
LTCS{Report

Aahen University of Tehnology

Researh group for

Theoretial Computer Siene

Approximation and Di�erene in Desription Logis

Sebastian Brandt Ralf K�usters Anni-Yasmin Turhan

LTCS-Report 01-06

RWTH Aahen

LuFg Theoretishe Informatik

http://www-lti.informatik.rwth-aahen.de

Ahornstr. 55

52074 Aahen

Germany

Approximation and Di�erene in Desription Logis

Sebastian Brandt

y

, Ralf K�usters

z

, and Anni-Yasmin Turhan

y

y

LuFG Theoretishe Informatik,

RWTH Aahen

z

Institut f�ur Informatik und Praktishe Mathematik,

Christian-Albrehts-Universit�at zu Kiel

November 2001

Abstrat

Approximation is a new inferene servie in Desription Logis �rst mentioned

by Baader, K�usters, and Molitor. Approximating a onept, de�ned in one Desrip-

tion Logi, means to translate this onept to another onept, de�ned in a seond

typially less expressive Desription Logi, suh that both onepts are as losely

related as possible with respet to subsumption. The present paper provides the �rst

in-depth investigation of this inferene task. We prove that approximations from

the Desription Logi ALC to ALE always exist and propose an algorithm omputing

them.

As a measure for the auray of the approximation, we introdue a syntax-

oriented di�erene operator, whih yields a onept desription that ontains all

aspets of the approximated onept that are not present in the approximation. It

is also argued that a purely semantial di�erene operator, as introdued by Teege,

is less suited for this purpose. Finally, for the logis under onsideration, we propose

an algorithm omputing the di�erene.

CONTENTS i

Contents

1 Introdution 1

2 Desription Logis 3

3 Approximation|a trivial task? 4

4 Approximation 7

4.1 Normal forms . 7

4.2 Charaterization of subsumption . 9

4.3 Upper approximation . 10

5 The di�erene operator 15

6 Conlusion 20

Referenes 21

1 INTRODUCTION 1

1 Introdution

Approximation in Desription Logis (DLs) was �rst mentioned by Baader, K�usters, and

Molitor [2℄ as an interesting new inferene problem. The present paper is the �rst to in-

vestigate this problem in depth. Informally, approximation is de�ned as follows: given a

onept C de�ned in a DL L

s

(\s" for soure) �nd a onept D, the upper/lower approx-

imation of C, in a DL L

d

(\d" for destination) suh that i) D subsumes/is subsumed by

C, and ii) D is a minimal/maximal onept in L

d

(w.r.t. subsumption) with this property.

Throughout this paper we will mainly fous on upper approximations. There are a number

of di�erent appliations of this inferene problem:

� Translation of knowledge-bases

Approximation an be used to (automatially) translate a knowledge-base written

in an expressive DL into a another (semantially losely related) knowledge-base

in a less expressive DL. The translation may beome neessary to port knowledge-

bases between di�erent knowledge representation systems or to integrate di�erent

knowledge-bases.

� Non-standard inferenes for expressive DLs

Non-standard inferenes in DLs, suh as omputing the least ommon subsumer

(ls), mathing and uni�ation of onepts, have been introdued to support the

onstrution and maintenane of DL knowledge-bases (see [11, 6℄ for an overview).

However, up to now they are mostly restrited to quite inexpressive DLs, for example

to DLs that do not allow for onept disjuntion. Approximation an be used to

overome this problem to some extent:

{ Mathing for expressive DLs

For example, the existing mathing algorithms an be lifted to handle more ex-

pressive DLs as follows: instead of diretly mathing onept patterns (de�ned

in a small DL) against onepts (de�ned in a DL that annot be handled by

existing mathing algorithms), one an �rst approximate the onept (in the

small DL) and then math against its approximation. Even though some infor-

mation may be lost, e.g., the mather is more general than the orret one, the

auray of the result may still suÆe.

{ Finding ommonalities of onepts with disjuntion

Another example, whih in fat was our main motivation for looking at approx-

imation in the �rst plae, is to ombine approximation and the ls omputation:

The ls of two onepts, say C

1

and C

2

, de�ned in some DL L, is the most

spei� onept (w.r.t. subsumption) in L that subsumes both onepts. Intu-

itively, the ls yields the ommonalities between C

1

and C

2

. However, in ase

L allows for onept disjuntion, the ls is just the disjuntion of C

1

and C

2

(C

1

t C

2

). Thus, a user inspeting this onept does not learn anything about

the atual ommonalities. Using approximation, however, one an make the

1 INTRODUCTION 2

ommonalities expliit by �rst approximating C

1

and C

2

in a sublanguage of L

whih does not allow to express onept disjuntion, and then omputing the

ls of the approximations in this sublanguage. Again, due to the approximation

step some information may be lost, nevertheless, sine ommonalities are made

expliit, the resulting onept might even be more interesting to a user than

just the disjuntion of C

1

and C

2

.

� Support for frame-based user interfaes of DL systems

In the interation with DL systems, users with little knowledge representation exper-

tise may have diÆulties to understand and make use of the full expressive power of

the underlying DLs. As an approah to this problem, some knowledge representation

systems have been equipped with a simpli�ed frame-based user interfae built on top

of a more powerful DL system. Examples for this approah are the TAMBIS sys-

tem [3℄ and the ontology editor OilEd [4℄ built on top of the FaCT DL system [10℄.

On many oasions, these systems have to present onept desriptions to the user for

editing, inspetion, or as a solution of inferene problems. Suh onept desriptions,

however, need not always �t into the restrited representation of the frame-based

user interfae or might overwhelm an inexperiened user. In suh ases, approxima-

tion might be helpful as a means to represent onept desriptions in a simpli�ed

fashion suited to the user interfae and the user's level of expertise. Furthermore,

the aspets not aptured by the frame-based representation ould be omputed for

further inspetion by a di�erene operator as proposed in this work (see below).

� Knowledge-base vivi�ation

Conept disjuntion in many ases inreases the omputational omplexity of infer-

ene problems, whih in partiular was a problem in the early DL systems. The

idea of knowledge-base vivi�ation is to replae disjuntion by the ls of its disjunts

[5, 7℄. We will show in Setion 3 that suh a diret substitution does not always yield

the best onept expressible in the smaller DL. Hene, a more general approah to

knowledge-base vivi�ation is to approximate the original onepts de�ned in a DL

with disjuntion in a orresponding DL where disjuntion annot be expressed. The

problem with both approahes is that they might lead to an exponential blow-up of

the onepts, making reasoning in the smaller DL expensive too. In fat, given the

highly optimized up-to-date DL systems, suh as FaCT [10℄ and Raer [9℄, the use

of knowledge-base vivi�ation is questionable nowadays.

The main tehnial result of this paper (Setion 4) is to show that onept desriptions

de�ned in the standard DLALC, whih provides onept onjuntion and disjuntion, value

and existential restritions, and full negation, an be approximated (from above) in the

DL ALE , a DL without onept disjuntion and full negation.

One one has given an (upper) approximation D of C a natural question regards the

loss of information, i.e., what aspets of C are not aptured by D. Therefore we propose

a di�erene operator, whih given C and D yields a onept desription E (the di�erene

2 DESCRIPTION LOGICS 3

Syntax Semantis ALE ALC

> � x x

C uD C

I

\D

I

x x

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

:A, A 2 N

C

� n A

I

x x

? ; x x

C tD C

I

[D

I

x

:C � n C

I

x

Table 1: Syntax and semantis of onept desriptions.

of C and D) in L

s

suh that E onjoint with D is equivalent to C, i.e., E u D � C. In

other words, E ontains the information that is missing in the approximation D of C.

Suh an operator has already been de�ned by Teege [14℄. He requires that E is the most

general onept desription in L

s

w.r.t. subsumption that satis�es the above equivalene.

However, as we will see, suh a purely semantial de�nition of di�erene allows for very

unintuitive onepts. We therefore propose a new syntax-based de�nition, whih better

aptures the intuition behind di�erene. Roughly speaking, the di�erene E between C

and D will be obtained by syntatially removing those parts of C that are already present

in D. In Setion 5, we provide a formal de�nition and give an algorithm for omputing

the di�erene between ALC- and ALE-onept desriptions.

2 Desription Logis

Conept desriptions are indutively de�ned with the help of a set of onept onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names. The available

onstrutors determine the expressive power of the DL in question. In this paper, we on-

sider onept desriptions built from the onstrutors shown in Table 1. In the DL ALE ,

onept desriptions are formed using the onstrutors top-onept (>), onept onjun-

tion (C u D), existential restrition (9r:C), value restrition (8r:C), primitive negation

(:A), and the bottom-onept (?). The DL ALC additionally provides us with onept

disjuntion (C tD) and full negation (:C) (see Table 1). Note that in ALC every onept

desription an be negated whereas in ALE negation is only allowed in front of onept

names. For a DL L, suh as ALE and ALC, a onept desription formed with the on-

strutors allowed in L is alled L-onept desription in the following.

As usual, the semantis of a onept desription is de�ned in terms of an interpretation

I = (�; �

I

). The domain � of I is a non-empty set and the interpretation funtion �

I

maps

eah onept name A 2 N

C

to a set A

I

� � and eah role name r 2 N

R

to a binary relation

r

I

� ���. The extension of �

I

to arbitrary onept desriptions is de�ned indutively, as

shown in the seond olumn of Table 1.

One of the most important traditional inferene servies provided by DL systems is

3 APPROXIMATION|A TRIVIAL TASK? 4

omputing the subsumption hierarhy. The onept desription C is subsumed by the

desription D (C v D) i� C

I

� D

I

holds for all interpretations I; C and D are equivalent

(C � D) i� C v D and D v C; C is stritly subsumed by D (C � D) i� C v D and

C 6� D. Subsumption and equivalene in ALC is PSPACE-omplete [13℄ and NP-omplete

in ALE [8℄.

In order to approximate ALC-onept desriptions by ALE-onept desriptions, we will

need to ompute the least ommon subsumer in ALE .

De�nition 1 Given L-onept desriptions C

1

; : : : ; C

n

, for some desription logi L, the

L-onept desription C is the least ommon subsumer (ls) of C

1

; : : : ; C

n

(C = ls(C

1

; : : : ; C

n

)

for short) i�

1. C

i

v C for all 1 � i � n, and

2. C is the least onept desription with this property, i.e., if C

0

satis�es C

i

v C

0

for all

1 � i � n, then C v C

0

.

Depending on the DL under onsideration, the ls of two or more onept desriptions need

not always exist, but if it exists, then, by de�nition, it is unique up to equivalene. For

instane, in ALC the ls trivially exists sine ls(C;D) � C tD. For ALE , whih does not

allow for onept disjuntion, the existene is not obvious. However, as shown in [1℄, the

ls of two or more ALE-onept desriptions always exists, its size may grow exponentially

in the size of the input desriptions, and it an be omputed in exponential time.

Some notation is needed to aess the di�erent parts of an ALE-onept desription

or an ALC-onept desription where disjuntion only ours within value or existential

restritions. Given suh a onept C:

� prim(C) denotes the set of all (negated) onept names and the bottom onept

ourring on the top-level onjuntion of C.

� val

r

(C) := D, where D is a onjuntion of all C

0

ourring in value restritions of

the form 8r:C

0

on the top-level of C. If there is no value restrition on top-level of

C val

r

(C) := >.

� ex

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg.

For the sake of simpliity, we assume that the set N

R

of role names is the singleton frg.

However, all de�nitions and results an easily be generalized to arbitrary sets of role names.

3 Approximation|a trivial task?

As introdued in Setion 1, the upper approximation of a given ALC-onept desription

C is a minimal ALE-onept desription D (w.r.t. subsumption) subsuming C. Formally,

this leads to the following de�nition.

De�nition 2 Let C be an ALC-onept desription. An ALE-onept desription D is an

upper ALE-approximation (for short approx

ALE

) of C, i�

3 APPROXIMATION|A TRIVIAL TASK? 5

1. C v D, and

2. C v D

0

and D

0

v D implies D

0

� D for every ALE-onept desription D

0

.

Note that approximations need not exist in general. Consider for example the DLs L

1

=

fug and L

2

= ftg, i.e., the DLs that only allow for onept onjuntion and onept

disjuntion, respetively. Let A and B denote onept names. Then, there does not exist

an upper L

1

-approximation of the L

2

-onept desription A t B. Conversely, there does

not exist a lower L

2

-approximation of the L

1

-onept desription A u B. Also note that

approximations need not be uniquely determined. For example, both A and B are lower

L

1

-approximations of A tB with L

1

de�ned as above.

In this paper, we restrit our investigations to upper approximations. Therefore, when-

ever we speak of approximations in the following, we mean upper approximations. More-

over, we onentrate on upper ALE-approximations of ALC-onept desriptions. SineALE

allows for onept onjuntion it immediately follows that if upper ALE-approximations

exist (and we will show that they always do), they are uniquely determined up to equiv-

alene: If D

1

and D

2

are two upper ALE-approximations, then so is D

1

u D

2

. But then,

by de�nition of upper approximation, D

1

u D

2

v D

1

and D

1

u D

2

v D

2

implies that

D

1

u D

2

� D

1

� D

2

. This means that an upper ALE-approximation D of C is the most

spei� onept in ALE subsuming C, i.e., C v D, and ii) D v D

0

for every ALE-onept

desription D

0

with C v D

0

.

Obviously, the ruial point in approximating an ALC-onept desription C in ALE is

to deal with the disjuntions ourring in C. In the very simple ase of only one disjuntion

on the top-level of C, i.e., C is the disjuntion C

1

tC

2

of two ALE-onept desriptions, it is

easy to see that the most spei� (and thus, minimal) ALE-onept desription subsuming

C is just the least ommon subsumer of C

1

and C

2

, i.e., ls(C

1

; C

2

). Hene, the disjuntion

is approximated by the ls of the disjunts.

It seems natural to generalize this approah to disjuntions ourring at other positions

in the syntax tree of C. Thus, an approximation algorithm would traverse the syntax tree

of C in a bottom-up fashion and substitute a disjuntion by the ls whenever one is found.

This idea is formalized in the following de�nition of our �rst straightforward attempt to

an approximation algorithm:

De�nition 3 (substitute disjuntions by the ls) The pseudo-approximation

-approx

triv

ALE

(C) of an ALC onept desription C by an ALE onept desription is de�ned

by:

-approx

triv

ALE

(C) := C ; if C � ? or C � > or C 2 prim(C)

-approx

triv

ALE

(C

1

u � � � u C

n

) := -approx

triv

ALE

(C

1

) u � � � u -approx

triv

ALE

(C

n

)

-approx

triv

ALE

(C

1

t � � � t C

n

) := lsf-approx

triv

ALE

(C

1

); : : : ; -approx

triv

ALE

(C

n

)g

-approx

triv

ALE

(9r:C

0

) := 9r:-approx

triv

ALE

(C

0

)

-approx

triv

ALE

(8r:C

0

) := 8r:-approx

triv

ALE

(C

0

)

3 APPROXIMATION|A TRIVIAL TASK? 6

Unfortunately, this naive approah does not always ompute the most spei� ALE-

onept desription subsuming C, as the following example illustrates.

Example 4 [-approx

triv

ALE

6� approx

ALE

℄

For atomi onepts A and B, onsider C

ex;1

:= (8r:B t (9r:B u 8r:A)) u 9r:A.

-approx

triv

ALE

(C

ex;1

) � ls(8r:B; 9r:B u 8r:A) u 9r:A

� 8r:> u 9r:A

� 9r:A

It is easy to verify that C

ex;1

v 9r:(A u B) � -approx

triv

ALE

(C

ex;1

). Thus, the algorithm

-approx

triv

ALE

did not �nd an optimal solution.

It appears that substituting the ls loally without taking are of other aspets of C

ex;1

does not suÆe. Another straightforward way to deal with disjuntions therefore seems to

ompute a set of opies of the originalALC-onept desription C where in every opy eah

disjuntion is replaed by only one of its disjunts. The least ommon subsumer of all these

opies might be a andidate for the approximation. The following de�nition formalizes this

idea.

De�nition 5 (split disjuntions) Let C be an ALC-onept desription. Then the pseudo-

approximation -approx

split

ALE

(C) is de�ned as -approx

split

ALE

(C) := ls (split(C)), where split(C)

is indutively de�ned as follows:

split(C) := fCg ; if C 2 prim(C) [f?;>g

split(C

1

u � � � u C

n

) := fD

1

u � � � uD

n

j D

i

2 split(C

i

); 1 � i � ng

split(C

1

t � � � t C

n

) := split(C

1

) [� � � [split(C

n

)

split(8r:C

0

) := f8r:D j D 2 split(C

0

)g

split(9r:C

0

) := f9r:D j D 2 split(C

0

)g

One an verify that the above algorithm works orretly for Example 4. The funtion

split transforms the input onept desription into the a set onsisting of 8r:A u 9r:B and

9r:A u 8r:B u 9r:B the ls of whih yields 9r:(A u B). Nevertheless, other examples exist

where the resulting onept does not even subsume the input.

Example 6 [-approx

split

ALE

6� approx

ALE

℄

For atomi onepts A and B, let C

ex;2

:= 9r:A u 9r:B u 8r:(:A t :B). Applying the

4 APPROXIMATION 7

algorithm -approx

split

ALE

to C

ex;2

yields the following result.

-approx

split

ALE

(C

ex;2

) � ls (split(C

ex;2

))

� lsf9r:A u 9r:B u 8r::A ; 9r:A u 9r:B u 8r::Bg

� 9r:lsfA u :A;A u :Bg u

9r:lsfA u :A;B u :Bg u

9r:lsfB u :A;A u :Bg u

9r:lsfB u :A;B u :Bg u

8r:lsf:A;:Bg

� 9r:(A u :B) u 9r:? u : : :

� ?

The examples given so far suggest that two properties are important for a suessful

approximation algorithm. Firstly, ALC-onept desriptions must be normalized before

approximation, i.e., onjuntions must be distributed over disjunts; and seondly, value

restritions must be propagated to existential restritions. Thus, expressions of the form

of A u (B t C) are turned into (A u B) t (A u C), and 9r:A u 8r:B is transformed into

9r:(A u B) u 8r:B. In the following setion, we will see how to employ these ideas in the

atual approximation algorithm.

4 Approximation

In the previous setion we have seen that normal forms of onept desriptions are de-

sirable for our approah to approximation. Consequently, the following subsetion will

be onerned with a normal form for ALC-onept desriptions. In Subsetion 4.2, this

normal form is used for a strutural haraterization of subsumption for the asymmetri

ase of an ALE-onept desription subsuming an ALC-onept desription. With these

preliminaries, the upper approximation of ALC-onept desriptions is introdued formally

in Subsetion 4.3.

4.1 Normal forms

For ALE-onept desriptions, a onept-oriented normal form has been introdued in [11℄.

The idea is to restrit (w.l.o.g.) onept desriptions to only one value restrition per role

on top-level and in every existential restrition and in value restrition.

De�nition 7 Let D be an ALE-onept desription. D is in ALE-normal form, i� D = ?,

D = >, or D is of the form

D = u

A2prim(D)

A u u

C

0

2ex

r

(D)

9r:C

0

u 8r:val

r

(D)

where val

r

(D) and every onept in ex

r

(D) again are in ALE-normal form.

4 APPROXIMATION 8

Note that prim(D) also ontains negated atomi onepts. For instane, the ALE-

normal form of A u 8r:A u 9r:B u 8r::B yields A u 9r:B u 8r:(A u :B). Transforming

an arbitrary ALE-onept desription C into ALE-normal form does not inrease its size

beause it suÆes to onjoin value restritions into one whenever more than one value

restrition ours in a onjunt at some position in C.

Nevertheless, inonsistenies need not be expliit in the ALE-normal form and value

restritions are not propagated to existential restritions. We de�ne a so-alled propagated

ALE-normal form to satisfy these onditions also.

De�nition 8 Let D be an ALE-onept desription. Then D is in propagated ALE-normal

form, i� none of the following normalization rules an be applied at any position in C.

P u :P �! ? , where P 2 N

C

E u ? �! ?

9r:? �! ?

8r:> �! >

E u > �! E

8r:C u 8r:D �! 8r:(C uD)

9r:C u 8r:D �! 9r:(C uD) u 8r:D

It an be shown that the propagated ALE-normal form is in fat a speialization of the

ALE-normal form whih ould be generated by means of the last but one transformation

rule alone. Nevertheless, transforming a onept desription into propagated ALE-normal

form an result in exponentially larger onept desriptions beause the last transformation

rule (whih performs the propagation) leads to an inrease in size by opying subtrees of

the syntax tree and may be applied very often.

In order to extend the (ordinary) ALE-normal form to ALC-onept desriptions, we

have to deal with full negation and disjuntion. Nevertheless, negated omplex, i.e., non-

atomi, onepts an be avoided by the negation normal form, where negation only ours

in front of onept names. Additionally, we require the bottom onept to be represented

uniquely and every disjuntion on every role level to be in disjuntive normal form.

De�nition 9 Let C be an ALC-onept desription. C is in ALC-normal form, i� C = ?,

C = >, or C is of the form

C = C

1

t � � � t C

n

C

i

= u

A2prim(C

i

)

A u u

C

0

2ex

r

(C

i

)

9r:C

0

u 8r:val

r

(C

i

) 8i,

where (1) C

i

6� ? for all i and (2) val

r

(C

i

) and every onept in ex

r

(C

i

) again are in

ALC-normal form.

It is not diÆult to verify that every ALC-onept desription an be transformed into

ALC-normal form. Note that, if C is in ALC-normal form, C is also in ALC negation normal

form. Consider the following simple example:

4 APPROXIMATION 9

Example 10 For atomi onepts A;B;C, let C := :8r:(A u B) u (B t 9r::A). The

negation normal form of C yields 9r:(:A t :B) u (B t 9r::A). By distributing onjunts

over the disjuntion we obtain (9r:(:A t :B) u B) t (9r:(:A t :B) u 9r::A).

It should be noted thatALC-normal form of a onept C an be exponentially larger than

C itself. For instane, omputing the disjuntive normal form of (A

1

tB

1

)u� � �u (A

n

tB

n

)

produes a onept desription of exponential size in n.

4.2 Charaterization of subsumption

The normal forms introdued in the previous setion allow us to give a strutural har-

aterization of subsumption between an ALC-onept desription C and an ALE-onept

desription D. Reall that a disjuntion C

1

t C

2

is subsumed by D if and only if both

C

i

are subsumed by D. Following this idea, our haraterization of subsumption redues

subsumption for a disjuntion to subsumption of the respetive disjunts on every role

level. Formally, we obtain the following theorem.

Theorem 11 Let C be an ALC-onept desription in ALC-normal form and D an ALE-

onept desription in ALE-normal form. Then, C v D i�

1. C � ? or D � >, or

2. for every i 2 f1; : : : ; ng it holds that

� prim(D) � prim(C

i

), and

� 8D

0

2 ex

r

(D) 9C

0

2 ex

r

(C

i

) : C

0

u val

r

(C

i

) v D

0

, and

� val

r

(C

i

) v val

r

(D).

Proof. ()) Assume ? � C v D � >.

� Assume prim(D) 6� prim(C

i

) for one i. Then there exists an A 2 prim(D)nprim(C

i

).

By de�nition of the ALC-normal form, C

i

is onsistent. We may therefore onsider

a anonial interpretation I of C

i

. By de�nition, the individual d

C

i

2 �

I

for C

i

does not our in A

I

, sine A 62 prim(C

i

). Thus, d 62 D

I

and therefore C 6v D, in

ontradition to our assumption.

� Assume for one D

0

2 ex

r

(D) that one i exists suh that for all C

0

2 ex

r

(C

i

) it holds

that C

0

u val

r

(C

i

) 6v D

0

. Sine C

i

is onsistent, every C

0

2 ex

r

(C

i

) has a tree model

I

C

0

where d

C

0

2 (C

0

uval

r

(C

i

))

I

C

0

n(D

0

)

I

C

0

. Without loss of generality, we may assume

disjoint domains, i.e., �

I

C

0

\ �

I

C

00

= ; for two di�erent C

0

; C

00

2 ex

r

(C

i

). We may

now onstrut a new model I over the domain �

I

= fdg ℄

S

C

0

2ex

r

(C

i

)

�

I

C

0

with

the following properties: (1) For the role r, de�ne r

I

:= f(d; d

C

0

) j C

0

2 ex

r

(C

i

)g [

S

C

0

2ex

r

(C

i

)

r

I

C

0

. (2) For every (negated) atomi onept A 2 N

C

[f:A j A 2 N

C

g,

de�ne the interpretation of A as A

I

:= fd j A 2 prim(C

i

)g [

S

C

0

2ex

r

(C

i

)

A

I

C

0

. Note

that the �rst expression only states that d 2 A

I

i� A 2 prim(C

i

).

4 APPROXIMATION 10

It is easy to see that d 2 C

I

. On the other hand d 62 D

I

, beause (D

0

)

I

C

0

was exluded

expliitly from every I

C

0

. Consequently, we have d 62 (9r:D)

I

.

� Assume val

r

(C

i

) 6v val

r

(D) for one i. Thus, val

r

(C

i

) has a tree model I

val

suh that

d

val

2 val

r

(C

i

)

I

val

n val

r

(D)

I

val

. We an now extend the model I introdued for the

previous ase by adding d

val

as an r-suessor of d. Again, assume �

I

\ �

I

val

= ;.

Then, de�ne I

0

as follows: �

I

0

:= �

I

[�

I

val

. (1) For the role r, we de�ne r

I

0

:=

f(d; d

val

)g [r

I

[r

I

val

. (2) For every (negated) atomi onept A, A

I

0

is simply the

union of the previous models, i.e., A

I

0

:= A

I

[A

I

val

. As a result, we still have d 2 (C

I

0

i

)

for all i and thus d 2 C

I

0

but on the other hand d 62 D

I

0

.

(() 1. Trivial. 2. Let i 2 f1; : : : ; ng. It is suÆient to show that C

i

v D. Let x 2 C

I

i

for any interpretation I of C

i

. Show: x 2 D

I

.

� By assumption, x 2 A

I

for every A 2 prim(C

i

). The inlusion prim(D) � prim(C

i

)

thus implies x 2 A

I

for every A 2 prim(D).

� Consider an arbitrary D

0

2 ex

r

(D). By assumption, we know that there is an C

0

2

ex

r

(C

i

) with C

0

u val

r

(C

i

) v D

0

. Sine x 2 (9r:C

0

u 8r:val

r

(C

i

))

I

, this implies x 2

(9r:D

0

)

I

.

� As val

r

(C

i

) v val

r

(D) and x 2 (val

r

(C

i

))

I

, it holds that x 2 (val

r

(D))

I

.

The de�nition of onjuntion yields D

I

=

T

A2prim(D)

A

I

\

T

D

0

2ex

r

(D)

(9r:D

0

)

I

\ (val

r

(D))

I

,

onluding the argument.

It was argued in Setion 3 that the normalization of onept desriptions is ruial for

a suessful approah to approximation. In the following Setion we will see how these are

employed in the formal de�nition of the approximation.

4.3 Upper approximation

A de�nition of the upper approximation is already given by De�nition 2. In this subsetion,

a orresponding algorithm is proposed to atually ompute the upper approximation of a

given ALC-onept desription.

De�nition 12 Approximation algorithm of ALC by ALE.

Input: ALC-onept desription C.

Output: ALE-approximation D of C.

1. C � f?;>g. Then, -approx

ALE

(C) := ? or -approx

ALE

(C) := > respetively.

2. Otherwise, transform C into ALC-normal form and return -approx

ALE

(C) as

u

A2

T

i

prim(C

i

)

A

u u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:lsf-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

u 8r:lsf-approx

ALE

(val

r

(C

i

)) j 1 � i � ng:

4 APPROXIMATION 11

Obviously, the algorithm always makes sure that the input is transformed into ALC-

normal form. By omputing -approx

ALE

(C

0

i

u val

r

(C

i

)) instead of -approx

ALE

(C

0

i

) for

every existential restrition in the resulting onept desription it is also ensured that

value restritions are propagated to existential restritions. It should be noted that the

argument C

0

i

u val

r

(C

i

) is not neessarily in ALC-normal form even if C was transformed

into normal form before.

To see how the above algorithm works, let us return to the examples disussed in

Setion 3.

Example 13 Consider the onept desription C

ex;1

= (8r:B t (9r:B u8r:A))u9r:A from

Example 4. Applying -approx

ALE

to C

ex;1

would �rstly transform the input into ALC-

normal form, yielding (8r:B u9r:A)t (9r:B u8r:Au9r:A). Aording to the de�nition of

-approx

ALE

, we therefore have:

-approx

ALE

(C

ex;1

) = -approx

ALE

((8r:B u 9r:A) t (9r:B u 8r:A u 9r:A))

� 9r:lsfA u B;B u Ag u

9r:lsfA u B;A u Ag u

8r:lsfB;Ag

� 9r:(B u A) u 9r:A u 8r:>

� 9r:(B u A)

The onept desription from Example 6, C

ex;2

= 9r:Au9r:Bu8r:(:At:B), is already

in ALC-normal form. Thus, applying -approx

ALE

yields:

-approx

ALE

(C

ex;2

) = -approx

ALE

(9r:A u 9r:B u 8r:(:A t :B))

� 9r:lsf-approx

ALE

(A u (:A t :B))g u

9r:lsf-approx

ALE

(B u (:A t :B))g u

8r:lsf-approx

ALE

(:A t :B)g

� 9r:-approx

ALE

((A u :A) t (A u :B)) u

9r:-approx

ALE

((B u :A) t (B u :B)) u

8r:>

� 9r:(A u :B) u 9r:(B u :A)

The above example shows that -approx

ALE

orretly approximates the example on-

epts from Setion 3. The following theorem proves that the algorithm -approx

ALE

always

�nds the orret approximation:

Theorem 14 Let C be an ALC-onept desription in ALC-normal form. Then -approx

ALE

(C)

is the upper ALE-approximation of C, i.e.,

1. C v -approx

ALE

(C), and

2. -approx

ALE

(C) v D for every ALE-onept desription D with C v D.

4 APPROXIMATION 12

Proof. 1. Show C v -approx

ALE

(C). To this end, show by indution over the struture

of C that the onditions for subsumption from Theorem 11 hold.

If C 2 f?;>g then -approx

ALE

(C) = C whih trivially satis�es the subsumption

onditions. Otherwise, we may assume as indution hypothesis that the laim holds for

the subterms of C ourring in existential and value restritions. For C we therefore �nd

that:

� By de�nition of -approx

ALE

, we have prim(-approx

ALE

(C)) =

T

n

i=1

prim(C

i

) �

prim(C).

� Show: for lsf-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng and for all i there exists some

C

0

2 ex

r

(C

i

) with C

0

u val

r

(C

i

) v ls(-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng.

Pik C

0

= C

0

i

. By indution hypothesis it holds that C

0

uval

r

(C

i

) v -approx

ALE

(C

0

i

u

val

r

(C

i

)). The de�nition of the ls now guarantees C

0

uval

r

(C

i

)u lsf-approx

ALE

(C

0

i

u

val

r

(C

i

)) j 1 � i � ng.

� Show: val

r

(C) v val

r

(-approx

ALE

(C)). By indution hypothesis we already know

that val

r

(C

i

) v -approx

ALE

(val

r

(C

i

)) for every i. Consequently, for the ls we �nd

val

r

(C

i

) v lsf-approx

ALE

(val

r

(C

i

)) j 1 � i � ng.

2. Without loss of generality, let D be in ALE-normal form. Proof by indution over

the struture of C.

If C 2 f?;>g, then -approx

ALE

(C) = C whih is the least onept subsuming C.

Otherwise, we may assume that the laim holds for the subterms of C ourring in

existential and value restritions. If D = >, then trivially -approx

ALE

(C) v D. Otherwise,

the subsumption C v D indues the following fats:

� prim(D) � prim(C

i

) for every i. As prim(-approx

ALE

(C)) is the intersetion of

every prim(C

i

), this implies prim(D) � prim(-approx

ALE

(C)).

� For allD

0

2 ex

r

(D) and for all i there is one C

0

2 ex

r

(C

i

) with C

0

uval

r

(C

i

) v D

0

. The

indution hypothesis now guarantees that C

0

uval

r

(C

i

) v -approx

ALE

(C

0

uval

r

(C

i

)) v

D for every i. Consequently, for the ls it holds that lsf-approx

ALE

(C

0

u val

r

(C

i

)) j

1 � i � ng v D.

� For all i we have val

r

(C

i

) v val

r

(D). By indution hypothesis, we have val

r

(C

i

) v

-approx

ALE

(val

r

(C

i

)) v val

r

(D). Hene, we similarly �nd lsf-approx

ALE

(val

r

(C

i

)) j

1 � i � ng v val

r

(D).

As the transformation into ALC-normal form preserves equivalene we may extend the

above result in the following way:

Corollary 15 1. The above result also holds for ALC-onept desriptions whih are not

in ALC-normal form.

4 APPROXIMATION 13

2. The size of -approx

ALE

(C) an be exponential in the size of C, where C is in ALC-

normal form.

Proof. 1. Easy to see sine (1) the algorithm -approx

ALE

starts by omputing the ALC-

normal form of its input and (2) > and ? are represented uniquely in ALC-normal form.

2. Consider two ALE-onept desriptions C

1

and C

2

in ALE-normal form. Aording

to the de�nition, -approx

ALE

(C

1

t C

2

) = ls(C

1

; C

2

). It has been shown in [1℄ that there

exist pairs of ALE-onept desriptions whose ls is exponentially large in the size of the

input.

Having shown its orretness, the natural next question regards the omputational om-

plexity of the algorithm -approx

ALE

. In the following orollary it is shown that -approx

ALE

an be realized as a double-exponential time algorithm.

Corollary 16 The algorithm -approx

ALE

is a double-exponential time algorithm, i.e., for

a given ALC-onept desription the omputation of -approx

ALE

(C) takes at most double

exponential time in the size of C.

Proof. The algorithm -approx

ALE

expets its input in ALC-normal form. Nevertheless,

instead of transforming C into normal form before applying -approx

ALE

we may also do

the neessary transformation on the y for every role level urrently visited.

Let jCj = n. The omputation of -approx

ALE

(C) starts by transforming C into D :=

C

1

t � � � t C

m

|suh that every C

i

has no disjuntion on the topmost role level|but does

not modify the lower role levels. The onept D an thus have exponentially many (2

p(n)

for some polynomial p) disjunts on the topmost level eah of whih is limited in size by n.

Aording to the reursive struture of -approx

ALE

the following expressions must be

omputed:

1. the onjuntion u

A2

T

i

prim(C

i

)

A of primitive onepts;

2. an existential restrition 9r:lsf-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � mg for every

tuple (C

0

1

; : : : ; C

0

m

) with C

0

i

2 ex

r

(C

i

);

3. one value restrition 8r:lsf-approx

ALE

(val

r

(C

i

)) j 1 � i � mg.

Obviously, Step 1 an be omputed in polynomial time in the size of D and thus in

exponential time in n.

As D has exponentially many disjunts C

i

with a linear number of existential restri-

tions C

0

i

, the number of existential restritions to be omputed in Step 2 is double exponen-

tial in n. For every suh existential restrition an ls of a set of exponential ardinality must

be omputed. Eah element of suh a set is of the form -approx

ALE

(C

0

i

u val

r

(C

i

)). Hene,

-approx

ALE

is reursively invoked on a onept desription of size bounded by the size of C

and with a role depth dereased by one. Thus, the omputation tree of -approx

ALE

(with

the ls's not evaluated for the time being), is of size double exponential in the size of C. In

4 APPROXIMATION 14

other words, if the ls is not evaluated, -approx

ALE

runs in double exponential time. We

need to show that evaluating the ls's ourring in the omputation tree, does not inrease

the omplexity.

We start to evaluate the ls's from the bottom to the top of the omputation tree for

-approx

ALE

(C). Every ls operation in the tree has an exponential number of arguments

and every argument is of size double exponential in jCj. Moreover, one an easily show

that every argument is in propagated ALE-normal form (De�nition 8), sine the onepts

returned by -approx

ALE

are in this form. As shown in [1℄, the size of the ls an therefore

be bounded by the produt of the sizes of the arguments. Thus, evaluating the ls's on the

bottom level yields onept desriptions of size at most double exponential. This evaluation

proess is iterated on every level of the omputation tree for -approx

ALE

(C) where ls's

our. Sine the depth of this tree is bounded by jCj (more preisely, by the role depth of

C), the whole evaluation an be arried out in double-exponential time.

We have evaluated a �rst prototypial implementation of -approx

ALE

realized in Lisp

and using the FaCT system [10℄ as a subsumption tester. Our implementation of -approx

ALE

utilizes the ls implementation desribed in [15℄. In ontrast to the -approx

ALE

algo-

rithm spei�ed in De�nition12 our implementation redues the number of ls alls. For

many onept desriptions in ALC-normal form it is likely that disjunts share the same

existential restritions due to the normalization. These existential restritions ause un-

neessary ls alls when approximating the existential restritions. Some of the om-

binations from the Cartesian produt of the existential restritions yield argument sets

for the ls that are supersets of other ombinations. These supersets yield more gen-

eral and therefore redundant ls onept desriptions. For example omputing the ap-

proximation of the onept desription ((A t 9r:A) u (9r:B u 9r:C) indues the ls alls:

ls(A;B); ls(A;C); ls(B;B); ls(B;C); ls(C;B); ls(C;C) in a naive realization. But only

the trivial ombinations ls(B;B) and ls(C;C) add existential restritions to the approx-

imation whih are not subsumed by the other ombinations. Therefore, in this ase, the

existential restritions an be obtained without using the ls at all. So, in order to obtain

the orret approximation in general, it suÆes to ompute the ls only of those ombina-

tions that do not have a superset among the ombinations. This method is employed in

our implementation, we ompute �rst the minima (w.r.t. subset) of the set of ombinations

and then apply the ls to the remaining ombinations.

We applied -approx

ALE

to ALC-onepts from a TBox derived from our appliation in

hemial proess engineering. This appliation TBox ontains 120 onepts and 40 roles.

Surprisingly, for our unfolded input onepts with onept sizes up to 740, it turned out

that the approximations were always smaller than their unfolded input onepts. The

approximations had an average onept size of 81 and they had just a third of the size

of the unfolded input onepts on the average. Eah of the test onept desriptions was

approximated within less than 3 seonds runtime. Unfortunately, our implementation ran

out of memory omputing approximations of some randomly generated ALC-onepts of

similar size, but onsisting of big disjuntions with more than 6 disjunts.

5 THE DIFFERENCE OPERATOR 15

So, our prototypial implementation of -approx

ALE

indiates that, despite the high

theoretial omplexity, the approximation inferene might be pratiable for ases relevant

in appliations. Further optimizations are of ourse neessary. Standard optimization

tehniques as lazy unfolding are very likely to highly improve the performane for run-

times as well as for sizes of returned onepts.

5 The di�erene operator

In the previous setion we have seen how to ompute theALE-approximation of a givenALC-

onept desription. For suh a pair C;D of approximated and approximating onepts,

a very natural question regards the loss of information, i.e., what aspets of C are not

aptured by D.

An answer to suh questions requires a notion of the \di�erene" between onept de-

sriptions. For instane, a omparison between the example onept C

ex;2

from Example 4

and its approximation 9r:(A u :B) u 9r:(B u :A) should reveal that the value restrition

8r:(:A t :B) is not aptured by the approximation.

A �rst approah for a di�erene-operator has been proposed by Teege [14℄. Here, the

di�erene C �D of two given L-onept desriptions with C v D has been de�ned as

maxfE 2 L j E uD � Cg

where the maximum is de�ned with respet to subsumption. Sine ALC provides full

negation, the most general onept E with E uD � C is always C t :D. Consequently,

the di�erene operator proposed by Teege would return

(9r:A u 9r:B u 8r:(:A t :B)) t :(9r:(A u :B) u 9r:(B u :A))

as the di�erene between C

ex;2

and its approximation, whih obviously does not help a

human user to asertain the information lost by the approximation.

The example illustrates that it might be promising to look for a syntati minimum

instead of a semanti maximum in order to �nd a ompat representation of the di�erene

of two onepts. In [11℄, a so-alled subdesription ordering has been proposed to deal

with syntatial redundanies. In order to extend this approah to our ase the �rst step

is to introdue an analogous ordering on ALC-onepts. The idea is to obtain a subdesrip-

tion of some ALC-onept desription C by means of two kinds of modi�ations. Firstly,

by making inonsistenies expliit; and seondly, by removing disjunts and onjunts,

and by replaing some existential or value restritions by their respetive subdesriptions.

Formally, this leads to the following de�nition.

De�nition 17 Let C;D be an ALC-onept desriptions in ALC-normal form. Let C =

C

1

t � � � tC

n

. Then, D �

d

C i� D 2 f?;>g or D is obtained from C by performing some

of the following steps.

1. Remove some disjunts C

i

for 1 � i � n,

5 THE DIFFERENCE OPERATOR 16

2. for every remaining C

i

:

(a) remove some onjunts A 2 prim(C

i

),

(b) remove some onjunts 9r:C

0

i

with C

0

i

2 ex

r

(C

i

),

() remove the onjunt 8r:val

r

(C

i

),

(d) for every remaining C

0

i

2 ex

r

(C

i

)[fval

r

(C

i

)g: replae C

0

i

by C

00

i

with C

00

i

�

d

C

0

i

.

As an example, onsider the onept desriptions C := 9r:Au8r::B and D := (9r:(At

B)u8r::B)t (9r::Au8r:A). By removing the last disjunt from D and removing the last

disjunt in the remaining existential restrition we �nd that C �

d

D. Note that C � D.

Based on the subdesription ordering, we an provide the new de�nition of the di�erene

operator.

De�nition 18 Let C be ALC-onept desriptions in ALC-normal form and D be ALE-

onept desriptions in ALE-normal form. Then, the ALC-onept desription E is alled

the di�erene of C and D, (C �D for short), i�

1. E uD � C uD

2. For every ALE-onept desription E

0

with E

0

uD � C uD it holds that either E �

d

E

0

or E and E

0

are inomparable with respet to �

d

.

Intuitively, the idea is to remove all subdesriptions from C whih are either redundant

in C or already present inD. It should be noted that in ase ofC v D, and thus, CuD � C,

the only di�erene to Teege's di�erene operator is that the minimum w.r.t. �

d

is used

instead of the maximum w.r.t. v. In general, the di�erene C � D is not maximal with

respet to subsumption, as a simple example illustrates. For C = A t B and D = B, we

obtain C �D = A, although C u (A t B) � C uD, i.e., A t B is a more general solution

w.r.t. subsumption.

Finally, it should be noted that a priori the di�erene between C and D is not uniquely

determined. By abuse of language and notation, we will still refer to the di�erene C�D.

Coming bak to the example from the beginning of this setion, the di�erene (aording

to De�nition 18) between C

ex;2

and its approximation is in fat the desired value restrition

8r:(:A t :B).

Having de�ned our di�erene operator, we need to devise an algorithm to atually

ompute the di�erene C � D. In [11℄, an algorithm has been proposed to ompute the

di�erene C � D of ALE-onept desriptions C and D. Extending this algorithm to the

ase of ALC-onept desriptions C yields our de�nition of the algorithm -di� as depited

in Figure 1.

If C is a disjuntion of subonepts C

i

then the di�erene between C and D is omputed

by �rstly omputing the di�erenes between the disjunts and D and then eliminating the

semantially redundant resulting disjunts. In n = 1, C is a onjuntion of ALC-onept

desriptions (with possibly just one onjunt). In this ase, redundant onept names

and existential restritions on the top-level onjuntion of C are removed. Furthermore,

5 THE DIFFERENCE OPERATOR 17

Input: ALC-onept desription C = C

1

t � � � t C

n

in ALC-normal form,

ALE-onept desription D

Output: -di�(C;D)

1. If C uD � ?, then -di�(C;D) := ?;

2. If n > 1, then let -di�(C;D) :=

n

t

i=1

-di�(C

i

; D) and iteratively remove

-di�(C

j

; D) from the disjuntion in ase -di�(C

j

; D) v t

i 6=j

-di�(C

i

; D);

3. If n = 1, then -di�(C;D) :=

u

A2prim(C)nprim(D)

A u 8r:-di�(val

r

(C); val

r

(D)) u u

E2E

0

r

9r:E

where the value restrition is omitted in ase -di�(val

r

(C); val

r

(D)) � >

and E

0

r

is omputed as follows:

Let E

r

= fC

0

1

; : : : ; C

0

n

g := ex

r

(C).

For i = 1 to n do begin

If (i) there exists C

0

2 E

r

n fC

0

i

g with val

r

(D) u val

r

(C) u C

0

v C

0

i

, or

(ii) there exists D

0

2 ex

r

(D) with val

r

(D) u val

r

(C) uD

0

v C

0

i

then E

r

:= E

r

n fC

0

i

g

end

E

0

r

:= fE

�

j E 2 E

r

g where E

�

:= -di�(E; val

r

(C) u val

r

(D)), if val

r

(C) is

an ALE-onept desription, and E

�

:= -di�(E; val

r

(D)) otherwise.

Figure 1: The algorithm -di�(C;D).

redundanies in existential restritions and value restritions are removed reursively. The

set E

0

r

an be omputed by iteratively removing existential restritions of C that do not

satisfy Conditions 3(i) or 3(ii). Given an orale for subsumption, this an be arried out

in polynomial time.

The following lemma proves that -di�(C;D) respets the �rst ondition of the di�er-

ene operator (De�nition 18), i.e., it does not remove too muh from the original onept

desription C.

Lemma 19 Let C be an ALC-onept desription in ALC-normal form and D an ALE-

onept desription in ALE-normal form. Then, -di�(C;D) uD � C uD.

Proof. Proof by indution over the struture of C.

1. C 2 prim(C)

As prim(-di�(C;D)) = prim(C) nprim(D), it follows that -di�(C;D)uD is equiv-

alent to D u u

A2prim(-di�(C;D))

A. We an safely add to this another onjunt more

5 THE DIFFERENCE OPERATOR 18

general than D yielding

D u u

A2prim(-di�(C;D))

A u u

A2prim(C)\prim(D)

A.

The expression thus obtained is equivalent to C uD.

2. C = C

1

t C

2

Without loss of generality, assume exatly two disjunts on the top-level of C. By

de�nition, even after removing redundant disjunts, -di�((C

1

tC

2

); D) is equivalent

to -di�(C

1

; D) t -di�(C

2

; D). Hene, the onjuntion -di�((C

1

t C

2

); D) with D

an be simpli�ed to -di�(C

1

; D)uDt -di�(C

2

; D)uD. Aording to the indution

hypothesis, this yields (C

1

uD) t (C

2

uD), whih simpli�es to (C

1

t C

2

) uD.

3. No disjuntion on the top-level of C

Show -di�(C;D) u D � C u D. Aording to the haraterization of subsumption

(Theorem 11), three onditions must hold for equivalene:

� The set of primitive onepts prim(-di�(C;D)uD) equals prim(-di�(C;D))[

prim(D) whih by de�nition is (prim(C) n prim(D)) [prim(D). This is equal

to prim(C) [prim(D), the set of primitive onepts in C uD.

� By indution hypothesis, -di�(val

r

(C); val

r

(D))u val

r

(D) is equivalent to val

r

(C)u

val

r

(D). By de�nition val

r

(C uD) is equivalent to val

r

(C)u val

r

(D) whih on-

ludes this ase.

� Show (v). Let F

0

2 ex

r

(C uD). We have to �nd an E

0

2 ex

r

(-di�(C;D) uD)

with E

0

u val

r

(-di�(C;D) u D) v F

0

. From the previous ase we know that

val

r

(-di�(C;D)uD) is equivalent to val

r

(C uD). Sine ex

r

(C uD) is equal to

the union ex

r

(-di�(C;D)) [ex

r

(D) we may distinguish two ases.

If F

0

2 ex

r

(D) then we an selet E

0

:= F

0

, beause it also ours in the set

ex

r

(-di�(C;D) u D) whih is the onjuntion of the onept desriptions in

ex

r

(-di�(C;D))[ex

r

(D). We thus obviously �nd E

0

u val

r

(-di�(C;D)uD) v

F

0

.

If F

0

2 ex

r

(C) n ex

r

(D), then Conditions 3(i) and 3(ii) in the de�nition of

the algorithm -di�(C;D) guarantee that there exists an existential restri-

tion

~

E

0

2 ex

r

(-di�(C;D)) with the following properties. If val

r

(C) is an

ALE-onept desription then

~

E

0

is of the form -di�(E

0

; (val

r

(D) u val

r

(C)))

with E

0

u val

r

(D) u val

r

(C) v F

0

. Aording to the indution hypothesis,

-di�(E

0

; (val

r

(D)u val

r

(C)))u val

r

(D)u val

r

(C) is equivalent to E

0

u val

r

(D)u

val

r

(C). Consequently, we �nd that

~

E

0

u val

r

(C) u val

r

(D) v F

0

. It is easy to

see that val

r

(C)u val

r

(D) is equivalent to val

r

(C uD) whih again is equivalent

to val

r

(-di�(C;D) u D) as we know from above. Hene, we have found an

~

E

0

with

~

E

0

u val

r

(-di�(C;D) uD) v F

0

. If D is no ALE-onept desription then

~

E

0

is of the form E

0

u val

r

(D). This ase is analogous to the previous one.

5 THE DIFFERENCE OPERATOR 19

Show (w). In analogy to the ase (v), onsider some E

0

2 ex

r

(-di�(C;D)uD).

We have to �nd an F

0

2 ex

r

(C u D) suh that F

0

u val

r

(C u D) v E

0

. Again,

we have two ases to disriminate.

If E

0

2 ex

r

(D), then we an again selet F

0

:= E

0

whih also ours in ex

r

(CuD).

If E

0

2 ex

r

(-di�(C;D)) n ex

r

(D), then Condition 3(ii) guarantees that an F

0

2

ex

r

(D) � ex

r

(CuD) exists suh that F

0

uval

r

(C)uval

r

(D) v E

0

. As seen above,

val

r

(C) u val

r

(D) is equivalent to val

r

(C uD) whih onludes the argument.

We still have to examine the omputational omplexity of the algorithm -di�. In the

following orollary it is shown that -di� is a polynomial time algorithm.

Corollary 20 Given an orale for subsumption, the algorithm -di� is a polynomial time

algorithm, i.e., for a given ALC-onept desription C in ALC-normal form and an ALE-

onept desription D, the omputation of -di�(C;D) takes at most polynomial time in

the size of C and D.

Proof. It is not diÆult to see that the size of the output -di�(C;D) never exeeds the

size of C: if n > 1 then the di�erene is simply distributed to the disjunts, and if n = 1

then, (1) some primitive onepts are removed, thus reduing the size of the resulting on-

ept desription, (2) the value restrition is handled reursively and (3) some existential

restritions are removed while the remaining ones are also handled reursively. Conse-

quently, during the reursive omputation of -di�(C;D) the algorithm is never applied to

an argument exeeding the size of the input. Neither does the algorithm introdue new

existential or value restritions during the omputation of -di�(C;D).

Thus, it is suÆient for our laim to show that (1) the omputation of the subset E

0

r

takes

only polynomial time in the size of the input and (2) there are at most polynomially many

(in the size of C and D) alls to -di� during the reursive omputation of -di�(C;D).

1. As the ondition in Step 3 states an appropriate subset E

0

r

an be found by iteratively

removing elements from the original set ex

r

(C) and verifying Conditions 3(i) and 3(ii)

in every iteration. Thus, the number of subsets to inspet is bounded by the size of

C. For every subset, a polynomial number of subsumption test must be made. Given

an orale for subsumption, this task osts only polynomial time.

2. Reursive alls to -di� are neessary for the omputation of -di�(val

r

(C); val

r

(D))

as well as for the omputation of every E

�

j

. Nevertheless, there is only one value

restrition val

r

(C) in C the size of whih is bounded by the size of C. As no new

value restritions are introdued, we have at most polynomially many expressions of

the form -di�(val

r

(C); val

r

(D)) to evaluate during the exeution of -di�(C;D).

As -di� does not introdue new existential restritions and as the size of its output

never exeeds the size of its input it is easy to see that the number of existential

restritions E

0

j

and their size is bounded by the input. Consequently, the number of

6 CONCLUSION 20

alls to -di� is bounded by the syntax tree of the input onept C whih again is

bounded by the size of C, sine C was assumed in ALC-normal form.

It should be realled though that transforming an arbitrary ALC-onept desription

into ALC-normal form an produe an exponentially larger onept desription. To sum-

marize the existing results, the following properties an be shown for every omputation

of the algorithm -di�(C;D).

Theorem 21 Let C be an ALC-onept desription in ALC-normal form and D be an

ALE-onept desription. Then, -di�(C;D) satis�es the following properties:

1. -di�(C;D) uD � C uD,

2. if C is an ALE-onept desription, then C � D is uniquely determined modulo asso-

iativity and ommutativity of onept onjuntion, and C �D and -di�(C;D) oinide

modulo assoiativity and ommutativity, and

3. given an orale for subsumption, the omputation of -di�(C;D) takes polynomial time

in the size of C and D.

The �rst property where only ALE is onsidered was already shown in [11℄. The others

have been shown in the above lemma and orollary.

We have implemented a prototype for the -di� algorithm in Lisp. For a �rst evaluation

we applied the -di� implementation to test onepts derived from our proess engineering

TBox. More preisely, we applied -di� to the same ALC-onept desriptions used for the

evaluation of -approx

ALE

together with their approximations generated by our -approx

ALE

implementation. For these test ases the -di� implementation returned onept desrip-

tions with an average size of 170 and a maximum size of 630. Thus, it turned out that

the onept size of the di�erene between original onept desription and its approxima-

tion is bigger than the approximation itself in many ases. Computing the di�erene took

2 seonds on the average and eah di�erene was omputed within 6.5 seonds runtime.

Unlike -approx

ALE

this prototypial implementation behaved also well on randomly gen-

erated onept desriptions. But for pratial appliations of this non-standard inferene

powerful optimizations are still neessary. Moreover, the output onept desriptions need

to be smaller and more ompat in order to be readable and omprehensible for a human

user.

6 Conlusion

The present paper has investigated a new inferene problem for DLs, namely omputing

the approximation of onepts from one DL in another DL. For the onrete ase of ap-

proximating ALC-onepts in ALE the seemingly simple task of eliminating disjuntions in

onepts may fail without the omputation of normal forms and the propagation of value

REFERENCES 21

restritions to existential restritions. As a main result, we have devised a orret and

e�etive algorithm to ompute upper approximations of ALC-onepts in ALE.

In order to asertain the auray of the approximation, we have proposed a di�erene

operator and a orresponding algorithm whih e�etively omputes a ompat representa-

tion of the subonepts not present in the approximation. The algorithm is orret in the

sense that does not overlook subonepts missing in the approximation though it does not

always return a (syntatially) minimal onept.

Our �rst evaluation of the prototype implementations of -approx

ALE

and -di� indi-

ates that the implementations behave fairly good on test ases derived from our pratial

appliation. On the other hand there is learly a need for further optimization to employ

these new non-standard inferenes eÆiently in pratial appliations. Even more impor-

tant, sine the onept desriptions returned by both algorithms an grow quite big and

are therefore hard to read and omprehend by a human user, it is neessary to rewrite the

onepts using the onept de�nitions from the underlying ALC-TBox to obtain smaller

onepts. To this purpose, one needs to extend the existing rewriting approah for ALE [2℄

to ALC.

As an algorithm for the ls of ALEN -onepts exists [12℄, a future step is to extend the

present approximation tehnique to ALCN , thus produing ALEN -approximations. Fur-

thermore, it is desirable to investigate further if optimal solutions for the di�erene of

ALC-onepts always exist and an be omputed e�etively.

Referenes

[1℄ F. Baader, R. K�usters, and R. Molitor. Computing least ommon subsumers in de-

sription logis with existential restritions. In T. Dean, editor, Proeedings of the

16th International Joint Conferene on Arti�ial Intelligene (IJCAI'99), pages 96{

101. Morgan Kaufmann, 1999.

[2℄ F. Baader, R. K�usters, and R. Molitor. Rewriting onepts using terminologies. In

A. G. Cohn, F. Giunhiglia, and B. Selman, editors, KR2000: Priniples of Knowledge

Representation and Reasoning, pages 297{308, San Franiso, 2000. Morgan Kauf-

mann.

[3℄ P. G. Baker, A. Brass, S. Behhofer, C. Goble, N. Paton, and R. Stevens. TAMBIS:

Transparent aess to multiple bioinformatis information soures. In J. Glasgow, T.

Littlejohn, F. Major, R. Lathrop, D. Sanko�, and C. Sensen, editors, 6th Int. Conf.

on Intelligent Systems for Moleular Biology, pages 25{34, Montreal, Canada, 1998.

AAAI Press, Menlo Park.

[4℄ S. Behhofer, I. Horroks, C. Goble, and R. Stevens. Oiled: a reason-able ontology

editor for the semanti web. In F. Baader, G. Brewka, and Th. Eiter, editors, Proeed-

ings of the Joint German/Austrian Conferene on AI (KI 2001), volume 2174 of Le-

REFERENCES 22

ture Notes in Arti�ial Intelligene, pages 396{408, Vienna, Austria, 2001. Springer{

Verlag.

[5℄ A. Borgida and D. W. Etherington. Hierarhial knowledge bases and eÆient disjun-

tive reasoning. In H. J. Levesque R. J. Brahman and R. Reiter, editors, Proeedings

of the 1st International Conferene on Priniples of Knowledge Representation and

Reasoning, pages 33{43, Toronto, Canada, May 1989. Morgan Kaufmann.

[6℄ S. Brandt and A.-Y. Turhan. Using non-standard inferenes in desription log-

is | what does it buy me? In Proeedings of the KI-2001 Workshop on

Appliations of Desription Logis (KIDLWS'01), number 44 in CEUR-WS, Vi-

enna, Austria, September 2001. RWTH Aahen. Proeedings online available from

http://SunSITE.Informatik.RWTH-Aahen.DE/Publiations/CEUR-WS/Vol-44/.

[7℄ W. W. Cohen, A. Borgida, and H. Hirsh. Computing least ommon subsumers in

desription logis. In W. Swartout, editor, Proeedings of the 10th National Conferene

on Arti�ial Intelligene, pages 754{760, San Jose, CA, July 1992. MIT Press.

[8℄ F. M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and A. Spaamela. The

omplexity of existential quanti�ation in onept languages. Arti�ial Intelligene,

53(2{3):309{327, 1992.

[9℄ V. Haarslev and R. M�oller. Desription of the RACER system and its appliations.

In Proeedings of the International Workshop in Desription Logis 2001 (DL2001),

Stanford, USA, August 2001.

[10℄ I. R. Horroks. Using an expressive desription logi: FaCT or �tion? In A. G. Cohn,

L. Shubert, and S. C. Shapiro, editors, KR'98: Priniples of Knowledge Represen-

tation and Reasoning, pages 636{645. Morgan Kaufmann, San Franiso, California,

1998.

[11℄ R. K�usters. Non-Standard Inferenes in Desription Logis, volume 2100 of Leture

Notes in Arti�ial Intelligene. Springer-Verlag, 2001.

[12℄ R. K�usters and R. Molitor. Computing Least Common Subsumers in ALEN. In

B. Nebel, editor, Proeedings of the Seventeenth International Joint Conferene on

Arti�ial Intelligene (IJCAI 2001), pages 219{224. Morgan Kaufman, 2001.

[13℄ M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with omple-

ments. Arti�ial Intelligene, 48(1):1{26, 1991.

[14℄ G. Teege. Making the di�erene: A subtration operation for desription logis. In

P. Torasso J. Doyle, E. Sandewall, editor, Proeedings of the 4th International Confer-

ene on Priniples of Knowledge Representation and Reasoning, pages 540{550, Bonn,

FRG, May 1994. Morgan Kaufmann.

REFERENCES 23

[15℄ A.-Y. Turhan and R. Molitor. Using lazy unfolding for the omputation of least

ommon subsumers. In Proeedings of the International Workshop in Desription

Logis 2001 (DL2001), Stanford, USA, August 2001.

