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Abstrat

The tableau algorithm implemented in the FaCT knowledge represen-

tation system deides satis�ability and subsumption in SHIQ, a very ex-

pressive desription logi providing, e.g., inverse and transitive roles, num-

ber restritions, and general axioms. Intuitively, the algorithm searhes

for a tree-shaped abstration of a model. To ensure termination of this

algorithm without ompromising orretness, it stops expanding paths in

the searh tree using a so-alled \double-bloking" ondition.

This ondition was learly more exating than was stritly neessary,

but it was assumed that more preisely de�ned bloking onditions would,

on the one hand, make the proof of the algorithm's orretness far more

diÆult and, on the other hand (and more importantly), be so ostly to

hek as to outweigh any bene�t that might be derived.

However, FaCT's failure to solve UML derived knowledge bases led

us to reonsider this onjeture and to formulate more preisely de-

�ned bloking onditions. We prove that the revised algorithm is still

sound and omplete, and demonstrate that it greatly improves FaCT's

performane|in some ases by more than two orders of magnitude.
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1 Introdution

Desription Logis (DLs) form a family of knowledge representation formalisms

designed for the representation of and reasoning about terminologial knowledge.

They an be viewed as o�springs of semanti networks and frame-based systems,

whose development was motivated by the insight that suh systems need a well-

de�ned, implementation-independent semantis. A �rst attempt towards this

goal was made by Kl-One

[

BS85

℄

, a suessful and highly inuential knowledge

representation system.

The two main inferene problems addressed by Kl-One were subsumption

between pairs of onepts, whih was used to arrange the onepts de�ned in a

knowledge base into a taxonomy, and satis�ability of single onepts, whih was

used to hek the onsisteny of the knowledge base. Unfortunately, when the

underlying representational formalism was studied in detail, it turned out that

the above mentioned inferene problems were undeidable

[

Sh89

℄

. It might

be argued that semi-deidability is �ne for other appliations, and thus ould

be tolerated, but sine subsumption an be redued to unsatis�ability and sat-

is�ability to non-subsumption, one of both problems would always be truly

undeidable.

Following this observation, the developers of the Classi system from

AT&T

[

BBMAR89

℄

deided that the DL underlying Classi should not only

be deidable, but be realistially deidable, i.e., they wanted the orrespond-

ing inferene problems to be deidable in polynomial time. Thus they severely

restrited the expressive power of their DL, and designed a (sub-Boolean) DL

with tratable, sound, and omplete inferene algorithms.

In parallel, the omputational omplexity of a variety of DLs was investi-

gated, and it turned out that the inferene problems of (almost all) DLs with

interesting expressive power were at least Pspae-omplete

[

DLNdN91

℄

, i.e., of

a omplexity apparently far too high to be pratiable. Despite this disour-

aging assessment with regard to worst ase performane, several researhers

implemented satis�ability/subsumption algorithms for suh DLs

[

BFH

+

94;

BFT95

℄

, and developed sophistiated optimisation tehniques designed to im-

prove typial ase performane. Surprisingly, these Pspae algorithms proved

amenable to optimisation and behaved well in pratise|it was found that the

pathologial ases that lead to the high omplexity of these DLs are so arti�ial

that they rarely our in pratie

[

Neb90; HKNP94; SvRvdVM95

℄

.

In the late 90's, motivated by a medial terminology appliation whih re-

quired even more expressive power, the DL system FaCT was implemented

with an underlying DL (�rst SHIF , later SHIQ) whih was of an even higher

omplexity, namely Exptime-omplete

[

Hor98

℄

. Interestingly, after thought-

ful optimisations, this system showed the same behaviour as its predeessors,

i.e., it behaved very well in pratie. Other systems implementing Exptime-

omplete DLs were subsequently developed

[

HM01; PS99

℄

, and showed a similar

behaviour|a phenomenon that lead part of the DL ommunity to believe that,

with knowledge bases stemming from realisti appliations, \tratable" means

\in Exptime".
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At the same time, expressive DLs were shown to have useful appliations in

the database domain|in partiular they were shown to be useful for reason-

ing about oneptual models of databases expressed, e.g., in extended entity-

relationship diagrams or in UML

[

CLN98

℄

. Roughly speaking, suh a oneptual

model an be translated into a DL knowledge base, possibly with the addition

of further (integrity) onstraints, and the inferene servies of a standard DL

system an then be used to detet inonsistenies and impliit is-a links between

lasses, entities, or relations. This approah is espeially useful when integrating

databases or building data warehouses, and has been implemented in the Iom

tool for intelligent oneptual modelling

[

FN00

℄

. Interestingly, this translation

yields knowledge bases from realisti appliations that ould not be solved by

any of the available DL systems

[

BCDG01

℄

, even though the UML diagrams

that lead to these knowledge bases are relatively small and seemingly harmless.

In this paper, we report on an optimisation of the FaCT system that was

inspired by the failure of state-of-the-art DL systems to handle these knowledge

bases. Roughly speaking, FaCT performs a omplete searh of trees whose depth

an be exponential in the size of the input. It uses bak-traking searh and

a yle-detetion mehanism alled bloking that limits the tree depth (whih

ould otherwise be in�nite) to ensure termination without ompromising sound-

ness and ompleteness.

In order to deal with inverse roles and the possibility of onepts with only

in�nite models, the SHIQ algorithm implemented in FaCT introdued a new

and more sophistiated \double-bloking" tehnique

[

HST99b

℄

. The onditions

required to trigger a \blok" were more omplex than in earlier tableaux algo-

rithms for less expressive DLs, but were still provably orret (i.e., maintained

soundness and ompleteness) and relatively easy to hek. Although these on-

ditions were more exating than was stritly neessary, relaxing them would

have signi�antly inreased their omplexity, making it harder to prove that

they were still orret. Moreover, it seemed that the ost of heking more om-

plex onditions would be prohibitive, and likely to outweigh any bene�t that

might derive from establishing bloks at a shallower depth.

An investigation of FaCT's behaviour when failing to solve UML derived

knowledge bases has, however, lead us to reonsider this onjeture, to for-

mulate a more detailed and less strit bloking ondition and, as a matter of

ourse, to prove that the modi�ed algorithm is still sound and omplete. The

e�et of the optimised bloking ondition on FaCT's behaviour turned out to

be dramati|in some ases it improved the system's performane by more than

two orders of magnitude. Clearly, the value of improved bloking should not be

underestimated, even if the overhead seems onsiderable.

2 SHIQ-Syntax, Semantis, and Tableaux

In this setion, we de�ne syntax and semantis of SHIQ-onepts and roles. We

start with SHIQ-roles, then introdue some abbreviations, and �nally de�ne

SHIQ-onepts.
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De�nition 1 Let R be a set of role names with both transitive and normal

role names R

+

[ R

P

= R, where R

P

\ R

+

= ;. The set of SHIQ-roles is

R [ fR

�

j R 2 Rg. A role inlusion axiom is of the form

R v S;

for two SHIQ-roles R and S. A role hierarhy is a set of role inlusion axioms.

An interpretation I = (�

I

; �

I

) onsists of a set �

I

, alled the domain of I,

and a funtion �

I

whih maps every role to a subset of �

I

��

I

suh that, for

P 2 R and R 2 R

+

,

hx; yi 2 P

I

i� hy; xi 2 P

�

I

;

if hx; yi 2 R

I

and hy; zi 2 R

I

, then hx; zi 2 R

I

:

An interpretation I satis�es a role hierarhy R i� R

I

� S

I

for eah R v S 2 R;

we denote this fat by I j= R.

We introdue some notation to make the following onsiderations easier.

1. The inverse relation on roles is symmetri, and to avoid onsidering roles

suh as R

��

, we de�ne a funtion Inv whih returns the inverse of a role,

more preisely

Inv(R) :=

�

R

�

if R is a role name,

S if R = S

�

for a role name S.

2. Sine set inlusion is transitive and R

I

� S

I

implies Inv(R)

I

� Inv(S)

I

,

we introdue v* as the transitive-reexive losure of v on

R [ fInv(R) v Inv(S) j R v S 2 Rg:

We use R � S as an abbreviation for R v* S and S v* R.

3. Obviously, a role R is transitive if and only if its inverse Inv(R) is tran-

sitive. However, either R or Inv(R) is a role name, and only role names

an be elements of R

+

. Moreover, in yli ases suh as R � S, S

is transitive if R or Inv(R) is a transitive role name. In order to avoid

these ase distintions, the funtion Trans returns true i� R is a transitive

role|regardless whether it is a role name, the inverse of a role name, or

equivalent to a transitive role name (or its inverse):

Trans(R) :=

�

true if, for some S with S � R, S 2 R

+

or Inv(S) 2 R

+

false otherwise.

We are now ready to de�ne SHIQ-onepts.
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De�nition 2 A role R is alled simple with respet to R i� not Trans(R) and,

for any S v* R, S is also a simple role.

Let N

C

be a set of onept names. The set of SHIQ-onepts is the smallest

set suh that

1. every onept name C 2 N

C

is a onept,

2. if C and D are onepts and R is an SHIQ-role, then (C uD), (C tD),

(:C), (8R:C), and (9R:C) are onepts, and

3. if C is a onept, R is a simple SHIQ-role and n 2 N, then (6 n R C)

and (> n R C) are onepts.

The interpretation funtion �

I

of an interpretation I = (�

I

; �

I

) maps, addition-

ally, every onept to a subset of �

I

suh that

(C uD)

I

= C

I

\D

I

;

(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

n C

I

;

(9R:C)

I

= fx 2 �

I

j There is some y 2 �

I

with hx; yi 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fx 2 �

I

j For all y 2 �

I

, if hx; yi 2 R

I

, then y 2 C

I

g;

(6 n R C)

I

= fx 2 �

I

j ℄R

I

(x;C) 6 ng;

(> n R C)

I

= fx 2 �

I

j ℄R

I

(x;C) > ng;

where for a setM we denote the ardinality ofM by ℄M and R

I

(x;C) is de�ned

as fy j hx; yi 2 R

I

and y 2 C

I

g.

A onept C is alled satis�able with respet to a role hierarhy R i� there is

some interpretation I suh that I j= R and C

I

6= ;. Suh an interpretation is

alled a model of C with respet to R. A onept D subsumes a onept C with

respet toR (written C v

R

D) i� C

I

� D

I

holds for eah interpretation I with

I j= R. Two onepts C;D are equivalent with respet to R (written C �

R

D)

i� they are mutually subsuming. For an interpretation I, an individual x 2 �

I

is alled an instane of a onept C i� x 2 C

I

.

2.1 A SHIQ-Tableau

As usual, we de�ne appropriate abstrations of models, tableaux, whose existene

an be tested by a tableaux algorithm. The advantage of this abstration is that

they allow to replae the \global" ondition of the interpretation of transitive

roles into \loal" onditions.

For ease of onstrution, we assume all onepts to be in negation normal

form (NNF), that is, negation ours only in front of onept names. Any

SHIQ-onept an easily be transformed to an equivalent one in NNF by push-

ing negations inwards using a ombination of DeMorgan's laws and the following

equivalenes:
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:(9R:C) � (8R::C)

:(8R:C) � (9R::C)

:(6 n R C) � (> (n+ 1) R C)

:(> n R C) �

�

(8R::C) if n = 1

(6 (n� 1) R C) otherwise

For a onept C we will denote the NNF of :C by �C.

For a SHIQ-onept D in NNF and a role hierarhy, we de�ne los(D) to

be the smallest set that ontains D, is losed under sub-formulae and �, and

whih ontains, for eah subonept 8R:C 2 los(D) and role R

0

v* R, also the

onept 8R

0

:C. Then #los(D) is linear in jDj+ jRj.

De�nition 3 If R is a role hierarhy, D is a SHIQ-onept in NNF and R

D

is the set of roles ourring in D, together with their inverses, a tableau T for

D with respet to R is de�ned to be a triple (S;L;E) suh that: S is a set of

individuals, L : S ! 2

los(D)

maps eah individual to a set of onepts whih

is a subset of los(D), E : R

D

! 2

S�S

maps eah role in R

D

to a set of pairs

of individuals, and there is some individual s 2 S suh that D 2 L(s). For all

s 2 S, C;C

1

; C

2

2 los(D), and R;S 2 R

D

, T must satisfy:

T1 if C 2 L(s), then :C =2 L(s),

T2 if C

1

u C

2

2 L(s), then C

1

2 L(s) and C

2

2 L(s),

T3 if C

1

t C

2

2 L(s), then C

1

2 L(s) or C

2

2 L(s),

T4 if 8S:C 2 L(s) and hs; ti 2 E(S), then C 2 L(t),

T5 if 9S:C 2 L(s), then there is some t 2 S suh that hs; ti 2 E(S) and

C 2 L(t),

T6 if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then

8R:C 2 L(t),

T7 hs; ti 2 E(R) i� ht; si 2 E(Inv(R)),

T8 if hs; ti 2 E(R) and R v* S then hs; ti 2 E(S),

T9 if (6 n S C) 2 L(s), then ℄S

T

(s; C) 6 n,

T10 if (> n S C) 2 L(s), then ℄S

T

(s; C) > n,

T11 if (6 n S C) 2 L(s) and hs; ti 2 E(S) then C 2 L(t) or �C 2 L(t),

for

S

T

(s; C) := ft 2 S j hs; ti 2 E(S) and C 2 L(t)g:
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Lemma 1 A SHIQ-onept D is satis�able with respet to a role hierarhy R

i� there exists a tableau for D with respet to R.

Proof: For the if diretion, the onstrution of a model of D from a tableau

for D is similar to the one presented in

[

HST99a

℄

. If T = (S;L;E) is a tableau

for D with D 2 L(s

0

), a model I = (�

I

; �

I

) of D an be de�ned as follows:

�

I

= S

A

I

= fs j A 2 L(s)g for all onept names A in los(D)

R

I

= E(R) [

[

P v* R; Trans(R)

E(P )

+

for role names R

From the de�nition of R

I

, T7, and T8, it follows that, if hs; ti 2 S

I

, then

either hs; ti 2 E(S) or there exists a path hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R) for

some R with Trans(R) and R v* S.

To show that I is a model of D w.r.t. R, we have to prove (1) I j= R and

(2) D

I

6= ;. The �rst part is obvious due to T8 and the de�nition of Trans(�)

and �

I

. The seond part is shown by proving C 2 L(s)) s 2 C

I

for any s 2 S.

This implies D

I

6= ; sine T is a tableau for D and hene there must be some

s 2 S with D 2 L(s).

This will be proven by indution over norm k � k of a onept C. The norm

kCk for onept in NNF is indutively de�ned as follows:

kAk := k:Ak := 0 for A 2 N

C

kC

1

u C

2

k := kC

1

t C

2

k := 1 + kC

1

k+ kC

2

k

k8R:Ck := k9R:Ck := 1 + kCk

k(./ n S C)k := 1 + kCk;

where we use ./ as a plaeholder for both 6 and >. The two base ases of the

indution are C = A or C = :A. If A 2 L(s), then, by de�nition, s 2 A

I

. If

:A 2 L(s), then by T1, A 62 L(s) and hene s 62 A

I

. For the indution step we

have to distinguish several ases:

� C = C

1

u C

2

. T2 and C 2 L(s) imply that C

1

2 L(s) and C

2

2 L(s).

Hene, by indution, we have s 2 C

I

1

and s 2 C

I

2

, whih yields s 2

(C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous ase.

� C = 9S:E. T5 and C 2 L(s) implies the existene of an individual t 2 S

suh that hs; ti 2 E(S) and E 2 L(t). By indution, we have t 2 E

I

and,

from the de�nition of S

I

and T7, it follows that hs; ti 2 S

I

and hene

s 2 C

I

.

� C = 8S:E. Let s 2 S with C 2 L(s), let t 2 S be an arbitrary individual

suh that hs; ti 2 S

I

. There are two possibilities:

{ hs; ti 2 E(S). Then T4 implies E 2 L(t) and, by indution, t 2 E

I

.
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{ hs; ti 62 E(S). Then there exists a path hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2

E(R) for some R with Trans(R) and R v* S. Then T6 implies 8R:E 2

L(s

i

) for all 1 � i � n and, from T4, E 2 L(t) also holds. Again, by

indution, this implies t 2 E

I

.

In both ases, we have t 2 E

I

and, sine t has been hosen arbitrarily,

s 2 C

I

holds.

� C = (> n S E). For an s with C 2 L(s), we have ℄S

T

(s; E) > n. Hene

there are n individuals t

1

; : : : ; t

n

suh that t

i

6= t

j

for i 6= j, hs; t

i

i 2 E(S),

and E 2 L(t

i

) for all i. By indution, we have t

i

2 E

I

and, sine E(S) �

S

I

, also s 2 C

I

.

� C = (6 m S E). For this ase, we need that S is a simple role, whih

implies S

I

= E(S). Let s be an individual with C 2 L(s). Due to T11,

we have E 2 L(t) or �E 2 L(t) for eah t with hs; ti 2 E(S). Moreover,

℄S

T

(s; E) 6 n holds due to T9. We an show that ℄S

I

(s; E) 6 ℄S

T

(s; E):

assume ℄S

I

(s; E) > ℄S

T

(s; E). This implies the existene of some t with

hs; ti 2 S

I

with t 2 E

I

but E 62 L(t) (beause S

I

= E(S)). By T11 this

implies �E 2 L(t), whih, by indution yields t 2 (�E)

I

, in ontradition

to t 2 E

I

.

For the only-if diretion, we have to show that satis�ability ofD with respet

to R implies the existene of a tableau T for D with respet to R.

Let I = (�

I

; �

I

) be a model of D with I j= R. A tableau T = (S;L;E) for

D an be de�ned as follows:

S = �

I

E(R) = R

I

L(s) = fC 2 los(D) j s 2 C

I

g

It remains to demonstrate that T is a tableau for D:

� The Properties T1{T5, T7, and T9{T11 are satis�ed as a diret onse-

quene of the de�nition of the semantis of SHIQ-onepts.

� If s 2 (8S:C)

I

and hs; ti 2 R

I

for R with Trans(R) and R v* S, then

t 2 (8R:C)

I

unless there is some u suh that ht; ui 2 R

I

and u =2 C

I

.

In this ase, if hs; ti 2 R

I

, ht; ui 2 R

I

and Trans(R), then hs; ui 2 R

I

.

Hene hs; ui 2 S

I

and s =2 (8S:C)

I

|in ontradition to the assumption.

T therefore satis�es T6.

� T8 is satis�ed beause I j= R.
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3 An optimised bloking ondition for SHIQ

In this setion, we present an optimised version of the tableaux algorithm for

SHIQ from

[

HST99a

℄

. The optimisation onerns the bloking ondition, i.e.,

the mehanism that guarantees termination of the algorithm by preventing it

from non-termination.

3.1 Construting a SHIQ-Tableau

From Lemma 1, an algorithm whih onstruts a tableau for a SHIQ-onept

D an be used as a deision proedure for the satis�ability of D with respet to

a role hierarhy R. Suh an algorithm will now be desribed in detail. It uses

the same tehniques as the SHIQ-algorithm in

[

HST99a

℄

but for the modi�ed

pairwise-bloking ondition.

The algorithm presented here tries to onstrut, for an input onept C

0

,

a tableau whose relational struture forms a tree with C

0

in the label of the

root node. We must take speial are to prevent the algorithm from generating

a tree with arbitrarily long paths. In the original algorithm, we introdued a

so-alled double bloking ondition. Roughly speaking, if we �nd two nodes on

a path, a node x and its suessor y suh that they have two anestor nodes,

again, a node x

0

and its suessor y

0

suh that (1) x and x

0

are labelled with

the same onepts, (2) y and y

0

are labelled with the same onepts, and (3)

the relations between x and y are the same as those between x

0

and y

0

, then

this path is no longer modi�ed below y, i.e., it annot beome longer. Now, this

three-fold ondition is a rather strit one, e.g., the root node an never blok

another node, and thus bloking ours rather late, whih means that paths an

beome rather long.

In the following, we will loosen this ondition suh that bloking an our

earlier. Basially, we will restrit, in the onditions (1) and (2), the onepts to

the relevant ones and, in ondition (3), the relations to the relevant ones.

Moreover, to guarantee the termination of the algorithm, we have to make

sure that the >- and 6-rules annot be applied in a way that would yield an

in�nite sequene of rule appliations. This is enfored by reording whih nodes

have been introdued by an appliation of the >-rule and by prohibiting an

identi�ation of these nodes by the 6-rule.

De�nition 4 Let R be a role hierarhy and D a SHIQ-onept in NNF. A

ompletion tree with respet to R and D is a tree T where eah node x of

the tree is labelled with a set L(x) � los(D) and eah edge hx; yi is labelled

with a set of role names L(hx; yi) ontaining (possibly inverse) roles ourring

in los(D) or R. Additionally, we keep trak of inequalities between nodes of

the tree with a symmetri binary relation 6

:

= between the nodes of T.

Given a ompletion tree, anestors, suessors, et. are de�ned as usual.

A node y is alled an R-suessor of a node x if y is a suessor of x and

S 2 L(hx; yi) for some S with S v* R; y is alled an R-neighbour of x if y is an

R-suessor of x, or if x is an Inv(R)-suessor of y.

9



For a role S, a onept C, and a node x in T we de�ne S

T

(x;C) by

S

T

(x;C) := fy j y is S-neighbour of x and C 2 L(y)g:

A node is bloked if it is diretly or indiretly bloked. A node is diretly

bloked if it is -bloked or a-bloked.

1

A node w is a-bloked (see Figure 3.1 for

an illustration) if none of its anestors are bloked, it is not -bloked, and it

has anestors v and w

0

suh that w is a suessor of v and

B1 L(w) � L(w

0

),

B2 if w is an Inv(S)-suessor of v and 8S:C 2 L(w

0

), then

a. C 2 L(v), and

b. if there is some R with Trans(R) and R v* S suh that w is an Inv(R)-

suessor of v, then 8R:C 2 L(v),

B3 if (6 n S C) 2 L(w

0

), then

a. w is not an Inv(S)-suessor of v or

b. w is an Inv(S)-suessor of v and �C 2 L(v) or

. w is an Inv(S)-suessor of v, C 2 L(v), and w

0

has at most n � 1

S-suessors z with C 2 L(z), and

B4 if (> m T E) 2 L(w

0

) (resp. 9T:E 2 L(w

0

)), then

a. w

0

has at least m (resp. at least one) T -suessors z with E 2 L(z)

or

b. w is an Inv(T )-suessor of v and E 2 L(v).

A node w is -bloked (see Figure 3.1 for an illustration) if none of its an-

estors are bloked, it has anestors v and w

0

suh that w is a suessor of v,

and

2

B5 L(w) � L(w

0

),

B6 if w is an Inv(S)-suessor of v and 8S:C 2 L(w

0

), then

a. C 2 L(v), and

b. if there is some R with Trans(R) and R v* S suh that w is an Inv(R)-

suessor of v, then 8R:C 2 L(v),

B7 if (6 n T E) 2 L(w

0

), then w is not an Inv(T )-suessor of v or�E 2 L(v),

and

B8 if w is an U -suessor of v and (> m U F ) 2 L(v), then �F 2 L(w).

1

A -blok leads to a yle in the tableau to be onstruted, whereas an a-blok is unravelled

in the standard way.

2

Please note that B5 is idential to B1, and B6 to B2.
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In this ase, we say that w

0

is a -bloking andidate for w. We say that a

-bloking andidate w

0

1

for w -bloks w if there is no -bloking andidate w

0

2

for w \between" w

0

1

and w, i.e., if all -bloking andidates w

0

2

for w di�erent

from w

0

1

are anestors of w

0

1

. The de�nition of a node a-bloking another one is

analogous.

A node is indiretly bloked if its predeessor is bloked, and in order to avoid

wasted expansion after an appliation of the 6-rule, a node y will also be taken

to be indiretly bloked if it is a suessor of a node x and L(hx; yi) = ;.

For a node x, L(x) is said to ontain a lash if, for some onept name

A 2 N

C

, fA;:Ag � L(x), or if for a some onept C, some role S, and some

n 2 N: (6 n S C) 2 L(x) and there are n + 1 nodes y

0

; : : : ; y

n

suh that

C 2 L(y

i

), y

i

is an S-neighbour of x, and y

i

6

:

= y

j

for all 0 � i < j � n.

The algorithm initialises the treeT to ontain a single node x

0

, alled the root

node, with L(x

0

) = fDg, where D is the onept to be tested for satis�ability.

The inequality relation 6

:

= is initialised with the empty relation. T is then

expanded by repeatedly applying the rules from Figure 3.1. The order in whih

the rules are applied is the following: all rules are applied �rst to the anestors

of a node x before the >- or the 9-rule is applied to x.

The ompletion tree is omplete if, for some node x, L(x) ontains a lash or

if none of the rules is appliable. If, for an input onept D, the expansion rules

an be applied in suh a way that they yield a omplete, lash-free ompletion

tree, then the algorithm returns \D is satis�able", and \D is unsatis�able"

otherwise.

B2.b: Inv(R); R v* S;Trans(R)

B2: Inv(S)

v

w

0

w

)

B3.

� (n� 1) S-sus with C

)

B3.a

no Inv(S)

B2: 8S:C

B3: (6 n S C)

B4: (> m T E)

)

B4.a

� m T -sus with E

)

B3.b

�C

)

B4.b

E

)

B4.b

Inv(T )

)

B1

L(w) � L(w

0

)

)

B2.a

C, )

B2.b

8R:C

Figure 1: Illustration of an a-bloking situation. The double arrow indiates that

a opy of w

0

and its suessors is made a new suessor of v when onstruting

a tableau.
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w )

B5

L(w) � L(w

0

)

)

B8

�F

B6.b: Inv(R); R v* S;Trans(R)

B8: U

)

B7

no Inv(T )

v

w

0

B6: 8S:C

B7: (6 n T E)

B6: Inv(S)

)

B7

�E

)

B6.a

C, )

B6.b

8R:C

B8: (> m U F )

Figure 2: Illustration of a -bloking situation. The arrow going up to w

0

indiates that w

0

is made a new suessor of v when onstruting a tableau.

Remark: (a) Please note that some of the rules are non-deterministi|hene

the somewhat strange return behaviour of the algorithm.

(b) The intuition for the bloking onditions are as follows: when building a

tableau from a ompletion tree, an a-blok is unravelled in the standard way

(i.e., a opy of w

0

and its suessors is made a suessor of v), while a -blok

leads to a yli tableau sine the \original" w

0

is made a suessor of v. B1

and B5 ensure that w

0

satis�es all 8 restritions on v. B2 and B5 ensure that

v satis�es all \bakward" 8 restritions on w

0

. In the a-bloking ase, B3 and

B4 ensure that, when a opy of w

0

has v as a predeessor (instead of its former

predeessor), this opy still satis�es its at-most and at-least restritions. In the

-bloking ase, B5 ensures that at-most restritions on w

0

are still satis�ed

with the new neighbour v, and B6 ensures that at-least restritions on v are still

satis�ed even if several of its suessors are -bloked by the same node.

() A-bloking alone would have been enough to ensure orretness and

termination|however, -bloks may our earlier, and may thus lead to a better

performane.

(d) To make the following proofs easier, the bloking onditions are suh that a

node annot be both a-bloked and -bloked. If a node is -bloked, it annot

be a-bloked.

3.2 Soundness and Completeness

We will show that the algorithm is terminating, sound, and omplete.
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u-rule: if 1. C

1

u C

2

2 L(x), x is not indiretly bloked, and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x), x is not indiretly bloked, and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some C 2 fC

1

; C

2

g

9-rule: if 1. 9S:C 2 L(x), x is not bloked and

2. x has no S-neighbour y with C 2 L(y),

then reate a new node y with L(hx; yi) = fSg and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indiretly bloked, and

2. there is an S-neighbour y of x with C =2 L(y)

then L(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), x is not indiretly bloked, and

2. there is some R with Trans(R) and R v* S,

3. there is an R-neighbour y of x with 8R:C =2 L(y)

then L(y) �! L(y) [ f8R:Cg

hoose-rule: if 1. (6 n S C) 2 L(x), x is not indiretly bloked, and

2. there is an S-neighbour y of x with fC;�Cg \ L(y) = ;

then L(y) �! L(y) [ fEg for some E 2 fC;�Cg

>-rule: if 1. (> n S C) 2 L(x), x is not bloked and

2. there are no n nodes y

1

; : : : ; y

n

suh that C 2 L(y

i

),

y

i

is an S-neighbour of x, and y

i

6

:

= y

j

for 1 � i < j � n,

then reate n new nodes y

1

; : : : ; y

n

with L(hx; y

i

i) = fSg,

L(y

i

) = fCg, and y

i

6

:

= y

j

for 1 � i < j � n.

6-rule: if 1. (6 n S C) 2 L(x), x is not indiretly bloked,

2. ℄S

T

(x;C) > n, and there are two S-neighbours y; z of x with

C 2 L(y); C 2 L(z), y is a suessor of x, and not y 6

:

= z

then 1. L(z) �! L(z) [ L(y) and

2. if z is a suessor of x then

L(hx; zi) �! L(hx; zi) [ L(hx; yi)

else (z is a predeessor of x)

L(hz; xi) �! L(hz; xi) [ fInv(R) j R 2 L(hx; yi)g

3. L(hx; yi) �! ;

4. Set u 6

:

= z for all u with u 6

:

= y

Figure 3: The Expansion Rules for SHIQ
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Lemma 2 For eah SHIQ-onept D and role hierarhy R, the tableaux algo-

rithm terminates.

Proof: Let m = jlos(D)j, k the number of roles ourring in D, and n

max

the maximum n that ours in a onept of the form (./ n S C) 2 los(D).

Termination is a onsequene of the fat that, in priniple, the expansion rules

build a ompletion tree monotonially with bounded depth and breadth:

1. The expansion rules never remove nodes from the tree or onepts from

node labels. Edge labels an only be hanged by the 6-rule whih either

expands them or sets them to ;; in the latter ase, the node below the

;-labelled edge is bloked and will remain bloked forever.

2. Suessors of a node x are the result of an appliation of the 9- or the

>-rule to onepts of the form 9R:C (whih yields one suessor) and

(> n S C) (whih yields n suessors) in L(x). For a node x, eah of

these onepts an trigger the generation of suessors at most one. For

the 9-rule, if a suessor y of x was generated for a onept 9S:C 2 L(x)

and later L(hx; yi) is set to ; by an appliation of the 6-rule, then there

will be some S-neighbour z of x suh that C 2 L(z). For the >-rule: If

y

1

; : : : ; y

n

were generated by an appliation of the >-rule for a onept

(> n S C), then y

i

6

:

= y

j

holds for all 1 � i < j � n. This implies that

there will always be n S-neighbours y

0

1

; : : : ; y

0

n

of x with C 2 L(y

0

i

) and

y

0

i

6

:

= y

0

j

for all 1 � i < j � n sine the 6-rule an never merge two nodes

y

0

i

; y

0

j

(beause y

0

i

6

:

= y

0

j

) and, whenever an appliation of the 6-rule sets

L(hx; y

0

i

i) to ;, then there will be some S-neighbour z of x with C 2 L(z)

and z \inherits" all inequalities from y

0

i

.

Sine los(D) ontains a total of at most m 9R:C and (> n S C) onepts,

the out-degree of the tree is bounded by m � n

max

.

3. Suppose a node y has anestors x, y

0

, and x

0

with

� y is a suessor of x, y

0

is a suessor of x

0

,

� L(y) = L(y

0

),

� L(x) = L(x

0

), and

� L(hx; yi) = L(hx

0

; y

0

i),

and the >- or the 9-rule an be applied to y. Hene no rules an be applied

to any anestors of y. In this ase, y is a-bloked aording to De�nition 4.

Nodes are labelled with non-empty subsets of los(D) and edges with

subsets of R

D

, so there are at most 2

2m+k

di�erent possible labellings

for a pair of nodes and an edge. Therefore, if a path p is of length at

least 2

2m+k

then, from the a-bloking onditions de�ned in De�nition 4

and the fat that rules are applied �rst to anestors of a node before new

suessors of this node are generated, there must be two nodes y, y

0

on p

suh that y is diretly a-bloked by y

0

. Sine a path on whih nodes are

bloked annot beome longer, paths are of length at most 2

2m+k

.
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Lemma 3 (Soundness) If the expansion rules an be applied to a SHIQ-

onept D suh that they yield a omplete and lash-free ompletion tree with

respet to R, then D has a tableau with respet to R.

Proof: We build the tableau by (almost) standard unravelling similar to the

one in

[

HST99a

℄

. The only non-standard elements are due to (1) number restri-

tions and (2) the optimised bloking onditions: for (1), we must distinguish

di�erent suessors of a node that are a-bloked by the same node|in standard

unravelling, they would yield the same path, and thus at-least number restri-

tions on their predeessor might be violated. For -bloking, B8 implies that

the bloked node may not be a \witness" for an at-least restrition on its pre-

deessor, and thus we do not need to distinguish di�erent suessors of a node

that are bloked by the same node. For (2), if a node is -bloked by another

one, then we an build a yli model, i.e., make the bloking node a suessor

of the bloked node's predeessor.

Let T be a omplete and lash-free ompletion tree. A path is a sequene

of pairs of nodes of T of the form [

x

0

x

0

0

; : : : ;

x

n

x

0

n

℄. Let p = [

x

0

x

0

0

; : : : ;

x

n

x

0

n

℄ be a path.

We de�ne Tail(p) = x

n

and Tail

0

(p) = x

0

n

. With [pj

x

n+1

x

0

n+1

℄ we denote the path

[

x

0

x

0

0

; : : : ;

x

n

x

0

n

;

x

n+1

x

0

n+1

℄. The set Paths(T) is de�ned indutively as follows:

� For the root node x

0

of T, [

x

0

x

0

℄ 2 Paths(T), and

� For a path p 2 Paths(T) and a node z in T:

{ if z is a suessor of Tail(p) and z is not bloked, then [pj

z

z

℄ 2

Paths(T), or

{ if, for some node y in T, y is a suessor of Tail(p) and z a-bloks y,

then [pj

z

y

℄ 2 Paths(T).

Please note that, due to the onstrution of Paths, for p 2 Paths(T) with

p = [p

0

j

x

x

0

℄, x is not bloked, x

0

is neither -bloked nor indiretly bloked, and

x

0

is a-bloked i� x 6= x

0

. Furthermore, L(x

0

) � L(x) holds.

Now we an de�ne a tableau T = (S;L;E) with:

S = Paths(T)

L(p) = L(Tail(p))

E(R) = fhp; [pj

x

x

0

℄i 2 S� S j x

0

is an R-suessor of Tail(p)g [

fh[qj

x

x

0

℄; qi 2 S� S j x

0

is an Inv(R)-suessor of Tail(q)g [

fhp; [qj

y

y

℄i j p = [qj

y

y

jq

0

℄ and y -bloks an R-suessor of Tail(p)g [

fh[qj

y

y

℄; pi j p = [qj

y

y

jq

0

℄ and y -bloks an Inv(R)-suessor of Tail(p)g

Claim: T is a tableau for D with respet to R.

We have to show that T satis�es all the properties from De�nition 3.

� D 2 L([

x

0

x

0

℄) sine D 2 L(x

0

).
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� T1 holds beause T is lash-free; T2 and T3 hold beause Tail(p) is not

indiretly bloked and T is omplete.

� T4: Let 8S:C 2 L(p) and hp; qi 2 E(S).

If q = [pj

x

x

0

℄, then x

0

is an S-suessor of Tail(p) and thus ompleteness

implies C 2 L(x

0

). Sine L(x

0

) � L(x) = L(q), we have C 2 L(q).

If p = [qj

x

x

0

℄, then x

0

is an Inv(S)-suessor of Tail(q). If x = x

0

, then

8S:C 2 L(x

0

) and thus ompleteness implies that C 2 L(Tail(q)). If

x 6= x

0

, then 8S:C 2 L(x) together with B2.a implies that C 2 L(Tail(q)),

and thus C 2 L(q).

If q = [q

1

j

y

y

℄ and p = [q

1

j

y

y

jq

0

℄, then y -bloks an S-suessor z of Tail(p).

Sine T is omplete, C 2 L(z), and B5 implies that C 2 L(y). Hene

C 2 L(q).

If p = [p

1

j

y

y

℄ and q = [p

1

j

y

y

jp

0

℄, then y -bloks an Inv(S)-suessor z of

Tail(q) and 8S:C 2 L(y). In this ase, B6.a ensures that C 2 L(Tail(q)),

and thus C 2 L(q).

� T6 is quite similar to T4: Let 8S:C 2 L(p) and hp; qi 2 E(R) for some

R v* S with Trans(R). If q = [pj

x

x

0

℄, then x

0

is an R-suessor of Tail(p) and

thus ompleteness of T implies 8R:C 2 L(x

0

). If x 6= x

0

, then B1 implies

L(x

0

) � L(x). Thus 8R:C 2 L(q).

If p = [qj

x

x

0

℄, then x

0

is an Inv(R)-suessor of Tail(q) and hene Tail(q)

is an R-neighbour of x

0

. If x

0

= x, then 8S:C 2 L(x) and ompleteness

implies 8R:C 2 L(q). If x

0

6= x, then x a-bloks x

0

and 8S:C 2 L(x). Due

to B2.b, 8R:C 2 L(Tail(q)), and thus 8R:C 2 L(q).

If q = [q

1

j

y

y

℄ and p = [q

1

j

y

y

jq

0

℄, then y -bloks an R-suessor z of Tail(p).

Sine T is omplete, 8R:C 2 L(z), and B5 implies that 8R:C 2 L(y).

Hene 8R:C 2 L(q).

If p = [p

1

j

y

y

℄ and q = [p

1

j

y

y

jp

0

℄, then y -bloks an Inv(R)-suessor z

of Tail(q) and 8S:C 2 L(y). In this ase, B6.b ensures that 8R:C 2

L(Tail(q)), and thus 8R:C 2 L(q).

� T5: Let 9S:C 2 L(p) and x = Tail(p). Sine T is omplete, there are two

possibilities:

{ x has an S-suessor y in T with C 2 L(y).

� If y is not bloked, then q = [pj

y

y

℄ 2 S, hp; qi 2 E(S), and

C 2 L(q) beause L(y) = L(q).

� If y is a-bloked by some node z in T, then q = [pj

z

y

℄ 2 S,

hp; qi 2 E(S), and C 2 L(q) beause C 2 L(y) � L(z) = L(q).

� If y is -bloked by some node z in T, then p = [p

1

j

z

z

jp

0

℄,

hp; [p

1

j

z

z

℄i 2 E(S), and B5 implies that C 2 L(z) = L([p

1

j

z

z

℄).

16



{ otherwise, ompleteness implies that x is an Inv(S)-suessor of some

y in T with C 2 L(y). Thus p is of the form p = [qj

x

x

0

℄ and there are

only two possibilities:

� If Tail(q) = y, then hp; qi 2 E(S) and C 2 L(q).

� Let Tail(q) = u 6= y. Now x only has one predeessor in T, hene

u is not the predeessor of x. This implies x 6= x

0

, x a-bloks x

0

in T, and u is the predeessor of x

0

due to the onstrution of

Paths. Sine x has no S-suessor z with C 2 L(z), B4.b implies

that x

0

is an Inv(S)-suessor of u and C 2 L(u) = L(q). Hene

hp; qi 2 E(S) and C 2 L(q).

� T7 is satis�ed due to the symmetri de�nition of E. T8 is satis�ed due to

the de�nition of R-suessor that takes into aount v* .

� For T9, let p 2 S with (6 n S C) 2 L(p). Let x = Tail(p), x

0

= Tail

0

(p),

and

P := fq 2 S j hp; qi 2 E(S) and C 2 L(q)g:

By de�nition of E, P ontains at most one q that is of the form p = [qj

x

x

0

℄.

Due to B7 whih disallows -bloking in the ase where (6 n S C) is in

the label of the bloking node and C is in the label of the bloked node's

anestor in ase the bloked node is an Inv(S)-suessor, all other elements

q of P are either of the form

{ q = [pj

y

y

0

℄ for y

0

an S-suessor of x or

{ q = [p

1

j

u

u

℄ for p = [p

1

j

u

u

jp

0

℄ and u -bloks an S-suessor of x.

These elements of P are alled \forward" elements in the following.

Sine (1) T is lash-free and omplete and (6 n S C) 2 L(x), (2) eah y

0

for eah [pj

y

y

0

℄ 2 P is an S-suessor of x, (3) eah u -bloks an S-suessor

of x for eah q = [p

1

j

u

u

℄ with p = [p

1

j

u

u

jp

0

℄, and (4) eah bloked node is

bloked by exatly one anestor, there are at most n forward elements in

P .

It remains to show that, if there is some q with p = [qj

x

x

0

℄ in P , then there

are at most n� 1 forward elements in P (and thus at most n elements in

P ).

So, let q 2 P with p = [qj

x

x

0

℄ and Tail(q) = z.

{ If x = x

0

, then z is a predeessor of x and observations (1) to (4)

above yield that ℄P � n.

{ If x 6= x

0

, then x a-bloks x

0

and x

0

is an Inv(S)-suessor of z.

Moreover, all y

0

with [pj

y

y

0

℄ 2 P are S-suessors of x, and all u with

q = [p

1

j

u

u

℄ and p = [p

1

j

u

u

jp

0

℄ -blok an S-suessor of x. In this ase,

B3.a and B3.b are not possible, and B3. implies that P ontains at

most (n� 1) forward elements. Thus P ontains at most n elements,

and T9 is satis�ed.
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� T10: Assume (> n S C) 2 L(p). This implies that there exist n indi-

viduals y

1

; : : : ; y

n

in T suh that eah y

i

is an S-neighbour of Tail(p) and

C 2 L(y

i

). We laim that, for eah of these individuals, there is a path

q

i

suh that hp; q

i

i 2 E(S), C 2 L(q

i

), and q

i

6= q

j

for all 1 � i < j � n.

Obviously, this implies ℄S

T

(p; C) > n. Due to B8, whih prevents an

S-suessor y of Tail(p) with C 2 L(y) to be -bloked, there are three

possibilities for eah y

i

,

{ y

i

is an S-suessor of x and y

i

is not bloked in T. Then q

i

= [pj

y

i

y

i

℄

is a path with the desired properties.

{ y

i

is an S-suessor of x and y

i

is a-bloked in T by some node z.

Then q

i

= [pj

z

y

i

℄ is the path with the desired properties. Sine the

same z may blok several of the y

j

s, it is indeed neessary to inlude

y

i

expliitly into the path to ensure that [pj

z

y

i

℄ 6= [pj

z

y

j

℄ for y

i

6= y

j

.

{ Tail(p) is an Inv(S)-suessor of y

i

. There may be at most one suh

y

i

. This implies that p is of the form [qj

Tail(p)

Tail

0

(p)

℄ with Tail(q) = y

i

.

Again, q has the desired properties and, obviously, q is distint from

all other paths q

j

.

� T11: Let (6 n S C) 2 L(p) and hp; qi 2 E(S).

If q = [pj

x

x

0

℄ then x

0

is an S-suessor of Tail(p) and thus ompleteness

implies fC;�Cg \ L(x

0

) 6= ;. Sine L(x

0

) � L(x) = L(q), we have

fC;�Cg \ L(q) 6= ;.

If p = [qj

x

x

0

℄, then x

0

is an Inv(S)-suessor of Tail(q) and (6 n S C) 2

L(x). If x = x

0

, then ompleteness implies fC;�Cg \ L(Tail(q)) 6= ;.

If x 6= x

0

, then x bloks x

0

. The onstrution of E and hp; qi 2 E(S)

imply that B3.a is not possible, and B3.b together with B3. imply that

fC;�Cg \ L(Tail(q)) 6= ;.

If q = [p

1

j

u

u

℄ for p = [p

1

j

u

u

jp

0

℄, then u -bloks an S-suessor of Tail(p), and

ompleteness together with B5 implies that fC;�Cg \L(u) = fC;�Cg \

L(Tail(q)) 6= ;

If p = [q

1

j

u

u

℄ for q = [q

1

j

u

u

jq

0

℄, then u -bloks an Inv(S)-suessor of

Tail(q). Sine (6 n S C) 2 L(u), B7 implies that �C 2 L(Tail(q)), and

thus fC;�Cg \ L(q) 6= ;.

Lemma 4 (Completeness) If a SHIQ-onept D has a tableau with respet

to R, then the expansion rules an be applied to D suh that they yield a omplete

and lash-free ompletion tree with respet to R.

Proof: Let T = (S;L;E) be a tableau for D w.r.t. R. We use this tableau

to guide the appliation of the non-deterministi rules. To do this, we will

indutively de�ne a funtion �, mapping the individuals of the tree T to S suh

18



that, for eah x; y in T:

L(x) � L(�(x))

if y is an S-neighbour of x then h�(x); �(y)i 2 E(S)

x 6

:

= y implies �(x) 6= �(y)

9

=

;

(�)

Claim: Let T be a ompletion tree and � a funtion satisfying (�). If a rule

is appliable to T, then the rule an be applied to T suh that it yields a

ompletion tree T

0

for whih the funtion � an be extended to �

0

satisfying

(�).

Let T be a ompletion tree and � be a funtion that satis�es (�). We verify

the laim for eah of the expansion rules.

� The u-rule: If C

1

u C

2

2 L(x), then C

1

u C

2

2 L(�(x)). T2 implies

C

1

; C

2

2 L(�(x)) and hene the rule yields a T

0

for whih �

0

= � sati�es

(�).

� The t-rule: If C

1

t C

2

2 L(x), then C

1

t C

2

2 L(�(x)). T3 implies

fC

1

; C

2

g \L(�(x)) 6= ;. Hene the t-rule an add an appropriate C

i

and

�

0

= � sati�es (�).

� The 9-rule: If 9S:C 2 L(x), then 9S:C 2 L(�(x)) and T5 implies the

existene of an element t 2 S suh that h�(x); ti 2 E(S) and C 2 L(t). The

appliation of the 9-rule generates a new variable y with L(hx; yi) = fSg

and L(y) = fCg. Hene de�ne �

0

to be the extension of � with �

0

(y) = t,

and thus, due to T8, the result of applying the 9-rule T

0

satis�es (�) with

�

0

.

� The 8-rule: If 8S:C 2 L(x), then 8S:C 2 L(�(x)) and, if y is an S-

neighbour of x, then also h�(x); �(y)i 2 E(S) due to (�). Sine T is a

tableau, T4 implies C 2 L(�(y)) and hene the 8-rule an be applied

without violating (�).

� The 8

+

-rule: If 8S:C 2 L(x), then 8S:C 2 L(�(x)). If there is some R v* S

with Trans(R) and y is an R-neighbour of x, then also h�(x); �(y)i 2 E(R)

due to (�) and T8. Then T6 implies 8R:C 2 L(�(y)), and hene the

8

+

-rule an be applied without violating (�).

� The hoose-rule: If (6 n S C) 2 L(x), then (6 n S C) 2 L(�(x)) and, if

there is an S-neighbour y of x, then h�(x); �(y)i 2 E(S) due to (�) and

T8. Then T11 implies fC;�Cg \ L(�(y) 6= ;, and thus the hoose-rule

an add an appropriate onept E 2 fC;�Cg to L(x) without violating

(�).

� The >-rule: If (> n S C) 2 L(x), then (> n S C) 2 L(�(x)) and T10

implies ℄S

T

(�(x); C) > n. Hene there are individuals t

1

; : : : ; t

n

2 S suh

that h�(x); t

i

i 2 E(S), C 2 L(t

i

), and t

i

6= t

j

for 1 � i < j � n. The

>-rule generates n new nodes y

1

; : : : ; y

n

. By extending � to �

0

(y

i

) = t

i

19



for eah 1 � i � n, one obtains a funtion �

0

that satis�es (�) for the tree

resulting from the appliation of the >-rule.

� The 6-rule: If (6 n S C) 2 L(x), then (6 n S C) 2 L(�(x)) and T9

implies ℄S

T

(�(x); C) 6 n. If the 6-rule is appliable, we have ℄S

T

(x;C) >

n, whih implies that there are at least n+1 S-neighbours y

0

; : : : ; y

n

of x

suh that C 2 L(y

i

). Thus, there must be two nodes y; z 2 fy

0

; : : : ; y

n

g

suh that �(y) = �(z). Then �(y) = �(z) implies that y 6

:

= z annot hold

beause of (�), and y; z an be hosen suh that y is a suessor of x.

Hene the 6-rule an be applied without violating (�).

This laim implies the ompleteness of the tableaux algorithm: for the initial

ompletion tree onsisting of a single node x

0

with L(x

0

) = fDg and 6

:

= = ;, we

an give a funtion � that satis�es (�) by setting �(x

0

) := s

0

for some s

0

2 S

with D 2 L(s

0

) (suh an s

0

exists sine T is a tableau for D). Whenever a

rule is appliable to T, it an be applied in a way that maintains (�). Lemma 2

implies that any sequene of rule appliations must terminate. Due to (�), any

tree generated by these rule-appliations must be lash-free. This an be seen

by investigating the two possibilities for a lash:

� T annot ontain a node x with fC;:Cg 2 L(x) beause L(x) � L(�(x))

and �(x) satis�es T1.

� T annot ontain a node x with (6 n S C) 2 L(x) and n+1 S-neighbours

y

0

; : : : y

n

of x with C 2 L(y

i

) and y

i

6

:

= y

j

for 0 � i < j � n: sine

L(x) � L(�(x)), we have (6 n S C) 2 L(�(x)) and, sine y

i

6

:

= y

j

implies

�(y

i

) 6= �(y

j

), this would imply that ℄S

T

(�(x); C) > n, in ontradition

to T9.

Sine terminologies an be internalised in SHIQ

[

HST99b

℄

, we have the

following theorem:

Theorem 1 The tableaux algorithm is a deision proedure for the satis�ability

and subsumption of SHIQ-onepts with respet to role hierarhies and termi-

nologies.

4 Empirial evaluation

The modi�ed algorithm has been implemented in the FaCT system and

tested with knowledge bases (KBs) derived from realisti appliations: ei-

ther SHIQ enodings of UML diagrams

[

BCDG01

℄

or SHIQ translations of

OIL/DAML+OIL ontologies

[

FvHH

+

01

℄

. In eah ase, we have measured the

time taken to lassify the KB both with and without the optimised bloking

ondition, and also measured the maximum size and depth of trees onstruted

by the algorithm during the lassi�ation proedure. The results of these tests

are shown in Figure 4.
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Optimised Bloking Standard Bloking

KB time(s) depth size time(s) depth size

hospital 2 16 775 { 45 6874

library 0.25 9 147 1.25 11 153

restaurant 8 26 1280 672 36 5824

soer 36 27 3840 918 32 7087

geography 9 8 70 4506 18 5983

Figure 4: Comparison of KB lassi�ation times and data strutures.

It an be seen that the optimised bloking ondition uniformly improves

performane and that, in some ases, the improvement is quite dramati (more

than two orders of magnitude in the ase of the geography knowledge base).

3

The reason for this is the redution in the depth and size of the trees built by

the optimised algorithm. Apart from the inherent ost of building larger trees,

the size of the searh spae due to non-deterministi expansion may inrease

exponentially with the number of nodes in the model.

It may be interesting to onsider the geography KB in more detail in order to

see why the performane improvement is so dramati.

4

As the name suggests,

this KB desribes the geography of European ountries. For example, it inludes

the axioms:

Republi-of-Ireland v 9is-part-of:Ireland

Ireland v 9is-part-of:British-Isles

British-Isles v 9is-part-of:Western-Europe

Western-Europe v 9is-part-of:Europe

If these \part-of" relationships were uni-diretional, the KB would be rela-

tively trivial to lassify. However, the KB also ontains axioms speifying the

parts that make up various omposites, e.g.:

British-Isles v 9is-part-of

�

:Ireland u 9is-part-of

�

:Great-Britain

This kind of ylial onstrution is quite ommon in KBs that desribe

physially onneted strutures, and an also be seen for example in the Galen

medial terminology KB. The e�et of these ylial axioms an be seen when

lassifying the onept Europe. Figure 5 illustrates part of the tree built by the

using the standard double bloking. It an be seen that un-bloked nodes whose

label inludes Europe our several times in a single branh of the tree. The

fourth node in the branh is not bloked beause the �rst ourrene of Europe

is in the label of the root node, whih has no predeessor and thus annot be a

3

Without optimised bloking, FaCT was unable to lassify the hospital KB|system re-

soures (memory) were exhausted after 86s of proessing.

4

Please note that the authors do not make any laims for the \quality" or \orretness"

of this ontology.
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bloking node. The seventh node in the branh is not bloked beause the label

of its predeessor ontains Southern-Europe, whereas the label of the predeessor

of the fourth node ontains Western-Europe. Note that eah un-bloked node

with Europe in its label will lead to the generation of a large sub-tree due to

an axiom that lists all the ountries that make up Europe. In ontrast, the

optimised bloking ondition allows the root node to -blok the fourth node,

greatly reduing the total size of the tree.

fEurope; : : :g

fBelgium; : : :g

fWestern-Europe; : : :g

fEurope; : : :g

fItaly; : : :g

fSouthern-Europe; : : :g

fEurope; : : :g

is-part-of

�

is-part-of

is-part-of

is-part-of

�

is-part-of

is-part-of

is-part-of

�

Figure 5: Tree built by unoptimised algorithm for onept Europe

The hospital, library, restaurant, and soer KBs were all derived from the

enoding in SHIQ of UML diagrams. The nature of the enoding means that

the resulting KBs tend to be highly ylial. Moreover, if the UML diagrams

inlude maximum ardinality onstraints on relations (e.g., single valued rela-

tions), then the enoded KB will inlude quali�ed at most restritions, possibly

with omplex qualifying onepts (i.e., onepts of the form (6nR:C) where C is

non-atomi). The expansion of these onepts is highly non-deterministi (due

to the !

�

- and the !

hoose

-rule), and it is ritial to minimise the number of

node labels in whih they our. In the ase of the hospital KB, for example, the

degree of non-determinism in the larger tree generated without the optimised

bloking ondition is so great that, in attempting to searh it, FaCT exhausts

the system's memory.

5 Disussion

In order to deal with inverse roles and number restritions in a logi laking the

�nite model property, the SHIQ algorithm implemented in the FaCT system
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introdued a new and more sophistiated \double-bloking" tehnique. The

onditions under whih a blok ould be established were learly more exating

than was stritly neessary, but it was assumed that, apart from the diÆulty

of proving soundness and ompleteness, the inreased ost of heking more

preisely de�ned onditions would outweigh any bene�t that might be derived.

The failure of the FaCT system to solve UML derived knowledge bases lead

us to reonsider this onjeture, and we have presented an optimised algorithm

that heks for two di�erent kinds of blok, with more preisely de�ned ondi-

tions under whih eah an be established. In spite of this inreased omplexity,

we have been able to prove that the optimised algorithm is still sound and om-

plete, and have shown that in some ases it an improve FaCT's performane

by more than two orders of magnitude.

Clearly, the adverse e�ets of the striter standard bloking ondition should

not have been underestimated. IneÆient bloking an lead to an inrease in

the size of the tree onstruted by the algorithm, and given a logi with the

omplexity of SHIQ this an lead to a atastrophi blow up in the size of the

searh spae (the number of di�erent trees that must be explored). As we have

shown, this e�et an be observed in realisti knowledge bases derived both from

the enoding of UML diagrams and from OIL/DAML+OIL ontologies.
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