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Abstrat

Cyli de�nitions in desription logis have until now been investigated

only for desription logis allowing for value restritions. Even for the

most basi language FL

0

, whih allows for onjuntion and value restri-

tions only, deiding subsumption in the presene of terminologial yles

is a PSPACE-omplete problem. This report investigates subsumption in

the presene of terminologial yles for the language EL, whih allows

for onjuntion and existential restritions. In ontrast to the results for

FL

0

, subsumption in EL remains polynomial, independent of whether we

use least �xpoint semantis, greatest �xpoint semantis, or desriptive se-

mantis. These results are shown via a haraterization of subsumption

through the existene of ertain simulation relations between nodes of the

desription graph assoiated with a given yli terminology.

1 Introdution

The �rst thorough investigation of yli terminologies in desription logis (DL)

is due to Nebel [22℄, who introdued three di�erent semantis for suh terminolo-

gies: least �xpoint (lfp) semantis, whih onsiders only the models that interpret

the de�ned onepts as small as possible; greatest �xpoint (gfp) semantis, whih

onsiders only the models that interpret the de�ned onepts as large as possible;

and desriptive semantis, whih onsiders all models.

In [1, 2℄, subsumption w.r.t. yli terminologies in the small DL FL

0

, whih al-

lows for onjuntion and value restritions only, was haraterized with the help

�
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of �nite automata. This haraterization provided PSPACE deision proedures

for subsumption in FL

0

with yli terminologies for the three types of seman-

tis introdued by Nebel. In addition, it was shown in [1, 2℄ that subsumption

is PSPACE-hard both for gfp- and lfp-semantis. For desriptive semantis, the

exat omplexity of the subsumption problem is still open. However, Nebel [21℄

showed that, even for ayli terminologies (where the three types of seman-

tis agree), subsumption in FL

0

is at least oNP-hard. The results for yli

FL

0

-terminologies where extended by K�usters [14℄ to ALN , whih extends FL

0

by atomi negation and number restritions. For all three types of semantis,

subsumption w.r.t. yli ALN -terminologies is PSPACE-omplete.

Shild's observation [23℄ that the DL ALC (whih extends FL

0

by full negation)

is a syntati variant of the multi-modal logi K opened a way for treating yli

terminologies and more general reursive de�nitions in more expressive languages

like ALC and extensions thereof by a redution to the modal mu-alulus [24, 7℄.

In this setting, one an use a mix of the three types of semantis introdued

by Nebel. However, the omplexity of the subsumption problem is EXPTIME-

omplete.

In spite of these very general results for yli de�nitions in expressive lan-

guages, there are still good reasons to look at yli terminologies in less ex-

pressive (in partiular sub-Boolean) desription logis. One reason is, of ourse,

the lower omplexity of the subsumption problem (for FL

0

and ALN PSPACE

rather than EXPTIME). In addition, the growing interest in non-standard infer-

enes like omputing the least ommon subsumer and the most spei� onept

[5, 6, 3, 4, 16, 15, 18, 17℄ has also led to a renewed interest in sub-Boolean desrip-

tion logis sine some of these inferenes (like the most ommon subsumer) make

sense only if not all Boolean operators are present. In this ontext, yli de�ni-

tions ome into play sine the most spei� onept of a given ABox individual

need not exit in languages allowing for number restritions or existential restri-

tions. For ALN it was shown in [3℄ that the most spei� onept always exists

if one allows for yli onept de�nitions with gfp-semantis. For languages with

existential restritions, another solution to the non-existene of most spei� on-

epts was proposed by K�usters and Molitor [17℄. They onsidered the languages

EL (whih allows for onjuntion and existential restritions) and ALE (whih

additionally allows for atomi negation and value restritions) and showed how

the most spei� onept an be approximated there. One reason for hoosing

an approximation approah rather than an exat haraterization of the most

spei� onept using yli de�nitions was that the impat of yli de�nitions

in desription logis with existential restritions was largely unexplored.

This report tries to overome this de�it. It onsiders yli terminologies in EL

w.r.t. the three types of semantis introdued by Nebel, and shows that the sub-

sumption problem an be deided in polynomial time in all three ases. This is

in stark ontrast to the ase of FL

0

, where adding yli terminologies inreases
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the omplexity of subsumption from polynomial (for onept desriptions) to

PSPACE. The main tool used to show these results is a haraterization of sub-

sumption through the existene of so-alled simulation relations. There is an

interesting onnetion between this haraterization and the haraterization of

subsumption between EL-onept desriptions given in [4℄. There it was shown

that subsumption orresponds to the existene of a homomorphism between the

desription trees (basially the syntax trees) of the desriptions. This showed

that subsumption between EL-onept desriptions is deidable in polynomial

time sine the existene of a homomorphism between trees is a polynomial time

problem. Intuitively, if one goes from onept desriptions to yli terminolo-

gies, then one obtains a desription graph rather than a tree. Thus, an obvious

onjeture would be that subsumption in EL with yli terminologies an be

haraterized through the existene of a homomorphism between the orrespond-

ing desription graphs. Fortunately, this onjeture is not true. In fat, the

existene of a homomorphism between graphs is an NP-omplete problem [9℄

whereas the existene of a simulation is a polynomial time problem [12℄. It is

only for trees that the existene of a simulation implies the existene of a homo-

morphism. Thus, the haraterization of subsumption through the existene of

a simulation appears to be the deeper reason why subsumption of EL-onept

desriptions is polynomial.

In the next setion we will introdue the DL EL as well as yli terminologies

and the three types of semantis for these terminologies. Then we will show in

Setion 3 how suh terminologies an be translated into desription graphs. In

this setion, we will also de�ne the notion of a simulation between nodes of a

desription graph, and prove some useful properties of simulations. The next

three setions are then devoted to the haraterization of subsumption in EL

w.r.t. gfp, lfp, and desriptive semantis, respetively.

2 Cyli terminologies in the DL EL

Conept desriptions are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names. The

onstrutors determine the expressive power of the DL. In this report, we restrit

the attention to the DL EL, whose onept desriptions are formed using the

onstrutors top-onept (>), onjuntion (C u D), and existential restrition

(9r:C). The semantis of EL-onept desriptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation funtion �

I

maps eah onept name A 2 N

C

to a subset

A

I

of �

I

and eah role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary onept desriptions is indutively de�ned, as shown in the third

olumn of Table 1.
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name of onstrutor Syntax Semantis

onept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-onept > �

I

onjuntion C uD C

I

\D

I

existential restrition 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

onept de�nition A � D A

I

= D

I

Table 1: Syntax and semantis of EL-onept desriptions and TBox de�nitions.

A terminology (or TBox for short) is a �nite set of onept de�nitions of the form

A � D, where A is a onept name and D a onept desription. In addition,

we require that TBoxes do not ontain multiple de�nitions, i.e., there annot

be two distint onept desriptions D

1

and D

2

suh that both A � D

1

and

A � D

2

belongs to the TBox. Conept names ourring on the left-hand side of

a de�nition are alled de�ned onepts. All other onept names ourring in the

TBox are alled primitive onepts. Note that we allow for yli dependenies

between the de�ned onepts, i.e., the de�nition of A may refer (diretly or

indiretly) to A itself. An interpretation I is a model of the TBox T i� it

satis�es all its onept de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T .

The semantis of (possibly yli) EL-TBoxes we have just de�ned is alled de-

sriptive semanti by Nebel [22℄. For some appliations, it is more appropriate

to interpret yli onept de�nitions with the help of an appropriate �xpoint

semantis. Before de�ning least and greatest �xpoint semantis formally, let us

illustrate their e�et on an example.

Example 1 Assume that our interpretations are graphs where we have nodes

(elements of the onept name Node) and edges (represented by the role edge),

and we want to de�ne the onept Inode of all nodes lying on an in�nite (possibly

yli) path of the graph. The following is a possible de�nition of Inode:

Inode � Node u 9edge:Inode:

Now onsider the following interpretation of the primitive onepts and roles:

�

J

:= fm

0

; m

1

; m

2

; : : :g [ fn

0

g;

Node

J

:= �

I

;

edge

J

:= f(m

i

; m

i+1

) j i � 0g [ f(n

0

; n

0

)g:

Where M := fm

0

; m

1

; m

2

; : : :g and N := fn

0

g, there are four possible ways of

extending this interpretation of the primitive onepts and roles to a model of

the TBox onsisting of the above onept de�nition: Inode an be interpreted by

M [N , M , N , or ;. All these models are admissible w.r.t. desriptive semantis,
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whereas the �rst is the gfp-model and the last is the lfp-model of the TBox.

Obviously, only the gfp-model aptures the intuition underlying the de�nition

(namely, nodes lying on an in�nite path) orretly.

It should be noted, however, that in other ases desriptive semantis appears to

be more appropriate. For example, onsider the de�nitions

Tiger � Animal u 9parent:Tiger and Lion � Animal u 9parent:Lion:

With respet to gfp-semantis, the de�ned onepts Tiger and Lionmust always be

interpreted as the same set whereas this is not the ase for desriptive semantis.

1

Before we an de�ne lfp- and gfp-semantis formally, we must introdue some no-

tation. Let T be an EL-TBox ontaining the roles N

role

, the primitive onepts

N

prim

, and the de�ned onepts N

def

:= fA

1

; : : : ; A

k

g. A primitive interpreta-

tions J for T is given by a domain �

J

, an interpretation of the roles r 2 N

role

by binary relations r

J

on �

J

, and an interpretation of the primitive onepts in

P 2 N

prim

by subsets P

J

of �

J

. Obviously, a primitive interpretation di�ers

from an interpretation in that it does not interpret the de�ned onepts in N

def

.

We say that the interpretation I is based on the primitive interpretation J i�

it has the same domain as J and oinides with J on N

role

and N

prim

. For a

�xed primitive interpretation J , the interpretations I based on it are uniquely

determined by the tuple (A

I

1

; : : : ; A

I

k

) of the interpretations of the de�ned names

in N

def

. We de�ne

Int(J ) := fI j I is an interpretation based on J g:

Interpretations based on J an be ompared by the following ordering, whih

realizes a pairwise inlusion test between the respetive interpretations of the

de�ned names: if I

1

; I

2

2 Int(J ), then

I

1

�

J

I

2

i� A

I

1

i

� A

I

2

i

for all i; 1 � i � k:

It is easy to see that �

J

is a omplete lattie on Int(J ), i.e., every subset of

Int(J ) has a least upper bound (lub) and a greatest lower bound (glb). Thus,

Tarski's �xpoint theorem [25, 19℄ applies to all monotoni funtions from Int(J )

to Int(J ). This theorem states the following: if O: Int(J )! Int(J ) is a funtion

suh that I

1

�

J

I

2

implies O(I

1

) �

J

O(I

2

) (monotoniity), then O has a �xpoint,

i.e., there is an I in Int(J ) suh that O(I) = I. To be more preise, O has also

a least �xpoint (i.e., a �xpoint smaller w.r.t. �

J

than all other �xpoints) and a

greatest �xpoint (i.e., a �xpoint larger w.r.t. �

J

than all other �xpoints).

De�nition 2 The TBox T := fA

1

� D

1

; : : : ; A

k

� D

k

g indues the following

funtion O

T ;J

on Int(J ): O

T ;J

(I

1

) = I

2

i� A

I

2

i

= D

I

1

i

holds for all i; 1 � i � k.

1

This example is similar to the \humans and horses" example used by Nebel [22℄ to illustrate

the di�erene between desriptive semantis and gfp-semantis in ALN .
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Monotoniity of this funtion is an immediate onsequene of the following lemma,

whih an be proved by indution on the struture of EL-onept desriptions.

Lemma 3 Let D be an EL-onept desription and I

1

; I

2

interpretations based

on the primitive interpretation J . Then I

1

�

J

I

2

implies D

I

1

� D

I

2

.

Consequently, O

T ;J

has both a least and a greatest �xpoint, and possibly other

�xpoints in-between (see Example 1). The following proposition is an immediate

onsequene of the de�nition of O

T ;J

.

Proposition 4 Let I be an interpretation based on the primitive interpretation

J . Then I is a �xpoint of O

T ;J

i� I is a model of T .

This shows that any primitive interpretation J an be extended to a model of

T . In partiular, there is always a greatest and a least model of T extending J .

De�nition 5 Let T be an EL-TBox. The model I of T is alled gfp-model (lfp-

model) of T i� there is a primitive interpretation J suh that I 2 Int(J ) is the

greatest (least) �xpoint of O

T ;J

. Greatest (least) �xpoint semantis onsiders

only gfp-models (lfp-models) as admissible models.

We are now ready to de�ne subsumption w.r.t. the three di�erent types of se-

mantis introdued above.

De�nition 6 Let T be an EL-TBox and A;B be de�ned names

2

ourring in

T . Then,

� A is subsumed by B w.r.t. desriptive semantis (A v

T

B) i� A

I

� B

I

holds for all models I of T .

� A is subsumed by B w.r.t. gfp-semantis (A v

gfp;T

B) i� A

I

� B

I

holds

for all gfp-models I of T .

� A is subsumed by B w.r.t. lfp-semantis (A v

lfp;T

B) i� A

I

� B

I

holds for

all lfp-models I of T .

The main goal of this report is to show that all three subsumption problems

are deidable in polynomial time. To be able to do that, we need some more

information on how least and greatest �xpoints an be onstruted. If the funtion

2

Obviously, we an restrit the attention to subsumption between de�ned onepts sine sub-

sumption between arbitrary onept desriptions an be redued to this problem by introduing

de�nitions for the desriptions.
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is not only monotoni, but also downward (upward) ontinuous, then the greatest

(least) �xpoint an be onstruted by a simple !-iteration. Otherwise, we an

still get the �xpoints through an iteration proess, but this proess may need

larger ordinals than ! (see [19, 2℄ for a more detailed desription).

Given an inreasing hain I

0

�

J

I

1

�

J

I

2

�

J

: : : of interpretations based on J ,

its least upper bound (lub) is the interpretation I based on J suh A

I

i

=

S

j�0

A

I

j

i

holds for all i; 1 � i � k. The funtion O: Int(J )! Int(J ) is upward ontinuous

i�

O(lub(fI

j

j j � 0g)) = lub(fO(I

j

) j j � 0g):

Aordingly, the greatest lower bound (glb) of the dereasing hain I

0

�

J

I

1

�

J

I

2

�

J

: : : is the interpretation I based on J suh A

I

i

=

T

j�0

A

I

j

i

holds for all

i; 1 � i � k. The funtion O: Int(J )! Int(J ) is downward ontinuous i�

O(glb(fI

j

j j � 0g)) = glb(fO(I

j

) j j � 0g):

Proposition 7 Let T be an EL-TBox and J a primitive interpretation. Then

O

T ;J

is upward ontinuous, but not neessarily downward ontinuous.

Proof. (1) Let I

0

�

J

I

1

�

J

I

2

�

J

: : : be an inreasing hain in Int(J ), and let I

be its least upper bound. Upward ontinuity of O

T ;J

is an immediate onsequene

of the fat that

D

I

=

[

j�0

D

I

j

holds for all EL-onept desriptions D. This an in turn easily be shown by

indution on the struture of EL-onept desriptions.

(2) Consider the TBox T := fA � 9r:Ag, and the primitive interpretation J

with

� �

J

:= fa

0

g [ fa

i;j

j 1 � j � ig;

� r

J

:= f(a

0

; a

i;1

) j i � 1g [ f(a

i;j

; a

i;j+1

) j 1 � j < ig.

If we onsider r

J

as the edges of a graph with nodes �

J

, then this graph is a

tree with root a

0

, whih is in�nitely branhing. All other nodes have at most one

suessor node. The root is the origin of in�nitely many paths, one of length 1,

one of length 2, et. The interpretations I

�

(� � 0) based on J are now de�ned

as follows:

� A

I

�

:= fa

0

g [ fa

i;j

j i� j � �g.
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It is easy to see that I

0

�

J

I

1

�

J

I

2

�

J

: : : and that O

T ;J

(I

�

) = I

�+1

.

Consequently, I := glb(fO

T ;J

(I

�

) j � � 0g) = glb(fI

�

j � � 1g). In partiular,

sine a

0

2 A

I

�

for all � � 1, this implies a

0

2 A

I

.

On the other hand, let I

0

:= glb(fI

�

j � � 0g) and I

00

:= O

T ;J

(I

0

). Then

A

I

0

= fa

0

g, and thus A

I

00

= ; 6= A

I

.

The least and the greatest �xpoint ofO

T ;J

an be obtained by iterated appliation

of O

T ;J

, respetively starting with the least and the greatest interpretation based

on J .

De�nition 8 Let T be an EL-TBox, J a primitive interpretation, and I

top

the

greatest and I

bot

the least interpretation based on J , i.e., A

I

top

i

= �

J

and A

I

bot

i

=

; for all i; 1 � i � k. Then we de�ne for every ordinal �:

� I

"�

:= I

bot

and I

#�

:= I

top

if � = 0;

� I

"�+1

:= O

T ;J

(I

"�

) and I

#�+1

:= O

T ;J

(I

#�

);

� I

"�

:= lub(fI

"�

j � < �g and I

#�

:= glb(fI

#�

j � < �g

if � is a limit ordinal.

As usual, let ! denote the �rst in�nite ordinal (i.e., the order type of the non-

negative integers). Sine O

T ;J

is upward ontinuous, Tarski's �xpoint theorem

says that I

"!

is the least �xpoint of O

T ;J

. Sine O

T ;J

need not be downward

ontinuous, I

#!

need not be a �xpoint of O

T ;J

. However, Tarski's �xpoint theo-

rem says that there exists an ordinal � suh that I

#�

is the greatest �xpoint of

O

T ;J

.

In Setion 6 we will also onsider models of T that are the greatest models below

a given interpretation I

0

.

De�nition 9 Let T be an EL-TBox, J a primitive interpretation, and I

0

an

interpretation based on J . The model I of T is alled I

0

-model of T i� it is

based on J and satis�es I �

J

I

0

. The greatest I

0

-model of T (if it exists) is

alled I

0

-gfp-model of T .

If I

0

is itself a model of T , then it is also the I

0

-gfp-model of T . The following

desribes a more general suÆient ondition for the greatest I

0

-model of T to

exist.

Proposition 10 If O

T ;J

(I

0

) �

J

I

0

, then T has an I

0

-gfp-model based on J .

8



Proof. If I 2 Int(J ) is suh that I �

J

I

0

, then the monotoniity of O

T ;J

implies

that O

T ;J

(I) �

J

O

T ;J

(I

0

) �

J

I

0

. Consequently, O

T ;J

is also an operator on

fI j I �

J

I

0

g. Sine it is monotoni, it has a greatest �xpoint in this set as well,

whih is obviously the I

0

-gfp-model of T .

Sine I

0

is the greatest element of the set fI j I �

J

I

0

g, the proof of the propo-

sition shows that the I

0

-gfp-model of T an be obtained by iterated appliation

of the operator O

T ;J

, starting with I

0

.

Corollary 11 Let O

T ;J

(I

0

) �

J

I

0

. We de�ne I

#0

0

:= I

0

, I

#�+1

0

:= O

T ;J

(I

#�

0

),

and I

#�

0

:= glb(fI

#�

0

j � < �g if � is a limit ordinal. Then there exists an ordinal

� suh that I

#�

0

is the I

0

-gfp-model of T .

3 Desription graphs and simulations

In this setion, we will show that EL-TBoxes as well as primitive interpretations

an be represented as desription graphs. Then, we will introdue the notion of a

simulation between nodes of a desription graph, and show some useful properties

of simulations.

3.1 Normalized EL-TBoxes

Before we an translate EL-TBoxes into desription graphs, we must normalize

the TBoxes. In the following, let T be an EL-TBox, N

def

the de�ned onepts

of T , N

prim

the primitive onepts of T , and N

role

the roles of T .

We say that the EL-TBox T is normalized i� A � D 2 T implies that D is of

the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

First, we illustrate this normalization proess by a typial example.

Example 12 Consider the EL-TBox T onsisting of the following onept de�-

nitions:

A

1

� P

1

u A

2

u 9r

1

:9r

2

:A

3

;

A

2

� P

2

u A

3

u 9r

2

:9r

1

:A

1

;

A

3

� P

3

u A

2

u 9r

1

:(P

1

u P

2

):

9



By introduing auxiliary de�nitions, we obtain the new TBox T

0

:

A

1

� P

1

u A

2

u 9r

1

:B

1

;

B

1

� 9r

2

:A

3

;

A

2

� P

2

u A

3

u 9r

2

:B

2

;

B

2

� 9r

1

:A

1

;

A

3

� P

3

u A

2

u 9r

1

:B

3

;

B

3

� P

1

u P

2

:

This TBox is not yet normalized sine the de�nitions of A

1

, A

2

and A

3

ontain

de�ned onepts in their top-level onjuntion.

Let us �rst onentrate on the de�nitions of A

2

and A

3

. The ourrene of A

3

in

the top-level onjuntion of the de�nition of A

2

shows that A

2

is subsumed by

A

3

, and the ourrene of A

2

in the top-level onjuntion of the de�nition of A

3

shows that A

3

is subsumed by A

2

. Thus, the onepts A

2

and A

3

are equivalent

(i.e., are interpreted by the same set in all models of the TBox). In addition

A

2

(and the equivalent onept A

3

) is subsumed by P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

.

Thus, we an replae every ourrene of A

3

in T

0

by A

2

, and the de�nition of

A

2

by the inlusion onstraint A

2

v P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

, with the obvious

semantis that the interpretation of A

2

must be ontained in the interpretation

of the onept desription on the right-hand side:

A

1

� P

1

u A

2

u 9r

1

:B

1

;

B

1

� 9r

2

:A

2

;

A

2

v P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

2

� 9r

1

:A

1

;

B

3

� P

1

u P

2

:

In order to transform this bak into a TBox, we must get rid of the inlusion

onstraint. How to do this depends on the semantis used for yli de�nitions.

If we use desriptive semantis, then we an employ Nebel's approah [20℄ to turn

inlusion statements into de�nitions: we introdue a new primitive onept

�

A

2

and replae A

2

v P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

by the de�nition

A

2

�

�

A

2

u P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

:

For �xpoint semantis, this approah annot be employed. The reason is that the

interpretation of the primitive onept

�

A

2

is �xed by the primitive interpretation,

and thus annot be maximized or minimized.

If we use gfp-semantis, then we an replae the inlusion onstraint by the de�-

nition

A

2

� P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

:

In fat, this is the largest possible interpretation of A

2

that the inlusion on-

straint allows.

10



Finally, if we use lfp-semantis, then A

2

beomes unsatis�able, i.e., A

2

is inter-

preted by the empty set in all lfp-models of the TBox together with the inlusion

onstraint. In fat, the empty set is the smallest interpretation of A

2

that the

inlusion onstraint allows. Consequently, all de�ned onepts whose right-hand

sides ontain A

2

are also interpreted by the empty set in all lfp-models. The same

is true for all de�ned onepts whose de�ntions ontain these onepts, et. For

this reason, we an remove from the TBox the inlusion onstraint together with

all de�nitions that refer (diretly or indiretly) to A

2

. (When deiding subsump-

tion w.r.t. lfp-semantis, one must just keep in mind that all the onepts whose

de�nitions have been removed are unsatis�able, and thus are subsumed by all the

other onepts.)

For the three types of semantis, we thus have shown how to remove the inlusion

onstraint. The TBoxes obtained this way still need not be in normal form sine

(for gfp- and desriptive semantis) the de�nition of A

1

still refers to A

2

on the

top-level. However, we an now just replae the top-level A

2

in the de�nition of

A

1

by its de�ning onept desription. This way, we end up with a normalized

TBox. For gfp- and desriptive semantis, we an now add a de�nition for A

3

,

whih just has the same right-hand side as the de�nition of A

2

.

With respet to gfp-semantis, we thus obtain the following normalized TBox

T

gfp

:

A

1

� P

1

u P

2

u P

3

u 9r

1

:B

1

u 9r

2

:B

2

u 9r

1

:B

3

;

B

1

� 9r

2

:A

2

;

A

2

� P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

2

� 9r

1

:A

1

;

A

3

� P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

3

� P

1

u P

2

;

and w.r.t. desriptive semantis, we obtain the normalized TBox T

des

:

A

1

� P

1

u

�

A

2

u P

2

u P

3

u 9r

1

:B

1

u 9r

2

:B

2

u 9r

1

:B

3

;

B

1

� 9r

2

:A

2

;

A

2

�

�

A

2

u P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

2

� 9r

1

:A

1

;

A

3

�

�

A

2

u P

2

u P

3

u 9r

2

:B

2

u 9r

1

:B

3

;

B

3

� P

1

u P

2

:

With respet to lfp-semantis, only the de�nition

B

3

� P

1

u P

2

remains, whereas all the other de�ned onepts are unsatis�able.

The normalization approah used in the example an easily be generalized to

arbitrary EL-TBoxes. Assume, without loss of generality, that the introdution

11



of auxiliary de�nitions (as illustrated in Example 12) has already been done. Let

G be the graph whose nodes are the de�ned onepts of the TBox, and where

there is an edge from A to B i� B ours in the top-level onjuntion of the

de�nition of A. We write

� B � A i� there is a path in G leading from A to B,

� A

�

=

B i� A � B and B � A, and

� B � A i� B � A and not A

�

=

B.

In Example 12 we have A

2

�

=

A

3

and A

2

� A

1

.

By de�nition, � is a quasi-ordering and

�

=

is the equivalene indued by �. On

the

�

=

-equivalene lasses, � indues a partial ordering:

[A℄ � [B℄ i� A � B;

where [C℄ = fC

0

j C

�

=

C

0

g.

All the onepts that belong to the same

�

=

-equivalene lass are obviously in-

terpreted by the same set in all models of the TBox. We start with a minimal

equivalene lasses w.r.t. �, and treat it as illustrated with the help of A

2

and A

3

in Example 12. Then, we replae the ourrenes of elements of this lass on the

top-level by their new de�nition, and ontinue with the next equivalene lass.

Sine only top-level ourrenes are replaed, the replaement of de�ned onepts

by their de�nitions annot lead to an exponential blow-up as in the general ase

(by using idempoteny of u). To sum up, we have skethed how to prove the

following proposition:

Proposition 13 Subsumption between onepts de�ned in an EL-TBox w.r.t.

lfp-, gfp, and desriptive semantis an be redued in polynomial time to sub-

sumption between onepts de�ned in a normalized EL-TBox.

3.2 Desription graphs

In the following, we will assume without loss of generality that all TBoxes are

normalized. Normalized EL-TBoxes an be viewed as graphs whose nodes are

the de�ned onepts, whih are labeled by sets of primitive onepts, and whose

edges are given by the existential restritions. For the rest of this subsetion,

we �x a normalized EL-TBox T with primitive onepts N

prim

, de�ned onepts

N

def

, and roles N

role

.

De�nition 14 An EL-desription graph is a graph G = (V;E; L) where

12



� V is a set of nodes;

� E � V �N

role

� V is a set of edges labeled by role names;

� L: V ! 2

N

prim

is a funtion that labels nodes with sets of primitive onepts.

The TBox T an be translated into the following EL-desription graph G

T

=

(N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned onepts of T ;

� if A is a de�ned onept and

A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its de�nition in T , then

{ L

T

(A) = fP

1

; : : : ; P

m

g, and

{ A is the soure of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

Any primitive interpretation J = (�

J

; �

J

) an be translated into the following

EL-desription graph G

J

= (�

J

; E

J

; L

J

):

� the nodes of G

J

are the elements of �

J

;

� E

J

:= f(x; r; y) j (x; y) 2 r

J

g;

� L

J

(x) = fP 2 N

prim

j x 2 P

J

g for all x 2 �

J

.

An example of an EL-desription graph an be found in Figure 1. The translation

between EL-TBoxes (primitive interpretations) to EL-desription graphs works

in both diretions, i.e., any EL-desription graph an also be view as an EL-TBox

(primitive interpretation). For example, the EL-desription graph of Figure 1 an

also be viewed as representing the following primitive interpretation J :

� �

J

:= fA

1

; A

2

; A

3

; B

1

; B

2

; B

3

g;

� P

J

1

:= fA

1

; B

3

g, P

J

2

:= fA

1

; A

2

; A

3

; B

3

g, and P

J

3

:= fA

1

; A

2

; A

3

g;

� r

J

1

:= f(A

1

; B

1

); (A

1

; B

3

); (A

2

; B

3

); (A

3

; B

3

); (B

2

; A

1

)g and

r

J

2

:= f(A

1

; B

2

); (A

2

; B

2

); (A

3

; B

2

); (B

1

; A

2

)g.
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B

3

A

1

A

2

B

2

B

1

A

3

r

1

r

1

r

2

r

1

r

1

r

2

r

2

;

r

2

r

1

fP

1

; P

2

; P

3

g fP

2

; P

3

g fP

2

; P

3

g

;

fP

1

; P

2

g

Figure 1: The EL-desription graph of the normalized TBox T

gfp

in Example 12.

3.3 Simulations

Simulations are binary relations between nodes of two EL-desription graphs that

respet labels and edges in the sense de�ned below.

De�nition 15 Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-desription graphs. The

binary relation Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

suh

that (v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z: G

1

*

� G

2

to express that Z is a simulation from G

1

to G

2

.

It is easy to see that the set of all simulations from G

1

to G

2

is losed under

arbitrary unions. Consequently, there always exists a greatest simulation from

G

1

to G

2

. If G

1

;G

2

are �nite, then this greatest simulation an be omputed in

polynomial time. Basially, one starts with

Z

0

:= f(v

1

; v

2

) 2 V

1

� V

2

j L

1

(v

1

) � L

2

(v

2

)g;

and then removes tuples if they violate (S2) until no more tuples an be removed.

Sine testing whether (S2) is violated for a given pair of nodes an be realized in

polynomial time and Z

0

ontains only polynomially many tuples, this proedures

14



terminates in polynomial time, and it is easy to show that it omputes the greatest

simulation from G

1

to G

2

. A more eÆient algorithm for omputing the greatest

simulation between two �nite graphs an be found in [12℄. Its omplexity is

O(mn), where m is the number of edges and n is the number of nodes of the two

graphs (assuming that m � n).

Proposition 16 Let G

1

;G

2

be two �nite EL-desription graphs, v

1

a node of G

1

and v

2

a node of G

2

. Then we an be deide in polynomial time whether there is

a simulation Z: G

1

*

� G

2

suh that (v

1

; v

2

) 2 Z.

Proof. It is easy to see that there is a simulation Z: G

1

*

� G

2

suh that (v

1

; v

2

) 2 Z

i� the greatest simulation

b

Z: G

1

*

� G

2

satis�es (v

1

; v

2

) 2

b

Z. Thus, the proposition

immediately follows from the fat that

b

Z an be omputed in polynomial time.

De�nition 15 also overs the ase where G

1

= G

2

. In this ase, the identity on the

nodes of G

1

= G

2

is a simulation. Consequently, the greatest simulation ontains

the identity.

We will later use the fat that the lass of all simulations is losed under ompo-

sition.

Lemma 17 Let G

1

;G

2

;G

3

be EL-desription graphs, and let Z

1

: G

1

*

� G

2

and

Z

2

: G

2

*

� G

3

be simulations. Then

Z

1

Æ Z

2

:= f(v; v

00

) j there exists v

0

suh that (v; v

0

) 2 Z

1

and (v

0

; v

00

) 2 Z

2

g

is also a simulation.

4 Subsumption w.r.t. gfp-semantis

In the following, let T be a normalized EL-TBox with primitive onepts N

prim

,

de�ned onepts N

def

, and roles N

role

. In this setion, we will show that A v

gfp;T

B holds for two de�ned onepts A;B i� there is a simulation Z: G

T

*

� G

T

suh

that (B;A) 2 Z. As an auxiliary result we give a haraterization of when an

individual of a gfp-model belongs to a de�ned onept in this model.

Proposition 18 Let J be a primitive interpretation and I the gfp-model of T

based on J . Then the following are equivalent for any A 2 N

def

and x 2 �

J

:

1. x 2 A

I

.

2. There is a simulation Z: G

T

*

� G

J

suh that (A; x) 2 Z.
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Proof. Let G

T

= (N

def

; E

T

; L

T

) and G

J

= (�

J

; E

J

; L

J

).

(1) 2) Assume that x 2 A

I

. The relation Z � N

def

��

J

is de�ned as follows:

Z := f(B; y) 2 N

def

��

J

j y 2 B

I

g:

Sine x 2 A

I

, we have (A; x) 2 Z. It remains to be shown that Z satis�es (S1)

and (S2) of De�nition 15. Thus, let (B; y) 2 Z, and let

B � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

be the de�nition of B in T .

(S1) Sine (B; y) 2 Z, we have y 2 B

I

, and thus y 2 P

I

i

= P

J

i

for i = 1; : : : ; m.

Consequently, L

T

(B) = fP

1

; : : : ; P

m

g � fP 2 N

prim

j y 2 P

J

g = L

J

(y).

(S2) Now onsider B

i

with (B; r

i

; B

i

) 2 E

T

. Sine y 2 B

I

� (9r

i

:B

i

)

I

, we know

that there exists a y

i

2 �

J

suh that (y; y

i

) 2 r

J

i

and y

i

2 B

I

i

. But then we have

(y; r

i

; y

i

) 2 E

J

and (B

i

; y

i

) 2 Z.

(2) 1) Assume that Z: G

T

*

� G

J

is a simulation suh that (A; x) 2 Z. Sine I

is the gfp-model of T based on J , there is an ordinal � suh that I = I

#�

.

Now, we onsider triples (B; y; �) onsisting of a de�ned onept B 2 N

def

,

an individual y 2 �

J

, and an ordinal �, and show (by trans�nite indution

on �) that (B; y) 2 Z implies y 2 B

I

#�

. For the triple (A; x; �) this yields

x 2 A

I

#�

= A

I

.

Assume that (B; y) 2 Z, but y 62 B

I

#�

.

Case 1: � is a limit ordinal. Then we have

B

I

#�

= B

glb(fI

#

j<�g)

=

\

<�

B

I

#

;

and thus there exists an ordinal  < � suh that (B; y) 2 Z, but y 62 B

I

#

.

However, the indution assumption for the smaller ordinal  says that (B; y) 2 Z

implies y 2 B

I

#

.

Case 2: � is a suessor ordinal, i.e., � =  + 1. Let

B � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

be the de�nition of B in T . Then,

B

I

#�

= O

T ;J

(B

I

#

) = (P

1

u : : : u P

m

)

I

#

\ (9r

1

:B

1

u : : : u 9r

`

:B

`

)

I

#

= P

J

1

\ : : : \ P

J

m

\ (9r

1

:B

1

u : : : u 9r

`

:B

`

)

I

#

:

Sine (B; y) 2 Z implies L

T

(B) = fP

1

; : : : ; P

m

g � fP 2 N

prim

j y 2 P

J

g =

L

J

(y), we know that y 2 P

J

i

for all i = 1; : : : ; m. Consequently, y 62 B

I

#�

is due

to the fat that y 62 (9r

j

:B

j

)

I

#

for some j; 1 � j � `.
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Sine (B; y) 2 Z and (B; r

j

; B

j

) 2 E

T

, the fat that Z is a simulation implies

that there exists an individual y

0

2 �

J

suh that (y; r

j

; y

0

) 2 E

J

and (B

j

; y

0

) 2

Z. This yields (y; y

0

) 2 r

J

j

(by de�nition of E

J

) and y

0

2 B

I

#

j

(by indution

sine  < �). But then y 2 (9r

j

:B

j

)

I

#

, ontraditing our assumption that

y 62 (9r

j

:B

j

)

I

#

is responsible for the fat that y 62 B

I

#�

.

This proposition an now be used to prove the following haraterization of sub-

sumption w.r.t. gfp-semantis in EL.

Theorem 19 Let T be an EL-TBox and A;B de�ned onepts in T . Then the

following are equivalent:

1. A v

gfp;T

B.

2. There is a simulation Z: G

T

*

� G

T

suh that (B;A) 2 Z.

Proof. (2) 1) Assume that the simulation Z: G

T

*

� G

T

satis�es (B;A) 2 Z. Let

J be a primitive interpretation and I the gfp-model of T based on J . We must

show that x 2 A

I

implies x 2 B

I

.

By Proposition 18, x 2 A

I

implies that there is a simulation Y : G

T

*

� G

J

suh

that (A; x) 2 Y . But then X := Z Æ Y is a simulation from G

T

to G

J

suh that

(B; x) 2 X. By Proposition 18, this implies x 2 B

I

.

(1) 2) Assume that A v

gfp;T

B. We onsider the graph G

T

, and view it as an

EL-desription graph of a primitive interpretation. Thus, let J be the primitive

interpretation with G

T

= G

J

, and let I be the gfp-model of T based on J .

Sine the identity is a simulation Id: G

T

*

� G

T

= G

J

that satis�es (A;A) 2 Id,

Proposition 18 yields A 2 A

I

. But then A v

gfp;T

B implies A 2 B

I

, and thus

Proposition 18 yields the existene of a simulation Z: G

T

*

� G

J

= G

T

suh that

(B;A) 2 Z.

The theorem together with Proposition 16 shows that subsumption w.r.t. gfp-

semantis in EL is tratable.

Corollary 20 Subsumption w.r.t. gfp-semantis in EL an be deided in polyno-

mial time.

This result is quite surprising sine, for the DL FL

0

(whih allows for onjun-

tion and value restritions only), subsumption w.r.t. gfp-semantis is already

PSPACE-omplete.
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B

A

0

r

r r

r r

; ;

;;

C

D; A

Figure 2: The EL-desription graph of the TBox in Example 21.

Example 21 Consider the TBox T onsisting of the following onept de�ni-

tions:

B � 9r:C; C � 9r:D; D � 9r:C;

A � 9r:A

0

; A

0

� 9r:D:

The EL-desription graph G

T

orresponding to this TBox an be found in Fig-

ure 2. Let V

T

= fA;A

0

; B; C;Dg denote the set of nodes of this graph. Then

Z := V �V is a simulation from G

T

to G

T

. Consequently, all the de�ned onepts

in T subsume eah other w.r.t. gfp-semantis.

5 Subsumption w.r.t. lfp-semantis

For the sake of ompleteness, we also treat lfp-semantis in this report. It should

be noted, however, that the results of this setion demonstrate that lfp-semantis

is not interesting in EL.

Let T be an EL-TBox and G

T

the orresponding EL-desription graph. Where

A;B are nodes of G

T

, we write A

�

!

T

B to denote that there is a path in G

T

from

A to B, and A

+

!

T

B to denote that there is a non-empty path in G

T

from A to

B. We de�ne

Cy

T

:= fA j there exists a node B suh that A

�

!

T

B

+

!

T

Bg;

i.e., Cy

T

onsists of the nodes in G

T

that an reah a yli path in G

T

. The

following lemma is an easy onsequene of the de�nition of Cy

T

.

Lemma 22 If A 2 Cy

T

, then there exist a de�ned onept A

0

2 Cy

T

and a

role r suh that (A; r; A

0

) is an edge in G

T

.

18



Proposition 23 Let T be an EL-TBox and A a de�ned onept in T . If A 2

Cy

T

, then A is unsatis�able w.r.t. lfp-semantis, i.e., A

I

= ; holds for all

lfp-models I of T .

Proof. Let J be a primitive interpretation and I the lfp-model of T based on J .

Sine O

T ;J

is upward ontinuous by Proposition 7, we know that I = I

"!

, and

thus A

I

=

S

n�0

A

I

"n

. We show by indution on n that A

I

"n

= ; holds for all

n � 0, whih yields A

I

= ;.

(n = 0) A

I

"0

= ; by de�nition of I

"0

.

(n ! n + 1) By Lemma 22 there exists a de�ned onept A

0

2 Cy

T

and a role

r suh that (A; r; A

0

) is an edge in G

T

. Thus, if A � D is the de�nition of A in

T , then D ontains the onjunt 9r:A

0

in its top-level onjuntion. By indution,

we know that A

0I

"n

= ;, and thus A

I

"n+1

= O

T ;J

(A

I

"n

) = D

I

"n

= ;.

Sine all the de�ned onepts in Cy

T

are unsatis�able, their de�nitions an be

removed from the TBox without hanging the meaning of the onepts whose

de�nition does not refer to an element of Cy

T

. This leaves us with an ayli

terminology. Consequently, the only thing that yli de�nitions an express

w.r.t. lfp-semantis in EL is unsatis�ability of a de�ned onept. However, sine

in EL all onepts referring to an unsatis�able onept are also unsatis�able, this

does not buy us muh.

In Example 21, all the de�ned onepts belong to Cy

T

, and thus they are all

unsatis�able w.r.t. lfp-semantis.

Corollary 24 Subsumption w.r.t. lfp-semantis in EL an be deided in polyno-

mial time.

Proof. Let T be an EL-TBox and A;B be de�ned onepts in T . We want to

deide whether or not A v

lfp;T

B holds. Obviously, Cy

T

an be omputed in

polynomial time.

Case 1: A and B do not belong to Cy

T

. Let T

0

be the TBox obtained from T

by removing all the de�nitions for elements in Cy

T

. It is easy to see that T

0

is

an ayli TBox that does not ontain any of the onept names in Cy

T

(also

not on the right-hand side of a de�nition). Sine the de�nitions of A;B do not

refer to any element of Cy

T

, we have A v

lfp;T

B i� A v

lfp;T

0

B. Sine T

0

is

ayli, lfp-semantis and gfp-semantis agree on T

0

[22℄, and thus A v

lfp;T

B i�

A v

gfp;T

0

B. By Corollary 20, A v

gfp;T

0

B an be deided in polynomial time.

Case 2: A 2 Cy

T

. Sine any lfp-model of T interprets A by the empty set, we

learly have A v

lfp;T

B.

Case 3: A 62 Cy

T

and B 2 Cy

T

. Then A v

lfp;T

B does not hold. To see

this it is enough to show that there is an lfp-model of T that interprets A by
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a non-empty set. Consider the TBox T

0

onstruted in Case 1. Any lfp-model

of T

0

an be extended to an lfp-model of T by assigning the empty set to the

elements of Cy

T

. However, the lfp-models of T

0

are just the gfp-models of T

0

.

Now, let us view G

T

0

as the graph of a primitive interpretation J , and let I be

the gfp-model based on J . The identity on the nodes of G

T

0

is a simulation that

ontains the pair (A;A). By Proposition 18, this shows that A 2 A

I

.

6 Subsumption w.r.t. desriptive semantis

Let T be an EL-TBox and G

T

the orresponding EL-desription graph. Sine

every gfp-model of T is a model of T , A v

T

B implies A v

gfp;T

B. Consequently,

A v

T

B implies that there is a simulation Z: G

T

*

� G

T

with (B;A) 2 Z. In the

following we will show what additional properties the simulation Z must satisfy

for the impliation in the other diretion to hold.

To get an intuition on the di�erene between gfp- and desriptive semantis, let us

onsider Example 21. With respet to gfp-semantis, all the de�ned onepts of T

are equivalent (i.e., subsume eah other). With respet to desriptive semantis,

A;B;D are still equivalent, C is equivalent to A

0

, but A

0

is not equivalent to B,

and C and D are also not equivalent (in both ases, the onepts are not even

omparable w.r.t. subsumption).

To see that C and A

0

are equivalent w.r.t. desriptive semantis, it is enough to

note that the following identities hold in every model I of T :

A

0I

= (9r:D)

I

= C

I

:

A similar argument shows that B and D are equivalent. In addition, equivalene

of C and A

0

obviously also implies equivalene of A and B. The following model

of T is a ounterexample to the other subsumption relationships:

1. �

I

:= f; dg;

2. r

I

:= f(; d); (d; )g;

3. A

I

:= fdg, A

0I

:= fg, C

I

:= fg, D

I

:= fdg, B

I

:= fdg.

We will see below that the reason for A

0

and B not being equivalent is that in

the in�nite path in G

T

starting with A

0

, one reahes D with an odd number of

edges, whereas C is reahed with an even number; for the path starting with B,

it is just the opposite. In ontrast, the in�nite paths starting respetively with

A and B \synhronize" after a �nite number of steps.

To formalize this intuition, we must introdue some notation. Let T be an EL-

TBox, G

T

the orresponding EL-desription graph, and Z: G

T

*

� G

T

a simulation.
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B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Figure 3: A (B;A)-simulation hain.

De�nition 25 The path p

1

: B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � is Z-simulated

by the path p

2

: A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � � i� (B

i

; A

i

) 2 Z for all i � 0. In

this ase we say that the pair (p

1

; p

2

) is a (B;A)-simulation hain w.r.t. Z. (see

Figure 3).

Consider the TBox T and the simulation Z introdued in Example 21. Then

B

r

! C

r

! D

r

! C

r

! D

r

! � � �

Z# Z# Z# Z# Z#

A

r

! A

0

r

! D

r

! C

r

! D

r

! � � �

is a (B;A)-simulation hain w.r.t. Z, and

B

r

! C

r

! D

r

! C

r

! D

r

! � � �

Z# Z# Z# Z# Z#

A

0

r

! D

r

! C

r

! D

r

! C

r

! � � �

is a (B;A

0

)-simulation hain w.r.t. Z. Note that the �rst hain synhronizes after

a �nite number of steps in the sense that there is a Z-link (in fat in�nitely many

in this ase) between the same de�ned onept. In ontrast, the seond hain

does not synhronize in this sense. We will see below that this is responsible

for the fat that A is subsumed by B w.r.t. desriptive semantis, but A

0

is not

subsumed by B w.r.t. desriptive semantis.

If (B;A) 2 Z, then (S2) of De�nition 15 implies that, for every in�nite path p

1

starting with B

0

:= B, there is an in�nite path p

2

starting with A

0

:= A suh

that p

1

is Z-simulated by p

2

. In the following we onstrut suh a simulating

path step by step. The main point is, however, that the deision whih onept

A

n

to take in step n should depend only on the partial (B;A)-simulation hain

already onstruted, and not on the parts of the path p

1

not yet onsidered.

De�nition 26 A partial (B;A)-simulation hain is of the form depited in Fig-

ure 4. A seletion funtion S for A;B and Z assigns to eah partial (B;A)-

simulation hain of this form a de�ned onept A

n

suh that (A

n�1

; r

n

; A

n

) is an

edge in G

T

and (B

n

; A

n

) 2 Z.

Given a path B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � and a de�ned onept A suh

that (B;A) 2 Z, one an use a seletion funtion S for A;B and Z to onstrut a
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r
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r
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! � � �
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0

r
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r
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! � � �
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Figure 4: A partial (B;A)-simulation hain.
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Figure 5: An EL-desription graph of a yli EL-TBox.

Z-simulating path. In this ase we say that the resulting (B;A)-simulation hain

is S-seleted.

Example 27 Consider the EL-desription graph of Figure 5. Where V denotes

the set of all nodes of this graph, it is easy to see that Z := V �V is a simulation

suh that (B;A) 2 Z. There are two seletion funtions for A;B and Z. The

funtion S

1

that assigns E

1

to the partial (B;A)-simulation hain

B

r

! E

Z#

A

and the funtion S

2

that assigns E

2

to this hain.

De�nition 28 Let A;B be de�ned onepts in T , and Z: G

T

*

� G

T

a simulation

with (B;A) 2 Z. Then Z is alled (B;A)-synhronized i� there exists a seletion

funtion S for A;B and Z suh that the following holds: for every S-seleted

(B;A)-simulation hain of the form depited in Figure 3 there exists an i � 0

suh that A

i

= B

i

.

The simulation Z of Example 27 is not (B;A)-synhronized. In fat, if we take

the seletion funtion S

1

, then the S

1

-seleted (B;A)-simulation hain indued by

22



the in�nite path B

r

! E

r

! D

r

! D

r

! � � � does not satisfy the ondition stated

in De�nition 28. If we take the seletion funtion S

2

instead, then the S

2

-seleted

(B;A)-simulation hain indued by the in�nite path B

r

! E

r

! C

r

! C

r

! � � �

does not satisfy this ondition.

We are now ready to state our haraterization of subsumption w.r.t. desriptive

semantis.

Theorem 29 Let T be an EL-TBox, and A;B de�ned onepts in T . Then the

following are equivalent:

1. A v

T

B.

2. There is a (B;A)-synhronized simulation Z: G

T

*

� G

T

suh that (B;A) 2

Z.

As in the ase of gfp-semantis, we prove the theorem by �rst giving a hara-

terization of when an individual of a model belongs to a de�ned onept in this

model. Sine any model I of T is itself an I-gfp-model of T , it is suÆient to

formulate the ondition for I-gfp-models of T .

Proposition 30 Let J be a primitive interpretation, I

0

an interpretation based

on J suh that O

T ;J

(I

0

) �

J

I

0

, and I the I

0

-gfp-model of T . Then the following

are equivalent for any A 2 N

def

and x 2 �

J

:

1. x 2 A

I

.

2. There is a simulation Z: G

T

*

� G

J

suh that

(a) (A; x) 2 Z; and

(b) if (B; y) 2 Z then y 2 B

I

0

.

Proof. Instead of proving this result diretly, we will redue it to Proposition 18.

To this purpose, we de�ne the new TBox

T

0

:= fB � D u P

B

j B � D 2 T g;

where the P

B

are new primitive onepts. Obviously, T and T

0

have the same

de�ned onepts. For T

0

we de�ne the primitive interpretation J

0

as follows:

� �

J

0

:= �

J

;

� r

J

0

:= r

J

for all role names r;

� P

J

0

:= P

J

if P is a primitive onept in T ;

23



� P

J

0

B

:= B

I

0

where B is a de�ned onept.

We de�ne:

� I

#0

:= I

0

and I

0#0

:= I

0

top

, where I

0

top

is the interpretation based on J

0

suh

that B

I

0

top

= �

J

0

for all de�ned onepts B;

� I

#�+1

:= O

T ;J

(I

#�

) and I

0#�+1

:= O

T

0

;J

0

(I

0#�

);

� I

#�

:= glb(fI

#�

j � < �g and I

0#�

:= glb(fI

0#�

j � < �g if � is a limit

ordinal.

Let B be a de�ned onept. We laim that B

I

#n

� B

I

0#n+1

� B

I

#n+1

holds for all

n � 0. Before proving this laim, we show that it implies the statement of the

proposition.

The laim obviously implies that I

#!

agrees with I

0#!

on all de�ned onepts, and

thus the same is true for all larger ordinals. This implies that the I

0

-gfp-model

I of T based on J agrees on all de�ned onepts with the gfp-model I

0

of T

0

based on J

0

. Consequently, x 2 A

I

i� x 2 A

I

0

.

By Proposition 18, x 2 A

I

0

is equivalent to the existene of a simulation Z

0

: G

T

0

*

�

G

J

0

suh that (A; x) 2 Z

0

. The only di�erene between G

T

0

and G

T

is that in G

T

0

the label of eah node B additionally ontains P

B

. The only di�erene between

G

J

0

and G

J

is that in G

J

0

the labels of nodes may additionally ontain the new

primitive onepts P

B

. Consequently, Z

0

is a simulation also from G

T

to G

J

. In

addition, (B; y) 2 Z

0

implies that P

B

belongs to the label of y in G

J

0

, and thus

y 2 P

J

0

B

= B

I

0

. Conversely, if Z: G

T

*

� G

J

is a simulation satisfying (2b) of the

proposition, then it is also a simulation from G

T

0

to G

J

0

.

To �nish the proof of the proposition, we show by indution on n that B

I

#n

�

B

I

0#n+1

� B

I

#n+1

holds for all n � 0. Let B � D be the de�nition of B in T .

The de�nition of B in T

0

is then B � D u P

B

.

(n = 0) We have

B

I

#1

= B

O

T ;J

(I

0

)

= D

I

0

and

B

I

0#1

= B

O

T

0

;J

0

(I

0

top

)

= D

I

0

top

\ P

J

0

B

= D

I

0

top

\B

I

0

:

Monotoniity of the onept onstrutors of EL implies that D

I

0

� D

I

0

top

and

the assumption O

T ;J

(I

0

) �

J

I

0

yields B

I

#1

= B

O

T ;J

(I

0

)

� B

I

0

= B

I

#0

. Thus,

we have B

I

#1

� D

I

0

top

and B

I

#1

� B

I

0

, whih taken together yields B

I

#1

�

D

I

0

top

\ B

I

0

= B

I

0#1

� B

I

0

= B

I

#0

.

(n ! n + 1) Assume that B

I

#i

� B

I

0#i+1

� B

I

#i+1

holds for all i � n. Then we

have
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1. B

I

#n+2

= D

I

#n+1

� D

I

0#n+1

by indution and the monotoniity of the on-

ept onstrutors of EL.

2. B

I

#n+2

� B

I

#n+1

� B

I

#n+1

� � � � � B

I

0

= P

J

0

B

sine I

#0

= I

0

�

J

O

T ;J

(I

0

) = I

#1

and the monotoniity of O

T ;J

imply I

#0

�

J

I

#1

�

J

I

#2

�

J

� � � .

3. Consequently B

I

#n+2

� D

I

0#n+1

\ P

J

0

B

= B

O

T

0

;J

0

(I

0#n+1

)

= B

I

0#n+2

.

4. Finally, B

I

0#n+2

= D

I

0#n+1

\P

J

0

B

= D

I

0#n+1

\B

I

0

� D

I

#n

\B

I

0

= B

I

#n+1

. The

inlusion holds by indution and the monotoniity of the onept onstru-

tors of EL, and the last identity holds sine D

I

#n

= B

I

#n+1

� B

I

#0

= B

I

0

.

To sum up, we have shown B

I

#n+2

� B

I

0#n+2

� B

I

#n+1

, whih ompletes the

indution proof.

Proof of (2)! (1) of Theorem 29

Assume that Z: G

T

*

� G

T

is a (B;A)-synhronized simulation suh that (B;A) 2

Z, and let S be the seletion funtion required in the de�nition of a (B;A)-

synhronized simulation.

To show A v

T

B, we onsider an arbitrary model I of T suh that x 2 A

I

, and

show that x 2 B

I

. Let J be the primitive interpretation on whih I is based.

Then I is itself the I-gfp-model of T based on J . Consequently, Proposition 30

shows that x 2 A

I

implies the existene of a simulation Y : G

T

*

� G

J

suh that

(a) (A; x) 2 Y , and

(b) (C; y) 2 Y implies y 2 C

I

.

Now, assume that x 62 B

I

. Where

B � P

1

u : : : u P

m

u 9s

1

:C

1

u : : : u 9s

`

:C

`

is the de�nition of B in T , this implies that there is an index i; 1 � i � m, suh

that x 62 P

I

i

= P

J

i

or an index j; 1 � j � ` suh that x 62 (9s

j

:C

j

)

I

. The fats

that (B;A) 2 Z and x 2 A

I

obviously imply that the �rst alternative annot

our. Thus, there is an index j; 1 � j � ` suh that x 62 (9s

j

:C

j

)

I

.

Consider the partial (B;A)-simulation hain

B = B

0

r

1

! B

1

Z#

A = A

0
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where B

1

:= C

j

and r

1

:= s

j

. The seletion funtion S yields a de�ned onept A

1

suh that (B

1

; A

1

) 2 Z and (A

0

; r

1

; A

1

) is an edge in G

T

. Sine Y is a simulation

with (A

0

; x) 2 Y , this implies the existene of an individual x

1

2 �

J

suh

that (x; r

1

; x

1

) is an edge in G

J

and (A

1

; x

1

) 2 Y . Thus, we have the following

situation:

B = B

0

r

1

! B

1

Z# Z#

A = A

0

r

1

! A

1

Y # Y #

x

0

r

1

! x

1

where x

0

:= x. By our assumption, x

0

2 A

I

0

nB

I

0

.

Lemma 31 x

1

2 A

I

1

nB

I

1

.

Proof. Sine Y is a simulation satisfying ondition (b) from above, Proposition 30

shows that (A

1

; x

1

) 2 Y implies x

1

2 A

I

1

.

Now, assume that x

1

2 B

I

1

= C

I

j

. Sine (x; r

1

; x

1

) is an edge in G

J

, we know that

(x; x

1

) 2 r

J

1

= r

I

1

. But then r

1

= s

j

yields x 2 (9s

j

:C

j

)

I

, whih ontradits our

hoie of j.

The lemma shows that we an now ontinue with x

1

; B

1

; A

1

in plae of x

0

; B

0

; A

0

,

et. This yields the following pair of simulation hains:

B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Y # Y # Y # Y #

x

0

r

1

! x

1

r

2

! x

2

r

3

! x

3

r

4

! � � �

where x

n

2 A

I

n

n B

I

n

for all n � 0. However, the upper hain was onstruted

using the seletion funtion S (i.e., it is S-seleted), and thus there exists an index

n � 0 suh that A

n

= B

n

. This is an obvious ontradition to x

n

2 A

I

n

nB

I

n

. Thus,

our assumption x 2 A

I

n B

I

is refuted, whih ompletes the proof of (2) ! (1)

of Theorem 29.

Proof of (1)! (2) of Theorem 29

Assume that A v

T

B. We onsider the graph G

T

= (V

T

; E

T

; L

T

), and view it as

an EL-desription graph desribing a primitive interpretation. Let J denote the

primitive interpretation suh that G

T

= G

J

.

First, we will onstrut an interpretation I

0

based on J suh that O

T ;J

(I

0

) �

J

I

0

. To this purpose, we onstrut an appropriate simulation Y : G

T

*

� G

T

, and
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then de�ne for all de�ned onepts C:

(�) C

I

0

:= fC

0

j (C;C

0

) 2 Y g:

We de�ne Y :=

S

n�0

Y

n

, where the relations Y

n

are de�ned by indution on n:

Y

0

is the identity on the nodes of G

T

= G

J

. If Y

n

is already de�ned, then

Y

n+1

:= Y

n

[ f(C;C

0

) j (1) L

T

(C) � L

T

(C

0

);

(2) (C; r

1

; C

1

); : : : ; (C; r

`

; C

`

) are all the edges in G

T

with soure C, and

(3) there are edges (C

0

; r

1

; C

0

1

); : : : ; (C

0

; r

`

; C

0

`

) in G

T

suh that (C

1

; C

0

1

) 2 Y

n

; : : : ; (C

`

; C

0

`

) 2 Y

n

g:

Lemma 32 Y is a simulation.

Proof. First, we show by indution on n that all the relations Y

n

are simulations.

(n = 0) The identity is obviously a simulation.

(n ! n + 1) Assume that Y

n

is a simulation. To show that Y

n+1

is also a

simulation, assume that (C;C

0

) 2 Y

n+1

and (C; r;D) 2 E

T

. If (C;C

0

) 2 Y

n

, then

the assumption that Y

n

is a simulation yields L

T

(C) � L

T

(C

0

) and the existene

of a de�ned onept D

0

suh that (D;D

0

) 2 Y

n

� Y

n+1

and (C

0

; r; D

0

) 2 E

T

.

Thus, assume that (C;C

0

) 2 Y

n+1

nY

n

. Then the de�nition of Y

n+1

yields L

T

(C) �

L

T

(C

0

) and the existene of a de�ned onept D

0

suh that (D;D

0

) 2 Y

n

� Y

n+1

and (C

0

; r; D

0

) 2 E

T

.

Thus, we have shown that all Y

n

are simulations. Now, let (C;C

0

) 2 Y and

(C; r;D) 2 E

T

. Then there exists an n � 0 suh that (C;C

0

) 2 Y

n

, and thus the

fat that Y

n

is a simulation yields L

T

(C) � L

T

(C

0

) and the existene of a de�ned

onept D

0

suh that (D;D

0

) 2 Y

n

� Y and (C

0

; r; D

0

) 2 E

T

.

Now, let I

0

be the interpretation based on J de�ned by the identity (�) above.

Lemma 33 O

T ;J

(I

0

) �

J

I

0

.

Proof. Let I

1

:= O

T ;J

(I

0

), and let C be a de�ned onept whose de�nition in T

is

C � P

1

u : : : u P

m

u 9r

1

:C

1

u : : : u 9r

`

:C

`

:

Assume that C

0

2 C

I

1

. We must show that this implies C

0

2 C

I

0

, i.e., that

(C;C

0

) 2 Y .

First, note that C

0

2 C

I

1

= C

O

T ;J

(I

0

)

implies that (i) C

0

2 P

I

0

i

= P

J

i

for all

i = 1; : : : ; m, and (ii) C

0

2 (9r

j

:C

j

)

I

0

for all j = 1; : : : ; `.
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Now, (i) shows that L

T

(C) = fP

1

; : : : ; P

m

g � L

T

(C

0

). In addition, (ii) implies

that there are de�ned onepts C

0

1

; : : : ; C

0

`

suh that, for all j = 1; : : : ; `, we have

(C

0

; C

0

j

) 2 r

I

0

= r

J

(i.e., (C

0

; r

j

; C

0

j

) 2 E

T

) and C

0

j

2 C

I

0

j

(i.e., (C

j

; C

0

j

) 2 Y ).

The de�nition of Y implies that there is an n suh that (C

j

; C

0

j

) 2 Y

n

holds for

all j = 1; : : : ; `. But then (C;C

0

) 2 Y

n+1

� Y .

By Proposition 10, the lemma implies that T has an I

0

-gfp-model based on J .

Let I denote this model.

Lemma 34 A 2 A

I

.

Proof. The simulation Y : G

T

*

� G

T

= G

J

satis�es

(a) (A;A) 2 Y (sine (A;A) 2 Y

0

� Y );

(b) if (C;C

0

) 2 Y then C

0

2 C

I

0

(by de�nition of I

0

).

Thus, Proposition 30 yields A 2 A

I

.

The lemma together with A v

T

B yields A 2 B

I

. Thus, Proposition 30 implies

that there exists a simulation Z: G

T

*

� G

T

= G

J

suh that

(a) (B;A) 2 Z; and

(b) if (C;C

0

) 2 Z then C

0

2 C

I

0

.

Sine C

0

2 C

I

0

i� (C;C

0

) 2 Y , property (b) is equivalent to Z � Y . Thus,

(B;A) 2 Z also yields (B;A) 2 Y .

Lemma 35 Y is a (B;A)-synhronized simulation satisfying (B;A) 2 Y .

Proof. It remain to show that Y is (B;A)-synhronized. To this purpose, we

de�ne an appropriate seletion funtion S. Thus, onsider the following partial

(B;A)-simulation hain:

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Y # Y # Y #

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Let k be minimal with (B

n�1

; A

n�1

) 2 Y

k

.

Case 1: k = 0. Then B

n�1

= A

n�1

and the seletion funtion S hooses A

n

:= B

n

.

Case 2: k > 0. The minimality of k implies that (B

n�1

; A

n�1

) 2 Y

k

n Y

k�1

. By

de�nition of Y

k

, the existene of the edge (B

n�1

; r

n

; B

n

) 2 E

T

thus implies that
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there is an A

n

suh that (A

n�1

; r

n

; A

n

) 2 E

T

and (B

n

; A

n

) 2 Y

k�1

. The seletion

funtion S hooses suh an A

n

.

It remains to be shown that the seletion funtion S really satis�es the ondition

stated in De�nition 28. Thus, onsider the following S-seleted (B;A)-simulation

hain:

B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Let k

0

be minimal with (B

0

; A

0

) 2 Y

k

0

. If k

0

= 0, then we are done sine then

A

0

= B

0

. Otherwise, k

0

> 0 and then we know that (B

1

; A

1

) 2 Y

k

0

�1

. Thus, if k

1

is minimal with (B

1

; A

1

) 2 Y

k

1

, then k

0

> k

1

. If we ontinue this argument, then

we obtain indies k

0

; k

1

; k

2

; : : : where either k

i

> k

i+1

or k

i

= 0. This shows that

there exists an n suh that k

n

= 0, and thus A

n

= B

n

.

This lemma �nishes the proof of (1)! (2) of Theorem 29.

Deiding the existene of a synhronized simulation

It remains to be shown that property (2) of Theorem 29 an be deided in poly-

nomial time. Thus, let G

T

= (V

T

; E

T

; L

T

) be a �nite EL-desription graph, and

(B;A) 2 V

T

� V

T

be a pair of nodes. We onsider the simulation Y : G

T

*

� G

T

de�ned in the proof of (1) ! (2) of Theorem 29. We have shown that Y is a

(B;A)-synhronized simulation (see Lemma 32 and Lemma 35).

Proposition 36 The following are equivalent:

1. There exists a (B;A)-synhronized simulation Z satisfying (B;A) 2 Z.

2. (B;A) 2 Y .

Proof. (2)! (1) is trivial sine we already know that Y is a (B;A)-synhronized

simulation (by Lemma 32 and Lemma 35).

(1) ! (2) Let S be the seletion funtion that ensures that the simulation Z is

(B;A)-synhronized. We use S to onstrut a tree t

S

whose paths are basially

initial segments of the S-seleted (�nite or in�nite) (B;A)-simulation hains w.r.t.

Z:

� The root of t

S

is labeled with (B;A). By our assumption on Z, we have

(B;A) 2 Z.

� Let (B

0

; C

0

) be the label of a node � already onstruted. If B

0

= C

0

, then

this node is a leaf of t

S

.
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� Let (B

0

; C

0

) be the label of a node � already onstruted, and B

0

6= C

0

. By

indution, we assume that the path leading to � in the tree is of the form

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

= B

0

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

= A

0

where A

1

; : : : ; A

n�1

have been seleted using the seletion funtion S. Now,

let (B

0

; s

1

; C

1

); : : : ; (B

0

; s

`

; C

`

) be all the edges in G

T

with soure B

0

. For

i = 1; : : : ; ` we onsider the partial (B;A)-simulation hain

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

s

i

! C

i

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Let C

0

i

be the node seleted by S. In partiular, this means that (C

i

; C

0

i

) 2 Z

and (A

n�1

; s

i

; C

0

i

) 2 E

T

. Now, � obtains ` suessor nodes in t

S

, whih are

respetively labeled with (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

). In partiular, if ` = 0, then

� is a leaf.

We laim that t

S

is �nite. In fat, an in�nite path in t

S

would yield an in�nite

(B;A)-simulation hain of the form depited in Figure 3 suh that B

n

6= A

n

for

all n � 0. But this ontradits our assumption that S is the seletion funtion

that ensures that Z is (B;A)-synhronized. Thus, all paths in t

S

are �nite. Sine

t

S

is also �nitely branhing, K�onig's lemma shows that t

S

is �nite.

Next, we laim that, if a node in t

S

is labeled with (B

0

; A

0

), then (B

0

; A

0

) 2 Y .

Sine (B;A) labels the root of t

S

, this yields (B;A) 2 Y , and we are done.

Let � be a node in t

S

labeled with (B

0

; A

0

). We prove (B

0

; A

0

) 2 Y by indution

on the maximal distane of � to a leaf in t

S

.

Indution base. If the maximal distane of � to a leaf is 0, then � is itself a leaf.

There are two ases to onsider:

1. The node � has label (B

0

; B

0

), i.e., A

0

= B

0

. But then (B

0

; A

0

) 2 Y

0

� Y .

2. The node � has label (B

0

; A

0

) with A

0

6= B

0

, but B

0

has no outgoing edges

in G

T

. Sine (B

0

; A

0

) 2 Z, we know that L

T

(B

0

) � L

T

(A

0

). Thus, the

de�nition of Y

1

yields (B

0

; A

0

) 2 Y

1

� Y .

Indution step. Assume that the maximal distane of � to a leaf is not 0. In

partiular, this means that � is not a leaf. Let (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) be the labels

of all the suessor nodes of � in t

S

. Consequently, there are roles s

1

; : : : ; s

`

suh

that

1. (B

0

; s

1

; C

1

); : : : (B

0

; s

`

; C

`

) are all the edges in G

T

with soure B

0

;
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2. (A

0

; s

1

; C

0

1

); : : : (A

0

; s

`

; C

0

`

) are edges in G

T

;

3. (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) 2 Z.

By indution, (3) implies (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) 2 Y , and thus there is an n suh

that (C

1

; C

0

1

); : : : ; (C

`

; C

0

`

) 2 Y

n

. Sine (B

0

; A

0

) 2 Z also yields L

T

(B

0

) � L

T

(A

0

),

(1) and (2) thus imply (B

0

; A

0

) 2 Y

n+1

� Y .

Sine Y an obviously be omputed in time polynomial in the size of G

T

, this

proposition together with Theorem 29 yields the following orollary.

Corollary 37 Subsumption w.r.t. desriptive semantis in EL an be deided in

polynomial time.

By using the tehniques employed to deided Horn-SAT in linear time [8℄, it is

not hard to show that the set Y an atually be omputed in time quadrati in

the size of G

T

, and thus subsumption in EL w.r.t. desriptive semantis an be

deided in quadrati time.

Example 38 Consider the graph G

T

depited in Figure 5. The omputation of

Y proeeds as follows:

Y

0

= f(B;B); (E;E); (C;C); (D;D); (E

1

; E

1

); (E

2

; E

2

); (A;A)g;

Y

1

= Y

0

[ f(E

1

; E); (E

2

; E); (C;E

1

); (E

1

; C); (D;E

2

); (E

2

; D); (C;E); (D;E)g;

Y

2

= Y

1

[ f(A;B)g = Y

3

= Y:

Consequently, we have B v

T

A, but not A v

T

B.

An alternative way for showing the polynomiality result would be to redue the

existene of a (B;A)-synhronized simulation Z satisfying (B;A) 2 Z to the

strategy problem for a ertain two-player game with a positional winning on-

dition. The existene of a winning strategy is in this ase a polynomial time

problem [10, 11℄. Modulo some tehnialities, the game graph is the subgraph of

the Cartesian produt of the graph G

T

with itself whose nodes satisfy ondition

(S1) of De�nition 15. The winning positions for player two are the nodes (B

0

; A

0

)

where either B

0

= A

0

or B

0

has no suessor nodes.

7 Conlusion

We have haraterized subsumption in EL w.r.t. yli TBoxes for the three

types of semantis introdued by Nebel [22℄. In ontrast to the ase of FL

0

,

where subsumption is no longer tratable if one allows for yli terminologies,
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these haraterizations show that subsumption in EL w.r.t. yli TBoxes an be

deided in polynomial time, independently of whih semantis is used.

Our main motivation for onsidering yli terminologies in EL was the fat that

the most spei� onept of an ABox individual need not exist in EL. An example

is the simple yli ABox A := fr(b; b)g, where b has no most spei� onept, i.e.,

there is no least EL-onept desription D suh that b is an instane of D w.r.t. A

[17℄. However, if one allows for yli TBoxes with gfp-semantis, then the de�ned

onept B with B � 9r:B is suh a most spei� onept. In a yet unpublished

paper we have shown that the haraterization of subsumption in EL w.r.t. gfp-

semantis also yields an approah for omputing the least ommon subsumer in

EL w.r.t. gfp-semantis. In addition, we have extended the haraterization of

subsumption in EL w.r.t. gfp-semantis to the instane problem, and have shown

how this an be used to ompute the most spei� onept.

Regarding related work, simulations and bisimulations play an important rôle in

modal logis (and thus also in desription logis). However, until now they have

mostly been onsidered for modal logis that are losed under all the Boolean

operators, and they have usually not been employed for reasoning in the logi. A

notable exeption is [13℄, where bisimulation haraterizations are given for sub-

Boolean DLs. However, these haraterizations are used to give a formal aount

of the expressive power of these logis. They are not employed for reasoning

purposes.

The DL EL with yli terminologies interpreted with one of the three semantis

onsidered in this report yields a small fragment of the modal mu-alulus. For

these fragments, the subsumption problem (i.e., the question whether an implia-

tion between two formulae is valid) an still be deided in polynomial time. The

relationship of this result to possibly existing omplexity results for fragments of

the modal mu-alulus still needs to be explored. At the moment, we are not

aware of any other results for suh small fragments of the modal mu-alulus.
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