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Abstrat

In a previous report we have investigates subsumption in the presene

of terminologial yles for the desription logi EL, whih allows onjun-

tions, existential restritions, and the top onept, and have shown that the

subsumption problem remains polynomial for all three types of semantis

usually onsidered for yli de�nitions in desription logis. This result

depends on a haraterization of subsumption through the existene of

ertain simulation relations on the graph assoiated with a terminology.

In the present report we will use this haraterization to show how the

most spei� onept and the least ommon subsumer an be omputed in

EL with yli de�nitions. In addition, we show that subsumption in EL

(with or without yli de�nitions) remains polynomial even if one adds a

ertain restrited form of global role-value-maps to EL. In partiular, this

kind of role-value-maps an express transitivity of roles.

1 Introdution

Computing the most spei� onept of an individual and the least ommon sub-

sumer of onepts an be used in the bottom-up onstrution of desription logi

(DL) knowledge bases. Instead of de�ning the relevant onepts of an appliation

domain from srath, this methodology allows the user to give typial examples

of individuals belonging to the onept to be de�ned. These individuals are then

�
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generalized to a onept by �rst omputing the most spei� onept of eah in-

dividual (i.e., the least onept desription in the available desription language

that has this individual as an instane), and then omputing the least ommon

subsumer of these onepts (i.e., the least onept desription in the available

desription language that subsumes all these onepts). The knowledge engineer

an then use the omputed onept as a starting point for the onept de�nition.

The least ommon subsumer (ls) in DLs with existential restritions was inves-

tigated in [3℄. In partiular, it was shown there that the ls in the small DL EL

(whih allows onjuntions, existential restritions, and the top onept) always

exists, and that the binary ls an be omputed in polynomial time. Unfortu-

nately, the most spei� onept (ms) of a given ABox individual need not exist

in languages allowing for existential restritions or number restritions. As a

possible solution to this problem, K�usters and Molitor [9℄ show how the most

spei� onept an be approximated in EL and some of its extensions. Here, we

follow an alternative approah: we extend the language by yli terminologies

with greatest �xpoint semantis, and show that the ms always exists in this

setting. For the DL ALN (whih allows onjuntions, value restritions, and

number restritions) it was shown in [2℄ that the most spei� onept always

exists if one adds yli onept de�nitions with gfp-semantis. One reason for

K�usters and Molitor to hoose an approximation approah rather than an exat

haraterization of the most spei� onept using yli de�nitions was that the

impat of yli de�nitions in desription logis with existential restritions was

largely unexplored.

The report [1℄ was a �rst step toward overoming this de�it. It onsiders yli

terminologies in EL w.r.t. the three types of semantis (greatest �xpoint, least

�xpoint, and desriptive semantis) introdued by Nebel [12℄, and shows that the

subsumption problem an be deided in polynomial time in all three ases. This

is in stark ontrast to the ase of DLs with value restritions. Even for the small

DL FL

0

(whih allows onjuntions and value restritions only), adding yli

terminologies inreases the omplexity of the subsumption problem from polyno-

mial (for onept desriptions) to PSPACE. The main tool in the investigation of

yli de�nitions in EL is a haraterization of subsumption through the existene

of so-alled simulation relations, whih an be omputed in polynomial time [7℄.

The results in [1℄ also show that yli de�nitions with least �xpoint semantis

are not interesting in EL. For this reason, we will here onentrate on greatest

�xpoint and desriptive semantis.

The haraterization of subsumption in EL w.r.t. gfp-semantis through the exis-

tene of ertain simulation relations on the graph assoiated with the terminology

an be used to haraterize the ls via the produt of this graph with itself (Se-

tion 4.1). This shows that, w.r.t. gfp semantis, the ls always exists, and the

binary ls an be omputed in polynomial time. (The n-ary ls may grow expo-

nentially even in EL without yli terminologies [3℄.) For yli terminologies in
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EL with desriptive semantis, the ls need not exist (Setion 4.2). We introdue

possible andidates P

k

(k � 0) for the ls, and show that the ls exists i� one of

these andidates is the ls. In addition, we give a suÆient ondition for the ls

to exist, and show that, under this ondition, it an be omputed in polynomial

time.

The haraterization of subsumption w.r.t. gfp-semantis an be extended to the

instane problem in EL. This allows us to show that the ms in EL with yli

terminologies interpreted with gfp semantis always exists, and an be omputed

in polynomial time (Setion 5).

In Setion 6, we extend the results of [1℄ in another diretion. In many applia-

tions (e.g., in mediine [15℄ and in proess engineering [13℄), one uses roles that

are not just arbitrary binary relations, but should satisfy ertain relationships.

A prominent example are transitive roles r, whih satisfy r Æ r v r, i.e., the

omposition of r with itself is a subrelation of r. In Setion 6 we onsider more

general onstraints of the form r

1

Æ r

2

v r

3

, whih say that the omposition of r

1

with r

2

is a subrelation of r

3

. Obviously, this is a speial form of role-value-maps

[14℄, whih are global in the sense that they must hold for every individual in

the interpretation domain. The right-identity rule in [15℄ is a speial ase where

r

1

is idential with r

3

. As an example, onsider the roles loation, whih as-

signs objets with their loation, and ontained, whih relates eah spaial region

with those regions ontaining it. Then it makes sense to assert the ondition

loation Æ ontained v loation. We will show that adding global role-value-maps

of the form r

1

Æ r

2

v r

3

to EL with yli terminologies (interpreted with gfp or

desriptive semantis) leaves the subsumption problem polynomial. In partiular,

this shows that subsumption of EL-onept desriptions (with or without ayli

terminologies) remains polynomial when adding these global role-value-maps.

In the next setion, we introdue EL with yli terminologies as well as the

ls and the ms. Then we reall the important de�nitions and results from [1℄.

Setion 4 formulates and proves the new results for the ls, and Setion 5 does

the same for the ms. Finally, Setion 6 is devoted to showing the results for

global role-value-maps mentioned above.

2 Cyli terminologies, least ommon subsumers,

and most spei� onepts

Conept desriptions are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names. The

onstrutors determine the expressive power of the DL. In this report, we restrit

the attention to the DL EL, whose onept desriptions are formed using the

onstrutors top-onept (>), onjuntion (C u D), and existential restrition
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name of onstrutor Syntax Semantis

onept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-onept > �

I

onjuntion C uD C

I

\D

I

existential restrition 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

onept de�nition A � D A

I

= D

I

individual name a 2 N

I

a a

I

2 �

I

onept assertion A(a) a

I

2 A

I

role assertion r(a; b) (a

I

; b

I

) 2 r

I

Table 1: Syntax and semantis of EL-onept desriptions, TBox de�nitions, and

ABox assertions.

(9r:C). The semantis of EL-onept desriptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation funtion �

I

maps eah onept name A 2 N

C

to a subset

A

I

of �

I

and eah role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary onept desriptions is indutively de�ned, as shown in the third

olumn of Table 1.

A terminology (or TBox for short) is a �nite set of onept de�nitions of the form

A � D, where A is a onept name and D a onept desription. In addition,

we require that TBoxes do not ontain multiple de�nitions, i.e., there annot

be two distint onept desriptions D

1

and D

2

suh that both A � D

1

and

A � D

2

belongs to the TBox. Conept names ourring on the left-hand side of

a de�nition are alled de�ned onepts. All other onept names ourring in the

TBox are alled primitive onepts. Note that we allow for yli dependenies

between the de�ned onepts, i.e., the de�nition of A may refer (diretly or

indiretly) to A itself. An interpretation I is a model of the TBox T i� it

satis�es all its onept de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T .

An ABox is a �nite set of assertions of the form A(a) and r(a; b), where A is

a onept name, r is a role name, and a; b are individual names from a set N

I

.

Interpretations of ABoxes must additionally map eah individual name a 2 N

I

to an element a

I

of �

I

. An interpretation I is a model of the ABox A i� it

satis�es all its assertions, i.e., a

I

2 A

I

for all onept assertions A(a) in A and

(a

I

; b

I

) 2 r

I

for all role assertions r(a; b) in A. The interpretation I is a model

of the ABox A together with the TBox T i� it is a model of both T and A.

The semantis of (possibly yli) EL-TBoxes we have de�ned above is alled

desriptive semanti by Nebel [12℄. For some appliations, it is more appropriate

to interpret yli onept de�nitions with the help of an appropriate �xpoint

semantis.
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Example 1 To illustrate this, let us reall an example from [1℄:

Inode � Node u 9edge:Inode:

Here the intended interpretations are graphs where we have nodes (elements of

the onept Node) and edges (represented by the role edge), and we want to de�ne

the onept Inode of all nodes lying on an in�nite (possibly yli) path of the

graph. In order to apture this intuition, the above de�nition must be interpreted

with greatest �xpoint semantis.

Before we an de�ne greatest �xpoint semantis (gfp-semantis), we must intro-

due some notation. Let T be an EL-TBox ontaining the roles N

role

, the primi-

tive onepts N

prim

, and the de�ned onepts N

def

= fA

1

; : : : ; A

k

g. A primitive

interpretations J for T is given by a domain �

J

, an interpretation of the roles

r 2 N

role

by binary relations r

J

on �

J

, and an interpretation of the primitive

onepts P 2 N

prim

by subsets P

J

of �

J

. Obviously, a primitive interpretation

di�ers from an interpretation in that it does not interpret the de�ned onepts

in N

def

. We say that the interpretation I is based on the primitive interpre-

tation J i� it has the same domain as J and oinides with J on N

role

and

N

prim

. For a �xed primitive interpretation J , the interpretations I based on it

are uniquely determined by the tuple (A

I

1

; : : : ; A

I

k

) of the interpretations of the

de�ned onepts in N

def

. We de�ne

Int(J ) := fI j I is an interpretation based on J g:

Interpretations based on J an be ompared by the following ordering, whih

realizes a pairwise inlusion test between the respetive interpretations of the

de�ned onepts: if I

1

; I

2

2 Int(J ), then

I

1

�

J

I

2

i� A

I

1

i

� A

I

2

i

for all i; 1 � i � k:

It is easy to see that �

J

is a omplete lattie on Int(J ), i.e., every subset of

Int(J ) has a least upper bound (lub) and a greatest lower bound (glb). Thus,

Tarski's �xpoint theorem [18, 10℄ applies to all monotoni funtions from Int(J )

to Int(J ). This theorem states the following: if O: Int(J )! Int(J ) is a funtion

suh that I

1

�

J

I

2

implies O(I

1

) �

J

O(I

2

) (monotoniity), then O has a �xpoint,

i.e., there is an I in Int(J ) suh that O(I) = I. In partiular, it has a greatest

�xpoint, i.e., a �xpoint larger w.r.t. �

J

than all other �xpoints.

De�nition 2 The TBox T := fA

1

� D

1

; : : : ; A

k

� D

k

g indues the following

funtion O

T ;J

on Int(J ): O

T ;J

(I

1

) = I

2

i� A

I

2

i

= D

I

1

i

holds for all i; 1 � i � k.

It is easy to see that, for a given EL-TBox T and a primitive J , the funtion

O

T ;J

is indeed monotoni. Consequently, O

T ;J

has a greatest �xpoint. It is an
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immediate onsequene of the de�nition of O

T ;J

that an interpretation I based

on the primitive interpretation J is a �xpoint of O

T ;J

i� I is a model of T . This

shows that any primitive interpretation J an be extended to a model of T . In

partiular, there is always a greatest model of T extending J .

De�nition 3 Let T be an EL-TBox. The model I of T is alled gfp-model of

T i� there is a primitive interpretation J suh that I 2 Int(J ) is the great-

est �xpoint of O

T ;J

. Greatest �xpoint semantis onsiders only gfp-models as

admissible models.

We are now ready to de�ne the subsumption and the instane problem w.r.t. the

two di�erent types of semantis introdued above.

De�nition 4 Let T be an EL-TBox and A an EL-ABox, let A;B be de�ned

onepts ourring in T , and a an individual name ourring in A. Then,

� A is subsumed by B w.r.t. desriptive semantis (A v

T

B) i� A

I

� B

I

holds for all models I of T .

� a is an instane of A w.r.t. desriptive semantis (A j=

T

A(a)) i� a

I

2 A

I

holds for all models I of T together with A.

� A is subsumed by B w.r.t. gfp-semantis (A v

gfp;T

B) i� A

I

� B

I

holds

for all gfp-models I of T .

� a is an instane of A w.r.t. gfp-semantis (A j=

gfp;T

A(a)) i� a

I

2 A

I

holds

for all models I of A that are gfp-models of T .

On the level of onept desriptions, the least ommon subsumer of two onept

desriptions C;D is the least onept desription E that subsumes both C and

D. An extensions of this de�nition to the level of (possibly yli) TBoxes is

not ompletely trivial. In fat, assume that A

1

; A

2

are onepts de�ned in the

TBox T . It should be obvious that taking as the ls of A

1

; A

2

the least de�ned

onept B in T suh that A

1

v

T

B and A

2

v

T

B is too weak sine the ls would

then strongly depend on what other de�ned onepts are already present in T .

However, a seond approah (whih might look like the obvious generalization

of the de�nition of the ls in the ase of onept desriptions) is also not quite

satisfatory (at least if we onsider gfp-semantis). We ould say that the ls of

A;B is the least onept desription C (possibly using de�ned onepts of T )

suh that A

1

v

T

C and A

2

v

T

C (respetively, A

1

v

gfp;T

C and A

2

v

gfp;T

C).

The problem is that this de�nition does not allow us to use the expressive power

of yli de�nitions (with gfp-semantis) when onstruting the ls. For example,

onsider the TBox T onsisting of the following onept de�nitions:

BlueInode � Blue u Node u 9edge:BlueInode;

RedInode � Red u Node u 9edge:RedInode:
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The intended interpretation is similar to the one in Example 1, with the only

di�erene that now nodes may have olors, and we are interested in blue (red)

nodes lying on an in�nite path onsisting of blue (red) nodes. Intuitively, the

ls of BlueInode and RedInode desribes nodes lying on an in�nite path (without

any restrition on their olor), i.e., the onept Inode from Example 1 should be

a de�nition of this ls. However, this annot be expressed by a simple onept

desription. It requires a new yli de�nition.

Consequently, to obtain the ls we must allow the original TBox to be extended

by new de�nitions. We say that the TBox T

2

is a onservative extension of the

TBox T

1

i� T

1

� T

2

and T

1

and T

2

have the same primitive onepts and roles.

Thus, T

2

may ontain new de�nitions A � D, but then D does not introdue

new primitive onepts and roles (i.e., all of them already our in T

1

), and A

is a new onept name (i.e., A does not our in T

1

). The name \onservative

extension" is justi�ed by the fat that the new de�nitions in T

2

do not inuene

the subsumption relationships between de�ned onepts in T

1

.

Lemma 5 Let T

1

; T

2

be EL-TBoxes suh that T

2

is a onservative extension of

T

1

, and let A;B be de�ned onepts in T

1

(and thus also in T

2

). Then A v

T

1

B

i� A v

T

2

B. The same holds for subsumption w.r.t. gfp-semantis.

Proof. (1) Let us �rst onsider desriptive semantis. The impliation from left

to right ()) is trivial sine T

1

� T

2

(monotoniity of �rst-order logi).

For the other diretion ((), one should note that T := T

2

n T

1

an be viewed as

a TBox whose primitive onepts are the de�ned and primitive onepts of T

1

,

and whose roles are the roles of T

1

. Now, assume that A 6v

T

1

B, and let I be a

model of T

1

suh that A

I

6� B

I

. The model I of T

1

an be viewed as a primitive

interpretation of T , whih an be extended to a gfp-model

b

I of T . Obviously,

b

I

is also a model of T

2

, and sine it oinides with I on the primitive and de�ned

onepts in T

1

, it also satis�es A

b

I

= A

I

6� B

I

= B

b

I

.

(2) Now, let us onsider gfp-semantis. The impliation from right to left (()

an be proved similar to (() of part (1) of the proof (where now we start with

a gfp-model I of T

1

). What remains to be shown is that

b

I is a gfp-model of T

2

.

Thus, assume that there is a larger model I

0

of T

2

based on the same primitive

interpretation. The di�erene between

b

I and I

0

annot our on one of the

de�ned onepts of T

1

sine this would ontradit our assumption that I is a

gfp-model of T

1

. Consequently, the restrition of I

0

to the de�ned onepts in T

1

oinides with I. But then a di�erene between I

0

and

b

I in one of the onepts

newly de�ned in T

2

ontradits the fat that

b

I is a gfp-model of T (see part (1)

of the proof).

The impliation from left to right ()) immediately follows if we an show that

the restrition I

0

of a gfp-model I of T

2

to the de�ned onepts of T

1

is a gfp-

model of T

1

. Obviously, I

0

is a model of T

1

(for being a restrition of a model of

7



T

2

). Now, assume that it is not a gfp-model of T

1

. Thus, there is a larger model

I

00

of T

1

that oinides with I

0

on the primitive onepts and roles. As in ()) of

part (2) of the proof, we an show that I

00

an be extended to a gfp-model of T

2

.

However, this gfp-model is based on the same primitive interpretation as I, and

thus must be idential to I, whih ontradits our assumption that I

00

is larger

than I

0

.

De�nition 6 Let T

1

be an EL-TBox ontaining the de�ned onepts A;B, and

let T

2

be a onservative extension of T

1

ontaining the new de�ned onept E.

Then E in T

2

is a least ommon subsumer ofA;B in T

1

w.r.t. desriptive semantis

(ls) i� the following two onditions are satis�ed:

1. A v

T

2

E and B v

T

2

E.

2. If T

3

is a onservative extension of T

2

and F a de�ned onept in T

3

suh

that A v

T

3

F and B v

T

3

F , then E v

T

3

F .

Least ommon subsumers w.r.t. gfp-semantis (gfp-ls) are de�ned analogously,

by replaing v

T

i

by v

gfp;T

i

.

In the ase of onept desriptions, the ls is unique up to equivalene, i.e., if E

1

and E

2

are both least ommon subsumers of the desriptions C;D, then E

1

� E

2

(i.e., E

1

v E

2

and E

2

v E

1

). In the presene of (possibly ayli) TBoxes, this

uniqueness property also holds (though its formulation is more ompliated).

Proposition 7 Let T

1

be an EL-TBox ontaining the de�ned onepts A;B. As-

sume that T

2

and T

0

2

are onservative extensions of T

1

suh that

� the de�ned onept E in T

2

is an ls of A;B in T

1

;

� the de�ned onept E

0

in T

0

2

is an ls of A;B in T

1

;

� the sets of newly de�ned onepts in respetively T

2

and T

0

2

are disjoint.

Where T

3

:= T

2

[ T

0

2

, we have E �

T

3

E

0

(i.e., E v

T

3

E

0

and E

0

v

T

3

E).

The orresponding statement holds for the gfp-ls.

Proof. Sine the sets of newly de�ned onepts in respetively T

2

and T

0

2

are

disjoint, T

3

:= T

2

[T

0

2

is a onservative extension of both T

2

and T

0

2

. Consequently

A v

T

2

E and B v

T

2

E imply A v

T

3

E and B v

T

3

E, and A v

T

0

2

E

0

and B v

T

0

2

E

0

imply A v

T

3

E and B v

T

3

E. Sine E in T

2

is an ls of A;B, this implies

that E v

T

3

E

0

. Analogously, sine E

0

in T

0

2

is an ls of A;B, this implies that

E

0

v

T

3

E.

8



The same argument goes through for the gfp-ls.

The notion \most spei� onept" an be extended in a similar way from onept

desriptions to onepts de�ned in a TBox.

De�nition 8 Let T

1

be an EL-TBox and A an EL-ABox ontaining the individ-

ual name a, and let T

2

be a onservative extension of T

1

ontaining the de�ned

onept E. Then E in T

2

is a most spei� onept of a in A and T

1

w.r.t.

desriptive semantis (ms) i� the following two onditions are satis�ed:

1. A j=

T

2

E(a).

2. If T

3

is a onservative extension of T

2

and F a de�ned onept in T

3

suh

that A j=

T

3

F (a), then E v

T

3

F .

Most spei� onepts w.r.t. gfp-semantis (gfp-ms) are de�ned analogously.

Uniqueness up to equivalene of the most spei� onept an be shown like

uniqueness of the least ommon subsumer.

Proposition 9 Let T

1

be an EL-TBox and A an EL-ABox ontaining the indi-

vidual name a. Assume that T

2

and T

0

2

are onservative extensions of T

1

suh

that

� the de�ned onept E in T

2

is an ms of a in A and T

1

;

� the de�ned onept E

0

in T

0

2

is an ms of a in A and T

1

;

� the sets of newly de�ned onepts in respetively T

2

and T

0

2

are disjoint.

Where T

3

:= T

2

[ T

0

2

, we have E �

T

3

E

0

.

The orresponding statement holds for the gfp-ms.

3 Charaterizing subsumption in EL with yli

de�nitions

In this setion, we reall the haraterizations of subsumption w.r.t. desriptive

semantis and gfp-semantis developed in [1℄. To this purpose, we must repre-

sent TBoxes by desription graphs, and introdue the notion of a simulation on

desription graphs.

9



3.1 Desription graphs and simulations

It was shown in [1℄ that EL-TBoxes as well as primitive interpretations an be

represented as desription graphs. Before we an translate EL-TBoxes into de-

sription graphs, we must normalize the TBoxes. In the following, let T be an

EL-TBox, N

def

the de�ned onepts of T , N

prim

the primitive onepts of T , and

N

role

the roles of T .

We say that the EL-TBox T is normalized i� A � D 2 T implies that D is of

the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

As shown in [1℄, one an (without loss of generality) restrit the attention to nor-

malized TBox. In the following, we thus assume that all TBoxes are normalized.

Normalized EL-TBoxes an be viewed as graphs whose nodes are the de�ned

onepts, whih are labeled by sets of primitive onepts, and whose edges are

given by the existential restritions. For the rest of this setion, we �x a normal-

ized EL-TBox T with primitive onepts N

prim

, de�ned onepts N

def

, and roles

N

role

.

De�nition 10 An EL-desription graph is a graph G = (V;E; L) where

� V is a set of nodes;

� E � V �N

role

� V is a set of edges labeled by role names;

� L: V ! 2

N

prim

is a funtion that labels nodes with sets of primitive onepts.

The TBox T an be translated into the following EL-desription graph G

T

=

(N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned onepts of T ;

� if A is a de�ned onept and

A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its de�nition in T , then

{ L

T

(A) = fP

1

; : : : ; P

m

g, and

{ A is the soure of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

Any primitive interpretation J = (�

J

; �

J

) an be translated into the following

EL-desription graph G

J

= (�

J

; E

J

; L

J

):

10



� the nodes of G

J

are the elements of �

J

;

� E

J

:= f(x; r; y) j (x; y) 2 r

J

g;

� L

J

(x) = fP 2 N

prim

j x 2 P

J

g for all x 2 �

J

.

Simulations are binary relations between nodes of two EL-desription graphs that

respet labels and edges in the sense de�ned below.

De�nition 11 Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-desription graphs. The

binary relation Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

suh

that (v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z: G

1

*

� G

2

to express that Z is a simulation from G

1

to G

2

.

It is easy to see that the set of all simulations from G

1

to G

2

is losed under

arbitrary unions. Consequently, there always exists a greatest simulation from

G

1

to G

2

. If G

1

;G

2

are �nite, then this greatest simulation an be omputed in

polynomial time [7℄. As an easy onsequene of this fat, the following proposition

is proved in [1℄.

Proposition 12 Let G

1

;G

2

be two �nite EL-desription graphs, v

1

a node of G

1

and v

2

a node of G

2

. Then we an be deide in polynomial time whether there is

a simulation Z: G

1

*

� G

2

suh that (v

1

; v

2

) 2 Z.

3.2 Subsumption w.r.t. gfp-semantis

Subsumption w.r.t. gfp-semantis orresponds to the existene of a simulation

relation suh that the subsumee simulates the subsumer:

Theorem 13 Let T be an EL-TBox and A;B de�ned onepts in T . Then the

following are equivalent:

1. A v

gfp;T

B.

2. There is a simulation Z: G

T

*

� G

T

suh that (B;A) 2 Z.

The theorem together with Proposition 12 shows that subsumption w.r.t. gfp-

semantis in EL is tratable.

11



Corollary 14 Subsumption w.r.t. gfp-semantis in EL an be deided in polyno-

mial time.

This result is quite surprising sine, for the DL FL

0

(whih allows for onjun-

tion and value restritions only), subsumption w.r.t. gfp-semantis is already

PSPACE-omplete.

The proof of the above theorem given in [1℄ depends on a haraterization of

when an individual of a gfp-model belongs to a de�ned onept in this model.

Proposition 15 Let J be a primitive interpretation and I the gfp-model of T

based on J . Then the following are equivalent for any A 2 N

def

and x 2 �

J

:

1. x 2 A

I

.

2. There is a simulation Z: G

T

*

� G

J

suh that (A; x) 2 Z.

This proposition will beome relevant later on when we extend the harateriza-

tion of subsumption to a haraterization of the instane problem.

3.3 Subsumption w.r.t. desriptive semantis

Let T be an EL-TBox and G

T

the orresponding EL-desription graph. Sine

every gfp-model of T is a model of T , A v

T

B implies A v

gfp;T

B. Consequently,

A v

T

B implies that there is a simulation Z: G

T

*

� G

T

with (B;A) 2 Z. However,

the simulation Z must satisfy some additional properties for the impliation in

the other diretion to hold. To de�ne these properties, we must introdue some

notation.

Let T be an EL-TBox, G

T

the orresponding EL-desription graph, and Z: G

T

*

�

G

T

a simulation.

De�nition 16 The path p

1

: B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � in G

T

is Z-

simulated by the path p

2

: A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � � in G

T

i� (B

i

; A

i

) 2 Z

for all i � 0. In this ase we say that the pair (p

1

; p

2

) is a (B;A)-simulation hain

w.r.t. Z. (see Figure 1).

If (B;A) 2 Z, then (S2) of De�nition 11 implies that, for every in�nite path p

1

starting with B

0

:= B, there is an in�nite path p

2

starting with A

0

:= A suh

that p

1

is Z-simulated by p

2

. In the following we onstrut suh a simulating

path step by step. The main point is, however, that the deision whih onept

A

n

to take in step n should depend only on the partial (B;A)-simulation hain

already onstruted, and not on the parts of the path p

1

not yet onsidered.

12



B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Figure 1: A (B;A)-simulation hain.

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Figure 2: A partial (B;A)-simulation hain.

De�nition 17 A partial (B;A)-simulation hain is of the form depited in Fig-

ure 2. A seletion funtion S for A;B and Z assigns to eah partial (B;A)-

simulation hain of this form a de�ned onept A

n

suh that (A

n�1

; r

n

; A

n

) is an

edge in G

T

and (B

n

; A

n

) 2 Z.

Given a path B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � and a de�ned onept A suh

that (B;A) 2 Z, one an use a seletion funtion S for A;B and Z to onstrut a

Z-simulating path. In this ase we say that the resulting (B;A)-simulation hain

is S-seleted.

De�nition 18 Let A;B be de�ned onepts in T , and Z: G

T

*

� G

T

a simulation

with (B;A) 2 Z. Then Z is alled (B;A)-synhronized i� there exists a seletion

funtion S for A;B and Z suh that the following holds: for every in�nite S-

seleted (B;A)-simulation hain of the form depited in Figure 1 there exists an

i � 0 suh that A

i

= B

i

.

We are now ready to state the haraterization of subsumption w.r.t. desriptive

semantis proved in [1℄.

Theorem 19 Let T be an EL-TBox, and A;B de�ned onepts in T . Then the

following are equivalent:

1. A v

T

B.

2. There is a (B;A)-synhronized simulation Z: G

T

*

� G

T

suh that (B;A) 2

Z.

In [1℄ it is also shown that, for a given EL-TBox T and de�ned onepts A;B in

T , the existene of a (B;A)-synhronized simulation Z: G

T

*

� G

T

with (B;A) 2 Z

an be deided in polynomial time.
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Corollary 20 Subsumption w.r.t. desriptive semantis in EL an be deided in

polynomial time.

4 Computing the ls

We will �rst show how the haraterization of subsumption w.r.t. gfp-semantis

given in Theorem 13 an be used to haraterize the gfp-ls. Deriving a hara-

terization of the ls (w.r.t. desriptive semantis) from Theorem 19 turns out to

be more involved.

4.1 Computing the gfp-ls

Let T

1

be an EL-TBox, let G

T

1

= (N

def

; E

T

1

; L

T

1

) be the orresponding desription

graph, and let A;B be de�ned onepts in T

1

(i.e., elements of N

def

). In priniple,

the ls of A;B in T

1

is de�ned in a TBox whose desription graph is the produt

of G

T

1

with itself.

De�nition 21 Let G

1

= (V

1

; E

1

; L

1

) and G

2

= (V

2

; E

2

; L

2

) be two desription

graphs. Their produt is the desription graph G

1

� G

2

:= (V;E; L) where

� V = V

1

� V

2

;

� E := f((v

1

; v

2

); r; (v

0

1

; v

0

2

)) j (v

1

; r; v

0

1

) 2 E

1

^ (v

2

; r; v

0

2

) 2 E

2

g;

� L(v

1

; v

2

) := L

1

(v

1

) \ L

2

(v

2

).

The desription graph G

T

1

�G

T

1

yields a TBox T suh that G

T

= G

T

1

�G

T

1

. Now,

T

2

:= T

1

[ T is a onservative extension of T

1

. In fat, G

T

1

� G

T

1

(and thus T )

is based on the same primitive onepts and roles as G

T

1

, and the set of de�ned

onepts in T is N

def

� N

def

, whih is disjoint from N

def

. Let G

2

= (V

2

; E

2

; L

2

)

be the EL-desription graph orresponding to T

2

. Note that G

2

is the disjoint

union of G

T

= G

T

1

� G

T

1

and G

T

1

. Let G

T

= (V;E; L) and G

T

1

= (V

1

; E

1

; L

1

).

Lemma 22 (A;B) in T

2

is the gfp-ls of A and B in T

1

.

Proof. (1) First, we show that A v

gfp;T

2

(A;B). (Note that B v

gfp;T

2

(A;B) an

be shown analogously.) Aording to Theorem 13 it is suÆient to show that

there exists a simulation relation Z: G

T

2

*

� G

T

2

suh that ((A;B); A) 2 Z. We

de�ne Z as the projetion of elements of N

def

�N

def

to the �rst omponent, i.e.,

Z := f((u; v); u) j (u; v) 2 N

def

�N

def

g:

14



Note that the nodes (u; v) 2 N

def

�N

def

are exatly the de�ned onepts of T .

Obviously, ((A;B); A) 2 Z by de�nition of Z. It remains to be shown that Z is

a simulation relation:

(S1) By the de�nition of the produt of EL-desription graphs, L

2

(u; v) =

L(u; v) = L

1

(u) \ L

1

(v) � L

1

(u) = L

2

(u).

(S2) Consider ((u; v); u) 2 Z and assume that ((u; v); r; w) 2 E

2

for some node

w 2 V

2

. Sine G

2

is the disjoint union of G

T

= G

T

1

� G

T

1

and G

T

1

, and

(u; v) is a node of G

T

, w must also be a node of G

T

, i.e., w is of the

form (u

0

; v

0

) and the edge ((u; v); r; (u

0

; v

0

)) 2 E

2

is an edge in G

T

. Thus,

((u; v); r; (u

0

; v

0

)) 2 E, and the de�nition of the produt of EL-desription

graphs implies that (u; r; u

0

) 2 E

1

� E

2

. Sine ((u

0

; v

0

); u

0

) 2 Z, this shows

that property (S2) in the de�nition of simulation relations really holds for

Z.

(2) Now, assume that T

3

is a onservative extension of T

2

and that F is a de�ned

onept in T

3

suh that A v

gfp;T

3

F and B v

gfp;T

3

F . Where G

T

3

= (V

3

; E

3

; L

3

),

this implies that there are simulation relations Y

1

: G

T

3

*

� G

T

3

and Y

2

: G

T

3

*

� G

T

3

suh that (F;A) 2 Y

1

and (F;B) 2 Y

2

.

We must show that (A;B) v

gfp;T

3

F , i.e., that there is a simulation relation

Y : G

T

3

*

� G

T

3

suh that (F; (A;B)) 2 Y . Basially, Y is de�ned as the \produt"

of Y

1

and Y

2

. To be more preise,

Y := f(u; (v

1

; v

2

)) j (u; v

1

) 2 Y

1

^ (u; v

2

) 2 Y

2

^ (v

1

; v

2

) 2 V = N

def

�N

def

g:

Sine (F;A) 2 Y

1

and (F;B) 2 Y

2

, and (A;B) 2 V = N

def

�N

def

, we know that

(F; (A;B)) 2 Y . It remains to be shown that Y is in fat a simulation relation.

(S1) Assume that (u; (v

1

; v

2

)) 2 Y , i.e., (u; v

1

) 2 Y

1

, (u; v

1

) 2 Y

2

, and (v

1

; v

2

) 2

V . Sine Y

1

and Y

2

are simulation relations, the �rst two fats imply that

L

3

(u) � L

3

(v

1

) and L

3

(u) � L

3

(v

2

), and thus L

3

(u) � L

3

(v

1

) \ L

3

(v

2

).

Sine (v

1

; v

2

) 2 V and T

3

is a onservative extension of T

2

, we have for

i = 1; 2: L

3

(v

i

) = L

2

(v

i

) = L

1

(v

i

). By the de�nition of the produt, this

implies L

3

(u) � L

3

(v

1

) \ L

3

(v

2

) = L

1

(v

1

) \ L

1

(v

2

) = L(v

1

; v

2

) = L

3

(v

1

; v

2

).

(S2) Assume that (u; (v

1

; v

2

)) 2 Y and that (u; r; u

0

) 2 E

3

. By the de�nition of

Y , and sine Y

1

and Y

2

are simulation relations, there exist nodes v

0

1

and v

0

2

in V

3

suh that (v

1

; r; v

0

1

) 2 E

3

, (u

0

; v

0

1

) 2 Y

1

, (v

2

; r; v

0

2

) 2 E

3

, and (u

0

; v

0

2

) 2

Y

2

. Again by the de�nition of Y , v

1

; v

2

are nodes in V

1

= N

def

. By the

de�nition of T

2

, and sine T

3

is a onservative extension of T

2

, this implies

that the edges (v

1

; r; v

0

1

) and (v

2

; r; v

0

2

) are atually edges in E

1

, and thus the

de�nition of the produt yields ((v

1

; v

2

); r; (v

0

1

; v

0

2

)) 2 E � E

3

. In addition,
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this shows that (v

0

1

; v

0

2

) 2 V , and thus (u

0

; v

0

1

) 2 Y

1

and (u

0

; v

0

2

) 2 Y

2

imply

that (u

0

; (v

0

1

; v

0

2

)) 2 Y .

Computing the (binary) produt of two EL-desription graphs an obviously be

done in polynomial time, and thus the gfp-ls an be omputed in polynomial

time.

Theorem 23 Let T

1

be an EL-TBox, and let A;B be de�ned onepts in T

1

.

Then the gfp-ls of A;B in T

1

always exists, and it an be omputed in polynomial

time.

4.2 The ls w.r.t. desriptive semantis

First, we will show that, w.r.t. desriptive semantis, the ls of two onepts

de�ned in an EL-TBox need not exist. Subsequently, we will introdue possible

\andidates" P

k

(k � 0) for the ls, and show that the ls exists i� one of these

andidates is the ls. Finally, we will give a suÆient ondition for the existene

of the ls.

4.2.1 The ls need not exist

Theorem 24 Let T

1

:= fA � 9r:A; B � 9r:Bg. Then, A;B in T

1

do not have

an ls.

Proof. Assume to the ontrary that T

2

is a onservative extension of T

1

and that

the de�ned onept E in T

2

is an ls of A;B in T

1

. Let G

2

= (V

2

; E

2

; L

2

) be the

desription graph indued by T

2

.

First, we show that there annot be an in�nite path in G

2

starting with E. In

fat, assume that

E = E

0

r

1

! E

1

r

2

! E

2

r

3

! � � �

is suh an in�nite path. Sine A v

T

1

E, there is an (E;A)-synhronized simulation

Z

1

: G

2

*

� G

2

suh that (E;A) 2 Z

1

. Consequently, the orresponding seletion

funtion S

1

an be used to turn the above in�nite hain issuing from E into an

(E;A)-simulation hain. Sine the only edge with soure A is the edge (A; r; A),

this simulation hain is atually of the form

E = E

0

r

! E

1

r

! E

2

r

! E

3

r

! � � �

Z

1

# Z

1

# Z

1

# Z

1

#

A

r

! A

r

! A

r

! A

r

! � � �

16



Sine Z

1

is (E;A)-synhronized with seletion funtion S

1

, this implies that there

is an index j

1

suh that E

j

1

= A, and thus E

i

= A for all i � j

1

.

Analogously, we an show that there is an index j

2

suh that E

j

2

= B, and thus

E

i

= B for all i � j

2

. Sine A 6= B, this is a ontradition. Thus, we know

that there is a positive integer n

0

suh that every path in G

2

starting with E has

length � n

0

.

Seond, we de�ne onservative extensions T

0

n

(n � 1) of T

2

suh that the de�ned

onept F

n

in T

0

n

is a ommon subsumer of A;B:

T

0

n

:= T

2

[ fF

n

� 9r:F

n�1

; :::; F

1

� 9r:F

0

; F

0

� >g:

It is easy to see that A v

T

0

n

F

n

and B v

T

0

n

F

n

.

Third, we laim that, for n > n

0

, E 6v

T

0

n

F

n

. In fat, the path

F

n

r

! F

n�1

r

! F

n�2

r

! � � �

r

! F

0

has length n, and thus it annot be simulated by any path starting with E. This

shows that E 6v

T

0

n

F

n

, and thus ontradits our assumption that E in T

2

is the

ls of A;B in T

1

.

4.2.2 Charaterizing when the ls exists

Given an EL-TBox T

1

and de�ned onepts A;B in T

1

, we will de�ned for eah

k � 0 a onservative extension T

(k)

2

of T

1

ontaining a de�ned onept P

k

, and

show that A;B have an ls i� there is a k suh that P

k

is the ls of A;B.

To prove this result, we will need a sleight modi�ation of Theorem 19. However,

this modi�ed theorem follows easily from the the proof of Theorem 19 given in

[1℄. Reall that a seletion funtion S for A;B and Z assigns to eah partial

(B;A)-simulation hain of the form depited in Figure 2 a de�ned onept A

n

suh that (A

n�1

; r

n

; A

n

) is an edge in G

T

and (B

n

; A

n

) 2 Z.

De�nition 25 We all a seletion funtion S nie i� it satis�es the following two

onditions:

1. It is memoryless, i.e., its result A

n

depends only on B

n�1

; A

n�1

; r

n

; B

n

, and

not on the other parts of the partial (B;A)-simulation hain.

2. If B

n�1

= A

n�1

, then its result A

n

is just B

n

.

The simulation relation Z is alled strongly (B;A)-synhronized i� there exists a

nie seletion funtion S for A;B and Z suh that the following holds: for every

in�nite S-seleted (B;A)-simulation hain of the form depited in Figure 1 there

exists an i � 0 suh that A

i

= B

i

.
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Corollary 26 Let T be an EL-TBox, and A;B be de�ned onepts in T . Then

the following are equivalent:

1. A v

T

B.

2. There is a strongly (B;A)-synhronized simulation Z: G

T

*

� G

T

suh that

(B;A) 2 Z.

Proof. (2) 1) is an immediate onsequene of Theorem 19.

(1) 2) follows from the fat that the simulation relation Y de�ned in the proof

of (1 ) 2) of Theorem 19 (see page 27 in [1℄) is strongly (B;A)-synhronized.

In fat, it is easy to hek that the seletion funtion S de�ned in the proof of

Lemma 35 in [1℄ is indeed nie.

Strongly (B;A)-synhronized simulations satisfy the following property:

Lemma 27 Let T be an EL-TBox ontaining at most n de�ned onepts, let A;B

be de�ned onepts in T , and let Z: G

T

*

� G

T

be a strongly (B;A)-synhronized

simulation relation. Consider an in�nite S-seleted (B;A)-simulation hain of

the form depited in Figure 1. Then there exists an m < n

2

suh that B

m

= A

m

.

Proof. Consider the n

2

+ 1 tuples (A

0

; B

0

); : : : ; (A

n

2

; B

n

2

). By de�nition of n,

there are at most n

2

di�erent tuples of this kind, and thus there exist indies

0 � i < j � n

2

suh that (B

i

; A

i

) = (B

j

; A

j

). Sine S is memoryless, the

following is also an S-seleted simulation hain:

B = B

0

r

1

! � � �

r

i

! B

j

= B

i

r

i+1

! B

i+1

r

i+2

! � � �

r

j

! B

j

= B

i

r

i+1

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! � � �

r

i

! A

j

= A

i

r

i+1

! A

i+1

r

i+2

! � � �

r

j

! A

j

= A

i

r

i+1

! � � �

Now, the fat that this hain must be synhronized shows that there is indeed an

m < j � n

2

suh that B

m

= A

m

.

Obviously, the lemma also holds for �nite S-seleted (B;A)-simulation hains,

provided that they are long enough, i.e., of length at least n

2

.

Now, let T

1

be an EL-TBox, let G

T

1

= (N

def

; E

T

1

; L

T

1

) be the orresponding

desription graph, and let A;B be de�ned onepts in T

1

(i.e., elements of N

def

).

We onsider the produt G := G

T

1

� G

T

1

of G

T

1

with itself. Let G = (V;E; L).

The produt graph G as a whole annot be part of the ls of A;B sine it may

ontain yles reahable from (A;B), whih would prevent the subsumption re-

lationship between A and (A;B) to hold. Nevertheless, the ls must \ontain"

paths in G starting with (A;B) up to a ertain length k. In order to obtain these
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paths without also getting the yles in G, we make opies of the nodes in G on

levels between 1 and k. Atually, we will not need nodes of the form (u; u) sine

they are represented by the nodes u in G

T

1

.

To be more preise, we de�ne

P

k

:= f(A;B)

0

g [ f(u; v)

n

j u 6= v; (u; v) 2 N

def

�N

def

and 1 � n � kg:

For p = (u; v)

n

2 P we all (u; v) the node of p and n the level of p.

The edges of G indue edges between elements of P

k

. To be more preise, we

de�ne the set of edges E

P

k

as follows: (p; r; q) 2 E

P

k

i� the following onditions

are satis�ed:

� p; q 2 P

k

;

� p = (u; v)

n

for some n; 0 � n � k;

� q = (u

0

; v

0

)

n+1

;

� ((u; v); r; (u

0

; v

0

)) 2 E;

Note that the graph (P

k

; E

P

k

) is a direted ayli graph. The only element on

level 0 is (A;B)

0

.

The label of an element of P

k

is the label of its node in G, i.e., if p = (u; v)

n

2 P,

then

L

P

k

(p) := L(u; v) = L

1

(u) \ L

1

(v):

We are now ready to de�ne an EL-desription graph G

(k)

2

whose orresponding

TBox T

(k)

2

is a onservative extension of T

1

, and whih ontains a de�ned onept

P

k

that is a ommon subsumer of A;B.

De�nition 28 For all k � 0, we de�ne G

(k)

2

:= (V

(k)

2

; E

(k)

2

; L

(k)

2

) where

� V

(k)

2

:= N

def

[ P

k

;

� L

(k)

2

= L

1

[ L

P

k

, i.e.

L

(k)

2

(v) :=

�

L

1

(v) if v 2 N

def

L

P

k

(v) if v 2 P

k

� E

(k)

2

onsists of the edges in E

1

and E

P

k

, extended by some additional edges

from P

k

to N

def

:

E

(k)

2

:= E

1

[ E

P

[ f(p; r; w) j p = (u; v)

n

2 P

k

and

(u; r; w) 2 E

1

and (v; r; w) 2 E

1

g:
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Let T

(k)

2

be the EL-TBox suh that G

(k)

2

= G

T

(k)

2

. It is easy to see that T

(k)

2

is a

onservative extension of T

1

.

Lemma 29 A v

T

(k)

2

(A;B)

0

and B v

T

(k)

2

(A;B)

0

.

Proof. We prove A v

T

(k)

2

(A;B)

0

. (The other subsumption relationship an be

shown analogously.)

Aording to Theorem 19, it is enough to show that there is an ((A;B)

0

; A)-

synhronized simulation Z: G

T

(k)

2

*

� G

T

(k)

2

suh that ((A;B)

0

; A) 2 Z. We de�ne

this simulation relation as follows:

Z := f(p; u) j p 2 P

k

; u 2 N

def

; and the node of p is of the form (u; v)g [

f(u; u) j u 2 N

def

g:

First, note that obviously ((A;B)

0

; A) 2 Z.

Seond, we show that Z is indeed a simulation relation, i.e., it satis�es (S1) and

(S2) of De�nition 11.

(S1) First, onsider (p; u) 2 Z for some p 2 P

k

. If (u; v) is the node of p, then

L

(k)

2

(p) = L

P

k

(p) = L

1

(u) \ L

1

(v) � L

1

(u) = L

(k)

2

(u). The ase (u; u) 2 Z is

trivial.

(S2) For the ase (u; u) 2 Z, this property is trivially satis�ed. Now, onsider

(p; u) 2 Z for p 2 P

k

and u 2 N

def

, and let (u; v) be the node of p.

Case 1: (p; r; q) 2 E

(k)

2

for some q 2 P

k

.

Consequently,

p = (u; v)

n

and q = (u

0

; v

0

)

n+1

for two distint nodes u

0

; v

0

2 N

def

and some n; 0 � n < k. The de�nitions of E

P

k

and E imply that (u; r; u

0

) 2 E

1

� E

(k)

2

. In addition, (q; u

0

) 2 Z by de�nition of

Z.

Case 2: (p; r; u

0

) 2 E

(k)

2

for some u

0

2 N

def

.

Reall that (u; v) is the node of p. By de�nition of E

(k)

2

, (p; r; u

0

) 2 E

(k)

2

implies

that (u; r; u

0

) 2 E

1

� E

(k)

2

, and by the de�nition of Z we have (u

0

; u

0

) 2 Z.

To sum up, we have shown that Z is a simulation relation suh that ((A;B)

0

; A) 2

Z. It remains to be shown that Z is ((A;B)

0

; A)-synhronized. Our proof of (S2)

yields the desired seletion funtion:

� In the situation (p; r; q) 2 E

(k)

2

and (p; u) 2 Z, S takes the �rst omponent

of the node of q.

� In the situation (p; r; u

0

) 2 E

(k)

2

and (p; u) 2 Z, S takes u

0

.
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� In the situation (u; r; v) 2 E

(k)

2

and (u; u) 2 Z, S takes v.

Why does S satisfy the synhronization property? Sine the direted ayli

graph (P

k

; E

P

k

) only ontains paths of length � k, any in�nite ((A;B)

0

; A)-

simulation hain must ontain nodes from N

def

also in the upper omponent.

Restrited to these nodes in the �rst omponent, Z is the identity relation.

What we want show next is that every ommon subsumer of A;B also subsumes

(A;B)

0

in T

(k)

2

for an appropriate k.

To make this more preise, assume that T

2

is a onservative extension of T

1

, and

that F is a de�ned onept in T

2

suh that A v

T

2

F and B v

T

2

F . Where

G

T

2

= (V

2

; E

2

; L

2

), this implies that there is

� an (F;A)-synhronized simulation relation Y

1

: G

T

2

*

� G

T

2

with seletion

funtion S

1

suh that (F;A) 2 Y

1

, and

� an (F;B)-synhronized simulation relation Y

2

: G

T

2

*

� G

T

2

with seletion

funtion S

2

suh that (F;B) 2 Y

2

.

By Corollary 26 we may assume without loss of generality that the seletion

funtions S

1

; S

2

are nie. Consequently, if k = jV

2

j

2

, then Lemma 27 shows that

the seletion funtions S

1

; S

2

ensure synhronization after less than k steps.

In the following, let k := jV

2

j

2

. In order to have a subsumption relationship

between P

k

and F , both must \live" in the same TBox. For this, we simply take

the union T

3

of T

(k)

2

and T

2

. Note that we may assume without loss of generality

that the only de�ned onepts that T

(k)

2

and T

2

have in ommon are the ones from

T

1

. In fat, none of the new de�ned onepts in T

(k)

2

(i.e., the elements of P

k

) lies

on a yle, and thus we an rename them without hanging the meaning of these

onepts. (Note that the haraterization of subsumption given in Theorem 19

implies that only for de�ned onepts ourring on yles their atual names are

relevant.) Thus, T

3

is a onservative extension of both T

(k)

2

and T

2

.

Lemma 30 (A;B)

0

v

T

3

F

Proof. We must show that there is an (F; (A;B)

0

)-synhronized simulation rela-

tion Y : G

T

3

*

� G

T

3

suh that (F; (A;B)

0

) 2 Y .

Again, Y is based on the \produt" of Y

1

and Y

2

:

Y := f(u; p) j (u; v

1

) 2 Y

1

and (u; v

2

) 2 Y

2

where (v

1

; v

2

) is the node of p 2 P

k

g [

f(u; v) j v 2 N

def

and (u; v) 2 Y

1

g:
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By de�nition of Y , (F;A) 2 Y

1

and (F;B) 2 Y

2

imply (F; (A;B)

0

) 2 Y . In

order to show that Y is (F; (A;B)

0

)-synhronized, we must de�ne an appropriate

seletion funtion S. Thus, onsider the following partial (F; (A;B)

0

)-simulation

hain:

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y # Y # Y #

(A;B)

0

= w

0

r

1

! w

1

r

2

! � � �

r

n�1

! w

n�1

Sine T

3

is a onservative extension of T

(k)

2

, the nodes w

i

are all nodes of G

(k)

2

,

i.e., elements of P

k

or of N

def

.

First, assume that w

n�1

2 N

def

. But then (F

n�1

; w

n�1

) 2 Y

1

by the de�nition of

Y , and the seletion funtion S

1

yields a node w

n

2 V

3

suh that (w

n�1

; r

n

; w

n

) 2

E

3

and (F

n

; w

n

) 2 Y

1

. Sine w

n�1

2 N

def

and T

3

is a onservative extension of T

1

,

(w

n�1

; r

n

; w

n

) 2 E

3

implies w

n

2 N

def

. Consequently, (F

n

; w

n

) 2 Y

1

also yields

(F

n

; w

n

) 2 Y . Thus, the seletion funtion S simply hooses w

n

.

Now, assume that w

n�1

belongs to P

k

(and thus also the other nodes w

i

). Conse-

quently, the above partial (F; (A;B)

0

)-simulation hain is of the following form:

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y # Y # Y #

(A;B)

0

= p

0

r

1

! p

1

r

2

! � � �

r

n�1

! p

n�1

for elements p

1

; : : : ; p

n�1

of P

k

. Assume that (u

i

; v

i

) is the node of p

i

(i =

0; : : : ; n� 1).

1

By the de�nitions of P

k

, Y and E

2

, this implies

� n� 1 � k,

� u

i

6= v

i

for i = 0; : : : ; n� 1,

� (F

i

; u

i

) 2 Y

1

and (F

i

; v

i

) 2 Y

2

for i = 0; : : : ; n� 1, and

� (u

i�1

; r

i

; u

i

) 2 E

1

� E

3

and (v

i�1

; r

i

; v

i

) 2 E

1

� E

3

for i = 1; : : : ; n� 1.

This yields the following partial simulation hains:

(�)

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y

1

# Y

1

# Y

1

#

A = u

0

r

1

! u

1

r

2

! � � �

r

n�1

! u

n�1

(��)

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y

2

# Y

2

# Y

2

#

B = v

0

r

1

! v

1

r

2

! � � �

r

n�1

! v

n�1

1

The level of p

i

is obviously i.
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The seletion funtions S

1

; S

2

thus yield nodes u

n

; v

n

suh that

� (u

n�1

; r

n

; u

n

) 2 E

1

� E

3

and (F

n

; u

n

) 2 Y

1

;

� (v

n�1

; r

n

; v

n

) 2 E

1

� E

3

and (F

n

; v

n

) 2 Y

2

.

Case 1: u

n

= v

n

.

In this ase, (p

n�1

; r

n

; u

n

) 2 E

(k)

2

� E

3

, and (F

n

; u

n

) 2 Y . Thus, the seletion

funtion an hoose u

n

.

Case 2: u

n

6= v

n

.

We will show that this implies n � k. Consequently, p

n

:= (u

n

; v

n

)

n

2 P

k

, and

thus (p

n�1

; r

n

; p

n

) 2 E

P

k

� E

(k)

2

� E

3

and (F

n

; p

n

) 2 Y . Hene, the seletion

funtion an hoose p

n

.

Assume to the ontrary that n > k. Consider the partial simulation hains (�) and

(��) from above. Sine k = jV

2

j

2

and n�1 � k, there exist indies m

1

; m

2

� n�1

suh that F

m

1

= u

m

1

and F

m

2

= v

m

2

(by Lemma 27). However, sine the seletion

funtions S

1

; S

2

were assumed to be nie, we have F

m

= u

m

for all m � m

1

and

F

m

0

= v

m

0

for all m

0

� m

2

. Consequently, u

n�1

= F

n�1

= v

n�1

, whih ontradits

our assumption that (u

n�1

; v

n�1

) is the node of the element p

n�1

of P

k

.

Why does S satisfy the synhronization property? Sine the direted ayli

graph (P

k

; E

P

k

) only ontains paths of length � k, any in�nite (F; (A;B)

0

)-

simulation hain an only have �nitely many elements of P

k

in the lower om-

ponent. After that, the lower omponent only ontains elements from N

def

. Re-

strited to these nodes in the seond omponent, Y oinides with Y

1

. Sine Y

1

satis�es the synhronization property, this implies that Y satis�es this property

as well.

In the following, we assume without loss of generality that the TBoxes T

(k)

2

(k � 0) are renamed suh that they share only the de�ned onepts of T

1

. For

example, in addition to the upper index desribing the level of a node in P

k

we

ould add a lower index k. Thus, (u; v)

n

k

denotes a node on level n in P

k

. For

k � 0, we denote (A;B)

0

k

by P

k

. Using this notation, we an reformulate what

we have shown until now as follows: every P

k

is a ommon subsumer of A;B, and

if F is a ommon subsumer of A;B then there is a k suh that F subsumes P

k

.

As a onsequene of this lemma we an show that an ls of A;B must be equivalent

to one of the P

k

.

Theorem 31 Let T

1

be an EL-TBox and A;B de�ned onepts in T

1

. Then A;B

in T

1

have an ls i� there is a k � 0 suh that P

k

in T

(k)

2

is the ls of A;B in T

1

.

Proof. The diretion from right to left is trivial. Thus, assume that T

2

is a

onservative extension of T

1

and that P in T

2

is the ls of A;B.
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We de�ne k := n

2

where n is the number of de�ned onepts in T

2

. Let T

3

be

the union of T

2

and T

(k)

2

, where we assume without loss of generality that the

only de�ned onepts shared by T

2

and T

(k)

2

are the ones in T

1

. Then Lemma 30

shows that P

k

v

T

3

P .

Sine P

k

is a ommon subsumer of A;B, the fat that P is the least ommon

subsumer of A;B implies that subsumption in the other diretion holds as well:

P v

T

3

P

k

. Thus, P and P

k

are equivalent, and this implies that P

k

is also an ls

of A;B.

The onepts P

k

form a dereasing hain w.r.t. subsumption.

Lemma 32 Let T := T

(k)

2

[ T

(k+1)

2

. Then P

k+1

v

T

P

k

.

Proof. First note that T is a onservative extension of both T

(k)

2

and T

(k+1)

2

.

The simulation relation Z with (P

k

; P

k+1

) 2 Z is de�ned as follows:

Z := f((u; v)

n

k

; (u; v)

n

k+1

) j (u; v)

n

k

2 P

k

g [ f(u; u) j u 2 N

def

g:

It is easy to see that Z is indeed a synhronized simulation relation.

The onepts A;B have an ls i� this dereasing hain beomes stable.

Corollary 33 P

k

is the ls of A;B i� it is equivalent to P

k+i

for all i � 1.

Proof. In this proof we do not expliitly name the TBoxes w.r.t. whom the sub-

sumption relationships hold. Basially, these TBoxes are all onservative exten-

sions of T

1

obtained as union with some of the TBoxes T

(`)

2

. Sine these TBoxes

share only the de�ned onepts in T

1

and the names of their newly de�ned on-

epts are irrelevant for subsumption, it is always possible to hoose the right

extension.

()) Lemma 32 implies that P

k

subsumes P

k+i

. Sine P

k+i

is a ommon subsumer

of A;B, the fat that P

k

is the ls of A;B implies that P

k+i

also subsumes P

k

.

(() We know that P

k

is a ommon subsumer of A;B. It remains to be shown that

it is the least ommon subsumer. Thus, assume that F is a ommon subsumer

of A;B. We must show that F subsumes P

k

.

By Lemma 30 there is an ` suh that F subsumes P

`

. If ` � k, then Lemma 32

implies that P

`

subsumes P

k

, and thus F subsumes P

k

. If ` > k, then our

assumption (right-hand side of the orollary) yields that P

k

and P

`

are equivalent,

and this again implies that F subsumes P

k

.
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Example 34 Let us reonsider the TBox T

1

de�ned in Theorem 24. In this ase,

the TBoxes T

(k)

2

are basially of the form

2

T

1

[ fP

k

� 9r:(A;B)

1

k

; (A;B)

1

k

� 9r:(A;B)

2

k

; : : : ; (A;B)

k�1

k

� 9r:(A;B)

k

k

g;

and it is easy to see that there always is a strit subsumption relationship between

P

k

and P

k+1

(sine P

k+1

requires an r-hain of length k+1 whereas P

k

only requires

one of length k).

The following is an example where the ls exists.

Example 35 Let us onsider the following TBox

T

1

:= fA � 9r:A u 9r:C; B � 9r:B u 9r:C; C � 9r:Cg:

In this ase, k = 0 does the job, and thus the ls of A;B is P

0

:

T

(0)

2

:= T

1

[ fP

0

� 9r:Cg:

In fat, it is easy to see that the path P

0

r

! C

r

! C

r

! � � � an simulate any path

starting with some P

`

for ` � 1. Sine the in�nite paths starting with P

`

must

eventually also lead to C (after at most ` steps), this really yields a synhronized

simulation relation.

The next example is very similar to the previous one. However, in this ase the

ls does not exist.

Example 36 Let us onsider the following TBox

T

1

:= fA � 9r:Au9r:C u9r:D; B � 9r:Bu9r:C u9r:D; C � 9r:C; D � 9r:Dg:

In this ase, there always is a strit subsumption relationship between P

k

and

P

k+1

for the following reason. Consider the path

P

k+1

r

! (A;B)

1

k+1

r

! � � �

r

! (A;B)

k+1

k+1

issuing from P

k+1

. If this path is simulated by a path

P

k

r

! u

1

r

! � � �

r

! u

k+1

issuing from P

k

, then either u

k+1

= C or u

k+1

= D. Assume without loss of

generality that u

k+1

= C. Then we annot get synhronization when simulating

the path

P

k+1

r

! (A;B)

1

k+1

r

! � � �

r

! (A;B)

k+1

k+1

r

! D:

2

We have restrited the attention to elements of P

k

that are reahable from P

k

.
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One might think that the dereasing hain of onepts P

k

(k � 0) beomes stable

as soon as P

k

is equivalent to P

k+1

. Our �nal example shows that this is not the

ase. It demonstrates that P

k

� P

k+1

need not imply P

k+1

� P

k+2

.

Example 37 Let us onsider the following TBox

T

1

:=fA

1

� 9r

1

:A

2

; A

2

� 9r

2

:A

1

u 9r

2

:C;

B

1

� 9r

1

:B

2

; B

2

� 9r

2

:B

1

u 9r

2

:C;

C � 9r

2

:Cg:

First, we laim that P

1

is subsumed by P

2

, and thus P

1

and P

2

are equivalent. In

fat, the only ritial simulation hains are those of length 2 where the nodes of

the upper omponent all belong to P

2

:

(1)

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

r

2

! (A

1

; B

1

)

2

2

# # #

P

1

= (A

1

; B

1

)

0

1

r

1

! (A

2

; B

2

)

1

1

r

2

! C

(2)

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

r

2

! (A

1

; C)

2

2

# # #

P

1

= (A

1

; B

1

)

0

1

r

1

! (A

2

; B

2

)

1

1

r

2

! C

(3)

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

r

2

! (C;B

1

)

2

2

# # #

P

1

= (A

1

; B

1

)

0

1

r

1

! (A

2

; B

2

)

1

1

r

2

! C

In all three ases, the upper node does not have any suessor node in G

T

(2)

2

, and

thus these hains are unproblemati.

In ontrast, P

2

is not subsumed by P

3

. In fat, onsider the following situation:

P

3

= (A

1

; B

1

)

0

3

r

1

! (A

2

; B

2

)

1

3

r

2

! (A

1

; B

1

)

2

3

r

1

! (A

2

; B

2

)

3

3

# #

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

We an simulate (A

1

; B

1

)

2

3

only by one of the following nodes: (A

1

; B

1

)

2

2

, (A

1

; C)

2

2

,

(C;B

1

)

2

2

, or C. However, none of these nodes has an r

1

-suessor in G

T

(2)

2

.

4.2.3 A suÆient ondition for the existene of the ls

If we want to use the results from the previous subsetion to ompute the ls,

we must be able to deide whether there is an index k suh that P

k

is the ls of

A;B, and if yes we must also be able to ompute suh a k. Though we strongly

onjeture that this is possible, we have not yet found suh a proedure. For this
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reason, we must restrit ourself to give a suÆient ondition for the ls of two

onepts de�ned in an EL-TBox to exist.

As before, let T

1

be an EL-TBox, let G

T

1

= (N

def

; E

T

1

; L

T

1

) be the orresponding

desription graph, and let A;B be de�ned onepts in T

1

(i.e., elements of N

def

).

We onsider the produt G := G

T

1

� G

T

1

of G

T

1

with itself. Let G = (V;E; L).

De�nition 38 We say that (A;B) is synhronized in T

1

i�, for every in�nite

path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

in G, there exists an index i � 0, suh that u

i

= v

i

.

For example, in the TBox T

1

introdued in Theorem 24, (A;B) is not synhro-

nized. The same is true for the TBox de�ned in Example 35. As another example,

onsider the TBox

T

0

1

:= fA

0

� 9r

1

:A

0

u 9r:C; B

0

� 9r

2

:B

0

u 9r:C; C � 9r:Cg:

In this TBox, (A

0

; B

0

) is synhronized.

Lemma 39 Assume that (A;B) is synhronized in T

1

, and let k := jN

def

j

2

.

Then, for every path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

in G of length k, there exists an index i; 0 � i � k suh that u

i

= v

i

.

Proof. Assume to the ontrary that there is a path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

suh that u

i

6= v

i

for all i; 0 � i � k. Sine (u

i

; v

i

) 2 N

def

�N

def

for i = 0; : : : ; k

and k = jN

def

� N

def

j, there exist indies 0 � i < j � k suh that (u

i

; v

i

) =

(u

j

; v

j

).

But then we an onstrut an in�nite path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! � � � (u

i

; v

i

)

r

i+1

! � � �

r

j

! (u

j

; v

j

) = (u

i

; v

i

)

r

i+1

! � � �

suh that the �rst omponent in the tuples is always di�erent from the seond

omponent. This ontradits our assumption that (A;B) is synhronized in G.

As an easy onsequene of this lemma we obtain that k = jN

def

j

2

is suh that P

k

is the ls of A;B.
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Lemma 40 Assume that (A;B) is synhronized in T

1

, and let k := jN

def

j

2

. Then

P

k

in T

(k)

2

is the ls of A;B in T

1

.

Proof. By the previous lemma, every path in G starting with (A;B) and of

length at least k ontains some node of the form (u; u). Thus, if we onsider a

path starting with P

`

for some ` � k, then we know that only an initial segment

of length � k an belong to P

`

. Basially, this initial segment also belongs to

P

k

(modulo the lower index). This observation an be used to show that P

k

is

equivalent to P

`

for all ` � k, and thus P

k

is the ls of A;B.

As an immediate onsequene of Lemma 40 we obtain that the ls of A;B in T

1

always exists, provided that (A;B) is synhronized in T

1

. Our onstrution of

the TBox T

(k)

2

is obviously polynomial in k and the size of T

1

. Sine k is also

polynomial in the size of T

1

, the size of T

2

is polynomial in the size of T

1

.

Theorem 41 Let T

1

be an EL-TBox, and let A;B be de�ned onepts in T

1

suh

that (A;B) is synhronized in T

1

. Then the ls of A;B in T

1

always exists, and

it an be omputed in polynomial time.

Example 24 shows that the ls may exist even if (A;B) is not synhronized in T

1

.

Thus, this is a suÆient, but not neessary ondition for the existene of the ls.

We lose this setion by showing that this suÆient ondition an be deided in

polynomial time.

Proposition 42 Let T

1

be an EL-TBox, and let A;B be de�ned onepts in T

1

.

Then it an be deided in polynomial time whether (A;B) is synhronized in T

1

or not.

Proof. As before, onsider the produt G := G

T

1

� G

T

1

of G

T

1

with itself. Let

G = (V;E; L).

We de�ne

W

0

:= f(u; u) j (u; u) 2 V g;

W

i+1

:= W

i

[ f(u; v) j (u; v) 2 V and all edges with soure (u; v) in G

lead to elements of W

i

g; and

W

1

:=

[

i�0

W

i

:

Obviously, W

1

an be omputed in time polynomial in the size of G.

Claim 1: (A;B) is synhronized in T

1

i� (A;B) 2 W

1

.
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From this, the proposition immediately follows. To prove this laim, we show the

following:

Claim 2: (u; v) 2 W

n

i� for every path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

in G of length n, there exists an index i; 0 � i � n suh that u

i

= v

i

.

We prove Claim 2 by indution on n. If n = 0, then (u; v) 2 W

n

i� u = v. In

addition, the above path has length 0, i.e., onsists of (u; v) = (u

0

; v

0

) only. Thus,

the existene of an i; 0 � i � 0 suh that u

i

= v

i

is equivalent to u = v.

(n! n+ 1) First, assume that (u; v) 2 W

n+1

. If (u; v) 2 W

n

, then the indution

hypothesis an be applied. Thus, assume that (u; v) 2 W

n+1

nW

n

, i.e., all edges

with soure (u; v) in G lead to elements of W

n

. Now, onsider a path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

r

n+1

! (u

n+1

; v

n+1

)

in G of length n + 1. Sine (u

1

; v

1

) 2 W

n

, there exists an index i; 1 � i � n + 1

suh that u

i

= v

i

, and we are done.

Seond assume that, for every path

(�) (u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

r

n+1

! (u

n+1

; v

n+1

)

in G of length n + 1, there exists an index i; 0 � i � n + 1 suh that u

i

= v

i

.

If u = v, then (u; v) 2 W

0

� W

n+1

. Thus, assume that u 6= v. To show that

(u; v) 2 W

n+1

, we onsider an arbitrary edge ((u; v); r

1

; (u

1

; v

1

)) in G and show

that (u

1

; v

1

) 2 W

n

. Thus, onsider a path in G of length n starting with (u

1

; v

1

):

(u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

r

n+1

! (u

n+1

; v

n+1

):

Together with the edge ((u; v); r

1

; (u

1

; v

1

)) this yields a path of length n + 1 of

the form (�) above. Thus, there exists an index i; 0 � i � n+1 suh that u

i

= v

i

.

Sine we have assumed that u 6= v, we atually have 1 � i � n + 1, whih shows

that (u

1

; v

1

) 2 W

n

. This ompletes the proof of Claim 2.

It remains to be shown that Claim 2 implies Claim 1. First, assume that (A;B)

is synhronized in T

1

. By Lemma 39, there is a k suh that, for every path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

in G of length k, there exists an index i; 0 � i � k suh that u

i

= v

i

. By Claim 2,

this implies (A;B) 2 W

k

� W

1

.

Conversely, assume that (A;B) 2 W

1

. Thus, there is a k suh that (A;B) 2 W

k

.

By Claim 2, this implies that, for every path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

in G of length k, there exists an index i; 0 � i � k suh that u

i

= v

i

. In partiular,

this shows that (A;B) is synhronized in T

1

.
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5 The instane problem and most spei� on-

epts

One motivation for onsidering yli terminologies in EL is the fat that the

most spei� onept of an ABox individual need not exist in EL (without yli

terminologies). An example is the simple yli ABox A := fr(b; b)g, where b has

no most spei� onept, i.e., there is no least EL-onept desription D suh

that b is an instane of D w.r.t. A [9℄. However, if one allows for yli TBoxes

with gfp-semantis, then the de�ned onept B with B � 9r:B is suh a most

spei� onept.

In the following, we restrit the attention to gfp-semantis. First, we show how

the haraterization of subsumption (Theorem 13) an be extended to the in-

stane problem w.r.t. gfp-semantis. Then, we will use this haraterization to

haraterize the most spei� onept w.r.t. gfp-semantis (gfp-ms).

5.1 The instane problem w.r.t. gfp-semantis

Assume that T is an EL-TBox and A an EL-ABox. In the following, we assume

that T is �xed and that all instane problems for A are onsidered w.r.t. this

TBox.

In this setting, A an be translated into an EL-desription graph G

A

by viewing

A as a graph and extending it appropriately by the graph G

T

assoiated with

T . The idea is then that the haraterization of the instane problem should be

similar to the statement of Proposition 15: the individual a is an instane of A

in A i� there is a simulation Z: G

T

*

� G

A

suh that (A; a) 2 Z.

Before giving an exat de�nition of G

A

, we onsider an example that demonstrates

that a too simple-minded realization of this idea does not work. Let

A := fA(a); P (a)g and

T := fA � 9r:A; B � P u 9r:Bg:

The ABox A itself an be viewed as an EL-desription graph onsisting of a single

node a with label fPg. Sine A � 9r:A is in T and sine A(a) is in A, we extend

this graph by an r-loop from a to a. Figure 3 shows the graph G obtained this

way as well as the EL-desription graph G

T

orresponding to T .

Obviously, there is a simulation Z: G

T

*

� G suh that (B; a) 2 Z. However, a is

not an instane of B. In fat, of a we only know that it belongs to P and that it

is the starting point of an in�nite r-hain. The instanes of B must belong to P

and they must be the starting point of an in�nite r-hain suh that every element

on this hain also belongs to P .
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Figure 3: The EL-desription graphs G, G

T

, and G

A

of our example.

The reason for this problem is that our onstrution of G was too simple minded.

In fat, node labels and edges in G

T

state fats that must hold for all individuals

that are instanes of the de�ned onept labeling a given node. Assertions of the

ABox make statements about properties of partiular named individuals. The

onstrution of G in the above example mixes these di�erent things, and thus

leads to unfounded onlusions.

In order to separate edges and labels oming from ABox assertions from the ones

oming from TBox de�nitions, we do not \identify" the node a with the node A

if A(a) belongs to A (as done in the onstrution of G above). Instead, we do

a \one-step expansion" of the de�nition of A. The right-most graph in Figure 3

shows the graph G

A

obtained this way in our example. Obviously, there is no

simulation Z: G

T

*

� G

A

suh that (B; a) 2 Z.

Below, we give a formal de�nition of the EL-desription graph G

A

assoiated with

the ABox A and the TBox T in the general ase.

De�nition 43 Let T be an EL-TBox, A an EL-ABox, and G

T

= (V;E; L) be

the EL-desription graph assoiated with T . The EL-desription graph G

A

=

(V

A

; E

A

; L

A

) assoiated with A and T is de�ned as follows:

� the nodes of G

A

are the individual names ourring in A together with the

de�ned onepts of T , i.e.,

V

A

:= V [ fa j a is an individual name ourring in Ag;

� the edges of G

A

are the edges of G, the role assertions of A, and additional

edges linking the ABox individuals with de�ned onepts:

E

A

:= E [ f(a; r; b) j r(a; b) 2 Ag [

f(a; r; B) j A(a) 2 A and (A; r; B) 2 Eg;

� if u 2 V

A

is a de�ned onept, then it inherits its label from G

T

, i.e.,

L

A

(u) := L(u) if u 2 V ;
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otherwise, u is an ABox individual, and then its label is derived from the

onept assertions for u in A. In the following, let P denote primitive and

A denote de�ned onepts.

L

A

(u) := fP j P (u) 2 Ag [

[

A(u)2A

L(A) if u 2 V

A

n V :

Before we an haraterize the instane problem via the existene of ertain sim-

ulation relations from G

T

to G

A

, we must haraterize under what onditions

a gfp-model of T is a model of A. In the following we assume that primitive

interpretations also interpret ABox individuals.

De�nition 44 Let J be a primitive interpretation and G

J

the EL-desription

graph assoiated with J . We say that the simulation Z: G

A

*

� G

J

respets ABox

individuals i�

fx j (a; x) 2 Zg = fa

J

g

for all individual names a ourring in A.

Proposition 45 Let J be a primitive interpretation and I the gfp-model of T

based on J . Then the following are equivalent:

1. I is a model of A.

2. There is a simulation Z: G

A

*

� G

J

that respets ABox individuals.

Proof. (2) 1) Assume that a simulation Z: G

A

*

� G

J

respeting ABox individ-

uals is given. We must show that I satis�es all the assertions in A.

First, assume that r(a; b) is a role assertion in A. Sine I oinides with J on

role and individual names, we must show that (a

J

; b

J

) 2 r

J

. Beause Z respets

ABox individuals, we know that (a; a

J

) 2 Z, and thus (a; r; b) 2 E

A

implies that

there exists a y 2 �

J

suh that (a

J

; y) 2 r

J

and (b; y) 2 Z. Sine Z respets

ABox individuals, (b; y) 2 Z implies that y = b

J

, whih yields (a

J

; b

J

) 2 r

J

.

Seond, assume that P (a) is a onept assertion in A where P is a primitive

onept. By de�nition of L

A

, we have P 2 L

A

(a). In addition, sine Z respets

ABox individuals, we know that (a; a

J

) 2 Z, whih implies L

A

(a) � L

J

(a

J

).

Consequently, P 2 L

J

(a

J

), whih implies a

I

= a

J

2 P

J

= P

I

.

Finally, assume that A(a) is a onept assertion inA where A is a de�ned onept.

We use Proposition 15 to show that a

J

= a

I

2 A

I

. Thus, we need to �nd a

simulation Y : G

T

*

� G

J

suh that (A; a

J

) 2 Y . We de�ne the relation Y as

follows:

Y := f(A; a

J

)g [ f(B; x) j (B; x) 2 Z and B 2 V g:
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Thus, Y is the restrition of Z to the nodes of G

T

, extended by the tuple (A; a

J

).

It remains to be shown that Y is a simulation relation, i.e., satis�es (S1) and (S2)

of De�nition 11.

(S1) Let (B; x) 2 Y . If (B; x) 2 Z, then L(B) = L

A

(B) � L

J

(x) sine Z is

a simulation. Thus, onsider (A; a

J

) 2 Y and let P 2 L(A). By de�nition of

G

A

, A(a) 2 A and P 2 L(A) imply that P 2 L

A

(a). Sine Z respets ABox

individuals, we know that (a; a

J

) 2 Z, and thus P 2 L

A

(a) � L

J

(a

J

).

(S2) Let (B; x) 2 Y and (B; r; B

0

) 2 E. If (B; x) 2 Z, then (B; r; B

0

) 2 E � E

A

implies the existene of a y suh that (B

0

; y) 2 Z and (x; r; y) 2 E

J

. Now,

(B; r; B

0

) 2 E yields B

0

2 V , and thus (B

0

; y) 2 Z implies (B

0

; y) 2 Y .

Thus, onsider (A; a

J

) 2 Y and (A; r; B

0

) 2 E. Sine A(a) 2 A, the de�nition of

G

A

shows that (a; r; B

0

) 2 E

A

. In addition, sine Z respets ABox individuals,

we know that (a; a

J

) 2 Z. Consequently, there is a y suh that (a

J

; r; y) 2 E

J

and (B

0

; y) 2 Z. Now, (A; r; B

0

) 2 E yields B

0

2 V , and thus (B

0

; y) 2 Y .

This ompletes the proof that Y : G

T

*

� G

J

is a simulation suh that (A; a

J

) 2 Y .

Thus, Proposition 15 implies that a

I

= a

J

2 A

I

.

(1 ) 2) Assume that I is a model of A. In partiular, this implies that a

J

=

a

I

2 A

I

holds for all onept assertions A(a) 2 A. Thus, Proposition 15 implies

the existene of simulation relations Z

A(a)

: G

T

*

� G

J

suh that (A; a

J

) 2 Z

A(a)

.

Let Y be the union of these simulations, i.e.,

Y :=

[

A(a)2A

Z

A(a)

:

Then Y is a simulation relation that satis�es (A; a

J

) 2 Y for all onept assertions

A(a) 2 A. We de�ne the relation Z as follows:

Z := Y [ f(a; a

J

) j a is an individual name ourring in Ag:

By de�nition of Z, fx j (a; x) 2 Zg = fa

J

g, and thus it remains to be shown

that Z is a simulation from G

A

to G

J

.

(S1) Sine Y satis�es this property, it is enough to onsider the ase (a; a

J

) 2 Z.

If P 2 L

A

(a), then P (a) 2 A or P 2 L(A) and A(a) 2 A for some de�ned onept

A. In both ases, the fat that I is a model ofA implies that a

J

= a

I

2 P

I

= P

J

,

and thus P 2 L

J

(a

J

).

(S2) First, onsider the ase where (B; x) 2 Y for some de�ned onept B and

element x of �

J

. Sine any edge (B; r; u) in G

A

with soure B 2 V is also an

edge in G

T

, the fat that Y satis�es (S2) implies the existene of a y suh that

(x; r; y) 2 E

J

and (u; y) 2 Y � Z.

Seond, onsider (a; a

J

) 2 Z and assume that (a; r; u) 2 E

A

. By the de�nition

of E

A

, this means that one of the following two ases applies:
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1. u is an ABox individual and r(a; u) 2 A.

2. u is a de�ned onept and (A; r; u) 2 E and A(a) 2 A for some de�ned

onept A.

In the �rst ase, we have (u; u

J

) 2 Z, and (a

J

; u

J

) 2 r

J

sine I is a model of

A and oinides with J on role and individual names. Sine (a

J

; u

J

) 2 r

J

is

equivalent to (a

J

; r; u

J

) 2 E

J

, we have shown that (S2) holds in this ase.

In the seond ase, A(a) 2 A implies that (A; a

J

) 2 Y by the de�nition of Y .

Sine Y is a simulation, this together with (A; r; u) 2 E implies that there exists

a y suh that (u; y) 2 Y � Z and (a

J

; r; y) 2 E

J

. This ompletes the proof of

the proposition.

The following haraterization of the instane problem is an easy onsequene of

this proposition.

Theorem 46 Let T be an EL-TBox, A an EL-ABox, A a de�ned onept in T

and a an individual name ourring in A. Then the following are equivalent:

1. A j=

gfp;T

A(a).

2. There is a simulation Z: G

T

*

� G

A

suh that (A; a) 2 Z.

Proof. (2) 1) Assume that there is a simulation Z: G

T

*

� G

A

suh that (A; a) 2

Z. We must show A j=

gfp;T

A(a), i.e., if I is a gfp-model of T that is also a

model of A, then a

I

2 A

I

. Thus, let J be a primitive interpretation and I the

gfp-model of T based on J .

If I is a model of A, then Proposition 45 yields a simulation Y : G

A

*

� G

J

that

respets ABox individuals. The omposition X := Z Æ Y is a simulation from

G

T

to G

J

suh that (A; a

J

) 2 X. In fat, we know that (A; a) 2 Z and the fat

that Y respets ABox individuals implies that (a; a

J

) 2 Y . Thus, Proposition 15

yields a

I

= a

J

2 A

I

.

(1 ) 2) Assume that A j=

gfp;T

A(a). The EL-desription graph G

A

an be

viewed as the graph of a primitive interpretation. Thus, let J be this primitive

interpretation, i.e., G

A

= G

J

, and let I be the gfp-model of T based on J .

We laim that I is a model of A. This is an immediate onsequene of Proposi-

tion 45 sine the identity on G

A

is a simulation from G

A

to G

J

= G

A

that respets

ABox individuals.

Consequently, the fat that A j=

gfp;T

A(a) implies that a = a

J

= a

I

2 A

I

. But

then Proposition 15 yields the desired simulation Z: G

T

*

� G

J

= G

A

suh that

(A; a) 2 Z.
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The theorem together with Proposition 12 shows that the instane problem w.r.t.

gfp-semantis in EL is tratable.

Corollary 47 The instane problem w.r.t. gfp-semantis in EL an be deided

in polynomial time.

5.2 Computing the gfp-ms

Let T

1

be an EL-TBox and A an EL-ABox ontaining the individual name a. Let

G

A

= (V

A

; E

A

; L

A

) be the EL-desription graph orresponding to A and T

1

, as

introdued in De�nition 43. In order to obtain the gfp-ms of a, we view G

A

as

the EL-desription graph of an EL-TBox T

2

, i.e., let T

2

be the TBox suh that

G

A

= G

T

2

. By the de�nition of G

A

, the de�ned onepts of T

2

are the de�ned

onepts of T

1

together with the individual names ourring in A.

Lemma 48 T

2

is a onservative extension of T

1

Proof. This is an easy onsequene of the de�nitions of E

A

and L

A

.

To avoid onfusion we will denote the de�ned onept in T

2

orresponding to the

individual name b in A by C

b

. Using the results of the previous subsetion, we

an show that C

a

is the gfp-ms of a.

Proposition 49 The de�ned onept C

a

in T

2

is the gfp-ms of a in A and T

1

.

Proof. First, we show that a is an instane of C

a

w.r.t. gfp-semantis, i.e.,

A j=

gfp;T

2

C

a

(a). The identity on G

T

2

is a simulation from G

T

2

= G

A

to G

A

that ontains the tuple (C

a

; a).

3

Thus, Theorem 46 yields A j=

gfp;T

2

C

a

(a).

Seond, assume that T

3

is a onservative extension of T

2

and that F is a de�ned

onept in T

3

suh that A j=

gfp;T

3

F (a). Let

b

G

A

be the EL-desription graph

orresponding to A and T

3

, as introdued in De�nition 43. By Theorem 46,

A j=

gfp;T

3

F (a) implies that there is a simulation Z: G

T

3

*

�

b

G

A

suh that (F; a) 2

Z. We must show that C

a

v

gfp;T

3

F . By Theorem 13, it is enough to show that

there is a simulation Y : G

T

3

*

� G

T

3

suh that (F;C

a

) 2 Y .

To de�ne Y , �rst note that the set of nodes of

b

G

A

onsists of the nodes of G

T

3

and the individuals ourring in A. Also note that T

3

extends T

2

, and that G

T

2

in priniple also ontains the individuals ourring in A. However, we assume

without loss of generality that the individual names b in T

2

have been renamed

into onept names C

b

. The de�nition of

b

G

A

is illustrated by Figure 4. The

3

Reall that C

a

in T

2

orresponds to a.
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A

C

a

A

a

F

G

T

1

G

A

= G

T

2

G

T

3

Figure 4: The EL-desription graph

b

G

A

.

arrows indiate that there may be edges from one subgraph into the other. The

inner oval marked with A indiates the ABox A as used within G

T

2

. There, the

individual name a is renamed into C

a

(and an analogous renaming is done for the

other individual names).

The simulation Y is de�ned as follows:

Y := f(u; v) 2 Z j v is a node of T

3

g [

f(u; C

b

) j (u; b) 2 Z and b is an individual name in Ag:

Sine (F; a) 2 Z, we have (F;C

a

) 2 Y . Thus, it remains to be shown that Y is a

simulation relation.

(S1) Assume that (u; v) 2 Y . If v is a node of G

T

3

, then property (S1) holds sine

it is satis�ed by Z. If v = C

b

for the individual name b in A, then (u; b) 2 Z.

But then (S1) holds sine the label of b in

b

G

A

oinides with the label of C

b

in

G

T

2

= G

A

.

(S2) Assume that (u; v) 2 Y and that (u; r; u

0

) is an edge in G

T

3

. If v is a node

of G

T

3

, then (u; v) 2 Z, and thus there exists a node v

0

suh that (v; r; v

0

) is an

edge in

b

G

A

and (u

0

; v

0

) 2 Z. Sine, in

b

G

A

, edges from nodes of G

T

3

lead to nodes

of G

T

3

, we know that v

0

is a node of G

T

3

, whih yields (u

0

; v

0

) 2 Y .

Finally, assume that v = C

b

for the individual name b in A. Then, we know that

(u; b) 2 Z, and thus there is a node v

0

suh that (b; r; v

0

) is an edge in

b

G

A

and

(u

0

; v

0

) 2 Z. If v

0

is an individual name in A, then (u

0

; C

v

0

) 2 Y . In addition,

the existene of the edge (b; r; v

0

) implies that there is an assertion r(b; v

0

) 2 A.

Consequently, we also have the edge (C

b

; C

v

0

) in G

T

3

.
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It remains to onsider the ase where v

0

is a node in G

T

1

. But then (u

0

; v

0

) 2 Z

implies that (u

0

; v

0

) 2 Y . In addition, the existene of the edge (b; r; v

0

) in

b

G

A

implies that there is the orresponding edge (C

b

; v

0

) in G

A

= G

T

3

.

Given T and A, the graph G

A

an obviously be omputed in polynomial time,

and thus the gfp-ms an be omputed in polynomial time.

Theorem 50 Let T

1

be an EL-TBox and A an EL-ABox ontaining the indi-

vidual name a. Then the gfp-ms of a in T

1

and A always exists, and it an be

omputed in polynomial time.

6 Simple role-value-maps

As mentioned in the introdution, one would sometimes like to express ertain

relationships between roles. The DL of the original Kl-One system [4℄ ontained

a onstrutor alled role-value-map that allowed the user to express suh relation-

ships. However, it was shown in [14℄ that role-value-maps make the subsumption

problem in Kl-One undeidable.

The role-value-maps that we onsider in the following di�er from the ones in

[4, 14℄ in the following respets:

1. Instead of arbitrary role-value-maps of the form r

1

Æ � � � Æ r

m

v s

1

Æ � � � Æ s

n

we restrit the attention to role-value-maps of the form r

1

Æ r

2

v s, i.e., the

right-hand side must be a single role.

2. We onsider global role-value-maps, whih must hold for all individuals of

an interpretation, rather than loal ones, whih an be asserted seletively

for ertain individuals.

3. We onsider the DL EL, whih does not allow value restritions, whereas

the DLs onsidered in [4, 14℄ have value restritions.

The undeidability proof in [14℄ would also work with the seond restrition in

plae. However, the proof does not work in the presene of the �rst or the third

restrition. Role-value-maps satisfying the �rst and the seond restrition have

reently drawn onsiderable attention [6, 19, 8℄. However, for the expressive DLs

usually onsidered there, subsumption easily beomes undeidable [6, 19℄, and it

is quite hard to obtain deidable speial ases [8℄.

For EL (with or without yli terminologies), things are a lot simpler. Not

only does subsumption remain deidable, it even stays polynomial when we add

role-value-maps satisfying the �rst two restritions. We will also show that sub-

sumption beomes undeidable if one adds arbitrary global role-value-maps to

EL (even without yli terminologies).
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De�nition 51 A (global) role-value-map is an expression of the form r

1

Æ � � � Æ

r

m

v s

1

Æ� � �Æs

n

where m;n � 1 and r

1

; : : : ; s

n

are role names. It is satis�ed in an

interpretation I i� r

I

1

Æ� � �Ær

I

m

� s

I

1

Æ� � �Æs

I

n

, where Æ denotes omposition of binary

relations. We say that this role-value-map is restrited if m = 2 and n = 1.

4

A

�nite set of restrited role-value-maps is alled an RBox. The interpretation I is

a model of the RBox R i� I satis�es every role-value-map in R.

Given an EL-TBox T and an RBox R, subsumption w.r.t. T and R is de�ned

in the obvious way:

De�nition 52 Let A;B be de�ned onepts in T . Then

� A v

R

T

B i� A

I

� B

I

holds for all models of T and R.

� A v

R

gfp;T

B i� A

I

� B

I

holds for all gfp-models of T that are models of R.

In order to solve the subsumption problem w.r.t. a yli EL-TBox T and an

RBox R, we view the restrited role-value-maps r Æ s v t 2 R as rules that add

new edges to G

T

.

De�nition 53 We say that the role-value-map r Æ s v t applies to the EL-

desription graph G i� G ontains edges (u; r; v) and (v; s; w), but does not ontain

the edge (u; t; w). An appliation of this rule then adds the edge (u; t; w).

Given an EL-desription graph G and an RBox R, we an iterate the appliation

of the role-value-maps in R to G until no role-value-map applies. We all the

EL-desription graph

b

G obtained this way the ompletion of G w.r.t. R.

Lemma 54 Given a �nite EL-desription graph G and an RBox R, the omple-

tion

b

G of G w.r.t. R always exists, is unique, and an be omputed in polynomial

time.

Proof. The appliability of role-value-maps to a graph is monotoni in the fol-

lowing sense: if the role-value-map r Æ s v t applies to the edges (u; r; v) and

(v; s; w) in G, and G

0

is obtained from G by applying some role-value-map, then

r Æ s v t is still appliable to the edges (u; r; v) and (v; s; w) in G

0

(sine no edges

have been removed), unless G

0

already ontains the edge (u; t; w). Thus, the

order of appliations of role-value-maps to the graph is irrelevant, whih shows

uniqueness.

4

The restrition m = 2 is not really neessary. It is easy to see that all our results would

still hold if the left-hand sides were ompositions of m � 1 roles. However, the restrition n = 1

is vital (see Theorem 60 below).
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The appliation of a role-value-map does not add new nodes to the graph. Thus,

if n is the number of nodes in the original graph G and m is the number of roles

ourring in role-value-maps, then at most n

2

�m edges an be added. This implies

that an exhaustive appliation of role-value-maps to the graph G terminates after

at most n

2

�m appliations of rules. Consequently, the ompletion

b

G exists and

an be omputed in polynomial time.

Let T be an EL-TBox, R an RBox, and

b

G

T

the ompletion of G

T

w.r.t. R. The

EL-desription graph

b

G

T

orresponds to a TBox

b

T (i.e., there is a TBox

b

T suh

that

b

G

T

= G

b

T

). We all this TBox the ompletion of T w.r.t. R.

Lemma 55 Let T be an EL-TBox, R an RBox, and

b

T the ompletion of T

w.r.t. R. If I is a model of R, then the following are equivalent:

� I is a model of T .

� I is a model of

b

T .

Proof. Sine

b

G

T

is obtained from G

T

by a �nite number of appliations of role-

value-maps, it is enough to show the following: Assume that G

0

is obtained from

G

T

by applying the role-value-map r Æ s v t 2 R to the edges (A; r; B) and

(B; s; B

0

) in G

T

, and let T

0

be the TBox orresponding to G

0

. If I is a model of

R, then I is a model of T i� it is a model of T

0

.

The only di�erene between T and T

0

is that the de�nition of A in T (say

A � D) is extended in T

0

by an additional onjunt 9t:B

0

(i.e., it is of the form

A � D u 9t:B

0

).

The existene of the edges (A; r; B) and (B; s; B

0

) in G implies that A v

T

9r:9s:B

0

. Sine R ontains the role-value-map r Æ s v t, this implies that

A v

R

T

9t:B

0

. Thus, if I is a model of R and T , then is satis�es A

I

� (9t:B

0

)

I

.

This shows that A

I

= D

I

= D

I

\ (9t:B

0

)

I

= (D u 9t:B

0

)

I

, and thus I is also a

model of T

0

.

Conversely, if I is a model ofR and T

0

, then A

I

= D

I

\(9t:B

0

)

I

. In addition, the

existene of the edges (A; r; B) and (B; s; B

0

) in G implies that D

I

� (9r:9s:B

0

)

I

(sine these edges ome from D). Sine I is a model of R, this implies D

I

�

(9t:B

0

)

I

. Consequently, A

I

= D

I

\ (9t:B

0

)

I

= D

I

, and thus I is also a model of

T .

In order to test subsumption w.r.t. T and R, we ompute the ompletion

b

T of

T w.r.t. R, and then test subsumption w.r.t.

b

T .

Theorem 56 Let T be an EL-TBox, R an RBox, and

b

T the ompletion of T

w.r.t. R. Then the following are equivalent for all de�ned onepts A;B:

39



1. A v

R

gfp;T

B.

2. A v

gfp;

b

T

B.

Proof. (2 ) 1) Assume that A v

gfp;

b

T

B. Let I be a gfp-model of T that is a

model of R. We must show that A

I

� B

I

. Assume that this gfp-model is based

on the primitive interpretation J . Note that the fat that I is a model of R

depends only on J (sine J already �xes the interpretation of the roles).

As an easy onsequene of Lemma 55 we obtain that I is also a gfp-model of

b

T .

In fat, Lemma 55 shows that I is a model of

b

T . It remains to be shown that it

is the greatest model based on J . Assume that I

0

is a model of

b

T that is based

on J , but larger that I. Then I

0

is also a model of R (sine this depends only

on J ). But then Lemma 55 implies that I

0

is a model of T , whih ontradits

our assumption that I is a gfp-model of T based on J .

Sine I is a gfp-model of

b

T , A v

gfp;

b

T

B implies A

I

� B

I

.

(1 ) 2) Assume that A 6v

gfp;

b

T

B. Then Theorem 13 implies that there is no

simulation Z: G

b

T

*

� G

b

T

suh that (B;A) 2 Z. We may view G

b

T

as the graph of a

primitive interpretation J , i.e. G

b

T

= G

J

. Let I be the gfp-model of

b

T based on

J . Then Proposition 15 implies that A 62 B

I

. Sine the identity is a simulation

from G

b

T

to G

b

T

= G

J

ontaining the tuple (A;A), we know that A 2 A

I

.

If we an show that I is a gfp-model of T that is a model of R, then this implies

that A 6v

R

gfp;T

B. However, sine

b

T is omplete w.r.t.R, J (and thus I) obviously

satis�es all role-value-maps in R. Finally, using Lemma 55 it is easy to show that

I is also a gfp-model of T .

Sine the ompletion

b

T of an EL-TBox T an be omputed in polynomial time,

and sine subsumption w.r.t. gfp-semantis in EL an be deided in polynomial

time, we have the following orollary.

Corollary 57 The subsumption problem w.r.t. gfp-semantis in EL remains poly-

nomial in the presene of RBoxes.

Subsumption w.r.t. desriptive semantis an be treated similarly.

Theorem 58 Let T be an EL-TBox, R an RBox, and

b

T the ompletion of T

w.r.t. R. Then the following are equivalent for all de�ned onepts A;B:

1. A v

R

T

B.

2. A v

b

T

B.
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Proof. (2) 1) This an be proved just as in the proof of Theorem 56.

(1) 2) Assume that A v

R

T

B. As in the proof of Theorem 56, we view G

b

T

as the

graph of a primitive interpretation J , i.e. G

b

T

= G

J

. Sine

b

T is omplete w.r.t.

R, the primitive interpretation J obviously satis�es all role-value-maps in R.

As done in the proof of (1 ) 2) of Theorem 29 in [1℄, we onstrut a model I

of

b

T that is based on J . Lemma 34 in [1℄ shows that A 2 A

I

. Sine J (and

thus also I) is a model of R, Lemma 55 above yields that I is also a model of T .

Consequently, A v

R

T

B implies that A 2 B

I

.

We an now proeed as in the proof of Lemma 35 in [1℄ to show that the simulation

Y : G

b

T

*

� G

b

T

de�ned in [1℄ is a (B;A)-synhronized simulation satisfying (B;A) 2

Y . By Theorem 19, this implies A v

b

T

B.

Sine the ompletion

b

T of an EL-TBox T an be omputed in polynomial time,

and sine subsumption w.r.t. desriptive semantis in EL an be deided in poly-

nomial time, we have the following orollary.

Corollary 59 The subsumption problem w.r.t. desriptive semantis in EL re-

mains polynomial in the presene of RBoxes.

The main restrition on the role-value-maps allowed to our in RBoxes is that

the right-hand side must onsist of a single role. If we allow for arbitrary role-

value-maps, then subsumption beomes undeidable.

Theorem 60 Subsumption in EL beomes undeidable in the presene of general

(global) role-value-maps.

Proof. We redue the word problem for semigroups [11℄ to the subsumption prob-

lem in EL with general (global) role-value-maps.

Let � be a �nite alphabet. A semi-Thue system (STS) over � is a �nite set of rules

of the form x ! y where x; y 2 �

+

. Given an STS T and two words u; v 2 �

+

we write u !

T

v i� there is a rule x ! y 2 T and words u

1

; u

2

2 �

�

suh that

u = u

1

xu

2

and v = u

1

yu

2

. Let �

T

denote the reexive, transitive, and symmetri

losure of!

T

. The relation �

T

is an equivalene relation that is ompatible with

onatenation of words, i.e., u �

T

u

0

and v �

T

v

0

imply that uv �

T

u

0

v

0

. By

[u℄

T

we denote the �

T

-equivalene lass of the word u. Conatenation indues a

binary assoiative operation on these lasses:

[u℄

T

� [v℄

T

:= [uv℄

T

:

Thus the equivalene lasses of words in �

+

together with this operation form a

semigroup. We all this the semigroup presented by T .
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The word problem for (the semigroup presented by) T is the following question:

given words u; v 2 �

+

, does u �

T

v hold or not. It is well-known that this

problem is in general undeidable [11℄.

In our redution, we view the elements of � as role names. A non-empty word

w = r

1

: : : r

m

over � then stands for the omposition r

1

Æ � � � Æ r

m

of the roles

r

1

; : : : ; r

m

. If I is an interpretation, the w

I

stands for r

I

1

Æ � � � Æ r

I

m

. Given a word

w = r

1

: : : r

m

over �, we abbreviate 9r

1

:9r

2

: : : :9r

m

:C by 9w:C.

A given STS T indues the following set of role-value-maps:

R

T

:= fx v y; y v x j x! y 2 Tg:

Given two word u; v 2 �

+

, we de�ne the EL-TBox

T

u;v

:= fA � 9u:P; B � 9v:Pg:

Sine T

u;v

is ayli, desriptive semantis oinides with gfp-semantis.

Claim 1: If A is subsumed by B w.r.t. T

u;v

and R

T

, then u �

T

v.

Proof of Claim 1. Assume that A is subsumed by B w.r.t. T

u;v

and R

T

. We us

the semigroup S presented by T to de�ne a model of T

u;v

and R

T

. Let S be the

arrier set of S, i.e., S = f[w℄

T

j w 2 �

+

g.

We de�ne

�

I

:= fd

0

g [ S;

and for every role r 2 �

r

I

:= f(d

0

; [r℄

T

)g [ f([w℄

T

; [wr℄

T

) j w 2 �

+

g:

This de�nition implies that all roles are interpreted by funtional relations. It is

easy to show that

(�) w

I

= f(d

0

; [w℄

T

)g [ f([w

0

℄

T

; [w

0

℄

T

� [w℄

T

) j w

0

2 �

+

g

holds for all words w 2 �

+

. In addition, we de�ne

P

I

= f[u℄

T

g:

Finally, by de�ning

A

I

:= (9u:P )

I

and B

I

:= (9v:P )

I

we make sure that I is a model of T

u;v

.

First, we show that I is also a model of R

T

. Given x ! y 2 T , we must show

that x

I

� y

I

and y

I

� x

I

. By de�nition of �

T

, x! y 2 T implies that x �

T

y,

and thus [x℄

T

= [y℄

T

. Consequently x

I

= y

I

is an easy onsequene of (�) above.
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Seond, we know that d

0

2 A

I

sine (d

0

; [u℄

T

) 2 u

I

and [u℄

T

2 P

I

. Sine A is

subsumed by B w.r.t. T

u;v

andR

T

, this implies d

0

2 B

I

= (9v:P )

I

. Sine the only

element that an be reahed from d

0

via v

I

is [v℄

T

, this implies [v℄

T

2 P

I

= f[u℄

T

g,

and thus [u℄

T

= [v℄

T

, i.e., u �

T

v. This ompletes the proof of Claim 1.

Claim 2: If u �

T

v, then A is subsumed by B w.r.t. T

u;v

and R

T

.

Proof of Claim 2. Assume that u �

T

v. Then there are a no-negative integer

k � 0 and words u

0

; : : : ; u

k

suh that u = u

0

, v = u

k

, and for all i; 1 � i � k,

u

i�1

!

T

u

i

or u

i

!

T

u

i�1

. We prove the laim by indution on k. If k = 0, then

u = v, and the laim is trivially true.

For the indution step, it is suÆient to show the following: if u!

T

v or v !

T

u,

then A is subsumed by B w.r.t. T

u;v

and R

T

. Sine the de�nition of R

T

is

symmetri, it is suÆient to onsider the ase u!

T

v. Now, u!

T

v means that

there is a rule x ! y in T suh that u = u

1

xu

2

and v = u

1

yu

2

for some words

u

1

; u

2

2 �

�

.

Assume that I is a model of T

u;v

and R

T

, and that d

0

2 �

I

is an element of this

model that belongs to A

I

. We must show that d

0

2 B

I

. Sine A

I

= (9u:P )

I

and

u = u

1

xu

2

, there are elements d

1

; d

2

; d

3

2 �

I

suh that (d

0

; d

1

) 2 u

I

1

, (d

1

; d

2

) 2

x

I

, (d

2

; d

3

) 2 u

I

2

, and d

3

2 P

I

. Sine x v y 2 R

T

and I is a model of R

T

,

(d

1

; d

2

) 2 x

I

implies (d

1

; d

2

) 2 y

I

, and thus (d

0

; d

3

) 2 v

I

. This shows that

d

0

2 (9v:P )

I

= B

I

, whih ompletes the proof of Claim 2.

Thus, we have shown that the word problem for semigroups an e�etively be

redued to the subsumption problem in EL with general (global) role-value-maps,

whih shows that this subsumption problem is undeidable.

7 Conlusion

Computing the least ommon subsumer (ls) and the most spei� onept (ms)

are important steps in the bottom-up onstrution of DL knowledge bases. In DLs

with existential restritions, the most spei� onept of a given ABox individual

need not exist. We have shown that allowing for yli de�nitions with greatest

�xpoint (gfp) semantis in the DL EL overomes this problem: in this setting,

the most spei� onept exists and an be omputed in polynomial time. But

then subsumption and the ls operation must also be onsidered w.r.t. yli

de�nitions. In [1℄ it was shown that the subsumption problem remains polynomial

if one allows for yli de�nitions in EL. In the present report we have shown

that, w.r.t. gfp-semantis, the ls always exists, and that the binary ls an be

omputed in polynomial time.

Subsumption is also polynomial w.r.t. desriptive semantis [1℄. For the ls,

desriptive semantis is not that well-behaved: the ls need not exist in general.
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In addition, we ould only give a suÆient ondition for the existene of the ls.

If this ondition applies, then the ls an be omputed in polynomial time. Thus,

one of the main tehnial problems left open by this report is the question how to

haraterize the ases in whih the ls exists w.r.t. desriptive semantis, and to

determine whether in these ases it an always be omputed in polynomial time.

Another problem that was not addressed by this report is the question of how to

haraterize and ompute the most spei� onept w.r.t. desriptive semantis.

We have also shown that adding restrited (global) role-value-maps of the form

r Æ s v t to EL leaves subsumption polynomial, both w.r.t. desriptive and gfp-

semantis. These role-value-maps are of interest in appliations in mediine [15℄.

It should be noted that there are indeed medial appliation where the expressive

power of the small DL EL appears to be suÆient. In fat, SNOMED, the

Systematized Nomenlature of Mediine [5℄ uses EL [17, 15, 16℄.
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