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Abstrat

We show how to ombine the standard tableau system for the basi desrip-

tion logi ALC and Wolper's tableau alulus for propositional temporal logi

PTL (with the temporal operators `next-time' and `until') in order to design a

terminating sound and omplete tableau-based satis�ability-heking algorithm

for the temporal desription logi PTL

ALC

of [19℄ interpreted in models with on-

stant domains. We use the method of quasimodels [17, 15℄ to represent models

with in�nite domains, and the tehnique of minimal types [11℄ to maintain these

domains onstant. The ombination is exible and an be extended to more ex-

pressive desription logis or even to deidable fragments of �rst-order temporal

logis.

1 Introdution

Temporal desription logis (TDLs) are knowledge representation formalisms intended

for dealing with temporal oneptual knowledge. In other words, TDLs ombine the

ability of desription logis (DLs) to represent and reason about oneptual knowledge

with the ability of temporal logis (TLs) to reason about time. A dozen TDLs designed

in the last deade (see e.g. [14, 13, 2, 19, 3, 10℄ and survey [1℄) showed that the equation

TDL = DL + TL may have di�erent, often very omplex solutions, partly beause of

the rih hoie of DLs and TLs, but primarily beause of priniple diÆulties in om-

bining systems; see [7℄. With rare exeptions, the work so far has been onentrated

on theoretial foundations of TDLs (deidability and undeidability, omputational

omplexity, expressive power). The investigation of `implementable' algorithms is still

at the embryo stage, espeially for the TDLs with non-trivial interations between

their DL and TL omponents. The problem we are faing is as follows: is it possible
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to ombine the existing implementable reasoning proedures for the interating DL

and TL omponents into a reasonably eÆient (on `real world problems') algorithm

for their TDL hybrid? As the majority of the existing reasoning mehanisms for DLs

are based on the tableau approah, a �rst hallenging step would be to ombine a

tableau system for a DL with Wolper's tableaux [16℄ for the propositional temporal

logi PTL.

The �rst TDL tableau system was onstruted by Shild [13℄, who merged the basi

desription logi ALC with PTL by allowing appliations of the temporal operator U

(until) and its derivatives only to onepts. For example, he de�nes a onept Mortal

by taking

Mortal = Living being u (Living being U 2:Living being) ;

where 2 means `always in the future.' The resulting language is interpreted in models

based on the ow of time hN; <i and, for eah n 2 N, speifying an ALC-model that

desribes the state of the knowledge base at moment n. Shild obtains his sound,

omplete and terminating tableau system (for heking onept satis�ability) simply

by putting together the tableau rules of ALC and PTL. The reason behind this `trivial'

solution is that, in Shild's logi, there is no atual interation between the temporal

operators of PTL and the onstrutors of ALC; the logi is the fusion or independent

join of its omponents.

A more sophistiated ombination PTL

ALC

of ALC and PTL allowing appliations

of temporal and Boolean operators to both onepts and TBox axioms was onstruted

in [19℄. Using PTL

ALC

, one an express statements like `in all times all living beings

are mortal' or `living beings will never die out ompletely:'

2(Living being v Mortal); 23:(Living being = ?);

where 3 means `some time in the future.' The degree of interation between the DL

and TL omponents in PTL

ALC

depends on the `domain assumption' the intended

models omply with. A tableau system for PTL

ALC

interpreted in models with ex-

panding ALC domains (whih means that when moving from earlier moments of time

to later ones, the domains of ALC-models an get larger and larger, but never shrink)

was designed in [15℄. The interation between the omponents beomes even stronger

if we onsider models with onstant domains, where an introdution of a domain el-

ement at moment n fores us to introdue the same element at all previous moments

as well. This makes the problem of onstruting tableaux for PTL

ALC

with onstant

domains onsiderably more diÆult.

The hoie of the domain assumption|expanding, varying, dereasing, or on-

stant|depends on the knowledge to be represented. One an argue, for instane,

whether the domain element representing a living being A in a model exists before

A's birth or after A's death. However, in many appliations suh as reasoning about

temporal entity relationship (ER) diagrams [2, 3℄, expanding domains do not suÆe

and must be replaed by onstant ones. Apart from being appropriate for appliations,

the onstant domain assumption is the most general ase in the sense that reason-

ing with expanding (or varying) domains an be redued to reasoning with onstant

domains (see e.g. [19℄).
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The main aim of this paper is to design a terminating, sound, and omplete tableau

system for heking satis�ability of PTL

ALC

-formulas in models with onstant domains.

This is ahieved by

� ombining (in a modular way) the standard tableaux for ALC with Wolper's

[16℄ tableaux for PTL,

� using so-alled quasimodel representations of onstraint systems, and

� using so-alled minimal type representations of domain elements introdued in

subsequent states.

Quasimodels [17, 18, 19℄ are abstrations of models representing elements by their

types and the evolution of elements in time by ertain funtions alled runs. As

was shown in [15℄, quasimodels make it possible to ope with PTL

ALC

models having

in�nite ALC domains (an example showing that PTL

ALC

does not have the �nite

domain property an be found in Setion 2). The onept of `minimal partial types' is

the main new idea of this paper whih is used to maintain the ALC domains onstant.

Although the formula-satis�ability problem for PTL

ALC

is rather omplex|as is

shown in [3℄, it is ExpSpae-omplete|we hope that the tableau system onstruted

in this paper will lead to a `reasonably eÆient' implementation of the PTL

ALC

reason-

ing servies. However, in order to ahieve an aeptable run-time behavior, it is still

neessary to devise suitable optimization strategies for the algorithm. We believe that

suh strategies an be found, sine, as shown in e.g. [9℄, related tableau algorithms

are amenable to optimization.

It is to be noted that the developed approah an be used to design tableau algo-

rithms for other ombinations of desription and modal logis (in partiular, temporal

epistemi logis of [6℄). For instane, [11℄ gives a solution to the open problem of

Baader and Laux [4℄ by onstruting tableaux for their ombination of the modal

logi K with ALC interpreted in models with onstant domains.

2 Basi de�nitions

We begin by introduing the temporal desription logi PTL

ALC

of [19℄.

Let N

C

= fC

0

; C

1

; : : : g, N

R

= fR

0

; R

1

; : : : g, and N

O

= fa

0

; a

1

; : : : g be ountably

in�nite sets of onept names, role names, and objet names, respetively. PTL

ALC

-

onepts are de�ned indutively: all the C

i

as well as > are onepts, and if C, D are

onepts and R 2 N

R

, then C uD, :C, 9R:C, C, and CUD are onepts.

PTL

ALC

-formulas are de�ned as follows: if C;D are onepts and a; b 2 N

O

, then

C = D, a : C, and aRb are atomi formulas; and if ' and  are formulas, then so are

:', ' ^  , ', and 'U .

The intended models of PTL

ALC

are natural two-dimensional hybrids of standard

models of ALC and PTL. More preisely, a PTL

ALC

-model is a triple M = hN; <; Ii,

where < is the standard ordering of N and I a funtion assoiating with eah n 2 N

an ALC-model I(n) =

D

�; R

I(n)

0

; : : : ; C

I(n)

0

; : : : ; a

I(n)

0

; : : :

E

, in whih �, the (onstant)
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domain ofM, is a non-empty set, the R

I(n)

i

are binary relations on �, the C

I(n)

i

subsets

of �, and the a

I(n)

i

are elements of � suh that a

I(n)

i

= a

I(m)

i

, for every n;m 2 N.

(Note that in the given de�nition, the objet names are assumed to be global, while

the onept names are interpreted loally. Neither of these assumptions is essential;

in partiular, global onepts an be de�ned via loal ones and U .)

The extension C

I(n)

of a onept C inM at a moment n is de�ned in the following

way:

>

I(n)

= �;

(C uD)

I(n)

= C

I(n)

\D

I(n)

;

(:C)

I(n)

= � n C

I(n)

;

(9R:C)

I(n)

= fd 2 � j 9d

0

2 C

I(n)

dR

I(n)

d

0

g;

(CUD)

I(n)

= fd 2 � j 9m � n (d 2 D

I(m)

&8k (n � k < m! d 2 C

I(k)

))g;

(C)

I(n)

= C

I(n+1)

:

The truth-relation M; n j= ' for the Boolean operators is standard and

M; n j= C = D i� C

I(n)

= D

I(n)

;

M; n j= a : C i� a

I(n)

2 C

I(n)

;

M; n j= aRb i� a

I(n)

R

I(n)

b

I(n)

;

M; n j= 'U i� 9m � n (M;m j=  & 8k (n � k < m!M; k j= '));

M; n j=' i� M; n+ 1 j= ':

The only reasoning task we onsider in this paper is satis�ability of PTL

ALC

-formulas,

a formula ' being satis�able if there are a model M and a moment n 2 N suh

that M; n j= '. Other standard inferene problems for PTL

ALC

|onept satis�abil-

ity, subsumption, ABox onsisteny, et.|an be easily redued to satis�ability of

formulas.

There are two main diÆulties in designing a tableau system for PTL

ALC

. First,

as was mentioned in the introdution, there exist formulas satis�able only in models

with in�nite domains. For example, suh is the onjuntion of the formulas

2:

�

(C u:C) = ?

�

; 2

�

:C v 2:C

�

;

where 2C = :(>U:C) and ? = :>. To takle this diÆulty, we employ the standard

tableaux for ALC for onstruting �nite representations of in�nite models and keep

trak of the development of their elements in time by using quasimodels as introdued

in [17, 19, 15℄.

The seond diÆulty is that at moment n + 1 the ALC tableau algorithm an

introdue an element whih does not exists at moment n. To ensure that all ele-

ments always have their immediate predeessors, at eah time point we reate ertain

`marked' elements satisfying as few onditions as possible, and use them as those

predeessors if neessary.
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3 Constraint systems

In this setion, we introdue onstraint systems whih serve a two-fold purpose. First,

they form a basis for de�ning quasimodels, whih, in ontrast to [19℄, are de�ned

purely syntatially. Seond, onstraint systems are the underlying data struture

of the tableau algorithm to be devised. Intuitively, a onstraint system desribes an

ALC-model.

In what follows, without loss of generality we assume that all equalities are of the

form C = >. (C = D is learly equivalent to

�

:(C u :D)u:(D u:C)

�

= >.) Often

we shall write C 6= > instead of :(C = >).

Constraint systems are formulated in the following language L

C

. Let V be a �xed

ountably in�nite set of (individual) variables. We assume V to be disjoint from the

set N

O

of objet names. Elements of V [N

O

are alled L

C

-terms. If ' is a PTL

ALC

-

formula, C a onept, R a role, and x; y are L

C

-terms, then ', x : C, and xRy are

alled L

C

-formulas.

We assume that V omes equipped with a well-order <

V

. Let X be a non-empty

subset of V . Then min(X) denotes the �rst variable in X with respet to <

V

. Vari-

ables may our in onstraint systems either marked or unmarked; ertain formulas

may our U-marked or U-unmarked. As we said above, marked variables are used

to deal with onstant domains. U-markedness will be explained after the saturation

rules have been introdued.

De�nition 3.1 A onstraint system S is a �nite (non-empty) set of L

C

-formulas suh

that

� eah variable in S is either marked or unmarked,

� eah formula in S of the form 'U or x : (CUD) is either U-marked or U-

unmarked,

� S ontains min(V ) : >.

We will say that a onstraint system S is saturated if it satis�es a number of losure

onditions. With a few exeptions, these onditions require that if S ontains a formula

' of a ertain form, then S ontains some other formulas omposed from subformulas

and subonepts of ' (possibly using additional negation and ). For example, S

is losed under onjuntion if whenever S ontains  

1

^  

2

, then it ontains both

onjunts  

1

and  

2

as well. We formulate the losure onditions as the saturation

rules in Fig. 1{3. Later these rules will also be used as rules of our tableau algorithm.

A onstraint system S is alled saturated if none of the saturation rules an be applied

to it.

A few remarks below will help the reader to understand the rules. As the temporal

part of our tableaux is based on Wolper's [16℄ algorithm for PTL, the temporal sat-

uration rules resemble those of Wolper's. Note also that the saturation rules �!

:^

,

�!

U

, �!

:U

, �!

:u

, �!

U

, and �!

:U

are disjuntive: they have more than one

possible outome. In this setion, it is onvenient to view these rules as nondetermin-

isti. Later, when the saturation rules are regarded as tableau rules, we will apply
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ALC-rules for formulas

S �!

::

f'g [ S if S �!

^

f'; g [ S if

::' 2 S and ' 62 S ' ^  2 S and f'; g 6� S

S �!

:^

f:�g [ S if

:(' ^  ) 2 S, :' 62 S, and : 62 S

�

:

= ' or �

:

=  

Temporal rules for formulas

S �!

:

f:'g [ S if S �!

U

X [ S if

:' 2 S and :' 62 S 'U appears U-unmarked in S

X = f g or X = f';('U )g

'U is U-marked in X [ S

S �!

:U

X [ S if

:('U ) 2 S, f: ;:'g 6� S, and f: ;:('U )g 6� S

X = f: ;:'g or X = f: ;:('U )g

Figure 1: Saturation rules for formulas.

them deterministially, i.e., onsider all of their possible outomes. Unless otherwise

stated, we assume rules to introdue U-unmarked formulas. Intuitively, U-markedness

is needed to ensure that the �!

U

and �!

U

rules are applied exatly one to eah

formula 'U and x : CUD, respetively. For example, we must ensure that the �!

U

rule is applied (one) to 'U even if the onstraint system under onsideration already

ontains ' and ('U ). This is required to make the tableau algorithm omplete

(see [16, 15℄ for an example and a more detailed disussion).

As was already noted, marked variables are needed to ope with onstant domains.

For now, we just observe that the disjuntive rules treat marked and unmarked vari-

ables di�erently. Intuitively, in ase of marked variables it is not suÆient to onsider

only one of the possible outomes of the disjuntive rule appliation per onstraint

system, but we must additionally onsider both possible outomes together. For ex-

ample, if we have S = fv : EUF; v : :(C uD)g and v is marked in S, then we should

onsider not only the obvious saturations S

1

= S [ fv : :Cg and S

2

= S [ fv : :Dg,

but also

S

3

= fv : EUF; v : :(C uD); v : :C; v

0

: EUF; v

0

: :(C uD); v

0

: :Dg;

where, v is marked in S

1

, S

2

, S

3

and v

0

is marked in S

3

. In S

3

, we reated a `marked

opy' v

0

of v and saturated v in one possible way and v

0

in the other. In the formulation

of the rules, opies are made by using opy(S; v; v

0

) whih denotes the set fv

0

: C j

v : C 2 Sg, where v is marked and v

0

is a fresh variable (not used in S). Note

that by de�nition of L

C

-formulas, marked variables do not our in omplex formulas

suh as x : C ^ x : D and thus suh formulas need not be onsidered for opy. We

generally assume that opies preserve U-markedness: in the example above, v

0

: EUF
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ALC-rules for onepts

S �!

::

fx : Cg [ S if

x : ::C 2 S and x : C 62 S

S �!

u

fx : C; x : Dg [ S if

x : C uD 2 S and fx : C; x : Dg 6� S

S �!

:u

X [ S if

x : :(C uD) 2 S, x : :C 62 S and x : :D 62 S

X = fx : :Cg or X = fx : :Dg or

x marked in S and X = (opy(S; x; v) [ fx : :C; v : :Dg)

where v is marked in X [ S and the �rst new variable from V

S �!

=

fx : Cg [ S if

C = > 2 S, x ours in S, and x : C 62 S

S �!

:9

fy : :Cg [ S if

x : :9R:C 2 S, xRy 2 S, and y : :C =2 S

Temporal rules for onepts

S �!

:

fx ::Cg [ S if

x : :C 2 S and x ::C 62 S

S �!

U

X [ S if

x : CUD appears U-unmarked in S

X = fx : Dg or X = fx : C; x :(CUD)g or

x marked in S and X = (opy(S; x; v) [ fx : D; v : C; v :(CUD)g)

where v is marked in X [ S and the �rst new variable from V

x : CUD and v : CUD (if introdued) are U-marked in X [ S

S �!

:U

X [ S if

x : :(CUD) 2 S, fx : :D;x : :Cg 6� S, and fx : :D;x ::(CUD)g 6� S

X = fx : :D;x : :Cg or X = fx : :D;x ::(CUD)g or

x marked in S and X = (opy(S; x; v) [ fx : :D;x : :C; v : :D; v ::(CUD)g)

where v is marked in X [ S and the �rst new variable from V

Figure 2: Non-generating saturation rules for onepts.

7



S �!

6=

fv : :Cg [ S if

C 6= > 2 S and there exists no y with y : :C 2 S

v is the �rst new variable from V

S �!

9

fv : C; xRvg [ S if

x : 9R:C 2 S, there is no y suh that fxRy; y : Cg � S and x is not bloked in S

by an unmarked variable; v is unmarked and the �rst new variable from V

Figure 3: Generating saturation rules.

is U-marked in S

3

i� v : EUF is U-marked in S.

To ensure termination of repeated appliations of the saturation rules, we use a

`bloking' tehnique, .f. [5℄. Bloked variables are de�ned as follows.

For now, assume that eah onstraint system is equipped with a strit partial order

� on the set of terms. Say that a variable v in a onstraint system S is bloked by

a variable v

0

in S if v

0

� v and fC j v : C 2 Sg � fC j v

0

: C 2 Sg. Later, when we

onsider sequenes of onstraint systems obtained by repeated rule appliations, �

will denote the order of introdution of terms. Note that only variables, rather than

objet names, may blok terms. Also, only variables an be bloked.

A onstraint system S is said to be lash-free if it ontains no formulas :> and

x : :> and neither a pair of the form x : C, x : :C, nor a pair of the form ', :'. We

write S �!

�

S

0

to say that the onstraint system S

0

an be obtained from S by an

appliation of the saturation rule �!

�

. A onstraint system S

0

is alled a saturation of

a onstraint system S i� there exists a sequene S

0

; : : : ; S

n

be a sequene of onstraint

systems suh that S = S

0

, S

0

= S

n

, and, for every i < n, there is a saturation rule

�!

�

for whih S

i

�!

�

S

i+1

.

4 Quasimodels

As was already said, PTL

ALC

does not have the �nite domain property, and so our

tableau algorithm onstruts abstrations of models, alled quasimodels, rather than

models themselves.

Quasimodels are based on the idea of onept types. A onept type is simply a

set of onepts that are `relevant' to the tested formula and satis�ed by an element of

the domain. The `fragment' of relevant onepts and formulas is de�ned as follows.

Let � be a set of formulas. Denote by Sb(�) the set of all subformulas of formulas in

�, by ob(�) the set of all objet names that our in �, by rol(�) the set of all roles

in �, and by on(�) the set of all onepts in �. If # is a unary operator, say, : or

, then #(�) is the union of � and f#' j' 2 �g. The fragment Fg(�) generated by

� is de�ned as the union of the following four sets: ob(�), rol(�), (:on(�[ f>g))

and (:Sb(� [ f>g)).

Roughly, a quasimodel is a sequene (S

n

jn 2 N) of saturated onstraint systems

that satis�es ertain onditions whih ontrol interations between the S

n

and ensure

8



that quasimodels an be reonstruted into real models. Unlike standard tableaux,

where a variable usually represents an element of a model, a variable in a quasimodel

represents a onept type. More preisely, if a onstraint system ontains a variable v,

then the orresponding ALC-models ontain at least one|but potentially (in�nitely)

many|elements of the type represented by v. As our PTL

ALC

-models have onstant

domains, we need some means to keep trak of the types representing the same element

at di�erent moments of time. This an be done using a funtion r, alled a run,

whih assoiates with eah n 2 N a term r(n) from S

n

. Thus r(0); r(1); : : : are type

representations of one and the same element at moments 0; 1; : : : .

We are in a position now to give preise de�nitions. Fix a PTL

ALC

-formula #.

De�nition 4.1 A quasiworld for # is a saturated lash-free onstraint system S sat-

isfying the following onditions:

� fa j 9C (a : C) 2 Sg = ob(#),

� on(S) � Fg(#) and rol(S) � Fg(#),

� for every formula ' 2 S, if ' is a PTL

ALC

-formula then ' 2 Fg(#),

� all variables in S are unmarked.

One should not be onfused by that all variables in quasiworlds are unmarked. Marked

variables are|as we shall see later on|important for the onstrution of a quasimodel.

After the onstrution, marked variables an simply be `unmarked' (note that this

operation preserves saturatedness of onstraint systems).

De�nition 4.2 A sequene Q = (S

n

jn 2 N) of quasiworlds for # is alled a #-

sequene. A run in Q is a funtion r assoiating with eah n 2 N a term r(n) from

S

n

suh that

� for every m 2 N and every onept C, if (r(m) : C) 2 S

m

then we have

(r(m+ 1) : C) 2 S

m+1

,

� for all m 2 N, if (r(m) : CUD) 2 S

m

then there is k � m suh that (r(k) : D) 2

S

k

and (r(i) : C) 2 S

i

whenever m � i < k.

De�nition 4.3 A #-sequene Q is alled a quasimodel for # if the following hold:

� for every objet name a in Q, the funtion r

a

de�ned by r

a

(n) = a, for all n 2 N,

is a run in Q,

� for every n 2 N and every variable v in S

n

, there is a run r in Q suh that

r(n) = v,

� for every n 2 N and every ' 2 S

n

, we have ' 2 S

n+1

,

� for every n 2 N and every ('U ) 2 S

n

, there is m � n suh that  2 S

m

and

' 2 S

k

whenever n � k < m.

9



We say that # is quasi-satis�able if there are a quasimodel Q = (S

n

jn 2 N) for # and

n 2 N suh that # 2 S

n

.

Theorem 4.4 A PTL

ALC

-formula # is satis�able i� # is quasi-satis�able.

The proof is delivered in Setion A.

5 The tableau algorithm

In this setion, we present a tableau algorithm for heking satis�ability of PTL

ALC

-

formulas in models with onstant domains. Before going into tehnial details, we

explain informally how quasimodels for an input formula # are onstruted and, in

partiular, how marked variables help to maintain onstant domains.

Intuitively, marked variables represent so-alled `minimal types.' If a onstraint

system S ontains marked variables v

1

; : : : ; v

k

then every element of an ALC-model

orresponding to S is desribed by one of the v

i

. It should now be lear why the

disjuntive saturation rules must be applied in a speial way to marked variables.

Consider, for example, the �!

:u

rule and assume that there is a single marked

variable v

m

in S and that v

m

: :(C u D) 2 S. In the ontext of minimal types,

this means that every element in orresponding ALC-models satis�es :(C uD). From

this, however, it does not follow that every element satis�es :C or that every element

satis�es :D. Hene, the�!

:u

rule annot be applied in the same way as for unmarked

variables.

Here is a simple example illustrating the onstrution of quasimodels with minimal

types. Consider the formula

# =

�

(:(C u:C)) = >

�

^ a :9R:C:

With this formula we assoiate the initial onstraint system S

#

= f#; v

m

: >g ontain-

ing # and a single marked variable v

m

. By applying saturation rules, we obtain then

the onstraint system S

0

= fa :9R:C; v

m

:C; v

0

m

::Cg (slightly simpli�ed for

brevity) that desribes the ALC-model for time moment 0. The onstraint system for

moment 1 is fa : 9R:C; v

1

: C; v

2

: :C; v

m

: >g (where v

m

is the only marked vari-

able) whih an then be extended to the system S

1

= fa : 9R:C; v

m

: >; v

1

: C; v

2

:

:C; aRv; v : Cg by the saturation rules. Note that we introdued a new (unmarked)

variable v. Every element d whih is of type v at moment 1 must|aording to the

onstant domain assumption|also exist at moment 0. But what is the type of d at

that moment (in the following alled the `predeessor type' of d at 1)? By the de�ni-

tion of minimal types, we must only hoose among marked variables. So either d is

of type v

m

at 0, whih means that we must add v : C to S

1

, or d is of type v

0

m

at 0,

and so we must add v : :C to S

1

. The former hoie yields an (initial fragment of a)

quasimodel, while the latter leads to a lash. For a more detailed disussion we refer

the reader to [11℄.

We an now de�ne the tableau algorithm. In general, tableau algorithms try to

onstrut a (quasi)model for the input formula by repeatedly applying tableau rules

to an appropriate data struture. Let us �rst introdue this data struture.

10



De�nition 5.1 A tableau for a PTL

ALC

-formula # is a triple G = (G;�; l), where

(G;�) is a �nite tree and l a labelling funtion assoiating with eah g 2 G a onstraint

system l(g) for # suh that S

#

= f#g[fmin(V ) : >g[fa : > j a 2 ob(#)g is assoiated

with the root of G, where min(V ) is marked and # is U-unmarked if it is of the form

'U or x : (CUD).

To deide whether # is satis�able, the tableau algorithm for PTL

ALC

goes through

two phases. In the �rst phase, the algorithm starts with an initial tableau G

#

and

exhaustively applies the tableau rules to be de�ned below. Eventually we obtain a

tableau G to whih no more rule is appliable; it is alled a ompletion of G

#

. In

the seond phase, we eliminate those parts of G that ontain obvious ontraditions

or eventualities whih are not realized. After that we are in a position to deliver a

verdit: # is satis�able i� the resulting tableau G

0

is not empty, i.e., i� the root of G

has not been eliminated.

Let us �rst onentrate on phase 1. The initial tableau G

#

assoiated with # is

de�ned as (fg

r

g;�

r

; l), where �

r

= ; and l(g

r

) = S

#

. To de�ne the tableau rules,

we require a number of auxiliary notions. Let S be a onstraint system and x a

term ourring in S. Denote by A

x

(S) the set fC j (x : C) 2 Sg and de�ne an

equivalene relation �

S

on the set of variables (not terms) in S by taking v �

S

u i�

A

v

(S) = A

u

(S). The equivalene lass generated by v is denoted by [v℄

S

. Finally, let

[S℄

�

denote the set of all equivalene lasses [v℄

S

.

Similar to the loal bloking strategy on variables of onstraint systems, we need

a global bloking strategy on the nodes of tableaux. To de�ne this kind of bloking,

it is onvenient to abstrat from variable names.

Let S and S

0

be onstraint systems. S

0

is alled a variant of S if there is a bijetive

funtion � from the variables ourring in S onto the variables ourring in S

0

whih

respets markedness (i.e., unmarked variables are mapped to unmarked variables and

marked variables to marked variables) and S

0

is obtained from S by replaing eah

variable v from S with �(v). In this ase � is alled a renaming.

Like onstraint systems, tableaux are equipped with a strit partial order � on

the set of nodes whih indiates the order in whih the nodes of the tableau have

been introdued. The tableau rules are shown in Fig. 4. Intuitively, the =)



rule

generates a new time point, while the other rules infer additional knowledge about an

already existing time point. For every saturation rule �!

s

we have a orresponding

tableau rule =)

s

. The =)

#

and =)

#

0

rules deal with onstant domains and use the

notion of anestor whih is de�ned as follows.

Let G = (G;�; l) be a tableau for #. A node g 2 G is alled a state if only the

=)



rule is appliable to g. The node g is an anestor of a node g

0

2 G if there is a

sequene of nodes g

0

; : : : ; g

n

suh that g

0

= g, g

n

= g

0

, g

i

� g

i+1

for i < n, and g

0

is

the only state in the sequene.

As to the =)



rule, reall that variables represent types rather than elements.

In view of this, when onstruting the next time point, we `merge' variables satisfying

the same onepts (by using the equivalene lasses). Atually, this idea is ruial

for devising a terminating tableau algorithm despite the lak of the �nite domain

property. The =)

#

rule formalizes the hoie of a predeessor type as was skethed
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(G;�; l) =)

s

(G

0

;�

0

; l

0

)

if g is a leaf in G, the saturation rule �!

s

is appliable to l(g),

S

1

; : : : ; S

n

are the possible outomes of the appliation of �!

s

to l(g),

G

0

= G ℄ fg

1

; : : : ; g

n

g and, for 1 � i � n, �

0

= � [ f(g; g

i

)g and l

0

(g

i

) = S

i

(G;�; l) =)



(G

0

;�

0

; l

0

)

if G

0

= G ℄ fg

0

g, �

0

= � [ f(g; g

0

)g for some leaf g 2 G,

l

0

(g

0

) is the union of the following sets:

fa : >g [ fa : C j (a :C) 2 l(g)g, for a 2 ob(l(g)),

f j 2 l(g)g,

fmin([v℄

l(g)

) : >g [ fmin([v℄

l(g)

) : C j (min([v℄

l(g)

) :C) 2 l(g)g,

for [v℄

l(g)

2 [l(g)℄

�

,

fv

0

: >g,

where v

0

is the only marked variable in l(g

0

),

and there is no g

00

2 G with g

00

� g suh that l(g

00

) is a variant of l(g)

(i.e., the rule is not bloked)

(G;�; l) =)

#

(G

0

;�

0

; l

0

)

if g is a leaf in G, v is an unmarked variable in l(g), g

0

is the anestor of g,

for no term x in l(g

0

) do we have

fC j (x :C) 2 l(g

0

)g � f C j (v : C) 2 l(g)g;

v

1

; : : : ; v

n

are the marked variables in l(g

0

), G

0

= G ℄ fg

1

; : : : ; g

n

g, and,

for 1 � i � n, we have �

0

= �[ f(g; g

i

)g and

l

0

(g

i

) := l(g) [ fv : C j (v

i

:C) 2 l(g

0

)g:

(G;�; l) =)

#

0

(G

0

;�

0

; l

0

)

if g is a leaf in G, v is a marked variable in l(g), g

0

is the anestor of g,

for no term x in l(g

0

) do we have

fC j (x :C) 2 l(g

0

)g � f C j (v : C) 2 l(g)g;

X = fmin([v

0

℄

l(g

0

)

) j v

0

is a marked variable in l(g

0

)g,

Y

i

is the ith subset of X (for some ordering),

G

0

= G ℄ fg

1

; : : : ; g

2

jXj

g, and, for 1 � i � 2

jXj

, we have �

0

= � [ f(g; g

i

)g and

l

0

(g

i

) is the union of l(g) and the following sets, where we assume Y

i

= fv

1

; : : : ; v

n

g:

fv : C j (v

1

:C) 2 l(g)g

opy(l(g); v; v

0

j

) for 1 < j � n

fv

0

j

: C j (v

j

:C) 2 l(g

0

)g for 1 < j � n

Here, all newly introdued variables v

0

j

are marked in l

0

(g

i

).

Note: For all rules, we assume that l

0

(g) = l(g) for all g 2 G. A ℄ B denotes the

disjoint union of A and B.

Figure 4: Tableau rules.
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in the example above. Sine we have to hoose a predeessor type, the rule behaves

similar to a disjuntive saturation rule, whih means that we must apply the rule in

a di�erent way for marked variables. That is why we need the =)

#

0

rule: for marked

variables, it onsiders arbitrary ombinations of hoies of predeessor types.

The tableau rules are applied until no further rule appliation is possible. To

ensure termination, we must follow a ertain strategy of rule appliations.

De�nition 5.2 A tableau is omplete if no tableau rule is appliable to it. Let

G

0

; : : : ;G

n

be a sequene of tableaux suh that the assoiated orders �

0

; : : : ;�

n

desribe the order of node introdution and, for every i < n, there is a tableau rule

=)

�

suh that G

i

=)

�

G

i+1

and

� if the rule is one of the generating rules =)

6=

or =)

9

, then no tableau rule

di�erent from =)

6=

, =)

9

, and =)



is appliable to G

i

,

� if the rule is =)



, then no other tableau rule is appliable to G

i

.

Then G

0

; : : : ;G

n

is said to be built aording to the tableau strategy. If this is the ase,

G

0

= G

#

, and G

n

is omplete, then G

n

is alled a ompletion of #.

The following lemma laims that the tableau strategy ensures termination.

Theorem 5.3 If the tableau rules are applied aording to the tableau strategy, then

a ompletion is reahed after at most 2

2

r(j#j)

steps, where r is a polynomial funtion.

The proof is delivered in Setion B. Note that our algorithm is not optimal w.r.t.

the worst ase, i.e., it is a 2ExpTime-algorithm solving an ExpSpae-omplete prob-

lem [3℄. However, the same applies to Wolper's tableau algorithm for propositional

temporal logi [16℄: An ExpTime-algorithm solves a PSpae-omplete problem. Nev-

ertheless, Wolper's algorithm is onsidered very \pratial", i.e., well-suited for im-

plementation.

Let us now turn to the seond phase of the algorithm, i.e., to the elimination phase.

We begin by de�ning whih nodes are bloked.

De�nition 5.4 Let G = (G;�; l) be a tableau for #. A state g 2 G is bloked by a

state g

0

2 G if g

0

� g and l(g

0

) is a variant of l(g). We de�ne a new relation � by

taking g� g

0

if either g � g

0

, or g has a suessor g

00

that is bloked by g

0

.

An important part of the elimination proess deals with so-alled eventualities. An

L

C

-formula � 2 S is alled an eventuality for a onstraint system S if � is either of

the form x : CUD or of the form 'U . An eventuality is said to be unmarked if it is

not of the form v : CUD for any marked variable v. All eventualities ourring in the

tableau have to be `realized' in the following sense.

De�nition 5.5 Let G = (G;�; l) be a tableau for #, g 2 G, and let � be an eventuality

for l(g). Then � is realized for g in G if there is a sequene of unbloked nodes

g

0

�g

1

: : :� g

n

in G with g = g

0

, n � 0, suh that the following holds:

(1) if � is 'U then  2 l(g

n

);
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(2) if � is v : CUD, with v unmarked or marked variable, then there are variables v

i

from l(g

i

), i � n, with v

0

= v, v

1

; : : : ; v

n

unmarked, (v

n

: D) 2 l(g

n

), and, for all i,

0 < i � n, we have

� if g

i�1

is a state, then fC j (v

i�1

:C) 2 l(g

i�1

)g � fC j (v

i

: C) 2 l(g

i

)g,

� if g

i�1

is not a state, then fC j (v

i�1

: C) 2 l(g

i�1

)g � fC j (v

i

: C) 2 l(g

i

)g;

(3) if � is a : CUD, for some objet name a, then (a : D) 2 l(g

n

).

Intuitively, the variables v

0

; : : : ; v

n

in (2) desribe the same element at di�erent mo-

ments of time. It should be lear that in a tableau representing a quasimodel, all

eventualities have to be realized. Apart from removing nodes that ontain lashes, to

remove nodes with non-realized eventualities is the main aim of the elimination phase.

De�nition 5.6 Let G = (G;�; l) be a tableau for #. We use the following rules to

eliminate points in G:

(e

1

) if l(g) ontains a lash, eliminate g and all its �

�

-suessors

(where `�

�

-suessor' is the transitive losure of `�-suessor');

(e

2

) if all �-suessors of g have been eliminated, eliminate g as well;

(e

3

) if l(g) ontains an unmarked eventuality not realized for g, eliminate g and

all its �

�

-suessors.

1

The elimination proedure is as follows. Say that a tableau G

1

= (G

1

;�

1

; l

1

) is a

subtableau of G

2

= (G

2

;�

2

; l

2

) if G

2

� G

1

and G

1

is the restrition of G

2

to G

1

.

Obviously, if G

2

is a tableau for # and G

1

ontains the root of G

2

, then G

1

is a

tableau for #. Suppose now that G = (G;�; l) is a ompletion of #. We onstrut

a dereasing sequene of subtableaux G = G

0

;G

1

; : : : by iteratively eliminating nodes

from G aording to rules (e

1

){(e

3

), with (e

1

) being used only at the �rst step. (The

two other rules are used in turns.) Sine we start with a �nite tableau, this proess

stops after �nitely many steps, i.e., we reah a subtableau G

0

= (G

0

;�

0

; l

0

) of G to

whih none of the elimination rules an be applied. We say that the root of G is not

eliminated i� G

0

6= ;.

Theorem 5.7 A PTL

ALC

-formula # is satis�able i� there is a ompletion of # of

whih the root is not eliminated.

The result will be proved in Setion C.

As a onsequene of Theorems 5.3 and 5.7 we obtain

Theorem 5.8 There is an e�etive tableau proedure whih, given a PTL

ALC

-formula

#, deides whether # is satis�able.

1

Of ourse, eventualities whih are marked also have to be realized. However, the fat that all

unmarked eventualities in a tableau are realized implies that all other eventualities are also realized

(see proofs).

14



6 Conlusion

This paper|a ontinuation of the series [13, 4, 15, 11℄|develops a tableau reasoning

proedure for the temporal desription logi PTL

ALC

interpreted in two-dimensional

models with onstant ALC domains. The algorithm runs in double exponential time|

thus paralleling the omplexity of Wolper's original PTL-algorithm [16℄ whih solves

a PSpae-omplete problem using exponential time. Despite the high omplexity,

we believe that the devised tableau algorithm is an important �rst step towards the

use of TDLs as KR&R tools. A prototype implementation of the desribed algorithm

is urrently underway. Based on the experienes with this implementation, possible

optimization startegies will be investigated using the work in [9℄ as a starting point.

An important feature of the developed algorithm is that the DL omponent an

be made onsiderably more expressive, provided that the extension is also supported

by a reasonable tableau proedure. One idea we are working on now is to extend

this omponent to expressive fragments of �rst-order logi, thereby obtaining tableau

proedures for fragments of �rst-order temporal logi (f. [8℄) having potential appli-

ations in a growing number of �elds suh as spei�ation and veri�ation of reative

systems, model-heking, query languages for temporal databases, et.

Another interesting aspet of this paper is that, with minor modi�ations, the on-

struted tableaux an be used as a satis�ability heking proedure for the Cartesian

produt of S5 and PTL (f. [12℄), thus ontributing to a new exiting �eld in modal

logi studying the behavior of multi-dimensonal modal systems [7℄.

A Proof of Theorem 4.4

We are going to show that a PTL

ALC

-formula # is satis�able i� it is quasi-satis�able.

For the diretion from left to right suppose that # is satis�able. Then there

is some model M = (N; <; I) with M; 0 j= #. Fix n 2 N. For eah d 2 � put

t

I;n

(d) = fC 2 Fg(#) j d 2 C

I;n

g. Next de�ne equivalene relations �

n

on � by

putting d �

n

d

0

i� t

I;n

(d) = t

I;n

(d

0

). Consider the equivalene lasses modulo �

n

,

abbreviated by [d℄

n

. Obviously, f[d℄

n

j d 2 �

n

g is �nite. Choose for eah equivalene

lass [d℄

n

a variable v

[d℄

n

. De�ne mappings 

n

whih map objets names a and variables

v

[d℄

n

to sets of domain objets d 2 � in the obvious way, i.e.,



n

(x) =

�

fa

I;n

g if x is an objet name a

[d℄

n

if x is a variable v

[d℄

n

The onstraint system S

n

orresponding to n is de�ned as the union of the following

�ve sets:

� f' 2 Fg(#) jM; n j= 'g,

� fa : C j a 2 ob(#); C 2 Fg(#); a

I;n

2 C

I;n

g,

� fv

[d℄

n

: C j d 2 �; C 2 Fg(#); d 2 C

I;n

g,
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� fvRv

0

j 9d 2 (v) and d

0

2 (v

0

) with (d; d

0

) 2 R

I;n

g.

where all formulas of the form 'U and x : 'U are U-marked in S

n

. It is not diÆult

to prove that S

n

is a quasiworld for #, we leave this to the reader.

Now, de�ne Q as the sequene (S

n

jn 2 N). We need to show that Q is a quasi-

model for #. That # is quasi-satis�able is then an immediate onsequene of the fat

that # 2 S

0

. So it only remains to hek that Q satis�es the onditions from De�nition

4.3. The �rst ondition is obvious. For the seond, let v be some variable that ours

in S

n

. By de�nition, there is some d 2 � with v = v

[d℄

n

. For eah m 2 N, we de�ne

r

v

(m) = v

[d℄

m

. SineM has onstant domain, r

v

is well-de�ned. It is easy to see that

r

v

is a run in Q (in the sense of De�nition 4.2) and r

v

(n) = v. This proves the seond

ondition. The two remaining ones are proved from the de�nition of the quasiworlds

S

n

by using the semantis of PT L

ALC

together with the losure onditions on Fg(#).

Now we turn to the diretion from right to left, whih forms the interesting part

of the theorem. Suppose # is quasi-satis�ed in a quasimodel Q = (S

n

jn 2 N). Denote

by � the set of all runs in Q and put, for eah n 2 N,

I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : : )

where

� a

I;n

= r

a

, for every a 2 ob(#),

� C

I;n

i

= fr 2 � j r(n) : C

i

2 S

n

g,

� For all runs r; r

0

of the form r

a

; r

b

with a; b 2 ob(#) put rR

I;n

r

0

i� r(n)Rr

0

(n) 2

S

n

. Otherwise, put rR

I;n

r

0

i� r(n)Rr

0

(n) 2 S

n

or fC j r(n) : :9R:C 2 S

n

g �

fC j r

0

(n) : :C 2 S

n

g.

We show that M = (N; <; I) is as required. To this end we �rst prove:

(I) For every n 2 N and every r 2 �, if (r(n) : C) 2 S

n

then r 2 C

I;n

.

This is proved by indution on the onstrution of C. Throughout the proof we

heavily exploit the fat that the S

n

are saturated, hene losed under all saturation

rules. Note that in the indution we make use of a measure of the omplexity of

onepts aording to whih a onept C that has not the form of a negation and its

negation :C are of the same omplexity.

Fix n 2 N and suppose r 2 �. For atomi C the laim follows from the hoie

of the model. Let C

:

= :D, with D atomi. Sine S

n

is lash-free, (r(n) : D) 62 S

n

.

Hene r 62 D

I;n

, whih implies r 2 C

I;n

. Next, onsider C

:

= (D u E). By the

losure of S

n

under the rule �!

u

we obtain (r(n) : D) 2 S

n

and (r(n) : E) 2 S

n

.

From the indution hypothesis we get r 2 D

I;n

and r 2 E

I;n

, hene, by semantis,

r 2 (D u E)

I;n

. The ases C

:

= :(D u E) and C

:

= ::D are proved in a similar

way. One just has to use the fat that S

n

is losed under the rules �!

:u

and �!

::

,

respetively.
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Suppose C

:

= 9R:D and r(n) : 9R:D 2 S

n

.

Case 1. Suppose r(n) is not bloked. Then the losure under the rule�!

9

provides

some variable v with fv : D; r(n)Rvg � S

n

. We �nd a run r

0

2 �with r

0

(n) = v. From

this we obtain rR

I;n

r

0

, by de�nition, as well as r

0

2 D

I;n

, by indution hypothesis.

Hene r 2 (9R:D)

I;n

.

Case 2. Suppose r(n) is bloked. We �nd an unbloked variable v suh that

fC j v : C 2 S

n

g � fC j r(n) : C 2 S

n

g. In partiular, v : 9R:D 2 S

n

. We obtain a

variable v

0

with fv

0

: D; vRv

0

g � S

n

. Take a run r

0

with r

0

(n) = v

0

. Then rR

I;n

r

0

and,

by indution hypthesis, r

0

2 D

I;n

.

Now we hek the ase C

:

= :9R:D. Suppose rR

I;n

r

0

. By de�nition, we have

r(n)Rr

0

(n) 2 S

n

or fC j r(n) : :C 2 S

n

g � fC j r(n) : :9R:C 2 S

n

g. In both ases

r

0

(n) : :D 2 S

n

. This is lear in the latter ase while in the �rst ase it follows from

the non-appliability of the �!

:9

rule. By indution hypothesis, r

0

2 (:D)

I;n

. Sine

r

0

was hosen arbitrarily, it is shown that r 2 (:9R:D)

I;n

.

Next, let C

:

=D and suppose (r(n) :D) 2 S

n

. By the �rst lause in De�nition

4.2, (r(n + 1) : D) 2 S

n+1

. Hene, by indution hypothesis, r 2 D

I;n+1

. From the

latter we obtain r 2 (D)

I;n

by semantis. Now onsider C

:

= :D. Sine S

n

is

saturated, we get (r(n) ::D) 2 S

n

. The rest follows from the preeding ase.

Let C

:

= (DUE). Then, by the seond lause of De�nition 4.2, there is somem � n

suh that: (r(m) : E) 2 S

m

and for every n � i < m it holds that (r(i) : D) 2 S

i

.

From this the result an be easily obtained by making use of the indution hypothesis.

To omplete the proof, it remains to onsider the ase C

:

= :(DUE). So suppose

(r(n) : :(DUE)) 2 S

n

. By indution on m we show the following laim:

(A) For all m � n, f(r(m) : :E) ; (r(m) : :(DUE))g � S

m

or there is some i suh

that n � i < m and (r(i) : :D) 2 S

i

.

For the start, let m = n. The laim is an immediate onsequene of the assumption

together with the fat that S

n

is losed under the rule �!

:U

. For the indution step

assume that the laim has already been proved for m = k. We distinguish two ases:

First, suppose there is some i suh that n � i < k and (r(i) : :D) 2 S

i

. In this ase

the indution step follows immediately. Suppose now there is no i with this property.

Then f(r(k) : :E) ; (r(k) : :(DUE))g � S

k

. By the losure under the rule�!

:U

, one

of the following holds: (i) (r(k) : :D) 2 S

k

or (ii) (r(k) : :(DUE)) 2 S

k

. In the �rst

ase the indution step is trivial. In the seond ase we get (r(k) ::(DUE)) 2 S

k

,

by the losure under the rule �!

:

. By making use of the �rst lause of De�nition

4.2, we infer (r(k + 1) : :(DUE)) 2 S

k+1

. The result is obtained by the losure of

S

k+1

under �!

:U

. This ompletes the indution step, and hene the proof of (A).

Now we ome bak to the proof of (I). It is easy to see that (A) yields:

(B) For all m � n, r 2 (:E)

I;m

or there is some i suh that n � i < m and

r 2 (:D)

I;i

,

by indution hypothesis. From the latter we infer the desired result r 2 (:(DUE))

I;n

by a simple semantial argument. Hene (I) has been shown.

In the next step we show the following laim:

17



(II) For every n 2 N and every ' 2 Fg(#), if ' 2 S

n

then M; n j= '.

Again, the laim is shown by indution. Let ' be atomi and suppose ' 2 S

n

. We

distinguish three ases: �rstly, suppose there is some objet name a and some onept

C suh that '

:

= (a : C). By the �rst lause of De�nition 4.3, we obtain (r

a

(n) : C) 2

S

n

. Hene, by (I), r

a

2 C

I;n

. Note that a

I;n

was de�ned as r

a

. So, by semantis,

M; n j= a : C. Seondly, suppose there is some onept C with '

:

= (C = >). Fix

r 2 �. Now, onsider the term r(n). Sine S

n

is losed under the rule �!

=

, we get

(r(n) : C) 2 S

n

. An appliation of (I) yields r 2 C

I;n

. Finally, suppose '

:

= aRb.

r

a

R

I;n

r

b

follows immediately from the de�nition. Hene M; n j= :(aRb).

Next, onsider '

:

= : , with  atomi. Again, we distinguish three ases. The �rst

ase, where  has the form a : C, is lear. For the seond ase, suppose  

:

= (C = >).

Assume (C 6= >) 2 S

n

. That S

n

is losed under the rule �!

6=

supplies a term v

with (v : :C) 2 S

n

. By the seond lause in De�nition 4.3 we have a run r suh

that r(n) = v. Moreover, by an appliation of (I), it follows that r 2 (:C)

I;n

. So

there is some d 2 � with d 2 (:C)

I;n

, that is d 62 C

I;n

. But from the latter we infer

M; n j= C 6= >. Finally, suppose '

:

= :(aRb). Then, by the de�nition, we do not

have r

a

R

I;n

r

b

. Hene M; n j= aRb.

The proof of the indution step an be left to the reader. The di�erent lauses are

all rather similar to the orresponding ones in the proof of (I). The only interesting

ases are '

:

= ( U�) and '

:

=  together with their negations. Here one uses the

third and fourth lause from De�nition 4.3, where the �rst and seond lause from

De�nition 4.2 have been used in the proof of (I).

In order to omplete the proof of the theorem we reason as follows: By assumption,

there is some n 2 N suh that # 2 S

n

. So an appliation of (II) yields M; n j= #,

whih means that # is satis�ed in M.

B Proof of Theorem 5.3

In this setion, we show that if the tableau rules are applied aording to the tableau

strategy, then a ompletion is reahed after at most double exponentially many steps

(in the length of the input formula #).

By the length j'j of a formula ' we mean the number of ourenes of symbols

used to onstrut '. We �rst establish an upper bound for the number of ertain

onstraints per node label.

Lemma B.1 Let G

0

; : : : ;G

n

= G be built aording to the tableau strategy with G

0

=

G

#

. Let l(g) be a node in G. Then the number of onstraints of the form x : C in l(g)

is bounded by 2

p(j#j)

, for some polynomial funtion p.

Proof. Let us �rst determine an upper bound for the number of distint terms per

node label. All objet names ourring in node labels are from ob(#). So the number

of distint objet names in a label does not exeed j#j.

The root node and the labels l(g) of nodes g introdued by an appliation of the

rule =)



do not ontain more than 2

4j#j

distint unmarked variables and a single
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marked one|2

4j#j

is the number of distint subsets of onepts in Fg(#) and the upper

bound on the number of marked variables is due to the use of equivalene lasses in

the =)



rule.

We now onsider the number of variables introdued in a path ~g = g

0

� � � � � g

n

in whih g

0

is the root node or introdued by =)



and no g

i

, i < n, is a state. First

for the marked variables, whih are introdued by the rules =)

:u

, =)

U

, =)

:U

,

and =)

#

0

. De�ne a tree T whose nodes are the marked variables in l(g

n

) and whose

edges are labeled with either =)

:u

, =)

U

, =)

:U

, or =)

#

0

as follows:

� The root node is the initial marked variable in g

0

.

� If a rule =)

�

2 f=)

:u

, =)

U

, =)

:U

, =)

#

0

g is applied to a marked variable

v generating new marked variables v

1

; : : : ; v

k

, then v

i

is suessor of v in T and

the edge between v and v

i

is labelled with =)

�

for 1 � i � k.

The depth of T is bounded by 4 j#j+1: By de�nition of the (saturation and) tableau

rules, eah path in T may ontain at most 4 j#j edges labelled with =)

:u

, =)

U

, or

=)

:U

and at most a single edge labelled =)

#

0

. Moreover, eah node has at most

4 j#j + 2

4j#j

suessors: at most 4 j#j outgoing edges labelled with =)

:u

, =)

U

, or

=)

:U

, and at most 2

4j#j

outgoing edges labelled with =)

#

0

. Hene, the number

of nodes in the tree (whih is the maximum number of marked variables in l(g

n

)) is

bounded by 2

q(j#j)

for some polynomial funtion q.

We now onsider unmarked variables whih are introdued by the =)

6=

and =)

9

rules in the sequene ~g. The rule =)

6=

an obviously add at most j#j new variables.

For the =)

9

rule, we distinguish appliations to onstraints x : 9R:C where (i) x

is an objet name, (ii) x is a marked variable, and (iii) x is an unmarked variable.

We may obviously have at most j#j � 4 j#j rule appliations of type (i). By the upper

bound established for marked variables, we may have at most 2

q(j#j)

�4 j#j appliations

of type (ii). Now for type (iii). By the tableau strategy, a variable v will never be

bloked in ~g after the =)

9

rule has been applied to a onstraint v : 9R:C. Moreover,

by de�nition of bloking, there may exist at most 2

4j#j

unbloked unmarked variables

per onstraint system. It follows that the =)

9

rule is applied to at most 2

4j#j

distint

unmarked variables, i.e., there may be at most 4 j#j � 2

4j#j

appliations of type (iii).

Summing up, there learly exists a polynomial funtion q

0

suh that the number of

unmarked variables in l(g

n

) is bounded by 2

q

0

(j#j)

.

For eah term x, there may obviously exist at most 4 j#j onstraints of the form

x : C. Hene, if we take together the upper bounds for the numbers of objets, marked

variables, and unmarked variables, Lemma B.1 immediately follows. a

The lemma just established is helpful for determining the maximum number of on-

straint systems appearing during a run of the algorithm that are not variants of one

another. In the following, we all two onstraint systems vdistint i� they are not

variants of one another.

Lemma B.2 Let G

0

; : : : ;G

n

= G be built aording to the tableau strategy with G

0

=

G

#

. Then G ontains at most 2

2

q(j#j)

node labels that are pairwise vdistint, where q is

a polynomial funtion.
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Proof. Let us �rst determine the maximum size of node labels in G. From Lemma B.1,

we know that eah label may ontain at most 2

p(j#j)

onstraints of the form x : C.

Moreover, eah label may obviously ontain at most 4 j#j formulas, namely those in

Fg(#). Hene, it remains to onsider onstraints of the form xRv where x is a term

and v is a variable (note that onstraints aRb with a and b objet names are formulas

and have thus already been onsidered). Suh onstraints are only introdued by the

=)

9

rule along with onstraints of the form x : C. Hene, the number of onstraints

of the form xRv is also bounded by 2

p(j#j)

. Summing up, there exists a polynomial

funtion q suh that the size of eah node label in G is bounded 2

q(j#j)

. Sine all

involved objet names, onepts, formulas, and roles are from Fg(#), there exist at

most 2

2

q(j#j)

node labels whih are pairwise distint up to variable renaming. a

We are now ready to prove Theorem 5.3. Assume that the tableau algorithm omputes

a sequene G

0

;G

1

; : : : of tableaux with G

0

= G

#

. By Lemma B.2, we may have at most

2

2

q(j#j)

states that are pairwise vdistint per tableau G

i

. By de�nition of bloking, this

implies that we have at most 2

2

q(j#j)

unbloked states in any G

i

. By de�nition of the

tableau rules, we have that if a state g in a tableau G

i

is bloked, then g is a leaf in G

i

.

Also by de�nition of the tableau rules (see espeially the =)

#

0

rule), the branhing

fator of tableaux in the above sequene is bounded by 2

2

4j#j

. Summing up these fats,

we obtain that the number of (bloked or unbloked) states in any G

i

is bounded by

2

2

q(j#j)

� 2

2

4j#j

. Sine every rule appliation exept =)



generates a new node that

is labelled with a strit superset of the label of the (leaf) node to whih the rule is

applied (and =)



itself is only applied to states), there exist at most 2

4j#j

non-state

nodes per state. It follows that the number of nodes in any tableau G

i

is bounded

by 2

2

r(j#j)

, where r is a polynomial funtion. Sine every rule appliation adds a new

node, the same upper bound applies to the number of rule appliations whih proves

the theorem.

C Proof of Theorem 5.7

We �rstly prove orretness:

Theorem C.1 Suppose # is a satis�able PTL

ALC

-formula and G is a ompletion of

#. Then the root of G is not eliminated.

The theorem is a onsequene of the following lemma. Here and in what follows we

denote by [n;m℄ the set fk 2 N jn � k � mg.

Lemma C.2 Let G = (G;�; l) be a ompletion of # and suppose that # is satis�able.

Then there exists a sequene ~g = (g

i

j i 2 N) of lash-free nodes in G with g

0

= g

r

,

g

i

� g

i+1

, for all i 2 N, suh that the following holds for all n 2 N:

� if � is an eventuality of the form 'U and � 2 l(g

n

), then there exists m � n

with  2 l(g

m

) (in this ase we say that � is realized for g

n

in ~g until m);
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� if � is an eventuality of the form (a : CUD) and � 2 l(g

n

), then there exists

m � n with (a : D) 2 l(g

m

) (in this ase we say that � is realized for g

n

in ~g

until m);

� if � is an eventuality of the form (v : CUD), for some variable v whih ours

unmarked in l(g

n

) , then there exist m � n and variables v

i

whih our un-

marked in l(g

i

), for all i 2 [n;m℄, with v

0

= v, (v

m

: D) 2 l(g

m

), and for all

i 2 [n;m� 1℄:

{ if l(g

i

) is a state, then fC j (v

i

:C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g,

{ if l(g

i

) is not a state, then fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g,

(in this ase we say that � is realized for g

n

by ~g and the sequene (v

i

jn � i �

m)).

For suppose this lemma has been proved. Then the following proves Theorem C.1.

Proof. Assume # is satis�able and let G = (G;�; l) be a ompletion of #.

An appliation of Lemma C.2 supplies a sequene ~g = (g

n

jn 2 N) satisfying the

onditions listed in Lemma C.2. In partiular, g

r

= g

0

. So it suÆes to show that no

g

n

from ~g is eliminated. Let

G = G

0

� G

1

� � � �

be the sequene produed by the elimination proedure. We show by indution that

� fg

n

jn 2 Ng � G

i

, for all i 2 N.

The indution base i = 0 is lear. Suppose the laim has been proved for j = i. So

fg

n

jn 2 Ng � G

j

. We have to show that none of the rules e

1

to e

3

an be applied to

any g

n

. (e

1

) is lear and (e

2

, (e

3

) follow immediately from the indution hypothesis.

a

We will now prove a lemma whih enables us to prove Lemma C.2. Consider a

onstraint systems S for # and a model M = (N; <; I) with

I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :);

for n 2 N. A mapping � from the set of unmarked terms in S into � is alled

n-satisfying, in symbols S �

�

n

M, if

� �(a) = a

I;n

, for all objet names a in S,

� fC j (x : C) 2 Sg � fC j �(x) 2 C

I;n

g, for all terms x in S,

� if xRy 2 S, then �(x)R

I;n

�(y),

� if  2 S, then M; n j=  , for all PTL

ALC

-formulas  .

A mapping � from � onto the set of marked variables in S is alled n-exhaustive, in

symbols S �

�

n

M, if
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� fC j (�(d) : C) 2 Sg � t

I;n

(d) = fC j d 2 C

I;n

g, for all d 2 �.

A pair (�; �) onsisting of an n-satisfying mapping � and an n-exhaustive mapping �

is alled �tting, in symbols S �

�;�

n

M.

Lemma C.3 SupposeM = (N; <; I) with I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :), for

all n 2 N, is a model for #. Let n 2 N and suppose G = (G;�; l) is a ompletion of #

and g 2 G.

(1) Suppose l(g) is a state whih is not bloked, l(g) �

�;�

n

M, and v

0

is an unmarked

variable in l(g). Then there exist sequenes

� g

0

� g

1

� � � � � g

m

of nodes in G, g = g

0

, suh that l(g

i

), i 2 [1;m � 1℄, are

non-states and l(g

m

) is a state,

� (�

0

; �

0

); : : : ; (�

m

; �

m

) of pairs of mappings with (�; �) = (�

0

; �

0

), and �

1

� � � � �

�

m

suh that l(g

i

) �

�

i

;�

i

n+1

M, for all i 2 [1;m℄,

and an unmarked variable v

1

in l(g

1

) suh that

(a) for all 'U 2 l(g

m

), if M; n+ 1 j=  then  2 l(g

m

),

(b) for all unmarked terms x with (x : CUD) 2 l(g

m

), if �

m

(x) 2 D

I;n+1

then

(x : D) 2 l(g

m

),

() �

1

(v

1

) = �(v

0

) and fC j (v

0

:C) 2 l(g)g � fC j (v

1

: C) 2 l(g

1

)g.

(2) Suppose l(g) is not a state, l(g) �

�;�

n

M. Then there exist sequenes

� g

0

� g

1

� � � � � g

m

of nodes in G, g = g

0

, suh that l(g

i

), i 2 [1;m � 1℄, are

non-states, and l(g

m

) is a state,

� pairs (�

0

; �

0

); : : : ; (�

m

; �

m

) of mappings with � = �

0

and �

0

� �

1

� � � � � �

m

suh that l(g

i

) �

�

i

;�

i

n

M, for all i 2 [1;m℄

suh that

(a) for all 'U 2 l(g

m

), if M; n j=  then  2 l(g

m

),

(b) for all unmarked terms x with (x : CUD) 2 l(g

m

), if �(x) 2 D

I;n

then (x : D) 2

l(g

m

).

Proof. (1) Let l(g) �

�;�

n

M and �(v

0

) = d 2 �. Take the node g

1

2 G with g � g

1

. g

is not bloked and so l(g

1

) is the union of the following sets:

� fa : >g [ fa : C j (a :C) 2 l(g)g, for a 2 ob(l(g)),

� f j   2 l(g)g,

� f(v

i

: >)g [ fv

i

: C j (v

i

:C) 2 l(g)g, for 0 < i � n,

� f(v

0

: >)g,
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where fv

1

; : : : ; v

n

g = fmin([w℄

l(g)

) j [w℄

l(g)

2 [l(g)℄

�

g and v

0

is the only marked vari-

able in l(g

0

). Reall that fv

1

; : : : ; v

n

g is a set of variables from l(g) whih on-

tains exatly one representative for eah equivalene lass [w℄

l(g)

. Take the variable

v

1

2 fv

1

; : : : ; v

n

g with v

0

2 [v

1

℄

l(g)

. De�ne �

1

by putting �

1

(x) = �(x) for every term

x in l(g). Obviously we have l(g

1

) �

�

1

n+1

M. Note also that �(v

0

) = �

1

(v

1

). Put

�

1

(d) = v

0

, for all d 2 �. Then l(g

1

) �

�

1

;�

1

n+1

M should be lear.

We now onstrut the sequenes g

2

; : : : ; g

m

and (�

2

; �

2

); : : : ; (�

m

; �

m

) with g

1

�

� � � � g

m

and �

1

� � � � � �

m

. This is done by indution. Suppose g

1

; : : : ; g

i

and

(�

1

; �

1

) : : : ; (�

i

; �

i

) with l(g

j

) �

�

j

;�

j

n+1

M, 1 � j � i, have already been onstruted.

The hoie of g

i+1

depends on whih rule is applied to g

i

in the onstrution of the

tableau G:

Case A. One of the rules =)

s

is applied to g

i

:

Case 1. �!

U

is applied to 'U 2 l(g

i

). Then M; n j=  or M; n j= ';('U ).

If the �rst appears, take g

i+1

with l(g

i+1

) = l(g

i

) [ f g and U-mark 'U in l(g

i+1

).

Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [ f';('U )g and U-mark 'U . Let

(�

i+1

; �

i+1

) = (�

i

; �

i

).

Case 2. �!

:U

is applied to :('U ) 2 l(g

i

). Then M; n j= : ;:' or M; n j=

: ;: ('U ). If the �rst appears, take g

i+1

with l(g

i+1

) = l(g

i

) [ f: ;:'g. Oth-

erwise take g

i+1

with l(g

i+1

) = l(g

i

) [ f: ;: ('U )g. Put (�

i+1

; �

i+1

) = (�

i

; �

i

).

Case 3. The deterministi ases where one of the rules �!

:

;�!

::

, or �!

^

is

applied to l(g

i

) are onsidered in the obvious manner.

Case 4. �!

:^

is be applied to :(' ^  ) 2 l(g

i

). Take g

i+1

with l(g

i+1

) =

l(g

i

) [ f:'g if M; n j= :'. Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [ f: g. Put

(�

i+1

; �

i+1

) = (�

i

; �

i

).

Case 5. �!

U

is applied to (x : CUD) 2 l(g

i

). Suppose �rst that x is not marked.

We have �

i

(x) 2 D

I;n

or �

i

(x) 2 C

I;n

and �

i

(x) 2 ((CUD))

I;n

.

If the �rst appears, take g

i+1

with l(g

i+1

) = l(g

i

) [ f(x : D)g and U-mark (x :

CUD). Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [ fx : C; x : (CUD)g and U-mark

(x : CUD). Let (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that x is marked in l(g

i

). De�ne

�

D

= fd 2 � j�

i

(d) = x; d 2 D

I;n

g;

�

:D

= fd 2 � j�

i

(d) = x; d 62 D

I;n

g:

If �

D

= ;, then take g

i+1

with l(g

i+1

) = l(g

i

)[ f(x : C); (x :(CUD))g and U-mark

(x : CUD). Let (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that �

:D

= ;. Then take g

i+1

with l(g

i+1

) = l(g

i

) [ f(x : D)g and

U-mark (x : CUD). Let (�

i+1

; �

i+1

) = (�

i

; �

i

).

Finally, suppose �

D

6= ; and �

:D

6= ;. Then take g

i+1

with l(g

i+1

) = l(g

i

) [

opy(S

i

; x; v) [ fx : D; v : C; v : (CUD)g, U-mark (x : CUD) and (v : CUD)

and mark x and v. Let �

i+1

= �

i

and �

i+1

(d) = �

i

(d), for d 2 � � (�

D

[ �

:D

),

�

i+1

(d) = x, for d 2 �

D

, and �

i+1

(d) = v, for d 2 �

:D

.

Case 6. The rule �!

:U

is applied to l(g

i

). This ase is treated analogously to

Case 5.
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Case 7. The deterministi rules �!

::

, �!

u

, �!

=

, and �!

:9

are treated in the

obvious manner.

Case 8. The rule �!

:u

is applied to (x : :(CuD)) 2 l(g

i

). Suppose �rst that x is

unmarked. We have �

i

(x) 2 (:C)

I;n

or �

i

(x) 2 (:D)

I;n

. If the �rst appears take g

i+1

with l(g

i+1

) = l(g

i

) [ fx : :Cg. Otherwise take g

i+1

with l(g

i+1

) = l(g

i

) [ fx : :Dg.

Put (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that x is marked. De�ne

�

:C

= fd 2 � j�

i

(d) = x; d 2 (:C)

I;n

g;

�

C

= fd 2 � j�

i

(d) = x; d 2 C

I;n

g:

If �

:C

= ;, take g

i+1

with l(g

i+1

) = l(g

i

) [ fx : :Dg and (�

i+1

; �

i+1

) = (�

i

; �

i

). If

�

C

= ;, then take g

i+1

with l(g

i+1

) = l(g

i

) [ fx : :Cg and (�

i+1

; �

i+1

) = (�

i

; �

i

).

Suppose now that �

:C

6= ; and �

C

6= ;. Then take g

i+1

with l(g

i+1

) = l(g

i

) [

opy(S

i

; x; v)[fx : :C; v : :Dg. Put �

i+1

= �

i

and �

i+1

(d) = �

i

(d) for d 2 �� (�

C

[

�

:C

), �

i+1

(d) = x, for d 2 �

:C

, and �

i+1

(d) = v, for d 2 �

C

.

Case 9. The rule �!

6=

is applied to C 6= > 2 l(g

i

). Then we have M; n j= C 6= >

and so we an take e 2 � with e 2 (:C)

I;n

. We know that the outome is S

i+1

=

l(g

i

) [ fw : :Cg, for some new and unmarked variable w. Put �

i+1

= �

i

[ f(w; e)g

and �

i+1

= �

i

.

Case 10. The rule �!

9

is applied to (x : 9R:C) 2 l(g

i

). If x is unmarked we have

�

i

(x) 2 (9R:C)

I;n

. Hene we �nd e 2 � with �

i

(x)R

I;n

e and e 2 C

I;n

. If x is marked

we �nd a d 2 � with �

i

(d) = x. So again we �nd e 2 � with dR

I;n

e and e 2 C

I;n

.

In both ases we know that the outome is S

i+1

= l(g

i

)[fw : C; xRwg for a new and

unmarked variable w. Put �

i+1

= �

i

[ f(w; e)g and �

i+1

= �

i

.

Case B. The rule =)

#

is applied to g

i

and the variable v. Then v is unmarked in

l(g

i

). Suppose �

i

(v) = d. Take the marked variable w = �

0

(d) in l(g

0

) and let g

i+1

be the node with l(g

i+1

) = l(g

i

) [ f(v : C) j (w : C) 2 l(g

0

)g. Let �

i+1

= �

i

and

�

i+1

= �

i

.

Case C. The rule =)

#

0

is applied to g

i

and the variable v. Then v is marked in

l(g

i

). Let D be the set of d 2 � suh that �

i

(d) = v. D 6= ; sine �

i

is onto. Let

Y = fwj9d 2 D�

0

(d) = wg

and assume Y

�

= fw

1

; : : : ; w

n

g = fmin([w℄

l(g

0

)

) jw 2 Y g. Choose the node g

i+1

in

suh a way that l(g

i+1

) onsists of l(g

i

) and the union of

� fv : C j (w

1

:C) 2 l(g

0

)g,

� opy(l(g

i

); v; v

0

i

), 1 < i � n,

� f(v

0

i

: C) j (w

i

:C) 2 l(g

0

)g, for 1 < i � n.

De�ne �

i+1

= �

i

and �

i+1

(d) = �

i

(d), for d 2 ��D, �

i+1

(d) = v, for �

0

(d) = w

1

, and

�

i+1

(d) = v

0

i

for �

0

(d) = w

i

, 1 < i � n.
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Suppose now that we have reahed some m suh that g

m

is a state. Theorem 5.3

guarantees the existene of m. We show that the onstruted sequenes g

1

; : : : ; g

m

and (�

1

; �

1

); : : : ; (�

m

; �

m

) are as required. Firstly, it is lear from the onstrution

that g

i

� g

i+1

, for all i < m, and that l(g

m

) is the only state in this list. �

i

� �

i+1

is

also lear and l(g

i

) �

�

i

;�

i

n+1

M is easily proved by indution on i. It remains to verify

the onditions (a)-().

(a) Suppose 'U 2 l(g

m

) and M; n+ 1 j=  . None of the rules =)

s

is appliable

to g

m

, so 'U is U-marked in g

m

. But 'U is not U-marked in g

1

and so there exists

i < m suh that l(g

i

) =)

U

l(g

i+1

) and 'U ours U-unmarked in l(g

i

). But then,

by the above proedure,  2 l(g

i+1

) and so  2 l(g

m

).

(b) Suppose (x : CUD) 2 l(g

m

), x is unmarked in l(g

m

) and �

m

(x) 2 D

I;n+1

.

None of the rules =)

s

is appliable to g

m

, so (x : CUD) is U-marked in g

m

. But

(x : CUD) is not U-marked in g

1

and so there exists i < m suh that l(g

i

) =)

U

l(g

i+1

)

and (x : CUD) ours U-unmarked in l(g

i

). But then, by the above proedure,

(x : D) 2 l(g

i+1

) and so (x : D) 2 l(g

m

).

() follows from the de�nition.

This ompletes the proof of the �rst laim of the Lemma.

The proof of the seond laim an be onduted in preisely the same manner as

the proof above starting from g

1

. It is left to the reader. a

Notie that we did not exlude the possibility that g

m

is bloked. In this ase we �nd

a state g

0

whih is not bloked suh that g

m�1

�g

0

and l(g

0

) is a variant of l(g

m

). It

is straightforward (but tedious) to reformulate the lemma above using the unbloked

state l(g

0

) instead of l(g).

Now we are ready for proving Lemma C.2.

Proof. Suppose # is satis�able. We �nd M = (N; <; I) with

I(n) = (�; R

I;n

0

; : : : ; C

I;n

0

; : : : ; a

I;n

0

; : : :);

for all n 2 N, and M; 0 j= #. We show the following

Claim. There exists a sequene of intervals f[n(i);m(i)℄ j i 2 Ng of natural numbers

with n(0) = 0 and m(i) + 1 = n(i+ 1), for all i 2 N, suh that there exist sequenes

� ~g = (g

n

jn 2 N) of nodes in G with g

0

= g

r

, and

� ~� = (�

n

jn 2 N) and (�

n

jn 2 N) of mappings

suh that the following hold:

(1) for all n 2 N: g

n

� g

n+1

,

(2) for all n 2 N: l(g

n

) is a state i� there exists i 2 N with n = m(i),

(3) for all i 2 N and n 2 [n(i);m(i)℄: l(g

n

) �

�

n

;�

n

i

M,

(4) for all i 2 N and all 'U 2 l(g

m(i)

), if M; i j=  then  2 l(g

m(i)

),
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(5) for all i 2 N and all (x : CUD) 2 l(g

m(i)

) with x unmarked, if �

m(i)

(x) 2 D

I;i

then (x : D) 2 l(g

m(i)

),

(6) for all n 2 N every unmarked eventuality for g

n

is realized by ~g.

By (6), the sequene (g

n

jn 2 N) is as required for proving Lemma C.2.

The onstrution of the sequenes is by indution. We start with g

0

, �

0

, and �

0

: let

g

0

= g

r

, �

0

(a) = a

I;0

, for all a 2 ob(#), and �

0

(d) = min(V ) for all d 2 �. Obviously

l(g

0

) �

�

0

;�

0

0

M.

Suppose now that we have onstruted a sequene of intervals f[n(i);m(i)℄ j i � kg

and sequenes

� (g

n

jn � m(k)) and (�

n

; �

n

jn � m(k))

satisfying the onditions (1)-(5) stated in the laim above until m(k) | save that

l(g

m(k)

) is possibly not a state. In the latter ase, using Lemma C.3 (2), it is straight-

forward to extend these sequenes by means of nodes g

m(k)+1

; : : : ; g

m(k)+l

and map-

pings �

m(k)+1

; : : : ; �

m(k)+l

, �

m(k)+1

; : : : ; �

m(k)+1

suh that l(g

m(k)+l

) is a state and the

extended sequene still has all properties (1)-(5). So, we an assume without loss of

generality that l(g

m(k)

) is a state. We now distinguish two ases.

Case 1. There exists an unmarked eventuality for some l(g

n

), n � m(k), whih is

not realized by (g

n

jn � m(k)) until m(k).

Take a minimal l � m(k) suh that there exists an eventuality � for l(g

l

) whih

is not realized until m(k). To begin with suppose � is of the form (v : C

0

UD

0

), for

some unmarked variable v. We take variables v

l

; : : : ; v

m(k)

with v

l

= v suh that, for

all i 2 [l;m(k)℄,

� v

i

ours unmarked in l(g

i

),

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, whenever i � m(k) and g

i

is

not a state,

� fC j (v

i

: C) 2 l(g

i

g � fCj(v

i+1

: C) 2 l(g

i+1

)g, whenever i < m(k) and l(g

i

)

is a state.

Assume �

m(k)

(v

m(k)

) = d 2 �

k

. We have (v

m(k)

: C

0

UD

0

) 2 l(g

m(k)

) and (v

m(k)

:

D

0

) 62 l(g

m(k)

), sine (v : C

0

UD

0

) is not realized until m(k). Hene d 2 (C

0

UD

0

)

I;k

, by

(3), and d 62 (D

0

)

I;k

, by (5). There exists n > k suh that d 2 (D

0

)

I;n

. Assume that

n is minimal with this property.

Iterated appliation of Lemma C.3 (1) provides intervals f[n(j);m(j)℄ j k+1 � j �

ng with n(k + 1) = m(k) + 1 and m(j) + 1 = n(j + 1) for all j 2 [k + 1; n � 1℄, and

sequenes

� g

n(k+1)

� : : :�g

m(n)

, �

n(k+1)

; : : : ; �

m(n)

, �

n(k+1)

; : : : ; �

m(n)

suh that (1)-(5) above hold untilm(n), and there is a sequene of variables v

n(k+1)

; : : : ; v

m(n)

,

v

j

ours unmarked in l(g

j

) for all j 2 [n(k + 1);m(n)℄, suh that the following hold

for all j 2 [n(k + 1);m(n)℄:
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1. �

j

(v

j

) = d,

2. fC j (v

j

: C) 2 l(g

j

)g � fC j (v

j+1

: C) 2 l(g

j

)g, whenever g

j

is not a state,

3. fC j (v

m(i)

:C) 2 l(g

m(i)

g � fC j (v

n(i+1)

: C) 2 l(g

n(i+1)

)g, for all i 2 [k; n�1℄.

We show that (v : C

0

UD

0

) is realized for g

l

by (g

j

j 0 � j � m(n)) and the sequene

v

l

; : : : ; v

m(k)

; v

n(k+1)

; : : : ; v

m(n)

:

To this end it suÆes to show that (v

m(n)

: D

0

) 2 l(g

m(n)

). But, by the minimality of

n, we have (v

j

: C

0

UD

0

) 2 l(g

j

) for all j 2 [l;m(n)℄. Moreover, �

m(n)

(v

m(n)

) 2 (D

0

)

I;n

.

Using (5) we infer (v

m(n)

: D

0

) 2 l(g

m(n)

). This onludes the ase where � has the

form (v : (C

0

UD

0

)).

The ases where the eventuality � is of the form (a : C

0

UD

0

) or 'U are treated

similarly and an be left to the reader.

Case 2. Every unmarked eventuality for every g

n

, n � m(k), is realized by (g

n

jn �

m(k)) until m(k).

This ase is easier than the �rst one sine no eventuality has to be realized. We

just take the unique g

0

with l(g

m(k)

) � l(g

0

) and add it to the list (g

n

jn � m(k)).

The required mappings �

0

and �

0

showing l(g

0

) �

�

0

;�

0

k+1

M are obtained by putting, for

every objet name a in l(g

0

), �

0

(a) = �

m(k)

(a), and for every unmarked variable w in

l(g

0

), �

0

(w) = �

m(k)

(w). For d 2 � we let �

0

(d) = v

0

for the unique marked variable v

0

in l(g

0

).

Now, in the limit we obtain sequenes (g

n

jn 2 N) and (�

n

; �

n

jn 2 N) whih

obviously satisfy the onditions (1)-(5). (6) an be shown as follows: suppose �

is an unmarked eventuality in l(g

m

). Then, sine the number of eventualities in eah

l(g

n

) is �nite, eventually � will be realized in the onstrution of (g

n

jn 2 N). a

Now we prove the ompleteness part:

Theorem C.4 Let # be some PTL

ALC

-formula. If there exists a ompletion of # in

whih the root is not eliminated then # is satis�able.

Proof. Assume G = (G;�; l) is some omplete tableau for # the root g

r

of whih is

not eliminated. Let B � G be the set of nodes whih remain after the exeution of

the elimination proedure. We have g

r

2 B. We must show that # is satis�able. By

Theorem 4.4 it is suÆient to prove the existene of some quasimodel that satis�es #.

In order to do this we are going to show the following

Claim. There exists a sequene of intervals f[n(i);m(i)℄ j i 2 Ng of natural numbers

with n(0) = 0 and m(i) + 1 = n(i+1), for all i 2 N, suh that there exists a sequene

~g = (g

n

jn 2 N) of nodes in B with g

0

= g

r

and the following holds for all n 2 N:

(d1) g

n

� g

n+1

,

(d2) l(g

n

) is a state i� there exists i 2 N with n = m(i),
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(d3) every eventuality for g

m(i)

, i 2 N is realized by ~g.

Suppose the sequene has been onstruted. We then reason as follows: By assump-

tion, (e1) is not appliable to B. Hene all l(g

n

) are lash-free. By utilizing (d1)-(d3)

it is not diÆult to show that (l(g

m(i)

) j i 2 N) is a quasimodel satisfying #. We leave

the details to the reader.

The onstrution of the sequenes is by indution. We start with g

0

= g

r

. Sup-

pose now that we have onstruted a sequene of intervals f[n(i);m(i)℄ j i � kg and

sequenes (g

n

jn � m(k)) satisfying the onditions (d1)-(d2) stated in the laim above

until m(k) save that l(g

m(k)

) is possibly not a state. Using the ondition that (e2)

annot be applied to B it is straightforward to extend this sequene by means of nodes

g

m(k)+1

; : : : ; g

m(k)+l

from B suh that l(g

m(k)+l

) is a state and the extended sequene

still has properties (d1),(d2). So, we an assume without loss of generality that we

have f[n(i);m(i)℄ j i � kg and a sequene (g

n

jn � m(k)) satisfying (d1) and (d2); in

partiular g

m(k)

is a state. We distinguish two ases.

Case 1. There exists an eventuality for some l(g

m(i)

), i � k, whih is not realized

by (g

n

jn � m(k)) until m(k).

Choose l = m(j) � m(k) minimal suh that there exists an eventuality � for l(g

l

)

whih is not realized until m(k). First suppose � is of the form (v : C

0

UD

0

), for an

unmarked variable v.

We take variables v

l

; : : : ; v

m(k)

with v

l

= v and v

m(k)

ours unmarked in l(g

m(k)

)

suh that, for all i 2 [l;m(k) � 1℄,

� v

i

ours unmarked in l(g

i

),

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, whenever v

i

is not a state,

� fC j (v

i

:C) 2 l(g

i

g � fC j (v

i+1

: C) 2 l(g

i+1

)g, whenever l(g

i

) is a state.

We have (v

m(k)

: C

0

UD

0

) 2 l(g

m(k)

) and (v

m(k)

: D

0

) 62 l(g

m(k)

), sine (v : C

0

UD

0

)

is not realized until m(k). (e3) is not appliable to any node in B, in partiular not

to g

m(k)

. So we �nd f[n(j);m(j)℄ j k + 1 � j � ng with m(j) + 1 = n(j + 1) for all

j 2 [k + 1; n� 1℄, and a sequene

� g

m(k)

�g

n(k+1)

� : : :�g

m(n)

of nodes in B

suh that (d1), (d2) above hold until m(n), and there is a sequene of variables

v

n(k+1)

; : : : ; v

m(n)

suh that v

j

ours unmarked in l(g

j

) for all j 2 [n(k + 1);m(n)℄

and (g

j

j l � j � m(n)) and (v

j

jl � j � m(n)) realize CUD

0

until m(n).

Suppose now that v is marked. Then (v : (C

0

UD

0

)) 2 l(g

l

), sine (v : D

0

) 62

l(g

l

) and l(g

l

) is saturated. If l = m(j) < m(k), then take a sequene of variables

v

l+1

; : : : ; v

m(j+1)

suh that

� fC j (v

l

:C) 2 l(g

l

g � fC j (v

l+1

: C) 2 l(g

l+1

)g,

� v

i

ours unmarked in l(g

i

), for all i 2 [l + 1;m(j + 1)℄

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, for all i 2 [l + 1;m(j + 1)� 1℄.
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We have (v

m(j+1)

: C

0

UD

0

) 2 l(g

m(j+1)

). Now proeed with the variable v

m(j+1)

as

above in the ase of unmarked variables.

If l = m(j) = m(k), then take a sequene of nodes g

n(k+1)

� � � � �g

m(k+1)

and

of variables v

n(k+1)

; : : : ; v

m(k+1)

suh that g

m(k+1)

is the only state in this sequene,

g

m(k)

� g

n(k+1)

, and

� fC j (v

l

:C) 2 l(g

l

g � fC j (v

l+1

: C) 2 l(g

l+1

)g,

� v

i

ours unmarked in l(g

i

), for all i 2 [l + 1;m(k + 1)℄

� fC j (v

i

: C) 2 l(g

i

)g � fC j (v

i+1

: C) 2 l(g

i+1

)g, for all i 2 [l+ 1;m(k + 1)� 1℄.

We have (v

m(k+1)

: C

0

UD

0

)) 2 l(g

m(k+1)

). Now proeed with the variable v

m(k+1)

as above for unmarked variables. The ases where the eventuality � is of the form

(a : C

0

UD

0

) or 'U are treated similarly and left to the reader.

Case 2. Every eventuality for some l(g

m(i)

), i � k, is realized by (g

n

jn � m(k))

until m(k).

In this ase no eventuality has to be realized. Thus, using that (e2) is not appliable

to B, we an extend the sequene (g

n

jn � m(k)) by a new node g

m(k)+1

2 B with

g

m(k)

� g

m(k)+1

.

In the limit we obtain a sequene ~g satisfying (d1)-(d3). a
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