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Abstra
t

Approximation is a new inferen
e servi
e in Des
ription Logi
s �rst mentioned

by Baader, K�usters, and Molitor. Approximating a 
on
ept, de�ned in one Des
rip-

tion Logi
, means to translate this 
on
ept to another 
on
ept, de�ned in a se
ond

typi
ally less expressive Des
ription Logi
, su
h that both 
on
epts are as 
losely

related as possible with respe
t to subsumption. The present paper provides the �rst

in-depth investigation of this inferen
e task. We prove that approximations from

the Des
ription Logi
 ALC to ALE always exist and propose an algorithm 
omputing

them.

As a measure for the a

ura
y of the approximation, we introdu
e a syntax-

oriented di�eren
e operator, whi
h yields a 
on
ept des
ription that 
ontains all

aspe
ts of the approximated 
on
ept that are not present in the approximation. It

is also argued that a purely semanti
al di�eren
e operator, as introdu
ed by Teege,

is less suited for this purpose. Finally, for the logi
s under 
onsideration, we propose

an algorithm 
omputing the di�eren
e.
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1 Introdu
tion

Approximation in Des
ription Logi
s (DLs) was �rst mentioned by Baader, K�usters, and

Molitor [2℄ as an interesting new inferen
e problem. The present paper is the �rst to in-

vestigate this problem in depth. Informally, approximation is de�ned as follows: given a


on
ept C de�ned in a DL L

s

(\s" for sour
e) �nd a 
on
ept D, the upper/lower approx-

imation of C, in a DL L

d

(\d" for destination) su
h that i) D subsumes/is subsumed by

C, and ii) D is a minimal/maximal 
on
ept in L

d

(w.r.t. subsumption) with this property.

Throughout this paper we will mainly fo
us on upper approximations. There are a number

of di�erent appli
ations of this inferen
e problem:

� Translation of knowledge-bases

Approximation 
an be used to (automati
ally) translate a knowledge-base written

in an expressive DL into a another (semanti
ally 
losely related) knowledge-base

in a less expressive DL. The translation may be
ome ne
essary to port knowledge-

bases between di�erent knowledge representation systems or to integrate di�erent

knowledge-bases.

� Non-standard inferen
es for expressive DLs

Non-standard inferen
es in DLs, su
h as 
omputing the least 
ommon subsumer

(l
s), mat
hing and uni�
ation of 
on
epts, have been introdu
ed to support the


onstru
tion and maintenan
e of DL knowledge-bases (see [11, 6℄ for an overview).

However, up to now they are mostly restri
ted to quite inexpressive DLs, for example

to DLs that do not allow for 
on
ept disjun
tion. Approximation 
an be used to

over
ome this problem to some extent:

{ Mat
hing for expressive DLs

For example, the existing mat
hing algorithms 
an be lifted to handle more ex-

pressive DLs as follows: instead of dire
tly mat
hing 
on
ept patterns (de�ned

in a small DL) against 
on
epts (de�ned in a DL that 
annot be handled by

existing mat
hing algorithms), one 
an �rst approximate the 
on
ept (in the

small DL) and then mat
h against its approximation. Even though some infor-

mation may be lost, e.g., the mat
her is more general than the 
orre
t one, the

a

ura
y of the result may still suÆ
e.

{ Finding 
ommonalities of 
on
epts with disjun
tion

Another example, whi
h in fa
t was our main motivation for looking at approx-

imation in the �rst pla
e, is to 
ombine approximation and the l
s 
omputation:

The l
s of two 
on
epts, say C

1

and C

2

, de�ned in some DL L, is the most

spe
i�
 
on
ept (w.r.t. subsumption) in L that subsumes both 
on
epts. Intu-

itively, the l
s yields the 
ommonalities between C

1

and C

2

. However, in 
ase

L allows for 
on
ept disjun
tion, the l
s is just the disjun
tion of C

1

and C

2

(C

1

t C

2

). Thus, a user inspe
ting this 
on
ept does not learn anything about

the a
tual 
ommonalities. Using approximation, however, one 
an make the
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ommonalities expli
it by �rst approximating C

1

and C

2

in a sublanguage of L

whi
h does not allow to express 
on
ept disjun
tion, and then 
omputing the

l
s of the approximations in this sublanguage. Again, due to the approximation

step some information may be lost, nevertheless, sin
e 
ommonalities are made

expli
it, the resulting 
on
ept might even be more interesting to a user than

just the disjun
tion of C

1

and C

2

.

� Support for frame-based user interfa
es of DL systems

In the intera
tion with DL systems, users with little knowledge representation exper-

tise may have diÆ
ulties to understand and make use of the full expressive power of

the underlying DLs. As an approa
h to this problem, some knowledge representation

systems have been equipped with a simpli�ed frame-based user interfa
e built on top

of a more powerful DL system. Examples for this approa
h are the TAMBIS sys-

tem [3℄ and the ontology editor OilEd [4℄ built on top of the FaCT DL system [10℄.

On many o

asions, these systems have to present 
on
ept des
riptions to the user for

editing, inspe
tion, or as a solution of inferen
e problems. Su
h 
on
ept des
riptions,

however, need not always �t into the restri
ted representation of the frame-based

user interfa
e or might overwhelm an inexperien
ed user. In su
h 
ases, approxima-

tion might be helpful as a means to represent 
on
ept des
riptions in a simpli�ed

fashion suited to the user interfa
e and the user's level of expertise. Furthermore,

the aspe
ts not 
aptured by the frame-based representation 
ould be 
omputed for

further inspe
tion by a di�eren
e operator as proposed in this work (see below).

� Knowledge-base vivi�
ation

Con
ept disjun
tion in many 
ases in
reases the 
omputational 
omplexity of infer-

en
e problems, whi
h in parti
ular was a problem in the early DL systems. The

idea of knowledge-base vivi�
ation is to repla
e disjun
tion by the l
s of its disjun
ts

[5, 7℄. We will show in Se
tion 3 that su
h a dire
t substitution does not always yield

the best 
on
ept expressible in the smaller DL. Hen
e, a more general approa
h to

knowledge-base vivi�
ation is to approximate the original 
on
epts de�ned in a DL

with disjun
tion in a 
orresponding DL where disjun
tion 
annot be expressed. The

problem with both approa
hes is that they might lead to an exponential blow-up of

the 
on
epts, making reasoning in the smaller DL expensive too. In fa
t, given the

highly optimized up-to-date DL systems, su
h as FaCT [10℄ and Ra
er [9℄, the use

of knowledge-base vivi�
ation is questionable nowadays.

The main te
hni
al result of this paper (Se
tion 4) is to show that 
on
ept des
riptions

de�ned in the standard DLALC, whi
h provides 
on
ept 
onjun
tion and disjun
tion, value

and existential restri
tions, and full negation, 
an be approximated (from above) in the

DL ALE , a DL without 
on
ept disjun
tion and full negation.

On
e one has given an (upper) approximation D of C a natural question regards the

loss of information, i.e., what aspe
ts of C are not 
aptured by D. Therefore we propose

a di�eren
e operator, whi
h given C and D yields a 
on
ept des
ription E (the di�eren
e
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Syntax Semanti
s ALE ALC

> � x x

C uD C

I

\D

I

x x

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

:A, A 2 N

C

� n A

I

x x

? ; x x

C tD C

I

[D

I

x

:C � n C

I

x

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

of C and D) in L

s

su
h that E 
onjoint with D is equivalent to C, i.e., E u D � C. In

other words, E 
ontains the information that is missing in the approximation D of C.

Su
h an operator has already been de�ned by Teege [14℄. He requires that E is the most

general 
on
ept des
ription in L

s

w.r.t. subsumption that satis�es the above equivalen
e.

However, as we will see, su
h a purely semanti
al de�nition of di�eren
e allows for very

unintuitive 
on
epts. We therefore propose a new syntax-based de�nition, whi
h better


aptures the intuition behind di�eren
e. Roughly speaking, the di�eren
e E between C

and D will be obtained by synta
ti
ally removing those parts of C that are already present

in D. In Se
tion 5, we provide a formal de�nition and give an algorithm for 
omputing

the di�eren
e between ALC- and ALE-
on
ept des
riptions.

2 Des
ription Logi
s

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
on
ept 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names. The available


onstru
tors determine the expressive power of the DL in question. In this paper, we 
on-

sider 
on
ept des
riptions built from the 
onstru
tors shown in Table 1. In the DL ALE ,


on
ept des
riptions are formed using the 
onstru
tors top-
on
ept (>), 
on
ept 
onjun
-

tion (C u D), existential restri
tion (9r:C), value restri
tion (8r:C), primitive negation

(:A), and the bottom-
on
ept (?). The DL ALC additionally provides us with 
on
ept

disjun
tion (C tD) and full negation (:C) (see Table 1). Note that in ALC every 
on
ept

des
ription 
an be negated whereas in ALE negation is only allowed in front of 
on
ept

names. For a DL L, su
h as ALE and ALC, a 
on
ept des
ription formed with the 
on-

stru
tors allowed in L is 
alled L-
on
ept des
ription in the following.

As usual, the semanti
s of a 
on
ept des
ription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set and the interpretation fun
tion �

I

maps

ea
h 
on
ept name A 2 N

C

to a set A

I

� � and ea
h role name r 2 N

R

to a binary relation

r

I

� ���. The extension of �

I

to arbitrary 
on
ept des
riptions is de�ned indu
tively, as

shown in the se
ond 
olumn of Table 1.

One of the most important traditional inferen
e servi
es provided by DL systems is
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omputing the subsumption hierar
hy. The 
on
ept des
ription C is subsumed by the

des
ription D (C v D) i� C

I

� D

I

holds for all interpretations I; C and D are equivalent

(C � D) i� C v D and D v C; C is stri
tly subsumed by D (C � D) i� C v D and

C 6� D. Subsumption and equivalen
e in ALC is PSPACE-
omplete [13℄ and NP-
omplete

in ALE [8℄.

In order to approximate ALC-
on
ept des
riptions by ALE-
on
ept des
riptions, we will

need to 
ompute the least 
ommon subsumer in ALE .

De�nition 1 Given L-
on
ept des
riptions C

1

; : : : ; C

n

, for some des
ription logi
 L, the

L-
on
ept des
ription C is the least 
ommon subsumer (l
s) of C

1

; : : : ; C

n

(C = l
s(C

1

; : : : ; C

n

)

for short) i�

1. C

i

v C for all 1 � i � n, and

2. C is the least 
on
ept des
ription with this property, i.e., if C

0

satis�es C

i

v C

0

for all

1 � i � n, then C v C

0

.

Depending on the DL under 
onsideration, the l
s of two or more 
on
ept des
riptions need

not always exist, but if it exists, then, by de�nition, it is unique up to equivalen
e. For

instan
e, in ALC the l
s trivially exists sin
e l
s(C;D) � C tD. For ALE , whi
h does not

allow for 
on
ept disjun
tion, the existen
e is not obvious. However, as shown in [1℄, the

l
s of two or more ALE-
on
ept des
riptions always exists, its size may grow exponentially

in the size of the input des
riptions, and it 
an be 
omputed in exponential time.

Some notation is needed to a

ess the di�erent parts of an ALE-
on
ept des
ription

or an ALC-
on
ept des
ription where disjun
tion only o

urs within value or existential

restri
tions. Given su
h a 
on
ept C:

� prim(C) denotes the set of all (negated) 
on
ept names and the bottom 
on
ept

o

urring on the top-level 
onjun
tion of C.

� val

r

(C) := D, where D is a 
onjun
tion of all C

0

o

urring in value restri
tions of

the form 8r:C

0

on the top-level of C. If there is no value restri
tion on top-level of

C val

r

(C) := >.

� ex

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg.

For the sake of simpli
ity, we assume that the set N

R

of role names is the singleton frg.

However, all de�nitions and results 
an easily be generalized to arbitrary sets of role names.

3 Approximation|a trivial task?

As introdu
ed in Se
tion 1, the upper approximation of a given ALC-
on
ept des
ription

C is a minimal ALE-
on
ept des
ription D (w.r.t. subsumption) subsuming C. Formally,

this leads to the following de�nition.

De�nition 2 Let C be an ALC-
on
ept des
ription. An ALE-
on
ept des
ription D is an

upper ALE-approximation (for short approx

ALE

) of C, i�
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1. C v D, and

2. C v D

0

and D

0

v D implies D

0

� D for every ALE-
on
ept des
ription D

0

.

Note that approximations need not exist in general. Consider for example the DLs L

1

=

fug and L

2

= ftg, i.e., the DLs that only allow for 
on
ept 
onjun
tion and 
on
ept

disjun
tion, respe
tively. Let A and B denote 
on
ept names. Then, there does not exist

an upper L

1

-approximation of the L

2

-
on
ept des
ription A t B. Conversely, there does

not exist a lower L

2

-approximation of the L

1

-
on
ept des
ription A u B. Also note that

approximations need not be uniquely determined. For example, both A and B are lower

L

1

-approximations of A tB with L

1

de�ned as above.

In this paper, we restri
t our investigations to upper approximations. Therefore, when-

ever we speak of approximations in the following, we mean upper approximations. More-

over, we 
on
entrate on upper ALE-approximations of ALC-
on
ept des
riptions. Sin
eALE

allows for 
on
ept 
onjun
tion it immediately follows that if upper ALE-approximations

exist (and we will show that they always do), they are uniquely determined up to equiv-

alen
e: If D

1

and D

2

are two upper ALE-approximations, then so is D

1

u D

2

. But then,

by de�nition of upper approximation, D

1

u D

2

v D

1

and D

1

u D

2

v D

2

implies that

D

1

u D

2

� D

1

� D

2

. This means that an upper ALE-approximation D of C is the most

spe
i�
 
on
ept in ALE subsuming C, i.e., C v D, and ii) D v D

0

for every ALE-
on
ept

des
ription D

0

with C v D

0

.

Obviously, the 
ru
ial point in approximating an ALC-
on
ept des
ription C in ALE is

to deal with the disjun
tions o

urring in C. In the very simple 
ase of only one disjun
tion

on the top-level of C, i.e., C is the disjun
tion C

1

tC

2

of two ALE-
on
ept des
riptions, it is

easy to see that the most spe
i�
 (and thus, minimal) ALE-
on
ept des
ription subsuming

C is just the least 
ommon subsumer of C

1

and C

2

, i.e., l
s(C

1

; C

2

). Hen
e, the disjun
tion

is approximated by the l
s of the disjun
ts.

It seems natural to generalize this approa
h to disjun
tions o

urring at other positions

in the syntax tree of C. Thus, an approximation algorithm would traverse the syntax tree

of C in a bottom-up fashion and substitute a disjun
tion by the l
s whenever one is found.

This idea is formalized in the following de�nition of our �rst straightforward attempt to

an approximation algorithm:

De�nition 3 (substitute disjun
tions by the l
s) The pseudo-approximation


-approx

triv

ALE

(C) of an ALC 
on
ept des
ription C by an ALE 
on
ept des
ription is de�ned

by:


-approx

triv

ALE

(C) := C ; if C � ? or C � > or C 2 prim(C)


-approx

triv

ALE

(C

1

u � � � u C

n

) := 
-approx

triv

ALE

(C

1

) u � � � u 
-approx

triv

ALE

(C

n

)


-approx

triv

ALE

(C

1

t � � � t C

n

) := l
sf
-approx

triv

ALE

(C

1

); : : : ; 
-approx

triv

ALE

(C

n

)g


-approx

triv

ALE

(9r:C

0

) := 9r:
-approx

triv

ALE

(C

0

)


-approx

triv

ALE

(8r:C

0

) := 8r:
-approx

triv

ALE

(C

0

)
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Unfortunately, this naive approa
h does not always 
ompute the most spe
i�
 ALE-


on
ept des
ription subsuming C, as the following example illustrates.

Example 4 [
-approx

triv

ALE

6� approx

ALE

℄

For atomi
 
on
epts A and B, 
onsider C

ex;1

:= (8r:B t (9r:B u 8r:A)) u 9r:A.


-approx

triv

ALE

(C

ex;1

) � l
s(8r:B; 9r:B u 8r:A) u 9r:A

� 8r:> u 9r:A

� 9r:A

It is easy to verify that C

ex;1

v 9r:(A u B) � 
-approx

triv

ALE

(C

ex;1

). Thus, the algorithm


-approx

triv

ALE

did not �nd an optimal solution.

It appears that substituting the l
s lo
ally without taking 
are of other aspe
ts of C

ex;1

does not suÆ
e. Another straightforward way to deal with disjun
tions therefore seems to


ompute a set of 
opies of the originalALC-
on
ept des
ription C where in every 
opy ea
h

disjun
tion is repla
ed by only one of its disjun
ts. The least 
ommon subsumer of all these


opies might be a 
andidate for the approximation. The following de�nition formalizes this

idea.

De�nition 5 (split disjun
tions) Let C be an ALC-
on
ept des
ription. Then the pseudo-

approximation 
-approx

split

ALE

(C) is de�ned as 
-approx

split

ALE

(C) := l
s (split(C)), where split(C)

is indu
tively de�ned as follows:

split(C) := fCg ; if C 2 prim(C) [ f?;>g

split(C

1

u � � � u C

n

) := fD

1

u � � � uD

n

j D

i

2 split(C

i

); 1 � i � ng

split(C

1

t � � � t C

n

) := split(C

1

) [ � � � [ split(C

n

)

split(8r:C

0

) := f8r:D j D 2 split(C

0

)g

split(9r:C

0

) := f9r:D j D 2 split(C

0

)g

One 
an verify that the above algorithm works 
orre
tly for Example 4. The fun
tion

split transforms the input 
on
ept des
ription into the a set 
onsisting of 8r:A u 9r:B and

9r:A u 8r:B u 9r:B the l
s of whi
h yields 9r:(A u B). Nevertheless, other examples exist

where the resulting 
on
ept does not even subsume the input.

Example 6 [
-approx

split

ALE

6� approx

ALE

℄

For atomi
 
on
epts A and B, let C

ex;2

:= 9r:A u 9r:B u 8r:(:A t :B). Applying the
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algorithm 
-approx

split

ALE

to C

ex;2

yields the following result.


-approx

split

ALE

(C

ex;2

) � l
s (split(C

ex;2

))

� l
sf9r:A u 9r:B u 8r::A ; 9r:A u 9r:B u 8r::Bg

� 9r:l
sfA u :A;A u :Bg u

9r:l
sfA u :A;B u :Bg u

9r:l
sfB u :A;A u :Bg u

9r:l
sfB u :A;B u :Bg u

8r:l
sf:A;:Bg

� 9r:(A u :B) u 9r:? u : : :

� ?

The examples given so far suggest that two properties are important for a su

essful

approximation algorithm. Firstly, ALC-
on
ept des
riptions must be normalized before

approximation, i.e., 
onjun
tions must be distributed over disjun
ts; and se
ondly, value

restri
tions must be propagated to existential restri
tions. Thus, expressions of the form

of A u (B t C) are turned into (A u B) t (A u C), and 9r:A u 8r:B is transformed into

9r:(A u B) u 8r:B. In the following se
tion, we will see how to employ these ideas in the

a
tual approximation algorithm.

4 Approximation

In the previous se
tion we have seen that normal forms of 
on
ept des
riptions are de-

sirable for our approa
h to approximation. Consequently, the following subse
tion will

be 
on
erned with a normal form for ALC-
on
ept des
riptions. In Subse
tion 4.2, this

normal form is used for a stru
tural 
hara
terization of subsumption for the asymmetri



ase of an ALE-
on
ept des
ription subsuming an ALC-
on
ept des
ription. With these

preliminaries, the upper approximation of ALC-
on
ept des
riptions is introdu
ed formally

in Subse
tion 4.3.

4.1 Normal forms

For ALE-
on
ept des
riptions, a 
on
ept-oriented normal form has been introdu
ed in [11℄.

The idea is to restri
t (w.l.o.g.) 
on
ept des
riptions to only one value restri
tion per role

on top-level and in every existential restri
tion and in value restri
tion.

De�nition 7 Let D be an ALE-
on
ept des
ription. D is in ALE-normal form, i� D = ?,

D = >, or D is of the form

D = u

A2prim(D)

A u u

C

0

2ex

r

(D)

9r:C

0

u 8r:val

r

(D)

where val

r

(D) and every 
on
ept in ex

r

(D) again are in ALE-normal form.
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Note that prim(D) also 
ontains negated atomi
 
on
epts. For instan
e, the ALE-

normal form of A u 8r:A u 9r:B u 8r::B yields A u 9r:B u 8r:(A u :B). Transforming

an arbitrary ALE-
on
ept des
ription C into ALE-normal form does not in
rease its size

be
ause it suÆ
es to 
onjoin value restri
tions into one whenever more than one value

restri
tion o

urs in a 
onjun
t at some position in C.

Nevertheless, in
onsisten
ies need not be expli
it in the ALE-normal form and value

restri
tions are not propagated to existential restri
tions. We de�ne a so-
alled propagated

ALE-normal form to satisfy these 
onditions also.

De�nition 8 Let D be an ALE-
on
ept des
ription. Then D is in propagated ALE-normal

form, i� none of the following normalization rules 
an be applied at any position in C.

P u :P �! ? , where P 2 N

C

E u ? �! ?

9r:? �! ?

8r:> �! >

E u > �! E

8r:C u 8r:D �! 8r:(C uD)

9r:C u 8r:D �! 9r:(C uD) u 8r:D

It 
an be shown that the propagated ALE-normal form is in fa
t a spe
ialization of the

ALE-normal form whi
h 
ould be generated by means of the last but one transformation

rule alone. Nevertheless, transforming a 
on
ept des
ription into propagated ALE-normal

form 
an result in exponentially larger 
on
ept des
riptions be
ause the last transformation

rule (whi
h performs the propagation) leads to an in
rease in size by 
opying subtrees of

the syntax tree and may be applied very often.

In order to extend the (ordinary) ALE-normal form to ALC-
on
ept des
riptions, we

have to deal with full negation and disjun
tion. Nevertheless, negated 
omplex, i.e., non-

atomi
, 
on
epts 
an be avoided by the negation normal form, where negation only o

urs

in front of 
on
ept names. Additionally, we require the bottom 
on
ept to be represented

uniquely and every disjun
tion on every role level to be in disjun
tive normal form.

De�nition 9 Let C be an ALC-
on
ept des
ription. C is in ALC-normal form, i� C = ?,

C = >, or C is of the form

C = C

1

t � � � t C

n

C

i

= u

A2prim(C

i

)

A u u

C

0

2ex

r

(C

i

)

9r:C

0

u 8r:val

r

(C

i

) 8i,

where (1) C

i

6� ? for all i and (2) val

r

(C

i

) and every 
on
ept in ex

r

(C

i

) again are in

ALC-normal form.

It is not diÆ
ult to verify that every ALC-
on
ept des
ription 
an be transformed into

ALC-normal form. Note that, if C is in ALC-normal form, C is also in ALC negation normal

form. Consider the following simple example:
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Example 10 For atomi
 
on
epts A;B;C, let C := :8r:(A u B) u (B t 9r::A). The

negation normal form of C yields 9r:(:A t :B) u (B t 9r::A). By distributing 
onjun
ts

over the disjun
tion we obtain (9r:(:A t :B) u B) t (9r:(:A t :B) u 9r::A).

It should be noted thatALC-normal form of a 
on
ept C 
an be exponentially larger than

C itself. For instan
e, 
omputing the disjun
tive normal form of (A

1

tB

1

)u� � �u (A

n

tB

n

)

produ
es a 
on
ept des
ription of exponential size in n.

4.2 Chara
terization of subsumption

The normal forms introdu
ed in the previous se
tion allow us to give a stru
tural 
har-

a
terization of subsumption between an ALC-
on
ept des
ription C and an ALE-
on
ept

des
ription D. Re
all that a disjun
tion C

1

t C

2

is subsumed by D if and only if both

C

i

are subsumed by D. Following this idea, our 
hara
terization of subsumption redu
es

subsumption for a disjun
tion to subsumption of the respe
tive disjun
ts on every role

level. Formally, we obtain the following theorem.

Theorem 11 Let C be an ALC-
on
ept des
ription in ALC-normal form and D an ALE-


on
ept des
ription in ALE-normal form. Then, C v D i�

1. C � ? or D � >, or

2. for every i 2 f1; : : : ; ng it holds that

� prim(D) � prim(C

i

), and

� 8D

0

2 ex

r

(D) 9C

0

2 ex

r

(C

i

) : C

0

u val

r

(C

i

) v D

0

, and

� val

r

(C

i

) v val

r

(D).

Proof. ()) Assume ? � C v D � >.

� Assume prim(D) 6� prim(C

i

) for one i. Then there exists an A 2 prim(D)nprim(C

i

).

By de�nition of the ALC-normal form, C

i

is 
onsistent. We may therefore 
onsider

a 
anoni
al interpretation I of C

i

. By de�nition, the individual d

C

i

2 �

I

for C

i

does not o

ur in A

I

, sin
e A 62 prim(C

i

). Thus, d 62 D

I

and therefore C 6v D, in


ontradi
tion to our assumption.

� Assume for one D

0

2 ex

r

(D) that one i exists su
h that for all C

0

2 ex

r

(C

i

) it holds

that C

0

u val

r

(C

i

) 6v D

0

. Sin
e C

i

is 
onsistent, every C

0

2 ex

r

(C

i

) has a tree model

I

C

0

where d

C

0

2 (C

0

uval

r

(C

i

))

I

C

0

n(D

0

)

I

C

0

. Without loss of generality, we may assume

disjoint domains, i.e., �

I

C

0

\ �

I

C

00

= ; for two di�erent C

0

; C

00

2 ex

r

(C

i

). We may

now 
onstru
t a new model I over the domain �

I

= fdg ℄

S

C

0

2ex

r

(C

i

)

�

I

C

0

with

the following properties: (1) For the role r, de�ne r

I

:= f(d; d

C

0

) j C

0

2 ex

r

(C

i

)g [

S

C

0

2ex

r

(C

i

)

r

I

C

0

. (2) For every (negated) atomi
 
on
ept A 2 N

C

[ f:A j A 2 N

C

g,

de�ne the interpretation of A as A

I

:= fd j A 2 prim(C

i

)g [

S

C

0

2ex

r

(C

i

)

A

I

C

0

. Note

that the �rst expression only states that d 2 A

I

i� A 2 prim(C

i

).
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It is easy to see that d 2 C

I

. On the other hand d 62 D

I

, be
ause (D

0

)

I

C

0

was ex
luded

expli
itly from every I

C

0

. Consequently, we have d 62 (9r:D)

I

.

� Assume val

r

(C

i

) 6v val

r

(D) for one i. Thus, val

r

(C

i

) has a tree model I

val

su
h that

d

val

2 val

r

(C

i

)

I

val

n val

r

(D)

I

val

. We 
an now extend the model I introdu
ed for the

previous 
ase by adding d

val

as an r-su

essor of d. Again, assume �

I

\ �

I

val

= ;.

Then, de�ne I

0

as follows: �

I

0

:= �

I

[ �

I

val

. (1) For the role r, we de�ne r

I

0

:=

f(d; d

val

)g [ r

I

[ r

I

val

. (2) For every (negated) atomi
 
on
ept A, A

I

0

is simply the

union of the previous models, i.e., A

I

0

:= A

I

[A

I

val

. As a result, we still have d 2 (C

I

0

i

)

for all i and thus d 2 C

I

0

but on the other hand d 62 D

I

0

.

(() 1. Trivial. 2. Let i 2 f1; : : : ; ng. It is suÆ
ient to show that C

i

v D. Let x 2 C

I

i

for any interpretation I of C

i

. Show: x 2 D

I

.

� By assumption, x 2 A

I

for every A 2 prim(C

i

). The in
lusion prim(D) � prim(C

i

)

thus implies x 2 A

I

for every A 2 prim(D).

� Consider an arbitrary D

0

2 ex

r

(D). By assumption, we know that there is an C

0

2

ex

r

(C

i

) with C

0

u val

r

(C

i

) v D

0

. Sin
e x 2 (9r:C

0

u 8r:val

r

(C

i

))

I

, this implies x 2

(9r:D

0

)

I

.

� As val

r

(C

i

) v val

r

(D) and x 2 (val

r

(C

i

))

I

, it holds that x 2 (val

r

(D))

I

.

The de�nition of 
onjun
tion yields D

I

=

T

A2prim(D)

A

I

\

T

D

0

2ex

r

(D)

(9r:D

0

)

I

\ (val

r

(D))

I

,


on
luding the argument.

It was argued in Se
tion 3 that the normalization of 
on
ept des
riptions is 
ru
ial for

a su

essful approa
h to approximation. In the following Se
tion we will see how these are

employed in the formal de�nition of the approximation.

4.3 Upper approximation

A de�nition of the upper approximation is already given by De�nition 2. In this subse
tion,

a 
orresponding algorithm is proposed to a
tually 
ompute the upper approximation of a

given ALC-
on
ept des
ription.

De�nition 12 Approximation algorithm of ALC by ALE.

Input: ALC-
on
ept des
ription C.

Output: ALE-approximation D of C.

1. C � f?;>g. Then, 
-approx

ALE

(C) := ? or 
-approx

ALE

(C) := > respe
tively.

2. Otherwise, transform C into ALC-normal form and return 
-approx

ALE

(C) as

u

A2

T

i

prim(C

i

)

A

u u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:l
sf
-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

u 8r:l
sf
-approx

ALE

(val

r

(C

i

)) j 1 � i � ng:
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Obviously, the algorithm always makes sure that the input is transformed into ALC-

normal form. By 
omputing 
-approx

ALE

(C

0

i

u val

r

(C

i

)) instead of 
-approx

ALE

(C

0

i

) for

every existential restri
tion in the resulting 
on
ept des
ription it is also ensured that

value restri
tions are propagated to existential restri
tions. It should be noted that the

argument C

0

i

u val

r

(C

i

) is not ne
essarily in ALC-normal form even if C was transformed

into normal form before.

To see how the above algorithm works, let us return to the examples dis
ussed in

Se
tion 3.

Example 13 Consider the 
on
ept des
ription C

ex;1

= (8r:B t (9r:B u8r:A))u9r:A from

Example 4. Applying 
-approx

ALE

to C

ex;1

would �rstly transform the input into ALC-

normal form, yielding (8r:B u9r:A)t (9r:B u8r:Au9r:A). A

ording to the de�nition of


-approx

ALE

, we therefore have:


-approx

ALE

(C

ex;1

) = 
-approx

ALE

((8r:B u 9r:A) t (9r:B u 8r:A u 9r:A))

� 9r:l
sfA u B;B u Ag u

9r:l
sfA u B;A u Ag u

8r:l
sfB;Ag

� 9r:(B u A) u 9r:A u 8r:>

� 9r:(B u A)

The 
on
ept des
ription from Example 6, C

ex;2

= 9r:Au9r:Bu8r:(:At:B), is already

in ALC-normal form. Thus, applying 
-approx

ALE

yields:


-approx

ALE

(C

ex;2

) = 
-approx

ALE

(9r:A u 9r:B u 8r:(:A t :B))

� 9r:l
sf
-approx

ALE

(A u (:A t :B))g u

9r:l
sf
-approx

ALE

(B u (:A t :B))g u

8r:l
sf
-approx

ALE

(:A t :B)g

� 9r:
-approx

ALE

((A u :A) t (A u :B)) u

9r:
-approx

ALE

((B u :A) t (B u :B)) u

8r:>

� 9r:(A u :B) u 9r:(B u :A)

The above example shows that 
-approx

ALE


orre
tly approximates the example 
on-


epts from Se
tion 3. The following theorem proves that the algorithm 
-approx

ALE

always

�nds the 
orre
t approximation:

Theorem 14 Let C be an ALC-
on
ept des
ription in ALC-normal form. Then 
-approx

ALE

(C)

is the upper ALE-approximation of C, i.e.,

1. C v 
-approx

ALE

(C), and

2. 
-approx

ALE

(C) v D for every ALE-
on
ept des
ription D with C v D.
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Proof. 1. Show C v 
-approx

ALE

(C). To this end, show by indu
tion over the stru
ture

of C that the 
onditions for subsumption from Theorem 11 hold.

If C 2 f?;>g then 
-approx

ALE

(C) = C whi
h trivially satis�es the subsumption


onditions. Otherwise, we may assume as indu
tion hypothesis that the 
laim holds for

the subterms of C o

urring in existential and value restri
tions. For C we therefore �nd

that:

� By de�nition of 
-approx

ALE

, we have prim(
-approx

ALE

(C)) =

T

n

i=1

prim(C

i

) �

prim(C).

� Show: for l
sf
-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng and for all i there exists some

C

0

2 ex

r

(C

i

) with C

0

u val

r

(C

i

) v l
s(
-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng.

Pi
k C

0

= C

0

i

. By indu
tion hypothesis it holds that C

0

uval

r

(C

i

) v 
-approx

ALE

(C

0

i

u

val

r

(C

i

)). The de�nition of the l
s now guarantees C

0

uval

r

(C

i

)u l
sf
-approx

ALE

(C

0

i

u

val

r

(C

i

)) j 1 � i � ng.

� Show: val

r

(C) v val

r

(
-approx

ALE

(C)). By indu
tion hypothesis we already know

that val

r

(C

i

) v 
-approx

ALE

(val

r

(C

i

)) for every i. Consequently, for the l
s we �nd

val

r

(C

i

) v l
sf
-approx

ALE

(val

r

(C

i

)) j 1 � i � ng.

2. Without loss of generality, let D be in ALE-normal form. Proof by indu
tion over

the stru
ture of C.

If C 2 f?;>g, then 
-approx

ALE

(C) = C whi
h is the least 
on
ept subsuming C.

Otherwise, we may assume that the 
laim holds for the subterms of C o

urring in

existential and value restri
tions. If D = >, then trivially 
-approx

ALE

(C) v D. Otherwise,

the subsumption C v D indu
es the following fa
ts:

� prim(D) � prim(C

i

) for every i. As prim(
-approx

ALE

(C)) is the interse
tion of

every prim(C

i

), this implies prim(D) � prim(
-approx

ALE

(C)).

� For allD

0

2 ex

r

(D) and for all i there is one C

0

2 ex

r

(C

i

) with C

0

uval

r

(C

i

) v D

0

. The

indu
tion hypothesis now guarantees that C

0

uval

r

(C

i

) v 
-approx

ALE

(C

0

uval

r

(C

i

)) v

D for every i. Consequently, for the l
s it holds that l
sf
-approx

ALE

(C

0

u val

r

(C

i

)) j

1 � i � ng v D.

� For all i we have val

r

(C

i

) v val

r

(D). By indu
tion hypothesis, we have val

r

(C

i

) v


-approx

ALE

(val

r

(C

i

)) v val

r

(D). Hen
e, we similarly �nd l
sf
-approx

ALE

(val

r

(C

i

)) j

1 � i � ng v val

r

(D).

As the transformation into ALC-normal form preserves equivalen
e we may extend the

above result in the following way:

Corollary 15 1. The above result also holds for ALC-
on
ept des
riptions whi
h are not

in ALC-normal form.
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2. The size of 
-approx

ALE

(C) 
an be exponential in the size of C, where C is in ALC-

normal form.

Proof. 1. Easy to see sin
e (1) the algorithm 
-approx

ALE

starts by 
omputing the ALC-

normal form of its input and (2) > and ? are represented uniquely in ALC-normal form.

2. Consider two ALE-
on
ept des
riptions C

1

and C

2

in ALE-normal form. A

ording

to the de�nition, 
-approx

ALE

(C

1

t C

2

) = l
s(C

1

; C

2

). It has been shown in [1℄ that there

exist pairs of ALE-
on
ept des
riptions whose l
s is exponentially large in the size of the

input.

Having shown its 
orre
tness, the natural next question regards the 
omputational 
om-

plexity of the algorithm 
-approx

ALE

. In the following 
orollary it is shown that 
-approx

ALE


an be realized as a double-exponential time algorithm.

Corollary 16 The algorithm 
-approx

ALE

is a double-exponential time algorithm, i.e., for

a given ALC-
on
ept des
ription the 
omputation of 
-approx

ALE

(C) takes at most double

exponential time in the size of C.

Proof. The algorithm 
-approx

ALE

expe
ts its input in ALC-normal form. Nevertheless,

instead of transforming C into normal form before applying 
-approx

ALE

we may also do

the ne
essary transformation on the 
y for every role level 
urrently visited.

Let jCj = n. The 
omputation of 
-approx

ALE

(C) starts by transforming C into D :=

C

1

t � � � t C

m

|su
h that every C

i

has no disjun
tion on the topmost role level|but does

not modify the lower role levels. The 
on
ept D 
an thus have exponentially many (2

p(n)

for some polynomial p) disjun
ts on the topmost level ea
h of whi
h is limited in size by n.

A

ording to the re
ursive stru
ture of 
-approx

ALE

the following expressions must be


omputed:

1. the 
onjun
tion u

A2

T

i

prim(C

i

)

A of primitive 
on
epts;

2. an existential restri
tion 9r:l
sf
-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � mg for every

tuple (C

0

1

; : : : ; C

0

m

) with C

0

i

2 ex

r

(C

i

);

3. one value restri
tion 8r:l
sf
-approx

ALE

(val

r

(C

i

)) j 1 � i � mg.

Obviously, Step 1 
an be 
omputed in polynomial time in the size of D and thus in

exponential time in n.

As D has exponentially many disjun
ts C

i

with a linear number of existential restri
-

tions C

0

i

, the number of existential restri
tions to be 
omputed in Step 2 is double exponen-

tial in n. For every su
h existential restri
tion an l
s of a set of exponential 
ardinality must

be 
omputed. Ea
h element of su
h a set is of the form 
-approx

ALE

(C

0

i

u val

r

(C

i

)). Hen
e,


-approx

ALE

is re
ursively invoked on a 
on
ept des
ription of size bounded by the size of C

and with a role depth de
reased by one. Thus, the 
omputation tree of 
-approx

ALE

(with

the l
s's not evaluated for the time being), is of size double exponential in the size of C. In
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other words, if the l
s is not evaluated, 
-approx

ALE

runs in double exponential time. We

need to show that evaluating the l
s's o

urring in the 
omputation tree, does not in
rease

the 
omplexity.

We start to evaluate the l
s's from the bottom to the top of the 
omputation tree for


-approx

ALE

(C). Every l
s operation in the tree has an exponential number of arguments

and every argument is of size double exponential in jCj. Moreover, one 
an easily show

that every argument is in propagated ALE-normal form (De�nition 8), sin
e the 
on
epts

returned by 
-approx

ALE

are in this form. As shown in [1℄, the size of the l
s 
an therefore

be bounded by the produ
t of the sizes of the arguments. Thus, evaluating the l
s's on the

bottom level yields 
on
ept des
riptions of size at most double exponential. This evaluation

pro
ess is iterated on every level of the 
omputation tree for 
-approx

ALE

(C) where l
s's

o

ur. Sin
e the depth of this tree is bounded by jCj (more pre
isely, by the role depth of

C), the whole evaluation 
an be 
arried out in double-exponential time.

We have evaluated a �rst prototypi
al implementation of 
-approx

ALE

realized in Lisp

and using the FaCT system [10℄ as a subsumption tester. Our implementation of 
-approx

ALE

utilizes the l
s implementation des
ribed in [15℄. In 
ontrast to the 
-approx

ALE

algo-

rithm spe
i�ed in De�nition12 our implementation redu
es the number of l
s 
alls. For

many 
on
ept des
riptions in ALC-normal form it is likely that disjun
ts share the same

existential restri
tions due to the normalization. These existential restri
tions 
ause un-

ne
essary l
s 
alls when approximating the existential restri
tions. Some of the 
om-

binations from the Cartesian produ
t of the existential restri
tions yield argument sets

for the l
s that are supersets of other 
ombinations. These supersets yield more gen-

eral and therefore redundant l
s 
on
ept des
riptions. For example 
omputing the ap-

proximation of the 
on
ept des
ription ((A t 9r:A) u (9r:B u 9r:C) indu
es the l
s 
alls:

l
s(A;B); l
s(A;C); l
s(B;B); l
s(B;C); l
s(C;B); l
s(C;C) in a naive realization. But only

the trivial 
ombinations l
s(B;B) and l
s(C;C) add existential restri
tions to the approx-

imation whi
h are not subsumed by the other 
ombinations. Therefore, in this 
ase, the

existential restri
tions 
an be obtained without using the l
s at all. So, in order to obtain

the 
orre
t approximation in general, it suÆ
es to 
ompute the l
s only of those 
ombina-

tions that do not have a superset among the 
ombinations. This method is employed in

our implementation, we 
ompute �rst the minima (w.r.t. subset) of the set of 
ombinations

and then apply the l
s to the remaining 
ombinations.

We applied 
-approx

ALE

to ALC-
on
epts from a TBox derived from our appli
ation in


hemi
al pro
ess engineering. This appli
ation TBox 
ontains 120 
on
epts and 40 roles.

Surprisingly, for our unfolded input 
on
epts with 
on
ept sizes up to 740, it turned out

that the approximations were always smaller than their unfolded input 
on
epts. The

approximations had an average 
on
ept size of 81 and they had just a third of the size

of the unfolded input 
on
epts on the average. Ea
h of the test 
on
ept des
riptions was

approximated within less than 3 se
onds runtime. Unfortunately, our implementation ran

out of memory 
omputing approximations of some randomly generated ALC-
on
epts of

similar size, but 
onsisting of big disjun
tions with more than 6 disjun
ts.
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So, our prototypi
al implementation of 
-approx

ALE

indi
ates that, despite the high

theoreti
al 
omplexity, the approximation inferen
e might be pra
ti
able for 
ases relevant

in appli
ations. Further optimizations are of 
ourse ne
essary. Standard optimization

te
hniques as lazy unfolding are very likely to highly improve the performan
e for run-

times as well as for sizes of returned 
on
epts.

5 The di�eren
e operator

In the previous se
tion we have seen how to 
ompute theALE-approximation of a givenALC-


on
ept des
ription. For su
h a pair C;D of approximated and approximating 
on
epts,

a very natural question regards the loss of information, i.e., what aspe
ts of C are not


aptured by D.

An answer to su
h questions requires a notion of the \di�eren
e" between 
on
ept de-

s
riptions. For instan
e, a 
omparison between the example 
on
ept C

ex;2

from Example 4

and its approximation 9r:(A u :B) u 9r:(B u :A) should reveal that the value restri
tion

8r:(:A t :B) is not 
aptured by the approximation.

A �rst approa
h for a di�eren
e-operator has been proposed by Teege [14℄. Here, the

di�eren
e C �D of two given L-
on
ept des
riptions with C v D has been de�ned as

maxfE 2 L j E uD � Cg

where the maximum is de�ned with respe
t to subsumption. Sin
e ALC provides full

negation, the most general 
on
ept E with E uD � C is always C t :D. Consequently,

the di�eren
e operator proposed by Teege would return

(9r:A u 9r:B u 8r:(:A t :B)) t :(9r:(A u :B) u 9r:(B u :A))

as the di�eren
e between C

ex;2

and its approximation, whi
h obviously does not help a

human user to as
ertain the information lost by the approximation.

The example illustrates that it might be promising to look for a synta
ti
 minimum

instead of a semanti
 maximum in order to �nd a 
ompa
t representation of the di�eren
e

of two 
on
epts. In [11℄, a so-
alled subdes
ription ordering has been proposed to deal

with synta
ti
al redundan
ies. In order to extend this approa
h to our 
ase the �rst step

is to introdu
e an analogous ordering on ALC-
on
epts. The idea is to obtain a subdes
rip-

tion of some ALC-
on
ept des
ription C by means of two kinds of modi�
ations. Firstly,

by making in
onsisten
ies expli
it; and se
ondly, by removing disjun
ts and 
onjun
ts,

and by repla
ing some existential or value restri
tions by their respe
tive subdes
riptions.

Formally, this leads to the following de�nition.

De�nition 17 Let C;D be an ALC-
on
ept des
riptions in ALC-normal form. Let C =

C

1

t � � � tC

n

. Then, D �

d

C i� D 2 f?;>g or D is obtained from C by performing some

of the following steps.

1. Remove some disjun
ts C

i

for 1 � i � n,



5 THE DIFFERENCE OPERATOR 16

2. for every remaining C

i

:

(a) remove some 
onjun
ts A 2 prim(C

i

),

(b) remove some 
onjun
ts 9r:C

0

i

with C

0

i

2 ex

r

(C

i

),

(
) remove the 
onjun
t 8r:val

r

(C

i

),

(d) for every remaining C

0

i

2 ex

r

(C

i

)[ fval

r

(C

i

)g: repla
e C

0

i

by C

00

i

with C

00

i

�

d

C

0

i

.

As an example, 
onsider the 
on
ept des
riptions C := 9r:Au8r::B and D := (9r:(At

B)u8r::B)t (9r::Au8r:A). By removing the last disjun
t from D and removing the last

disjun
t in the remaining existential restri
tion we �nd that C �

d

D. Note that C � D.

Based on the subdes
ription ordering, we 
an provide the new de�nition of the di�eren
e

operator.

De�nition 18 Let C be ALC-
on
ept des
riptions in ALC-normal form and D be ALE-


on
ept des
riptions in ALE-normal form. Then, the ALC-
on
ept des
ription E is 
alled

the di�eren
e of C and D, (C �D for short), i�

1. E uD � C uD

2. For every ALE-
on
ept des
ription E

0

with E

0

uD � C uD it holds that either E �

d

E

0

or E and E

0

are in
omparable with respe
t to �

d

.

Intuitively, the idea is to remove all subdes
riptions from C whi
h are either redundant

in C or already present inD. It should be noted that in 
ase ofC v D, and thus, CuD � C,

the only di�eren
e to Teege's di�eren
e operator is that the minimum w.r.t. �

d

is used

instead of the maximum w.r.t. v. In general, the di�eren
e C � D is not maximal with

respe
t to subsumption, as a simple example illustrates. For C = A t B and D = B, we

obtain C �D = A, although C u (A t B) � C uD, i.e., A t B is a more general solution

w.r.t. subsumption.

Finally, it should be noted that a priori the di�eren
e between C and D is not uniquely

determined. By abuse of language and notation, we will still refer to the di�eren
e C�D.

Coming ba
k to the example from the beginning of this se
tion, the di�eren
e (a

ording

to De�nition 18) between C

ex;2

and its approximation is in fa
t the desired value restri
tion

8r:(:A t :B).

Having de�ned our di�eren
e operator, we need to devise an algorithm to a
tually


ompute the di�eren
e C � D. In [11℄, an algorithm has been proposed to 
ompute the

di�eren
e C � D of ALE-
on
ept des
riptions C and D. Extending this algorithm to the


ase of ALC-
on
ept des
riptions C yields our de�nition of the algorithm 
-di� as depi
ted

in Figure 1.

If C is a disjun
tion of sub
on
epts C

i

then the di�eren
e between C and D is 
omputed

by �rstly 
omputing the di�eren
es between the disjun
ts and D and then eliminating the

semanti
ally redundant resulting disjun
ts. In n = 1, C is a 
onjun
tion of ALC-
on
ept

des
riptions (with possibly just one 
onjun
t). In this 
ase, redundant 
on
ept names

and existential restri
tions on the top-level 
onjun
tion of C are removed. Furthermore,
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Input: ALC-
on
ept des
ription C = C

1

t � � � t C

n

in ALC-normal form,

ALE-
on
ept des
ription D

Output: 
-di�(C;D)

1. If C uD � ?, then 
-di�(C;D) := ?;

2. If n > 1, then let 
-di�(C;D) :=

n

t

i=1


-di�(C

i

; D) and iteratively remove


-di�(C

j

; D) from the disjun
tion in 
ase 
-di�(C

j

; D) v t

i 6=j


-di�(C

i

; D);

3. If n = 1, then 
-di�(C;D) :=

u

A2prim(C)nprim(D)

A u 8r:
-di�(val

r

(C); val

r

(D)) u u

E2E

0

r

9r:E

where the value restri
tion is omitted in 
ase 
-di�(val

r

(C); val

r

(D)) � >

and E

0

r

is 
omputed as follows:

Let E

r

= fC

0

1

; : : : ; C

0

n

g := ex

r

(C).

For i = 1 to n do begin

If (i) there exists C

0

2 E

r

n fC

0

i

g with val

r

(D) u val

r

(C) u C

0

v C

0

i

, or

(ii) there exists D

0

2 ex

r

(D) with val

r

(D) u val

r

(C) uD

0

v C

0

i

then E

r

:= E

r

n fC

0

i

g

end

E

0

r

:= fE

�

j E 2 E

r

g where E

�

:= 
-di�(E; val

r

(C) u val

r

(D)), if val

r

(C) is

an ALE-
on
ept des
ription, and E

�

:= 
-di�(E; val

r

(D)) otherwise.

Figure 1: The algorithm 
-di�(C;D).

redundan
ies in existential restri
tions and value restri
tions are removed re
ursively. The

set E

0

r


an be 
omputed by iteratively removing existential restri
tions of C that do not

satisfy Conditions 3(i) or 3(ii). Given an ora
le for subsumption, this 
an be 
arried out

in polynomial time.

The following lemma proves that 
-di�(C;D) respe
ts the �rst 
ondition of the di�er-

en
e operator (De�nition 18), i.e., it does not remove too mu
h from the original 
on
ept

des
ription C.

Lemma 19 Let C be an ALC-
on
ept des
ription in ALC-normal form and D an ALE-


on
ept des
ription in ALE-normal form. Then, 
-di�(C;D) uD � C uD.

Proof. Proof by indu
tion over the stru
ture of C.

1. C 2 prim(C)

As prim(
-di�(C;D)) = prim(C) nprim(D), it follows that 
-di�(C;D)uD is equiv-

alent to D u u

A2prim(
-di�(C;D))

A. We 
an safely add to this another 
onjun
t more
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general than D yielding

D u u

A2prim(
-di�(C;D))

A u u

A2prim(C)\prim(D)

A.

The expression thus obtained is equivalent to C uD.

2. C = C

1

t C

2

Without loss of generality, assume exa
tly two disjun
ts on the top-level of C. By

de�nition, even after removing redundant disjun
ts, 
-di�((C

1

tC

2

); D) is equivalent

to 
-di�(C

1

; D) t 
-di�(C

2

; D). Hen
e, the 
onjun
tion 
-di�((C

1

t C

2

); D) with D


an be simpli�ed to 
-di�(C

1

; D)uDt 
-di�(C

2

; D)uD. A

ording to the indu
tion

hypothesis, this yields (C

1

uD) t (C

2

uD), whi
h simpli�es to (C

1

t C

2

) uD.

3. No disjun
tion on the top-level of C

Show 
-di�(C;D) u D � C u D. A

ording to the 
hara
terization of subsumption

(Theorem 11), three 
onditions must hold for equivalen
e:

� The set of primitive 
on
epts prim(
-di�(C;D)uD) equals prim(
-di�(C;D))[

prim(D) whi
h by de�nition is (prim(C) n prim(D)) [ prim(D). This is equal

to prim(C) [ prim(D), the set of primitive 
on
epts in C uD.

� By indu
tion hypothesis, 
-di�(val

r

(C); val

r

(D))u val

r

(D) is equivalent to val

r

(C)u

val

r

(D). By de�nition val

r

(C uD) is equivalent to val

r

(C)u val

r

(D) whi
h 
on-


ludes this 
ase.

� Show (v). Let F

0

2 ex

r

(C uD). We have to �nd an E

0

2 ex

r

(
-di�(C;D) uD)

with E

0

u val

r

(
-di�(C;D) u D) v F

0

. From the previous 
ase we know that

val

r

(
-di�(C;D)uD) is equivalent to val

r

(C uD). Sin
e ex

r

(C uD) is equal to

the union ex

r

(
-di�(C;D)) [ ex

r

(D) we may distinguish two 
ases.

If F

0

2 ex

r

(D) then we 
an sele
t E

0

:= F

0

, be
ause it also o

urs in the set

ex

r

(
-di�(C;D) u D) whi
h is the 
onjun
tion of the 
on
ept des
riptions in

ex

r

(
-di�(C;D))[ ex

r

(D). We thus obviously �nd E

0

u val

r

(
-di�(C;D)uD) v

F

0

.

If F

0

2 ex

r

(C) n ex

r

(D), then Conditions 3(i) and 3(ii) in the de�nition of

the algorithm 
-di�(C;D) guarantee that there exists an existential restri
-

tion

~

E

0

2 ex

r

(
-di�(C;D)) with the following properties. If val

r

(C) is an

ALE-
on
ept des
ription then

~

E

0

is of the form 
-di�(E

0

; (val

r

(D) u val

r

(C)))

with E

0

u val

r

(D) u val

r

(C) v F

0

. A

ording to the indu
tion hypothesis,


-di�(E

0

; (val

r

(D)u val

r

(C)))u val

r

(D)u val

r

(C) is equivalent to E

0

u val

r

(D)u

val

r

(C). Consequently, we �nd that

~

E

0

u val

r

(C) u val

r

(D) v F

0

. It is easy to

see that val

r

(C)u val

r

(D) is equivalent to val

r

(C uD) whi
h again is equivalent

to val

r

(
-di�(C;D) u D) as we know from above. Hen
e, we have found an

~

E

0

with

~

E

0

u val

r

(
-di�(C;D) uD) v F

0

. If D is no ALE-
on
ept des
ription then

~

E

0

is of the form E

0

u val

r

(D). This 
ase is analogous to the previous one.
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Show (w). In analogy to the 
ase (v), 
onsider some E

0

2 ex

r

(
-di�(C;D)uD).

We have to �nd an F

0

2 ex

r

(C u D) su
h that F

0

u val

r

(C u D) v E

0

. Again,

we have two 
ases to dis
riminate.

If E

0

2 ex

r

(D), then we 
an again sele
t F

0

:= E

0

whi
h also o

urs in ex

r

(CuD).

If E

0

2 ex

r

(
-di�(C;D)) n ex

r

(D), then Condition 3(ii) guarantees that an F

0

2

ex

r

(D) � ex

r

(CuD) exists su
h that F

0

uval

r

(C)uval

r

(D) v E

0

. As seen above,

val

r

(C) u val

r

(D) is equivalent to val

r

(C uD) whi
h 
on
ludes the argument.

We still have to examine the 
omputational 
omplexity of the algorithm 
-di�. In the

following 
orollary it is shown that 
-di� is a polynomial time algorithm.

Corollary 20 Given an ora
le for subsumption, the algorithm 
-di� is a polynomial time

algorithm, i.e., for a given ALC-
on
ept des
ription C in ALC-normal form and an ALE-


on
ept des
ription D, the 
omputation of 
-di�(C;D) takes at most polynomial time in

the size of C and D.

Proof. It is not diÆ
ult to see that the size of the output 
-di�(C;D) never ex
eeds the

size of C: if n > 1 then the di�eren
e is simply distributed to the disjun
ts, and if n = 1

then, (1) some primitive 
on
epts are removed, thus redu
ing the size of the resulting 
on-


ept des
ription, (2) the value restri
tion is handled re
ursively and (3) some existential

restri
tions are removed while the remaining ones are also handled re
ursively. Conse-

quently, during the re
ursive 
omputation of 
-di�(C;D) the algorithm is never applied to

an argument ex
eeding the size of the input. Neither does the algorithm introdu
e new

existential or value restri
tions during the 
omputation of 
-di�(C;D).

Thus, it is suÆ
ient for our 
laim to show that (1) the 
omputation of the subset E

0

r

takes

only polynomial time in the size of the input and (2) there are at most polynomially many

(in the size of C and D) 
alls to 
-di� during the re
ursive 
omputation of 
-di�(C;D).

1. As the 
ondition in Step 3 states an appropriate subset E

0

r


an be found by iteratively

removing elements from the original set ex

r

(C) and verifying Conditions 3(i) and 3(ii)

in every iteration. Thus, the number of subsets to inspe
t is bounded by the size of

C. For every subset, a polynomial number of subsumption test must be made. Given

an ora
le for subsumption, this task 
osts only polynomial time.

2. Re
ursive 
alls to 
-di� are ne
essary for the 
omputation of 
-di�(val

r

(C); val

r

(D))

as well as for the 
omputation of every E

�

j

. Nevertheless, there is only one value

restri
tion val

r

(C) in C the size of whi
h is bounded by the size of C. As no new

value restri
tions are introdu
ed, we have at most polynomially many expressions of

the form 
-di�(val

r

(C); val

r

(D)) to evaluate during the exe
ution of 
-di�(C;D).

As 
-di� does not introdu
e new existential restri
tions and as the size of its output

never ex
eeds the size of its input it is easy to see that the number of existential

restri
tions E

0

j

and their size is bounded by the input. Consequently, the number of
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alls to 
-di� is bounded by the syntax tree of the input 
on
ept C whi
h again is

bounded by the size of C, sin
e C was assumed in ALC-normal form.

It should be re
alled though that transforming an arbitrary ALC-
on
ept des
ription

into ALC-normal form 
an produ
e an exponentially larger 
on
ept des
ription. To sum-

marize the existing results, the following properties 
an be shown for every 
omputation

of the algorithm 
-di�(C;D).

Theorem 21 Let C be an ALC-
on
ept des
ription in ALC-normal form and D be an

ALE-
on
ept des
ription. Then, 
-di�(C;D) satis�es the following properties:

1. 
-di�(C;D) uD � C uD,

2. if C is an ALE-
on
ept des
ription, then C � D is uniquely determined modulo asso-


iativity and 
ommutativity of 
on
ept 
onjun
tion, and C �D and 
-di�(C;D) 
oin
ide

modulo asso
iativity and 
ommutativity, and

3. given an ora
le for subsumption, the 
omputation of 
-di�(C;D) takes polynomial time

in the size of C and D.

The �rst property where only ALE is 
onsidered was already shown in [11℄. The others

have been shown in the above lemma and 
orollary.

We have implemented a prototype for the 
-di� algorithm in Lisp. For a �rst evaluation

we applied the 
-di� implementation to test 
on
epts derived from our pro
ess engineering

TBox. More pre
isely, we applied 
-di� to the same ALC-
on
ept des
riptions used for the

evaluation of 
-approx

ALE

together with their approximations generated by our 
-approx

ALE

implementation. For these test 
ases the 
-di� implementation returned 
on
ept des
rip-

tions with an average size of 170 and a maximum size of 630. Thus, it turned out that

the 
on
ept size of the di�eren
e between original 
on
ept des
ription and its approxima-

tion is bigger than the approximation itself in many 
ases. Computing the di�eren
e took

2 se
onds on the average and ea
h di�eren
e was 
omputed within 6.5 se
onds runtime.

Unlike 
-approx

ALE

this prototypi
al implementation behaved also well on randomly gen-

erated 
on
ept des
riptions. But for pra
ti
al appli
ations of this non-standard inferen
e

powerful optimizations are still ne
essary. Moreover, the output 
on
ept des
riptions need

to be smaller and more 
ompa
t in order to be readable and 
omprehensible for a human

user.

6 Con
lusion

The present paper has investigated a new inferen
e problem for DLs, namely 
omputing

the approximation of 
on
epts from one DL in another DL. For the 
on
rete 
ase of ap-

proximating ALC-
on
epts in ALE the seemingly simple task of eliminating disjun
tions in


on
epts may fail without the 
omputation of normal forms and the propagation of value
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restri
tions to existential restri
tions. As a main result, we have devised a 
orre
t and

e�e
tive algorithm to 
ompute upper approximations of ALC-
on
epts in ALE.

In order to as
ertain the a

ura
y of the approximation, we have proposed a di�eren
e

operator and a 
orresponding algorithm whi
h e�e
tively 
omputes a 
ompa
t representa-

tion of the sub
on
epts not present in the approximation. The algorithm is 
orre
t in the

sense that does not overlook sub
on
epts missing in the approximation though it does not

always return a (synta
ti
ally) minimal 
on
ept.

Our �rst evaluation of the prototype implementations of 
-approx

ALE

and 
-di� indi-


ates that the implementations behave fairly good on test 
ases derived from our pra
ti
al

appli
ation. On the other hand there is 
learly a need for further optimization to employ

these new non-standard inferen
es eÆ
iently in pra
ti
al appli
ations. Even more impor-

tant, sin
e the 
on
ept des
riptions returned by both algorithms 
an grow quite big and

are therefore hard to read and 
omprehend by a human user, it is ne
essary to rewrite the


on
epts using the 
on
ept de�nitions from the underlying ALC-TBox to obtain smaller


on
epts. To this purpose, one needs to extend the existing rewriting approa
h for ALE [2℄

to ALC.

As an algorithm for the l
s of ALEN -
on
epts exists [12℄, a future step is to extend the

present approximation te
hnique to ALCN , thus produ
ing ALEN -approximations. Fur-

thermore, it is desirable to investigate further if optimal solutions for the di�eren
e of

ALC-
on
epts always exist and 
an be 
omputed e�e
tively.
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