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Abstra
t

The tableau algorithm implemented in the FaCT knowledge represen-

tation system de
ides satis�ability and subsumption in SHIQ, a very ex-

pressive des
ription logi
 providing, e.g., inverse and transitive roles, num-

ber restri
tions, and general axioms. Intuitively, the algorithm sear
hes

for a tree-shaped abstra
tion of a model. To ensure termination of this

algorithm without 
ompromising 
orre
tness, it stops expanding paths in

the sear
h tree using a so-
alled \double-blo
king" 
ondition.

This 
ondition was 
learly more exa
ting than was stri
tly ne
essary,

but it was assumed that more pre
isely de�ned blo
king 
onditions would,

on the one hand, make the proof of the algorithm's 
orre
tness far more

diÆ
ult and, on the other hand (and more importantly), be so 
ostly to


he
k as to outweigh any bene�t that might be derived.

However, FaCT's failure to solve UML derived knowledge bases led

us to re
onsider this 
onje
ture and to formulate more pre
isely de-

�ned blo
king 
onditions. We prove that the revised algorithm is still

sound and 
omplete, and demonstrate that it greatly improves FaCT's

performan
e|in some 
ases by more than two orders of magnitude.
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1 Introdu
tion

Des
ription Logi
s (DLs) form a family of knowledge representation formalisms

designed for the representation of and reasoning about terminologi
al knowledge.

They 
an be viewed as o�springs of semanti
 networks and frame-based systems,

whose development was motivated by the insight that su
h systems need a well-

de�ned, implementation-independent semanti
s. A �rst attempt towards this

goal was made by Kl-One

[

BS85

℄

, a su

essful and highly in
uential knowledge

representation system.

The two main inferen
e problems addressed by Kl-One were subsumption

between pairs of 
on
epts, whi
h was used to arrange the 
on
epts de�ned in a

knowledge base into a taxonomy, and satis�ability of single 
on
epts, whi
h was

used to 
he
k the 
onsisten
y of the knowledge base. Unfortunately, when the

underlying representational formalism was studied in detail, it turned out that

the above mentioned inferen
e problems were unde
idable

[

S
h89

℄

. It might

be argued that semi-de
idability is �ne for other appli
ations, and thus 
ould

be tolerated, but sin
e subsumption 
an be redu
ed to unsatis�ability and sat-

is�ability to non-subsumption, one of both problems would always be truly

unde
idable.

Following this observation, the developers of the Classi
 system from

AT&T

[

BBMAR89

℄

de
ided that the DL underlying Classi
 should not only

be de
idable, but be realisti
ally de
idable, i.e., they wanted the 
orrespond-

ing inferen
e problems to be de
idable in polynomial time. Thus they severely

restri
ted the expressive power of their DL, and designed a (sub-Boolean) DL

with tra
table, sound, and 
omplete inferen
e algorithms.

In parallel, the 
omputational 
omplexity of a variety of DLs was investi-

gated, and it turned out that the inferen
e problems of (almost all) DLs with

interesting expressive power were at least Pspa
e-
omplete

[

DLNdN91

℄

, i.e., of

a 
omplexity apparently far too high to be pra
ti
able. Despite this dis
our-

aging assessment with regard to worst 
ase performan
e, several resear
hers

implemented satis�ability/subsumption algorithms for su
h DLs

[

BFH

+

94;

BFT95

℄

, and developed sophisti
ated optimisation te
hniques designed to im-

prove typi
al 
ase performan
e. Surprisingly, these Pspa
e algorithms proved

amenable to optimisation and behaved well in pra
tise|it was found that the

pathologi
al 
ases that lead to the high 
omplexity of these DLs are so arti�
ial

that they rarely o

ur in pra
ti
e

[

Neb90; HKNP94; SvRvdVM95

℄

.

In the late 90's, motivated by a medi
al terminology appli
ation whi
h re-

quired even more expressive power, the DL system FaCT was implemented

with an underlying DL (�rst SHIF , later SHIQ) whi
h was of an even higher


omplexity, namely Exptime-
omplete

[

Hor98

℄

. Interestingly, after thought-

ful optimisations, this system showed the same behaviour as its prede
essors,

i.e., it behaved very well in pra
ti
e. Other systems implementing Exptime-


omplete DLs were subsequently developed

[

HM01; PS99

℄

, and showed a similar

behaviour|a phenomenon that lead part of the DL 
ommunity to believe that,

with knowledge bases stemming from realisti
 appli
ations, \tra
table" means

\in Exptime".
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At the same time, expressive DLs were shown to have useful appli
ations in

the database domain|in parti
ular they were shown to be useful for reason-

ing about 
on
eptual models of databases expressed, e.g., in extended entity-

relationship diagrams or in UML

[

CLN98

℄

. Roughly speaking, su
h a 
on
eptual

model 
an be translated into a DL knowledge base, possibly with the addition

of further (integrity) 
onstraints, and the inferen
e servi
es of a standard DL

system 
an then be used to dete
t in
onsisten
ies and impli
it is-a links between


lasses, entities, or relations. This approa
h is espe
ially useful when integrating

databases or building data warehouses, and has been implemented in the I
om

tool for intelligent 
on
eptual modelling

[

FN00

℄

. Interestingly, this translation

yields knowledge bases from realisti
 appli
ations that 
ould not be solved by

any of the available DL systems

[

BCDG01

℄

, even though the UML diagrams

that lead to these knowledge bases are relatively small and seemingly harmless.

In this paper, we report on an optimisation of the FaCT system that was

inspired by the failure of state-of-the-art DL systems to handle these knowledge

bases. Roughly speaking, FaCT performs a 
omplete sear
h of trees whose depth


an be exponential in the size of the input. It uses ba
k-tra
king sear
h and

a 
y
le-dete
tion me
hanism 
alled blo
king that limits the tree depth (whi
h


ould otherwise be in�nite) to ensure termination without 
ompromising sound-

ness and 
ompleteness.

In order to deal with inverse roles and the possibility of 
on
epts with only

in�nite models, the SHIQ algorithm implemented in FaCT introdu
ed a new

and more sophisti
ated \double-blo
king" te
hnique

[

HST99b

℄

. The 
onditions

required to trigger a \blo
k" were more 
omplex than in earlier tableaux algo-

rithms for less expressive DLs, but were still provably 
orre
t (i.e., maintained

soundness and 
ompleteness) and relatively easy to 
he
k. Although these 
on-

ditions were more exa
ting than was stri
tly ne
essary, relaxing them would

have signi�
antly in
reased their 
omplexity, making it harder to prove that

they were still 
orre
t. Moreover, it seemed that the 
ost of 
he
king more 
om-

plex 
onditions would be prohibitive, and likely to outweigh any bene�t that

might derive from establishing blo
ks at a shallower depth.

An investigation of FaCT's behaviour when failing to solve UML derived

knowledge bases has, however, lead us to re
onsider this 
onje
ture, to for-

mulate a more detailed and less stri
t blo
king 
ondition and, as a matter of


ourse, to prove that the modi�ed algorithm is still sound and 
omplete. The

e�e
t of the optimised blo
king 
ondition on FaCT's behaviour turned out to

be dramati
|in some 
ases it improved the system's performan
e by more than

two orders of magnitude. Clearly, the value of improved blo
king should not be

underestimated, even if the overhead seems 
onsiderable.

2 SHIQ-Syntax, Semanti
s, and Tableaux

In this se
tion, we de�ne syntax and semanti
s of SHIQ-
on
epts and roles. We

start with SHIQ-roles, then introdu
e some abbreviations, and �nally de�ne

SHIQ-
on
epts.
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De�nition 1 Let R be a set of role names with both transitive and normal

role names R

+

[ R

P

= R, where R

P

\ R

+

= ;. The set of SHIQ-roles is

R [ fR

�

j R 2 Rg. A role in
lusion axiom is of the form

R v S;

for two SHIQ-roles R and S. A role hierar
hy is a set of role in
lusion axioms.

An interpretation I = (�

I

; �

I

) 
onsists of a set �

I

, 
alled the domain of I,

and a fun
tion �

I

whi
h maps every role to a subset of �

I

��

I

su
h that, for

P 2 R and R 2 R

+

,

hx; yi 2 P

I

i� hy; xi 2 P

�

I

;

if hx; yi 2 R

I

and hy; zi 2 R

I

, then hx; zi 2 R

I

:

An interpretation I satis�es a role hierar
hy R i� R

I

� S

I

for ea
h R v S 2 R;

we denote this fa
t by I j= R.

We introdu
e some notation to make the following 
onsiderations easier.

1. The inverse relation on roles is symmetri
, and to avoid 
onsidering roles

su
h as R

��

, we de�ne a fun
tion Inv whi
h returns the inverse of a role,

more pre
isely

Inv(R) :=

�

R

�

if R is a role name,

S if R = S

�

for a role name S.

2. Sin
e set in
lusion is transitive and R

I

� S

I

implies Inv(R)

I

� Inv(S)

I

,

we introdu
e v* as the transitive-re
exive 
losure of v on

R [ fInv(R) v Inv(S) j R v S 2 Rg:

We use R � S as an abbreviation for R v* S and S v* R.

3. Obviously, a role R is transitive if and only if its inverse Inv(R) is tran-

sitive. However, either R or Inv(R) is a role name, and only role names


an be elements of R

+

. Moreover, in 
y
li
 
ases su
h as R � S, S

is transitive if R or Inv(R) is a transitive role name. In order to avoid

these 
ase distin
tions, the fun
tion Trans returns true i� R is a transitive

role|regardless whether it is a role name, the inverse of a role name, or

equivalent to a transitive role name (or its inverse):

Trans(R) :=

�

true if, for some S with S � R, S 2 R

+

or Inv(S) 2 R

+

false otherwise.

We are now ready to de�ne SHIQ-
on
epts.
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De�nition 2 A role R is 
alled simple with respe
t to R i� not Trans(R) and,

for any S v* R, S is also a simple role.

Let N

C

be a set of 
on
ept names. The set of SHIQ-
on
epts is the smallest

set su
h that

1. every 
on
ept name C 2 N

C

is a 
on
ept,

2. if C and D are 
on
epts and R is an SHIQ-role, then (C uD), (C tD),

(:C), (8R:C), and (9R:C) are 
on
epts, and

3. if C is a 
on
ept, R is a simple SHIQ-role and n 2 N, then (6 n R C)

and (> n R C) are 
on
epts.

The interpretation fun
tion �

I

of an interpretation I = (�

I

; �

I

) maps, addition-

ally, every 
on
ept to a subset of �

I

su
h that

(C uD)

I

= C

I

\D

I

;

(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

n C

I

;

(9R:C)

I

= fx 2 �

I

j There is some y 2 �

I

with hx; yi 2 R

I

and y 2 C

I

g;

(8R:C)

I

= fx 2 �

I

j For all y 2 �

I

, if hx; yi 2 R

I

, then y 2 C

I

g;

(6 n R C)

I

= fx 2 �

I

j ℄R

I

(x;C) 6 ng;

(> n R C)

I

= fx 2 �

I

j ℄R

I

(x;C) > ng;

where for a setM we denote the 
ardinality ofM by ℄M and R

I

(x;C) is de�ned

as fy j hx; yi 2 R

I

and y 2 C

I

g.

A 
on
ept C is 
alled satis�able with respe
t to a role hierar
hy R i� there is

some interpretation I su
h that I j= R and C

I

6= ;. Su
h an interpretation is


alled a model of C with respe
t to R. A 
on
ept D subsumes a 
on
ept C with

respe
t toR (written C v

R

D) i� C

I

� D

I

holds for ea
h interpretation I with

I j= R. Two 
on
epts C;D are equivalent with respe
t to R (written C �

R

D)

i� they are mutually subsuming. For an interpretation I, an individual x 2 �

I

is 
alled an instan
e of a 
on
ept C i� x 2 C

I

.

2.1 A SHIQ-Tableau

As usual, we de�ne appropriate abstra
tions of models, tableaux, whose existen
e


an be tested by a tableaux algorithm. The advantage of this abstra
tion is that

they allow to repla
e the \global" 
ondition of the interpretation of transitive

roles into \lo
al" 
onditions.

For ease of 
onstru
tion, we assume all 
on
epts to be in negation normal

form (NNF), that is, negation o

urs only in front of 
on
ept names. Any

SHIQ-
on
ept 
an easily be transformed to an equivalent one in NNF by push-

ing negations inwards using a 
ombination of DeMorgan's laws and the following

equivalen
es:
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:(9R:C) � (8R::C)

:(8R:C) � (9R::C)

:(6 n R C) � (> (n+ 1) R C)

:(> n R C) �

�

(8R::C) if n = 1

(6 (n� 1) R C) otherwise

For a 
on
ept C we will denote the NNF of :C by �C.

For a SHIQ-
on
ept D in NNF and a role hierar
hy, we de�ne 
los(D) to

be the smallest set that 
ontains D, is 
losed under sub-formulae and �, and

whi
h 
ontains, for ea
h sub
on
ept 8R:C 2 
los(D) and role R

0

v* R, also the


on
ept 8R

0

:C. Then #
los(D) is linear in jDj+ jRj.

De�nition 3 If R is a role hierar
hy, D is a SHIQ-
on
ept in NNF and R

D

is the set of roles o

urring in D, together with their inverses, a tableau T for

D with respe
t to R is de�ned to be a triple (S;L;E) su
h that: S is a set of

individuals, L : S ! 2


los(D)

maps ea
h individual to a set of 
on
epts whi
h

is a subset of 
los(D), E : R

D

! 2

S�S

maps ea
h role in R

D

to a set of pairs

of individuals, and there is some individual s 2 S su
h that D 2 L(s). For all

s 2 S, C;C

1

; C

2

2 
los(D), and R;S 2 R

D

, T must satisfy:

T1 if C 2 L(s), then :C =2 L(s),

T2 if C

1

u C

2

2 L(s), then C

1

2 L(s) and C

2

2 L(s),

T3 if C

1

t C

2

2 L(s), then C

1

2 L(s) or C

2

2 L(s),

T4 if 8S:C 2 L(s) and hs; ti 2 E(S), then C 2 L(t),

T5 if 9S:C 2 L(s), then there is some t 2 S su
h that hs; ti 2 E(S) and

C 2 L(t),

T6 if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then

8R:C 2 L(t),

T7 hs; ti 2 E(R) i� ht; si 2 E(Inv(R)),

T8 if hs; ti 2 E(R) and R v* S then hs; ti 2 E(S),

T9 if (6 n S C) 2 L(s), then ℄S

T

(s; C) 6 n,

T10 if (> n S C) 2 L(s), then ℄S

T

(s; C) > n,

T11 if (6 n S C) 2 L(s) and hs; ti 2 E(S) then C 2 L(t) or �C 2 L(t),

for

S

T

(s; C) := ft 2 S j hs; ti 2 E(S) and C 2 L(t)g:
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Lemma 1 A SHIQ-
on
ept D is satis�able with respe
t to a role hierar
hy R

i� there exists a tableau for D with respe
t to R.

Proof: For the if dire
tion, the 
onstru
tion of a model of D from a tableau

for D is similar to the one presented in

[

HST99a

℄

. If T = (S;L;E) is a tableau

for D with D 2 L(s

0

), a model I = (�

I

; �

I

) of D 
an be de�ned as follows:

�

I

= S

A

I

= fs j A 2 L(s)g for all 
on
ept names A in 
los(D)

R

I

= E(R) [

[

P v* R; Trans(R)

E(P )

+

for role names R

From the de�nition of R

I

, T7, and T8, it follows that, if hs; ti 2 S

I

, then

either hs; ti 2 E(S) or there exists a path hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2 E(R) for

some R with Trans(R) and R v* S.

To show that I is a model of D w.r.t. R, we have to prove (1) I j= R and

(2) D

I

6= ;. The �rst part is obvious due to T8 and the de�nition of Trans(�)

and �

I

. The se
ond part is shown by proving C 2 L(s)) s 2 C

I

for any s 2 S.

This implies D

I

6= ; sin
e T is a tableau for D and hen
e there must be some

s 2 S with D 2 L(s).

This will be proven by indu
tion over norm k � k of a 
on
ept C. The norm

kCk for 
on
ept in NNF is indu
tively de�ned as follows:

kAk := k:Ak := 0 for A 2 N

C

kC

1

u C

2

k := kC

1

t C

2

k := 1 + kC

1

k+ kC

2

k

k8R:Ck := k9R:Ck := 1 + kCk

k(./ n S C)k := 1 + kCk;

where we use ./ as a pla
eholder for both 6 and >. The two base 
ases of the

indu
tion are C = A or C = :A. If A 2 L(s), then, by de�nition, s 2 A

I

. If

:A 2 L(s), then by T1, A 62 L(s) and hen
e s 62 A

I

. For the indu
tion step we

have to distinguish several 
ases:

� C = C

1

u C

2

. T2 and C 2 L(s) imply that C

1

2 L(s) and C

2

2 L(s).

Hen
e, by indu
tion, we have s 2 C

I

1

and s 2 C

I

2

, whi
h yields s 2

(C

1

u C

2

)

I

.

� C = C

1

t C

2

. Similar to the previous 
ase.

� C = 9S:E. T5 and C 2 L(s) implies the existen
e of an individual t 2 S

su
h that hs; ti 2 E(S) and E 2 L(t). By indu
tion, we have t 2 E

I

and,

from the de�nition of S

I

and T7, it follows that hs; ti 2 S

I

and hen
e

s 2 C

I

.

� C = 8S:E. Let s 2 S with C 2 L(s), let t 2 S be an arbitrary individual

su
h that hs; ti 2 S

I

. There are two possibilities:

{ hs; ti 2 E(S). Then T4 implies E 2 L(t) and, by indu
tion, t 2 E

I

.

7



{ hs; ti 62 E(S). Then there exists a path hs; s

1

i; hs

1

; s

2

i; : : : ; hs

n

; ti 2

E(R) for some R with Trans(R) and R v* S. Then T6 implies 8R:E 2

L(s

i

) for all 1 � i � n and, from T4, E 2 L(t) also holds. Again, by

indu
tion, this implies t 2 E

I

.

In both 
ases, we have t 2 E

I

and, sin
e t has been 
hosen arbitrarily,

s 2 C

I

holds.

� C = (> n S E). For an s with C 2 L(s), we have ℄S

T

(s; E) > n. Hen
e

there are n individuals t

1

; : : : ; t

n

su
h that t

i

6= t

j

for i 6= j, hs; t

i

i 2 E(S),

and E 2 L(t

i

) for all i. By indu
tion, we have t

i

2 E

I

and, sin
e E(S) �

S

I

, also s 2 C

I

.

� C = (6 m S E). For this 
ase, we need that S is a simple role, whi
h

implies S

I

= E(S). Let s be an individual with C 2 L(s). Due to T11,

we have E 2 L(t) or �E 2 L(t) for ea
h t with hs; ti 2 E(S). Moreover,

℄S

T

(s; E) 6 n holds due to T9. We 
an show that ℄S

I

(s; E) 6 ℄S

T

(s; E):

assume ℄S

I

(s; E) > ℄S

T

(s; E). This implies the existen
e of some t with

hs; ti 2 S

I

with t 2 E

I

but E 62 L(t) (be
ause S

I

= E(S)). By T11 this

implies �E 2 L(t), whi
h, by indu
tion yields t 2 (�E)

I

, in 
ontradi
tion

to t 2 E

I

.

For the only-if dire
tion, we have to show that satis�ability ofD with respe
t

to R implies the existen
e of a tableau T for D with respe
t to R.

Let I = (�

I

; �

I

) be a model of D with I j= R. A tableau T = (S;L;E) for

D 
an be de�ned as follows:

S = �

I

E(R) = R

I

L(s) = fC 2 
los(D) j s 2 C

I

g

It remains to demonstrate that T is a tableau for D:

� The Properties T1{T5, T7, and T9{T11 are satis�ed as a dire
t 
onse-

quen
e of the de�nition of the semanti
s of SHIQ-
on
epts.

� If s 2 (8S:C)

I

and hs; ti 2 R

I

for R with Trans(R) and R v* S, then

t 2 (8R:C)

I

unless there is some u su
h that ht; ui 2 R

I

and u =2 C

I

.

In this 
ase, if hs; ti 2 R

I

, ht; ui 2 R

I

and Trans(R), then hs; ui 2 R

I

.

Hen
e hs; ui 2 S

I

and s =2 (8S:C)

I

|in 
ontradi
tion to the assumption.

T therefore satis�es T6.

� T8 is satis�ed be
ause I j= R.
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3 An optimised blo
king 
ondition for SHIQ

In this se
tion, we present an optimised version of the tableaux algorithm for

SHIQ from

[

HST99a

℄

. The optimisation 
on
erns the blo
king 
ondition, i.e.,

the me
hanism that guarantees termination of the algorithm by preventing it

from non-termination.

3.1 Constru
ting a SHIQ-Tableau

From Lemma 1, an algorithm whi
h 
onstru
ts a tableau for a SHIQ-
on
ept

D 
an be used as a de
ision pro
edure for the satis�ability of D with respe
t to

a role hierar
hy R. Su
h an algorithm will now be des
ribed in detail. It uses

the same te
hniques as the SHIQ-algorithm in

[

HST99a

℄

but for the modi�ed

pairwise-blo
king 
ondition.

The algorithm presented here tries to 
onstru
t, for an input 
on
ept C

0

,

a tableau whose relational stru
ture forms a tree with C

0

in the label of the

root node. We must take spe
ial 
are to prevent the algorithm from generating

a tree with arbitrarily long paths. In the original algorithm, we introdu
ed a

so-
alled double blo
king 
ondition. Roughly speaking, if we �nd two nodes on

a path, a node x and its su

essor y su
h that they have two an
estor nodes,

again, a node x

0

and its su

essor y

0

su
h that (1) x and x

0

are labelled with

the same 
on
epts, (2) y and y

0

are labelled with the same 
on
epts, and (3)

the relations between x and y are the same as those between x

0

and y

0

, then

this path is no longer modi�ed below y, i.e., it 
annot be
ome longer. Now, this

three-fold 
ondition is a rather stri
t one, e.g., the root node 
an never blo
k

another node, and thus blo
king o

urs rather late, whi
h means that paths 
an

be
ome rather long.

In the following, we will loosen this 
ondition su
h that blo
king 
an o

ur

earlier. Basi
ally, we will restri
t, in the 
onditions (1) and (2), the 
on
epts to

the relevant ones and, in 
ondition (3), the relations to the relevant ones.

Moreover, to guarantee the termination of the algorithm, we have to make

sure that the >- and 6-rules 
annot be applied in a way that would yield an

in�nite sequen
e of rule appli
ations. This is enfor
ed by re
ording whi
h nodes

have been introdu
ed by an appli
ation of the >-rule and by prohibiting an

identi�
ation of these nodes by the 6-rule.

De�nition 4 Let R be a role hierar
hy and D a SHIQ-
on
ept in NNF. A


ompletion tree with respe
t to R and D is a tree T where ea
h node x of

the tree is labelled with a set L(x) � 
los(D) and ea
h edge hx; yi is labelled

with a set of role names L(hx; yi) 
ontaining (possibly inverse) roles o

urring

in 
los(D) or R. Additionally, we keep tra
k of inequalities between nodes of

the tree with a symmetri
 binary relation 6

:

= between the nodes of T.

Given a 
ompletion tree, an
estors, su

essors, et
. are de�ned as usual.

A node y is 
alled an R-su

essor of a node x if y is a su

essor of x and

S 2 L(hx; yi) for some S with S v* R; y is 
alled an R-neighbour of x if y is an

R-su

essor of x, or if x is an Inv(R)-su

essor of y.

9



For a role S, a 
on
ept C, and a node x in T we de�ne S

T

(x;C) by

S

T

(x;C) := fy j y is S-neighbour of x and C 2 L(y)g:

A node is blo
ked if it is dire
tly or indire
tly blo
ked. A node is dire
tly

blo
ked if it is 
-blo
ked or a-blo
ked.

1

A node w is a-blo
ked (see Figure 3.1 for

an illustration) if none of its an
estors are blo
ked, it is not 
-blo
ked, and it

has an
estors v and w

0

su
h that w is a su

essor of v and

B1 L(w) � L(w

0

),

B2 if w is an Inv(S)-su

essor of v and 8S:C 2 L(w

0

), then

a. C 2 L(v), and

b. if there is some R with Trans(R) and R v* S su
h that w is an Inv(R)-

su

essor of v, then 8R:C 2 L(v),

B3 if (6 n S C) 2 L(w

0

), then

a. w is not an Inv(S)-su

essor of v or

b. w is an Inv(S)-su

essor of v and �C 2 L(v) or


. w is an Inv(S)-su

essor of v, C 2 L(v), and w

0

has at most n � 1

S-su

essors z with C 2 L(z), and

B4 if (> m T E) 2 L(w

0

) (resp. 9T:E 2 L(w

0

)), then

a. w

0

has at least m (resp. at least one) T -su

essors z with E 2 L(z)

or

b. w is an Inv(T )-su

essor of v and E 2 L(v).

A node w is 
-blo
ked (see Figure 3.1 for an illustration) if none of its an-


estors are blo
ked, it has an
estors v and w

0

su
h that w is a su

essor of v,

and

2

B5 L(w) � L(w

0

),

B6 if w is an Inv(S)-su

essor of v and 8S:C 2 L(w

0

), then

a. C 2 L(v), and

b. if there is some R with Trans(R) and R v* S su
h that w is an Inv(R)-

su

essor of v, then 8R:C 2 L(v),

B7 if (6 n T E) 2 L(w

0

), then w is not an Inv(T )-su

essor of v or�E 2 L(v),

and

B8 if w is an U -su

essor of v and (> m U F ) 2 L(v), then �F 2 L(w).

1

A 
-blo
k leads to a 
y
le in the tableau to be 
onstru
ted, whereas an a-blo
k is unravelled

in the standard way.

2

Please note that B5 is identi
al to B1, and B6 to B2.

10



In this 
ase, we say that w

0

is a 
-blo
king 
andidate for w. We say that a


-blo
king 
andidate w

0

1

for w 
-blo
ks w if there is no 
-blo
king 
andidate w

0

2

for w \between" w

0

1

and w, i.e., if all 
-blo
king 
andidates w

0

2

for w di�erent

from w

0

1

are an
estors of w

0

1

. The de�nition of a node a-blo
king another one is

analogous.

A node is indire
tly blo
ked if its prede
essor is blo
ked, and in order to avoid

wasted expansion after an appli
ation of the 6-rule, a node y will also be taken

to be indire
tly blo
ked if it is a su

essor of a node x and L(hx; yi) = ;.

For a node x, L(x) is said to 
ontain a 
lash if, for some 
on
ept name

A 2 N

C

, fA;:Ag � L(x), or if for a some 
on
ept C, some role S, and some

n 2 N: (6 n S C) 2 L(x) and there are n + 1 nodes y

0

; : : : ; y

n

su
h that

C 2 L(y

i

), y

i

is an S-neighbour of x, and y

i

6

:

= y

j

for all 0 � i < j � n.

The algorithm initialises the treeT to 
ontain a single node x

0

, 
alled the root

node, with L(x

0

) = fDg, where D is the 
on
ept to be tested for satis�ability.

The inequality relation 6

:

= is initialised with the empty relation. T is then

expanded by repeatedly applying the rules from Figure 3.1. The order in whi
h

the rules are applied is the following: all rules are applied �rst to the an
estors

of a node x before the >- or the 9-rule is applied to x.

The 
ompletion tree is 
omplete if, for some node x, L(x) 
ontains a 
lash or

if none of the rules is appli
able. If, for an input 
on
ept D, the expansion rules


an be applied in su
h a way that they yield a 
omplete, 
lash-free 
ompletion

tree, then the algorithm returns \D is satis�able", and \D is unsatis�able"

otherwise.

B2.b: Inv(R); R v* S;Trans(R)

B2: Inv(S)

v

w

0

w

)

B3.


� (n� 1) S-su

s with C

)

B3.a

no Inv(S)

B2: 8S:C

B3: (6 n S C)

B4: (> m T E)

)

B4.a

� m T -su

s with E

)

B3.b

�C

)

B4.b

E

)

B4.b

Inv(T )

)

B1

L(w) � L(w

0

)

)

B2.a

C, )

B2.b

8R:C

Figure 1: Illustration of an a-blo
king situation. The double arrow indi
ates that

a 
opy of w

0

and its su

essors is made a new su

essor of v when 
onstru
ting

a tableau.
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w )

B5

L(w) � L(w

0

)

)

B8

�F

B6.b: Inv(R); R v* S;Trans(R)

B8: U

)

B7

no Inv(T )

v

w

0

B6: 8S:C

B7: (6 n T E)

B6: Inv(S)

)

B7

�E

)

B6.a

C, )

B6.b

8R:C

B8: (> m U F )

Figure 2: Illustration of a 
-blo
king situation. The arrow going up to w

0

indi
ates that w

0

is made a new su

essor of v when 
onstru
ting a tableau.

Remark: (a) Please note that some of the rules are non-deterministi
|hen
e

the somewhat strange return behaviour of the algorithm.

(b) The intuition for the blo
king 
onditions are as follows: when building a

tableau from a 
ompletion tree, an a-blo
k is unravelled in the standard way

(i.e., a 
opy of w

0

and its su

essors is made a su

essor of v), while a 
-blo
k

leads to a 
yli
 tableau sin
e the \original" w

0

is made a su

essor of v. B1

and B5 ensure that w

0

satis�es all 8 restri
tions on v. B2 and B5 ensure that

v satis�es all \ba
kward" 8 restri
tions on w

0

. In the a-blo
king 
ase, B3 and

B4 ensure that, when a 
opy of w

0

has v as a prede
essor (instead of its former

prede
essor), this 
opy still satis�es its at-most and at-least restri
tions. In the


-blo
king 
ase, B5 ensures that at-most restri
tions on w

0

are still satis�ed

with the new neighbour v, and B6 ensures that at-least restri
tions on v are still

satis�ed even if several of its su

essors are 
-blo
ked by the same node.

(
) A-blo
king alone would have been enough to ensure 
orre
tness and

termination|however, 
-blo
ks may o

ur earlier, and may thus lead to a better

performan
e.

(d) To make the following proofs easier, the blo
king 
onditions are su
h that a

node 
annot be both a-blo
ked and 
-blo
ked. If a node is 
-blo
ked, it 
annot

be a-blo
ked.

3.2 Soundness and Completeness

We will show that the algorithm is terminating, sound, and 
omplete.
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u-rule: if 1. C

1

u C

2

2 L(x), x is not indire
tly blo
ked, and

2. fC

1

; C

2

g 6� L(x)

then L(x) �! L(x) [ fC

1

; C

2

g

t-rule: if 1. C

1

t C

2

2 L(x), x is not indire
tly blo
ked, and

2. fC

1

; C

2

g \ L(x) = ;

then L(x) �! L(x) [ fCg for some C 2 fC

1

; C

2

g

9-rule: if 1. 9S:C 2 L(x), x is not blo
ked and

2. x has no S-neighbour y with C 2 L(y),

then 
reate a new node y with L(hx; yi) = fSg and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indire
tly blo
ked, and

2. there is an S-neighbour y of x with C =2 L(y)

then L(y) �! L(y) [ fCg

8

+

-rule: if 1. 8S:C 2 L(x), x is not indire
tly blo
ked, and

2. there is some R with Trans(R) and R v* S,

3. there is an R-neighbour y of x with 8R:C =2 L(y)

then L(y) �! L(y) [ f8R:Cg


hoose-rule: if 1. (6 n S C) 2 L(x), x is not indire
tly blo
ked, and

2. there is an S-neighbour y of x with fC;�Cg \ L(y) = ;

then L(y) �! L(y) [ fEg for some E 2 fC;�Cg

>-rule: if 1. (> n S C) 2 L(x), x is not blo
ked and

2. there are no n nodes y

1

; : : : ; y

n

su
h that C 2 L(y

i

),

y

i

is an S-neighbour of x, and y

i

6

:

= y

j

for 1 � i < j � n,

then 
reate n new nodes y

1

; : : : ; y

n

with L(hx; y

i

i) = fSg,

L(y

i

) = fCg, and y

i

6

:

= y

j

for 1 � i < j � n.

6-rule: if 1. (6 n S C) 2 L(x), x is not indire
tly blo
ked,

2. ℄S

T

(x;C) > n, and there are two S-neighbours y; z of x with

C 2 L(y); C 2 L(z), y is a su

essor of x, and not y 6

:

= z

then 1. L(z) �! L(z) [ L(y) and

2. if z is a su

essor of x then

L(hx; zi) �! L(hx; zi) [ L(hx; yi)

else (z is a prede
essor of x)

L(hz; xi) �! L(hz; xi) [ fInv(R) j R 2 L(hx; yi)g

3. L(hx; yi) �! ;

4. Set u 6

:

= z for all u with u 6

:

= y

Figure 3: The Expansion Rules for SHIQ
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Lemma 2 For ea
h SHIQ-
on
ept D and role hierar
hy R, the tableaux algo-

rithm terminates.

Proof: Let m = j
los(D)j, k the number of roles o

urring in D, and n

max

the maximum n that o

urs in a 
on
ept of the form (./ n S C) 2 
los(D).

Termination is a 
onsequen
e of the fa
t that, in prin
iple, the expansion rules

build a 
ompletion tree monotoni
ally with bounded depth and breadth:

1. The expansion rules never remove nodes from the tree or 
on
epts from

node labels. Edge labels 
an only be 
hanged by the 6-rule whi
h either

expands them or sets them to ;; in the latter 
ase, the node below the

;-labelled edge is blo
ked and will remain blo
ked forever.

2. Su

essors of a node x are the result of an appli
ation of the 9- or the

>-rule to 
on
epts of the form 9R:C (whi
h yields one su

essor) and

(> n S C) (whi
h yields n su

essors) in L(x). For a node x, ea
h of

these 
on
epts 
an trigger the generation of su

essors at most on
e. For

the 9-rule, if a su

essor y of x was generated for a 
on
ept 9S:C 2 L(x)

and later L(hx; yi) is set to ; by an appli
ation of the 6-rule, then there

will be some S-neighbour z of x su
h that C 2 L(z). For the >-rule: If

y

1

; : : : ; y

n

were generated by an appli
ation of the >-rule for a 
on
ept

(> n S C), then y

i

6

:

= y

j

holds for all 1 � i < j � n. This implies that

there will always be n S-neighbours y

0

1

; : : : ; y

0

n

of x with C 2 L(y

0

i

) and

y

0

i

6

:

= y

0

j

for all 1 � i < j � n sin
e the 6-rule 
an never merge two nodes

y

0

i

; y

0

j

(be
ause y

0

i

6

:

= y

0

j

) and, whenever an appli
ation of the 6-rule sets

L(hx; y

0

i

i) to ;, then there will be some S-neighbour z of x with C 2 L(z)

and z \inherits" all inequalities from y

0

i

.

Sin
e 
los(D) 
ontains a total of at most m 9R:C and (> n S C) 
on
epts,

the out-degree of the tree is bounded by m � n

max

.

3. Suppose a node y has an
estors x, y

0

, and x

0

with

� y is a su

essor of x, y

0

is a su

essor of x

0

,

� L(y) = L(y

0

),

� L(x) = L(x

0

), and

� L(hx; yi) = L(hx

0

; y

0

i),

and the >- or the 9-rule 
an be applied to y. Hen
e no rules 
an be applied

to any an
estors of y. In this 
ase, y is a-blo
ked a

ording to De�nition 4.

Nodes are labelled with non-empty subsets of 
los(D) and edges with

subsets of R

D

, so there are at most 2

2m+k

di�erent possible labellings

for a pair of nodes and an edge. Therefore, if a path p is of length at

least 2

2m+k

then, from the a-blo
king 
onditions de�ned in De�nition 4

and the fa
t that rules are applied �rst to an
estors of a node before new

su

essors of this node are generated, there must be two nodes y, y

0

on p

su
h that y is dire
tly a-blo
ked by y

0

. Sin
e a path on whi
h nodes are

blo
ked 
annot be
ome longer, paths are of length at most 2

2m+k

.
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Lemma 3 (Soundness) If the expansion rules 
an be applied to a SHIQ-


on
ept D su
h that they yield a 
omplete and 
lash-free 
ompletion tree with

respe
t to R, then D has a tableau with respe
t to R.

Proof: We build the tableau by (almost) standard unravelling similar to the

one in

[

HST99a

℄

. The only non-standard elements are due to (1) number restri
-

tions and (2) the optimised blo
king 
onditions: for (1), we must distinguish

di�erent su

essors of a node that are a-blo
ked by the same node|in standard

unravelling, they would yield the same path, and thus at-least number restri
-

tions on their prede
essor might be violated. For 
-blo
king, B8 implies that

the blo
ked node may not be a \witness" for an at-least restri
tion on its pre-

de
essor, and thus we do not need to distinguish di�erent su

essors of a node

that are blo
ked by the same node. For (2), if a node is 
-blo
ked by another

one, then we 
an build a 
y
li
 model, i.e., make the blo
king node a su

essor

of the blo
ked node's prede
essor.

Let T be a 
omplete and 
lash-free 
ompletion tree. A path is a sequen
e

of pairs of nodes of T of the form [

x

0

x

0

0

; : : : ;

x

n

x

0

n

℄. Let p = [

x

0

x

0

0

; : : : ;

x

n

x

0

n

℄ be a path.

We de�ne Tail(p) = x

n

and Tail

0

(p) = x

0

n

. With [pj

x

n+1

x

0

n+1

℄ we denote the path

[

x

0

x

0

0

; : : : ;

x

n

x

0

n

;

x

n+1

x

0

n+1

℄. The set Paths(T) is de�ned indu
tively as follows:

� For the root node x

0

of T, [

x

0

x

0

℄ 2 Paths(T), and

� For a path p 2 Paths(T) and a node z in T:

{ if z is a su

essor of Tail(p) and z is not blo
ked, then [pj

z

z

℄ 2

Paths(T), or

{ if, for some node y in T, y is a su

essor of Tail(p) and z a-blo
ks y,

then [pj

z

y

℄ 2 Paths(T).

Please note that, due to the 
onstru
tion of Paths, for p 2 Paths(T) with

p = [p

0

j

x

x

0

℄, x is not blo
ked, x

0

is neither 
-blo
ked nor indire
tly blo
ked, and

x

0

is a-blo
ked i� x 6= x

0

. Furthermore, L(x

0

) � L(x) holds.

Now we 
an de�ne a tableau T = (S;L;E) with:

S = Paths(T)

L(p) = L(Tail(p))

E(R) = fhp; [pj

x

x

0

℄i 2 S� S j x

0

is an R-su

essor of Tail(p)g [

fh[qj

x

x

0

℄; qi 2 S� S j x

0

is an Inv(R)-su

essor of Tail(q)g [

fhp; [qj

y

y

℄i j p = [qj

y

y

jq

0

℄ and y 
-blo
ks an R-su

essor of Tail(p)g [

fh[qj

y

y

℄; pi j p = [qj

y

y

jq

0

℄ and y 
-blo
ks an Inv(R)-su

essor of Tail(p)g

Claim: T is a tableau for D with respe
t to R.

We have to show that T satis�es all the properties from De�nition 3.

� D 2 L([

x

0

x

0

℄) sin
e D 2 L(x

0

).
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� T1 holds be
ause T is 
lash-free; T2 and T3 hold be
ause Tail(p) is not

indire
tly blo
ked and T is 
omplete.

� T4: Let 8S:C 2 L(p) and hp; qi 2 E(S).

If q = [pj

x

x

0

℄, then x

0

is an S-su

essor of Tail(p) and thus 
ompleteness

implies C 2 L(x

0

). Sin
e L(x

0

) � L(x) = L(q), we have C 2 L(q).

If p = [qj

x

x

0

℄, then x

0

is an Inv(S)-su

essor of Tail(q). If x = x

0

, then

8S:C 2 L(x

0

) and thus 
ompleteness implies that C 2 L(Tail(q)). If

x 6= x

0

, then 8S:C 2 L(x) together with B2.a implies that C 2 L(Tail(q)),

and thus C 2 L(q).

If q = [q

1

j

y

y

℄ and p = [q

1

j

y

y

jq

0

℄, then y 
-blo
ks an S-su

essor z of Tail(p).

Sin
e T is 
omplete, C 2 L(z), and B5 implies that C 2 L(y). Hen
e

C 2 L(q).

If p = [p

1

j

y

y

℄ and q = [p

1

j

y

y

jp

0

℄, then y 
-blo
ks an Inv(S)-su

essor z of

Tail(q) and 8S:C 2 L(y). In this 
ase, B6.a ensures that C 2 L(Tail(q)),

and thus C 2 L(q).

� T6 is quite similar to T4: Let 8S:C 2 L(p) and hp; qi 2 E(R) for some

R v* S with Trans(R). If q = [pj

x

x

0

℄, then x

0

is an R-su

essor of Tail(p) and

thus 
ompleteness of T implies 8R:C 2 L(x

0

). If x 6= x

0

, then B1 implies

L(x

0

) � L(x). Thus 8R:C 2 L(q).

If p = [qj

x

x

0

℄, then x

0

is an Inv(R)-su

essor of Tail(q) and hen
e Tail(q)

is an R-neighbour of x

0

. If x

0

= x, then 8S:C 2 L(x) and 
ompleteness

implies 8R:C 2 L(q). If x

0

6= x, then x a-blo
ks x

0

and 8S:C 2 L(x). Due

to B2.b, 8R:C 2 L(Tail(q)), and thus 8R:C 2 L(q).

If q = [q

1

j

y

y

℄ and p = [q

1

j

y

y

jq

0

℄, then y 
-blo
ks an R-su

essor z of Tail(p).

Sin
e T is 
omplete, 8R:C 2 L(z), and B5 implies that 8R:C 2 L(y).

Hen
e 8R:C 2 L(q).

If p = [p

1

j

y

y

℄ and q = [p

1

j

y

y

jp

0

℄, then y 
-blo
ks an Inv(R)-su

essor z

of Tail(q) and 8S:C 2 L(y). In this 
ase, B6.b ensures that 8R:C 2

L(Tail(q)), and thus 8R:C 2 L(q).

� T5: Let 9S:C 2 L(p) and x = Tail(p). Sin
e T is 
omplete, there are two

possibilities:

{ x has an S-su

essor y in T with C 2 L(y).

� If y is not blo
ked, then q = [pj

y

y

℄ 2 S, hp; qi 2 E(S), and

C 2 L(q) be
ause L(y) = L(q).

� If y is a-blo
ked by some node z in T, then q = [pj

z

y

℄ 2 S,

hp; qi 2 E(S), and C 2 L(q) be
ause C 2 L(y) � L(z) = L(q).

� If y is 
-blo
ked by some node z in T, then p = [p

1

j

z

z

jp

0

℄,

hp; [p

1

j

z

z

℄i 2 E(S), and B5 implies that C 2 L(z) = L([p

1

j

z

z

℄).
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{ otherwise, 
ompleteness implies that x is an Inv(S)-su

essor of some

y in T with C 2 L(y). Thus p is of the form p = [qj

x

x

0

℄ and there are

only two possibilities:

� If Tail(q) = y, then hp; qi 2 E(S) and C 2 L(q).

� Let Tail(q) = u 6= y. Now x only has one prede
essor in T, hen
e

u is not the prede
essor of x. This implies x 6= x

0

, x a-blo
ks x

0

in T, and u is the prede
essor of x

0

due to the 
onstru
tion of

Paths. Sin
e x has no S-su

essor z with C 2 L(z), B4.b implies

that x

0

is an Inv(S)-su

essor of u and C 2 L(u) = L(q). Hen
e

hp; qi 2 E(S) and C 2 L(q).

� T7 is satis�ed due to the symmetri
 de�nition of E. T8 is satis�ed due to

the de�nition of R-su

essor that takes into a

ount v* .

� For T9, let p 2 S with (6 n S C) 2 L(p). Let x = Tail(p), x

0

= Tail

0

(p),

and

P := fq 2 S j hp; qi 2 E(S) and C 2 L(q)g:

By de�nition of E, P 
ontains at most one q that is of the form p = [qj

x

x

0

℄.

Due to B7 whi
h disallows 
-blo
king in the 
ase where (6 n S C) is in

the label of the blo
king node and C is in the label of the blo
ked node's

an
estor in 
ase the blo
ked node is an Inv(S)-su

essor, all other elements

q of P are either of the form

{ q = [pj

y

y

0

℄ for y

0

an S-su

essor of x or

{ q = [p

1

j

u

u

℄ for p = [p

1

j

u

u

jp

0

℄ and u 
-blo
ks an S-su

essor of x.

These elements of P are 
alled \forward" elements in the following.

Sin
e (1) T is 
lash-free and 
omplete and (6 n S C) 2 L(x), (2) ea
h y

0

for ea
h [pj

y

y

0

℄ 2 P is an S-su

essor of x, (3) ea
h u 
-blo
ks an S-su

essor

of x for ea
h q = [p

1

j

u

u

℄ with p = [p

1

j

u

u

jp

0

℄, and (4) ea
h blo
ked node is

blo
ked by exa
tly one an
estor, there are at most n forward elements in

P .

It remains to show that, if there is some q with p = [qj

x

x

0

℄ in P , then there

are at most n� 1 forward elements in P (and thus at most n elements in

P ).

So, let q 2 P with p = [qj

x

x

0

℄ and Tail(q) = z.

{ If x = x

0

, then z is a prede
essor of x and observations (1) to (4)

above yield that ℄P � n.

{ If x 6= x

0

, then x a-blo
ks x

0

and x

0

is an Inv(S)-su

essor of z.

Moreover, all y

0

with [pj

y

y

0

℄ 2 P are S-su

essors of x, and all u with

q = [p

1

j

u

u

℄ and p = [p

1

j

u

u

jp

0

℄ 
-blo
k an S-su

essor of x. In this 
ase,

B3.a and B3.b are not possible, and B3.
 implies that P 
ontains at

most (n� 1) forward elements. Thus P 
ontains at most n elements,

and T9 is satis�ed.
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� T10: Assume (> n S C) 2 L(p). This implies that there exist n indi-

viduals y

1

; : : : ; y

n

in T su
h that ea
h y

i

is an S-neighbour of Tail(p) and

C 2 L(y

i

). We 
laim that, for ea
h of these individuals, there is a path

q

i

su
h that hp; q

i

i 2 E(S), C 2 L(q

i

), and q

i

6= q

j

for all 1 � i < j � n.

Obviously, this implies ℄S

T

(p; C) > n. Due to B8, whi
h prevents an

S-su

essor y of Tail(p) with C 2 L(y) to be 
-blo
ked, there are three

possibilities for ea
h y

i

,

{ y

i

is an S-su

essor of x and y

i

is not blo
ked in T. Then q

i

= [pj

y

i

y

i

℄

is a path with the desired properties.

{ y

i

is an S-su

essor of x and y

i

is a-blo
ked in T by some node z.

Then q

i

= [pj

z

y

i

℄ is the path with the desired properties. Sin
e the

same z may blo
k several of the y

j

s, it is indeed ne
essary to in
lude

y

i

expli
itly into the path to ensure that [pj

z

y

i

℄ 6= [pj

z

y

j

℄ for y

i

6= y

j

.

{ Tail(p) is an Inv(S)-su

essor of y

i

. There may be at most one su
h

y

i

. This implies that p is of the form [qj

Tail(p)

Tail

0

(p)

℄ with Tail(q) = y

i

.

Again, q has the desired properties and, obviously, q is distin
t from

all other paths q

j

.

� T11: Let (6 n S C) 2 L(p) and hp; qi 2 E(S).

If q = [pj

x

x

0

℄ then x

0

is an S-su

essor of Tail(p) and thus 
ompleteness

implies fC;�Cg \ L(x

0

) 6= ;. Sin
e L(x

0

) � L(x) = L(q), we have

fC;�Cg \ L(q) 6= ;.

If p = [qj

x

x

0

℄, then x

0

is an Inv(S)-su

essor of Tail(q) and (6 n S C) 2

L(x). If x = x

0

, then 
ompleteness implies fC;�Cg \ L(Tail(q)) 6= ;.

If x 6= x

0

, then x blo
ks x

0

. The 
onstru
tion of E and hp; qi 2 E(S)

imply that B3.a is not possible, and B3.b together with B3.
 imply that

fC;�Cg \ L(Tail(q)) 6= ;.

If q = [p

1

j

u

u

℄ for p = [p

1

j

u

u

jp

0

℄, then u 
-blo
ks an S-su

essor of Tail(p), and


ompleteness together with B5 implies that fC;�Cg \L(u) = fC;�Cg \

L(Tail(q)) 6= ;

If p = [q

1

j

u

u

℄ for q = [q

1

j

u

u

jq

0

℄, then u 
-blo
ks an Inv(S)-su

essor of

Tail(q). Sin
e (6 n S C) 2 L(u), B7 implies that �C 2 L(Tail(q)), and

thus fC;�Cg \ L(q) 6= ;.

Lemma 4 (Completeness) If a SHIQ-
on
ept D has a tableau with respe
t

to R, then the expansion rules 
an be applied to D su
h that they yield a 
omplete

and 
lash-free 
ompletion tree with respe
t to R.

Proof: Let T = (S;L;E) be a tableau for D w.r.t. R. We use this tableau

to guide the appli
ation of the non-deterministi
 rules. To do this, we will

indu
tively de�ne a fun
tion �, mapping the individuals of the tree T to S su
h
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that, for ea
h x; y in T:

L(x) � L(�(x))

if y is an S-neighbour of x then h�(x); �(y)i 2 E(S)

x 6

:

= y implies �(x) 6= �(y)

9

=

;

(�)

Claim: Let T be a 
ompletion tree and � a fun
tion satisfying (�). If a rule

is appli
able to T, then the rule 
an be applied to T su
h that it yields a


ompletion tree T

0

for whi
h the fun
tion � 
an be extended to �

0

satisfying

(�).

Let T be a 
ompletion tree and � be a fun
tion that satis�es (�). We verify

the 
laim for ea
h of the expansion rules.

� The u-rule: If C

1

u C

2

2 L(x), then C

1

u C

2

2 L(�(x)). T2 implies

C

1

; C

2

2 L(�(x)) and hen
e the rule yields a T

0

for whi
h �

0

= � sati�es

(�).

� The t-rule: If C

1

t C

2

2 L(x), then C

1

t C

2

2 L(�(x)). T3 implies

fC

1

; C

2

g \L(�(x)) 6= ;. Hen
e the t-rule 
an add an appropriate C

i

and

�

0

= � sati�es (�).

� The 9-rule: If 9S:C 2 L(x), then 9S:C 2 L(�(x)) and T5 implies the

existen
e of an element t 2 S su
h that h�(x); ti 2 E(S) and C 2 L(t). The

appli
ation of the 9-rule generates a new variable y with L(hx; yi) = fSg

and L(y) = fCg. Hen
e de�ne �

0

to be the extension of � with �

0

(y) = t,

and thus, due to T8, the result of applying the 9-rule T

0

satis�es (�) with

�

0

.

� The 8-rule: If 8S:C 2 L(x), then 8S:C 2 L(�(x)) and, if y is an S-

neighbour of x, then also h�(x); �(y)i 2 E(S) due to (�). Sin
e T is a

tableau, T4 implies C 2 L(�(y)) and hen
e the 8-rule 
an be applied

without violating (�).

� The 8

+

-rule: If 8S:C 2 L(x), then 8S:C 2 L(�(x)). If there is some R v* S

with Trans(R) and y is an R-neighbour of x, then also h�(x); �(y)i 2 E(R)

due to (�) and T8. Then T6 implies 8R:C 2 L(�(y)), and hen
e the

8

+

-rule 
an be applied without violating (�).

� The 
hoose-rule: If (6 n S C) 2 L(x), then (6 n S C) 2 L(�(x)) and, if

there is an S-neighbour y of x, then h�(x); �(y)i 2 E(S) due to (�) and

T8. Then T11 implies fC;�Cg \ L(�(y) 6= ;, and thus the 
hoose-rule


an add an appropriate 
on
ept E 2 fC;�Cg to L(x) without violating

(�).

� The >-rule: If (> n S C) 2 L(x), then (> n S C) 2 L(�(x)) and T10

implies ℄S

T

(�(x); C) > n. Hen
e there are individuals t

1

; : : : ; t

n

2 S su
h

that h�(x); t

i

i 2 E(S), C 2 L(t

i

), and t

i

6= t

j

for 1 � i < j � n. The

>-rule generates n new nodes y

1

; : : : ; y

n

. By extending � to �

0

(y

i

) = t

i
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for ea
h 1 � i � n, one obtains a fun
tion �

0

that satis�es (�) for the tree

resulting from the appli
ation of the >-rule.

� The 6-rule: If (6 n S C) 2 L(x), then (6 n S C) 2 L(�(x)) and T9

implies ℄S

T

(�(x); C) 6 n. If the 6-rule is appli
able, we have ℄S

T

(x;C) >

n, whi
h implies that there are at least n+1 S-neighbours y

0

; : : : ; y

n

of x

su
h that C 2 L(y

i

). Thus, there must be two nodes y; z 2 fy

0

; : : : ; y

n

g

su
h that �(y) = �(z). Then �(y) = �(z) implies that y 6

:

= z 
annot hold

be
ause of (�), and y; z 
an be 
hosen su
h that y is a su

essor of x.

Hen
e the 6-rule 
an be applied without violating (�).

This 
laim implies the 
ompleteness of the tableaux algorithm: for the initial


ompletion tree 
onsisting of a single node x

0

with L(x

0

) = fDg and 6

:

= = ;, we


an give a fun
tion � that satis�es (�) by setting �(x

0

) := s

0

for some s

0

2 S

with D 2 L(s

0

) (su
h an s

0

exists sin
e T is a tableau for D). Whenever a

rule is appli
able to T, it 
an be applied in a way that maintains (�). Lemma 2

implies that any sequen
e of rule appli
ations must terminate. Due to (�), any

tree generated by these rule-appli
ations must be 
lash-free. This 
an be seen

by investigating the two possibilities for a 
lash:

� T 
annot 
ontain a node x with fC;:Cg 2 L(x) be
ause L(x) � L(�(x))

and �(x) satis�es T1.

� T 
annot 
ontain a node x with (6 n S C) 2 L(x) and n+1 S-neighbours

y

0

; : : : y

n

of x with C 2 L(y

i

) and y

i

6

:

= y

j

for 0 � i < j � n: sin
e

L(x) � L(�(x)), we have (6 n S C) 2 L(�(x)) and, sin
e y

i

6

:

= y

j

implies

�(y

i

) 6= �(y

j

), this would imply that ℄S

T

(�(x); C) > n, in 
ontradi
tion

to T9.

Sin
e terminologies 
an be internalised in SHIQ

[

HST99b

℄

, we have the

following theorem:

Theorem 1 The tableaux algorithm is a de
ision pro
edure for the satis�ability

and subsumption of SHIQ-
on
epts with respe
t to role hierar
hies and termi-

nologies.

4 Empiri
al evaluation

The modi�ed algorithm has been implemented in the FaCT system and

tested with knowledge bases (KBs) derived from realisti
 appli
ations: ei-

ther SHIQ en
odings of UML diagrams

[

BCDG01

℄

or SHIQ translations of

OIL/DAML+OIL ontologies

[

FvHH

+

01

℄

. In ea
h 
ase, we have measured the

time taken to 
lassify the KB both with and without the optimised blo
king


ondition, and also measured the maximum size and depth of trees 
onstru
ted

by the algorithm during the 
lassi�
ation pro
edure. The results of these tests

are shown in Figure 4.
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Optimised Blo
king Standard Blo
king

KB time(s) depth size time(s) depth size

hospital 2 16 775 { 45 6874

library 0.25 9 147 1.25 11 153

restaurant 8 26 1280 672 36 5824

so

er 36 27 3840 918 32 7087

geography 9 8 70 4506 18 5983

Figure 4: Comparison of KB 
lassi�
ation times and data stru
tures.

It 
an be seen that the optimised blo
king 
ondition uniformly improves

performan
e and that, in some 
ases, the improvement is quite dramati
 (more

than two orders of magnitude in the 
ase of the geography knowledge base).

3

The reason for this is the redu
tion in the depth and size of the trees built by

the optimised algorithm. Apart from the inherent 
ost of building larger trees,

the size of the sear
h spa
e due to non-deterministi
 expansion may in
rease

exponentially with the number of nodes in the model.

It may be interesting to 
onsider the geography KB in more detail in order to

see why the performan
e improvement is so dramati
.

4

As the name suggests,

this KB des
ribes the geography of European 
ountries. For example, it in
ludes

the axioms:

Republi
-of-Ireland v 9is-part-of:Ireland

Ireland v 9is-part-of:British-Isles

British-Isles v 9is-part-of:Western-Europe

Western-Europe v 9is-part-of:Europe

If these \part-of" relationships were uni-dire
tional, the KB would be rela-

tively trivial to 
lassify. However, the KB also 
ontains axioms spe
ifying the

parts that make up various 
omposites, e.g.:

British-Isles v 9is-part-of

�

:Ireland u 9is-part-of

�

:Great-Britain

This kind of 
y
li
al 
onstru
tion is quite 
ommon in KBs that des
ribe

physi
ally 
onne
ted stru
tures, and 
an also be seen for example in the Galen

medi
al terminology KB. The e�e
t of these 
y
li
al axioms 
an be seen when


lassifying the 
on
ept Europe. Figure 5 illustrates part of the tree built by the

using the standard double blo
king. It 
an be seen that un-blo
ked nodes whose

label in
ludes Europe o

ur several times in a single bran
h of the tree. The

fourth node in the bran
h is not blo
ked be
ause the �rst o

urren
e of Europe

is in the label of the root node, whi
h has no prede
essor and thus 
annot be a

3

Without optimised blo
king, FaCT was unable to 
lassify the hospital KB|system re-

sour
es (memory) were exhausted after 86s of pro
essing.

4

Please note that the authors do not make any 
laims for the \quality" or \
orre
tness"

of this ontology.
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blo
king node. The seventh node in the bran
h is not blo
ked be
ause the label

of its prede
essor 
ontains Southern-Europe, whereas the label of the prede
essor

of the fourth node 
ontains Western-Europe. Note that ea
h un-blo
ked node

with Europe in its label will lead to the generation of a large sub-tree due to

an axiom that lists all the 
ountries that make up Europe. In 
ontrast, the

optimised blo
king 
ondition allows the root node to 
-blo
k the fourth node,

greatly redu
ing the total size of the tree.

fEurope; : : :g

fBelgium; : : :g

fWestern-Europe; : : :g

fEurope; : : :g

fItaly; : : :g

fSouthern-Europe; : : :g

fEurope; : : :g

is-part-of

�

is-part-of

is-part-of

is-part-of

�

is-part-of

is-part-of

is-part-of

�

Figure 5: Tree built by unoptimised algorithm for 
on
ept Europe

The hospital, library, restaurant, and so

er KBs were all derived from the

en
oding in SHIQ of UML diagrams. The nature of the en
oding means that

the resulting KBs tend to be highly 
y
li
al. Moreover, if the UML diagrams

in
lude maximum 
ardinality 
onstraints on relations (e.g., single valued rela-

tions), then the en
oded KB will in
lude quali�ed at most restri
tions, possibly

with 
omplex qualifying 
on
epts (i.e., 
on
epts of the form (6nR:C) where C is

non-atomi
). The expansion of these 
on
epts is highly non-deterministi
 (due

to the !

�

- and the !


hoose

-rule), and it is 
riti
al to minimise the number of

node labels in whi
h they o

ur. In the 
ase of the hospital KB, for example, the

degree of non-determinism in the larger tree generated without the optimised

blo
king 
ondition is so great that, in attempting to sear
h it, FaCT exhausts

the system's memory.

5 Dis
ussion

In order to deal with inverse roles and number restri
tions in a logi
 la
king the

�nite model property, the SHIQ algorithm implemented in the FaCT system
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introdu
ed a new and more sophisti
ated \double-blo
king" te
hnique. The


onditions under whi
h a blo
k 
ould be established were 
learly more exa
ting

than was stri
tly ne
essary, but it was assumed that, apart from the diÆ
ulty

of proving soundness and 
ompleteness, the in
reased 
ost of 
he
king more

pre
isely de�ned 
onditions would outweigh any bene�t that might be derived.

The failure of the FaCT system to solve UML derived knowledge bases lead

us to re
onsider this 
onje
ture, and we have presented an optimised algorithm

that 
he
ks for two di�erent kinds of blo
k, with more pre
isely de�ned 
ondi-

tions under whi
h ea
h 
an be established. In spite of this in
reased 
omplexity,

we have been able to prove that the optimised algorithm is still sound and 
om-

plete, and have shown that in some 
ases it 
an improve FaCT's performan
e

by more than two orders of magnitude.

Clearly, the adverse e�e
ts of the stri
ter standard blo
king 
ondition should

not have been underestimated. IneÆ
ient blo
king 
an lead to an in
rease in

the size of the tree 
onstru
ted by the algorithm, and given a logi
 with the


omplexity of SHIQ this 
an lead to a 
atastrophi
 blow up in the size of the

sear
h spa
e (the number of di�erent trees that must be explored). As we have

shown, this e�e
t 
an be observed in realisti
 knowledge bases derived both from

the en
oding of UML diagrams and from OIL/DAML+OIL ontologies.
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