Aachen University of Technology
Research group for
Theoretical Computer Science

LTCS—Report

A Tableau Calculus for Temporal Description Logic: The
Constant Domain Case.

Carsten Lutz, Holger Sturm, Frank Wolter, and Michael Zakharyaschev

LTCS-Report 01-01

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

A Tableau Calculus for Temporal Description Logic: The
Constant Domain Case.

Carsten Lutz', Holger Sturm?, Frank Wolter®, and Michael Zakharyaschev!

I LuFG Theoretical Computer Science, RWTH Aachen,
Ahornstrafle 55, 52074 Aachen, Germany

2 Fachbereich Philosophie, Universitit Konstanz
78457 Konstanz, Germany

3 Institut fiir Informatik, Universitit Leipzig,
Augustus-Platz 10-11, 04109 Leipzig, Germany

4 Department of Computer Science, King’s College
Strand, London WC2R 2LS, U.K.

emails: lutz@cs.rwth-aachen.de, Holger.Sturm@uni-konstanz.de,
wolter@informatik.uni-leipzig.de, mz@dcs.kcl.ac.uk

Abstract

We show how to combine the standard tableau system for the basic descrip-
tion logic ALC and Wolper’s tableau calculus for propositional temporal logic
PTL (with the temporal operators ‘next-time’ and ‘until’) in order to design a
terminating sound and complete tableau-based satisfiability-checking algorithm
for the temporal description logic PTL gz¢ of [19] interpreted in models with con-
stant domains. We use the method of quasimodels [17, 15] to represent models
with infinite domains, and the technique of minimal types [11] to maintain these
domains constant. The combination is flexible and can be extended to more ex-
pressive description logics or even to decidable fragments of first-order temporal
logics.

1 Introduction

Temporal description logics (TDLs) are knowledge representation formalisms intended
for dealing with temporal conceptual knowledge. In other words, TDLs combine the
ability of description logics (DLs) to represent and reason about conceptual knowledge
with the ability of temporal logics (TLs) to reason about time. A dozen TDLs designed
in the last decade (see e.g. [14, 13,2, 19, 3, 10] and survey [1]) showed that the equation
TDL = DL + TL may have different, often very complex solutions, partly because of
the rich choice of DLs and TLs, but primarily because of principle difficulties in com-
bining systems; see [7]. With rare exceptions, the work so far has been concentrated
on theoretical foundations of TDLs (decidability and undecidability, computational
complexity, expressive power). The investigation of ‘implementable’ algorithms is still
at the embryo stage, especially for the TDLs with non-trivial interactions between
their DL, and TL components. The problem we are facing is as follows: is it possible

to combine the existing implementable reasoning procedures for the interacting DL
and TL components into a reasonably efficient (on ‘real world problems’) algorithm
for their TDL hybrid? As the majority of the existing reasoning mechanisms for DLs
are based on the tableau approach, a first challenging step would be to combine a
tableau system for a DL with Wolper’s tableaux [16] for the propositional temporal
logic PTL.

The first TDL tableau system was constructed by Schild [13], who merged the basic
description logic ALC with PTL by allowing applications of the temporal operator I/
(until) and its derivatives only to concepts. For example, he defines a concept Mortal
by taking

Mortal = Living_being M (Living_being ¢ O-Living_being) ,

where O means ‘always in the future.” The resulting language is interpreted in models
based on the flow of time (N, <) and, for each n € N, specifying an ALC-model that
describes the state of the knowledge base at moment n. Schild obtains his sound,
complete and terminating tableau system (for checking concept satisfiability) simply
by putting together the tableau rules of ALC and PTL. The reason behind this ‘trivial’
solution is that, in Schild’s logic, there is no actual interaction between the temporal
operators of PTL and the constructors of ALC; the logic is the fusion or independent
join of its components.

A more sophisticated combination PTL 4-¢ of ALC and PTL allowing applications
of temporal and Boolean operators to both concepts and TBox axioms was constructed
in [19]. Using PTL 4zc, one can express statements like ‘in all times all living beings
are mortal’ or ‘living beings will never die out completely:’

O(Living_being C Mortal), OO—(Living_being = 1),

where & means ‘some time in the future.” The degree of interaction between the DL
and TL components in PTL 4-¢ depends on the ‘domain assumption’ the intended
models comply with. A tableau system for PTL 4,¢ interpreted in models with ez-
panding ALC domains (which means that when moving from earlier moments of time
to later ones, the domains of ALC-models can get larger and larger, but never shrink)
was designed in [15]. The interaction between the components becomes even stronger
if we consider models with constant domains, where an introduction of a domain el-
ement at moment n forces us to introduce the same element at all previous moments
as well. This makes the problem of constructing tableaux for PTL 4,¢ with constant
domains considerably more difficult.

The choice of the domain assumption—ezpanding, varying, decreasing, or con-
stant—depends on the knowledge to be represented. One can argue, for instance,
whether the domain element representing a living being A in a model exists before
A’s birth or after A’s death. However, in many applications such as reasoning about
temporal entity relationship (ER) diagrams [2, 3], expanding domains do not suffice
and must be replaced by constant ones. Apart from being appropriate for applications,
the constant domain assumption is the most general case in the sense that reason-
ing with expanding (or varying) domains can be reduced to reasoning with constant
domains (see e.g. [19]).

The main aim of this paper is to design a terminating, sound, and complete tableau
system for checking satisfiability of PTL 4z -formulas in models with constant domains.

This is achieved by

e combining (in a modular way) the standard tableaux for ALC with Wolper’s
[16] tableaux for PTL,

e using so-called quasimodel representations of constraint systems, and

e using so-called minimal type representations of domain elements introduced in
subsequent states.

Quasimodels [17, 18, 19] are abstractions of models representing elements by their
types and the evolution of elements in time by certain functions called runs. As
was shown in [15], quasimodels make it possible to cope with PTL 4-¢ models having
infinite ALC domains (an example showing that PTL 4-¢ does not have the finite
domain property can be found in Section 2). The concept of ‘minimal partial types’ is
the main new idea of this paper which is used to maintain the ALC domains constant.

Although the formula-satisfiability problem for PTL 4.¢ is rather complex—as is
shown in [3], it is EXPSPACE-complete—we hope that the tableau system constructed
in this paper will lead to a ‘reasonably efficient” implementation of the PTL 4,¢ reason-
ing services. However, in order to achieve an acceptable run-time behavior, it is still
necessary to devise suitable optimization strategies for the algorithm. We believe that
such strategies can be found, since, as shown in e.g. [9], related tableau algorithms
are amenable to optimization.

It is to be noted that the developed approach can be used to design tableau algo-
rithms for other combinations of description and modal logics (in particular, temporal
epistemic logics of [6]). For instance, [11] gives a solution to the open problem of
Baader and Laux [4] by constructing tableaux for their combination of the modal
logic K with ALC interpreted in models with constant domains.

2 Basic definitions

We begin by introducing the temporal description logic PTL 42¢ of [19].

Let No ={Cy,C4,...}, Np = {Ro,R1,...}, and No = {ag,a1,...} be countably
infinite sets of concept names, role names, and object names, respectively. PTL 4,¢-
concepts are defined inductively: all the C; as well as T are concepts, and if C', D are
concepts and R € Ng, then C N D, =C, 3R.C, OC, and CUD are concepts.

PTL 4rc-formulas are defined as follows: if C, D are concepts and a,b € Np, then
C =D, a:C,and aRb are atomic formulas; and if ¢ and 1 are formulas, then so are
=, o AP, Op, and pUp.

The intended models of PTL 4-¢ are natural two-dimensional hybrids of standard
models of ALC and PTL. More precisely, a PTL 4zc-model is a triple 9 = (N, <, I),
where < is the standard ordering of N and I a function associating with each n € N

an ALC-model I(n) = <A, Ré(n), e ,Cé(n), e ,aé(”), .. .>, in which A, the (constant)

I(n)

domain of M, is a non-empty set, the R;

I(n)

are binary relations on A, the C; " subsets

of A, and the af(n) are elements of A such that af(n) = af(m), for every n,m € N.
(Note that in the given definition, the object names are assumed to be global, while
the concept names are interpreted locally. Neither of these assumptions is essential;
in particular, global concepts can be defined via local ones and U.)
The exztension C'(™ of a concept C' in 9 at a moment 7 is defined in the following
way:

TI0) = A;

(C) —) ﬂDI(”);

(=C) =A\CT

(3R. 0)1 ={deA | 3d' e ¢ dRT ™'},

(CUD)'™ ={de AlFIm>n (de D' &VE (n <k <m — d e C'P))};
(OC)I Cl(n+1)

The truth-relation 9, n = ¢ for the Boolean operators is standard and

M,n = C =D iff ¢! = pI),
MnEa:C iff '™ e T,

M, n |= aRb iff o' MR (M),

MnE U T Im >n (MmEY & Yk (n <k<m— Mk E p));
M,n = O iff M,n + 1= ¢

The only reasoning task we consider in this paper is satisfiability of PTL 4,¢-formulas,
a formula ¢ being satisfiable if there are a model 9 and a moment n € N such
that 9, n = . Other standard inference problems for PTL 4-c—concept satisfiabil-
ity, subsumption, ABox consistency, etc.—can be easily reduced to satisfiability of
formulas.

There are two main difficulties in designing a tableau system for PTL 40¢. First,
as was mentioned in the introduction, there exist formulas satisfiable only in models
with infinite domains. For example, such is the conjunction of the formulas

O0-((CnQO-C) = 1), B(=CCBo-0),

where OC = —~(TU-C) and L = =T. To tackle this difficulty, we employ the standard
tableaux for ALC for constructing finite representations of infinite models and keep
track of the development of their elements in time by using quasimodels as introduced
in [17, 19, 15].

The second difficulty is that at moment n + 1 the ALC tableau algorithm can
introduce an element which does not exists at moment n. To ensure that all ele-
ments always have their immediate predecessors, at each time point we create certain
‘marked’ elements satisfying as few conditions as possible, and use them as those
predecessors if necessary.

3 Constraint systems

In this section, we introduce constraint systems which serve a two-fold purpose. First,
they form a basis for defining quasimodels, which, in contrast to [19], are defined
purely syntactically. Second, constraint systems are the underlying data structure
of the tableau algorithm to be devised. Intuitively, a constraint system describes an
ALC-model.

In what follows, without loss of generality we assume that all equalities are of the
form C = T. (C = D is clearly equivalent to (=(C'T1=D) M =(D M =C)) = T.) Often
we shall write C # T instead of =(C' = T).

Constraint systems are formulated in the following language L. Let V be a fixed
countably infinite set of (individual) variables. We assume V to be disjoint from the
set Np of object names. Elements of V' U Np are called Lgo-terms. If ¢ is a PTL 4.¢-
formula, C' a concept, R a role, and z,y are Lo-terms, then ¢, z : C, and zRy are
called L¢-formulas.

We assume that V' comes equipped with a well-order <y. Let X be a non-empty
subset of V. Then min(X) denotes the first variable in X with respect to <y. Vari-
ables may occur in constraint systems either marked or unmarked; certain formulas
may occur U-marked or U-unmarked. As we said above, marked variables are used
to deal with constant domains. U/-markedness will be explained after the saturation
rules have been introduced.

Definition 3.1 A constraint system S is a finite (non-empty) set of Lo-formulas such
that

e cach variable in S is either marked or unmarked,

e cach formula in S of the form Uy or z : (CUD) is either U-marked or U-
unmarked,

e S contains min(V) : T.

We will say that a constraint system S is saturated if it satisfies a number of closure
conditions. With a few exceptions, these conditions require that if S contains a formula
¢ of a certain form, then S contains some other formulas composed from subformulas
and subconcepts of ¢ (possibly using additional negation and (). For example, S
is closed under conjunction if whenever S contains 11 A 19, then it contains both
conjuncts 11 and 1o as well. We formulate the closure conditions as the saturation
rules in Fig. 1-3. Later these rules will also be used as rules of our tableau algorithm.
A constraint system S is called saturated if none of the saturation rules can be applied
to it.

A few remarks below will help the reader to understand the rules. As the temporal
part of our tableaux is based on Wolper’s [16] algorithm for PTL, the temporal sat-
uration rules resemble those of Wolper’s. Note also that the saturation rules —_,,
— U, — Uy, — =1y —Ue, and —_y. are disjunctive: they have more than one
possible outcome. In this section, it is convenient to view these rules as nondetermin-
istic. Later, when the saturation rules are regarded as tableau rules, we will apply

ALC-rules for formulas

S — - {ptusif S —a {p,p} US if
——p€eSand p &S oA € Sand {p,} S

S — p {-6}US if
_'((10/\,(:[)) 657 _"pgsa and _'/lﬁgs

O=porf=1
Temporal rules for formulas
S — -0 {O~p}Usif S—yu XUSif
“OpeSand O—~p &S Uy appears U-unmarked in S

X ={¢} or X = {p, Opl1))}
oUY is U-marked in X U S

S— y XU§Sif
'((pu,([)) € Sv {',([)7 _‘(P} Z Sa and {_l’lﬂ,o_l((,DU’lﬂ)} Z S
X = {1, ~p} or X = {9, O~ (plU¢))}

Figure 1: Saturation rules for formulas.

them deterministically, i.e., consider all of their possible outcomes. Unless otherwise
stated, we assume rules to introduce U/-unmarked formulas. Intuitively, {/-markedness
is needed to ensure that the —;; and —. rules are applied exactly once to each
formula ol and x : CUD, respectively. For example, we must ensure that the —
rule is applied (once) to @l even if the constraint system under consideration already
contains ¢ and O(eU1). This is required to make the tableau algorithm complete
(see [16, 15] for an example and a more detailed discussion).

As was already noted, marked variables are needed to cope with constant domains.
For now, we just observe that the disjunctive rules treat marked and unmarked vari-
ables differently. Intuitively, in case of marked variables it is not sufficient to consider
only one of the possible outcomes of the disjunctive rule application per constraint
system, but we must additionally consider both possible outcomes together. For ex-
ample, if we have S = {v: EUF,v : =(C N D)} and v is marked in S, then we should
consider not only the obvious saturations S; = SU{v : ~C} and Sy = SU{v : =D},
but also

Sy ={v:EUF,v:~(CND),v:-C':EUF,v :~(CND)v :-D},

where, v is marked in S, S5, S3 and v’ is marked in S3. In S3, we created a ‘marked
copy’ v’ of v and saturated v in one possible way and v’ in the other. In the formulation
of the rules, copies are made by using copy(S,v,v") which denotes the set {v' : C'|
v : C € S}, where v is marked and v’ is a fresh variable (not used in S). Note
that by definition of Lo-formulas, marked variables do not occur in complex formulas
such as £ : C' Az : D and thus such formulas need not be considered for copy. We
generally assume that copies preserve U-markedness: in the example above, v’ : EUF

ALC-rules for concepts

S —_{z:CtUSif
rx:—~CeSandzx:C¢S
S—n{z:Ciz:D}USif
z:CNDeSand{z:C,z:D} S
S —nXUSif
z:=(CND)eS,z:-C¢gSandzx:-DgS
X ={z:-C}or X ={x:-D} or
z marked in S and X = (copy(S,z,v) U{z: -C,v:=D})
where v is marked in X U S and the first new variable from V'
S—_{z:C}USIif
C=TeS zoccursin S,andz:C & S
S— _3{y:C}US if
z:-3R.Ce S, zRye S,andy: -C¢ S

Temporal rules for concepts

S —-0c{r: O-C}US if

z:-QCeSandzx:O-CES

S —ye XUS i

z : CUD appears UY-unmarked in S

X={z:D}or X ={z:C,z: O(CUD)} or
z marked in S and X = (copy(S,z,v) U{z: D,v:C,v: O(CUD)})
where v is marked in X U S and the first new variable from V'

x: CUD and v : CUD (if introduced) are U-marked in X U S

S — e XUS if

z:=(CUD) € S, {x:—-D,x:-C} S, and {z : =D,z : O~(CUD)} £ S

X ={z:-D,z:-C}or X ={x:-D,z: O-(CUD)} or
z marked in S and X = (copy(S,z,v) U{z: =D,z : -C,v: -D,v: O—~(CUD)})
where v is marked in X U S and the first new variable from V

Figure 2: Non-generating saturation rules for concepts.

S —1{v:-C}US if

C # T € S and there exists no y withy: =C' € S

v is the first new variable from V

S —3{v:C,zRv}US if

xz:AR.C € S, there is no y such that {zRy,y : C} C S and z is not blocked in S

by an unmarked variable; v is unmarked and the first new variable from V'

Figure 3: Generating saturation rules.

is U-marked in S5 iff v : EUF is U-marked in S.

To ensure termination of repeated applications of the saturation rules, we use a
‘blocking’ technique, c.f. [5]. Blocked variables are defined as follows.

For now, assume that each constraint system is equipped with a strict partial order
< on the set of terms. Say that a variable v in a constraint system S is blocked by
a variable v' in S if v/ < vand {C'|v:C € S} C {C|v': C € S}. Later, when we
consider sequences of constraint systems obtained by repeated rule applications, <
will denote the order of introduction of terms. Note that only variables, rather than
object names, may block terms. Also, only variables can be blocked.

A constraint system S is said to be clash-free if it contains no formulas =T and
z : =T and neither a pair of the form x : C, z : =C, nor a pair of the form ¢, ~¢p. We
write S —, S’ to say that the constraint system S’ can be obtained from S by an
application of the saturation rule —s,. A constraint system S’ is called a saturation of
a constraint system S iff there exists a sequence Sy, ..., S, be a sequence of constraint
systems such that S = Sy, ' = S, and, for every i < n, there is a saturation rule
— for which SZ —e Si+1-

4 Quasimodels

As was already said, PTL 42¢ does not have the finite domain property, and so our
tableau algorithm constructs abstractions of models, called quasimodels, rather than
models themselves.

Quasimodels are based on the idea of concept types. A concept type is simply a
set of concepts that are ‘relevant’ to the tested formula and satisfied by an element of
the domain. The ‘fragment’ of relevant concepts and formulas is defined as follows.
Let ® be a set of formulas. Denote by Sb(®) the set of all subformulas of formulas in
@, by ob(®) the set of all object names that occur in ®, by rol(®) the set of all roles
in &, and by con(®) the set of all concepts in ®. If # is a unary operator, say, = or
O, then #(®) is the union of ® and {#¢ | € ®}. The fragment Fg(®) generated by
® is defined as the union of the following four sets: ob(®), rol(®), O(-con(®PU{T}))
and Q(=Sb(®U{T})).

Roughly, a quasimodel is a sequence (S, |n € N) of saturated constraint systems
that satisfies certain conditions which control interactions between the S, and ensure

that quasimodels can be reconstructed into real models. Unlike standard tableaux,
where a variable usually represents an element of a model, a variable in a quasimodel
represents a concept type. More precisely, if a constraint system contains a variable v,
then the corresponding ALC-models contain at least one—but potentially (infinitely)
many—elements of the type represented by v. As our PTL 42¢-models have constant
domains, we need some means to keep track of the types representing the same element
at different moments of time. This can be done using a function r, called a run,
which associates with each n € N a term r(n) from S,. Thus r(0),7(1),... are type
representations of one and the same element at moments 0,1,....
We are in a position now to give precise definitions. Fix a PTL 4.¢-formula ¢.

Definition 4.1 A quasiworld for ¥ is a saturated clash-free constraint system S sat-
isfying the following conditions:

e {a|3C (a:C) € S} =ob?),
e con(S) C Fg(¥) and rol(S) C Fg(v),
e for every formula ¢ € S, if ¢ is a PTL 4¢¢-formula then ¢ € Fg(19),

e all variables in S are unmarked.

One should not be confused by that all variables in quasiworlds are unmarked. Marked
variables are—as we shall see later on—important for the construction of a quasimodel.
After the construction, marked variables can simply be ‘unmarked’ (note that this
operation preserves saturatedness of constraint systems).

Definition 4.2 A sequence @@ = (S, |n € N) of quasiworlds for ¢ is called a 9-
sequence. A run in @ is a function r associating with each n € N a term r(n) from
S, such that

e for every m € N and every concept C, if (r(m) : OC) € S, then we have
(r(m+1):C) € Spt1,

e for allm € N, if (r(m) : CUD) € S, then there is k > m such that (r(k) : D) €
Sk and (r(i) : C) € S; whenever m <17 < k.

Definition 4.3 A J-sequence @ is called a quasimodel for ¥ if the following hold:

e for every object name a in @, the function r, defined by r,(n) = a, for alln € N,
is a run in @,

e for every n € N and every variable v in S, there is a run r in @ such that
r(n) =wv,

e for every n € N and every Oy € Sp,, we have ¢ € Sp41,

e for every n € N and every (pUv) € Sy, there is m > n such that ¢ € S, and
@ € S whenever n < k < m.

We say that ¢ is quasi-satisfiable if there are a quasimodel Q = (S, | n € N) for ¢ and
n € N such that ¢4 € S,,.

Theorem 4.4 A PTL 4,c-formula ¢ is satisfiable iff ¢ is quasi-satisfiable.

The proof is delivered in Section A.

5 The tableau algorithm

In this section, we present a tableau algorithm for checking satisfiability of PTL 4.¢-
formulas in models with constant domains. Before going into technical details, we
explain informally how quasimodels for an input formula ¢ are constructed and, in
particular, how marked variables help to maintain constant domains.

Intuitively, marked variables represent so-called ‘minimal types.” If a constraint
system S contains marked variables vy,...,v; then every element of an ALC-model
corresponding to S is described by one of the v;. It should now be clear why the
disjunctive saturation rules must be applied in a special way to marked variables.
Consider, for example, the —_ rule and assume that there is a single marked
variable v, in S and that v, : =(C M D) € S. In the context of minimal types,
this means that every element in corresponding ALC-models satisfies =(C'M D). From
this, however, it does not follow that every element satisfies =C' or that every element
satisfies = D. Hence, the — _ rule cannot be applied in the same way as for unmarked
variables.

Here is a simple example illustrating the construction of quasimodels with minimal
types. Consider the formula

9= ((-(OCNO-C))=T)Aa: OIR.C.

With this formula we associate the initial constraint system Sy = {d, vy, : T} contain-
ing 9 and a single marked variable v,,. By applying saturation rules, we obtain then
the constraint system Sy = {a : OIR.C, vy, : OC,v), : O—C?} (slightly simplified for
brevity) that describes the ALC-model for time moment 0. The constraint system for
moment 1 is {a : IR.C,vy : C,vy : =C vy, : T} (where vy, is the only marked vari-
able) which can then be extended to the system S; = {a : AR.C vy, : T,v1 : C, vy :
—C,aRv,v : C} by the saturation rules. Note that we introduced a new (unmarked)
variable v. Every element d which is of type v at moment 1 must—according to the
constant domain assumption—also exist at moment 0. But what is the type of d at
that moment (in the following called the ‘predecessor type’ of d at 1)? By the defini-
tion of minimal types, we must only choose among marked variables. So either d is
of type vy, at 0, which means that we must add v : C' to Sy, or d is of type v}, at 0,
and so we must add v : =C to S;. The former choice yields an (initial fragment of a)
quasimodel, while the latter leads to a clash. For a more detailed discussion we refer
the reader to [11].

We can now define the tableau algorithm. In general, tableau algorithms try to
construct a (quasi)model for the input formula by repeatedly applying tableau rules
to an appropriate data structure. Let us first introduce this data structure.

10

Definition 5.1 A tableau for a PTLcc-formula 9 is a triple G = (G, <,1), where
(G, <) is a finite tree and [a labelling function associating with each g € G a constraint
system [(g) for 9 such that Sy = {9} U{min(V): T}U{a: T |a € ob(¥)} is associated
with the root of G, where min(V') is marked and ¢ is Y/-unmarked if it is of the form
wUp or z : (CUD).

To decide whether ¥ is satisfiable, the tableau algorithm for PTL 4,.¢ goes through
two phases. In the first phase, the algorithm starts with an initial tableau Gy and
exhaustively applies the tableau rules to be defined below. Eventually we obtain a
tableau G to which no more rule is applicable; it is called a completion of Gy. In
the second phase, we eliminate those parts of G that contain obvious contradictions
or eventualities which are not realized. After that we are in a position to deliver a
verdict: 9 is satisfiable iff the resulting tableau G’ is not empty, i.e., iff the root of G
has not been eliminated.

Let us first concentrate on phase 1. The initial tableau Gy associated with ¥ is
defined as ({¢g"},<",l), where <"= () and I[(¢") = Sy. To define the tableau rules,
we require a number of auxiliary notions. Let S be a constraint system and z a
term occurring in S. Denote by A;(S) the set {C'|(z : OC) € S} and define an
equivalence relation ~g on the set of variables (not terms) in S by taking v ~g u iff
Ay(S) = Ay(S). The equivalence class generated by v is denoted by [v]g. Finally, let
[S]~ denote the set of all equivalence classes [v]g.

Similar to the local blocking strategy on variables of constraint systems, we need
a global blocking strategy on the nodes of tableaux. To define this kind of blocking,
it is convenient to abstract from variable names.

Let S and S’ be constraint systems. S’ is called a variant of S if there is a bijective
function 7 from the variables occurring in S onto the variables occurring in S’ which
respects markedness (i.e., unmarked variables are mapped to unmarked variables and
marked variables to marked variables) and S’ is obtained from S by replacing each
variable v from S with 7(v). In this case 7 is called a renaming.

Like constraint systems, tableaux are equipped with a strict partial order < on
the set of nodes which indicates the order in which the nodes of the tableau have
been introduced. The tableau rules are shown in Fig. 4. Intuitively, the = rule
generates a new time point, while the other rules infer additional knowledge about an
already existing time point. For every saturation rule —; we have a corresponding
tableau rule =>,. The = and =/ rules deal with constant domains and use the
notion of ancestor which is defined as follows.

Let G = (G, <,l) be a tableau for ©. A node g € G is called a state if only the
= rule is applicable to g. The node g is an ancestor of a node ¢’ € G if there is a
sequence of nodes g, ..., g, such that go = g, g» = ¢', g; < gix1 for i < n, and g is
the only state in the sequence.

As to the = rule, recall that variables represent types rather than elements.
In view of this, when constructing the next time point, we ‘merge’ variables satisfying
the same concepts (by using the equivalence classes). Actually, this idea is crucial
for devising a terminating tableau algorithm despite the lack of the finite domain
property. The = rule formalizes the choice of a predecessor type as was sketched

11

(G, =,1) = (G, <, 1)
if g is a leaf in G, the saturation rule —» is applicable to I(g),

Si,...,Sy are the possible outcomes of the application of — to I(g),
G =GW{g1,...,gn} and, for 1 <i <n, <" =<U{(g9,9:)} and I'(g;) = S;

(G,<,l) =0 (G, <)

ifG'=Gy{¢}, < =<U{(g,9")} for some leaf g € G,
I'(¢") is the union of the following sets:

{a:T}U{a:C|(a: OC) €l(g)}, for a € ob(l(g)),

{Y1O% €lg)},

{min([v]g)) : T} U {min([v];g)) : C'| (min([v]y)) : OC) € I(g)},
for [v]yy) € [l(9)]~,

{v': T},

where v’ is the only marked variable in [(g'),
and there is no ¢” € G with ¢"” < g such that [(g") is a variant of I(g)
(i.e., the rule is not blocked)

(G, <,1) = (G", <1

if ¢ is a leaf in G, v is an unmarked variable in I(g), ¢’ is the ancestor of g,
for no term z in I(g') do we have

{Cl(z:0C)ellgh c{C|(v:C)€ellg)}
v1,...,0, are the marked variables in I(¢'), G' = G W {g1,...,gn}, and,
for 1 <4 <n, we have <' = <U{(g,9;)} and

I'(gi) = 1(g) U{v: C| (vi: OC) € l(g')}-
(G, <,l) = (G’, <I, l')

if g is a leaf in G, v is a marked variable in I(g), ¢’ is the ancestor of g,
for no term z in I(g') do we have

{Cl(z:00)ellg) c{C|(v:0C)€llg)},
X = {min([v']y4y) | v' is a marked variable in I(g')},
Y; is the ith subset of X (for some ordering),
G'=GW{gi,...,gox}, and, for 1 < i < 2IX1 we have </ = < U {(g,9i)} and
I'(g;) is the union of I(g) and the following sets, where we assume Y; = {vy,...,v,}:
{v:C|(v1:00)€l(g)}
copy(l(g),v,v}) for L <j<mn
{v; :C[(v;: OC) €l(g")} for 1 <j<m

Here, all newly introduced variables v’ are marked in I'(g;).

Note: For all rules, we assume that I'(g) = I(g) for all ¢ € G. AW B denotes the
disjoint union of A and B.

Figure 4: Tableau rules.

12

in the example above. Since we have to choose a predecessor type, the rule behaves
similar to a disjunctive saturation rule, which means that we must apply the rule in
a different way for marked variables. That is why we need the = rule: for marked
variables, it considers arbitrary combinations of choices of predecessor types.

The tableau rules are applied until no further rule application is possible. To
ensure termination, we must follow a certain strategy of rule applications.

Definition 5.2 A tableau is complete if no tableau rule is applicable to it. Let
Go,..-,G, be a sequence of tableaux such that the associated orders <g,...,<,
describe the order of node introduction and, for every i < m, there is a tableau rule
=, such that G; =, G;;1 and

e if the rule is one of the generating rules =_ or =3, then no tableau rule
different from ==, =3, and = is applicable to G;,

e if the rule is =), then no other tableau rule is applicable to G;.

Then Gy, ..., G, is said to be built according to the tableau strategy. If this is the case,
Go = Gy, and G,, is complete, then G, is called a completion of 9.

The following lemma, claims that the tableau strategy ensures termination.

Theorem 5.3 If the tableau rules are applied according to the tableau strategy, then
a completion is reached after at most 2 steps, where r is a polynomial function.

The proof is delivered in Section B. Note that our algorithm is not optimal w.r.t.
the worst case, i.e., it is a 2EXPTIME-algorithm solving an EXPSPACE-complete prob-
lem [3]. However, the same applies to Wolper’s tableau algorithm for propositional
temporal logic [16]: An EXPT1IME-algorithm solves a PSPACE-complete problem. Nev-
ertheless, Wolper’s algorithm is considered very “practical”, i.e., well-suited for im-
plementation.

Let us now turn to the second phase of the algorithm, i.e., to the elimination phase.
We begin by defining which nodes are blocked.

Definition 5.4 Let G = (G, <,l) be a tableau for 9. A state g € G is blocked by a
state ¢’ € G if ¢ < g and [(¢') is a variant of [(g). We define a new relation < by
taking g < ¢’ if either g < ¢', or ¢ has a successor ¢” that is blocked by ¢'.

An important part of the elimination process deals with so-called eventualities. An
Le-formula a € S is called an eventuality for a constraint system S if a is either of
the form x : CUD or of the form pl1). An eventuality is said to be unmarked if it is
not of the form v : CUD for any marked variable v. All eventualities occurring in the
tableau have to be ‘realized’ in the following sense.

Definition 5.5 Let G = (G, <,[) be a tableau for 9, g € G, and let a be an eventuality
for I(g). Then « is realized for g in G if there is a sequence of unblocked nodes
90 <91 ... <gn in G with g = go, n > 0, such that the following holds:

(1) if @ is U1 then ¢ € I(gn);

13

(2) if a is v : CUD, with v unmarked or marked variable, then there are variables v;
from I(g;), i < n, with vy = v, v1,...,v, unmarked, (v, : D) € I(g,), and, for all i,
0 <1 < n, we have

e if g;_1 is a state, then {C| (vi_1 : OC) € l(gi—1)} C{C|(vi : C) € l(gi)},
e if g;_1 is not a state, then {C | (vi_1:C) €l(gi—1)} C{C | (vi : C) €l(g:)};
(3) if @ is a : CUD, for some object name a, then (a: D) € l(gy).

Intuitively, the variables vy,...,v, in (2) describe the same element at different mo-
ments of time. It should be clear that in a tableau representing a quasimodel, all
eventualities have to be realized. Apart from removing nodes that contain clashes, to
remove nodes with non-realized eventualities is the main aim of the elimination phase.

Definition 5.6 Let G = (G, <,1) be a tableau for . We use the following rules to
eliminate points in G:
(e1) if I(g) contains a clash, eliminate g and all its <*-successors

(where ‘<*-successor’ is the transitive closure of ‘<-successor’);

(e9) if all <-successors of g have been eliminated, eliminate g as well;

(e3) if I(g) contains an unmarked eventuality not realized for g, eliminate g and
all its <*-successors.

The elimination procedure is as follows. Say that a tableau G; = (G1, <1,11) is a
subtableau of Gy = (Ga,<9,l3) if G2 DO Gy and G is the restriction of G, to Gj.
Obviously, if Gy is a tableau for ¥ and Gp contains the root of Ga, then Gy is a
tableau for ¥. Suppose now that G = (G, <,[) is a completion of . We construct
a decreasing sequence of subtableaux G = Gy, Gy, ... by iteratively eliminating nodes
from G according to rules (e;)—(es), with (e;) being used only at the first step. (The
two other rules are used in turns.) Since we start with a finite tableau, this process
stops after finitely many steps, i.e., we reach a subtableau G’ = (G',<',l') of G to
which none of the elimination rules can be applied. We say that the root of G is not
eliminated iff G' # ().

Theorem 5.7 A PTLgc-formula 9 is satisfiable iff there is a completion of ¥ of
which the root is not eliminated.

The result will be proved in Section C.
As a consequence of Theorems 5.3 and 5.7 we obtain

Theorem 5.8 There is an effective tableau procedure which, given a PTL 4.c-formula
9, decides whether ¥ is satisfiable.

LOf course, eventualities which are marked also have to be realized. However, the fact that all
unmarked eventualities in a tableau are realized implies that all other eventualities are also realized
(see proofs).

14

6 Conclusion

This paper—a continuation of the series [13, 4, 15, 11]—develops a tableau reasoning
procedure for the temporal description logic PTL 4.¢ interpreted in two-dimensional
models with constant ALC domains. The algorithm runs in double exponential time—
thus paralleling the complexity of Wolper’s original PTL-algorithm [16] which solves
a PSPACE-complete problem using exponential time. Despite the high complexity,
we believe that the devised tableau algorithm is an important first step towards the
use of TDLs as KR&R tools. A prototype implementation of the described algorithm
is currently underway. Based on the experiences with this implementation, possible
optimization startegies will be investigated using the work in [9] as a starting point.

An important feature of the developed algorithm is that the DL component can
be made considerably more expressive, provided that the extension is also supported
by a reasonable tableau procedure. One idea we are working on now is to extend
this component to expressive fragments of first-order logic, thereby obtaining tableau
procedures for fragments of first-order temporal logic (cf. [8]) having potential appli-
cations in a growing number of fields such as specification and verification of reactive
systems, model-checking, query languages for temporal databases, etc.

Another interesting aspect of this paper is that, with minor modifications, the con-
structed tableaux can be used as a satisfiability checking procedure for the Cartesian
product of S5 and PTL (cf. [12]), thus contributing to a new exciting field in modal
logic studying the behavior of multi-dimensonal modal systems [7].

A Proof of Theorem 4.4

We are going to show that a PTL 4-c-formula ¢ is satisfiable iff it is quasi-satisfiable.

For the direction from left to right suppose that ¢ is satisfiable. Then there
is some model M = (N, <,I) with 9,0 = . Fix n € N. For each d € A put
thn(d) = {C € Fg(9)|d € CI'"}. Next define equivalence relations ~, on A by
putting d ~,, d' iff t/"(d) = t/""(d'). Consider the equivalence classes modulo ~,,
abbreviated by [d],,. Obviously, {[d],|d € A"} is finite. Choose for each equivalence
class [d],, a variable v, . Define mappings 7, which map objects names a and variables
v[g), to sets of domain objects d € A in the obvious way, i.e.,

(z) = {a’™} if z is an object name a
AT = [d]n, if z is a variable vg,

The constraint system S, corresponding to n is defined as the union of the following
five sets:

o {p e Fg(d)|Mn = ¢},
o {a:C|a€ob(¥),C € Fg(9),a’™ e CT"},
o {v), :Clde A CeFg(¥),deC "},

15

e {vRv'| 3d € ¥(v) and d’' € y(v') with (d,d’) € RT'"™}.

where all formulas of the form U and x : pUp are U-marked in S,. It is not difficult
to prove that .S, is a quasiworld for ¥J, we leave this to the reader.

Now, define @ as the sequence (S, |n € N). We need to show that @ is a quasi-
model for 9. That ¥ is quasi-satisfiable is then an immediate consequence of the fact
that 9 € Sy. So it only remains to check that) satisfies the conditions from Definition
4.3. The first condition is obvious. For the second, let v be some variable that occurs
in S,. By definition, there is some d € A with v = vjg),. For each m € N, we define
ry(m) = v, Since 9 has constant domain, r, is well-defined. It is easy to see that
ry is a run in @ (in the sense of Definition 4.2) and r,(n) = v. This proves the second
condition. The two remaining ones are proved from the definition of the quasiworlds
Sy, by using the semantics of PT L 4.¢ together with the closure conditions on Fg(#).

Now we turn to the direction from right to left, which forms the interesting part
of the theorem. Suppose 1 is quasi-satisfied in a quasimodel @ = (S, | n € N). Denote
by A the set of all runs in) and put, for each n € N,

I(n) = (AR, ...,C0™ . ag™, .. .)

where

I.n

e a" =r,, for every a € ob(¥),

o Ol ={reA|r(n):CieS,},

e For all runs r, 7' of the form r,,r, with a,b € ob(9) put rRI"r" iff r(n)Rr'(n) €
Sp. Otherwise, put rRI"r' iff r(n)Rr'(n) € S, or {C'|r(n) : ~3R.C € S,} C
{C|r'(n): =C € S,}.

We show that 9t = (N, <, I) is as required. To this end we first prove:
(I) For every n € N and every r € A, if (r(n) : C) € S,, then r € CT™.

This is proved by induction on the construction of C. Throughout the proof we
heavily exploit the fact that the S, are saturated, hence closed under all saturation
rules. Note that in the induction we make use of a measure of the complexity of
concepts according to which a concept C' that has not the form of a negation and its
negation —~C are of the same complexity.

Fix n € N and suppose r € A. For atomic C the claim follows from the choice
of the model. Let C = =D, with D atomic. Since S, is clash-free, (r(n) : D) & Sp.
Hence r ¢ D", which implies »r € CT". Next, consider C = (D N E). By the
closure of S,, under the rule —r we obtain (r(n) : D) € S, and (r(n) : E) € S,.
From the induction hypothesis we get » € DI and r € E'", hence, by semantics,
r € (DN E)". The cases C = =(D M E) and C = —=D are proved in a similar
way. One just has to use the fact that S, is closed under the rules —_n and —_—,
respectively.

16

Suppose C' = 3R.D and r(n) : AR.D € S,,.

Case 1. Suppose r(n) is not blocked. Then the closure under the rule —3 provides
some variable v with {v : D, r(n)Rv} C S,,. We find arunr’ € A with r'(n) = v. From
this we obtain rR’™', by definition, as well as ' € D’ by induction hypothesis.
Hence r € (3R.D)"".

Case 2. Suppose r(n) is blocked. We find an unblocked variable v such that
{Clv:Ce€S,} D{C|r(n):C € S,}. In particular, v : IR.D € S,,. We obtain a
variable v’ with {v' : D,vRv'} C S,,. Take a run 7’ with r'(n) = v'. Then rR!""r' and,
by induction hypthesis, v’ € D",

Now we check the case C = =3R.D. Suppose rRI™r'. By definition, we have
r(n)Rr'(n) € S, or {C|r(n): =C € S,} D {C|r(n): -3R.C € S,}. In both cases
r'(n) : =D € S,. This is clear in the latter case while in the first case it follows from
the non-applicability of the —+_3 rule. By induction hypothesis, ' € (=D)"". Since
r’ was chosen arbitrarily, it is shown that r € (-3R.D)".

Next, let C = OD and suppose (r(n) : OD) € S,. By the first clause in Definition
4.2, (r(n+1) : D) € S,41. Hence, by induction hypothesis, 7 € D'""*!. From the
latter we obtain r € (OD)’" by semantics. Now consider C' = =()D. Since S, is
saturated, we get (r(n) : O—D) € Sp. The rest follows from the preceding case.

Let C = (DUE). Then, by the second clause of Definition 4.2, there is some m > n
such that: (r(m) : E) € S, and for every n < i < m it holds that (r(7) : D) € S;.
From this the result can be easily obtained by making use of the induction hypothesis.
To complete the proof, it remains to consider the case C' = —(DUFE). So suppose
(r(n) : =(DUE)) € S,. By induction on m we show the following claim:

(A) For all m > n, {(r(m) : =E), (r(m) : -(DUE))} C Sy, or there is some i such
that n <i <m and (r(i) : =D) € S;.

For the start, let m = n. The claim is an immediate consequence of the assumption
together with the fact that S, is closed under the rule —_;;.. For the induction step
assume that the claim has already been proved for m = k. We distinguish two cases:
First, suppose there is some i such that n < i < k and (r(7) : =D) € S;. In this case
the induction step follows immediately. Suppose now there is no ¢ with this property.
Then {(r(k) : =FE), (r(k): =(DUE))} C Sk. By the closure under the rule — ., one
of the following holds: (i) (r(k) : =D) € Sk or (ii) (r(k) : ~O(DUE)) € Sk. In the first
case the induction step is trivial. In the second case we get (r(k) : O—=(DUFE)) € Sy,
by the closure under the rule —_~.. By making use of the first clause of Definition
4.2, we infer (r(k 4+ 1) : =(DUE)) € Sky1. The result is obtained by the closure of
Sk+1 under — _z.. This completes the induction step, and hence the proof of (A).
Now we come back to the proof of (T). It is easy to see that (A) yields:

(B) For all m > n, r € (=E)""™ or there is some i such that n < i < m and
r € (-D)",

by induction hypothesis. From the latter we infer the desired result r € (~(DUE))""
by a simple semantical argument. Hence (I) has been shown.
In the next step we show the following claim:

17

(IT) For every n € N and every ¢ € Fg(¥9), if ¢ € S,, then M, n = ¢.

Again, the claim is shown by induction. Let ¢ be atomic and suppose p € S,. We
distinguish three cases: firstly, suppose there is some object name a and some concept
C such that ¢ = (a : C). By the first clause of Definition 4.3, we obtain (r,(n) : C) €
S,. Hence, by (I), r, € C'". Note that a’" was defined as r,. So, by semantics,
M,n = a : C. Secondly, suppose there is some concept C' with ¢ = (C = T). Fix
r € A. Now, consider the term r(n). Since Sy, is closed under the rule —_, we get
(r(n) : C) € S,. An application of (I) yields » € CI'". Finally, suppose ¢ = aRb.
ro R1ry, follows immediately from the definition. Hence 9, n = —(aRb).

Next, consider ¢ = —p, with ¢ atomic. Again, we distinguish three cases. The first
case, where 1 has the form a : C, is clear. For the second case, suppose ¢ = (C'=T).
Assume (C # T) € S,. That S, is closed under the rule — supplies a term v
with (v : =C) € S,. By the second clause in Definition 4.3 we have a run r such
that r(n) = v. Moreover, by an application of (I), it follows that r € (=C)"™. So
there is some d € A with d € (—-C)'™™, that is d € CT'". But from the latter we infer
M,n = C # T. Finally, suppose ¢ = —(aRb). Then, by the definition, we do not
have r, RI"ry,. Hence M, n = aRb.

The proof of the induction step can be left to the reader. The different clauses are
all rather similar to the corresponding ones in the proof of (I). The only interesting
cases are ¢ = (pUx) and ¢ = (1) together with their negations. Here one uses the
third and fourth clause from Definition 4.3, where the first and second clause from
Definition 4.2 have been used in the proof of (I).

In order to complete the proof of the theorem we reason as follows: By assumption,
there is some n € N such that ¥ € S,. So an application of (II) yields M, n = ¥,
which means that ¢ is satisfied in 9.

B Proof of Theorem 5.3

In this section, we show that if the tableau rules are applied according to the tableau
strategy, then a completion is reached after at most double exponentially many steps
(in the length of the input formula 49).

By the length |p| of a formula ¢ we mean the number of occurences of symbols
used to construct ¢. We first establish an upper bound for the number of certain
constraints per node label.

Lemma B.1 Let Gy,...,G, = G be built according to the tableau strategy with Gy =
Gy. Let l(g) be a node in G. Then the number of constraints of the form x : C in I(g)
is bounded by 2PU7D | for some polynomial function p.

Proof. Let us first determine an upper bound for the number of distinct terms per
node label. All object names occurring in node labels are from ob(«7). So the number
of distinct object names in a label does not exceed |4]|.

The root node and the labels [(g) of nodes g introduced by an application of the
rule = do not contain more than 2491 distinct unmarked variables and a single

18

marked one—24"! i the number of distinct subsets of concepts in Fg(9) and the upper
bound on the number of marked variables is due to the use of equivalence classes in
the = rule.

We now consider the number of variables introduced in a path § = g9 < -+ < gn
in which gg is the root node or introduced by = and no g;, @ < n, is a state. First
for the marked variables, which are introduced by the rules = _n, =1y, = -11¢,
and = /. Define a tree T" whose nodes are the marked variables in /(g,) and whose
edges are labeled with either ==_r, =>¢/¢, =1/, or ==/ as follows:

e The root node is the initial marked variable in gq.

o If a rule =€ {=>-n, =u¢;, =>-Ue, =/} i3 applied to a marked variable
v generating new marked variables vy, ..., v, then v; is successor of v in T and
the edge between v and v; is labelled with =>4 for 1 <i < k.

The depth of T' is bounded by 4 || + 1: By definition of the (saturation and) tableau
rules, each path in 7' may contain at most 4 |¢| edges labelled with =—_, =, or
= and at most a single edge labelled =|/. Moreover, each node has at most
419| + 2491 successors: at most 4 |9] outgoing edges labelled with =_r, =4, or
—> _11c, and at most 24?1 outgoing edges labelled with = ;- Hence, the number
of nodes in the tree (which is the maximum number of marked variables in I(gy)) is
bounded by 220?D for some polynomial function g.

We now consider unmarked variables which are introduced by the = and =3
rules in the sequence g. The rule =~ can obviously add at most |[¢}| new variables.
For the =3 rule, we distinguish applications to constraints z : IR.C' where (i) z
is an object name, (ii) x is a marked variable, and (iii) is an unmarked variable.
We may obviously have at most || - 4 |9| rule applications of type (i). By the upper
bound established for marked variables, we may have at most 297D . 4 |9| applications
of type (ii). Now for type (iii). By the tableau strategy, a variable v will never be
blocked in § after the =3 rule has been applied to a constraint v : AR.C. Moreover,
by definition of blocking, there may exist at most 2491 unblocked unmarked variables
per constraint system. It follows that the =3 rule is applied to at most 247! distinct
unmarked variables, i.e., there may be at most 4 |9] - 24/ applications of type (iii).
Summing up, there clearly exists a polynomial function ¢’ such that the number of
unmarked variables in I(g,) is bounded by 27 (7],

For each term z, there may obviously exist at most 4 || constraints of the form
z : C. Hence, if we take together the upper bounds for the numbers of objects, marked
variables, and unmarked variables, Lemma B.1 immediately follows. -

The lemma just established is helpful for determining the maximum number of con-
straint systems appearing during a run of the algorithm that are not variants of one
another. In the following, we call two constraint systems wvdistinct iff they are not
variants of one another.

Lemma B.2 Let Gy,...,G, = G be built according to the tableau strategy with Gy =
9. en G contains at mos D node labels that are pairwise vdistinct, where q is

Gy. Then G cont t most 22"

a polynomial function.

19

Proof. Let us first determine the maximum size of node labels in G. From Lemma B.1,
we know that each label may contain at most 2P(?D constraints of the form z : C.
Moreover, each label may obviously contain at most 4 || formulas, namely those in
Fg(¥9). Hence, it remains to consider constraints of the form zRv where z is a term
and v is a variable (note that constraints aRb with a and b object names are formulas
and have thus already been considered). Such constraints are only introduced by the
=3 rule along with constraints of the form z : C'. Hence, the number of constraints
of the form zRwv is also bounded by 2PU?D. Summing up, there exists a polynomial
function ¢ such that the size of each node label in G is bounded 2¢(1%)) Since all
involved object names, concepts, formulas, and roles are from Fg(1), there exist at

most 22"""Y node labels which are pairwise distinct up to variable renaming. -

We are now ready to prove Theorem 5.3. Assume that the tableau algorithm computes
a sequence Gy, Gy, ... of tableaux with Gy = Gy. By Lemma B.2, we may have at most
921"V states that are pairwise vdistinct per tableau G;. By definition of blocking, this
implies that we have at most 22"1"Y ynblocked states in any G;. By definition of the
tableau rules, we have that if a state g in a tableau G; is blocked, then g is a leaf in G;.
Also by definition of the tableau rules (see especially the ==/ rule), the branching
factor of tableaux in the above sequence is bounded by 92171, Summing up these facts,
we obtain that the number of (blocked or unblocked) states in any G; is bounded by
921170 92171 gice every rule application except = generates a new node that
is labelled with a strict superset of the label of the (leaf) node to which the rule is
applied (and = itself is only applied to states), there exist at most 2491 non-state
nodes per state. It follows that the number of nodes in any tableau G; is bounded
by 92" 19\)’ where 7 is a polynomial function. Since every rule application adds a new
node, the same upper bound applies to the number of rule applications which proves
the theorem.

C Proof of Theorem 5.7

We firstly prove correctness:

Theorem C.1 Suppose ¥ is a satisfiable PTL g4rc-formula and G is a completion of
9. Then the root of G is not eliminated.

The theorem is a consequence of the following lemma. Here and in what follows we
denote by [n,m] the set {k € N|n <k <m}.

Lemma C.2 Let G = (G, <,1) be a completion of 9 and suppose that 9 is satisfiable.
Then there exists a sequence § = (g; |1 € N) of clash-free nodes in G with gy = g,
9i < gi+1, for all © € N, such that the following holds for all n € N:

e if « is an eventuality of the form @Uvy and o € I(gy), then there exists m > n
with ¥ € l(gm) (in this case we say that o is realized for g, in g until m);

20

e if « is an eventuality of the form (a : CUD) and « € I(g,), then there exists
m > n with (a : D) € I(gm) (in this case we say that « is realized for g, in §
until m);

e if a is an eventuality of the form (v : CUD), for some variable v which occurs
unmarked in [(gy,) , then there exist m > n and variables v; which occur un-
marked in 1(g;), for all i € [n,m], with vg = v, (vy : D) € l(gm), and for all
i € [n,m—1]:

— if l(g;) is a state, then {C'|(v; : OC) € l(g:)} C{C|(vit1:C) € 1(gix1)},
— if(gi) is not a state, then {C'| (v; : C) € l(gi)} C{C|(viy1:C) € l(gi+1)},

(in this case we say that « is realized for g, by g and the sequence (v; |n <i <

For suppose this lemma has been proved. Then the following proves Theorem C.1.

Proof. Assume 9 is satisfiable and let G = (G, <,[) be a completion of ¥.
An application of Lemma C.2 supplies a sequence § = (g, |n € N) satisfying the
conditions listed in Lemma C.2. In particular, ¢" = gg. So it suffices to show that no

gn from ¢ is eliminated. Let
G=G2G1 2

be the sequence produced by the elimination procedure. We show by induction that
e {gn|n €N} CGy, foralli e N.

The induction base 7 = 0 is clear. Suppose the claim has been proved for 5 = . So
{gn|n € N} C G;. We have to show that none of the rules e; to e3 can be applied to
any gp. (e1) is clear and (es, (e3) follow immediately from the induction hypothesis.

_|

We will now prove a lemma which enables us to prove Lemma C.2. Consider a
constraint systems S for ¢ and a model M = (N, <, I) with

I(n) = (AR,cln el),

for n € N. A mapping p from the set of unmarked terms in S into A is called
n-satisfying, in symbols S Cp, M, if

e p(a) = a’™, for all object names a in S,
o {C|(x:C) e S} C{C|p(x) € Cl"}, for all terms x in S,
e if zRy € S, then p(z)R"p(y),
e if) € S, then M, n | 9, for all PTL 4.c-formulas).
A mapping o from A onto the set of marked variables in S is called n-ezhaustive, in

symbols S C7 I, if

21

e {C|(o(d):C) e S} Cthn(d)={C|de "}, foralld € A.

A pair (p, o) consisting of an n-satisfying mapping p and an n-exhaustive mapping o
is called fitting, in symbols S CH7 9.

Lemma C.3 Suppose M = (N, <, I) with I(n) = (A,Ré’n, . .,Cé’n,...,aé’n, ...), for
all n € N, is a model for 9. Let n € N and suppose G = (G, <,1) is a completion of 9
and g € G.

(1) Suppose 1(g) is a state which is not blocked, 1(g) Ch° M, and v° is an unmarked
variable in [(g). Then there exist sequences

e gy < g1 < -+ < gm of nodes in G, g = go, such that l(g;), i € [Ll,m — 1], are
non-states and l(gn) is a state,

e (00,00),--, (PmsOm) of pairs of mappings with (p,o) = (po,00), and py C -+ C
Pm such that I(g;) €% M, for all i € [1,m],

and an unmarked variable v' in 1(g1) such that
(a) for all U € l(gm), if M,n+ 1 =1 then ¢ € l(gm),

(b) for all unmarked terms x with (x : CUD) € l(gm), if pm(z) € DI then
(z : D) € l(gm),

(c) p1(v) = p(v°) and {C](v" : OC) € i(g)} C{C| (v} : C) € l(g1)}-
(2) Suppose 1(g) is not a state, I(g) C57 M. Then there exist sequences

® go < g1 < -+ < gm of nodes in G, g = go, such that I(g;), i € [I,m — 1], are
non-states, and l(gy,) is a state,

® pairs (po,00), -, (Pm,0m) of mappings with p = po and py C p1 C -++ C ppy
such that [(g;) Ch>" M, for all i € [1,m]

such that
(a) for all oUW € I(gm), if M,n =9 then 3 € l(gm),

(b) for all unmarked terms z with (z : CUD) € l(gm), if p(x) € D' then (z: D) €
Hgm)-

Proof. (1) Let I(g) Ch7 M and p(v") = d € A. Take the node g; € G with g < g1. ¢
is not blocked and so [(g;) is the union of the following sets:

o {a:TU{a:C|(a:OC) € l(g)}, for a € ob(i(g)),
e {¢| Oy €llg)},

o {(v;: TV} U{v;: C|(v; : OC) € 1(g)}, for 0 < i < n,
o {(v: T}

22

where {v1,...,v,} = {min([w];y) |[w]ig € [I(g9)]~} and v' is the only marked vari-
able in I(g'). Recall that {vy,...,v,} is a set of variables from I(g) which con-
tains exactly one representative for each equivalence class [w]l(g). Take the variable
v' € {v1,...,vn} with v° € [v']y,). Define p; by putting p;(z) = p(x) for every term
z in I(g). Obviously we have I(g;) C/'; 9. Note also that p(v°) = pi(v'). Put
o1(d) =/, for all d € A. Then I(g;) C)%T" 90 should be clear.
We now construct the sequences go,...,gm and (p2,02), ..., (Pm,om) with g1 <
- < gm and py C --- C py. This is done by induction. Suppose g¢1,...,9; and
(p1,01) ..., (pi,o;) with I(g;) QZJ'J;? M, 1 < j < i, have already been constructed.
The choice of g;+1 depends on which rule is applied to g; in the construction of the
tableau G:

Case A. One of the rules = is applied to g;:

Case 1. —> is applied to U € I(g;). Then M, n =1 or M, n E ¢, O(pU1p).
If the first appears, take g;11 with [(g;+1) = I(g;) U {#} and U-mark U in [(g;11).
Otherwise take g;+1 with I(gi+1) = 1(g:) U {¢, O(eU)} and U-mark @Utp. Let
(Pi+1,0i41) = (pi, 04).-

Case 2. —_y is applied to =(pU1p) € I(g;). Then M, n = —1h,—p or M,n =
—1h, = O (pUrp). If the first appears, take g;+1 with [(g;11) = l(g;) U {—¢, —p}. Oth-
erwise take g;11 with I(gi11) = I(g;) U{~%, = O (eUsp)}. Put (pit1,0i41) = (pi, 0i).

Case 3. The deterministic cases where one of the rules —_~, — -, or —, is
applied to [(g;) are considered in the obvious manner.

Case 4. — . is be applied to =(¢ A 9) € I(g;). Take g;11 with I(giy1) =
I(gi) U{—p} if M, n = —p. Otherwise take g;11 with I(g;11) = l(g;) U {—}. Put
(Pi+1,0i41) = (pi, 04).-

Case 5. —yy. is applied to (z : CUD) € I(g;). Suppose first that x is not marked.
We have p;(z) € DI or p;(z) € CT™ and p;(z) € (O(CUD))!".

If the first appears, take g;11 with I(gi+1) = I(g;) U {(z : D)} and U-mark (z :
CUD). Otherwise take g;+1 with I(gi+1) = l(g;) U{z : C,z : O(CUD)} and U-mark
(x : CUD). Let (pit1,0i+1) = (pi, 04).

Suppose now that z is marked in [(g;). Define

Ap ={d € A|o;(d) = z,d € D"},

A-p ={d € A|oi(d) = z,d ¢ DI}

If Ap =0, then take gj+1 with l(gi+1) = (g;) U{(z : C), (z : O(CUD))} and U-mark
(z: CUD). Let (piy1,0i+1) = (pis 7i)-

Suppose now that A_p = (. Then take g;11 with [(gi+1) = (¢9;) U{(z : D)} and
U-mark (a: : CUD) Let (pi+1,0'i+1) = (pi,O'Z').

Finally, suppose Ap # 0 and A_p # 0. Then take g;11 with I(g;11) = I(g;) U
copy(Si,z,v) U{z : D,v : C,v : O(CUD)}, U-mark (z : CUD) and (v : CUD)
and mark z and v. Let pj;1 = p; and 0;41(d) = o4(d), for d € A — (Ap UA_p),
oir1(d) =z, for d € Ap, and o;11(d) = v, for d € A_p.

Case 6. The rule — ;. is applied to I(g;). This case is treated analogously to
Case 5.

23

Case 7. The deterministic rules —_—., —n, ——, and —_3 are treated in the
obvious manner.

Case 8. The rule —_ is applied to (z : =(C'M D)) € I(g;). Suppose first that z is
unmarked. We have p;(z) € (-C)"" or p;(z) € (=D)"". If the first appears take g1
with [(gi+1) = (i) U{z : =C}. Otherwise take g;y1 with I(gi+1) = I(g;) U{z : =D}.
Put (pit1,0i41) = (pi, 04)-

Suppose now that x is marked. Define

A.c ={d e Aloi(d) = z,d € (-C)""},

Ac={d € A|oy(d) = z,d € C""}.

If Ao =0, take g;y1 with I(g;+1) = I(g;) U{z : =D} and (piy1,0i+1) = (pi,04). If
Ac = 0, then take g; 1 with I(giy1) = l(g;) U {z : =C} and (piy1,0i41) = (pi, 04).

Suppose now that A_¢ # 0 and Ae # 0. Then take g;11 with I(g;r1) = I(g;) U
copy(Si, z,v)U{z : =C,v : =D}. Put p;y1 = p; and 0;41(d) = 04(d) ford € A—(AcU
Aﬁc), Ui_|_1(d) =z, for d € A_¢, and Ui+1(d) =, for d € Ac.

Case 9. The rule —~ is applied to C # T € l(g;). Then we have M,n = C # T
and so we can take e € A with e € (-C)/". We know that the outcome is S;41 =
I(gi) U{w : =C}, for some new and unmarked variable w. Put p;y1 = p; U {(w,e)}
and Oj41 = 0y

Case 10. The rule — 3 is applied to (z : IR.C) € I(g;). If = is unmarked we have
pi(z) € (AR.C)I'™. Hence we find e € A with p;(z)R!""e and e € CT". If x is marked
we find a d € A with 0;(d) = z. So again we find e € A with dR"""e and e € CT".
In both cases we know that the outcome is S;11 = 1(g;) U{w : C,zRw} for a new and
unmarked variable w. Put p;+1 = p; U {(w,e)} and 0,41 = 0.

Case B. The rule = is applied to g; and the variable v. Then v is unmarked in
I(g;). Suppose p;(v) = d. Take the marked variable w = o((d) in I(go) and let g; 11
be the node with I(gi+1) = I(g:) U{(v : C)|(w : OC) € l(go)}. Let piy1 = p; and

Oi+1 = 0.

Case C. The rule =/ is applied to g; and the variable v. Then v is marked in
I(gi). Let D be the set of d € A such that o;(d) = v. D # 0 since o; is onto. Let

Y = {w|3d € Doy(d) = w}

and assume Y* = {w1,...,w,} = {min([w]yy,)) |w € Y}. Choose the node g;y1 in
such a way that [(g;+1) consists of [(g;) and the union of

o {v:C|(wr:0C) €l(go)},
o copy(l(gi), v, vj), 1 <i <,
o {(v:C)|(w; : OC) €l(go)}, for 1 <i<n.

Define p; 11 = p; and 0;41(d) = 04(d), for d € A— D, 0;41(d) = v, for o¢(d) = wy, and
oit1(d) = v} for op(d) = w;, 1 <i < n.

24

Suppose now that we have reached some m such that g,, is a state. Theorem 5.3
guarantees the existence of m. We show that the constructed sequences gi,...,9m
and (p1,01),...,(Pm,om) are as required. Firstly, it is clear from the construction
that g; < gi+1, for all i < m, and that [(g,,) is the only state in this list. p; C p;+1 is
also clear and I(g;) Ch')% M is easily proved by induction on i. It remains to verify
the conditions (a)-(c).

(a) Suppose U € I(gn) and M, n + 1 =). None of the rules = is applicable
t0 gm, s0 WU is U-marked in g,,. But ol is not U-marked in g; and so there exists
i < m such that I(g;) = 1(gi+1) and Uy occurs U-unmarked in [(g;). But then,
by the above procedure, ¥ € I(g;+1) and so 9 € I(gm)-

(b) Suppose (z : CUD) € I(gy), = is unmarked in I(g,,) and pp, () € DL
None of the rules =, is applicable to g, so (z : CUD) is U-marked in g,,. But
(z : CUD) is not U-marked in g; and so there exists ¢ < m such that I(g;) =w¢ [(gi+1)
and (z : CUD) occurs U-unmarked in I(g;). But then, by the above procedure,
(z: D) €l(git+1) and so (z : D) € l(gm).

(c) follows from the definition.

This completes the proof of the first claim of the Lemma.

The proof of the second claim can be conducted in precisely the same manner as
the proof above starting from gy. It is left to the reader.

Notice that we did not exclude the possibility that g, is blocked. In this case we find
a state ¢’ which is not blocked such that g,,—1=<g¢’" and I(g’) is a variant of [(g,,). Tt
is straightforward (but tedious) to reformulate the lemma above using the unblocked
state I(g') instead of [(g).

Now we are ready for proving Lemma C.2.

Proof. Suppose 1 is satisfiable. We find 9 = (N, <, I) with
I.n I.n I.n
In)=(ARy",...,Cy", ... ap",...),

for all n € N, and 9,0 | 9. We show the following

Claim. There exists a sequence of intervals {[n(i), m ()] |7 € N} of natural numbers
with n(0) = 0 and m(i) +1 = n(i + 1), for all i € N, such that there exist sequences

e §=(gn|n €N) of nodes in G with gy = ¢g", and
e p=(pp|n €N) and (o, |n € N) of mappings
such that the following hold:

cl) foralln € N: ¢, <gn+1,

(c1)
(c2) for all n € N: [(g,) is a state iff there exists ¢ € N with n = m(1),
(c3) for all i € N and n € [n(:), m(i)]: I(gn) C/7" M,

(c4) for all i € N and all pUtp € l(gm(i)), if M, i = 9 then P € I(gm()),

25

(c5) for all i € N and all (z : CUD) € l(gy;)) with z unmarked, if py,;(7) € Dl
then (z : D) € l(gm()),

(c6) for all n € N every unmarked eventuality for g, is realized by g.

By (c6), the sequence (g, | n € N) is as required for proving Lemma C.2.

The construction of the sequences is by induction. We start with gy, pg, and og: let
go = 9", po(a) = a’¥, for all a € ob(¥9), and oy(d) = min(V) for all d € A. Obviously
l(go) C om.

Suppose now that we have constructed a sequence of intervals {[n (i), m(7)] |7 < k}
and sequences

* (g9n|n < m(k)) and (pn,on|n < m(k))

satisfying the conditions (c1)-(c5) stated in the claim above until m(k) — save that
I(gm(k)) is possibly not a state. In the latter case, using Lemma C.3 (2), it is straight-
forward to extend these sequences by means of nodes gp(x)41;-- -5 Gm(k)+ and map-
PINES Pro(k) 415 - - - 5 Pm(k)+l> Tm(k)+1s - - - » Tm(k)+1 Such that [(g,,x)41) is a state and the
extended sequence still has all properties (c1)-(c5). So, we can assume without loss of
generality that [(gm(k)) is a state. We now distinguish two cases.

Case 1. There exists an unmarked eventuality for some [(g,), n < m(k), which is
not realized by (g, |n < m(k)) until m(k).

Take a minimal [< m(k) such that there exists an eventuality « for [(g;) which
is not realized until m(k). To begin with suppose « is of the form (v : C'UD'"), for
some unmarked variable v. We take variables vy, ..., vy) with v; = v such that, for
all i € [I,m(k)],

e v; occurs unmarked in [(g;),

e {Cl(vi:C)el(gi)} C{C|(vig1:C) € l(git1)}, whenever i < m(k) and g; is
not a state,

o {C|(v;: OC) €l(g;} C{C|(vi41 : C) € l(gi+1)}, whenever i < m(k) and I(g;)
is a state.

Assume py,) (Umry) = d € AF. We have (Vmk) : CUD") € Ugm)) and (V) :
D') & l(gm))s since (v : C'UD') is not realized until m(k). Hence d € (C'UD')"F, by
(c3), and d ¢ (D')1*, by (c5). There exists n > k such that d € (D)1, Assume that
n is minimal with this property.

Iterated application of Lemma C.3 (1) provides intervals {[n(j), m(j)] |k+1 < j <
n} with n(k + 1) = m(k) + 1 and m(j) +1 =n(j + 1) for all j € [k + 1,n — 1], and
sequences

® Gn(k+1)=< - =Gmn)s Pn(k+1)s -1 Pm(n)s Tn(k+1)s- - - Tm(n)

such that (c1)-(c5) above hold until m(n), and there is a sequence of variables vy 1y, - - -

vj occurs unmarked in I(g;) for all j € [n(k + 1), m(n)], such that the following hold
for all j € [n(k + 1), m(n)]:

26

L. pj(vj) = d,

2. {C|(v;:C)ellgy)} C{C|(vj41:C) €l(g;)}, whenever g; is not a state,

3. {C] (Vm(i) : OC) € Ugm(iy} S {C [(vngir1) : C) € Ugnir1))}, foralli € [k, n—1].
We show that (v : C'UD’) is realized for g; by (g; |0 < j < m(n)) and the sequence

Uty - o5 Um(k)s Un(k41)s - - - s Um(n)-

To this end it suffices to show that (v, : D') € l(gmn)). But, by the minimality of
n, we have (v; : C'UD') € I(g;) for all j € [I,m(n)]. Moreover, pp,n) (V@) € (D).
Using (c5) we infer (vp,,) @ D') € l(gm(n))- This concludes the case where o has the
form (v : (C'UD")).

The cases where the eventuality « is of the form (a : C'UD') or U are treated
similarly and can be left to the reader.

Case 2. Every unmarked eventuality for every g,, n < m(k), is realized by (g, |n <
m(k)) until m(k).

This case is easier than the first one since no eventuality has to be realized. We
just take the unique g’ with I(gmp)) < I(¢') and add it to the list (g, |n < m(k)).

!

The required mappings p’ and o’ showing [(g') gg';j 9 are obtained by putting, for
every object name a in I(g'), p'(a) = py(x)(a), and for every unmarked variable w in
("), p'(w) = P (w). For d € A we let o'(d) = v' for the unique marked variable v
in I(g").

Now, in the limit we obtain sequences (g, |n € N) and (pn,on|n € N) which
obviously satisfy the conditions (c¢1)-(c¢5). (c6) can be shown as follows: suppose «
is an unmarked eventuality in [(g,,). Then, since the number of eventualities in each
I(gn) is finite, eventually o will be realized in the construction of (g, |n € N). 4

Now we prove the completeness part:

Theorem C.4 Let ¢ be some PTLarc-formula. If there exists a completion of ¥ in
which the root is not eliminated then 19 is satisfiable.

Proof. Assume G = (G, <,l) is some complete tableau for ¢ the root ¢" of which is
not eliminated. Let B C G be the set of nodes which remain after the execution of
the elimination procedure. We have g" € B. We must show that 9 is satisfiable. By
Theorem 4.4 it is sufficient to prove the existence of some quasimodel that satisfies 9.
In order to do this we are going to show the following

Claim. There exists a sequence of intervals {[n(i), m(7)] | i € N} of natural numbers
with n(0) =0 and m(i) + 1 = n(i + 1), for all i € N, such that there exists a sequence
G = (gn |m € N) of nodes in B with go = ¢" and the following holds for all n € N:

(dl) 9n < Gn+1,

(d2) I(gn) is a state iff there exists i € N with n = m(7),

27

(d3) every eventuality for g,,(;), i € N is realized by §.

Suppose the sequence has been constructed. We then reason as follows: By assump-
tion, (el) is not applicable to B. Hence all [(g,,) are clash-free. By utilizing (d1)-(d3)
it is not difficult to show that (I(g,,;)) | € N) is a quasimodel satisfying ©J. We leave
the details to the reader.

The construction of the sequences is by induction. We start with gy = ¢". Sup-
pose now that we have constructed a sequence of intervals {[n(i),m(i)]|: < k} and
sequences (g, | n < m(k)) satisfying the conditions (d1)-(d2) stated in the claim above
until m(k) save that [(g,)) is possibly not a state. Using the condition that (e2)
cannot be applied to B it is straightforward to extend this sequence by means of nodes
Im(k)+1> - - - » Im(k)+1 from B such that [(gp,x)1i) is a state and the extended sequence
still has properties (d1),(d2). So, we can assume without loss of generality that we
have {[n(i),m(i)]|7 < k} and a sequence (g, |n < m(k)) satisfying (d1) and (d2); in
particular g, is a state. We distinguish two cases.

Case 1. There exists an eventuality for some [(g,,(;)), ¢ < k, which is not realized
by (gn |7 < m(k)) until m(k).

Choose [= m(j) < m(k) minimal such that there exists an eventuality « for I(g;)
which is not realized until m(k). First suppose « is of the form (v : C'UD'), for an
unmarked variable v.

We take variables vy, ..., vy With v; = v and vy, ;) occurs unmarked in I(gy, 1))
such that, for all i € [I,m(k) — 1],

e v; occurs unmarked in [(g;),
o {C|(vi:C)ellgi)} C{C|(vig1:C) €l(git1)}, whenever v; is not a state,
o {C|(vi: OC)€l(gi} C{C|(vit1:C) €l(git1)}, whenever I(g;) is a state.

We have (vy,x) @ C'UD') € Ugmr)) and (Vi) : D') € Ugmk)), since (v : C'UD')
is not realized until m(k). (e3) is not applicable to any node in B, in particular not
t0 gm(k)- So we find {[n(j),m(j)] [k +1 < j < n} with m(j) +1 = n(j + 1) for all
j € [k+1,n — 1], and a sequence

o gm(k:)?gn(k+1)?. . .?gm(n) of nodes in B

such that (d1), (d2) above hold until m(n), and there is a sequence of variables
Un(k+1)» - - - » Um(n) Such that v; occurs unmarked in [(g;) for all j € [n(k + 1), m(n)]
and (g; |1 <j <m(n)) and (vj|l <j < m(n)) realize CUD' until m(n).

Suppose now that v is marked. Then (v : O(C'UD")) € I(g;), since (v : D') ¢
[(g:) and I(g;) is saturated. If [= m(j) < m(k), then take a sequence of variables
Vit1, - -+ Up(j41) Such that

o {Cl(v:O0) €llg} C{C[(vi41: C) € Ugi1)},
e v; occurs unmarked in [(g;), for alli € [+1,m(j + 1)]
o {C|(v;:C)el(g)} C{C|(vi41:C) €l(git1)}, foralli e I+ 1,m(5 +1)—1].

28

We have (vp(jq1) : C'UD') € I(gm(j+1))- Now proceed with the variable vy, 1) as
above in the case of unmarked variables.

If | = m(j) = m(k), then take a sequence of nodes g,4+1)=<""* <gm(kt1) and
of variables vy, (;41), .-, Umky1) such that g, x41) is the only state in this sequence,
Im(k) < Gn(k+1), and

o {C[(v:OC) €llg} C{C[(vi41:C) € Ugi1)},
e v; occurs unmarked in [(g;), for all i € [+ 1, m(k + 1)]
o {Cl(i:C) €llge)} C{C|(vis1: C) € Ugssn)}, for alli € [+ 1,m(ls+1) — 1].

We have (vpk11) @ C'UD')) € Ugm(r+1))- Now proceed with the variable vy, 11)
as above for unmarked variables. The cases where the eventuality « is of the form
(a : C'UD") or pUvp are treated similarly and left to the reader.

Case 2. Every eventuality for some [(g,,;y), @ < k, is realized by (gn|n < m(k))
until m(k).

In this case no eventuality has to be realized. Thus, using that (e2) is not applicable
to B, we can extend the sequence (g, |n < m(k)) by a new node g1 € B with

Im(k) ?gm(k)+1 .
In the limit we obtain a sequence g satisfying (d1)-(d3). A

References

[1] A. Artale and E. Franconi. Temporal description logics. In L. Vila, Peter van
Beek, M. Boddy, M. Fisher, Dov M. Gabbay, A. Galton, and R. Morris, editors,
Handbook of Time and Temporal Reasoning in Artificial Intelligence. MIT Press,
2001. To appear.

[2] A. Artale and E. Franconi. Temporal ER modeling with description logics. In
Proceedings of ER’99, 1999. Springer—Verlag.

[3] A. Artale, E. Franconi, M. Mosurovic, F. Wolter, and M. Zakharyaschev. Tem-
poral description logics for conceptual modelling: expressivity and complexity.
Submitted, 2001.

[4] F. Baader and A. Laux. Terminological logics with modal operators. In Proceed-
ings of IJCAI’95, pages 808-814, 1995. Morgan Kaufmann.

[5] F. Baader and U. Sattler. Tableau algorithms for description logics. In R. Dy-
ckhoff, editor, Proceedings of Tableaux 2000, vol. 1847 of LNAI, pages 1-18,
Springer, 2000.

[6] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT
Press, 1995.

29

[7]

[10]

[11]

[12]

D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications. Elsevier, North-Holland, 2001. To ap-
pear.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-
order temporal logics. Annals of Pure and Applied Logic, 106:85-134, 2000.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267-293, 1999.

C. Lutz. Interval-based temporal reasoning with general TBoxes. In Proceedings
of IJCAI'01, Morgan-Kaufman, 2001.

C. Lutz, H. Sturm, F. Wolter, and M. Zakharyaschev. A tableau decision algo-
rithm for modalized ALC with constant domains. Submitted, 2000.

M. Marx, Sz. Mikulas, and S. Schlobach. Tableau calculus for local cubic modal
logic and its implementation. Journal of the IGPL, 7:755-778, 1999.

K. Schild. Combining terminological logics with tense logic. In Proceedings of the
6th Portuguese Conference on Artificial Intelligence, pages 105-120, Porto, 1993.

A. Schmiedel. A temporal terminological logic. In Proceedings of the 9th National
Conference of the American Association for Artificial Intelligence, pages 640—645,
Boston, 1990.

H. Sturm and F. Wolter. A tableau calculus for temporal description logic: The
expanding domain case. Journal of Logic and Computation, 2001. In print.

P. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 28:119-152, 1985.

F. Wolter and M. Zakharyaschev. Satisfiability problem in description logics with
modal operators. In Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro,
editors, KR’98, pages 512-523. Morgan Kaufmann, 1998.

F. Wolter and M. Zakharyaschev. Multi-dimensional description logics. In Dean
Thomas, editor, Proceedings of IJCAI’99, pages 104-109, Morgan Kaufmann,
1999.

F. Wolter and M. Zakharyaschev. Temporalizing description logic. In D. Gabbay
and M. de Rijke, editors, Frontiers of Combining Systems 2, pages 379-402.
Studies Press/Wiley, 2000.

30

