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Abstract

In a previous report we have investigates subsumption in the presence
of terminological cycles for the description logic £L£, which allows conjunc-
tions, existential restrictions, and the top concept, and have shown that the
subsumption problem remains polynomial for all three types of semantics
usually considered for cyclic definitions in description logics. This result
depends on a characterization of subsumption through the existence of
certain simulation relations on the graph associated with a terminology.

In the present report we will use this characterization to show how the
most specific concept and the least common subsumer can be computed in
EL with cyclic definitions. In addition, we show that subsumption in £L£
(with or without cyclic definitions) remains polynomial even if one adds a
certain restricted form of global role-value-maps to ££. In particular, this
kind of role-value-maps can express transitivity of roles.

1 Introduction

Computing the most specific concept of an individual and the least common sub-
sumer of concepts can be used in the bottom-up construction of description logic
(DL) knowledge bases. Instead of defining the relevant concepts of an application
domain from scratch, this methodology allows the user to give typical examples
of individuals belonging to the concept to be defined. These individuals are then
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generalized to a concept by first computing the most specific concept of each in-
dividual (i.e., the least concept description in the available description language
that has this individual as an instance), and then computing the least common
subsumer of these concepts (i.e., the least concept description in the available
description language that subsumes all these concepts). The knowledge engineer
can then use the computed concept as a starting point for the concept definition.

The least common subsumer (lcs) in DLs with existential restrictions was inves-
tigated in [3]. In particular, it was shown there that the lcs in the small DL ££
(which allows conjunctions, existential restrictions, and the top concept) always
exists, and that the binary lecs can be computed in polynomial time. Unfortu-
nately, the most specific concept (msc) of a given ABox individual need not exist
in languages allowing for existential restrictions or number restrictions. As a
possible solution to this problem, Kiisters and Molitor [9] show how the most
specific concept can be approximated in ££ and some of its extensions. Here, we
follow an alternative approach: we extend the language by cyclic terminologies
with greatest fixpoint semantics, and show that the msc always exists in this
setting. For the DL ALN (which allows conjunctions, value restrictions, and
number restrictions) it was shown in [2] that the most specific concept always
exists if one adds cyclic concept definitions with gfp-semantics. One reason for
Kisters and Molitor to choose an approximation approach rather than an exact
characterization of the most specific concept using cyclic definitions was that the
impact of cyclic definitions in description logics with existential restrictions was
largely unexplored.

The report [1] was a first step toward overcoming this deficit. It considers cyclic
terminologies in £L w.r.t. the three types of semantics (greatest fixpoint, least
fixpoint, and descriptive semantics) introduced by Nebel [12], and shows that the
subsumption problem can be decided in polynomial time in all three cases. This
is in stark contrast to the case of DLs with value restrictions. Even for the small
DL FLy (which allows conjunctions and value restrictions only), adding cyclic
terminologies increases the complexity of the subsumption problem from polyno-
mial (for concept descriptions) to PSPACE. The main tool in the investigation of
cyclic definitions in £L is a characterization of subsumption through the existence
of so-called simulation relations, which can be computed in polynomial time [7].
The results in [1] also show that cyclic definitions with least fixpoint semantics
are not interesting in ££. For this reason, we will here concentrate on greatest
fixpoint and descriptive semantics.

The characterization of subsumption in ££ w.r.t. gfp-semantics through the exis-
tence of certain simulation relations on the graph associated with the terminology
can be used to characterize the lcs via the product of this graph with itself (Sec-
tion 4.1). This shows that, w.r.t. gfp semantics, the les always exists, and the
binary lcs can be computed in polynomial time. (The n-ary lcs may grow expo-
nentially even in ££ without cyclic terminologies [3].) For cyclic terminologies in



EL with descriptive semantics, the lcs need not exist (Section 4.2). We introduce
possible candidates Py, (k > 0) for the lcs, and show that the lcs exists iff one of
these candidates is the lcs. In addition, we give a sufficient condition for the lcs
to exist, and show that, under this condition, it can be computed in polynomial
time.

The characterization of subsumption w.r.t. gfp-semantics can be extended to the
instance problem in ££. This allows us to show that the msc in ££ with cyclic
terminologies interpreted with gfp semantics always exists, and can be computed
in polynomial time (Section 5).

In Section 6, we extend the results of [1] in another direction. In many applica-
tions (e.g., in medicine [15] and in process engineering [13]), one uses roles that
are not just arbitrary binary relations, but should satisfy certain relationships.
A prominent example are transitive roles r, which satisfy r or C r, i.e., the
composition of r with itself is a subrelation of . In Section 6 we consider more
general constraints of the form ry o7y C r3, which say that the composition of ry
with ry is a subrelation of r3. Obviously, this is a special form of role-value-maps
[14], which are global in the sense that they must hold for every individual in
the interpretation domain. The right-identity rule in [15] is a special case where
ry is identical with r3. As an example, consider the roles location, which as-
signs objects with their location, and contained, which relates each spacial region
with those regions containing it. Then it makes sense to assert the condition
location o contained C location. We will show that adding global role-value-maps
of the form 7 o ry C r3 to EL with cyclic terminologies (interpreted with gfp or
descriptive semantics) leaves the subsumption problem polynomial. In particular,
this shows that subsumption of £ L-concept descriptions (with or without acyclic
terminologies) remains polynomial when adding these global role-value-maps.

In the next section, we introduce £L£ with cyclic terminologies as well as the
lcs and the msc. Then we recall the important definitions and results from [1].
Section 4 formulates and proves the new results for the lcs, and Section 5 does
the same for the msc. Finally, Section 6 is devoted to showing the results for
global role-value-maps mentioned above.

2 Cyclic terminologies, least common subsumers,
and most specific concepts

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set N¢ of concept names and a set Ng of role names. The
constructors determine the expressive power of the DL. In this report, we restrict
the attention to the DL £L, whose concept descriptions are formed using the
constructors top-concept (T), conjunction (C' M D), and existential restriction



name of constructor ‘ Syntax ‘ Semantics

concept name A € N A AT C AT
role name r € Ny r rt C AT x AT
top-concept T AT
conjunction cnbD ctnpD?
existential restriction Ir.C [ {zeAT|y: (v,y) ert Ay e Ct}
| concept definition | A=D | AT = D? |
individual name a € N; a al ¢ AT
concept assertion A(a) at € AF
role assertion r(a,b) (at,0F) e rt

Table 1: Syntax and semantics of £L-concept descriptions, TBox definitions, and
ABox assertions.

(3r.C). The semantics of £L-concept descriptions is defined in terms of an in-
terpretation T = (AZ,-T). The domain AT of 7 is a non-empty set of individuals
and the interpretation function -Z maps each concept name A € N to a subset
AT of AT and each role r € Ny to a binary relation »* on AZ. The extension of
L to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.

A terminology (or TBox for short) is a finite set of concept definitions of the form
A = D, where A is a concept name and D a concept description. In addition,
we require that TBoxes do not contain multiple definitions, i.e., there cannot
be two distinct concept descriptions Dy and D, such that both A = D; and
A = D, belongs to the TBox. Concept names occurring on the left-hand side of
a definition are called defined concepts. All other concept names occurring in the
TBox are called primitive concepts. Note that we allow for cyclic dependencies
between the defined concepts, i.e., the definition of A may refer (directly or
indirectly) to A itself. An interpretation Z is a model of the TBox T iff it
satisfies all its concept definitions, i.e., AT = D7 for all definitions A = D in T.

An ABozx is a finite set of assertions of the form A(a) and r(a,b), where A is
a concept name, r is a role name, and a,b are individual names from a set Nj.
Interpretations of ABoxes must additionally map each individual name a € Ny
to an element a’ of AT. An interpretation Z is a model of the ABox A iff it
satisfies all its assertions, i.e., aZ € AT for all concept assertions A(a) in A and
(aZ,bF) € rT for all role assertions 7(a,b) in A. The interpretation Z is a model
of the ABox A together with the TBox 7 iff it is a model of both 7 and A.

The semantics of (possibly cyclic) ££-TBoxes we have defined above is called
descriptive semantic by Nebel [12]. For some applications, it is more appropriate
to interpret cyclic concept definitions with the help of an appropriate fixpoint
semantics.



Example 1 To illustrate this, let us recall an example from [1]:
Inode = Node M Jdedge.Inode.

Here the intended interpretations are graphs where we have nodes (elements of
the concept Node) and edges (represented by the role edge), and we want to define
the concept Inode of all nodes lying on an infinite (possibly cyclic) path of the
graph. In order to capture this intuition, the above definition must be interpreted
with greatest fixpoint semantics.

Before we can define greatest fixpoint semantics (gfp-semantics), we must intro-
duce some notation. Let 7 be an £L£-TBox containing the roles N,,., the primi-
tive concepts Npyim, and the defined concepts Nyp = {Ay, ..., Ax}. A primitive
interpretations J for T is given by a domain A7, an interpretation of the roles
r € N,oe by binary relations 77 on A7, and an interpretation of the primitive
concepts P € Ny.im by subsets PY of A7. Obviously, a primitive interpretation
differs from an interpretation in that it does not interpret the defined concepts
in Ngys. We say that the interpretation 7 is based on the primitive interpre-
tation J iff it has the same domain as J and coincides with J on N,y and
Nyrim. For a fixed primitive interpretation [, the interpretations Z based on it
are uniquely determined by the tuple (A%, ..., A7) of the interpretations of the
defined concepts in Ng.r. We define

Int(J) :={Z | Z is an interpretation based on [J}.

Interpretations based on J can be compared by the following ordering, which
realizes a pairwise inclusion test between the respective interpretations of the
defined concepts: if Zy,Z, € Int(J), then

T, =5 T, ifft AT C AP foralli,1 <i<k.

It is easy to see that <7 is a complete lattice on Int(J), i.e., every subset of
Int(J) has a least upper bound (lub) and a greatest lower bound (glb). Thus,
Tarski’s fixpoint theorem [18, 10] applies to all monotonic functions from Int(J)
to Int(J). This theorem states the following: if O: Int(J) — Int(J) is a function
such that Z; <7 Z, implies O(Z;) <7 O(Z) (monotonicity), then O has a fizpoint,
i.e., there is an Z in Int(J) such that O(Z) = Z. In particular, it has a greatest
fixpoint, i.e., a fixpoint larger w.r.t. <7 than all other fixpoints.

Definition 2 The TBox 7 := {A; = Dy,..., A, = Dy} induces the following
function O7 7 on Int(J): Or.7(T,) = T, iff A7 = D* holds for all 4,1 < i < k.

It is easy to see that, for a given ££-TBox 7T and a primitive 7, the function
O7.7 is indeed monotonic. Consequently, Or 7 has a greatest fixpoint. It is an



immediate consequence of the definition of O7 7 that an interpretation 7 based
on the primitive interpretation 7 is a fixpoint of O 7 iff 7 is a model of 7. This
shows that any primitive interpretation [J can be extended to a model of 7. In
particular, there is always a greatest model of 7 extending 7.

Definition 3 Let 7 be an ££-TBox. The model Z of T is called gfp-model of
T iff there is a primitive interpretation J such that Z € Int(J) is the great-
est fixpoint of Or 7. Greatest fizpoint semantics considers only gfp-models as
admissible models.

We are now ready to define the subsumption and the instance problem w.r.t. the
two different types of semantics introduced above.

Definition 4 Let 7 be an ££-TBox and A an £L£-ABox, let A, B be defined
concepts occurring in 7, and a an individual name occurring in A. Then,

e A is subsumed by B w.r.t. descriptive semantics (A T B) iff AT C B?
holds for all models Z of 7.

e a is an instance of A w.r.t. descriptive semantics (A 7 A(a)) iff o € AT
holds for all models Z of T together with A.

e A is subsumed by B w.r.t. gfp-semantics (A C,p, 7 B) iff A7 C B” holds
for all gfp-models Z of T.

e a is an instance of A w.r.t. gfp-semantics (A 4z, 7 A(a)) iff ¥ € AT holds
for all models Z of A that are gfp-models of T.

On the level of concept descriptions, the least common subsumer of two concept
descriptions C, D is the least concept description F that subsumes both C' and
D. An extensions of this definition to the level of (possibly cyclic) TBoxes is
not completely trivial. In fact, assume that A;, A5 are concepts defined in the
TBox T. It should be obvious that taking as the lcs of Ay, A5 the least defined
concept B in T such that Ay T+ B and A, T B is too weak since the les would
then strongly depend on what other defined concepts are already present in 7.
However, a second approach (which might look like the obvious generalization
of the definition of the lcs in the case of concept descriptions) is also not quite
satisfactory (at least if we consider gfp-semantics). We could say that the lcs of
A, B is the least concept description C' (possibly using defined concepts of 7))
such that A; Cy C and Ay T C (respectively, Ay Cgpp7 C and Ay Ty C).
The problem is that this definition does not allow us to use the expressive power
of cyclic definitions (with gfp-semantics) when constructing the lcs. For example,
consider the TBox 7 consisting of the following concept definitions:

Bluelnode = Blue M Node M Jdedge.Bluelnode,
Redlnode = Red M Node M Jedge.RedInode.
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The intended interpretation is similar to the one in Example 1, with the only
difference that now nodes may have colors, and we are interested in blue (red)
nodes lying on an infinite path consisting of blue (red) nodes. Intuitively, the
lcs of Bluelnode and Redlnode describes nodes lying on an infinite path (without
any restriction on their color), i.e., the concept Inode from Example 1 should be
a definition of this lcs. However, this cannot be expressed by a simple concept
description. It requires a new cyclic definition.

Consequently, to obtain the lcs we must allow the original TBox to be extended
by new definitions. We say that the TBox 75 is a conservative extension of the
TBox 7; iff 71 C 75 and 7T; and 75 have the same primitive concepts and roles.
Thus, 75 may contain new definitions A = D, but then D does not introduce
new primitive concepts and roles (i.e., all of them already occur in 77), and A
is a new concept name (i.e., A does not occur in 77). The name “conservative
extension” is justified by the fact that the new definitions in 75 do not influence
the subsumption relationships between defined concepts in 7;.

Lemma 5 Let T;,7T; be EL-TBoxes such that T is a conservative extension of
Ti, and let A, B be defined concepts in T; (and thus also in T5). Then A Ty, B
iff ACy, B. The same holds for subsumption w.r.t. gfp-semantics.

Proof. (1) Let us first consider descriptive semantics. The implication from left
to right (=) is trivial since 7; C 73 (monotonicity of first-order logic).

For the other direction (<), one should note that 7 := 75 \ 7; can be viewed as
a TBox whose primitive concepts are the defined and primitive concepts of 77,
and whose roles are the roles of 7;. Now, assume that A [Z5, B, and let Z be a
model of 77 such that A ¢ B*. The model Z of T; can be viewed as a primitive
interpretation of 7, which can be extended to a gfp-model Z of 7. Obviously, 7
is also a model of 75, and since it coincides with Z on the primitive and defined
concepts in 7Ty, it also satisfies AT = AT ¢ BT = BL.

(2) Now, let us consider gfp-semantics. The implication from right to left (<)
can be proved similar to (<) of part (1) of the proof (where now we start with
a gfp-model Z of 7;). What remains to be shown is that Zisa gfp-model of 7Ts.
Thus, assume that there is a larger model 7' of 7, based on the same primitive
interpretation. The difference between Z and Z' cannot occur on one of the
defined concepts of 77 since this would contradict our assumption that Z is a
gfp-model of 7. Consequently, the restriction of Z' to the defined concepts in T
coincides with Z. But then a difference between 7' and Z in one of the concepts
newly defined in 75 contradicts the fact that Z is a gfp-model of T (see part (1)
of the proof).

The implication from left to right (=) immediately follows if we can show that
the restriction Z' of a gfp-model Z of T3 to the defined concepts of 77 is a gfp-
model of 7;. Obviously, Z' is a model of 77 (for being a restriction of a model of
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7>). Now, assume that it is not a gfp-model of 7;. Thus, there is a larger model
7" of T; that coincides with Z' on the primitive concepts and roles. As in (=) of
part (2) of the proof, we can show that Z” can be extended to a gfp-model of 75.
However, this gfp-model is based on the same primitive interpretation as Z, and
thus must be identical to Z, which contradicts our assumption that Z” is larger
than 7. O

Definition 6 Let 7; be an £L£-TBox containing the defined concepts A, B, and
let 75 be a conservative extension of 7; containing the new defined concept E.
Then F in 75 is a least common subsumer of A, B in T; w.r.t. descriptive semantics
(les) iff the following two conditions are satisfied:

2. If 73 is a conservative extension of 75 and F' a defined concept in 73 such
thatAE%FandBE% F, thenEETs F.

Least common subsumers w.r.t. gfp-semantics (gfp-les) are defined analogously,
by replacing Cy; by Cgp, 7;.

In the case of concept descriptions, the lcs is unique up to equivalence, i.e., if E
and FE5 are both least common subsumers of the descriptions C', D, then Ey = E5
(i.e., By C E, and Ey C Ey). In the presence of (possibly acyclic) TBoxes, this
uniqueness property also holds (though its formulation is more complicated).

Proposition 7 Let T; be an £L-TBox containing the defined concepts A, B. As-
sume that To and Ty are conservative extensions of Ty such that

e the defined concept E in Ty is an lcs of A, B in Ti;

e the defined concept E' in T is an lcs of A, B in Ti;

e the sets of newly defined concepts in respectively T and T) are disjoint.

Where T3 := To UT,, we have E =7, E' (i.e., ECr, E' and E' Cr, E).
The corresponding statement holds for the gfp-lcs.

Proof. Since the sets of newly defined concepts in respectively 75 and T, are
disjoint, T3 := TR U7, is a conservative extension of both 75 and 7,. Consequently
ACy Fand BEy, Eimply ACy, Fand BCy; E,and ACpy ' and B Eqy B/
imply A Cr, F and B Cp, E. Since E in 7, is an lcs of A, B, this implies
that £ Cr, E’. Analogously, since E' in 7] is an lcs of A, B, this implies that
EF'C E.



The same argument goes through for the gfp-lcs. O

The notion “most specific concept” can be extended in a similar way from concept
descriptions to concepts defined in a TBox.

Definition 8 Let 7; be an ££-TBox and A an ££-ABox containing the individ-
ual name a, and let 75 be a conservative extension of 7; containing the defined
concept E. Then E in 75 is a most specific concept of a in A and T; w.r.t.
descriptive semantics (msc) iff the following two conditions are satisfied:

1. .A ):7’2 E(a)

2. If 73 is a conservative extension of 75 and F' a defined concept in 73 such
that A =7, F(a), then E Cp, F.

Most specific concepts w.r.t. gfp-semantics (gfp-msc) are defined analogously.

Uniqueness up to equivalence of the most specific concept can be shown like
uniqueness of the least common subsumer.

Proposition 9 Let 7, be an EL-TBox and A an £L-ABox containing the indi-
vidual name a. Assume that Ty and T, are conservative extensions of Ty such
that

e the defined concept E in Ty is an msc of a in A and Ty;

e the defined concept E' in T, is an msc of a in A and Ty;

o the sets of newly defined concepts in respectively T and T) are disjoint.

Where T3 := T U T, we have E =7, E'.
The corresponding statement holds for the gfp-msc.

3 Characterizing subsumption in ££ with cyclic
definitions

In this section, we recall the characterizations of subsumption w.r.t. descriptive
semantics and gfp-semantics developed in [1]. To this purpose, we must repre-
sent TBoxes by description graphs, and introduce the notion of a simulation on
description graphs.



3.1 Description graphs and simulations

It was shown in [1] that ££-TBoxes as well as primitive interpretations can be
represented as description graphs. Before we can translate £L£-TBoxes into de-
scription graphs, we must normalize the TBoxes. In the following, let 7 be an
EL-TBox, Ny the defined concepts of T, Ny, the primitive concepts of 7, and
N,oe the roles of T.

We say that the EL£-TBox T is normalized iff A = D € T implies that D is of
the form
P1|_|...|_|Pm|_|E|T1.Bl|_|...|_|E|’I“[.Bg,

for m,ﬁ > 0, Pl,...,Pm € Nprima T1y..., ¢ € lee, and Bl,...,Bg € Ndef- If
m=1/_(=0, then D=T.

As shown in [1], one can (without loss of generality) restrict the attention to nor-
malized TBox. In the following, we thus assume that all TBoxes are normalized.
Normalized £L£-TBoxes can be viewed as graphs whose nodes are the defined
concepts, which are labeled by sets of primitive concepts, and whose edges are
given by the existential restrictions. For the rest of this section, we fix a normal-
ized £L-TBox T with primitive concepts Ny, defined concepts Ng.r, and roles
Nrole-

Definition 10 An EL-description graph is a graph G = (V, E, L) where

e 1 is a set of nodes;
e CV X Ny XV is a set of edges labeled by role names;

o [: V — 2Nwim ig a function that labels nodes with sets of primitive concepts.

The TBox 7 can be translated into the following & L-description graph Gy =
(Ndefa ETv LT>:

e the nodes of G are the defined concepts of T;
e if Ais a defined concept and
A=Pn...NMP,N3r.B;N...M03r.By
its definition in 7, then
— Ly (A)={P,..., Py}, and
— A is the source of the edges (A, 71, By),..., (A, 1, By) € Er.

Any primitive interpretation J = (A7,-7) can be translated into the following
& L-description graph G7 = (A7, E;, Ly):
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e the nodes of G are the elements of A7;
o By :={(z,1y) | (v,y) €}
o Ls(x)={P € Nyim |z € P7} for all z € A7,

Simulations are binary relations between nodes of two £ L-description graphs that
respect labels and edges in the sense defined below.

Definition 11 Let G; = (V;, E;, L;) (i = 1,2) be two £ L-description graphs. The
binary relation Z C Vi x V5 is a simulation from G, to G, iff

(S1) (v1,v2) € Z implies Ly (v1) C La(v); and

(S2) if (v1,v2) € Z and (vq,7,v]) € Ey, then there exists a node v} € V5 such
that (v}, vh) € Z and (vq, 7, v}) € Es.

We write Z: G; ~ G, to express that Z is a simulation from G; to Gs.

It is easy to see that the set of all simulations from G; to Gy is closed under
arbitrary unions. Consequently, there always exists a greatest simulation from
G, to Go. TIf Gy, G, are finite, then this greatest simulation can be computed in
polynomial time [7]. As an easy consequence of this fact, the following proposition
is proved in [1].

Proposition 12 Let Gy, Gy be two finite £L-description graphs, vy a node of Gy
and vy a node of Go. Then we can be decide in polynomaial time whether there is
a simulation Z: Gy ~ Gy such that (vy,vy) € Z.

3.2 Subsumption w.r.t. gfp-semantics

Subsumption w.r.t. gfp-semantics corresponds to the existence of a simulation
relation such that the subsumee simulates the subsumer:

Theorem 13 Let T be an EL-TBox and A, B defined concepts in T. Then the
following are equivalent:

1. A ngp,T B.

2. There is a simulation Z: Gr ~ Gr such that (B, A) € Z.

The theorem together with Proposition 12 shows that subsumption w.r.t. gfp-
semantics in £L is tractable.

11



Corollary 14 Subsumption w.r.t. gfp-semantics in EL can be decided in polyno-
meal time.

This result is quite surprising since, for the DL FL, (which allows for conjunc-
tion and value restrictions only), subsumption w.r.t. gfp-semantics is already
PSPACE-complete.

The proof of the above theorem given in [1] depends on a characterization of
when an individual of a gfp-model belongs to a defined concept in this model.

Proposition 15 Let J be a primitive interpretation and I the gfp-model of T
based on J. Then the following are equivalent for any A € Ngop and v € A7 :

1. x € AT,

2. There is a simulation Z: Gy ~ Gz such that (A,x) € Z.

This proposition will become relevant later on when we extend the characteriza-
tion of subsumption to a characterization of the instance problem.

3.3 Subsumption w.r.t. descriptive semantics

Let 7 be an £L£-TBox and G5 the corresponding &€ L-description graph. Since
every gfp-model of 7 is a model of 7, A Ty B implies A C s, 7+ B. Consequently,
A Cr Bimplies that there is a simulation Z: G- ~ G with (B, A) € Z. However,
the simulation Z must satisfy some additional properties for the implication in
the other direction to hold. To define these properties, we must introduce some
notation.

Let T be an £L£-TBox, G5 the corresponding £ £L-description graph, and Z: Gy ~
G a simulation.

Definition 16 The path p;: B = By > By = By -3 B3 5 ... in G is Z-
simulated by the path po: A=Ay > Ay B3 A, B A3 B .. in G iff (B, 4) € Z
for all ¢ > 0. In this case we say that the pair (p1, ps) is a (B, A)-simulation chain
w.r.t. Z. (see Figure 1).

If (B,A) € Z, then (S2) of Definition 11 implies that, for every infinite path p;
starting with B, := B, there is an infinite path p, starting with A, := A such
that p; is Z-simulated by p,. In the following we construct such a simulating
path step by step. The main point is, however, that the decision which concept
A, to take in step n should depend only on the partial (B, A)-simulation chain
already constructed, and not on the parts of the path p; not yet considered.

12



B =B &% B 3% B, & B &
AN Z| Z| Z|
A - AO g Al g A2 g A3

B =B, % B & ... 3 B, I3 B,
A Al A
A= A 5 4 2 AL

Figure 2: A partial (B, A)-simulation chain.

Definition 17 A partial (B, A)-simulation chain is of the form depicted in Fig-
ure 2. A selection function S for A, B and Z assigns to each partial (B, A)-
simulation chain of this form a defined concept A, such that (A, _1,7,, Ay) is an
edge in Gr and (B,, A,) € Z.

Given a path B = By = B; =3 By -3 By =% ... and a defined concept A such
that (B, A) € Z, one can use a selection function S for A, B and Z to construct a
Z-simulating path. In this case we say that the resulting (B, A)-simulation chain
is S-selected.

Definition 18 Let A, B be defined concepts in 7, and Z: G ~ G a simulation
with (B, A) € Z. Then Z is called (B, A)-synchronized iff there exists a selection
function S for A, B and Z such that the following holds: for every infinite S-
selected (B, A)-simulation chain of the form depicted in Figure 1 there exists an
i > 0 such that A; = B;.

We are now ready to state the characterization of subsumption w.r.t. descriptive
semantics proved in [1].

Theorem 19 Let T be an EL-TBox, and A, B defined concepts in T. Then the
following are equivalent:

1. ACs B.

2. There is a (B, A)-synchronized simulation Z: Gy ~ Gy such that (B, A) €
Z.

In [1] it is also shown that, for a given ££-TBox 7 and defined concepts A, B in
T, the existence of a (B, A)-synchronized simulation Z: Gy ~ Gy with (B, A) € Z
can be decided in polynomial time.
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Corollary 20 Subsumption w.r.t. descriptive semantics in EL can be decided in
polynomial time.

4 Computing the lcs

We will first show how the characterization of subsumption w.r.t. gfp-semantics
given in Theorem 13 can be used to characterize the gfp-lcs. Deriving a charac-
terization of the les (w.r.t. descriptive semantics) from Theorem 19 turns out to
be more involved.

4.1 Computing the gfp-lcs

Let 71 be an £L-TBox, let G7; = (Nges, E7;, L7, ) be the corresponding description
graph, and let A, B be defined concepts in 7y (i.e., elements of Ng.). In principle,
the lcs of A, B in 7T; is defined in a TBox whose description graph is the product
of G7; with itself.

Definition 21 Let G; = (Vi, Ey, L) and Gy = (Vi, Ey, L) be two description
graphs. Their product is the description graph G; x Gy := (V, E, L) where

o V=" xVyy

o E:={((v1,v9),r, (v}, 0})) | (v1,r,0]) € Ey A (va,7,05) € Es};

[ ] L(Uh U2> = Ll (U1> N LQ(UQ).
The description graph Gz, x G7; yields a TBox 7T such that G = G, X Gr;. Now,
T> := T UT is a conservative extension of 7;. In fact, Gr; X Gr; (and thus 7))
is based on the same primitive concepts and roles as G, and the set of defined
concepts in T is Ny X Ngep, which is disjoint from Ng.p. Let Gy = (Va, By, Lo)

be the &£L-description graph corresponding to 7;. Note that Gy is the disjoint
union of Gr = G, X Gr; and Gr,. Let Gr = (V, E, L) and G, = (V4, Ey, Ly).

Lemma 22 (A, B) in T is the gfp-lcs of A and B in T;.

Proof. (1) First, we show that A Ty, 7, (A, B). (Note that B T, 7, (A, B) can
be shown analogously.) According to Theorem 13 it is sufficient to show that
there exists a simulation relation Z: Gr, ~ G, such that ((4,B),A) € Z. We
define Z as the projection of elements of Ny X N s to the first component, i.e.,

Z = {((u,v),u) | (u,v) € Ngef X Nges}-
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Note that the nodes (u,v) € Ngy X Ny s are exactly the defined concepts of 7.

Obviously, ((A, B), A) € Z by definition of Z. It remains to be shown that 7 is
a simulation relation:

(S1) By the definition of the product of £L-description graphs, Ls(u,v) =
L(u,v) = Ly(u) N Ly (v) C Ly(u) = Ly(u).

(S2) Consider ((u,v),u) € Z and assume that ((u,v),r,w) € E for some node
w € V5. Since G, is the disjoint union of Gy = G X Gy, and G7;, and
(u,v) is a node of Gr, w must also be a node of Gr, i.e., w is of the
form (u',v") and the edge ((u,v),r, (u,v")) € Ey is an edge in Gr. Thus,
((w,v),r, (w',v")) € E, and the definition of the product of £L-description
graphs implies that (u,r,u') € E; C E,. Since ((v/,v"),u') € Z, this shows
that property (S2) in the definition of simulation relations really holds for
Z.

(2) Now, assume that 73 is a conservative extension of 7, and that F' is a defined
concept in Ty such that A Ty, 7, F and B Cyypp 73 F. Where G, = (Vi, E3, L),
this implies that there are simulation relations Yi: G, ~ G, and Y5: Gr, ~ Gr;
such that (F, A) € Y} and (F,B) € Ys.

We must show that (A, B) Ty, 7 F, ie., that there is a simulation relation
Y: Gr, ~ Gr, such that (F, (A, B)) € Y. Basically, Y is defined as the “product”
of Y7 and Y5. To be more precise,

Y = {(u, (v1,02)) | (u,v1) € Y1 A (u,v2) € Yo A (v1,02) €V = Nyep X Nyer}.

Since (F, A) € Y} and (F,B) € Y3, and (A, B) € V = Nyep X Ny, we know that
(F,(A, B)) € Y. It remains to be shown that Y is in fact a simulation relation.

(S1) Assume that (u, (vi,v2)) € Y, ie., (u,v1) € Y1, (u,v;) € Y, and (v, v9) €
V. Since Y; and Y5 are simulation relations, the first two facts imply that
Ls(u) € Ls(vq) and L3(u) C L3(vy), and thus Lz(u) C Ls(vy) N Lz(vg).
Since (vy, v7) V and 73 is a conservative extension of 75, we have for
i =1,2: L3(v;) = La(v;) = L1(v;). By the definition of the product, this
implies Lg(U) g L3(U1> N L3(U2) = Ll (Ul) N Ll(U2> = L(Uh U2> = L3(Ul, UQ).

(S2) Assume that (u, (vy,v2)) € Y and that (u,r,u’) € E3. By the definition of
Y, and since Y; and Y; are simulation relations, there exist nodes v} and v},
in V3 such that (v, r,v]) € E3, (v/,v]) € Y1, (v, 7, 0h) € Es3, and (u',v}) €
Y5. Again by the definition of Y, vy, v, are nodes in V; = Ngs. By the
definition of 73, and since 73 is a conservative extension of 75, this implies
that the edges (v, r, v}) and (vq, r, v5) are actually edges in Fy, and thus the
definition of the product yields ((vq,ve),r, (v1,v5)) € E C Ejs. In addition,
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this shows that (v}, v}) € V, and thus (v/,v}) € Y; and («/,v}) € Y, imply
that (v, (v],v5)) € Y. O

Computing the (binary) product of two £L-description graphs can obviously be
done in polynomial time, and thus the gfp-lcs can be computed in polynomial
time.

Theorem 23 Let T; be an EL-TBox, and let A, B be defined concepts in ;.
Then the gfp-lcs of A, B in T1 always exists, and it can be computed in polynomial
time.

4.2 The lcs w.r.t. descriptive semantics

First, we will show that, w.r.t. descriptive semantics, the lcs of two concepts
defined in an £L£-TBox need not exist. Subsequently, we will introduce possible
“candidates” Py (k > 0) for the lcs, and show that the lcs exists iff one of these
candidates is the lcs. Finally, we will give a sufficient condition for the existence
of the lcs.

4.2.1 The lcs need not exist

Theorem 24 Let T, := {A = 3r. A, B=3r.B}. Then, A,B in Ty do not have
an lcs.

Proof. Assume to the contrary that 75 is a conservative extension of 7; and that
the defined concept E in Ts is an les of A, B in T;. Let Gy = (V5, Es, L) be the
description graph induced by 75.

First, we show that there cannot be an infinite path in G, starting with E. In

fact, assume that
EFE=Ey 3 FE 3B, 3 ...

is such an infinite path. Since A Ty, E, thereis an (E, A)-synchronized simulation
Zy: Gy ~ Gy such that (E, A) € Z;. Consequently, the corresponding selection
function S can be used to turn the above infinite chain issuing from F into an
(E, A)-simulation chain. Since the only edge with source A is the edge (A,r, A),
this simulation chain is actually of the form

FE = E, &> E 5 E & E 5
lel/ Z1 Zl Zl
O
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Since Z is (E, A)-synchronized with selection function Si, this implies that there
is an index j; such that F; = A, and thus E; = A for all ¢ > j.

Analogously, we can show that there is an index j, such that Ej, = B, and thus
E; = B for all i« > j,. Since A # B, this is a contradiction. Thus, we know
that there is a positive integer ng such that every path in G, starting with E has
length < ng.

Second, we define conservative extensions 7,/ (n > 1) of T3 such that the defined
concept F,, in 7, is a common subsumer of A, B:
T =T U{F,=3rF, |,...FF=3rF,FL=T}
It is easy to see that A Ty F), and B Ty F),.
Third, we claim that, for n > ng, F Z7: F,. In fact, the path

F, 5 F, 15 F 25 5 F

has length n, and thus it cannot be simulated by any path starting with E. This
shows that F [Z7+ F,,, and thus contradicts our assumption that F in 73 is the
lcs of A, B in 7. O

4.2.2 Characterizing when the lcs exists

Given an £L£-TBox 7; and defined concepts A, B in 7y, we will defined for each
kE > 0 a conservative extension E(k) of 7; containing a defined concept P, and
show that A, B have an lcs iff there is a k such that P is the lcs of A, B.

To prove this result, we will need a sleight modification of Theorem 19. However,
this modified theorem follows easily from the the proof of Theorem 19 given in
[1]. Recall that a selection function S for A, B and Z assigns to each partial
(B, A)-simulation chain of the form depicted in Figure 2 a defined concept A,
such that (A, 1,7, A,) is an edge in Gy and (B,, 4,) € Z.

Definition 25 We call a selection function S nice iff it satisfies the following two
conditions:

1. It is memoryless, i.e., its result A,, depends only on B,,_1, A,_1, 7y, By, and
not on the other parts of the partial (B, A)-simulation chain.

2. If B,_1 = A,_1, then its result A, is just B,.
The simulation relation 7 is called strongly (B, A)-synchronized iff there exists a
nice selection function S for A, B and Z such that the following holds: for every

infinite S-selected (B, A)-simulation chain of the form depicted in Figure 1 there
exists an 7 > 0 such that A; = B;.
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Corollary 26 Let T be an EL-TBox, and A, B be defined concepts in T. Then
the following are equivalent:

1. AC; B.

2. There is a strongly (B, A)-synchronized simulation Z: Gr ~ Gr such that
(B,A) € Z.

Proof. (2 = 1) is an immediate consequence of Theorem 19.

(1 = 2) follows from the fact that the simulation relation Y defined in the proof
of (1 = 2) of Theorem 19 (see page 27 in [1]) is strongly (B, A)-synchronized.
In fact, it is easy to check that the selection function S defined in the proof of
Lemma 35 in [1] is indeed nice. O

Strongly (B, A)-synchronized simulations satisfy the following property:

Lemma 27 LetT be an EL-TBox containing at most n defined concepts, let A, B
be defined concepts in T, and let Z: Gy ~ Gy be a strongly (B, A)-synchronized
simulation relation. Consider an infinite S-selected (B, A)-simulation chain of
the form depicted in Figure 1. Then there exists an m < n? such that B,, = A,,.

Proof. Consider the n? + 1 tuples (Ag, By), ..., (A2, By2). By definition of n,
there are at most n? different tuples of this kind, and thus there exist indices
0 < i < j < n?such that (B;, A;) = (Bj,A;). Since S is memoryless, the
following is also an S-selected simulation chain:

B=By &% ... & B=B "% B, ¥ ... % BB &
A A A A
A=Ay B o B A=4 " 4, H 00D o4=4

Now, the fact that this chain must be synchronized shows that there is indeed an
m < j < n?such that B, = A4,),. O

Obviously, the lemma also holds for finite S-selected (B, A)-simulation chains,
provided that they are long enough, i.e., of length at least n?.

Now, let 77 be an EL-TBox, let G = (Nges, E7, L7;) be the corresponding
description graph, and let A, B be defined concepts in 7; (i.e., elements of Nyr).
We consider the product G := Gr, X G, of G, with itself. Let G = (V, E, L).

The product graph G as a whole cannot be part of the lcs of A, B since it may
contain cycles reachable from (A, B), which would prevent the subsumption re-
lationship between A and (A, B) to hold. Nevertheless, the lcs must “contain”
paths in G starting with (A, B) up to a certain length k. In order to obtain these
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paths without also getting the cycles in G, we make copies of the nodes in G on
levels between 1 and k. Actually, we will not need nodes of the form (u,u) since
they are represented by the nodes u in Gr,.

To be more precise, we define
Pr:={(A, B)°} U {(u,v)" | u# v, (u,v) € Ngey X Ngey and 1 < n < k}.
For p = (u,v)" € P we call (u,v) the node of p and n the level of p.

The edges of G induce edges between elements of P,. To be more precise, we
define the set of edges Ep, as follows: (p,r,q) € Ep, iff the following conditions
are satisfied:

® p,q € Py

e p= (u,v)" for some n,0 < n < k;

o (= (ul, Ul)n+1;

e ((u,v),r (v, 0v)) € E;
Note that the graph (P, Ep,) is a directed acyclic graph. The only element on
level 0 is (A, B)°.

The label of an element of Py is the label of its node in G, i.e., if p = (u,v)" € P,
then
Lp, (p) == L(u,v) = Ly(u) N Ly (v).

We are now ready to define an &/L-description graph gék) whose corresponding

TBox E(k) is a conservative extension of 7, and which contains a defined concept
P, that is a common subsumer of A, B.

Definition 28 For all £ > 0, we define gék) = (V;k), Egk), Lgk)) where

o z(k) = Ngey U Py;
o L =L,ULp,. ie.

(k) L Ll(U> ifve Ndef
La7(v) = { Lp, (v) ifveP,

° Eék) consists of the edges in E) and Ep,, extended by some additional edges
from Py to Ngey:

Eék) = FE,UEpU{(p,r,w) | p=(u,v)" € P and
(u,r,w) € Ey and (v,r,w) € Ey}.
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Let 7;(k) be the £L-TBox such that gék) = G . It is easy to see that E(k) is a
2
conservative extension of 7.

Lemma 29 A ;B(k) (A7 B)U and B E,rz(k) (A7 B)U.

Proof. We prove A C_u) (A, B). (The other subsumption relationship can be
2
shown analogously.)

According to Theorem 19, it is enough to show that there is an ((A, B)°, A)-
synchronized simulation Z: G_x) ~ G such that ((A, B)°, A) € Z. We define

this simulation relation as follows:

Z :={(p,u) | p € Pr,u € Ny, and the node of p is of the form (u,v)} U
{(u,u) | u € Ndef}-

First, note that obviously ((4, B)?, A) € Z.

Second, we show that Z is indeed a simulation relation, i.e., it satisfies (S1) and
(S2) of Definition 11.

(S1) First, consider (p,u) € Z for some p € Py. If (u,v) is the node of p, then
LY (p) = Lp,(p) = Li(u) N Li(v) C Ly(u) = LY (u). The case (u,u) € Z is
trivial.

(S2) For the case (u,u) € Z, this property is trivially satisfied. Now, consider
(p,u) € Z for p € Py and u € Ny, and let (u,v) be the node of p.

Case 1: (p,r,q) € Eék) for some ¢ € Py,.
Consequently,

p=(u,v)" and ¢q= (u',0")"**

for two distinct nodes u', v" € Ny and some n,0 < n < k. The definitions of Ep,
and F imply that (u,r,u') € F; C Eék). In addition, (¢,u') € Z by definition of
Z.

Case 2: (p,r,u) € B for some u' € Nes-

Recall that (u,v) is the node of p. By definition of Eék), (p,r,u') € Eék) implies
that (u,r,u') € By C Eék), and by the definition of Z we have (uv',u') € Z.

To sum up, we have shown that 7 is a simulation relation such that ((A4, B)°, A) €

)
Z. Tt remains to be shown that Z is ((A4, B)?, A)-synchronized. Our proof of (S2)
yields the desired selection function:

e In the situation (p,r,q) € Eék) and (p,u) € Z, S takes the first component

of the node of .

e In the situation (p,r,u') € Eék) and (p,u) € Z, S takes u'.
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e In the situation (u,r,v) € B\ and (u,u) € Z, S takes v.

Why does S satisfy the synchronization property? Since the directed acyclic
graph (P, Ep,) only contains paths of length < &, any infinite ((A, B)?, A)-
simulation chain must contain nodes from Ny also in the upper component.
Restricted to these nodes in the first component, 7 is the identity relation. O

What we want show next is that every common subsumer of A, B also subsumes
(A, B)? in 7;(k) for an appropriate k.

To make this more precise, assume that 75 is a conservative extension of 77, and
that F' is a defined concept in 75 such that A Ty, F and B Ty, F. Where
G1, = (Va, Esy, Ls), this implies that there is

e an (F, A)-synchronized simulation relation Y;: G, ~ G, with selection
function Sy such that (F, A) € Y7, and

e an (F, B)-synchronized simulation relation Y3: G, ~ G5, with selection
function Sy such that (F, B) € Ya.

By Corollary 26 we may assume without loss of generality that the selection
functions Sy, Ss are nice. Consequently, if k& = |V5|?, then Lemma 27 shows that
the selection functions Sy, S5 ensure synchronization after less than k steps.

In the following, let k := |[V5]?>. In order to have a subsumption relationship
between Pj, and F', both must “live” in the same TBox. For this, we simply take
the union 73 of 7;(k) and 7. Note that we may assume without loss of generality

that the only defined concepts that E(k) and 73 have in common are the ones from

71. In fact, none of the new defined concepts in 7;(k) (i.e., the elements of Py) lies
on a cycle, and thus we can rename them without changing the meaning of these
concepts. (Note that the characterization of subsumption given in Theorem 19
implies that only for defined concepts occurring on cycles their actual names are
relevant.) Thus, 73 is a conservative extension of both 7;(k) and 7.

Lemma 30 (A,B)’Cy, F

Proof. We must show that there is an (F, (A, B)")-synchronized simulation rela-
tion Y: G, ~ G, such that (F, (A, B)?) €Y.

Again, Y is based on the “product” of Y; and Y5:

Y = {(u,p) | (u,vy) € Y] and (u,v2) € Y3
where (v1,v7) is the node of p € P, } U

{(u,v) | v € N4y and (u,v) € Y1 }.
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By definition of Y, (F,A) € Y; and (F,B) € Y, imply (F,(A,B)°) € Y. In
order to show that Y is (F, (A, B)?)-synchronized, we must define an appropriate
selection function S. Thus, consider the following partial (F, (A, B)?)-simulation
chain:

F =F 3% 2 ... '3 Fp, F
Y] Y] Y]
(A, B)O = Wy g w1 Tn—_>1 Wy —1

n
Since T3 is a conservative extension of E(k), the nodes w; are all nodes of gék),

i.e., elements of Py, or of Ngy.

First, assume that w,_1 € Ngp. But then (F,_1,w,—1) € Y7 by the definition of
Y, and the selection function S; yields a node w,, € V3 such that (w, 1,7, w,) €
Ej5 and (F,,w,) € Y;. Since w,,_; € Ny and T3 is a conservative extension of 7y,
(Wp—1,7p,w,) € E3 implies w,, € Ngs. Consequently, (F,,w,) € Y] also yields
(Fpn,wy,) € Y. Thus, the selection function S simply chooses w,,.

Now, assume that w,_; belongs to P, (and thus also the other nodes w;). Conse-
quently, the above partial (F, (A, B)?)-simulation chain is of the following form:

F = F 3 B 3 ... '3 ., 3 F
Yl Yl Yl
(AB® = po & p 3 - 5 pay
for elements pi,...,p, 1 of Pr. Assume that (u;,v;) is the node of p; (i =

0,...,n—1).! By the definitions of Py, Y and FE,, this implies

e n—1<k,
o u, v, fori=0,...,n—1,
e (Fj,u;) €Yy and (F;,v;) € Yafori=0,...,n—1, and

o (uj1,ri,u;) € By C Ey and (vi_1,74,v;) € By C By
fori=1,...,n—1.

This yields the following partial simulation chains:

F=F 2% R 2 ... 5 F, 3 F
() vil vil Yil

A= wuy 5 ou B 0w,

F=F23rr2..=F,%F
(%) ol Yl Yal

B = Vo g U1 3 Tn__>1 Un—1

IThe level of p; is obviously i.
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The selection functions Si, Sy thus yield nodes u,, v, such that

L4 (un—larnaun> S El g E3 and (Fnaun> S }/1;

o (v, 1,7, v) € By C E3 and (F,,v,) € Y.

Case 1: u, = v,.
In this case, (pp_1,7n, Un) € Eék) C FE3, and (F,,u,) € Y. Thus, the selection
function can choose w,,.

Case 2: u, # v,.

We will show that this implies n
k

thus (pn—larnapn> € Ep, C Eé )

function can choose p,.

k. Consequently, p, := (un,v,)" € Py, and

<
C E3 and (F,,p,) € Y. Hence, the selection

Assume to the contrary that n > k. Consider the partial simulation chains (x) and
(x%) from above. Since k = |V5|? and n—1 > k, there exist indices my, my < n—1
such that F,,, = u,, and F,,, = v, (by Lemma 27). However, since the selection
functions Si, Sy were assumed to be nice, we have F,, = u,, for all m > m; and
F, = v,y for all m' > my. Consequently, u,_; = F,_1 = v,_1, which contradicts
our assumption that (u,_1,v,_1) is the node of the element p,_; of Py.

Why does S satisfy the synchronization property? Since the directed acyclic
graph (Pg, Ep,) only contains paths of length < k, any infinite (F, (A, B)°)-
simulation chain can only have finitely many elements of P, in the lower com-
ponent. After that, the lower component only contains elements from Ny . Re-
stricted to these nodes in the second component, Y coincides with Y;j. Since Y}
satisfies the synchronization property, this implies that Y satisfies this property
as well. O

In the following, we assume without loss of generality that the TBoxes E(k)
(k > 0) are renamed such that they share only the defined concepts of 7;. For
example, in addition to the upper index describing the level of a node in P, we
could add a lower index k. Thus, (u,v)} denotes a node on level n in Py. For
k > 0, we denote (A, B)} by P,. Using this notation, we can reformulate what
we have shown until now as follows: every P is a common subsumer of A, B, and
if F'is a common subsumer of A, B then there is a k£ such that F' subsumes Pj.

As a consequence of this lemma we can show that an les of A, B must be equivalent,
to one of the Pj.

Theorem 31 Let Ty be an EL-TBox and A, B defined concepts in T;. Then A, B
in Ty have an lcs iff there is a k > 0 such that Py in E(k) is the les of A, B in Ty.

Proof. The direction from right to left is trivial. Thus, assume that 75 is a
conservative extension of 7; and that P in 75 is the lcs of A, B.

23



We define k := n? where n is the number of defined concepts in 75. Let T3 be
the union of 75 and 7;(k), where we assume without loss of generality that the

only defined concepts shared by 73 and E(k) are the ones in 7;. Then Lemma 30
shows that P, Cp, P.

Since Py is a common subsumer of A, B, the fact that P is the least common
subsumer of A, B implies that subsumption in the other direction holds as well:
P Cp, P. Thus, P and Py are equivalent, and this implies that P is also an lcs
of A, B. O

The concepts P, form a decreasing chain w.r.t. subsumption.
Lemma 32 Let T := 7;(k) U 7;(k+1). Then P Cr Py.

Proof. First note that 7 is a conservative extension of both E(k) and 7;(k+1).

The simulation relation Z with (P, Pyy1) € Z is defined as follows:

Z = {((uav)Za (uav)ZJrl) | (uav)z € Pk} U {(U,U) | u e Ndef}‘
It is easy to see that Z is indeed a synchronized simulation relation. O

The concepts A, B have an lcs iff this decreasing chain becomes stable.
Corollary 33 P is the lcs of A, B iff it is equivalent to Pyy; for all i > 1.

Proof. In this proof we do not explicitly name the TBoxes w.r.t. whom the sub-
sumption relationships hold. Basically, these TBoxes are all conservative exten-
sions of 7; obtained as union with some of the TBoxes E(é). Since these TBoxes
share only the defined concepts in 7; and the names of their newly defined con-
cepts are irrelevant for subsumption, it is always possible to choose the right
extension.

(=) Lemma 32 implies that P}, subsumes P;;. Since Py, is a common subsumer
of A, B, the fact that Py is the lcs of A, B implies that P, ; also subsumes P;.

(<) We know that Py is a common subsumer of A, B. It remains to be shown that
it is the least common subsumer. Thus, assume that F' is a common subsumer
of A, B. We must show that F' subsumes P;.

By Lemma 30 there is an ¢ such that F' subsumes P,. If ¢ < k, then Lemma 32
implies that P, subsumes P, and thus F subsumes P,. If ¢ > k, then our
assumption (right-hand side of the corollary) yields that P, and P, are equivalent,
and this again implies that F' subsumes F. O
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Example 34 Let us reconsider the TBox 7; defined in Theorem 24. In this case,
the TBoxes 7" are basically of the form?

TLU{P.=3r.(A B);, (A,B),=3.(A,B), ..., (A, B){ ' =3r.(A4,B)}},

and it is easy to see that there always is a strict subsumption relationship between
Py and Py (since Py requires an r-chain of length k41 whereas Py only requires
one of length k).

The following is an example where the lcs exists.
Example 35 Let us consider the following TBox
T ={A=3Fr.AN3Ir.C, B=3Ir.BNIr.C, C =3r.C}.
In this case, £ = 0 does the job, and thus the lcs of A, B is Pq:
7;(0) =T U{Py=3r.C}.

In fact, it is easy to see that the path Py — C' = C' = - - - can simulate any path
starting with some P, for ¢ > 1. Since the infinite paths starting with P, must
eventually also lead to C' (after at most ¢ steps), this really yields a synchronized
simulation relation.

The next example is very similar to the previous one. However, in this case the
lcs does not exist.

Example 36 Let us consider the following TBox
T ={A=3Ir.ANF.CN3Ir.D, B=Fr.BNIr.CNIr.D, C =3Ir.C, D = 3r.D}.

In this case, there always is a strict subsumption relationship between P, and
Py for the following reason. Consider the path

Py — (A7 B)lchrl DD (A,B)’ziﬁ
issuing from Py,q. If this path is simulated by a path
Pki>u1i>---i>uk+1

issuing from Py, then either ugp,y = C or up,; = D. Assume without loss of
generality that u;,y = C'. Then we cannot get synchronization when simulating
the path

P = (AvB>ll~c+1 T (A, B)ZE = D.

2We have restricted the attention to elements of P that are reachable from Pj.
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One might think that the decreasing chain of concepts Py (k > 0) becomes stable
as soon as Py is equivalent to Py, ;. Our final example shows that this is not the
case. It demonstrates that P, = Py need not imply Py = Prio.

Example 37 Let us consider the following TBox

ﬂ Z:{Al = 3’[“1.142, A2 = ElT'Q.Al M 3’/“2.0,
B1 = ElT'l.BQ, B2 = EITQ.Bl M 3’/“2.0,
C = EI’I“Q.C}.

First, we claim that P, is subsumed by P, and thus P; and P are equivalent. In
fact, the only critical simulation chains are those of length 2 where the nodes of
the upper component all belong to Ps:

13

P2 = (AlaBl)g g (AZ,BQ)% (AhBl)%
(1) ! ! "
Pl = (AlaBl)(l) g (AZ,BQ)}

13
o)

P2 = (AlvBl>g g (A27B2>% g (A170>%
(2) ! ! "
P1 == (A1731>? g (AQ,BQ)% g C

P2 = (AlvBl>g g (A27B2>% g (07 Bl)%
(3) I 3 +
P1 == (A1731>? g (AQ,BQ)% g C

In all three cases, the upper node does not have any successor node in G and

)
Ty
thus these chains are unproblematic.

In contrast, P, is not subsumed by P;. In fact, consider the following situation:

P3 = (AlﬁBl)g g (A27BZ)%) 3 (AlaBl)g g (A27BZ)§
\ 1
P, = (Ala Bl)g g (A27 BZ)%

We can simulate (Ay, By)? only by one of the following nodes: (A, By)3, (4, C)3,

(C, By)3, or C. However, none of these nodes has an r-successor in QT@).
2

4.2.3 A sufficient condition for the existence of the lcs

If we want to use the results from the previous subsection to compute the Ilcs,
we must be able to decide whether there is an index k such that Py is the lcs of
A, B, and if yes we must also be able to compute such a k. Though we strongly
conjecture that this is possible, we have not yet found such a procedure. For this
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reason, we must restrict ourself to give a sufficient condition for the lcs of two
concepts defined in an £L£-TBox to exist.

As before, let 7 be an EL-TBox, let Gr; = (Ngey, E7, L7;) be the corresponding
description graph, and let A, B be defined concepts in 7; (i.e., elements of Nyr).
We consider the product G := Gr; X G, of G, with itself. Let G = (V, E, L).

Definition 38 We say that (A, B) is synchronized in 7y iff, for every infinite
path
(A, B) = (Uo,U()) g (Ul,U1> g (UQ,U2> g cee

in G, there exists an index ¢ > 0, such that u; = v;.

For example, in the TBox 7; introduced in Theorem 24, (A, B) is not synchro-
nized. The same is true for the TBox defined in Example 35. As another example,
consider the TBox

T ={A =3rn.ANFIr.C, B =3B NIrC, C=3rC}.

In this TBox, (A’, B') is synchronized.

Lemma 39 Assume that (A, B) is synchronized in Ty, and let k := |Ngy|*.
Then, for every path

(A, B) = (uo, vo) = (uq,v7) = (2, v2) S (g, V)

in G of length k, there exists an index i,0 < i < k such that u; = v;.

Proof. Assume to the contrary that there is a path
(A7B> = (U07U0> g (uhUl) 3 (U27U2> 3 vt T# (ukavk)

such that u; # v; for all 1,0 < i < k. Since (u;,v;) € Ngef X Ngep fori =0,....k
and k = |Ngs X Ngerl|, there exist indices 0 < i < j < k such that (u;,v;) =
(wj, vj)-

But then we can construct an infinite path

r; T

(A, B) = (Uo,U()) g (Ul,U1> g tee (UZ',Ui> n'_+>1 tee —J> (Uj,Uj) = (Ui,Ui> Z—>1 s

such that the first component in the tuples is always different from the second
component. This contradicts our assumption that (A, B) is synchronized in G. O

As an easy consequence of this lemma we obtain that k = |Ndef|2 is such that P,
is the lcs of A, B.
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Lemma 40 Assume that (A, B) is synchronized in Ty, and let k := |Nges|*. Then
Py in E(k) is the les of A, B in Ty.

Proof. By the previous lemma, every path in G starting with (A, B) and of
length at least k contains some node of the form (u,u). Thus, if we consider a
path starting with P, for some ¢ > k, then we know that only an initial segment
of length < k can belong to P,. Basically, this initial segment also belongs to
P (modulo the lower index). This observation can be used to show that P is
equivalent to P for all / > k, and thus P, is the lcs of A, B. O

As an immediate consequence of Lemma 40 we obtain that the lcs of A, B in Ty
always exists, provided that (A, B) is synchronized in 7;. Our construction of

the TBox E(k) is obviously polynomial in £ and the size of 7;. Since k is also
polynomial in the size of 77, the size of 75 is polynomial in the size of 7;.

Theorem 41 Let 71 be an EL-TBox, and let A, B be defined concepts in Ti such
that (A, B) is synchronized in T;. Then the lcs of A, B in Tp always exists, and
it can be computed in polynomial time.

Example 24 shows that the lcs may exist even if (A, B) is not synchronized in 7.
Thus, this is a sufficient, but not necessary condition for the existence of the lcs.

We close this section by showing that this sufficient condition can be decided in
polynomial time.

Proposition 42 Let T, be an EL-TBox, and let A, B be defined concepts in Ty.
Then it can be decided in polynomial time whether (A, B) is synchronized in Ty
or not.

Proof. As before, consider the product G := G x G, of Gy, with itself. Let
G=(V,E,L).

We define

Wy = {(u,u)]| (u,u) € V},

Wiy = W,U{(u,v) | (u,v) € V and all edges with source (u,v) in G
lead to elements of W;}, and
i>0

Obviously, W, can be computed in time polynomial in the size of G.

Claim 1: (A, B) is synchronized in T iff (A, B) € W.
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From this, the proposition immediately follows. To prove this claim, we show the
following:

Claim 2: (u,v) € W, iff for every path
(u,v) = (ug, v0) = (u1,v1) = (ug, v2) = -+ 25 (U, vy)
i G of length n, there exists an index i,0 < i < n such that u; = v;.

We prove Claim 2 by induction on n. If n = 0, then (u,v) € W, iff u = v. In
addition, the above path has length 0, i.e., consists of (u,v) = (ug, v) only. Thus,
the existence of an 7,0 < i < 0 such that u; = v; is equivalent to u = v.

(n — n+ 1) First, assume that (u,v) € Wy4y. If (u,v) € W, then the induction
hypothesis can be applied. Thus, assume that (u,v) € W, \ W, i.e., all edges
with source (u,v) in G lead to elements of W,,. Now, consider a path
(U,U) = (UOaUO) g (ulavl) g (u2,v2) g T T# (unavn) TSI (un—}-lavn—l-l)

in G of length n + 1. Since (uy,v;) € W, there exists an index i,1 <i<n+1
such that u; = v;, and we are done.

Second assume that, for every path

(%) (u,0) = (uo,v0) = (ur, v1) 3 (uz,v2) =+ 2 (u, v) "™ (Ut V)

in G of length n + 1, there exists an index 7,0 < ¢ < n + 1 such that u; = v;.
If w= v, then (u,v) € Wy C W, 4. Thus, assume that u # v. To show that
(u,v) € Wyi1, we consider an arbitrary edge ((u,v), 1, (u1,v1)) in G and show
that (uq,vy) € W,. Thus, consider a path in G of length n starting with (uy, v):

(ulavl) g (U27U2) g et T# (unavn) TSI (Un-l—lavn—l—l)-

Together with the edge ((u,v),r1, (u1,v1)) this yields a path of length n 4+ 1 of
the form (*) above. Thus, there exists an index i,0 < i < n+1 such that u; = v;.
Since we have assumed that v # v, we actually have 1 < i < n + 1, which shows
that (uq,vy) € W,. This completes the proof of Claim 2.

[t remains to be shown that Claim 2 implies Claim 1. First, assume that (A, B)
is synchronized in 7;. By Lemma 39, there is a k£ such that, for every path

(u,v) = (ug, vo) AN (uy,v1) Y (uz, v9) LR (ug, vg)

in G of length k, there exists an index 7,0 < < k such that u; = v;. By Claim 2,
this implies (A, B) € W, C W..

Conversely, assume that (A, B) € W,. Thus, there is a k such that (A, B) € Wj.
By Claim 2, this implies that, for every path

(u,v) = (ug, v0) = (w1, 1) = (12, v2) B (g, V)

in G of length k, there exists an index i, 0 < 7 < k such that u; = v;. In particular,
this shows that (A, B) is synchronized in 7. O
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5 The instance problem and most specific con-
cepts

One motivation for considering cyclic terminologies in £L is the fact that the
most specific concept of an ABox individual need not exist in ££ (without cyclic
terminologies). An example is the simple cyclic ABox A := {r(b,b)}, where b has
no most specific concept, i.e., there is no least £L-concept description D such
that b is an instance of D w.r.t. A [9]. However, if one allows for cyclic TBoxes
with gfp-semantics, then the defined concept B with B = 9r.B is such a most
specific concept.

In the following, we restrict the attention to gfp-semantics. First, we show how
the characterization of subsumption (Theorem 13) can be extended to the in-
stance problem w.r.t. gfp-semantics. Then, we will use this characterization to
characterize the most specific concept w.r.t. gfp-semantics (gfp-msc).

5.1 The instance problem w.r.t. gfp-semantics

Assume that 7 is an ££-TBox and A an ££-ABox. In the following, we assume
that 7T is fixed and that all instance problems for A are considered w.r.t. this
TBox.

In this setting, A can be translated into an £L-description graph G4 by viewing
A as a graph and extending it appropriately by the graph Gr associated with
T. The idea is then that the characterization of the instance problem should be
similar to the statement of Proposition 15: the individual a is an instance of A
in A iff there is a simulation Z: Gr ~ G4 such that (A,a) € Z.

Before giving an exact definition of G 4, we consider an example that demonstrates
that a too simple-minded realization of this idea does not work. Let

A = {A(a),P(a)} and
T = {A=3r.A, B=Pn3r.B}.

The ABox A itself can be viewed as an £ L-description graph consisting of a single
node a with label {P}. Since A = 3r.Aisin T and since A(a) is in A, we extend
this graph by an r-loop from a to a. Figure 3 shows the graph G obtained this
way as well as the £L-description graph G corresponding to 7T .

Obviously, there is a simulation Z: Gy ~ G such that (B,a) € Z. However, a is
not an instance of B. In fact, of a we only know that it belongs to P and that it
is the starting point of an infinite r-chain. The instances of B must belong to P
and they must be the starting point of an infinite r-chain such that every element
on this chain also belongs to P.
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Figure 3: The £L-description graphs G, G, and G4 of our example.

The reason for this problem is that our construction of G was too simple minded.
In fact, node labels and edges in G state facts that must hold for all individuals
that are instances of the defined concept labeling a given node. Assertions of the
ABox make statements about properties of particular named individuals. The
construction of G in the above example mixes these different things, and thus
leads to unfounded conclusions.

In order to separate edges and labels coming from ABox assertions from the ones
coming from TBox definitions, we do not “identify” the node a with the node A
if A(a) belongs to A (as done in the construction of G above). Instead, we do
a “one-step expansion” of the definition of A. The right-most graph in Figure 3
shows the graph G4 obtained this way in our example. Obviously, there is no
simulation Z: Gr ~ G4 such that (B,a) € Z.

Below, we give a formal definition of the £ L-description graph G 4 associated with
the ABox A and the TBox 7 in the general case.

Definition 43 Let 7 be an ££-TBox, A an £L£-ABox, and Gr = (V, E, L) be
the &£L-description graph associated with 7. The £L-description graph G4 =
(Va, E4, L) associated with A and 7 is defined as follows:

e the nodes of G4 are the individual names occurring in A together with the
defined concepts of T, i.e.,

V4 :=V U{a|ais an individual name occurring in A};

e the edges of G4 are the edges of G, the role assertions of A, and additional
edges linking the ABox individuals with defined concepts:

E4 = EU{(a,rb)|r(ab) e A} U
{(a,r,B) | A(a) € A and (A,r,B) € E};

e if u € V4 is a defined concept, then it inherits its label from Gr, i.e.,

Li(u):=L(u) ifueV;
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otherwise, u is an ABox individual, and then its label is derived from the
concept assertions for v in A. In the following, let P denote primitive and
A denote defined concepts.

La(u):={P|Pu)e AyU | L(4) ifueVy\V.
A(u)eA

Before we can characterize the instance problem via the existence of certain sim-
ulation relations from Gr to G4, we must characterize under what conditions
a gfp-model of 7 is a model of A. In the following we assume that primitive
interpretations also interpret ABox individuals.

Definition 44 Let J be a primitive interpretation and G; the £L-description
graph associated with 7. We say that the simulation Z: G4 ~ G respects ABozx
individuals iff

{z](a,2) € Z} = {a”}

for all individual names a occurring in A.

Proposition 45 Let J be a primitive interpretation and I the gfp-model of T
based on J. Then the following are equivalent:

1. T is a model of A.

2. There is a simulation Z: G4 ~ G 7 that respects ABoz individuals.

Proof. (2 = 1) Assume that a simulation Z: G4 ~ G respecting ABox individ-
uals is given. We must show that Z satisfies all the assertions in A.

First, assume that r(a,b) is a role assertion in A. Since Z coincides with J on
role and individual names, we must show that (a”,b”) € r7. Because Z respects
ABox individuals, we know that (a,a”) € Z, and thus (a,r,b) € E4 implies that
there exists a y € A7 such that (a7,y) € 7 and (b,y) € Z. Since Z respects
ABox individuals, (b,y) € Z implies that y = b7, which yields (a7, b7) € 7.

Second, assume that P(a) is a concept assertion in A where P is a primitive
concept. By definition of L4, we have P € L(a). In addition, since Z respects
ABox individuals, we know that (a,a”) € Z, which implies L(a) C Ls(a”).
Consequently, P € Ls(a”), which implies a = a7 € PY = PZ.

Finally, assume that A(a) is a concept assertion in A where A is a defined concept.
We use Proposition 15 to show that a/ = aZ € AZ. Thus, we need to find a
simulation Y: Gr ~ G such that (4,a”) € Y. We define the relation YV as
follows:

Y :={(A,a”)} U{(B,2) | (B,z) € Zand B € V}.
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Thus, Y is the restriction of Z to the nodes of G, extended by the tuple (A4, a”).
It remains to be shown that Y is a simulation relation, i.e., satisfies (S1) and (S2)
of Definition 11.

(S1) Let (B,z) € Y. If (B,x) € Z, then L(B) = L4(B) C Ly(x) since Z is
a simulation. Thus, consider (A4,a”) € Y and let P € L(A). By definition of
Ga, A(a) € Aand P € L(A) imply that P € Ly(a). Since Z respects ABox
individuals, we know that (a,a”) € Z, and thus P € L4(a) C Lz(a”).

(S2) Let (B,x) € Y and (B,r,B') € E. If (B,z) € Z, then (B,r,B") € E C E4
implies the existence of a y such that (B',y) € Z and (x,r,y) € E7. Now,
(B,r,B') € E yields B' € V, and thus (B’,y) € Z implies (B',y) € Y.

Thus, consider (4,a”) € Y and (A,r, B') € E. Since A(a) € A, the definition of
G 4 shows that (a,r, B') € E4. In addition, since Z respects ABox individuals,
we know that (a,a”) € Z. Consequently, there is a y such that (a7, r,y) € E
and (B',y) € Z. Now, (A,r,B') € E yields B’ € V, and thus (B',y) € Y.

This completes the proof that Y: G- ~ G is a simulation such that (4,a7) € Y.
Thus, Proposition 15 implies that o = a7 € AZ.

(1 = 2) Assume that Z is a model of A. In particular, this implies that a/ =
a’ € A7 holds for all concept assertions A(a) € A. Thus, Proposition 15 implies
the existence of simulation relations Z4(,: Gr ~ G5 such that (A,a”) € Z A(a)-
Let Y be the union of these simulations, i.e.,

V= | Zuw-
(a)eA

Then Y is a simulation relation that satisfies (A, a”) € Y for all concept assertions
A(a) € A. We define the relation Z as follows:

7 =Y U{(a,a”) | a is an individual name occurring in A}.

By definition of Z, {z | (a,x) € Z} = {a”}, and thus it remains to be shown
that Z is a simulation from G4 to G 7.

(S1) Since Y satisfies this property, it is enough to consider the case (a,a”) € Z.
If P € Ly(a), then P(a) € Aor P € L(A) and A(a) € A for some defined concept
A. In both cases, the fact that Z is a model of A implies that a7 = o € PT = P,
and thus P € Lz(a”).

(S2) First, consider the case where (B,x) € Y for some defined concept B and
element x of A7. Since any edge (B,r,u) in G4 with source B € V is also an
edge in Gr, the fact that Y satisfies (S2) implies the existence of a y such that
(v,r,y) € E7 and (u,y) €Y C Z.

Second, consider (a,a”) € Z and assume that (a,r,u) € E4. By the definition
of E 4, this means that one of the following two cases applies:
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1. u is an ABox individual and r(a,u) € A.

2. u is a defined concept and (A,r,u) € E and A(a) € A for some defined
concept A.

In the first case, we have (u,u”) € Z, and (a7 ,u”) € r7 since T is a model of
A and coincides with 7 on role and individual names. Since (a”,u”) € r7 is
equivalent to (a7, r,u’) € Ez, we have shown that (S2) holds in this case.

In the second case, A(a) € A implies that (A,a”) € Y by the definition of Y.
Since Y is a simulation, this together with (A, r, u) € E implies that there exists
a y such that (u,y) € Y C Z and (a7, r,y) € E;. This completes the proof of
the proposition. O

The following characterization of the instance problem is an easy consequence of
this proposition.

Theorem 46 Let T be an EL-TBox, A an EL-ABox, A a defined concept in T
and a an individual name occurring in A. Then the following are equivalent:

1. Alsgpr Ala).
2. There is a simulation Z: Gy ~ G4 such that (A,a) € Z.

Proof. (2 = 1) Assume that there is a simulation Z: Gy ~ G4 such that (A, a) €
Z. We must show A .77 A(a), ie., if T is a gfp-model of T that is also a
model of A, then aZ € AT. Thus, let J be a primitive interpretation and Z the
gfp-model of 7 based on 7.

If Z is a model of A, then Proposition 45 yields a simulation Y: G4 ~ G that
respects ABox individuals. The composition X := Z oY is a simulation from
G to G such that (4,a”) € X. In fact, we know that (A,a) € Z and the fact
that Y respects ABox individuals implies that (a,a”) € Y. Thus, Proposition 15
yields o = a7 € AL

(1 = 2) Assume that A [=,¢7 A(a). The EL-description graph G4 can be
viewed as the graph of a primitive interpretation. Thus, let J be this primitive
interpretation, i.e., G4 = G 7, and let Z be the gfp-model of 7 based on [J.

We claim that Z is a model of A. This is an immediate consequence of Proposi-
tion 45 since the identity on G4 is a simulation from G 4 to G7 = G4 that respects
ABox individuals.

Consequently, the fact that A E,f, 7 A(a) implies that a = a7 = o € AZ. But
then Proposition 15 yields the desired simulation Z: Gr ~ G; = G4 such that
(A,a) € Z. O
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The theorem together with Proposition 12 shows that the instance problem w.r.t.
gfp-semantics in £L is tractable.

Corollary 47 The instance problem w.r.t. gfp-semantics in EL can be decided
i polynomial time.

5.2 Computing the gfp-msc

Let 77 be an ££-TBox and A an £L£-ABox containing the individual name a. Let
Ga = (V4, E4, L4) be the £L-description graph corresponding to .4 and Ty, as
introduced in Definition 43. In order to obtain the gfp-msc of a, we view G4 as
the £L-description graph of an ££-TBox 75, i.e., let 75 be the TBox such that
G4 = Gr,. By the definition of G4, the defined concepts of 75 are the defined
concepts of 77 together with the individual names occurring in A.

Lemma 48 75 is a conservative extension of Ty

Proof. This is an easy consequence of the definitions of F4 and L 4. O

To avoid confusion we will denote the defined concept in 75 corresponding to the
individual name b in A by Cj. Using the results of the previous subsection, we
can show that C, is the gfp-msc of a.

Proposition 49 The defined concept C, in Ty is the gfp-msc of a in A and T;.

Proof. First, we show that a is an instance of C, w.r.t. gfp-semantics, i.e.,
A g1 Cola). The identity on Gz, is a simulation from G, = G4 to G4
that contains the tuple (C,,a).> Thus, Theorem 46 yields A =, 1,75 Co(a).

Second, assume that 73 is a conservative extension of 7 and that F'is a defined
concept in T3 such that A f=;p, 7 F(a). Let G4 be the £L-description graph
corresponding to A and T3, as introduced in Definition 43. By Theorem 46,
A E=yp.1 F(a) implies that there is a simulation Z: G, ~ G4 such that (F,a) €
Z. We must show that C, T, 7z F'. By Theorem 13, it is enough to show that
there is a simulation Y: Gr, ~ Gz, such that (F,C,) € Y.

To define Y, first note that the set of nodes of QA consists of the nodes of G,
and the individuals occurring in A. Also note that T3 extends 75, and that Gr,
in principle also contains the individuals occurring in A. However, we assume
without loss of generality that the individual names b in 7; have been renamed
into concept names C}. The definition of G4 is illustrated by Figure 4. The

3Recall that C, in 75 corresponds to a.
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WA

Figure 4: The & /L-description graph Q A

arrows indicate that there may be edges from one subgraph into the other. The
inner oval marked with A indicates the ABox A as used within Gr,. There, the
individual name a is renamed into C, (and an analogous renaming is done for the
other individual names).

The simulation Y is defined as follows:

Y = {(u,v) € Z|visanodeof T3} U
{(u,Cy) | (u,b) € Z and b is an individual name in A}.

Since (F,a) € Z, we have (F,C,) € Y. Thus, it remains to be shown that Y is a
simulation relation.

(S1) Assume that (u,v) € Y. If v is a node of Gr;, then property (S1) holds since
it is satisfied by Z. If v = C} for the individual name b in A, then (u,b) € Z.
But then (S1) holds since the label of b in G4 coincides with the label of C} in
O =0a.

(S2) Assume that (u,v) € Y and that (u,r, ') is an edge in Gr;. If v is a node
of Gz,, then (u,v) € Z, and thus there exists a node v" such that (v,r,v) is an
edge in G4 and (u',0") € Z. Since, in G4, edges from nodes of Gr, lead to nodes
of Gz, we know that v’ is a node of Gz, which yields (v/,v") € Y.

Finally, assume that v = Cj, for the individual name b in A. Then, we know that
(u,b) € Z, and thus there is a node v' such that (b,r,v') is an edge in G4 and
(u',v") € Z. It v is an individual name in A, then (u',Cy) € Y. In addition,
the existence of the edge (b,r,v') implies that there is an assertion r(b,v'") € A.
Consequently, we also have the edge (Cj, Cyy) in Gr;.
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It remains to consider the case where v’ is a node in Gr;. But then (u',v") € Z
implies that (u/,v") € Y. In addition, the existence of the edge (b,r,v") in G4
implies that there is the corresponding edge (Cy, v') in G4 = Gr;. O

Given T and A, the graph G4 can obviously be computed in polynomial time,
and thus the gfp-msc can be computed in polynomial time.

Theorem 50 Let Ty be an EL-TBox and A an EL-ABox containing the indi-
vidual name a. Then the gfp-msc of a in Ty and A always exists, and it can be
computed in polynomial time.

6 Simple role-value-maps

As mentioned in the introduction, one would sometimes like to express certain
relationships between roles. The DL of the original KL-ONE system [4] contained
a constructor called role-value-map that allowed the user to express such relation-
ships. However, it was shown in [14] that role-value-maps make the subsumption
problem in KL-ONE undecidable.

The role-value-maps that we consider in the following differ from the ones in
[4, 14] in the following respects:

1. Instead of arbitrary role-value-maps of the form ryo---or,, Es;0---0s,
we restrict the attention to role-value-maps of the form r; ory C s, i.e., the
right-hand side must be a single role.

2. We consider global role-value-maps, which must hold for all individuals of
an interpretation, rather than local ones, which can be asserted selectively
for certain individuals.

3. We consider the DL £L, which does not allow value restrictions, whereas
the DLs considered in [4, 14] have value restrictions.

The undecidability proof in [14] would also work with the second restriction in
place. However, the proof does not work in the presence of the first or the third
restriction. Role-value-maps satisfying the first and the second restriction have
recently drawn considerable attention [6, 19, 8]. However, for the expressive DLs
usually considered there, subsumption easily becomes undecidable [6, 19], and it
is quite hard to obtain decidable special cases [8].

For £L (with or without cyclic terminologies), things are a lot simpler. Not
only does subsumption remain decidable, it even stays polynomial when we add
role-value-maps satisfying the first two restrictions. We will also show that sub-
sumption becomes undecidable if one adds arbitrary global role-value-maps to
EL (even without cyclic terminologies).
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Definition 51 A (global) role-value-map is an expression of the form ;0 --- 0
rm C s10---08, where m,n > 1 and rq, ..., s, are role names. It is satisfied in an
interpretation Z iff rfo- - -orZ C sTo--.0sZ, where o denotes composition of binary
relations. We say that this role-value-map is restricted if m =2 and n = 1.* A
finite set of restricted role-value-maps is called an RBoz. The interpretation Z is
a model of the RBox R iff 7 satisfies every role-value-map in R.

Given an ££-TBox 7 and an RBox R, subsumption w.r.t. 7 and R is defined
in the obvious way:

Definition 52 Let A, B be defined concepts in 7. Then

e ALCE Biff AT C B” holds for all models of 7 and R.

o ACR ;- Biff A7 C B holds for all gfp-models of 7 that are models of R.

In order to solve the subsumption problem w.r.t. a cyclic ££-TBox 7 and an
RBox R, we view the restricted role-value-maps ros C t € R as rules that add
new edges to Gr.

Definition 53 We say that the role-value-map r o s C t applies to the £L-
description graph G iff G contains edges (u, r,v) and (v, s, w), but does not contain
the edge (u,t,w). An application of this rule then adds the edge (u,t,w).

Given an £ L-description graph G and an RBox R, we can iterate the application
of the role-value-maps in R to ¢ until no role-value-map applies. We call the
& L-description graph G obtained this way the completion of G w.r.t. R.

Lemma 54 Given a finite £L-description graph G and an RBox R, the comple-
tion G of G w.r.t. R always exists, is unique, and can be computed in polynomial
time.

Proof. The applicability of role-value-maps to a graph is monotonic in the fol-
lowing sense: if the role-value-map r o s C t applies to the edges (u,r,v) and
(v,s,w) in G, and G’ is obtained from G by applying some role-value-map, then
ros C tis still applicable to the edges (u,r,v) and (v, s,w) in G’ (since no edges
have been removed), unless G’ already contains the edge (u,t,w). Thus, the
order of applications of role-value-maps to the graph is irrelevant, which shows
uniqueness.

4The restriction m = 2 is not really necessary. It is easy to see that all our results would
still hold if the left-hand sides were compositions of m > 1 roles. However, the restriction n = 1
is vital (see Theorem 60 below).
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The application of a role-value-map does not add new nodes to the graph. Thus,
if n is the number of nodes in the original graph G and m is the number of roles
occurring in role-value-maps, then at most n2-m edges can be added. This implies
that an exhaustive application of role-value-maps to the graph G terminates after
at most n? - m applications of rules. Consequently, the completion G exists and
can be computed in polynomial time. O

Let 7 be an ££-TBox, R an RBox, and g} the completion of Gr w.r.t. R. The
& L-description graph Gr corresponds to a TBox 7 (i.e., there is a TBox T such
that G7 = Gz). We call this TBox the completion of T w.r.t. R.

Lemma 55 Let T be an £L-TBox, R an RBox, and T the completion of T
w.r.t. R. If T is a model of R, then the following are equivalent:

e 7 is a model of T.
e 7 is a model of T.

Proof. Since Q\T is obtained from G by a finite number of applications of role-
value-maps, it is enough to show the following: Assume that G’ is obtained from
Gr by applying the role-value-map r o s C ¢t € R to the edges (A,r, B) and
(B, s, B') in Gr, and let 7" be the TBox corresponding to G'. If Z is a model of
R, then 7 is a model of 7T iff it is a model of 7.

The only difference between 7 and 7' is that the definition of A in T (say
A = D) is extended in 7' by an additional conjunct 3t.B’ (i.e., it is of the form
A=Dn3tB).

The existence of the edges (A,r, B) and (B,s,B’) in G implies that A Cr
Ir.ds.B’. Since R contains the role-value-map r o s T ¢, this implies that
A CE 3t.B'. Thus, if 7 is a model of R and T, then is satisfies AT C (3t.B').
This shows that AT = DT = DTN (3t.B")T = (DN 3t.B")%, and thus Z is also a
model of 7.

Conversely, if Z is a model of R and 7", then AT = DTN (3t.B")L. In addition, the
existence of the edges (A,r, B) and (B, s, B') in G implies that D* C (Ir.3s.B")*
(since these edges come from D). Since Z is a model of R, this implies D¥ C
(3t.B")%. Consequently, AT = D¥ N (3t.B")F = D?, and thus 7 is also a model of
T. O

In order to test subsumption w.r.t. 7 and R, we compute the completion T of
T w.r.t. R, and then test subsumption w.r.t. 7.

Theorem 56 Let T be an EL-TBox, R an RBox, and T the completion of T
w.r.t. R. Then the following are equivalent for all defined concepts A, B:
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1. ACR

=gfp, T B.

2. AC B.

=gfp,T

Proof. (2 = 1) Assume that A C . > B. Let Z be a gfp-model of 7 that is a

model of R. We must show that A7 C BZ. Assume that this gfp-model is based
on the primitive interpretation [J. Note that the fact that Z is a model of R
depends only on J (since J already fixes the interpretation of the roles).

As an easy consequence of Lemma 55 we obtain that 7 is also a gfp-model of T.
In fact, Lemma 55 shows that 7 is a model of 7. It remains to be shown that it
is the greatest model based on J. Assume that 7’ is a model of 7 that is based
on J, but larger that Z. Then Z' is also a model of R (since this depends only
on J). But then Lemma 55 implies that Z' is a model of 7, which contradicts
our assumption that 7 is a gfp-model of T based on [J.

Since T is a gfp-model of T, A C ofp7 B implies AT C B2,

(1 = 2) Assume that A Z . # B. Then Theorem 13 implies that there is no
simulation Z: Gz ~ G= such that (B, A) € Z. We may view Gz as the graph of a

primitive interpretation [J, i.e. Gz = G7. Let Z be the gfp-model of T based on
J. Then Proposition 15 implies that A & BZ. Since the identity is a simulation
from Gz to G+ = G containing the tuple (A, A), we know that A € AT,

If we can show that 7 is a gfp-model of T that is a model of R, then this implies
that A ,Z?fpj B. However, since T is complete w.r.t. R, J (and thus Z) obviously
satisfies all role-value-maps in R. Finally, using Lemma 55 it is easy to show that
7 is also a gfp-model of T. O

Since the completion T of an EL-TBox T can be computed in polynomial time,
and since subsumption w.r.t. gfp-semantics in ££ can be decided in polynomial
time, we have the following corollary.

Corollary 57 The subsumption problem w.r.t. gfp-semantics in EL remains poly-
nomial in the presence of RBoxes.

Subsumption w.r.t. descriptive semantics can be treated similarly.

Theorem 58 Let T be an EL-TBox, R an RBox, and T the completion of T
w.r.t. R. Then the following are equivalent for all defined concepts A, B:

1. ACE B

2. AE?B.
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Proof. (2 =1) This can be proved just as in the proof of Theorem 56.

(1 = 2) Assume that A CF B. As in the proof of Theorem 56, we view Gz as the
graph of a primitive interpretation 7, i.e. G= = G7. Since T is complete w.r.t.
R, the primitive interpretation [J obviously satisfies all role-value-maps in R.

As done in the proof of (1 = 2) of Theorem 29 in [1], we construct a model Z
of 7 that is based on J. Lemma 34 in [1] shows that A € AZ. Since J (and
thus also 7) is a model of R, Lemma 55 above yields that Z is also a model of 7.
Consequently, A C% B implies that A € BZ.

We can now proceed as in the proof of Lemma 35 in [1] to show that the simulation
Y: Gz ~ Gz defined in [1] is a (B, A)-synchronized simulation satisfying (B, A) €
Y. By Theorem 19, this implies A C+ B. O

Since the completion T of an EL-TBox T can be computed in polynomial time,
and since subsumption w.r.t. descriptive semantics in ££ can be decided in poly-
nomial time, we have the following corollary.

Corollary 59 The subsumption problem w.r.t. descriptive semantics in EL re-
mains polynomial in the presence of RBozxes.

The main restriction on the role-value-maps allowed to occur in RBoxes is that
the right-hand side must consist of a single role. If we allow for arbitrary role-
value-maps, then subsumption becomes undecidable.

Theorem 60 Subsumption in £L becomes undecidable in the presence of general
(global) role-value-maps.

Proof. We reduce the word problem for semigroups [11] to the subsumption prob-
lem in £L with general (global) role-value-maps.

Let ¥ be a finite alphabet. A semi-Thue system (STS) over ¥ is a finite set of rules
of the form z — y where xz,y € ¥*. Given an STS T and two words u,v € &+
we write u —7 v iff there is a rule v — y € T and words uq,uy € ¥* such that
u = uyrus and v = uyyus. Let ~7 denote the reflexive, transitive, and symmetric
closure of —7. The relation ~+ is an equivalence relation that is compatible with
concatenation of words, i.e., u ~7 v and v ~7 v' imply that uv ~p u'v’. By
[u]r we denote the ~p-equivalence class of the word u. Concatenation induces a
binary associative operation on these classes:

[u]r - [v]r = [uv]r.

Thus the equivalence classes of words in Xt together with this operation form a
semigroup. We call this the semigroup presented by T'.
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The word problem for (the semigroup presented by) T is the following question:
given words u,v € ¥T, does u ~7 v hold or not. It is well-known that this
problem is in general undecidable [11].

In our reduction, we view the elements of ¥ as role names. A non-empty word
w = ry...ry, over X then stands for the composition r; o --- o r,, of the roles
Ti,-..,Tm. If T is an interpretation, the w? stands for rf o---orZ. Given a word
w="ry...r, over 3, we abbreviate dr{.3ry....3r,,.C' by Jw.C.

A given STS T induces the following set of role-value-maps:

Rr={zCy,yCax|ox—yeT}

Given two word u,v € ¥, we define the ££-TBox
Tuw :={A=3u.P, B=3.P}.
Since 7T, is acyclic, descriptive semantics coincides with gfp-semantics.

Claim 1: If A is subsumed by B w.r.t. 7,, and Rp, then u ~p v.

Proof of Claim 1. Assume that A is subsumed by B w.r.t. 7,, and Ry. We us
the semigroup S presented by 7' to define a model of 7, , and Ry. Let S be the
carrier set of S, i.e., S = {[w]r | w € TT}.

We define
AI = {do} U S,

and for every role r € ¥
r = {(do, [r]r)} U {([w]r, [wr]r) | w e 7}

This definition implies that all roles are interpreted by functional relations. It is
easy to show that

(x)  w” = {(do, [w]r)} U{([w]r, [w]r - [wlr) | w' € =7}
holds for all words w € X*. In addition, we define
PT = {[ulr}.
Finally, by defining
AT .= (Ju.P)* and B* := (Fv.P)*

we make sure that Z is a model of 7, ,.

First, we show that Z is also a model of Ry. Given x — y € T, we must show
that 27 C ¢y and y? C 2Z. By definition of ~7,  — y € T implies that z ~7 y,
and thus []r = [y]r. Consequently 27 = y7 is an easy consequence of (x) above.
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Second, we know that dy € AT since (dy, [u]r) € v* and [u]r € P%. Since A is
subsumed by B w.r.t. T,,, and Rr, this implies dy € B* = (Jv.P)*. Since the only
element that can be reached from dy via v? is [v]r, this implies [v]y € PT = {[u]r},
and thus [u]r = [v]r, i.e., u ~7 v. This completes the proof of Claim 1.

Claim 2: If u ~¢ v, then A is subsumed by B w.r.t. 7,, and Ry.

Proof of Claim 2. Assume that u ~7 v. Then there are a no-negative integer
k > 0 and words uq,...,u, such that u = ug, v = uy, and for all 7,1 < i < k,
Ui_1 —7 u; or u; =7 u;_1. We prove the claim by induction on k. If £ = 0, then
u = v, and the claim is trivially true.

For the induction step, it is sufficient to show the following: if u —7 v or v =7 u,
then A is subsumed by B w.r.t. 7,, and Rp. Since the definition of Ry is
symmetric, it is sufficient to consider the case u —7 v. Now, u —r v means that
there is a rule x — y in T such that v = w;zus and v = uyyus for some words
U1, Uy € 3*.

Assume that Z is a model of 7, and Ry, and that dy € AT is an element of this
model that belongs to AZ. We must show that dy € B”. Since A7 = (Ju.P)* and
u = uyTus, there are elements dy, ds, d3 € AT such that (dy,d;) € u?, (di,dy) €
2%, (dy,d3) € ul, and d3 € PT. Since x C y € Ry and Z is a model of Rr,
(di,dy) € 2% implies (dy,dy) € y*, and thus (dy,d3) € v%. This shows that
dy € (Jv.P)* = BT, which completes the proof of Claim 2.

Thus, we have shown that the word problem for semigroups can effectively be
reduced to the subsumption problem in €L with general (global) role-value-maps,
which shows that this subsumption problem is undecidable. O

7 Conclusion

Computing the least common subsumer (lcs) and the most specific concept, (msc)
are important steps in the bottom-up construction of DL knowledge bases. In DLs
with existential restrictions, the most specific concept of a given ABox individual
need not exist. We have shown that allowing for cyclic definitions with greatest
fixpoint (gfp) semantics in the DL £L£ overcomes this problem: in this setting,
the most specific concept exists and can be computed in polynomial time. But
then subsumption and the lcs operation must also be considered w.r.t. cyclic
definitions. In [1] it was shown that the subsumption problem remains polynomial
if one allows for cyclic definitions in ££. In the present report we have shown
that, w.r.t. gfp-semantics, the lcs always exists, and that the binary lcs can be
computed in polynomial time.

Subsumption is also polynomial w.r.t. descriptive semantics [1]. For the lcs,
descriptive semantics is not that well-behaved: the lcs need not exist in general.
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In addition, we could only give a sufficient condition for the existence of the lcs.
If this condition applies, then the lcs can be computed in polynomial time. Thus,
one of the main technical problems left open by this report is the question how to
characterize the cases in which the lcs exists w.r.t. descriptive semantics, and to
determine whether in these cases it can always be computed in polynomial time.
Another problem that was not addressed by this report is the question of how to
characterize and compute the most specific concept w.r.t. descriptive semantics.

We have also shown that adding restricted (global) role-value-maps of the form
rosC tto L leaves subsumption polynomial, both w.r.t. descriptive and gfp-
semantics. These role-value-maps are of interest in applications in medicine [15].
It should be noted that there are indeed medical application where the expressive
power of the small DL ££ appears to be sufficient. In fact, SNOMED, the
Systematized Nomenclature of Medicine [5] uses £L [17, 15, 16].
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