. Thus, if we onstrut the automaton on-the-y, we stay

within PSpae.

An automaton B for L

1

= fw j fwgS

mi

1

� T

mi

0

g an be obtained as follows. We onstrut the

usual deterministi powerset automaton from the given nondeterministi automaton A for T

mi

0

.

The only di�erene is the de�nition of the �nal states. A state P of B (i.e., a subset of the set

of states of A) is a �nal state i� S

mi

1

� L

A

(P), where L

A

(P) is the language aepted by A if

P is taken as its set of initial states. It is easy to see that the automaton B obtained this way

indeed aepts L

1

, and that we an navigate in this automaton within PSpae. In partiular,

note that testing whether a state P of this automaton is a �nal state is a PSpae-omplete

problem.

The automaton C for L

1

S

mi

1

has as states tuples, where the �rst omponent is a state of B

and the seond omponent is a set of states of A

1

, the nondeterministi automaton for S

mi

1

.

Transitions in the �rst omponent are those of B. In the seond omponent, they are in priniple

the transitions of the powerset automaton orresponding to A

1

, with the following di�erene:

if, on input r, the automaton B reahes a �nal state, then in the seond omponent we extend

the set reahed with r in the powerset automaton of A

1

by the initial states of A

1

. Final states

of C are those whose seond omponent ontains a �nal state of A

1

. The initial state is (I; J),

where I is the initial state of B and J is the set of initial states of A

1

or empty, depending on

whether I is a �nal state of B or not. Again, it is easy to see that navigation in C is possible

within PSpae.

To deide whether T

mi

0

� L

1

S

mi

1

, we try to \guess" a ounterexample (reall that PSpae =

NPSpae). This is a word that is in T

mi

0

, but not in L

1

S

mi

1

. The length of a minimal suh word

an be bounded by the produt of the size of A (the nondeterministi automaton for T

mi

0

) and

the size of C (the deterministi automaton for L

1

S

mi

1

). We traverse A and C simultaneously,

and have a ounterexample if A is in a �nal state and C is not. The next letter and the suessor

state in A is guessed, and the suessor state in C an be omputed in PSpae. In addition, we

use an exponential ounter (requiring only polynomial spae) that terminates the searh if the

(exponential) bound on the length of a minimal ounterexample is reahed.

7 Conlusion

We have shown that uni�ation in FL

reg

is equivalent via linear time redutions to solvability

of linear equations over regular languages, and that these problems are ExpTime-omplete.

If we restrit the attention to mathing problems (equations where one side does not ontain

variables), then the problem is PSpae-omplete. In both ases, solvable problems (equations)

have least (greatest) solutions, whih may be exponential in the size of the problem (equation),

5

and whih an be omputed in exponential time. In addition to the appliation for desription

5

Note that equation (6) atually orresponds to a mathing problem.

13

logis, we think that the results on solving linear equations over regular languages are also of

interest in their own right (e.g., in formal language theory).

From the desription logi point of view, one is of ourse also interested in uni�ation in

more expressive DLs, but this appears to be a hard problem. Reently, we have extended the

deidability results to the DL obtained from FL

reg

by adding inonsisteny (?). Surprisingly,

it is not lear how to handle the orresponding extension of FL

0

.

Referenes

[1℄ A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The Complexity of Set Constraints. In

Pro. 1993 Conf. Computer Siene Logi (CSL'93), volume 832 of LNCS, pages 1{17.

European Assoiation Computer Siene Logi, Springer, 1993.

[2℄ F. Baader. Augmenting Conept Languages by Transitive Closure of Rules: An Alternativ

to Terminologial Cyles. In Pro. of the 12th International Joint Conferene on Arti�ial

Intelligene (IJCAI'91), pages 446{451, 1991. Morgan Kaufmann Publishers.

[3℄ F. Baader. Using Automata Theory for Charaterizing the Semantis of Terminologial

Cyles. Annals of Mathematis and Arti�ial Intelligene, 18(2{4):175{219, 1996.

[4℄ F. Baader and B. Hollunder. A Terminologial Knowledge Representation System with

Complete Inferene Algorithms. In Pro. of the First International Workshop on Proessing

Delarative Knowledge, volume 572 of LNCS, pages 67{85, 1991. Springer{Verlag.

[5℄ F. Baader and R. K�usters. Mathing in Desription Logis with Existential Restritions. In

Pro. of the Seventh International Conferene on Knowledge Representation and Reasoning

(KR2000), pages 261{272, 2000. Morgan Kaufmann Publishers.

[6℄ F. Baader, R. K�usters, A. Borgida, and D. MGuinness. Mathing in Desription Logis.

Journal of Logi and Computation, 9(3):411{447, 1999.

[7℄ F. Baader and P. Narendran. Uni�ation of Conept Terms in Desription Logis. In

Pro. of the 13th European Conferene on Arti�ial Intelligene (ECAI-98), pages 331{

335, 1998. John Wiley & Sons Ltd. An extended version has appeared in J. Symboli

Computation 31:277{305, 2001.

[8℄ A. Borgida and D. L. MGuinness. Asking Queries about Frames. In Pro. of the Fifth In-

ternational Conferene on Priniples of Knowledge Representation and Reasoning (KR'96),

pages 340{349, 1996. Morgan Kaufmann Publishers.

[9℄ R. J. Brahman and J. G. Shmolze. An overview of the KL-ONE knowledge representation

system. Cognitive Siene, 9(2):171{216, 1985.

[10℄ E. Leiss. Impliit language equations: Existene and uniqueness of solutions. Theoretial

Computer Siene A, 145:71{93, 1995.

[11℄ E. Leiss. Language Equations. Springer-Verlag, 1999.

[12℄ D.L. MGuinness. Explaining Reasoning in Desription Logis. PhD thesis, Department

of Computer Siene, Rutgers University, Otober, 1996.

[13℄ H. Seidl. Haskell overloading is DEXPTIME-omplete. Information Proessing Letters,

52(2), 1994.

14

[14℄ W. Thomas. Automata on in�nite objets. In J. van Leeuwen, editor, Handbook of Theoret-

ial Computer Siene, volume B, pages 133{191. Elsevier Siene Publishers, Amsterdam,

1990.

[15℄ S. Yu and Q. Zhuang. On the State Complexity of Intersetion of Regular Languages.

ACM SIGACT News, 22(3):52{54, 1991.

15

