
LTCS{Report

Aa
hen University of Te
hnology

Resear
h group for

Theoreti
al Computer S
ien
e

A Tableau Cal
ulus for Temporal Des
ription Logi
: The

Constant Domain Case.

Carsten Lutz, Holger Sturm, Frank Wolter, and Mi
hael Zakharyas
hev

LTCS-Report 01-01

RWTH Aa
hen

LuFg Theoretis
he Informatik

http://www-lti.informatik.rwth-aa
hen.de

Ahornstr. 55

52074 Aa
hen

Germany

A Tableau Cal
ulus for Temporal Des
ription Logi
: The

Constant Domain Case.

Carsten Lutz

1

, Holger Sturm

2

, Frank Wolter

3

, and Mi
hael Zakharyas
hev

4

1

LuFG Theoreti
al Computer S
ien
e, RWTH Aa
hen,

Ahornstra�e 55, 52074 Aa
hen, Germany

2

Fa
hberei
h Philosophie, Universit�at Konstanz

78457 Konstanz, Germany

3

Institut f�ur Informatik, Universit�at Leipzig,

Augustus-Platz 10-11, 04109 Leipzig, Germany

4

Department of Computer S
ien
e, King's College

Strand, London WC2R 2LS, U.K.

emails: lutz�
s.rwth-aa
hen.de, Holger.Sturm�uni-konstanz.de,

wolter�informatik.uni-leipzig.de, mz�d
s.k
l.a
.uk

Abstra
t

We show how to
ombine the standard tableau system for the basi
 des
rip-

tion logi
 ALC and Wolper's tableau
al
ulus for propositional temporal logi

PTL (with the temporal operators `next-time' and `until') in order to design a

terminating sound and
omplete tableau-based satis�ability-
he
king algorithm

for the temporal des
ription logi
 PTL

ALC

of [19℄ interpreted in models with
on-

stant domains. We use the method of quasimodels [17, 15℄ to represent models

with in�nite domains, and the te
hnique of minimal types [11℄ to maintain these

domains
onstant. The
ombination is
exible and
an be extended to more ex-

pressive des
ription logi
s or even to de
idable fragments of �rst-order temporal

logi
s.

1 Introdu
tion

Temporal des
ription logi
s (TDLs) are knowledge representation formalisms intended

for dealing with temporal
on
eptual knowledge. In other words, TDLs
ombine the

ability of des
ription logi
s (DLs) to represent and reason about
on
eptual knowledge

with the ability of temporal logi
s (TLs) to reason about time. A dozen TDLs designed

in the last de
ade (see e.g. [14, 13, 2, 19, 3, 10℄ and survey [1℄) showed that the equation

TDL = DL + TL may have di�erent, often very
omplex solutions, partly be
ause of

the ri
h
hoi
e of DLs and TLs, but primarily be
ause of prin
iple diÆ
ulties in
om-

bining systems; see [7℄. With rare ex
eptions, the work so far has been
on
entrated

on theoreti
al foundations of TDLs (de
idability and unde
idability,
omputational

omplexity, expressive power). The investigation of `implementable' algorithms is still

at the embryo stage, espe
ially for the TDLs with non-trivial intera
tions between

their DL and TL
omponents. The problem we are fa
ing is as follows: is it possible

1

to
ombine the existing implementable reasoning pro
edures for the intera
ting DL

and TL
omponents into a reasonably eÆ
ient (on `real world problems') algorithm

for their TDL hybrid? As the majority of the existing reasoning me
hanisms for DLs

are based on the tableau approa
h, a �rst
hallenging step would be to
ombine a

tableau system for a DL with Wolper's tableaux [16℄ for the propositional temporal

logi
 PTL.

The �rst TDL tableau system was
onstru
ted by S
hild [13℄, who merged the basi

des
ription logi
 ALC with PTL by allowing appli
ations of the temporal operator U

(until) and its derivatives only to
on
epts. For example, he de�nes a
on
ept Mortal

by taking

Mortal = Living being u (Living being U 2:Living being) ;

where 2 means `always in the future.' The resulting language is interpreted in models

based on the
ow of time hN; <i and, for ea
h n 2 N, spe
ifying an ALC-model that

des
ribes the state of the knowledge base at moment n. S
hild obtains his sound,

omplete and terminating tableau system (for
he
king
on
ept satis�ability) simply

by putting together the tableau rules of ALC and PTL. The reason behind this `trivial'

solution is that, in S
hild's logi
, there is no a
tual intera
tion between the temporal

operators of PTL and the
onstru
tors of ALC; the logi
 is the fusion or independent

join of its
omponents.

A more sophisti
ated
ombination PTL

ALC

of ALC and PTL allowing appli
ations

of temporal and Boolean operators to both
on
epts and TBox axioms was
onstru
ted

in [19℄. Using PTL

ALC

, one
an express statements like `in all times all living beings

are mortal' or `living beings will never die out
ompletely:'

2(Living being v Mortal); 23:(Living being = ?);

where 3 means `some time in the future.' The degree of intera
tion between the DL

and TL
omponents in PTL

ALC

depends on the `domain assumption' the intended

models
omply with. A tableau system for PTL

ALC

interpreted in models with ex-

panding ALC domains (whi
h means that when moving from earlier moments of time

to later ones, the domains of ALC-models
an get larger and larger, but never shrink)

was designed in [15℄. The intera
tion between the
omponents be
omes even stronger

if we
onsider models with
onstant domains, where an introdu
tion of a domain el-

ement at moment n for
es us to introdu
e the same element at all previous moments

as well. This makes the problem of
onstru
ting tableaux for PTL

ALC

with
onstant

domains
onsiderably more diÆ
ult.

The
hoi
e of the domain assumption|expanding, varying, de
reasing, or
on-

stant|depends on the knowledge to be represented. One
an argue, for instan
e,

whether the domain element representing a living being A in a model exists before

A's birth or after A's death. However, in many appli
ations su
h as reasoning about

temporal entity relationship (ER) diagrams [2, 3℄, expanding domains do not suÆ
e

and must be repla
ed by
onstant ones. Apart from being appropriate for appli
ations,

the
onstant domain assumption is the most general
ase in the sense that reason-

ing with expanding (or varying) domains
an be redu
ed to reasoning with
onstant

domains (see e.g. [19℄).

2

The main aim of this paper is to design a terminating, sound, and
omplete tableau

system for
he
king satis�ability of PTL

ALC

-formulas in models with
onstant domains.

This is a
hieved by

�
ombining (in a modular way) the standard tableaux for ALC with Wolper's

[16℄ tableaux for PTL,

� using so-
alled quasimodel representations of
onstraint systems, and

� using so-
alled minimal type representations of domain elements introdu
ed in

subsequent states.

Quasimodels [17, 18, 19℄ are abstra
tions of models representing elements by their

types and the evolution of elements in time by
ertain fun
tions
alled runs. As

was shown in [15℄, quasimodels make it possible to
ope with PTL

ALC

models having

in�nite ALC domains (an example showing that PTL

ALC

does not have the �nite

domain property
an be found in Se
tion 2). The
on
ept of `minimal partial types' is

the main new idea of this paper whi
h is used to maintain the ALC domains
onstant.

Although the formula-satis�ability problem for PTL

ALC

is rather
omplex|as is

shown in [3℄, it is ExpSpa
e-
omplete|we hope that the tableau system
onstru
ted

in this paper will lead to a `reasonably eÆ
ient' implementation of the PTL

ALC

reason-

ing servi
es. However, in order to a
hieve an a

eptable run-time behavior, it is still

ne
essary to devise suitable optimization strategies for the algorithm. We believe that

su
h strategies
an be found, sin
e, as shown in e.g. [9℄, related tableau algorithms

are amenable to optimization.

It is to be noted that the developed approa
h
an be used to design tableau algo-

rithms for other
ombinations of des
ription and modal logi
s (in parti
ular, temporal

epistemi
 logi
s of [6℄). For instan
e, [11℄ gives a solution to the open problem of

Baader and Laux [4℄ by
onstru
ting tableaux for their
ombination of the modal

logi
 K with ALC interpreted in models with
onstant domains.

2 Basi
 de�nitions

We begin by introdu
ing the temporal des
ription logi
 PTL

ALC

of [19℄.

Let N

C

= fC

0

; C

1

; : : : g, N

R

= fR

0

; R

1

; : : : g, and N

O

= fa

0

; a

1

; : : : g be
ountably

in�nite sets of
on
ept names, role names, and obje
t names, respe
tively. PTL

ALC

-

on
epts are de�ned indu
tively: all the C

i

as well as > are
on
epts, and if C, D are

on
epts and R 2 N

R

, then C uD, :C, 9R:C,
C, and CUD are
on
epts.

PTL

ALC

-formulas are de�ned as follows: if C;D are
on
epts and a; b 2 N

O

, then

C = D, a : C, and aRb are atomi
 formulas; and if ' and are formulas, then so are

:', ' ^ ,
', and 'U .

The intended models of PTL

ALC

are natural two-dimensional hybrids of standard

models of ALC and PTL. More pre
isely, a PTL

ALC

-model is a triple M = hN; <; Ii,

where < is the standard ordering of N and I a fun
tion asso
iating with ea
h n 2 N

an ALC-model I(n) =

D

�; R

I(n)

0

; : : : ; C

I(n)

0

; : : : ; a

I(n)

0

; : : :

E

, in whi
h �, the (
onstant)

3

domain ofM, is a non-empty set, the R

I(n)

i

are binary relations on �, the C

I(n)

i

subsets

of �, and the a

I(n)

i

are elements of � su
h that a

I(n)

i

= a

I(m)

i

, for every n;m 2 N.

(Note that in the given de�nition, the obje
t names are assumed to be global, while

the
on
ept names are interpreted lo
ally. Neither of these assumptions is essential;

in parti
ular, global
on
epts
an be de�ned via lo
al ones and U .)

The extension C

I(n)

of a
on
ept C inM at a moment n is de�ned in the following

way:

>

I(n)

= �;

(C uD)

I(n)

= C

I(n)

\D

I(n)

;

(:C)

I(n)

= � n C

I(n)

;

(9R:C)

I(n)

= fd 2 � j 9d

0

2 C

I(n)

dR

I(n)

d

0

g;

(CUD)

I(n)

= fd 2 � j 9m � n (d 2 D

I(m)

&8k (n � k < m! d 2 C

I(k)

))g;

(
C)

I(n)

= C

I(n+1)

:

The truth-relation M; n j= ' for the Boolean operators is standard and

M; n j= C = D i� C

I(n)

= D

I(n)

;

M; n j= a : C i� a

I(n)

2 C

I(n)

;

M; n j= aRb i� a

I(n)

R

I(n)

b

I(n)

;

M; n j= 'U i� 9m � n (M;m j= & 8k (n � k < m!M; k j= '));

M; n j=
' i� M; n+ 1 j= ':

The only reasoning task we
onsider in this paper is satis�ability of PTL

ALC

-formulas,

a formula ' being satis�able if there are a model M and a moment n 2 N su
h

that M; n j= '. Other standard inferen
e problems for PTL

ALC

|
on
ept satis�abil-

ity, subsumption, ABox
onsisten
y, et
.|
an be easily redu
ed to satis�ability of

formulas.

There are two main diÆ
ulties in designing a tableau system for PTL

ALC

. First,

as was mentioned in the introdu
tion, there exist formulas satis�able only in models

with in�nite domains. For example, su
h is the
onjun
tion of the formulas

2:

�

(C u
:C) = ?

�

; 2

�

:C v 2:C

�

;

where 2C = :(>U:C) and ? = :>. To ta
kle this diÆ
ulty, we employ the standard

tableaux for ALC for
onstru
ting �nite representations of in�nite models and keep

tra
k of the development of their elements in time by using quasimodels as introdu
ed

in [17, 19, 15℄.

The se
ond diÆ
ulty is that at moment n + 1 the ALC tableau algorithm
an

introdu
e an element whi
h does not exists at moment n. To ensure that all ele-

ments always have their immediate prede
essors, at ea
h time point we
reate
ertain

`marked' elements satisfying as few
onditions as possible, and use them as those

prede
essors if ne
essary.

4

3 Constraint systems

In this se
tion, we introdu
e
onstraint systems whi
h serve a two-fold purpose. First,

they form a basis for de�ning quasimodels, whi
h, in
ontrast to [19℄, are de�ned

purely synta
ti
ally. Se
ond,
onstraint systems are the underlying data stru
ture

of the tableau algorithm to be devised. Intuitively, a
onstraint system des
ribes an

ALC-model.

In what follows, without loss of generality we assume that all equalities are of the

form C = >. (C = D is
learly equivalent to

�

:(C u :D)u:(D u:C)

�

= >.) Often

we shall write C 6= > instead of :(C = >).

Constraint systems are formulated in the following language L

C

. Let V be a �xed

ountably in�nite set of (individual) variables. We assume V to be disjoint from the

set N

O

of obje
t names. Elements of V [N

O

are
alled L

C

-terms. If ' is a PTL

ALC

-

formula, C a
on
ept, R a role, and x; y are L

C

-terms, then ', x : C, and xRy are

alled L

C

-formulas.

We assume that V
omes equipped with a well-order <

V

. Let X be a non-empty

subset of V . Then min(X) denotes the �rst variable in X with respe
t to <

V

. Vari-

ables may o

ur in
onstraint systems either marked or unmarked;
ertain formulas

may o

ur U-marked or U-unmarked. As we said above, marked variables are used

to deal with
onstant domains. U-markedness will be explained after the saturation

rules have been introdu
ed.

De�nition 3.1 A
onstraint system S is a �nite (non-empty) set of L

C

-formulas su
h

that

� ea
h variable in S is either marked or unmarked,

� ea
h formula in S of the form 'U or x : (CUD) is either U-marked or U-

unmarked,

� S
ontains min(V) : >.

We will say that a
onstraint system S is saturated if it satis�es a number of
losure

onditions. With a few ex
eptions, these
onditions require that if S
ontains a formula

' of a
ertain form, then S
ontains some other formulas
omposed from subformulas

and sub
on
epts of ' (possibly using additional negation and
). For example, S

is
losed under
onjun
tion if whenever S
ontains

1

^

2

, then it
ontains both

onjun
ts

1

and

2

as well. We formulate the
losure
onditions as the saturation

rules in Fig. 1{3. Later these rules will also be used as rules of our tableau algorithm.

A
onstraint system S is
alled saturated if none of the saturation rules
an be applied

to it.

A few remarks below will help the reader to understand the rules. As the temporal

part of our tableaux is based on Wolper's [16℄ algorithm for PTL, the temporal sat-

uration rules resemble those of Wolper's. Note also that the saturation rules �!

:^

,

�!

U

, �!

:U

, �!

:u

, �!

U

, and �!

:U

are disjun
tive: they have more than one

possible out
ome. In this se
tion, it is
onvenient to view these rules as nondetermin-

isti
. Later, when the saturation rules are regarded as tableau rules, we will apply

5

ALC-rules for formulas

S �!

::

f'g [S if S �!

^

f'; g [S if

::' 2 S and ' 62 S ' ^ 2 S and f'; g 6� S

S �!

:^

f:�g [S if

:(' ^) 2 S, :' 62 S, and : 62 S

�

:

= ' or �

:

=

Temporal rules for formulas

S �!

:

f
:'g [S if S �!

U

X [S if

:
' 2 S and
:' 62 S 'U appears U-unmarked in S

X = f g or X = f';
('U)g

'U is U-marked in X [S

S �!

:U

X [S if

:('U) 2 S, f: ;:'g 6� S, and f: ;
:('U)g 6� S

X = f: ;:'g or X = f: ;
:('U)g

Figure 1: Saturation rules for formulas.

them deterministi
ally, i.e.,
onsider all of their possible out
omes. Unless otherwise

stated, we assume rules to introdu
e U-unmarked formulas. Intuitively, U-markedness

is needed to ensure that the �!

U

and �!

U

rules are applied exa
tly on
e to ea
h

formula 'U and x : CUD, respe
tively. For example, we must ensure that the �!

U

rule is applied (on
e) to 'U even if the
onstraint system under
onsideration already

ontains ' and
('U). This is required to make the tableau algorithm
omplete

(see [16, 15℄ for an example and a more detailed dis
ussion).

As was already noted, marked variables are needed to
ope with
onstant domains.

For now, we just observe that the disjun
tive rules treat marked and unmarked vari-

ables di�erently. Intuitively, in
ase of marked variables it is not suÆ
ient to
onsider

only one of the possible out
omes of the disjun
tive rule appli
ation per
onstraint

system, but we must additionally
onsider both possible out
omes together. For ex-

ample, if we have S = fv : EUF; v : :(C uD)g and v is marked in S, then we should

onsider not only the obvious saturations S

1

= S [fv : :Cg and S

2

= S [fv : :Dg,

but also

S

3

= fv : EUF; v : :(C uD); v : :C; v

0

: EUF; v

0

: :(C uD); v

0

: :Dg;

where, v is marked in S

1

, S

2

, S

3

and v

0

is marked in S

3

. In S

3

, we
reated a `marked

opy' v

0

of v and saturated v in one possible way and v

0

in the other. In the formulation

of the rules,
opies are made by using
opy(S; v; v

0

) whi
h denotes the set fv

0

: C j

v : C 2 Sg, where v is marked and v

0

is a fresh variable (not used in S). Note

that by de�nition of L

C

-formulas, marked variables do not o

ur in
omplex formulas

su
h as x : C ^ x : D and thus su
h formulas need not be
onsidered for
opy. We

generally assume that
opies preserve U-markedness: in the example above, v

0

: EUF

6

ALC-rules for
on
epts

S �!

::

fx : Cg [S if

x : ::C 2 S and x : C 62 S

S �!

u

fx : C; x : Dg [S if

x : C uD 2 S and fx : C; x : Dg 6� S

S �!

:u

X [S if

x : :(C uD) 2 S, x : :C 62 S and x : :D 62 S

X = fx : :Cg or X = fx : :Dg or

x marked in S and X = (
opy(S; x; v) [fx : :C; v : :Dg)

where v is marked in X [S and the �rst new variable from V

S �!

=

fx : Cg [S if

C = > 2 S, x o

urs in S, and x : C 62 S

S �!

:9

fy : :Cg [S if

x : :9R:C 2 S, xRy 2 S, and y : :C =2 S

Temporal rules for
on
epts

S �!

:

fx :
:Cg [S if

x : :
C 2 S and x :
:C 62 S

S �!

U

X [S if

x : CUD appears U-unmarked in S

X = fx : Dg or X = fx : C; x :
(CUD)g or

x marked in S and X = (
opy(S; x; v) [fx : D; v : C; v :
(CUD)g)

where v is marked in X [S and the �rst new variable from V

x : CUD and v : CUD (if introdu
ed) are U-marked in X [S

S �!

:U

X [S if

x : :(CUD) 2 S, fx : :D;x : :Cg 6� S, and fx : :D;x :
:(CUD)g 6� S

X = fx : :D;x : :Cg or X = fx : :D;x :
:(CUD)g or

x marked in S and X = (
opy(S; x; v) [fx : :D;x : :C; v : :D; v :
:(CUD)g)

where v is marked in X [S and the �rst new variable from V

Figure 2: Non-generating saturation rules for
on
epts.

7

S �!

6=

fv : :Cg [S if

C 6= > 2 S and there exists no y with y : :C 2 S

v is the �rst new variable from V

S �!

9

fv : C; xRvg [S if

x : 9R:C 2 S, there is no y su
h that fxRy; y : Cg � S and x is not blo
ked in S

by an unmarked variable; v is unmarked and the �rst new variable from V

Figure 3: Generating saturation rules.

is U-marked in S

3

i� v : EUF is U-marked in S.

To ensure termination of repeated appli
ations of the saturation rules, we use a

`blo
king' te
hnique,
.f. [5℄. Blo
ked variables are de�ned as follows.

For now, assume that ea
h
onstraint system is equipped with a stri
t partial order

� on the set of terms. Say that a variable v in a
onstraint system S is blo
ked by

a variable v

0

in S if v

0

� v and fC j v : C 2 Sg � fC j v

0

: C 2 Sg. Later, when we

onsider sequen
es of
onstraint systems obtained by repeated rule appli
ations, �

will denote the order of introdu
tion of terms. Note that only variables, rather than

obje
t names, may blo
k terms. Also, only variables
an be blo
ked.

A
onstraint system S is said to be
lash-free if it
ontains no formulas :> and

x : :> and neither a pair of the form x : C, x : :C, nor a pair of the form ', :'. We

write S �!

�

S

0

to say that the
onstraint system S

0

an be obtained from S by an

appli
ation of the saturation rule �!

�

. A
onstraint system S

0

is
alled a saturation of

a
onstraint system S i� there exists a sequen
e S

0

; : : : ; S

n

be a sequen
e of
onstraint

systems su
h that S = S

0

, S

0

= S

n

, and, for every i < n, there is a saturation rule

�!

�

for whi
h S

i

�!

�

S

i+1

.

4 Quasimodels

As was already said, PTL

ALC

does not have the �nite domain property, and so our

tableau algorithm
onstru
ts abstra
tions of models,
alled quasimodels, rather than

models themselves.

Quasimodels are based on the idea of
on
ept types. A
on
ept type is simply a

set of
on
epts that are `relevant' to the tested formula and satis�ed by an element of

the domain. The `fragment' of relevant
on
epts and formulas is de�ned as follows.

Let � be a set of formulas. Denote by Sb(�) the set of all subformulas of formulas in

�, by ob(�) the set of all obje
t names that o

ur in �, by rol(�) the set of all roles

in �, and by
on(�) the set of all
on
epts in �. If # is a unary operator, say, : or

, then #(�) is the union of � and f#' j' 2 �g. The fragment Fg(�) generated by

� is de�ned as the union of the following four sets: ob(�), rol(�),
(:
on(�[f>g))

and
(:Sb(� [f>g)).

Roughly, a quasimodel is a sequen
e (S

n

jn 2 N) of saturated
onstraint systems

that satis�es
ertain
onditions whi
h
ontrol intera
tions between the S

n

and ensure

8

that quasimodels
an be re
onstru
ted into real models. Unlike standard tableaux,

where a variable usually represents an element of a model, a variable in a quasimodel

represents a
on
ept type. More pre
isely, if a
onstraint system
ontains a variable v,

then the
orresponding ALC-models
ontain at least one|but potentially (in�nitely)

many|elements of the type represented by v. As our PTL

ALC

-models have
onstant

domains, we need some means to keep tra
k of the types representing the same element

at di�erent moments of time. This
an be done using a fun
tion r,
alled a run,

whi
h asso
iates with ea
h n 2 N a term r(n) from S

n

. Thus r(0); r(1); : : : are type

representations of one and the same element at moments 0; 1; : : : .

We are in a position now to give pre
ise de�nitions. Fix a PTL

ALC

-formula #.

De�nition 4.1 A quasiworld for # is a saturated
lash-free
onstraint system S sat-

isfying the following
onditions:

� fa j 9C (a : C) 2 Sg = ob(#),

�
on(S) � Fg(#) and rol(S) � Fg(#),

� for every formula ' 2 S, if ' is a PTL

ALC

-formula then ' 2 Fg(#),

� all variables in S are unmarked.

One should not be
onfused by that all variables in quasiworlds are unmarked. Marked

variables are|as we shall see later on|important for the
onstru
tion of a quasimodel.

After the
onstru
tion, marked variables
an simply be `unmarked' (note that this

operation preserves saturatedness of
onstraint systems).

De�nition 4.2 A sequen
e Q = (S

n

jn 2 N) of quasiworlds for # is
alled a #-

sequen
e. A run in Q is a fun
tion r asso
iating with ea
h n 2 N a term r(n) from

S

n

su
h that

� for every m 2 N and every
on
ept C, if (r(m) :
C) 2 S

m

then we have

(r(m+ 1) : C) 2 S

m+1

,

� for all m 2 N, if (r(m) : CUD) 2 S

m

then there is k � m su
h that (r(k) : D) 2

S

k

and (r(i) : C) 2 S

i

whenever m � i < k.

De�nition 4.3 A #-sequen
e Q is
alled a quasimodel for # if the following hold:

� for every obje
t name a in Q, the fun
tion r

a

de�ned by r

a

(n) = a, for all n 2 N,

is a run in Q,

� for every n 2 N and every variable v in S

n

, there is a run r in Q su
h that

r(n) = v,

� for every n 2 N and every
' 2 S

n

, we have ' 2 S

n+1

,

� for every n 2 N and every ('U) 2 S

n

, there is m � n su
h that 2 S

m

and

' 2 S

k

whenever n � k < m.

9

We say that # is quasi-satis�able if there are a quasimodel Q = (S

n

jn 2 N) for # and

n 2 N su
h that # 2 S

n

.

Theorem 4.4 A PTL

ALC

-formula # is satis�able i� # is quasi-satis�able.

The proof is delivered in Se
tion A.

5 The tableau algorithm

In this se
tion, we present a tableau algorithm for
he
king satis�ability of PTL

ALC

-

formulas in models with
onstant domains. Before going into te
hni
al details, we

explain informally how quasimodels for an input formula # are
onstru
ted and, in

parti
ular, how marked variables help to maintain
onstant domains.

Intuitively, marked variables represent so-
alled `minimal types.' If a
onstraint

system S
ontains marked variables v

1

; : : : ; v

k

then every element of an ALC-model

orresponding to S is des
ribed by one of the v

i

. It should now be
lear why the

disjun
tive saturation rules must be applied in a spe
ial way to marked variables.

Consider, for example, the �!

:u

rule and assume that there is a single marked

variable v

m

in S and that v

m

: :(C u D) 2 S. In the
ontext of minimal types,

this means that every element in
orresponding ALC-models satis�es :(C uD). From

this, however, it does not follow that every element satis�es :C or that every element

satis�es :D. Hen
e, the�!

:u

rule
annot be applied in the same way as for unmarked

variables.

Here is a simple example illustrating the
onstru
tion of quasimodels with minimal

types. Consider the formula

=

�

(:(
C u
:C)) = >

�

^ a :
9R:C:

With this formula we asso
iate the initial
onstraint system S

#

= f#; v

m

: >g
ontain-

ing # and a single marked variable v

m

. By applying saturation rules, we obtain then

the
onstraint system S

0

= fa :
9R:C; v

m

:
C; v

0

m

:
:Cg (slightly simpli�ed for

brevity) that des
ribes the ALC-model for time moment 0. The
onstraint system for

moment 1 is fa : 9R:C; v

1

: C; v

2

: :C; v

m

: >g (where v

m

is the only marked vari-

able) whi
h
an then be extended to the system S

1

= fa : 9R:C; v

m

: >; v

1

: C; v

2

:

:C; aRv; v : Cg by the saturation rules. Note that we introdu
ed a new (unmarked)

variable v. Every element d whi
h is of type v at moment 1 must|a

ording to the

onstant domain assumption|also exist at moment 0. But what is the type of d at

that moment (in the following
alled the `prede
essor type' of d at 1)? By the de�ni-

tion of minimal types, we must only
hoose among marked variables. So either d is

of type v

m

at 0, whi
h means that we must add v : C to S

1

, or d is of type v

0

m

at 0,

and so we must add v : :C to S

1

. The former
hoi
e yields an (initial fragment of a)

quasimodel, while the latter leads to a
lash. For a more detailed dis
ussion we refer

the reader to [11℄.

We
an now de�ne the tableau algorithm. In general, tableau algorithms try to

onstru
t a (quasi)model for the input formula by repeatedly applying tableau rules

to an appropriate data stru
ture. Let us �rst introdu
e this data stru
ture.

10

De�nition 5.1 A tableau for a PTL

ALC

-formula # is a triple G = (G;�; l), where

(G;�) is a �nite tree and l a labelling fun
tion asso
iating with ea
h g 2 G a
onstraint

system l(g) for # su
h that S

#

= f#g[fmin(V) : >g[fa : > j a 2 ob(#)g is asso
iated

with the root of G, where min(V) is marked and # is U-unmarked if it is of the form

'U or x : (CUD).

To de
ide whether # is satis�able, the tableau algorithm for PTL

ALC

goes through

two phases. In the �rst phase, the algorithm starts with an initial tableau G

#

and

exhaustively applies the tableau rules to be de�ned below. Eventually we obtain a

tableau G to whi
h no more rule is appli
able; it is
alled a
ompletion of G

#

. In

the se
ond phase, we eliminate those parts of G that
ontain obvious
ontradi
tions

or eventualities whi
h are not realized. After that we are in a position to deliver a

verdi
t: # is satis�able i� the resulting tableau G

0

is not empty, i.e., i� the root of G

has not been eliminated.

Let us �rst
on
entrate on phase 1. The initial tableau G

#

asso
iated with # is

de�ned as (fg

r

g;�

r

; l), where �

r

= ; and l(g

r

) = S

#

. To de�ne the tableau rules,

we require a number of auxiliary notions. Let S be a
onstraint system and x a

term o

urring in S. Denote by A

x

(S) the set fC j (x :
C) 2 Sg and de�ne an

equivalen
e relation �

S

on the set of variables (not terms) in S by taking v �

S

u i�

A

v

(S) = A

u

(S). The equivalen
e
lass generated by v is denoted by [v℄

S

. Finally, let

[S℄

�

denote the set of all equivalen
e
lasses [v℄

S

.

Similar to the lo
al blo
king strategy on variables of
onstraint systems, we need

a global blo
king strategy on the nodes of tableaux. To de�ne this kind of blo
king,

it is
onvenient to abstra
t from variable names.

Let S and S

0

be
onstraint systems. S

0

is
alled a variant of S if there is a bije
tive

fun
tion � from the variables o

urring in S onto the variables o

urring in S

0

whi
h

respe
ts markedness (i.e., unmarked variables are mapped to unmarked variables and

marked variables to marked variables) and S

0

is obtained from S by repla
ing ea
h

variable v from S with �(v). In this
ase � is
alled a renaming.

Like
onstraint systems, tableaux are equipped with a stri
t partial order � on

the set of nodes whi
h indi
ates the order in whi
h the nodes of the tableau have

been introdu
ed. The tableau rules are shown in Fig. 4. Intuitively, the =)

rule

generates a new time point, while the other rules infer additional knowledge about an

already existing time point. For every saturation rule �!

s

we have a
orresponding

tableau rule =)

s

. The =)

#

and =)

#

0

rules deal with
onstant domains and use the

notion of an
estor whi
h is de�ned as follows.

Let G = (G;�; l) be a tableau for #. A node g 2 G is
alled a state if only the

=)

rule is appli
able to g. The node g is an an
estor of a node g

0

2 G if there is a

sequen
e of nodes g

0

; : : : ; g

n

su
h that g

0

= g, g

n

= g

0

, g

i

� g

i+1

for i < n, and g

0

is

the only state in the sequen
e.

As to the =)

rule, re
all that variables represent types rather than elements.

In view of this, when
onstru
ting the next time point, we `merge' variables satisfying

the same
on
epts (by using the equivalen
e
lasses). A
tually, this idea is
ru
ial

for devising a terminating tableau algorithm despite the la
k of the �nite domain

property. The =)

#

rule formalizes the
hoi
e of a prede
essor type as was sket
hed

11

(G;�; l) =)

s

(G

0

;�

0

; l

0

)

if g is a leaf in G, the saturation rule �!

s

is appli
able to l(g),

S

1

; : : : ; S

n

are the possible out
omes of the appli
ation of �!

s

to l(g),

G

0

= G ℄ fg

1

; : : : ; g

n

g and, for 1 � i � n, �

0

= � [f(g; g

i

)g and l

0

(g

i

) = S

i

(G;�; l) =)

(G

0

;�

0

; l

0

)

if G

0

= G ℄ fg

0

g, �

0

= � [f(g; g

0

)g for some leaf g 2 G,

l

0

(g

0

) is the union of the following sets:

fa : >g [fa : C j (a :
C) 2 l(g)g, for a 2 ob(l(g)),

f j
 2 l(g)g,

fmin([v℄

l(g)

) : >g [fmin([v℄

l(g)

) : C j (min([v℄

l(g)

) :
C) 2 l(g)g,

for [v℄

l(g)

2 [l(g)℄

�

,

fv

0

: >g,

where v

0

is the only marked variable in l(g

0

),

and there is no g

00

2 G with g

00

� g su
h that l(g

00

) is a variant of l(g)

(i.e., the rule is not blo
ked)

(G;�; l) =)

#

(G

0

;�

0

; l

0

)

if g is a leaf in G, v is an unmarked variable in l(g), g

0

is the an
estor of g,

for no term x in l(g

0

) do we have

fC j (x :
C) 2 l(g

0

)g � f C j (v : C) 2 l(g)g;

v

1

; : : : ; v

n

are the marked variables in l(g

0

), G

0

= G ℄ fg

1

; : : : ; g

n

g, and,

for 1 � i � n, we have �

0

= �[f(g; g

i

)g and

l

0

(g

i

) := l(g) [fv : C j (v

i

:
C) 2 l(g

0

)g:

(G;�; l) =)

#

0

(G

0

;�

0

; l

0

)

if g is a leaf in G, v is a marked variable in l(g), g

0

is the an
estor of g,

for no term x in l(g

0

) do we have

fC j (x :
C) 2 l(g

0

)g � f C j (v : C) 2 l(g)g;

X = fmin([v

0

℄

l(g

0

)

) j v

0

is a marked variable in l(g

0

)g,

Y

i

is the ith subset of X (for some ordering),

G

0

= G ℄ fg

1

; : : : ; g

2

jXj

g, and, for 1 � i � 2

jXj

, we have �

0

= � [f(g; g

i

)g and

l

0

(g

i

) is the union of l(g) and the following sets, where we assume Y

i

= fv

1

; : : : ; v

n

g:

fv : C j (v

1

:
C) 2 l(g)g

opy(l(g); v; v

0

j

) for 1 < j � n

fv

0

j

: C j (v

j

:
C) 2 l(g

0

)g for 1 < j � n

Here, all newly introdu
ed variables v

0

j

are marked in l

0

(g

i

).

Note: For all rules, we assume that l

0

(g) = l(g) for all g 2 G. A ℄ B denotes the

disjoint union of A and B.

Figure 4: Tableau rules.

12

in the example above. Sin
e we have to
hoose a prede
essor type, the rule behaves

similar to a disjun
tive saturation rule, whi
h means that we must apply the rule in

a di�erent way for marked variables. That is why we need the =)

#

0

rule: for marked

variables, it
onsiders arbitrary
ombinations of
hoi
es of prede
essor types.

The tableau rules are applied until no further rule appli
ation is possible. To

ensure termination, we must follow a
ertain strategy of rule appli
ations.

De�nition 5.2 A tableau is
omplete if no tableau rule is appli
able to it. Let

G

0

; : : : ;G

n

be a sequen
e of tableaux su
h that the asso
iated orders �

0

; : : : ;�

n

des
ribe the order of node introdu
tion and, for every i < n, there is a tableau rule

=)

�

su
h that G

i

=)

�

G

i+1

and

� if the rule is one of the generating rules =)

6=

or =)

9

, then no tableau rule

di�erent from =)

6=

, =)

9

, and =)

is appli
able to G

i

,

� if the rule is =)

, then no other tableau rule is appli
able to G

i

.

Then G

0

; : : : ;G

n

is said to be built a

ording to the tableau strategy. If this is the
ase,

G

0

= G

#

, and G

n

is
omplete, then G

n

is
alled a
ompletion of #.

The following lemma
laims that the tableau strategy ensures termination.

Theorem 5.3 If the tableau rules are applied a

ording to the tableau strategy, then

a
ompletion is rea
hed after at most 2

2

r(j#j)

steps, where r is a polynomial fun
tion.

The proof is delivered in Se
tion B. Note that our algorithm is not optimal w.r.t.

the worst
ase, i.e., it is a 2ExpTime-algorithm solving an ExpSpa
e-
omplete prob-

lem [3℄. However, the same applies to Wolper's tableau algorithm for propositional

temporal logi
 [16℄: An ExpTime-algorithm solves a PSpa
e-
omplete problem. Nev-

ertheless, Wolper's algorithm is
onsidered very \pra
ti
al", i.e., well-suited for im-

plementation.

Let us now turn to the se
ond phase of the algorithm, i.e., to the elimination phase.

We begin by de�ning whi
h nodes are blo
ked.

De�nition 5.4 Let G = (G;�; l) be a tableau for #. A state g 2 G is blo
ked by a

state g

0

2 G if g

0

� g and l(g

0

) is a variant of l(g). We de�ne a new relation � by

taking g� g

0

if either g � g

0

, or g has a su

essor g

00

that is blo
ked by g

0

.

An important part of the elimination pro
ess deals with so-
alled eventualities. An

L

C

-formula � 2 S is
alled an eventuality for a
onstraint system S if � is either of

the form x : CUD or of the form 'U . An eventuality is said to be unmarked if it is

not of the form v : CUD for any marked variable v. All eventualities o

urring in the

tableau have to be `realized' in the following sense.

De�nition 5.5 Let G = (G;�; l) be a tableau for #, g 2 G, and let � be an eventuality

for l(g). Then � is realized for g in G if there is a sequen
e of unblo
ked nodes

g

0

�g

1

: : :� g

n

in G with g = g

0

, n � 0, su
h that the following holds:

(1) if � is 'U then 2 l(g

n

);

13

(2) if � is v : CUD, with v unmarked or marked variable, then there are variables v

i

from l(g

i

), i � n, with v

0

= v, v

1

; : : : ; v

n

unmarked, (v

n

: D) 2 l(g

n

), and, for all i,

0 < i � n, we have

� if g

i�1

is a state, then fC j (v

i�1

:
C) 2 l(g

i�1

)g � fC j (v

i

: C) 2 l(g

i

)g,

� if g

i�1

is not a state, then fC j (v

i�1

: C) 2 l(g

i�1

)g � fC j (v

i

: C) 2 l(g

i

)g;

(3) if � is a : CUD, for some obje
t name a, then (a : D) 2 l(g

n

).

Intuitively, the variables v

0

; : : : ; v

n

in (2) des
ribe the same element at di�erent mo-

ments of time. It should be
lear that in a tableau representing a quasimodel, all

eventualities have to be realized. Apart from removing nodes that
ontain
lashes, to

remove nodes with non-realized eventualities is the main aim of the elimination phase.

De�nition 5.6 Let G = (G;�; l) be a tableau for #. We use the following rules to

eliminate points in G:

(e

1

) if l(g)
ontains a
lash, eliminate g and all its �

�

-su

essors

(where `�

�

-su

essor' is the transitive
losure of `�-su

essor');

(e

2

) if all �-su

essors of g have been eliminated, eliminate g as well;

(e

3

) if l(g)
ontains an unmarked eventuality not realized for g, eliminate g and

all its �

�

-su

essors.

1

The elimination pro
edure is as follows. Say that a tableau G

1

= (G

1

;�

1

; l

1

) is a

subtableau of G

2

= (G

2

;�

2

; l

2

) if G

2

� G

1

and G

1

is the restri
tion of G

2

to G

1

.

Obviously, if G

2

is a tableau for # and G

1

ontains the root of G

2

, then G

1

is a

tableau for #. Suppose now that G = (G;�; l) is a
ompletion of #. We
onstru
t

a de
reasing sequen
e of subtableaux G = G

0

;G

1

; : : : by iteratively eliminating nodes

from G a

ording to rules (e

1

){(e

3

), with (e

1

) being used only at the �rst step. (The

two other rules are used in turns.) Sin
e we start with a �nite tableau, this pro
ess

stops after �nitely many steps, i.e., we rea
h a subtableau G

0

= (G

0

;�

0

; l

0

) of G to

whi
h none of the elimination rules
an be applied. We say that the root of G is not

eliminated i� G

0

6= ;.

Theorem 5.7 A PTL

ALC

-formula # is satis�able i� there is a
ompletion of # of

whi
h the root is not eliminated.

The result will be proved in Se
tion C.

As a
onsequen
e of Theorems 5.3 and 5.7 we obtain

Theorem 5.8 There is an e�e
tive tableau pro
edure whi
h, given a PTL

ALC

-formula

#, de
ides whether # is satis�able.

1

Of
ourse, eventualities whi
h are marked also have to be realized. However, the fa
t that all

unmarked eventualities in a tableau are realized implies that all other eventualities are also realized

(see proofs).

14

6 Con
lusion

This paper|a
ontinuation of the series [13, 4, 15, 11℄|develops a tableau reasoning

pro
edure for the temporal des
ription logi
 PTL

ALC

interpreted in two-dimensional

models with
onstant ALC domains. The algorithm runs in double exponential time|

thus paralleling the
omplexity of Wolper's original PTL-algorithm [16℄ whi
h solves

a PSpa
e-
omplete problem using exponential time. Despite the high
omplexity,

we believe that the devised tableau algorithm is an important �rst step towards the

use of TDLs as KR&R tools. A prototype implementation of the des
ribed algorithm

is
urrently underway. Based on the experien
es with this implementation, possible

optimization startegies will be investigated using the work in [9℄ as a starting point.

An important feature of the developed algorithm is that the DL
omponent
an

be made
onsiderably more expressive, provided that the extension is also supported

by a reasonable tableau pro
edure. One idea we are working on now is to extend

this
omponent to expressive fragments of �rst-order logi
, thereby obtaining tableau

pro
edures for fragments of �rst-order temporal logi
 (
f. [8℄) having potential appli-

ations in a growing number of �elds su
h as spe
i�
ation and veri�
ation of rea
tive

systems, model-
he
king, query languages for temporal databases, et
.

Another interesting aspe
t of this paper is that, with minor modi�
ations, the
on-

stru
ted tableaux
an be used as a satis�ability
he
king pro
edure for the Cartesian

produ
t of S5 and PTL (
f. [12℄), thus
ontributing to a new ex
iting �eld in modal

logi
 studying the behavior of multi-dimensonal modal systems [7℄.

A Proof of Theorem 4.4

We are going to show that a PTL

ALC

-formula # is satis�able i� it is quasi-satis�able.

For the dire
tion from left to right suppose that # is satis�able. Then there

is some model M = (N; <; I) with M; 0 j= #. Fix n 2 N. For ea
h d 2 � put

t

I;n

(d) = fC 2 Fg(#) j d 2 C

I;n

g. Next de�ne equivalen
e relations �

n

on � by

putting d �

n

d

0

i� t

I;n

(d) = t

I;n

(d

0

). Consider the equivalen
e
lasses modulo �

n

,

abbreviated by [d℄

n

. Obviously, f[d℄

n

j d 2 �

n

g is �nite. Choose for ea
h equivalen
e

lass [d℄

n

a variable v

[d℄

n

. De�ne mappings

n

whi
h map obje
ts names a and variables

v

[d℄

n

to sets of domain obje
ts d 2 � in the obvious way, i.e.,

n

(x) =

�

fa

I;n

g if x is an obje
t name a

[d℄

n

if x is a variable v

[d℄

n

The
onstraint system S

n

orresponding to n is de�ned as the union of the following

�ve sets:

� f' 2 Fg(#) jM; n j= 'g,

� fa : C j a 2 ob(#); C 2 Fg(#); a

I;n

2 C

I;n

g,

� fv

[d℄

n

: C j d 2 �; C 2 Fg(#); d 2 C

I;n

g,

15

� fvRv

0

j 9d 2
(v) and d

0

2
(v

0

) with (d; d

0

) 2 R

I;n

g.

where all formulas of the form 'U and x : 'U are U-marked in S

n

. It is not diÆ
ult

to prove that S

n

is a quasiworld for #, we leave this to the reader.

Now, de�ne Q as the sequen
e (S

n

jn 2 N). We need to show that Q is a quasi-

model for #. That # is quasi-satis�able is then an immediate
onsequen
e of the fa
t

that # 2 S

0

. So it only remains to
he
k that Q satis�es the
onditions from De�nition

4.3. The �rst
ondition is obvious. For the se
ond, let v be some variable that o

urs

in S

n

. By de�nition, there is some d 2 � with v = v

[d℄

n

. For ea
h m 2 N, we de�ne

r

v

(m) = v

[d℄

m

. Sin
eM has
onstant domain, r

v

is well-de�ned. It is easy to see that

r

v

is a run in Q (in the sense of De�nition 4.2) and r

v

(n) = v. This proves the se
ond

ondition. The two remaining ones are proved from the de�nition of the quasiworlds

S

n

by using the semanti
s of PT L

ALC

together with the
losure
onditions on Fg(#).

Now we turn to the dire
tion from right to left, whi
h forms the interesting part

of the theorem. Suppose # is quasi-satis�ed in a quasimodel Q = (S

n

jn 2 N). Denote

by � the set of all runs in Q and put, for ea
h n 2 N,

I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :)

where

� a

I;n

= r

a

, for every a 2 ob(#),

� C

I;n

i

= fr 2 � j r(n) : C

i

2 S

n

g,

� For all runs r; r

0

of the form r

a

; r

b

with a; b 2 ob(#) put rR

I;n

r

0

i� r(n)Rr

0

(n) 2

S

n

. Otherwise, put rR

I;n

r

0

i� r(n)Rr

0

(n) 2 S

n

or fC j r(n) : :9R:C 2 S

n

g �

fC j r

0

(n) : :C 2 S

n

g.

We show that M = (N; <; I) is as required. To this end we �rst prove:

(I) For every n 2 N and every r 2 �, if (r(n) : C) 2 S

n

then r 2 C

I;n

.

This is proved by indu
tion on the
onstru
tion of C. Throughout the proof we

heavily exploit the fa
t that the S

n

are saturated, hen
e
losed under all saturation

rules. Note that in the indu
tion we make use of a measure of the
omplexity of

on
epts a

ording to whi
h a
on
ept C that has not the form of a negation and its

negation :C are of the same
omplexity.

Fix n 2 N and suppose r 2 �. For atomi
 C the
laim follows from the
hoi
e

of the model. Let C

:

= :D, with D atomi
. Sin
e S

n

is
lash-free, (r(n) : D) 62 S

n

.

Hen
e r 62 D

I;n

, whi
h implies r 2 C

I;n

. Next,
onsider C

:

= (D u E). By the

losure of S

n

under the rule �!

u

we obtain (r(n) : D) 2 S

n

and (r(n) : E) 2 S

n

.

From the indu
tion hypothesis we get r 2 D

I;n

and r 2 E

I;n

, hen
e, by semanti
s,

r 2 (D u E)

I;n

. The
ases C

:

= :(D u E) and C

:

= ::D are proved in a similar

way. One just has to use the fa
t that S

n

is
losed under the rules �!

:u

and �!

::

,

respe
tively.

16

Suppose C

:

= 9R:D and r(n) : 9R:D 2 S

n

.

Case 1. Suppose r(n) is not blo
ked. Then the
losure under the rule�!

9

provides

some variable v with fv : D; r(n)Rvg � S

n

. We �nd a run r

0

2 �with r

0

(n) = v. From

this we obtain rR

I;n

r

0

, by de�nition, as well as r

0

2 D

I;n

, by indu
tion hypothesis.

Hen
e r 2 (9R:D)

I;n

.

Case 2. Suppose r(n) is blo
ked. We �nd an unblo
ked variable v su
h that

fC j v : C 2 S

n

g � fC j r(n) : C 2 S

n

g. In parti
ular, v : 9R:D 2 S

n

. We obtain a

variable v

0

with fv

0

: D; vRv

0

g � S

n

. Take a run r

0

with r

0

(n) = v

0

. Then rR

I;n

r

0

and,

by indu
tion hypthesis, r

0

2 D

I;n

.

Now we
he
k the
ase C

:

= :9R:D. Suppose rR

I;n

r

0

. By de�nition, we have

r(n)Rr

0

(n) 2 S

n

or fC j r(n) : :C 2 S

n

g � fC j r(n) : :9R:C 2 S

n

g. In both
ases

r

0

(n) : :D 2 S

n

. This is
lear in the latter
ase while in the �rst
ase it follows from

the non-appli
ability of the �!

:9

rule. By indu
tion hypothesis, r

0

2 (:D)

I;n

. Sin
e

r

0

was
hosen arbitrarily, it is shown that r 2 (:9R:D)

I;n

.

Next, let C

:

=
D and suppose (r(n) :
D) 2 S

n

. By the �rst
lause in De�nition

4.2, (r(n + 1) : D) 2 S

n+1

. Hen
e, by indu
tion hypothesis, r 2 D

I;n+1

. From the

latter we obtain r 2 (
D)

I;n

by semanti
s. Now
onsider C

:

= :
D. Sin
e S

n

is

saturated, we get (r(n) :
:D) 2 S

n

. The rest follows from the pre
eding
ase.

Let C

:

= (DUE). Then, by the se
ond
lause of De�nition 4.2, there is somem � n

su
h that: (r(m) : E) 2 S

m

and for every n � i < m it holds that (r(i) : D) 2 S

i

.

From this the result
an be easily obtained by making use of the indu
tion hypothesis.

To
omplete the proof, it remains to
onsider the
ase C

:

= :(DUE). So suppose

(r(n) : :(DUE)) 2 S

n

. By indu
tion on m we show the following
laim:

(A) For all m � n, f(r(m) : :E) ; (r(m) : :(DUE))g � S

m

or there is some i su
h

that n � i < m and (r(i) : :D) 2 S

i

.

For the start, let m = n. The
laim is an immediate
onsequen
e of the assumption

together with the fa
t that S

n

is
losed under the rule �!

:U

. For the indu
tion step

assume that the
laim has already been proved for m = k. We distinguish two
ases:

First, suppose there is some i su
h that n � i < k and (r(i) : :D) 2 S

i

. In this
ase

the indu
tion step follows immediately. Suppose now there is no i with this property.

Then f(r(k) : :E) ; (r(k) : :(DUE))g � S

k

. By the
losure under the rule�!

:U

, one

of the following holds: (i) (r(k) : :D) 2 S

k

or (ii) (r(k) : :
(DUE)) 2 S

k

. In the �rst

ase the indu
tion step is trivial. In the se
ond
ase we get (r(k) :
:(DUE)) 2 S

k

,

by the
losure under the rule �!

:

. By making use of the �rst
lause of De�nition

4.2, we infer (r(k + 1) : :(DUE)) 2 S

k+1

. The result is obtained by the
losure of

S

k+1

under �!

:U

. This
ompletes the indu
tion step, and hen
e the proof of (A).

Now we
ome ba
k to the proof of (I). It is easy to see that (A) yields:

(B) For all m � n, r 2 (:E)

I;m

or there is some i su
h that n � i < m and

r 2 (:D)

I;i

,

by indu
tion hypothesis. From the latter we infer the desired result r 2 (:(DUE))

I;n

by a simple semanti
al argument. Hen
e (I) has been shown.

In the next step we show the following
laim:

17

(II) For every n 2 N and every ' 2 Fg(#), if ' 2 S

n

then M; n j= '.

Again, the
laim is shown by indu
tion. Let ' be atomi
 and suppose ' 2 S

n

. We

distinguish three
ases: �rstly, suppose there is some obje
t name a and some
on
ept

C su
h that '

:

= (a : C). By the �rst
lause of De�nition 4.3, we obtain (r

a

(n) : C) 2

S

n

. Hen
e, by (I), r

a

2 C

I;n

. Note that a

I;n

was de�ned as r

a

. So, by semanti
s,

M; n j= a : C. Se
ondly, suppose there is some
on
ept C with '

:

= (C = >). Fix

r 2 �. Now,
onsider the term r(n). Sin
e S

n

is
losed under the rule �!

=

, we get

(r(n) : C) 2 S

n

. An appli
ation of (I) yields r 2 C

I;n

. Finally, suppose '

:

= aRb.

r

a

R

I;n

r

b

follows immediately from the de�nition. Hen
e M; n j= :(aRb).

Next,
onsider '

:

= : , with atomi
. Again, we distinguish three
ases. The �rst

ase, where has the form a : C, is
lear. For the se
ond
ase, suppose

:

= (C = >).

Assume (C 6= >) 2 S

n

. That S

n

is
losed under the rule �!

6=

supplies a term v

with (v : :C) 2 S

n

. By the se
ond
lause in De�nition 4.3 we have a run r su
h

that r(n) = v. Moreover, by an appli
ation of (I), it follows that r 2 (:C)

I;n

. So

there is some d 2 � with d 2 (:C)

I;n

, that is d 62 C

I;n

. But from the latter we infer

M; n j= C 6= >. Finally, suppose '

:

= :(aRb). Then, by the de�nition, we do not

have r

a

R

I;n

r

b

. Hen
e M; n j= aRb.

The proof of the indu
tion step
an be left to the reader. The di�erent
lauses are

all rather similar to the
orresponding ones in the proof of (I). The only interesting

ases are '

:

= (U�) and '

:

=
 together with their negations. Here one uses the

third and fourth
lause from De�nition 4.3, where the �rst and se
ond
lause from

De�nition 4.2 have been used in the proof of (I).

In order to
omplete the proof of the theorem we reason as follows: By assumption,

there is some n 2 N su
h that # 2 S

n

. So an appli
ation of (II) yields M; n j= #,

whi
h means that # is satis�ed in M.

B Proof of Theorem 5.3

In this se
tion, we show that if the tableau rules are applied a

ording to the tableau

strategy, then a
ompletion is rea
hed after at most double exponentially many steps

(in the length of the input formula #).

By the length j'j of a formula ' we mean the number of o

uren
es of symbols

used to
onstru
t '. We �rst establish an upper bound for the number of
ertain

onstraints per node label.

Lemma B.1 Let G

0

; : : : ;G

n

= G be built a

ording to the tableau strategy with G

0

=

G

#

. Let l(g) be a node in G. Then the number of
onstraints of the form x : C in l(g)

is bounded by 2

p(j#j)

, for some polynomial fun
tion p.

Proof. Let us �rst determine an upper bound for the number of distin
t terms per

node label. All obje
t names o

urring in node labels are from ob(#). So the number

of distin
t obje
t names in a label does not ex
eed j#j.

The root node and the labels l(g) of nodes g introdu
ed by an appli
ation of the

rule =)

do not
ontain more than 2

4j#j

distin
t unmarked variables and a single

18

marked one|2

4j#j

is the number of distin
t subsets of
on
epts in Fg(#) and the upper

bound on the number of marked variables is due to the use of equivalen
e
lasses in

the =)

rule.

We now
onsider the number of variables introdu
ed in a path ~g = g

0

� � � � � g

n

in whi
h g

0

is the root node or introdu
ed by =)

and no g

i

, i < n, is a state. First

for the marked variables, whi
h are introdu
ed by the rules =)

:u

, =)

U

, =)

:U

,

and =)

#

0

. De�ne a tree T whose nodes are the marked variables in l(g

n

) and whose

edges are labeled with either =)

:u

, =)

U

, =)

:U

, or =)

#

0

as follows:

� The root node is the initial marked variable in g

0

.

� If a rule =)

�

2 f=)

:u

, =)

U

, =)

:U

, =)

#

0

g is applied to a marked variable

v generating new marked variables v

1

; : : : ; v

k

, then v

i

is su

essor of v in T and

the edge between v and v

i

is labelled with =)

�

for 1 � i � k.

The depth of T is bounded by 4 j#j+1: By de�nition of the (saturation and) tableau

rules, ea
h path in T may
ontain at most 4 j#j edges labelled with =)

:u

, =)

U

, or

=)

:U

and at most a single edge labelled =)

#

0

. Moreover, ea
h node has at most

4 j#j + 2

4j#j

su

essors: at most 4 j#j outgoing edges labelled with =)

:u

, =)

U

, or

=)

:U

, and at most 2

4j#j

outgoing edges labelled with =)

#

0

. Hen
e, the number

of nodes in the tree (whi
h is the maximum number of marked variables in l(g

n

)) is

bounded by 2

q(j#j)

for some polynomial fun
tion q.

We now
onsider unmarked variables whi
h are introdu
ed by the =)

6=

and =)

9

rules in the sequen
e ~g. The rule =)

6=

an obviously add at most j#j new variables.

For the =)

9

rule, we distinguish appli
ations to
onstraints x : 9R:C where (i) x

is an obje
t name, (ii) x is a marked variable, and (iii) x is an unmarked variable.

We may obviously have at most j#j � 4 j#j rule appli
ations of type (i). By the upper

bound established for marked variables, we may have at most 2

q(j#j)

�4 j#j appli
ations

of type (ii). Now for type (iii). By the tableau strategy, a variable v will never be

blo
ked in ~g after the =)

9

rule has been applied to a
onstraint v : 9R:C. Moreover,

by de�nition of blo
king, there may exist at most 2

4j#j

unblo
ked unmarked variables

per
onstraint system. It follows that the =)

9

rule is applied to at most 2

4j#j

distin
t

unmarked variables, i.e., there may be at most 4 j#j � 2

4j#j

appli
ations of type (iii).

Summing up, there
learly exists a polynomial fun
tion q

0

su
h that the number of

unmarked variables in l(g

n

) is bounded by 2

q

0

(j#j)

.

For ea
h term x, there may obviously exist at most 4 j#j
onstraints of the form

x : C. Hen
e, if we take together the upper bounds for the numbers of obje
ts, marked

variables, and unmarked variables, Lemma B.1 immediately follows. a

The lemma just established is helpful for determining the maximum number of
on-

straint systems appearing during a run of the algorithm that are not variants of one

another. In the following, we
all two
onstraint systems vdistin
t i� they are not

variants of one another.

Lemma B.2 Let G

0

; : : : ;G

n

= G be built a

ording to the tableau strategy with G

0

=

G

#

. Then G
ontains at most 2

2

q(j#j)

node labels that are pairwise vdistin
t, where q is

a polynomial fun
tion.

19

Proof. Let us �rst determine the maximum size of node labels in G. From Lemma B.1,

we know that ea
h label may
ontain at most 2

p(j#j)

onstraints of the form x : C.

Moreover, ea
h label may obviously
ontain at most 4 j#j formulas, namely those in

Fg(#). Hen
e, it remains to
onsider
onstraints of the form xRv where x is a term

and v is a variable (note that
onstraints aRb with a and b obje
t names are formulas

and have thus already been
onsidered). Su
h
onstraints are only introdu
ed by the

=)

9

rule along with
onstraints of the form x : C. Hen
e, the number of
onstraints

of the form xRv is also bounded by 2

p(j#j)

. Summing up, there exists a polynomial

fun
tion q su
h that the size of ea
h node label in G is bounded 2

q(j#j)

. Sin
e all

involved obje
t names,
on
epts, formulas, and roles are from Fg(#), there exist at

most 2

2

q(j#j)

node labels whi
h are pairwise distin
t up to variable renaming. a

We are now ready to prove Theorem 5.3. Assume that the tableau algorithm
omputes

a sequen
e G

0

;G

1

; : : : of tableaux with G

0

= G

#

. By Lemma B.2, we may have at most

2

2

q(j#j)

states that are pairwise vdistin
t per tableau G

i

. By de�nition of blo
king, this

implies that we have at most 2

2

q(j#j)

unblo
ked states in any G

i

. By de�nition of the

tableau rules, we have that if a state g in a tableau G

i

is blo
ked, then g is a leaf in G

i

.

Also by de�nition of the tableau rules (see espe
ially the =)

#

0

rule), the bran
hing

fa
tor of tableaux in the above sequen
e is bounded by 2

2

4j#j

. Summing up these fa
ts,

we obtain that the number of (blo
ked or unblo
ked) states in any G

i

is bounded by

2

2

q(j#j)

� 2

2

4j#j

. Sin
e every rule appli
ation ex
ept =)

generates a new node that

is labelled with a stri
t superset of the label of the (leaf) node to whi
h the rule is

applied (and =)

itself is only applied to states), there exist at most 2

4j#j

non-state

nodes per state. It follows that the number of nodes in any tableau G

i

is bounded

by 2

2

r(j#j)

, where r is a polynomial fun
tion. Sin
e every rule appli
ation adds a new

node, the same upper bound applies to the number of rule appli
ations whi
h proves

the theorem.

C Proof of Theorem 5.7

We �rstly prove
orre
tness:

Theorem C.1 Suppose # is a satis�able PTL

ALC

-formula and G is a
ompletion of

#. Then the root of G is not eliminated.

The theorem is a
onsequen
e of the following lemma. Here and in what follows we

denote by [n;m℄ the set fk 2 N jn � k � mg.

Lemma C.2 Let G = (G;�; l) be a
ompletion of # and suppose that # is satis�able.

Then there exists a sequen
e ~g = (g

i

j i 2 N) of
lash-free nodes in G with g

0

= g

r

,

g

i

� g

i+1

, for all i 2 N, su
h that the following holds for all n 2 N:

� if � is an eventuality of the form 'U and � 2 l(g

n

), then there exists m � n

with 2 l(g

m

) (in this
ase we say that � is realized for g

n

in ~g until m);

20

� if � is an eventuality of the form (a : CUD) and � 2 l(g

n

), then there exists

m � n with (a : D) 2 l(g

m

) (in this
ase we say that � is realized for g

n

in ~g

until m);

� if � is an eventuality of the form (v : CUD), for some variable v whi
h o

urs

unmarked in l(g

n

) , then there exist m � n and variables v

i

whi
h o

ur un-

marked in l(g

i

), for all i 2 [n;m℄, with v

0

= v, (v

m

: D) 2 l(g

m

), and for all

i 2 [n;m� 1℄:

{ if l(g

i

) is a state, then fC j (v

i

:
C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g,

{ if l(g

i

) is not a state, then fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g,

(in this
ase we say that � is realized for g

n

by ~g and the sequen
e (v

i

jn � i �

m)).

For suppose this lemma has been proved. Then the following proves Theorem C.1.

Proof. Assume # is satis�able and let G = (G;�; l) be a
ompletion of #.

An appli
ation of Lemma C.2 supplies a sequen
e ~g = (g

n

jn 2 N) satisfying the

onditions listed in Lemma C.2. In parti
ular, g

r

= g

0

. So it suÆ
es to show that no

g

n

from ~g is eliminated. Let

G = G

0

� G

1

� � � �

be the sequen
e produ
ed by the elimination pro
edure. We show by indu
tion that

� fg

n

jn 2 Ng � G

i

, for all i 2 N.

The indu
tion base i = 0 is
lear. Suppose the
laim has been proved for j = i. So

fg

n

jn 2 Ng � G

j

. We have to show that none of the rules e

1

to e

3

an be applied to

any g

n

. (e

1

) is
lear and (e

2

, (e

3

) follow immediately from the indu
tion hypothesis.

a

We will now prove a lemma whi
h enables us to prove Lemma C.2. Consider a

onstraint systems S for # and a model M = (N; <; I) with

I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :);

for n 2 N. A mapping � from the set of unmarked terms in S into � is
alled

n-satisfying, in symbols S �

�

n

M, if

� �(a) = a

I;n

, for all obje
t names a in S,

� fC j (x : C) 2 Sg � fC j �(x) 2 C

I;n

g, for all terms x in S,

� if xRy 2 S, then �(x)R

I;n

�(y),

� if 2 S, then M; n j= , for all PTL

ALC

-formulas .

A mapping � from � onto the set of marked variables in S is
alled n-exhaustive, in

symbols S �

�

n

M, if

21

� fC j (�(d) : C) 2 Sg � t

I;n

(d) = fC j d 2 C

I;n

g, for all d 2 �.

A pair (�; �)
onsisting of an n-satisfying mapping � and an n-exhaustive mapping �

is
alled �tting, in symbols S �

�;�

n

M.

Lemma C.3 SupposeM = (N; <; I) with I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :), for

all n 2 N, is a model for #. Let n 2 N and suppose G = (G;�; l) is a
ompletion of #

and g 2 G.

(1) Suppose l(g) is a state whi
h is not blo
ked, l(g) �

�;�

n

M, and v

0

is an unmarked

variable in l(g). Then there exist sequen
es

� g

0

� g

1

� � � � � g

m

of nodes in G, g = g

0

, su
h that l(g

i

), i 2 [1;m � 1℄, are

non-states and l(g

m

) is a state,

� (�

0

; �

0

); : : : ; (�

m

; �

m

) of pairs of mappings with (�; �) = (�

0

; �

0

), and �

1

� � � � �

�

m

su
h that l(g

i

) �

�

i

;�

i

n+1

M, for all i 2 [1;m℄,

and an unmarked variable v

1

in l(g

1

) su
h that

(a) for all 'U 2 l(g

m

), if M; n+ 1 j= then 2 l(g

m

),

(b) for all unmarked terms x with (x : CUD) 2 l(g

m

), if �

m

(x) 2 D

I;n+1

then

(x : D) 2 l(g

m

),

(
) �

1

(v

1

) = �(v

0

) and fC j (v

0

:
C) 2 l(g)g � fC j (v

1

: C) 2 l(g

1

)g.

(2) Suppose l(g) is not a state, l(g) �

�;�

n

M. Then there exist sequen
es

� g

0

� g

1

� � � � � g

m

of nodes in G, g = g

0

, su
h that l(g

i

), i 2 [1;m � 1℄, are

non-states, and l(g

m

) is a state,

� pairs (�

0

; �

0

); : : : ; (�

m

; �

m

) of mappings with � = �

0

and �

0

� �

1

� � � � � �

m

su
h that l(g

i

) �

�

i

;�

i

n

M, for all i 2 [1;m℄

su
h that

(a) for all 'U 2 l(g

m

), if M; n j= then 2 l(g

m

),

(b) for all unmarked terms x with (x : CUD) 2 l(g

m

), if �(x) 2 D

I;n

then (x : D) 2

l(g

m

).

Proof. (1) Let l(g) �

�;�

n

M and �(v

0

) = d 2 �. Take the node g

1

2 G with g � g

1

. g

is not blo
ked and so l(g

1

) is the union of the following sets:

� fa : >g [fa : C j (a :
C) 2 l(g)g, for a 2 ob(l(g)),

� f j
 2 l(g)g,

� f(v

i

: >)g [fv

i

: C j (v

i

:
C) 2 l(g)g, for 0 < i � n,

� f(v

0

: >)g,

22

where fv

1

; : : : ; v

n

g = fmin([w℄

l(g)

) j [w℄

l(g)

2 [l(g)℄

�

g and v

0

is the only marked vari-

able in l(g

0

). Re
all that fv

1

; : : : ; v

n

g is a set of variables from l(g) whi
h
on-

tains exa
tly one representative for ea
h equivalen
e
lass [w℄

l(g)

. Take the variable

v

1

2 fv

1

; : : : ; v

n

g with v

0

2 [v

1

℄

l(g)

. De�ne �

1

by putting �

1

(x) = �(x) for every term

x in l(g). Obviously we have l(g

1

) �

�

1

n+1

M. Note also that �(v

0

) = �

1

(v

1

). Put

�

1

(d) = v

0

, for all d 2 �. Then l(g

1

) �

�

1

;�

1

n+1

M should be
lear.

We now
onstru
t the sequen
es g

2

; : : : ; g

m

and (�

2

; �

2

); : : : ; (�

m

; �

m

) with g

1

�

� � � � g

m

and �

1

� � � � � �

m

. This is done by indu
tion. Suppose g

1

; : : : ; g

i

and

(�

1

; �

1

) : : : ; (�

i

; �

i

) with l(g

j

) �

�

j

;�

j

n+1

M, 1 � j � i, have already been
onstru
ted.

The
hoi
e of g

i+1

depends on whi
h rule is applied to g

i

in the
onstru
tion of the

tableau G:

Case A. One of the rules =)

s

is applied to g

i

:

Case 1. �!

U

is applied to 'U 2 l(g

i

). Then M; n j= or M; n j= ';
('U).

If the �rst appears, take g

i+1

with l(g

i+1

) = l(g

i

) [f g and U-mark 'U in l(g

i+1

).

Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [f';
('U)g and U-mark 'U . Let

(�

i+1

; �

i+1

) = (�

i

; �

i

).

Case 2. �!

:U

is applied to :('U) 2 l(g

i

). Then M; n j= : ;:' or M; n j=

: ;:
 ('U). If the �rst appears, take g

i+1

with l(g

i+1

) = l(g

i

) [f: ;:'g. Oth-

erwise take g

i+1

with l(g

i+1

) = l(g

i

) [f: ;:
 ('U)g. Put (�

i+1

; �

i+1

) = (�

i

; �

i

).

Case 3. The deterministi

ases where one of the rules �!

:

;�!

::

, or �!

^

is

applied to l(g

i

) are
onsidered in the obvious manner.

Case 4. �!

:^

is be applied to :(' ^) 2 l(g

i

). Take g

i+1

with l(g

i+1

) =

l(g

i

) [f:'g if M; n j= :'. Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [f: g. Put

(�

i+1

; �

i+1

) = (�

i

; �

i

).

Case 5. �!

U

is applied to (x : CUD) 2 l(g

i

). Suppose �rst that x is not marked.

We have �

i

(x) 2 D

I;n

or �

i

(x) 2 C

I;n

and �

i

(x) 2 (
(CUD))

I;n

.

If the �rst appears, take g

i+1

with l(g

i+1

) = l(g

i

) [f(x : D)g and U-mark (x :

CUD). Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [fx : C; x :
(CUD)g and U-mark

(x : CUD). Let (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that x is marked in l(g

i

). De�ne

�

D

= fd 2 � j�

i

(d) = x; d 2 D

I;n

g;

�

:D

= fd 2 � j�

i

(d) = x; d 62 D

I;n

g:

If �

D

= ;, then take g

i+1

with l(g

i+1

) = l(g

i

)[f(x : C); (x :
(CUD))g and U-mark

(x : CUD). Let (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that �

:D

= ;. Then take g

i+1

with l(g

i+1

) = l(g

i

) [f(x : D)g and

U-mark (x : CUD). Let (�

i+1

; �

i+1

) = (�

i

; �

i

).

Finally, suppose �

D

6= ; and �

:D

6= ;. Then take g

i+1

with l(g

i+1

) = l(g

i

) [

opy(S

i

; x; v) [fx : D; v : C; v :
(CUD)g, U-mark (x : CUD) and (v : CUD)

and mark x and v. Let �

i+1

= �

i

and �

i+1

(d) = �

i

(d), for d 2 � � (�

D

[�

:D

),

�

i+1

(d) = x, for d 2 �

D

, and �

i+1

(d) = v, for d 2 �

:D

.

Case 6. The rule �!

:U

is applied to l(g

i

). This
ase is treated analogously to

Case 5.

23

Case 7. The deterministi
 rules �!

::

, �!

u

, �!

=

, and �!

:9

are treated in the

obvious manner.

Case 8. The rule �!

:u

is applied to (x : :(CuD)) 2 l(g

i

). Suppose �rst that x is

unmarked. We have �

i

(x) 2 (:C)

I;n

or �

i

(x) 2 (:D)

I;n

. If the �rst appears take g

i+1

with l(g

i+1

) = l(g

i

) [fx : :Cg. Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [fx : :Dg.

Put (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that x is marked. De�ne

�

:C

= fd 2 � j�

i

(d) = x; d 2 (:C)

I;n

g;

�

C

= fd 2 � j�

i

(d) = x; d 2 C

I;n

g:

If �

:C

= ;, take g

i+1

with l(g

i+1

) = l(g

i

) [fx : :Dg and (�

i+1

; �

i+1

) = (�

i

; �

i

). If

�

C

= ;, then take g

i+1

with l(g

i+1

) = l(g

i

) [fx : :Cg and (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that �

:C

6= ; and �

C

6= ;. Then take g

i+1

with l(g

i+1

) = l(g

i

) [

opy(S

i

; x; v)[fx : :C; v : :Dg. Put �

i+1

= �

i

and �

i+1

(d) = �

i

(d) for d 2 �� (�

C

[

�

:C

), �

i+1

(d) = x, for d 2 �

:C

, and �

i+1

(d) = v, for d 2 �

C

.

Case 9. The rule �!

6=

is applied to C 6= > 2 l(g

i

). Then we have M; n j= C 6= >

and so we
an take e 2 � with e 2 (:C)

I;n

. We know that the out
ome is S

i+1

=

l(g

i

) [fw : :Cg, for some new and unmarked variable w. Put �

i+1

= �

i

[f(w; e)g

and �

i+1

= �

i

.

Case 10. The rule �!

9

is applied to (x : 9R:C) 2 l(g

i

). If x is unmarked we have

�

i

(x) 2 (9R:C)

I;n

. Hen
e we �nd e 2 � with �

i

(x)R

I;n

e and e 2 C

I;n

. If x is marked

we �nd a d 2 � with �

i

(d) = x. So again we �nd e 2 � with dR

I;n

e and e 2 C

I;n

.

In both
ases we know that the out
ome is S

i+1

= l(g

i

)[fw : C; xRwg for a new and

unmarked variable w. Put �

i+1

= �

i

[f(w; e)g and �

i+1

= �

i

.

Case B. The rule =)

#

is applied to g

i

and the variable v. Then v is unmarked in

l(g

i

). Suppose �

i

(v) = d. Take the marked variable w = �

0

(d) in l(g

0

) and let g

i+1

be the node with l(g

i+1

) = l(g

i

) [f(v : C) j (w :
C) 2 l(g

0

)g. Let �

i+1

= �

i

and

�

i+1

= �

i

.

Case C. The rule =)

#

0

is applied to g

i

and the variable v. Then v is marked in

l(g

i

). Let D be the set of d 2 � su
h that �

i

(d) = v. D 6= ; sin
e �

i

is onto. Let

Y = fwj9d 2 D�

0

(d) = wg

and assume Y

�

= fw

1

; : : : ; w

n

g = fmin([w℄

l(g

0

)

) jw 2 Y g. Choose the node g

i+1

in

su
h a way that l(g

i+1

)
onsists of l(g

i

) and the union of

� fv : C j (w

1

:
C) 2 l(g

0

)g,

�
opy(l(g

i

); v; v

0

i

), 1 < i � n,

� f(v

0

i

: C) j (w

i

:
C) 2 l(g

0

)g, for 1 < i � n.

De�ne �

i+1

= �

i

and �

i+1

(d) = �

i

(d), for d 2 ��D, �

i+1

(d) = v, for �

0

(d) = w

1

, and

�

i+1

(d) = v

0

i

for �

0

(d) = w

i

, 1 < i � n.

24

Suppose now that we have rea
hed some m su
h that g

m

is a state. Theorem 5.3

guarantees the existen
e of m. We show that the
onstru
ted sequen
es g

1

; : : : ; g

m

and (�

1

; �

1

); : : : ; (�

m

; �

m

) are as required. Firstly, it is
lear from the
onstru
tion

that g

i

� g

i+1

, for all i < m, and that l(g

m

) is the only state in this list. �

i

� �

i+1

is

also
lear and l(g

i

) �

�

i

;�

i

n+1

M is easily proved by indu
tion on i. It remains to verify

the
onditions (a)-(
).

(a) Suppose 'U 2 l(g

m

) and M; n+ 1 j= . None of the rules =)

s

is appli
able

to g

m

, so 'U is U-marked in g

m

. But 'U is not U-marked in g

1

and so there exists

i < m su
h that l(g

i

) =)

U

l(g

i+1

) and 'U o

urs U-unmarked in l(g

i

). But then,

by the above pro
edure, 2 l(g

i+1

) and so 2 l(g

m

).

(b) Suppose (x : CUD) 2 l(g

m

), x is unmarked in l(g

m

) and �

m

(x) 2 D

I;n+1

.

None of the rules =)

s

is appli
able to g

m

, so (x : CUD) is U-marked in g

m

. But

(x : CUD) is not U-marked in g

1

and so there exists i < m su
h that l(g

i

) =)

U

l(g

i+1

)

and (x : CUD) o

urs U-unmarked in l(g

i

). But then, by the above pro
edure,

(x : D) 2 l(g

i+1

) and so (x : D) 2 l(g

m

).

(
) follows from the de�nition.

This
ompletes the proof of the �rst
laim of the Lemma.

The proof of the se
ond
laim
an be
ondu
ted in pre
isely the same manner as

the proof above starting from g

1

. It is left to the reader. a

Noti
e that we did not ex
lude the possibility that g

m

is blo
ked. In this
ase we �nd

a state g

0

whi
h is not blo
ked su
h that g

m�1

�g

0

and l(g

0

) is a variant of l(g

m

). It

is straightforward (but tedious) to reformulate the lemma above using the unblo
ked

state l(g

0

) instead of l(g).

Now we are ready for proving Lemma C.2.

Proof. Suppose # is satis�able. We �nd M = (N; <; I) with

I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :);

for all n 2 N, and M; 0 j= #. We show the following

Claim. There exists a sequen
e of intervals f[n(i);m(i)℄ j i 2 Ng of natural numbers

with n(0) = 0 and m(i) + 1 = n(i+ 1), for all i 2 N, su
h that there exist sequen
es

� ~g = (g

n

jn 2 N) of nodes in G with g

0

= g

r

, and

� ~� = (�

n

jn 2 N) and (�

n

jn 2 N) of mappings

su
h that the following hold:

(
1) for all n 2 N: g

n

� g

n+1

,

(
2) for all n 2 N: l(g

n

) is a state i� there exists i 2 N with n = m(i),

(
3) for all i 2 N and n 2 [n(i);m(i)℄: l(g

n

) �

�

n

;�

n

i

M,

(
4) for all i 2 N and all 'U 2 l(g

m(i)

), if M; i j= then 2 l(g

m(i)

),

25

(
5) for all i 2 N and all (x : CUD) 2 l(g

m(i)

) with x unmarked, if �

m(i)

(x) 2 D

I;i

then (x : D) 2 l(g

m(i)

),

(
6) for all n 2 N every unmarked eventuality for g

n

is realized by ~g.

By (
6), the sequen
e (g

n

jn 2 N) is as required for proving Lemma C.2.

The
onstru
tion of the sequen
es is by indu
tion. We start with g

0

, �

0

, and �

0

: let

g

0

= g

r

, �

0

(a) = a

I;0

, for all a 2 ob(#), and �

0

(d) = min(V) for all d 2 �. Obviously

l(g

0

) �

�

0

;�

0

0

M.

Suppose now that we have
onstru
ted a sequen
e of intervals f[n(i);m(i)℄ j i � kg

and sequen
es

� (g

n

jn � m(k)) and (�

n

; �

n

jn � m(k))

satisfying the
onditions (
1)-(
5) stated in the
laim above until m(k) | save that

l(g

m(k)

) is possibly not a state. In the latter
ase, using Lemma C.3 (2), it is straight-

forward to extend these sequen
es by means of nodes g

m(k)+1

; : : : ; g

m(k)+l

and map-

pings �

m(k)+1

; : : : ; �

m(k)+l

, �

m(k)+1

; : : : ; �

m(k)+1

su
h that l(g

m(k)+l

) is a state and the

extended sequen
e still has all properties (
1)-(
5). So, we
an assume without loss of

generality that l(g

m(k)

) is a state. We now distinguish two
ases.

Case 1. There exists an unmarked eventuality for some l(g

n

), n � m(k), whi
h is

not realized by (g

n

jn � m(k)) until m(k).

Take a minimal l � m(k) su
h that there exists an eventuality � for l(g

l

) whi
h

is not realized until m(k). To begin with suppose � is of the form (v : C

0

UD

0

), for

some unmarked variable v. We take variables v

l

; : : : ; v

m(k)

with v

l

= v su
h that, for

all i 2 [l;m(k)℄,

� v

i

o

urs unmarked in l(g

i

),

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, whenever i � m(k) and g

i

is

not a state,

� fC j (v

i

:
C) 2 l(g

i

g � fCj(v

i+1

: C) 2 l(g

i+1

)g, whenever i < m(k) and l(g

i

)

is a state.

Assume �

m(k)

(v

m(k)

) = d 2 �

k

. We have (v

m(k)

: C

0

UD

0

) 2 l(g

m(k)

) and (v

m(k)

:

D

0

) 62 l(g

m(k)

), sin
e (v : C

0

UD

0

) is not realized until m(k). Hen
e d 2 (C

0

UD

0

)

I;k

, by

(
3), and d 62 (D

0

)

I;k

, by (
5). There exists n > k su
h that d 2 (D

0

)

I;n

. Assume that

n is minimal with this property.

Iterated appli
ation of Lemma C.3 (1) provides intervals f[n(j);m(j)℄ j k+1 � j �

ng with n(k + 1) = m(k) + 1 and m(j) + 1 = n(j + 1) for all j 2 [k + 1; n � 1℄, and

sequen
es

� g

n(k+1)

� : : :�g

m(n)

, �

n(k+1)

; : : : ; �

m(n)

, �

n(k+1)

; : : : ; �

m(n)

su
h that (
1)-(
5) above hold untilm(n), and there is a sequen
e of variables v

n(k+1)

; : : : ; v

m(n)

,

v

j

o

urs unmarked in l(g

j

) for all j 2 [n(k + 1);m(n)℄, su
h that the following hold

for all j 2 [n(k + 1);m(n)℄:

26

1. �

j

(v

j

) = d,

2. fC j (v

j

: C) 2 l(g

j

)g � fC j (v

j+1

: C) 2 l(g

j

)g, whenever g

j

is not a state,

3. fC j (v

m(i)

:
C) 2 l(g

m(i)

g � fC j (v

n(i+1)

: C) 2 l(g

n(i+1)

)g, for all i 2 [k; n�1℄.

We show that (v : C

0

UD

0

) is realized for g

l

by (g

j

j 0 � j � m(n)) and the sequen
e

v

l

; : : : ; v

m(k)

; v

n(k+1)

; : : : ; v

m(n)

:

To this end it suÆ
es to show that (v

m(n)

: D

0

) 2 l(g

m(n)

). But, by the minimality of

n, we have (v

j

: C

0

UD

0

) 2 l(g

j

) for all j 2 [l;m(n)℄. Moreover, �

m(n)

(v

m(n)

) 2 (D

0

)

I;n

.

Using (
5) we infer (v

m(n)

: D

0

) 2 l(g

m(n)

). This
on
ludes the
ase where � has the

form (v : (C

0

UD

0

)).

The
ases where the eventuality � is of the form (a : C

0

UD

0

) or 'U are treated

similarly and
an be left to the reader.

Case 2. Every unmarked eventuality for every g

n

, n � m(k), is realized by (g

n

jn �

m(k)) until m(k).

This
ase is easier than the �rst one sin
e no eventuality has to be realized. We

just take the unique g

0

with l(g

m(k)

) � l(g

0

) and add it to the list (g

n

jn � m(k)).

The required mappings �

0

and �

0

showing l(g

0

) �

�

0

;�

0

k+1

M are obtained by putting, for

every obje
t name a in l(g

0

), �

0

(a) = �

m(k)

(a), and for every unmarked variable w in

l(g

0

), �

0

(w) = �

m(k)

(w). For d 2 � we let �

0

(d) = v

0

for the unique marked variable v

0

in l(g

0

).

Now, in the limit we obtain sequen
es (g

n

jn 2 N) and (�

n

; �

n

jn 2 N) whi
h

obviously satisfy the
onditions (
1)-(
5). (
6)
an be shown as follows: suppose �

is an unmarked eventuality in l(g

m

). Then, sin
e the number of eventualities in ea
h

l(g

n

) is �nite, eventually � will be realized in the
onstru
tion of (g

n

jn 2 N). a

Now we prove the
ompleteness part:

Theorem C.4 Let # be some PTL

ALC

-formula. If there exists a
ompletion of # in

whi
h the root is not eliminated then # is satis�able.

Proof. Assume G = (G;�; l) is some
omplete tableau for # the root g

r

of whi
h is

not eliminated. Let B � G be the set of nodes whi
h remain after the exe
ution of

the elimination pro
edure. We have g

r

2 B. We must show that # is satis�able. By

Theorem 4.4 it is suÆ
ient to prove the existen
e of some quasimodel that satis�es #.

In order to do this we are going to show the following

Claim. There exists a sequen
e of intervals f[n(i);m(i)℄ j i 2 Ng of natural numbers

with n(0) = 0 and m(i) + 1 = n(i+1), for all i 2 N, su
h that there exists a sequen
e

~g = (g

n

jn 2 N) of nodes in B with g

0

= g

r

and the following holds for all n 2 N:

(d1) g

n

� g

n+1

,

(d2) l(g

n

) is a state i� there exists i 2 N with n = m(i),

27

(d3) every eventuality for g

m(i)

, i 2 N is realized by ~g.

Suppose the sequen
e has been
onstru
ted. We then reason as follows: By assump-

tion, (e1) is not appli
able to B. Hen
e all l(g

n

) are
lash-free. By utilizing (d1)-(d3)

it is not diÆ
ult to show that (l(g

m(i)

) j i 2 N) is a quasimodel satisfying #. We leave

the details to the reader.

The
onstru
tion of the sequen
es is by indu
tion. We start with g

0

= g

r

. Sup-

pose now that we have
onstru
ted a sequen
e of intervals f[n(i);m(i)℄ j i � kg and

sequen
es (g

n

jn � m(k)) satisfying the
onditions (d1)-(d2) stated in the
laim above

until m(k) save that l(g

m(k)

) is possibly not a state. Using the
ondition that (e2)

annot be applied to B it is straightforward to extend this sequen
e by means of nodes

g

m(k)+1

; : : : ; g

m(k)+l

from B su
h that l(g

m(k)+l

) is a state and the extended sequen
e

still has properties (d1),(d2). So, we
an assume without loss of generality that we

have f[n(i);m(i)℄ j i � kg and a sequen
e (g

n

jn � m(k)) satisfying (d1) and (d2); in

parti
ular g

m(k)

is a state. We distinguish two
ases.

Case 1. There exists an eventuality for some l(g

m(i)

), i � k, whi
h is not realized

by (g

n

jn � m(k)) until m(k).

Choose l = m(j) � m(k) minimal su
h that there exists an eventuality � for l(g

l

)

whi
h is not realized until m(k). First suppose � is of the form (v : C

0

UD

0

), for an

unmarked variable v.

We take variables v

l

; : : : ; v

m(k)

with v

l

= v and v

m(k)

o

urs unmarked in l(g

m(k)

)

su
h that, for all i 2 [l;m(k) � 1℄,

� v

i

o

urs unmarked in l(g

i

),

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, whenever v

i

is not a state,

� fC j (v

i

:
C) 2 l(g

i

g � fC j (v

i+1

: C) 2 l(g

i+1

)g, whenever l(g

i

) is a state.

We have (v

m(k)

: C

0

UD

0

) 2 l(g

m(k)

) and (v

m(k)

: D

0

) 62 l(g

m(k)

), sin
e (v : C

0

UD

0

)

is not realized until m(k). (e3) is not appli
able to any node in B, in parti
ular not

to g

m(k)

. So we �nd f[n(j);m(j)℄ j k + 1 � j � ng with m(j) + 1 = n(j + 1) for all

j 2 [k + 1; n� 1℄, and a sequen
e

� g

m(k)

�g

n(k+1)

� : : :�g

m(n)

of nodes in B

su
h that (d1), (d2) above hold until m(n), and there is a sequen
e of variables

v

n(k+1)

; : : : ; v

m(n)

su
h that v

j

o

urs unmarked in l(g

j

) for all j 2 [n(k + 1);m(n)℄

and (g

j

j l � j � m(n)) and (v

j

jl � j � m(n)) realize CUD

0

until m(n).

Suppose now that v is marked. Then (v :
(C

0

UD

0

)) 2 l(g

l

), sin
e (v : D

0

) 62

l(g

l

) and l(g

l

) is saturated. If l = m(j) < m(k), then take a sequen
e of variables

v

l+1

; : : : ; v

m(j+1)

su
h that

� fC j (v

l

:
C) 2 l(g

l

g � fC j (v

l+1

: C) 2 l(g

l+1

)g,

� v

i

o

urs unmarked in l(g

i

), for all i 2 [l + 1;m(j + 1)℄

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, for all i 2 [l + 1;m(j + 1)� 1℄.

28

We have (v

m(j+1)

: C

0

UD

0

) 2 l(g

m(j+1)

). Now pro
eed with the variable v

m(j+1)

as

above in the
ase of unmarked variables.

If l = m(j) = m(k), then take a sequen
e of nodes g

n(k+1)

� � � � �g

m(k+1)

and

of variables v

n(k+1)

; : : : ; v

m(k+1)

su
h that g

m(k+1)

is the only state in this sequen
e,

g

m(k)

� g

n(k+1)

, and

� fC j (v

l

:
C) 2 l(g

l

g � fC j (v

l+1

: C) 2 l(g

l+1

)g,

� v

i

o

urs unmarked in l(g

i

), for all i 2 [l + 1;m(k + 1)℄

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, for all i 2 [l+ 1;m(k + 1)� 1℄.

We have (v

m(k+1)

: C

0

UD

0

)) 2 l(g

m(k+1)

). Now pro
eed with the variable v

m(k+1)

as above for unmarked variables. The
ases where the eventuality � is of the form

(a : C

0

UD

0

) or 'U are treated similarly and left to the reader.

Case 2. Every eventuality for some l(g

m(i)

), i � k, is realized by (g

n

jn � m(k))

until m(k).

In this
ase no eventuality has to be realized. Thus, using that (e2) is not appli
able

to B, we
an extend the sequen
e (g

n

jn � m(k)) by a new node g

m(k)+1

2 B with

g

m(k)

� g

m(k)+1

.

In the limit we obtain a sequen
e ~g satisfying (d1)-(d3). a

Referen
es

[1℄ A. Artale and E. Fran
oni. Temporal des
ription logi
s. In L. Vila, Peter van

Beek, M. Boddy, M. Fisher, Dov M. Gabbay, A. Galton, and R. Morris, editors,

Handbook of Time and Temporal Reasoning in Arti�
ial Intelligen
e. MIT Press,

2001. To appear.

[2℄ A. Artale and E. Fran
oni. Temporal ER modeling with des
ription logi
s. In

Pro
eedings of ER'99, 1999. Springer{Verlag.

[3℄ A. Artale, E. Fran
oni, M. Mosurovi
, F. Wolter, and M. Zakharyas
hev. Tem-

poral des
ription logi
s for
on
eptual modelling: expressivity and
omplexity.

Submitted, 2001.

[4℄ F. Baader and A. Laux. Terminologi
al logi
s with modal operators. In Pro
eed-

ings of IJCAI'95, pages 808{814, 1995. Morgan Kaufmann.

[5℄ F. Baader and U. Sattler. Tableau algorithms for des
ription logi
s. In R. Dy-

kho�, editor, Pro
eedings of Tableaux 2000, vol. 1847 of LNAI, pages 1{18,

Springer, 2000.

[6℄ R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT

Press, 1995.

29

[7℄ D. Gabbay, A. Kuru
z, F. Wolter, and M. Zakharyas
hev. Many-Dimensional

Modal Logi
s: Theory and Appli
ations. Elsevier, North-Holland, 2001. To ap-

pear.

[8℄ I. Hodkinson, F. Wolter, and M. Zakharyas
hev. De
idable fragments of �rst-

order temporal logi
s. Annals of Pure and Applied Logi
, 106:85{134, 2000.

[9℄ I. Horro
ks and P. F. Patel-S
hneider. Optimising des
ription logi
 subsumption.

Journal of Logi
 and Computation, 9(3):267{293, 1999.

[10℄ C. Lutz. Interval-based temporal reasoning with general TBoxes. In Pro
eedings

of IJCAI'01, Morgan-Kaufman, 2001.

[11℄ C. Lutz, H. Sturm, F. Wolter, and M. Zakharyas
hev. A tableau de
ision algo-

rithm for modalized ALC with
onstant domains. Submitted, 2000.

[12℄ M. Marx, Sz. Mikulas, and S. S
hloba
h. Tableau
al
ulus for lo
al
ubi
 modal

logi
 and its implementation. Journal of the IGPL, 7:755{778, 1999.

[13℄ K. S
hild. Combining terminologi
al logi
s with tense logi
. In Pro
eedings of the

6th Portuguese Conferen
e on Arti�
ial Intelligen
e, pages 105{120, Porto, 1993.

[14℄ A. S
hmiedel. A temporal terminologi
al logi
. In Pro
eedings of the 9th National

Conferen
e of the Ameri
an Asso
iation for Arti�
ial Intelligen
e, pages 640{645,

Boston, 1990.

[15℄ H. Sturm and F. Wolter. A tableau
al
ulus for temporal des
ription logi
: The

expanding domain
ase. Journal of Logi
 and Computation, 2001. In print.

[16℄ P. Wolper. The tableau method for temporal logi
: An overview. Logique et

Analyse, 28:119{152, 1985.

[17℄ F. Wolter and M. Zakharyas
hev. Satis�ability problem in des
ription logi
s with

modal operators. In Anthony G. Cohn, Lenhart S
hubert, and Stuart C. Shapiro,

editors, KR'98, pages 512{523. Morgan Kaufmann, 1998.

[18℄ F. Wolter and M. Zakharyas
hev. Multi-dimensional des
ription logi
s. In Dean

Thomas, editor, Pro
eedings of IJCAI'99, pages 104{109, Morgan Kaufmann,

1999.

[19℄ F. Wolter and M. Zakharyas
hev. Temporalizing des
ription logi
. In D. Gabbay

and M. de Rijke, editors, Frontiers of Combining Systems 2, pages 379{402.

Studies Press/Wiley, 2000.

30

