Aachen University of Technology
Theoretical Computer Science

LTCS—Report

Approximation and Difference in Description Logics
Sebastian Brandt Ralf Kiisters Anni-Yasmin Turhan

LTCS-Report 01-06

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

Approximation and Difference in Description Logics

Sebastian Brandt', Ralf Kiisters?, and Anni-Yasmin Turhanf

I LuFG Theoretische Informatik,
RWTH Aachen

I Tnstitut fiir Informatik und Praktische Mathematik,
Christian-Albrechts-Universitat zu Kiel

November 2001

Abstract

Approximation is a new inference service in Description Logics first mentioned
by Baader, Kiisters, and Molitor. Approximating a concept, defined in one Descrip-
tion Logic, means to translate this concept to another concept, defined in a second
typically less expressive Description Logic, such that both concepts are as closely
related as possible with respect to subsumption. The present paper provides the first
in-depth investigation of this inference task. We prove that approximations from
the Description Logic AL to ALE always exist and propose an algorithm computing
them.

As a measure for the accuracy of the approximation, we introduce a syntax-
oriented difference operator, which yields a concept description that contains all
aspects of the approximated concept that are not present in the approximation. It
is also argued that a purely semantical difference operator, as introduced by Teege,
is less suited for this purpose. Finally, for the logics under consideration, we propose
an algorithm computing the difference.

CONTENTS i

Contents
1 Introduction 1
2 Description Logics 3
3 Approximation—a trivial task? 4
4 Approximation 7
4.1 Normal forms e 7
4.2 Characterization of subsumptiono L. 9
4.3 Upper approximation e 10
5 The difference operator 15
6 Conclusion 20

References 21

1 INTRODUCTION 1

1 Introduction

Approximation in Description Logics (DLs) was first mentioned by Baader, Kiisters, and
Molitor [2] as an interesting new inference problem. The present paper is the first to in-
vestigate this problem in depth. Informally, approximation is defined as follows: given a
concept C' defined in a DL L, (“s” for source) find a concept D, the upper/lower approx-
imation of C, in a DL Ly (“d” for destination) such that i) D subsumes/is subsumed by
C', and ii) D is a minimal/maximal concept in £, (w.r.t. subsumption) with this property.
Throughout this paper we will mainly focus on upper approximations. There are a number
of different applications of this inference problem:

e Translation of knowledge-bases
Approximation can be used to (automatically) translate a knowledge-base written
in an expressive DL into a another (semantically closely related) knowledge-base
in a less expressive DL. The translation may become necessary to port knowledge-
bases between different knowledge representation systems or to integrate different
knowledge-bases.

e Non-standard inferences for expressive DLs
Non-standard inferences in DLs, such as computing the least common subsumer
(les), matching and unification of concepts, have been introduced to support the
construction and maintenance of DL knowledge-bases (see [11, 6] for an overview).
However, up to now they are mostly restricted to quite inexpressive DLs, for example
to DLs that do not allow for concept disjunction. Approximation can be used to
overcome this problem to some extent:

— Matching for expressive DLs

For example, the existing matching algorithms can be lifted to handle more ex-
pressive DLs as follows: instead of directly matching concept patterns (defined
in a small DL) against concepts (defined in a DL that cannot be handled by
existing matching algorithms), one can first approximate the concept (in the
small DL) and then match against its approximation. Even though some infor-
mation may be lost, e.g., the matcher is more general than the correct one, the
accuracy of the result may still suffice.

— Finding commonalities of concepts with disjunction
Another example, which in fact was our main motivation for looking at approx-
imation in the first place, is to combine approximation and the lcs computation:
The lcs of two concepts, say C; and C5, defined in some DL L, is the most
specific concept (w.r.t. subsumption) in £ that subsumes both concepts. Intu-
itively, the lcs yields the commonalities between C) and Cs. However, in case
L allows for concept disjunction, the lcs is just the disjunction of C; and Cs
(Cy U Cy). Thus, a user inspecting this concept does not learn anything about
the actual commonalities. Using approximation, however, one can make the

1 INTRODUCTION 2

commonalities explicit by first approximating C'; and C5 in a sublanguage of £
which does not allow to express concept disjunction, and then computing the
Ics of the approximations in this sublanguage. Again, due to the approximation
step some information may be lost, nevertheless, since commonalities are made
explicit, the resulting concept might even be more interesting to a user than
just the disjunction of C} and C5.

e Support for frame-based user interfaces of DL systems

In the interaction with DL systems, users with little knowledge representation exper-
tise may have difficulties to understand and make use of the full expressive power of
the underlying DLs. As an approach to this problem, some knowledge representation
systems have been equipped with a simplified frame-based user interface built on top
of a more powerful DL system. Examples for this approach are the TAMBIS sys-
tem [3] and the ontology editor OilEd [4] built on top of the FACT DL system [10].
On many occasions, these systems have to present concept descriptions to the user for
editing, inspection, or as a solution of inference problems. Such concept descriptions,
however, need not always fit into the restricted representation of the frame-based
user interface or might overwhelm an inexperienced user. In such cases, approxima-
tion might be helpful as a means to represent concept descriptions in a simplified
fashion suited to the user interface and the user’s level of expertise. Furthermore,
the aspects not captured by the frame-based representation could be computed for
further inspection by a difference operator as proposed in this work (see below).

e Knowledge-base vivification

Concept disjunction in many cases increases the computational complexity of infer-
ence problems, which in particular was a problem in the early DL systems. The
idea of knowledge-base vivification is to replace disjunction by the lcs of its disjuncts
[5, 7]. We will show in Section 3 that such a direct substitution does not always yield
the best concept expressible in the smaller DL. Hence, a more general approach to
knowledge-base vivification is to approximate the original concepts defined in a DL
with disjunction in a corresponding DL where disjunction cannot be expressed. The
problem with both approaches is that they might lead to an exponential blow-up of
the concepts, making reasoning in the smaller DL expensive too. In fact, given the
highly optimized up-to-date DL systems, such as FACT [10] and RACER [9], the use
of knowledge-base vivification is questionable nowadays.

The main technical result of this paper (Section 4) is to show that concept descriptions
defined in the standard DL ALC, which provides concept conjunction and disjunction, value
and existential restrictions, and full negation, can be approximated (from above) in the
DL ALE, a DL without concept disjunction and full negation.

Once one has given an (upper) approximation D of C' a natural question regards the
loss of information, i.e., what aspects of C are not captured by D. Therefore we propose
a difference operator, which given C' and D yields a concept description E (the difference

2 DESCRIPTION LOGICS 3

| Syntax | Semantics | ACE | ALC |
T A X X
cnbD cl'nb! X X
Ir.C {reA|Ty:(v,y)er'Ayel’} | x x
vr.C {reA|Vy: (v,y)er’ —>yel'} | x x
-A, A€ N¢ A\ AT X X
1 0 X X
cubD c'uD! X
-C N X

Table 1: Syntax and semantics of concept descriptions.

of C"and D) in L, such that F conjoint with D is equivalent to C, i.e., EMM D = C. In
other words, E' contains the information that is missing in the approximation D of C.
Such an operator has already been defined by Teege [14]. He requires that E is the most
general concept description in £, w.r.t. subsumption that satisfies the above equivalence.
However, as we will see, such a purely semantical definition of difference allows for very
unintuitive concepts. We therefore propose a new syntax-based definition, which better
captures the intuition behind difference. Roughly speaking, the difference E between C'
and D will be obtained by syntactically removing those parts of C' that are already present
in D. In Section 5, we provide a formal definition and give an algorithm for computing
the difference between ALC- and ALE-concept descriptions.

2 Description Logics

Concept descriptions are inductively defined with the help of a set of concept construc-
tors, starting with a set Ng of concept names and a set Ng of role names. The available
constructors determine the expressive power of the DL in question. In this paper, we con-
sider concept descriptions built from the constructors shown in Table 1. In the DL ALE,
concept descriptions are formed using the constructors top-concept (T), concept conjunc-
tion (C' M D), existential restriction (3r.C'), value restriction (Vr.C'), primitive negation
(—A), and the bottom-concept (L). The DL AL additionally provides us with concept
disjunction (C'U D) and full negation (=C') (see Table 1). Note that in AL every concept
description can be negated whereas in ALE negation is only allowed in front of concept
names. For a DL L, such as ACE and ALC, a concept description formed with the con-
structors allowed in L is called L-concept description in the following.

As usual, the semantics of a concept description is defined in terms of an interpretation
T = (A,-"). The domain A of 7 is a non-empty set and the interpretation function -’ maps
each concept name A € N to a set AT C A and each role name r € Ny to a binary relation
r! C AxA. The extension of -’ to arbitrary concept descriptions is defined inductively, as
shown in the second column of Table 1.

One of the most important traditional inference services provided by DL systems is

3 APPROXIMATION—A TRIVIAL TASK? 4

computing the subsumption hierarchy. The concept description C' is subsumed by the
description D (C' C D) iff C* C D! holds for all interpretations Z; C' and D are equivalent
(C=D)iff C C D and D C C; C is strictly subsumed by D (C' = D) iff C C D and
C' # D. Subsumption and equivalence in AL is PSPACE-complete [13] and NP-complete
in ACE [8].

In order to approximate ALC-concept descriptions by ALE-concept descriptions, we will
need to compute the least common subsumer in ALE.

Definition 1 Given L-concept descriptions C4,...,C,, for some description logic L, the
L-concept description C' is the least common subsumer (lcs) of Cy, ..., C, (C =lcs(Cy, ..., Cy)

for short) iff
1. C;CC foralll <i<n, and

2. C'is the least concept description with this property, i.e., if C' satisfies C; T C' for all
1<i<n, then C C(C".

Depending on the DL under consideration, the lcs of two or more concept descriptions need
not always exist, but if it exists, then, by definition, it is unique up to equivalence. For
instance, in ALC the lcs trivially exists since les(C, D) = C' U D. For ALE, which does not
allow for concept disjunction, the existence is not obvious. However, as shown in [1], the
lcs of two or more ALE-concept descriptions always exists, its size may grow exponentially
in the size of the input descriptions, and it can be computed in exponential time.

Some notation is needed to access the different parts of an ALE-concept description
or an ALC-concept description where disjunction only occurs within value or existential
restrictions. Given such a concept C"

e prim(C) denotes the set of all (negated) concept names and the bottom concept
occurring on the top-level conjunction of C.

e val,.(C) := D, where D is a conjunction of all C' occurring in value restrictions of
the form Vr.C' on the top-level of C'. If there is no value restriction on top-level of
Cval.(C):=T.

e ex,.(C) :={C" | there exists Ir.C" on the top-level of C'}.

For the sake of simplicity, we assume that the set Ny of role names is the singleton {r}.
However, all definitions and results can easily be generalized to arbitrary sets of role names.

3 Approximation—a trivial task?

As introduced in Section 1, the upper approximation of a given ALC-concept description
C'is a minimal ALE-concept description D (w.r.t. subsumption) subsuming C'. Formally,
this leads to the following definition.

Definition 2 Let C' be an ALC-concept description. An ALE -concept description D is an
upper ALE-approximation (for short approz 4) of C, iff

3 APPROXIMATION—A TRIVIAL TASK? 5

1. CC D, and
2. CC D' and D' C D implies D' = D for every ALE-concept description D'.

Note that approximations need not exist in general. Consider for example the DLs £, =
{n} and £, = {U}, i.e., the DLs that only allow for concept conjunction and concept
disjunction, respectively. Let A and B denote concept names. Then, there does not exist
an upper Li-approximation of the Ly-concept description A LI B. Conversely, there does
not exist a lower Ls-approximation of the L£;-concept description A M B. Also note that
approximations need not be uniquely determined. For example, both A and B are lower
Li-approximations of A LI B with £; defined as above.

In this paper, we restrict our investigations to upper approximations. Therefore, when-
ever we speak of approximations in the following, we mean upper approximations. More-
over, we concentrate on upper ALE-approximations of ALC-concept descriptions. Since ALE
allows for concept conjunction it immediately follows that if upper ALE-approximations
exist (and we will show that they always do), they are uniquely determined up to equiv-
alence: If D; and D, are two upper ALE-approximations, then so is D; M Dy. But then,
by definition of upper approximation, D; M Dy T D; and D; M Dy C D, implies that
D, 1 Dy = Dy = D,. This means that an upper ALE-approximation D of C' is the most
specific concept in ALE subsuming C, i.e., C T D, and ii) D T D’ for every ALE-concept
description D' with C' C D'.

Obviously, the crucial point in approximating an ALC-concept description C' in ALE is
to deal with the disjunctions occurring in C'. In the very simple case of only one disjunction
on the top-level of C|, i.e., C' is the disjunction C' LIC5 of two ALE-concept descriptions, it is
easy to see that the most specific (and thus, minimal) ALE-concept description subsuming
C'is just the least common subsumer of C; and Cy, i.e., lcs(C, Cy). Hence, the disjunction
is approximated by the lcs of the disjuncts.

It seems natural to generalize this approach to disjunctions occurring at other positions
in the syntax tree of C. Thus, an approximation algorithm would traverse the syntax tree
of C in a bottom-up fashion and substitute a disjunction by the lcs whenever one is found.
This idea is formalized in the following definition of our first straightforward attempt to
an approximation algorithm:

Definition 3 (substitute disjunctions by the lcs) The pseudo-approximation

triv

c-approx'iye(C) of an ALC concept description C by an ALE concept description is defined
by:

c- approxi‘[‘:’g() = AfC=Lor C=T or C € prim(C)

c- approxfi‘gg(ol

Cn) : aPPrOXEZIAVg(Cl) -1 c-approxife (Cn)
c-approx'i¥. (O} LI C,) = lcs{c- approxﬁj{‘g’g(C’l) , c-approx‘ iy (C)}
c- approxi{‘gg(ﬂr C") := 3r.c-approx'{ s (C")

Vr.C') =

triv (

c-approx'ire Vr.c-approx'iy (C")

3 APPROXIMATION—A TRIVIAL TASK? 6

Unfortunately, this naive approach does not always compute the most specific ALCE-
concept description subsuming C', as the following example illustrates.

triv

Example 4 [c-approx'iys Z approx_s¢]
For atomic concepts A and B, consider Cey; := (Vr.B U (3r.BMVr.A)) M 3r.A.

c-approx'i¥e (Cex1) = les(Vr.B, Ir.BMVr.A) M Ir.A
=Vr.TN3dr.A
=dr.A

It is easy to verify that Ce; T Ir.(A T B) T c-approx'iYe(Cex1). Thus, the algorithm

c-approx'i¥e did not find an optimal solution.

It appears that substituting the lcs locally without taking care of other aspects of Cey 1
does not suffice. Another straightforward way to deal with disjunctions therefore seems to
compute a set of copies of the original ALC-concept description C' where in every copy each
disjunction is replaced by only one of its disjuncts. The least common subsumer of all these
copies might be a candidate for the approximation. The following definition formalizes this
idea.

Definition 5 (split disjunctions) Let C' be an ALC-concept description. Then the pseudo-
approzimation c-approx’sie (C) is defined as c-approx’ps(C) := Ics (split(C)), where split(C)

1s inductively defined as follows:

spllt(C) ={C } Jif C € prim(CYU{L, T}
split(Cy M ---MCy) == {Dy ‘M D, | D; € split(C;),1 <i<n}
split(Cy U - Cp) = Sp|lt(01) -Usplit(Cy)
spllt(Vr C"y:={vr.D|DE€ spIit(C")}
split(3r.C") := {Ir.D | D € split(C")}

One can verify that the above algorithm works correctly for Example 4. The function
split transforms the input concept description into the a set consisting of Vr.A M 3r.B and
Ir.AMVYr.B M 3r.B the lcs of which yields 3r.(A M B). Nevertheless, other examples exist
where the resulting concept does not even subsume the input.

Example 6 [c—approxf}{’lﬁi‘tS % approx e
For atomic concepts A and B, let Cexo 1= Ir. AN 3Ir.BNVr.(-mA U -B). Applying the

4 APPROXIMATION 7

algorithm c—approxfflﬁiz to Cex,2 yields the following result.

c-approx s (Cexa) = lcs (split(Cex.2))
= les{3Ir. AN Ir.BNVr—-A, IrANIr.BNVr.-B}
=3drles{AN-A, AN =B} N
Arles{AN—-A, BN -B} M
drles{BM—-A, AN =B} M
Arles{BMN—-A, BN —-B} N
VT.|CS{—|A, —|B}
=3dr.(AN-B) N Ir.L M1 ...
=1

The examples given so far suggest that two properties are important for a successful
approximation algorithm. Firstly, A{C-concept descriptions must be normalized before
approximation, i.e., conjunctions must be distributed over disjuncts; and secondly, value
restrictions must be propagated to existential restrictions. Thus, expressions of the form
of AN (BUC) are turned into (AN B) U (AN C), and Ir.ANVr.B is transformed into
Ir.(AN B) NVr.B. In the following section, we will see how to employ these ideas in the
actual approximation algorithm.

4 Approximation

In the previous section we have seen that normal forms of concept descriptions are de-
sirable for our approach to approximation. Consequently, the following subsection will
be concerned with a normal form for ALC-concept descriptions. In Subsection 4.2, this
normal form is used for a structural characterization of subsumption for the asymmetric
case of an ALE-concept description subsuming an ALC-concept description. With these
preliminaries, the upper approximation of ALC-concept descriptions is introduced formally
in Subsection 4.3.

4.1 Normal forms

For ALE-concept descriptions, a concept-oriented normal form has been introduced in [11].
The idea is to restrict (w.l.o.g.) concept descriptions to only one value restriction per role
on top-level and in every existential restriction and in value restriction.

Definition 7 Let D be an ALE -concept description. D is in ACE-normal form, iff D = 1,
D =T, or D is of the form

D= T1 An M 3IC n Vrval(D)

Aeprim(D) C'cex, (D)

where val,.(D) and every concept in ex,(D) again are in ALCE-normal form.

4 APPROXIMATION 8

Note that prim(D) also contains negated atomic concepts. For instance, the ALE-
normal form of AMVr.AM 3Ir.BMNVr.—B yields AN 3r.BMNVr.(AMN -B). Transforming
an arbitrary ACLE-concept description C' into ALE-normal form does not increase its size
because it suffices to conjoin value restrictions into one whenever more than one value
restriction occurs in a conjunct at some position in C'.

Nevertheless, inconsistencies need not be explicit in the ALE-normal form and value
restrictions are not propagated to existential restrictions. We define a so-called propagated
ALE-normal form to satisfy these conditions also.

Definition 8 Let D be an ALE -concept description. Then D is in propagated ALE-normal
form, iff none of the following normalization rules can be applied at any position in C'.

Pri-P
EnL

dr. L

vr. T

ENT

Vr.C' 1Vr.D
dr.C IVr.D

, where P € N¢g

m -

Vr.(C' 11 D)
Ar.(CT1D)NVr.D

U A A

It can be shown that the propagated ALE-normal form is in fact a specialization of the
ALE-normal form which could be generated by means of the last but one transformation
rule alone. Nevertheless, transforming a concept description into propagated ALE-normal
form can result in exponentially larger concept descriptions because the last transformation
rule (which performs the propagation) leads to an increase in size by copying subtrees of
the syntax tree and may be applied very often.

In order to extend the (ordinary) ALE-normal form to ALC-concept descriptions, we
have to deal with full negation and disjunction. Nevertheless, negated complex, i.e., non-
atomic, concepts can be avoided by the negation normal form, where negation only occurs
in front of concept names. Additionally, we require the bottom concept to be represented
uniquely and every disjunction on every role level to be in disjunctive normal form.

Definition 9 Let C' be an ALC-concept description. C' is in ACLC-normal form, iff C' = L,
C =T, orC is of the form

c=Cu---uac,
C; = Mm An M 3r.C" N Vrval.(C) Vi,
Aeprim(C;) C'cex, (C;)
where (1) C; £ L for all i and (2) val.(C;) and every concept in ex,(C;) again are in
ALC-normal form.

It is not difficult to verify that every ALC-concept description can be transformed into
ALC-normal form. Note that, if C'is in ALC-normal form, C' is also in ALC negation normal
form. Consider the following simple example:

4 APPROXIMATION 9

Example 10 For atomic concepts A, B,C, let C' := =Vr.(AMN B) N (B U 3r.—A). The
negation normal form of C' yields 3r.(—A LU —=B) M (B U3r.—A). By distributing conjuncts
over the disjunction we obtain (Ir.(mA U —-B) M B) U (Ir.(-A LU =B) 1 3r.—A).

It should be noted that ALC-normal form of a concept C' can be exponentially larger than
C itself. For instance, computing the disjunctive normal form of (A, UB;)M---M(A,UB,)
produces a concept description of exponential size in n.

4.2 Characterization of subsumption

The normal forms introduced in the previous section allow us to give a structural char-
acterization of subsumption between an ALC-concept description C' and an ALE-concept
description D. Recall that a disjunction C LI C5 is subsumed by D if and only if both
C; are subsumed by D. Following this idea, our characterization of subsumption reduces
subsumption for a disjunction to subsumption of the respective disjuncts on every role
level. Formally, we obtain the following theorem.

Theorem 11 Let C' be an ALC-concept description in ALC-normal form and D an ALE-
concept description in ALE-normal form. Then, C' T D iff
1.C=1LorD=T, or

2. for everyi € {1,...,n} it holds that

e prim(D) C prim(C;), and
e VD' € ex,(D) 3C" € ex,(C;) : C' Mval,(C;) E D', and
e val,(C;) Cval.(D).

PROOF. (=) Assume L CCC DL T.

e Assume prim(D) € prim(C;) for one i. Then there exists an A € prim(D)\ prim(C;).
By definition of the AC-normal form, C; is consistent. We may therefore consider
a canonical interpretation I of C;. By definition, the individual do, € A’ for C;
does not occur in A’, since A ¢ prim(C;). Thus, d € D' and therefore C' Z D, in
contradiction to our assumption.

e Assume for one D' € ex,(D) that one i exists such that for all C" € ex,(C;) it holds
that C' Mval,.(C;) Z D'. Since C; is consistent, every C’ € ex,(C;) has a tree model
Ier where der € (C'Mval,(C;))er \ (D')!er. Without loss of generality, we may assume
disjoint domains, i.e., Ale’ N Ale” = () for two different C’,C” € ex,(C;). We may
now construct a new model I over the domain Al = {d} W Uereex () Ale’ with

the following properties: (1) For the role 7, define r! := {(d,dc) | C" € ex,(C;)} U

Ucreex () rlcr. (2) For every (negated) atomic concept A € No U {=A | A € N¢},

define the interpretation of A as Al := {d | A € prim(C;)} U Ucreen) Ale’. Note

that the first expression only states that d € A" iff A € prim(C;).

i

4 APPROXIMATION 10

It is easy to see that d € C’. On the other hand d ¢ D!, because (D')c’ was excluded
explicitly from every Ic. Consequently, we have d & (Ir.D)!.

e Assume val,.(C;) [Z val.(D) for one i. Thus, val,(C;) has a tree model I,, such that
dya € val,(C;)Tv \ val,. (D). We can now extend the model I introduced for the
previous case by adding d,q as an r-successor of d. Again, assume Al N Al = (),
Then, define I" as follows: A’ := AT U Alwt. (1) For the role 7, we define r’ :=
{(d,dya)} UrT Urle. (2) For every (negated) atomic concept A, A’ is simply the
union of the previous models, i.e., A" := ATUA"™. As aresult, we still have d € (C")
for all i and thus d € CT but on the other hand d ¢ D'

(<) 1. Trivial. 2. Let i € {1,...,n}. Tt is sufficient to show that C; C D. Let z € CY
for any interpretation I of C;. Show: z € D'.

e By assumption, z € Al for every A € prim(C;). The inclusion prim(D) C prim(C;)
thus implies z € A for every A € prim(D).

e Consider an arbitrary D’ € ex,.(D). By assumption, we know that there is an C" €
ex,(C;) with C' Mval,(C;) € D'. Since z € (Ir.C' M Vr.val,(C;))', this implies = €
(Ir.D")L.

e Asval,.(C;) C val, (D) and z € (val.(C;))’, it holds that = € (val,(D))".

The definition of conjunction yields D' = (0 ycppimm) A" N Npreex,(py(Fr-D) N (val (D)),
concluding the argument. |

It was argued in Section 3 that the normalization of concept descriptions is crucial for
a successful approach to approximation. In the following Section we will see how these are
employed in the formal definition of the approximation.

4.3 Upper approximation

A definition of the upper approximation is already given by Definition 2. In this subsection,
a corresponding algorithm is proposed to actually compute the upper approximation of a
given ALC-concept description.

Definition 12 Approzimation algorithm of AL by ALE.

Input: ALC-concept description C'.

Output: ALE-approzimation D of C.

1. C={L, T}. Then, c-approx 4.c(C) := L or c-approx 4,¢(C) := T respectively.

2. Otherwise, transform C into ACLC-normal form and return c-approx 4.¢(C) as

M A
Ae; prim(Cy)

M M Jr.lcs{c-appro Cinval,(Cy)) |1 <<
(C1,-..,Ch)Eexy (C1) X - Xexp (Cr) " { PP XAES(iV ()) | =0 n}

M Vr.les{c-approx 4.¢(val,(C;)) | 1 <i < n}.

4 APPROXIMATION 11

Obviously, the algorithm always makes sure that the input is transformed into ALC-
normal form. By computing c-approx 4,.¢(C! M val.(C;)) instead of c-approx 4.-(C}) for
every existential restriction in the resulting concept description it is also ensured that
value restrictions are propagated to existential restrictions. It should be noted that the
argument C! M val,(C;) is not necessarily in AC-normal form even if C' was transformed
into normal form before.

To see how the above algorithm works, let us return to the examples discussed in
Section 3.

Example 13 Consider the concept description Cex; = (Vr.BU (Ir.BMVr.A))M3r. A from
Example 4. Applying c-approx 4.¢ to Cex; would firstly transform the input into ALC-
normal form, yielding (Vr.BM3r.A) U (Ir.BMNVr.AN3r.A). According to the definition of
C-approx 4.¢, we therefore have:

c-approx 4pg (Cex,1) = c-approx 4. ((Vr.B M 3Ir.A) U (Ir.BOVr.AMN 3r.A))
=drles{ANB,BMNA} N
Ardcs{AN B, AN A} N
Vr.les{B, A}
=3r(BMNA) N Ir.ANvr.T
=3Jr.(BNA)

The concept description from Example 6, Cex o = Ir. ANIr.BMVr.(mAU-B), is already
in ALC-normal form. Thus, applying c-approx 4. yields:

c-approX 4 p¢(Cex2) = C-approxX 4p¢(Ir. AN Ir.BMVr.(—A LU —-B))

= Jr.lcs{c-approx 4 c(AM (AL =B))} N
Jr.les{c-approx 4, (BT (mA L =B))} M
Vr.les{c-approx 4.¢(—A LU —B)}

= Jr.c-approx 4, (AN —A) U (AN =B)) M
Jr.c-approx 40 ((BM—A) U (BN =B)) N
Vr. T

=3dr.(AN-B) N Jr.(BN-A)

The above example shows that c-approx 4.c correctly approximates the example con-
cepts from Section 3. The following theorem proves that the algorithm c-approx 4., always
finds the correct approximation:

Theorem 14 Let C be an ALC-concept description in ACLC-normal form. Then c-approxX 4,.¢(C')
is the upper ALE -approzimation of C, i.e.,
1. C C c-approx 4.¢(C), and

2. c-approx 4.¢(C) T D for every ALE-concept description D with C' T D.

4 APPROXIMATION 12

PROOF. 1. Show C C c-approx 4.¢(C). To this end, show by induction over the structure
of C' that the conditions for subsumption from Theorem 11 hold.

If C € {1, T} then c-approx 4.-(C) = C which trivially satisfies the subsumption
conditions. Otherwise, we may assume as induction hypothesis that the claim holds for
the subterms of C' occurring in existential and value restrictions. For C' we therefore find
that:

e By definition of c-approx .z, we have prim(c-approx 4.¢(C)) = (i, prim(C;) C
prim(C').

e Show: for les{c-approx 4,¢(C! Mval,(C;)) | 1 < i < n} and for all 7 there exists some
C'" € ex,(C;) with C' Mval,(C;) C les(c-approx 4. (Cl Mval, (C;)) | 1 <i < n}.

Pick C" = C!. By induction hypothesis it holds that C'Mval,(C;) C c-approx 4. (Ci 1
val.(C;)). The definition of the lcs now guarantees C'Mval,.(C;) Mlcs{c-approx 4, (Ci 11
val.(C;)) | 1 <i < n}.

e Show: val,.(C) C val,(c-approx 4,.¢(C)). By induction hypothesis we already know
that val,(C;) T c-approx 4.¢(val,(C;)) for every i. Consequently, for the lcs we find
val,.(C;) C les{c-approx 4.¢(val,(C;)) | 1 <i < n}.

2. Without loss of generality, let D be in ALE-normal form. Proof by induction over
the structure of C.

If C'€ {1, T}, then c-approx 4,¢(C) = C which is the least concept subsuming C.

Otherwise, we may assume that the claim holds for the subterms of C' occurring in
existential and value restrictions. If D = T, then trivially c-approx 4.¢(C) C D. Otherwise,
the subsumption C' C D induces the following facts:

e prim(D) C prim(C;) for every i. As prim(c-approx 4.¢(C)) is the intersection of
every prim(C;), this implies prim(D) C prim(c-approx 4.¢(C)).

e Forall D' € ex,(D) and for all i there is one C' € ex,(C;) with C'Mval,.(C;) E D'. The
induction hypothesis now guarantees that C'Mval,(C;) C c-approx 4, (C'Mval,.(C;)) C
D for every i. Consequently, for the lcs it holds that les{c-approx 4.¢(C' Mval,(C;)) |
1<i<n}CD.

e For all 7 we have val,.(C;) C val,.(D). By induction hypothesis, we have val,(C;) C
c-approx 4 q¢(val.(C;)) C val, (D). Hence, we similarly find lcs{c-approx 4,¢(val.(C;)) |
1<i<n}Cval(D).

As the transformation into ALC-normal form preserves equivalence we may extend the
above result in the following way:

Corollary 15 1. The above result also holds for ALC-concept descriptions which are not
in ALC-normal form.

4 APPROXIMATION 13

2. The size of c-approx 4,.¢(C) can be exponential in the size of C, where C is in ALC-
normal form.

PROOF. 1. Easy to see since (1) the algorithm c-approx 4. starts by computing the ALC-
normal form of its input and (2) T and L are represented uniquely in ALC-normal form.
2. Consider two ALE-concept descriptions Cy and Cy in ACE-normal form. According
to the definition, c-approx 4,¢(C1 LI Cy) = les(Ch, Cy). It has been shown in [1] that there
exist pairs of ALE-concept descriptions whose lcs is exponentially large in the size of the
input. [|

Having shown its correctness, the natural next question regards the computational com-
plexity of the algorithm c-approx 4. In the following corollary it is shown that c-approx 4,¢
can be realized as a double-exponential time algorithm.

Corollary 16 The algorithm c-approx 4.¢ is a double-exponential time algorithm, i.e., for
a given ALC-concept description the computation of c-approx 4.¢(C) takes at most double
exponential time in the size of C.

PrOOF. The algorithm c-approx 4. expects its input in A(C-normal form. Nevertheless,
instead of transforming C into normal form before applying c-approx 4. we may also do
the necessary transformation on the fly for every role level currently visited.

Let |C|] = n. The computation of c-approx 4.¢(C) starts by transforming C' into D :=
CyU---UC,—such that every C; has no disjunction on the topmost role level—but does
not modify the lower role levels. The concept D can thus have exponentially many (27"
for some polynomial p) disjuncts on the topmost level each of which is limited in size by n.

According to the recursive structure of c-approx 4,.¢ the following expressions must be
computed:

1. the conjunction [l A of primitive concepts;
A€, prim(C;)
2. an existential restriction Jr.lcs{c-approx 4.-(C; Mval.(C;)) | 1 < i < m} for every
tuple (C1,...,C!) with C! € ex,(C});

3. one value restriction Vr.les{c-approx 4,.¢(val,(C;)) | 1 < i < m}.

Obviously, Step 1 can be computed in polynomial time in the size of D and thus in
exponential time in n.

As D has exponentially many disjuncts C; with a linear number of existential restric-
tions C7, the number of existential restrictions to be computed in Step 2 is double exponen-
tial in n. For every such existential restriction an lcs of a set of exponential cardinality must
be computed. Each element of such a set is of the form c-approx 4,.¢(C Mval,(C;)). Hence,
C-approx 4 q¢ 1s recursively invoked on a concept description of size bounded by the size of C
and with a role depth decreased by one. Thus, the computation tree of c-approx ,,¢ (Wwith
the lcs’s not evaluated for the time being), is of size double exponential in the size of C'. In

4 APPROXIMATION 14

other words, if the lcs is not evaluated, c-approx 4,¢ runs in double exponential time. We
need to show that evaluating the lcs’s occurring in the computation tree, does not increase
the complexity.

We start to evaluate the lcs’s from the bottom to the top of the computation tree for
c-approx 4.¢(C'). Every lcs operation in the tree has an exponential number of arguments
and every argument is of size double exponential in |C'|. Moreover, one can easily show
that every argument is in propagated ALE-normal form (Definition 8), since the concepts
returned by c-approx 4.¢ are in this form. As shown in [1], the size of the lcs can therefore
be bounded by the product of the sizes of the arguments. Thus, evaluating the lcs’s on the
bottom level yields concept descriptions of size at most double exponential. This evaluation
process is iterated on every level of the computation tree for c-approx 4,.¢(C') where lcs’s
occur. Since the depth of this tree is bounded by |C| (more precisely, by the role depth of
('), the whole evaluation can be carried out in double-exponential time. [|

We have evaluated a first prototypical implementation of c-approx 4. realized in Lisp
and using the FaCT system [10] as a subsumption tester. Our implementation of c-approx 4¢
utilizes the lcs implementation described in [15]. In contrast to the c-approx .. algo-
rithm specified in Definition12 our implementation reduces the number of lcs calls. For
many concept descriptions in ALC-normal form it is likely that disjuncts share the same
existential restrictions due to the normalization. These existential restrictions cause un-
necessary lcs calls when approximating the existential restrictions. Some of the com-
binations from the Cartesian product of the existential restrictions yield argument sets
for the lcs that are supersets of other combinations. These supersets yield more gen-
eral and therefore redundant lcs concept descriptions. For example computing the ap-
proximation of the concept description ((A LI 3r.A) M (Ir.B M Ir.C) induces the lcs calls:
les(A, B),les(A, C),les(B, B), les(B, C), les(C, B), les(C, C') in a naive realization. But only
the trivial combinations lcs(B, B) and lcs(C, C) add existential restrictions to the approx-
imation which are not subsumed by the other combinations. Therefore, in this case, the
existential restrictions can be obtained without using the lcs at all. So, in order to obtain
the correct approximation in general, it suffices to compute the lcs only of those combina-
tions that do not have a superset among the combinations. This method is employed in
our implementation, we compute first the minima (w.r.t. subset) of the set of combinations
and then apply the lcs to the remaining combinations.

We applied c-approx 4.¢ to ALC-concepts from a TBox derived from our application in
chemical process engineering. This application TBox contains 120 concepts and 40 roles.
Surprisingly, for our unfolded input concepts with concept sizes up to 740, it turned out
that the approximations were always smaller than their unfolded input concepts. The
approximations had an average concept size of 81 and they had just a third of the size
of the unfolded input concepts on the average. Each of the test concept descriptions was
approximated within less than 3 seconds runtime. Unfortunately, our implementation ran
out of memory computing approximations of some randomly generated ALC-concepts of
similar size, but consisting of big disjunctions with more than 6 disjuncts.

5 THE DIFFERENCE OPERATOR 15

So, our prototypical implementation of c-approx 4, indicates that, despite the high
theoretical complexity, the approximation inference might be practicable for cases relevant
in applications. Further optimizations are of course necessary. Standard optimization
techniques as lazy unfolding are very likely to highly improve the performance for run-
times as well as for sizes of returned concepts.

5 The difference operator

In the previous section we have seen how to compute the ALE-approximation of a given ALC-
concept description. For such a pair C, D of approximated and approximating concepts,
a very natural question regards the loss of information, i.e., what aspects of C' are not
captured by D.

An answer to such questions requires a notion of the “difference” between concept de-
scriptions. For instance, a comparison between the example concept Ce 2 from Example 4
and its approximation 3r.(A M —=B) M 3r.(B M —A) should reveal that the value restriction
Vr.(=A U —B) is not captured by the approximation.

A first approach for a difference-operator has been proposed by Teege [14]. Here, the
difference C' — D of two given L-concept descriptions with C' = D has been defined as

mar{E € L| END=C}

where the maximum is defined with respect to subsumption. Since ALC provides full
negation, the most general concept F with E M D = (C'is always C' LU =D. Consequently,
the difference operator proposed by Teege would return

(Ir. AN Ir.BNVr.(-AU-B))U=(Fr.(AN-B)N3r.(BMN-A))

as the difference between Ce o and its approximation, which obviously does not help a
human user to ascertain the information lost by the approximation.

The example illustrates that it might be promising to look for a syntactic minimum
instead of a semantic maximum in order to find a compact representation of the difference
of two concepts. In [11], a so-called subdescription ordering has been proposed to deal
with syntactical redundancies. In order to extend this approach to our case the first step
is to introduce an analogous ordering on ALC-concepts. The idea is to obtain a subdescrip-
tion of some ALC-concept description C' by means of two kinds of modifications. Firstly,
by making inconsistencies explicit; and secondly, by removing disjuncts and conjuncts,
and by replacing some existential or value restrictions by their respective subdescriptions.
Formally, this leads to the following definition.

Definition 17 Let C, D be an AL-concept descriptions in ACLC-normal form. Let C' =
CiU---UCy. Then, D <4 C iff D € {1, T} or D is obtained from C' by performing some
of the following steps.

1. Remove some disjuncts C; for 1 < i <mn,

5 THE DIFFERENCE OPERATOR 16

2. for every remaining C;:

(a) remove some conjuncts A € prim(C;),

(b) remove some conjuncts Ir.C with C! € ex,(C;),

(¢) remove the conjunct Yr.val,.(C;),

(d) for every remaining C! € ex,.(C;) U{val.(C;)}: replace C! by C!' with C!' <4 C!.

As an example, consider the concept descriptions C' := Ir. ANVr.mB and D := (Ir.(AL
B)NVr.=B)U(3r.~ANVr.A). By removing the last disjunct from D and removing the last
disjunct in the remaining existential restriction we find that C' <; D. Note that C' = D.

Based on the subdescription ordering, we can provide the new definition of the difference
operator.

Definition 18 Let C' be ALC-concept descriptions in ALC-normal form and D be ALE-
concept descriptions in ALE-normal form. Then, the ALC-concept description E is called
the difference of C' and D, (C' — D for short), iff

1. ENnD=CnD

2. For every ALE -concept description E' with E'T1.D = CM D it holds that either E <4 E'
or E and E' are incomparable with respect to <.

Intuitively, the idea is to remove all subdescriptions from C' which are either redundant
in C or already present in D. It should be noted that in case of C' C D, and thus, CT1D = C,
the only difference to Teege’s difference operator is that the minimum w.r.t. <; is used
instead of the maximum w.r.t. C. In general, the difference C' — D is not maximal with
respect to subsumption, as a simple example illustrates. For C' = AU B and D = B, we
obtain C'— D = A, although C (AU B) =CMN D, i.e., AL B is a more general solution
w.r.t. subsumption.

Finally, it should be noted that a priori the difference between C' and D is not uniquely
determined. By abuse of language and notation, we will still refer to the difference C'— D.
Coming back to the example from the beginning of this section, the difference (according
to Definition 18) between Cey 2 and its approximation is in fact the desired value restriction
VT.(—IA LI —|B).

Having defined our difference operator, we need to devise an algorithm to actually
compute the difference C'— D. In [11], an algorithm has been proposed to compute the
difference C' — D of ALE-concept descriptions C' and D. Extending this algorithm to the
case of ALC-concept descriptions C' yields our definition of the algorithm c-diff as depicted
in Figure 1.

If C'is a disjunction of subconcepts C; then the difference between C' and D is computed
by firstly computing the differences between the disjuncts and D and then eliminating the
semantically redundant resulting disjuncts. In n = 1, C' is a conjunction of ALC-concept
descriptions (with possibly just one conjunct). In this case, redundant concept names
and existential restrictions on the top-level conjunction of C' are removed. Furthermore,

5 THE DIFFERENCE OPERATOR 17

Input: ALC-concept description C' = C; U --- U C), in ALC-normal form,
ALE-concept description D
Output: c-diff(C, D)

1. If CN D = L, then c-diff(C, D) := L;

2. If n > 1, then let c-diff(C, D) := _Izll c-diff(C;, D) and iteratively remove
c-diff (C}, D) from the disjunction in case c-diff(C};, D) C l;' c-diff (C;, D);
i#j

3. If n =1, then c-diff(C, D) :=

M A N Vr.cdiff(val,(C),val, (D)) N I 3r.E

Aeprim(C)\prim(D) Eecg]

where the value restriction is omitted in case c-diff(val,.(C),val.(D)) = T
and &£ is computed as follows:

Let & ={Cy,...,C}} :=ex,.(C).
For ¢« = 1 to n do begin

If (i) there exists C" € &, \ {C!} with val, (D) Mval,.(C) 1 C' C C, or

(ii) there exists D' € ex,(D) with val,(D) Mval,.(C)N D' C C!

then &, := &, \ {C}}
end
E = {E* | E € &} where E* := cdiff(E,val,(C) Nval.(D)), if val,(C) is
an ALE-concept description, and E* := c-diff(E, val, (D)) otherwise.

Figure 1: The algorithm c-diff(C, D).

redundancies in existential restrictions and value restrictions are removed recursively. The
set, £/ can be computed by iteratively removing existential restrictions of C' that do not
satisfy Conditions 3(i) or 3(ii). Given an oracle for subsumption, this can be carried out
in polynomial time.

The following lemma proves that c-diff(C, D) respects the first condition of the differ-
ence operator (Definition 18), i.e., it does not remove too much from the original concept
description C'.

Lemma 19 Let C' be an ALC-concept description in ALC-normal form and D an ALE-
concept description in ACE-normal form. Then, c-diff(C, D) D =C M D.

PRrROOF. Proof by induction over the structure of C'.

1. C € prim(C)
As prim(c-diff(C, D)) = prim(C) \ prim(D), it follows that c-diff(C, D)1 D is equiv-

alent to DI [l A. We can safely add to this another conjunct more
A€eprim(c-diff(C,D))

5 THE DIFFERENCE OPERATOR 18

general than D yielding

D M A [A.

Aeprim(c-diff(C,D)) Aeprim(C)Nprim(D)
The expression thus obtained is equivalent to C' 1 D.

2. C=C1 U0,
Without loss of generality, assume exactly two disjuncts on the top-level of C'. By
definition, even after removing redundant disjuncts, c-diff((Cy L Cy), D) is equivalent,
to c-diff(Cy, D) U c-diff (Cy, D). Hence, the conjunction c-diff((Cy U Cy), D) with D
can be simplified to c-diff(C, D) 1 DU c-diff (Cy, D) M D. According to the induction
hypothesis, this yields (C, M D) U (Cy M D), which simplifies to (Cy LI Cy) M D.

3. No disjunction on the top-level of C
Show c-diff(C, D) M D = C 1 D. According to the characterization of subsumption
(Theorem 11), three conditions must hold for equivalence:

e The set of primitive concepts prim(c-diff(C, D)1 D) equals prim(c-diff(C, D)) U
prim (D) which by definition is (prim(C') \ prim(D)) U prim(D). This is equal
to prim(C) U prim(D), the set of primitive concepts in C' 1 D.

e By induction hypothesis, c-diff (val,(C), val, (D)) Mval, (D) is equivalent to val, (C)r
val, (D). By definition val,(C 1 D) is equivalent to val,(C') Mval,(D) which con-
cludes this case.

e Show (C). Let F' € ex,(C' M D). We have to find an E' € ex,(c-diff (C', D) N D)
with E' Mval,(c-diff(C, D) M D) C F'. From the previous case we know that
val,.(c-diff(C, D) 1 D) is equivalent to val,.(C' T D). Since ex,(C' 1 D) is equal to
the union ex, (c-diff(C, D)) U ex, (D) we may distinguish two cases.

If F' € ex,(D) then we can select E' := F’, because it also occurs in the set
ex,(c-diff(C, D) M D) which is the conjunction of the concept descriptions in
ex,(c-diff (C, D)) U ex, (D). We thus obviously find E' Mval,(c-diff(C, D)1 D) C
F'.

If F' € ex,(C) \ ex,(D), then Conditions 3(i) and 3(ii) in the definition of
the algorithm c-diff(C', D) guarantee that there exists an existential restric-
tion E' € ex,(c-diff(C, D)) with the following properties. If val,(C) is an
ALE-concept description then E' is of the form c-diff(E’, (val,(D) M val,(C)))
with E' Mval,.(D) Mval,(C) C F'. According to the induction hypothesis,
c-diff (£, (val,.(D) Mval,(C))) Mval, (D) Mval,.(C) is equivalent to E' Mval,.(D)
val,(C). Consequently, we find that E’' Mval,(C) Mval,(D) C F'. Tt is easy to
see that val,(C') Mval,(D) is equivalent to val,(C' 1 D) which again is equivalent
to val,(c-diff(C, D) M D) as we know from above. Hence, we have found an E’
with E' Mval,(c-diff (C, D) D) C F'. If D is no ACE-concept description then
E' is of the form E'Mval,(D). This case is analogous to the previous one.

5 THE DIFFERENCE OPERATOR 19

Show (). In analogy to the case (C), consider some E’ € ex, (c-diff(C, D) D).
We have to find an F' € ex,(C M D) such that F' Mval,(C 1 D) C E'. Again,
we have two cases to discriminate.

If E' € ex,(D), then we can again select F' := E’ which also occurs in ex,(CT1D).

If E' € ex,(c-diff(C, D)) \ ex,(D), then Condition 3(ii) guarantees that an F' €
ex, (D) C ex,(C'MD) exists such that F'Mval,.(C)MNval,.(D) C E’. As seen above,
val,.(C') Mval, (D) is equivalent to val,(C' M D) which concludes the argument.

We still have to examine the computational complexity of the algorithm c-diff. In the
following corollary it is shown that c-diff is a polynomial time algorithm.

Corollary 20 Given an oracle for subsumption, the algorithm c-diff is a polynomial time
algorithm, i.e., for a given ALC-concept description C' in ALC-normal form and an ALE-
concept description D, the computation of c-diff(C, D) takes at most polynomial time in

the size of C' and D.

PROOF. It is not difficult to see that the size of the output c-diff(C', D) never exceeds the
size of C: if n > 1 then the difference is simply distributed to the disjuncts, and if n = 1
then, (1) some primitive concepts are removed, thus reducing the size of the resulting con-
cept description, (2) the value restriction is handled recursively and (3) some existential
restrictions are removed while the remaining ones are also handled recursively. Conse-
quently, during the recursive computation of c-diff(C, D) the algorithm is never applied to
an argument exceeding the size of the input. Neither does the algorithm introduce new
existential or value restrictions during the computation of c-diff(C, D).

Thus, it is sufficient for our claim to show that (1) the computation of the subset &/ takes
only polynomial time in the size of the input and (2) there are at most polynomially many
(in the size of C' and D) calls to c-diff during the recursive computation of c-diff(C, D).

1. As the condition in Step 3 states an appropriate subset £/ can be found by iteratively
removing elements from the original set ex, (C') and verifying Conditions 3(i) and 3(ii)
in every iteration. Thus, the number of subsets to inspect is bounded by the size of
C. For every subset, a polynomial number of subsumption test must be made. Given
an oracle for subsumption, this task costs only polynomial time.

2. Recursive calls to c-diff are necessary for the computation of c-diff(val,(C'), val.(D))
as well as for the computation of every E7. Nevertheless, there is only one value
restriction val,(C') in C' the size of which is bounded by the size of C. As no new
value restrictions are introduced, we have at most polynomially many expressions of
the form c-diff (val,.(C),val,.(D)) to evaluate during the execution of c-diff(C, D).

As c-diff does not introduce new existential restrictions and as the size of its output
never exceeds the size of its input it is easy to see that the number of existential
restrictions E; and their size is bounded by the input. Consequently, the number of

6 CONCLUSION 20

calls to c-diff is bounded by the syntax tree of the input concept C' which again is
bounded by the size of C', since C' was assumed in ALC-normal form.

It should be recalled though that transforming an arbitrary ALC-concept description
into ALC-normal form can produce an exponentially larger concept description. To sum-
marize the existing results, the following properties can be shown for every computation
of the algorithm c-diff(C, D).

Theorem 21 Let C' be an ALC-concept description in ALC-normal form and D be an
ALE -concept description. Then, c-diff(C, D) satisfies the following properties:
1. cdiff(C,D)N D =CN D,

2. if C is an ALE-concept description, then C' — D is uniquely determined modulo asso-
ciativity and commutativity of concept conjunction, and C' — D and c-diff(C, D) coincide
modulo associativity and commutativity, and

3. given an oracle for subsumption, the computation of c-diff(C, D) takes polynomial time
in the size of C' and D.

The first property where only ALE is considered was already shown in [11]. The others
have been shown in the above lemma and corollary.

We have implemented a prototype for the c-diff algorithm in Lisp. For a first evaluation
we applied the c-diff implementation to test concepts derived from our process engineering
TBox. More precisely, we applied c-diff to the same ALC-concept descriptions used for the
evaluation of c-approx 4 ¢ together with their approximations generated by our c-approx 4,¢
implementation. For these test cases the c-diff implementation returned concept descrip-
tions with an average size of 170 and a maximum size of 630. Thus, it turned out that
the concept size of the difference between original concept description and its approxima-
tion is bigger than the approximation itself in many cases. Computing the difference took
2 seconds on the average and each difference was computed within 6.5 seconds runtime.
Unlike c-approx 4. this prototypical implementation behaved also well on randomly gen-
erated concept descriptions. But for practical applications of this non-standard inference
powerful optimizations are still necessary. Moreover, the output concept descriptions need
to be smaller and more compact in order to be readable and comprehensible for a human
user.

6 Conclusion

The present paper has investigated a new inference problem for DLs, namely computing
the approximation of concepts from one DL in another DL. For the concrete case of ap-
proximating ALC-concepts in ALE the seemingly simple task of eliminating disjunctions in
concepts may fail without the computation of normal forms and the propagation of value

REFERENCES 21

restrictions to existential restrictions. As a main result, we have devised a correct and
effective algorithm to compute upper approximations of AZC-concepts in ALE.

In order to ascertain the accuracy of the approximation, we have proposed a difference
operator and a corresponding algorithm which effectively computes a compact representa-
tion of the subconcepts not present in the approximation. The algorithm is correct in the
sense that does not overlook subconcepts missing in the approximation though it does not
always return a (syntactically) minimal concept.

Our first evaluation of the prototype implementations of c-approx 4. and c-diff indi-
cates that the implementations behave fairly good on test cases derived from our practical
application. On the other hand there is clearly a need for further optimization to employ
these new non-standard inferences efficiently in practical applications. Even more impor-
tant, since the concept descriptions returned by both algorithms can grow quite big and
are therefore hard to read and comprehend by a human user, it is necessary to rewrite the
concepts using the concept definitions from the underlying AC-TBox to obtain smaller
concepts. To this purpose, one needs to extend the existing rewriting approach for ALE [2]
to ALC.

As an algorithm for the les of ACEN -concepts exists [12], a future step is to extend the
present approximation technique to ALCN, thus producing ALEN-approximations. Fur-
thermore, it is desirable to investigate further if optimal solutions for the difference of
ALC-concepts always exist and can be computed effectively.

References

[1] F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumers in de-
scription logics with existential restrictions. In T. Dean, editor, Proceedings of the
16th International Joint Conference on Artificial Intelligence (IJCAI’99), pages 96—
101. Morgan Kaufmann, 1999.

[2] F. Baader, R. Kiisters, and R. Molitor. Rewriting concepts using terminologies. In
A. G. Cohn, F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowledge
Representation and Reasoning, pages 297-308, San Francisco, 2000. Morgan Kauf-
mann.

3] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. TAMBIS:
Transparent access to multiple bioinformatics information sources. In J. Glasgow, T.
Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, editors, 6th Int. Conf.
on Intelligent Systems for Molecular Biology, pages 25-34, Montreal, Canada, 1998.
AAAI Press, Menlo Park.

[4] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: a reason-able ontology
editor for the semantic web. In F. Baader, G. Brewka, and Th. Eiter, editors, Proceed-
ings of the Joint German/Austrian Conference on AI (KI 2001), volume 2174 of Lec-

REFERENCES 22

9]

[10]

[11]

[12]

[13]

[14]

ture Notes in Artificial Intelligence, pages 396—408, Vienna, Austria, 2001. Springer—
Verlag.

A. Borgida and D. W. Etherington. Hierarchical knowledge bases and efficient disjunc-
tive reasoning. In H. J. Levesque R. J. Brachman and R. Reiter, editors, Proceedings
of the 1st International Conference on Principles of Knowledge Representation and
Reasoning, pages 33-43, Toronto, Canada, May 1989. Morgan Kaufmann.

S. Brandt and A.-Y. Turhan. Using non-standard inferences in description log-
ics — what does it buy me? In Proceedings of the KI-2001 Workshop on
Applications of Description Logics (KIDLWS’01), number 44 in CEUR-WS, Vi-
enna, Austria, September 2001. RWTH Aachen. Proceedings online available from
http://SunSITE.Informatik. RWTH-Aachen.DE/Publications/CEUR-WS /Vol-44/.

W. W. Cohen, A. Borgida, and H. Hirsh. Computing least common subsumers in
description logics. In W. Swartout, editor, Proceedings of the 10th National Conference
on Artificial Intelligence, pages 754—760, San Jose, CA, July 1992. MIT Press.

F. M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and A. Spaccamela. The
complexity of existential quantification in concept languages. Artificial Intelligence,
53(2-3):309-327, 1992.

V. Haarslev and R. Mdéller. Description of the RACER system and its applications.
In Proceedings of the International Workshop in Description Logics 2001 (DL2001),
Stanford, USA, August 2001.

I. R. Horrocks. Using an expressive description logic: FaCT or fiction? In A. G. Cohn,
L. Schubert, and S. C. Shapiro, editors, KR’98: Principles of Knowledge Represen-
tation and Reasoning, pages 636—645. Morgan Kaufmann, San Francisco, California,
1998.

R. Kiisters. Non-Standard Inferences in Description Logics, volume 2100 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2001.

R. Kiisters and R. Molitor. Computing Least Common Subsumers in ALEN. In
B. Nebel, editor, Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI 2001), pages 219-224. Morgan Kaufman, 2001.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48(1):1-26, 1991.

G. Teege. Making the difference: A subtraction operation for description logics. In
P. Torasso J. Doyle, E. Sandewall, editor, Proceedings of the 4th International Confer-
ence on Principles of Knowledge Representation and Reasoning, pages 540-550, Bonn,
FRG, May 1994. Morgan Kaufmann.

REFERENCES 23

[15] A.-Y. Turhan and R. Molitor. Using lazy unfolding for the computation of least
common subsumers. In Proceedings of the International Workshop in Description
Logics 2001 (DL2001), Stanford, USA, August 2001.

