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Abstra
t

In a previous report we have investigates subsumption in the presen
e

of terminologi
al 
y
les for the des
ription logi
 EL, whi
h allows 
onjun
-

tions, existential restri
tions, and the top 
on
ept, and have shown that the

subsumption problem remains polynomial for all three types of semanti
s

usually 
onsidered for 
y
li
 de�nitions in des
ription logi
s. This result

depends on a 
hara
terization of subsumption through the existen
e of


ertain simulation relations on the graph asso
iated with a terminology.

In the present report we will use this 
hara
terization to show how the

most spe
i�
 
on
ept and the least 
ommon subsumer 
an be 
omputed in

EL with 
y
li
 de�nitions. In addition, we show that subsumption in EL

(with or without 
y
li
 de�nitions) remains polynomial even if one adds a


ertain restri
ted form of global role-value-maps to EL. In parti
ular, this

kind of role-value-maps 
an express transitivity of roles.

1 Introdu
tion

Computing the most spe
i�
 
on
ept of an individual and the least 
ommon sub-

sumer of 
on
epts 
an be used in the bottom-up 
onstru
tion of des
ription logi


(DL) knowledge bases. Instead of de�ning the relevant 
on
epts of an appli
ation

domain from s
rat
h, this methodology allows the user to give typi
al examples

of individuals belonging to the 
on
ept to be de�ned. These individuals are then

�

Partially supported by the DFG under grant BA 1122/4-1.
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generalized to a 
on
ept by �rst 
omputing the most spe
i�
 
on
ept of ea
h in-

dividual (i.e., the least 
on
ept des
ription in the available des
ription language

that has this individual as an instan
e), and then 
omputing the least 
ommon

subsumer of these 
on
epts (i.e., the least 
on
ept des
ription in the available

des
ription language that subsumes all these 
on
epts). The knowledge engineer


an then use the 
omputed 
on
ept as a starting point for the 
on
ept de�nition.

The least 
ommon subsumer (l
s) in DLs with existential restri
tions was inves-

tigated in [3℄. In parti
ular, it was shown there that the l
s in the small DL EL

(whi
h allows 
onjun
tions, existential restri
tions, and the top 
on
ept) always

exists, and that the binary l
s 
an be 
omputed in polynomial time. Unfortu-

nately, the most spe
i�
 
on
ept (ms
) of a given ABox individual need not exist

in languages allowing for existential restri
tions or number restri
tions. As a

possible solution to this problem, K�usters and Molitor [9℄ show how the most

spe
i�
 
on
ept 
an be approximated in EL and some of its extensions. Here, we

follow an alternative approa
h: we extend the language by 
y
li
 terminologies

with greatest �xpoint semanti
s, and show that the ms
 always exists in this

setting. For the DL ALN (whi
h allows 
onjun
tions, value restri
tions, and

number restri
tions) it was shown in [2℄ that the most spe
i�
 
on
ept always

exists if one adds 
y
li
 
on
ept de�nitions with gfp-semanti
s. One reason for

K�usters and Molitor to 
hoose an approximation approa
h rather than an exa
t


hara
terization of the most spe
i�
 
on
ept using 
y
li
 de�nitions was that the

impa
t of 
y
li
 de�nitions in des
ription logi
s with existential restri
tions was

largely unexplored.

The report [1℄ was a �rst step toward over
oming this de�
it. It 
onsiders 
y
li


terminologies in EL w.r.t. the three types of semanti
s (greatest �xpoint, least

�xpoint, and des
riptive semanti
s) introdu
ed by Nebel [12℄, and shows that the

subsumption problem 
an be de
ided in polynomial time in all three 
ases. This

is in stark 
ontrast to the 
ase of DLs with value restri
tions. Even for the small

DL FL

0

(whi
h allows 
onjun
tions and value restri
tions only), adding 
y
li


terminologies in
reases the 
omplexity of the subsumption problem from polyno-

mial (for 
on
ept des
riptions) to PSPACE. The main tool in the investigation of


y
li
 de�nitions in EL is a 
hara
terization of subsumption through the existen
e

of so-
alled simulation relations, whi
h 
an be 
omputed in polynomial time [7℄.

The results in [1℄ also show that 
y
li
 de�nitions with least �xpoint semanti
s

are not interesting in EL. For this reason, we will here 
on
entrate on greatest

�xpoint and des
riptive semanti
s.

The 
hara
terization of subsumption in EL w.r.t. gfp-semanti
s through the exis-

ten
e of 
ertain simulation relations on the graph asso
iated with the terminology


an be used to 
hara
terize the l
s via the produ
t of this graph with itself (Se
-

tion 4.1). This shows that, w.r.t. gfp semanti
s, the l
s always exists, and the

binary l
s 
an be 
omputed in polynomial time. (The n-ary l
s may grow expo-

nentially even in EL without 
y
li
 terminologies [3℄.) For 
y
li
 terminologies in
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EL with des
riptive semanti
s, the l
s need not exist (Se
tion 4.2). We introdu
e

possible 
andidates P

k

(k � 0) for the l
s, and show that the l
s exists i� one of

these 
andidates is the l
s. In addition, we give a suÆ
ient 
ondition for the l
s

to exist, and show that, under this 
ondition, it 
an be 
omputed in polynomial

time.

The 
hara
terization of subsumption w.r.t. gfp-semanti
s 
an be extended to the

instan
e problem in EL. This allows us to show that the ms
 in EL with 
y
li


terminologies interpreted with gfp semanti
s always exists, and 
an be 
omputed

in polynomial time (Se
tion 5).

In Se
tion 6, we extend the results of [1℄ in another dire
tion. In many appli
a-

tions (e.g., in medi
ine [15℄ and in pro
ess engineering [13℄), one uses roles that

are not just arbitrary binary relations, but should satisfy 
ertain relationships.

A prominent example are transitive roles r, whi
h satisfy r Æ r v r, i.e., the


omposition of r with itself is a subrelation of r. In Se
tion 6 we 
onsider more

general 
onstraints of the form r

1

Æ r

2

v r

3

, whi
h say that the 
omposition of r

1

with r

2

is a subrelation of r

3

. Obviously, this is a spe
ial form of role-value-maps

[14℄, whi
h are global in the sense that they must hold for every individual in

the interpretation domain. The right-identity rule in [15℄ is a spe
ial 
ase where

r

1

is identi
al with r

3

. As an example, 
onsider the roles lo
ation, whi
h as-

signs obje
ts with their lo
ation, and 
ontained, whi
h relates ea
h spa
ial region

with those regions 
ontaining it. Then it makes sense to assert the 
ondition

lo
ation Æ 
ontained v lo
ation. We will show that adding global role-value-maps

of the form r

1

Æ r

2

v r

3

to EL with 
y
li
 terminologies (interpreted with gfp or

des
riptive semanti
s) leaves the subsumption problem polynomial. In parti
ular,

this shows that subsumption of EL-
on
ept des
riptions (with or without a
y
li


terminologies) remains polynomial when adding these global role-value-maps.

In the next se
tion, we introdu
e EL with 
y
li
 terminologies as well as the

l
s and the ms
. Then we re
all the important de�nitions and results from [1℄.

Se
tion 4 formulates and proves the new results for the l
s, and Se
tion 5 does

the same for the ms
. Finally, Se
tion 6 is devoted to showing the results for

global role-value-maps mentioned above.

2 Cy
li
 terminologies, least 
ommon subsumers,

and most spe
i�
 
on
epts

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names. The


onstru
tors determine the expressive power of the DL. In this report, we restri
t

the attention to the DL EL, whose 
on
ept des
riptions are formed using the


onstru
tors top-
on
ept (>), 
onjun
tion (C u D), and existential restri
tion

3



name of 
onstru
tor Syntax Semanti
s


on
ept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-
on
ept > �

I


onjun
tion C uD C

I

\D

I

existential restri
tion 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g


on
ept de�nition A � D A

I

= D

I

individual name a 2 N

I

a a

I

2 �

I


on
ept assertion A(a) a

I

2 A

I

role assertion r(a; b) (a

I

; b

I

) 2 r

I

Table 1: Syntax and semanti
s of EL-
on
ept des
riptions, TBox de�nitions, and

ABox assertions.

(9r:C). The semanti
s of EL-
on
ept des
riptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset

A

I

of �

I

and ea
h role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in the third


olumn of Table 1.

A terminology (or TBox for short) is a �nite set of 
on
ept de�nitions of the form

A � D, where A is a 
on
ept name and D a 
on
ept des
ription. In addition,

we require that TBoxes do not 
ontain multiple de�nitions, i.e., there 
annot

be two distin
t 
on
ept des
riptions D

1

and D

2

su
h that both A � D

1

and

A � D

2

belongs to the TBox. Con
ept names o

urring on the left-hand side of

a de�nition are 
alled de�ned 
on
epts. All other 
on
ept names o

urring in the

TBox are 
alled primitive 
on
epts. Note that we allow for 
y
li
 dependen
ies

between the de�ned 
on
epts, i.e., the de�nition of A may refer (dire
tly or

indire
tly) to A itself. An interpretation I is a model of the TBox T i� it

satis�es all its 
on
ept de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T .

An ABox is a �nite set of assertions of the form A(a) and r(a; b), where A is

a 
on
ept name, r is a role name, and a; b are individual names from a set N

I

.

Interpretations of ABoxes must additionally map ea
h individual name a 2 N

I

to an element a

I

of �

I

. An interpretation I is a model of the ABox A i� it

satis�es all its assertions, i.e., a

I

2 A

I

for all 
on
ept assertions A(a) in A and

(a

I

; b

I

) 2 r

I

for all role assertions r(a; b) in A. The interpretation I is a model

of the ABox A together with the TBox T i� it is a model of both T and A.

The semanti
s of (possibly 
y
li
) EL-TBoxes we have de�ned above is 
alled

des
riptive semanti
 by Nebel [12℄. For some appli
ations, it is more appropriate

to interpret 
y
li
 
on
ept de�nitions with the help of an appropriate �xpoint

semanti
s.
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Example 1 To illustrate this, let us re
all an example from [1℄:

Inode � Node u 9edge:Inode:

Here the intended interpretations are graphs where we have nodes (elements of

the 
on
ept Node) and edges (represented by the role edge), and we want to de�ne

the 
on
ept Inode of all nodes lying on an in�nite (possibly 
y
li
) path of the

graph. In order to 
apture this intuition, the above de�nition must be interpreted

with greatest �xpoint semanti
s.

Before we 
an de�ne greatest �xpoint semanti
s (gfp-semanti
s), we must intro-

du
e some notation. Let T be an EL-TBox 
ontaining the roles N

role

, the primi-

tive 
on
epts N

prim

, and the de�ned 
on
epts N

def

= fA

1

; : : : ; A

k

g. A primitive

interpretations J for T is given by a domain �

J

, an interpretation of the roles

r 2 N

role

by binary relations r

J

on �

J

, and an interpretation of the primitive


on
epts P 2 N

prim

by subsets P

J

of �

J

. Obviously, a primitive interpretation

di�ers from an interpretation in that it does not interpret the de�ned 
on
epts

in N

def

. We say that the interpretation I is based on the primitive interpre-

tation J i� it has the same domain as J and 
oin
ides with J on N

role

and

N

prim

. For a �xed primitive interpretation J , the interpretations I based on it

are uniquely determined by the tuple (A

I

1

; : : : ; A

I

k

) of the interpretations of the

de�ned 
on
epts in N

def

. We de�ne

Int(J ) := fI j I is an interpretation based on J g:

Interpretations based on J 
an be 
ompared by the following ordering, whi
h

realizes a pairwise in
lusion test between the respe
tive interpretations of the

de�ned 
on
epts: if I

1

; I

2

2 Int(J ), then

I

1

�

J

I

2

i� A

I

1

i

� A

I

2

i

for all i; 1 � i � k:

It is easy to see that �

J

is a 
omplete latti
e on Int(J ), i.e., every subset of

Int(J ) has a least upper bound (lub) and a greatest lower bound (glb). Thus,

Tarski's �xpoint theorem [18, 10℄ applies to all monotoni
 fun
tions from Int(J )

to Int(J ). This theorem states the following: if O: Int(J )! Int(J ) is a fun
tion

su
h that I

1

�

J

I

2

implies O(I

1

) �

J

O(I

2

) (monotoni
ity), then O has a �xpoint,

i.e., there is an I in Int(J ) su
h that O(I) = I. In parti
ular, it has a greatest

�xpoint, i.e., a �xpoint larger w.r.t. �

J

than all other �xpoints.

De�nition 2 The TBox T := fA

1

� D

1

; : : : ; A

k

� D

k

g indu
es the following

fun
tion O

T ;J

on Int(J ): O

T ;J

(I

1

) = I

2

i� A

I

2

i

= D

I

1

i

holds for all i; 1 � i � k.

It is easy to see that, for a given EL-TBox T and a primitive J , the fun
tion

O

T ;J

is indeed monotoni
. Consequently, O

T ;J

has a greatest �xpoint. It is an

5



immediate 
onsequen
e of the de�nition of O

T ;J

that an interpretation I based

on the primitive interpretation J is a �xpoint of O

T ;J

i� I is a model of T . This

shows that any primitive interpretation J 
an be extended to a model of T . In

parti
ular, there is always a greatest model of T extending J .

De�nition 3 Let T be an EL-TBox. The model I of T is 
alled gfp-model of

T i� there is a primitive interpretation J su
h that I 2 Int(J ) is the great-

est �xpoint of O

T ;J

. Greatest �xpoint semanti
s 
onsiders only gfp-models as

admissible models.

We are now ready to de�ne the subsumption and the instan
e problem w.r.t. the

two di�erent types of semanti
s introdu
ed above.

De�nition 4 Let T be an EL-TBox and A an EL-ABox, let A;B be de�ned


on
epts o

urring in T , and a an individual name o

urring in A. Then,

� A is subsumed by B w.r.t. des
riptive semanti
s (A v

T

B) i� A

I

� B

I

holds for all models I of T .

� a is an instan
e of A w.r.t. des
riptive semanti
s (A j=

T

A(a)) i� a

I

2 A

I

holds for all models I of T together with A.

� A is subsumed by B w.r.t. gfp-semanti
s (A v

gfp;T

B) i� A

I

� B

I

holds

for all gfp-models I of T .

� a is an instan
e of A w.r.t. gfp-semanti
s (A j=

gfp;T

A(a)) i� a

I

2 A

I

holds

for all models I of A that are gfp-models of T .

On the level of 
on
ept des
riptions, the least 
ommon subsumer of two 
on
ept

des
riptions C;D is the least 
on
ept des
ription E that subsumes both C and

D. An extensions of this de�nition to the level of (possibly 
y
li
) TBoxes is

not 
ompletely trivial. In fa
t, assume that A

1

; A

2

are 
on
epts de�ned in the

TBox T . It should be obvious that taking as the l
s of A

1

; A

2

the least de�ned


on
ept B in T su
h that A

1

v

T

B and A

2

v

T

B is too weak sin
e the l
s would

then strongly depend on what other de�ned 
on
epts are already present in T .

However, a se
ond approa
h (whi
h might look like the obvious generalization

of the de�nition of the l
s in the 
ase of 
on
ept des
riptions) is also not quite

satisfa
tory (at least if we 
onsider gfp-semanti
s). We 
ould say that the l
s of

A;B is the least 
on
ept des
ription C (possibly using de�ned 
on
epts of T )

su
h that A

1

v

T

C and A

2

v

T

C (respe
tively, A

1

v

gfp;T

C and A

2

v

gfp;T

C).

The problem is that this de�nition does not allow us to use the expressive power

of 
y
li
 de�nitions (with gfp-semanti
s) when 
onstru
ting the l
s. For example,


onsider the TBox T 
onsisting of the following 
on
ept de�nitions:

BlueInode � Blue u Node u 9edge:BlueInode;

RedInode � Red u Node u 9edge:RedInode:

6



The intended interpretation is similar to the one in Example 1, with the only

di�eren
e that now nodes may have 
olors, and we are interested in blue (red)

nodes lying on an in�nite path 
onsisting of blue (red) nodes. Intuitively, the

l
s of BlueInode and RedInode des
ribes nodes lying on an in�nite path (without

any restri
tion on their 
olor), i.e., the 
on
ept Inode from Example 1 should be

a de�nition of this l
s. However, this 
annot be expressed by a simple 
on
ept

des
ription. It requires a new 
y
li
 de�nition.

Consequently, to obtain the l
s we must allow the original TBox to be extended

by new de�nitions. We say that the TBox T

2

is a 
onservative extension of the

TBox T

1

i� T

1

� T

2

and T

1

and T

2

have the same primitive 
on
epts and roles.

Thus, T

2

may 
ontain new de�nitions A � D, but then D does not introdu
e

new primitive 
on
epts and roles (i.e., all of them already o

ur in T

1

), and A

is a new 
on
ept name (i.e., A does not o

ur in T

1

). The name \
onservative

extension" is justi�ed by the fa
t that the new de�nitions in T

2

do not in
uen
e

the subsumption relationships between de�ned 
on
epts in T

1

.

Lemma 5 Let T

1

; T

2

be EL-TBoxes su
h that T

2

is a 
onservative extension of

T

1

, and let A;B be de�ned 
on
epts in T

1

(and thus also in T

2

). Then A v

T

1

B

i� A v

T

2

B. The same holds for subsumption w.r.t. gfp-semanti
s.

Proof. (1) Let us �rst 
onsider des
riptive semanti
s. The impli
ation from left

to right ()) is trivial sin
e T

1

� T

2

(monotoni
ity of �rst-order logi
).

For the other dire
tion ((), one should note that T := T

2

n T

1


an be viewed as

a TBox whose primitive 
on
epts are the de�ned and primitive 
on
epts of T

1

,

and whose roles are the roles of T

1

. Now, assume that A 6v

T

1

B, and let I be a

model of T

1

su
h that A

I

6� B

I

. The model I of T

1


an be viewed as a primitive

interpretation of T , whi
h 
an be extended to a gfp-model

b

I of T . Obviously,

b

I

is also a model of T

2

, and sin
e it 
oin
ides with I on the primitive and de�ned


on
epts in T

1

, it also satis�es A

b

I

= A

I

6� B

I

= B

b

I

.

(2) Now, let us 
onsider gfp-semanti
s. The impli
ation from right to left (()


an be proved similar to (() of part (1) of the proof (where now we start with

a gfp-model I of T

1

). What remains to be shown is that

b

I is a gfp-model of T

2

.

Thus, assume that there is a larger model I

0

of T

2

based on the same primitive

interpretation. The di�eren
e between

b

I and I

0


annot o

ur on one of the

de�ned 
on
epts of T

1

sin
e this would 
ontradi
t our assumption that I is a

gfp-model of T

1

. Consequently, the restri
tion of I

0

to the de�ned 
on
epts in T

1


oin
ides with I. But then a di�eren
e between I

0

and

b

I in one of the 
on
epts

newly de�ned in T

2


ontradi
ts the fa
t that

b

I is a gfp-model of T (see part (1)

of the proof).

The impli
ation from left to right ()) immediately follows if we 
an show that

the restri
tion I

0

of a gfp-model I of T

2

to the de�ned 
on
epts of T

1

is a gfp-

model of T

1

. Obviously, I

0

is a model of T

1

(for being a restri
tion of a model of

7



T

2

). Now, assume that it is not a gfp-model of T

1

. Thus, there is a larger model

I

00

of T

1

that 
oin
ides with I

0

on the primitive 
on
epts and roles. As in ()) of

part (2) of the proof, we 
an show that I

00


an be extended to a gfp-model of T

2

.

However, this gfp-model is based on the same primitive interpretation as I, and

thus must be identi
al to I, whi
h 
ontradi
ts our assumption that I

00

is larger

than I

0

.

De�nition 6 Let T

1

be an EL-TBox 
ontaining the de�ned 
on
epts A;B, and

let T

2

be a 
onservative extension of T

1


ontaining the new de�ned 
on
ept E.

Then E in T

2

is a least 
ommon subsumer ofA;B in T

1

w.r.t. des
riptive semanti
s

(l
s) i� the following two 
onditions are satis�ed:

1. A v

T

2

E and B v

T

2

E.

2. If T

3

is a 
onservative extension of T

2

and F a de�ned 
on
ept in T

3

su
h

that A v

T

3

F and B v

T

3

F , then E v

T

3

F .

Least 
ommon subsumers w.r.t. gfp-semanti
s (gfp-l
s) are de�ned analogously,

by repla
ing v

T

i

by v

gfp;T

i

.

In the 
ase of 
on
ept des
riptions, the l
s is unique up to equivalen
e, i.e., if E

1

and E

2

are both least 
ommon subsumers of the des
riptions C;D, then E

1

� E

2

(i.e., E

1

v E

2

and E

2

v E

1

). In the presen
e of (possibly a
y
li
) TBoxes, this

uniqueness property also holds (though its formulation is more 
ompli
ated).

Proposition 7 Let T

1

be an EL-TBox 
ontaining the de�ned 
on
epts A;B. As-

sume that T

2

and T

0

2

are 
onservative extensions of T

1

su
h that

� the de�ned 
on
ept E in T

2

is an l
s of A;B in T

1

;

� the de�ned 
on
ept E

0

in T

0

2

is an l
s of A;B in T

1

;

� the sets of newly de�ned 
on
epts in respe
tively T

2

and T

0

2

are disjoint.

Where T

3

:= T

2

[ T

0

2

, we have E �

T

3

E

0

(i.e., E v

T

3

E

0

and E

0

v

T

3

E).

The 
orresponding statement holds for the gfp-l
s.

Proof. Sin
e the sets of newly de�ned 
on
epts in respe
tively T

2

and T

0

2

are

disjoint, T

3

:= T

2

[T

0

2

is a 
onservative extension of both T

2

and T

0

2

. Consequently

A v

T

2

E and B v

T

2

E imply A v

T

3

E and B v

T

3

E, and A v

T

0

2

E

0

and B v

T

0

2

E

0

imply A v

T

3

E and B v

T

3

E. Sin
e E in T

2

is an l
s of A;B, this implies

that E v

T

3

E

0

. Analogously, sin
e E

0

in T

0

2

is an l
s of A;B, this implies that

E

0

v

T

3

E.
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The same argument goes through for the gfp-l
s.

The notion \most spe
i�
 
on
ept" 
an be extended in a similar way from 
on
ept

des
riptions to 
on
epts de�ned in a TBox.

De�nition 8 Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the individ-

ual name a, and let T

2

be a 
onservative extension of T

1


ontaining the de�ned


on
ept E. Then E in T

2

is a most spe
i�
 
on
ept of a in A and T

1

w.r.t.

des
riptive semanti
s (ms
) i� the following two 
onditions are satis�ed:

1. A j=

T

2

E(a).

2. If T

3

is a 
onservative extension of T

2

and F a de�ned 
on
ept in T

3

su
h

that A j=

T

3

F (a), then E v

T

3

F .

Most spe
i�
 
on
epts w.r.t. gfp-semanti
s (gfp-ms
) are de�ned analogously.

Uniqueness up to equivalen
e of the most spe
i�
 
on
ept 
an be shown like

uniqueness of the least 
ommon subsumer.

Proposition 9 Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the indi-

vidual name a. Assume that T

2

and T

0

2

are 
onservative extensions of T

1

su
h

that

� the de�ned 
on
ept E in T

2

is an ms
 of a in A and T

1

;

� the de�ned 
on
ept E

0

in T

0

2

is an ms
 of a in A and T

1

;

� the sets of newly de�ned 
on
epts in respe
tively T

2

and T

0

2

are disjoint.

Where T

3

:= T

2

[ T

0

2

, we have E �

T

3

E

0

.

The 
orresponding statement holds for the gfp-ms
.

3 Chara
terizing subsumption in EL with 
y
li


de�nitions

In this se
tion, we re
all the 
hara
terizations of subsumption w.r.t. des
riptive

semanti
s and gfp-semanti
s developed in [1℄. To this purpose, we must repre-

sent TBoxes by des
ription graphs, and introdu
e the notion of a simulation on

des
ription graphs.
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3.1 Des
ription graphs and simulations

It was shown in [1℄ that EL-TBoxes as well as primitive interpretations 
an be

represented as des
ription graphs. Before we 
an translate EL-TBoxes into de-

s
ription graphs, we must normalize the TBoxes. In the following, let T be an

EL-TBox, N

def

the de�ned 
on
epts of T , N

prim

the primitive 
on
epts of T , and

N

role

the roles of T .

We say that the EL-TBox T is normalized i� A � D 2 T implies that D is of

the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

As shown in [1℄, one 
an (without loss of generality) restri
t the attention to nor-

malized TBox. In the following, we thus assume that all TBoxes are normalized.

Normalized EL-TBoxes 
an be viewed as graphs whose nodes are the de�ned


on
epts, whi
h are labeled by sets of primitive 
on
epts, and whose edges are

given by the existential restri
tions. For the rest of this se
tion, we �x a normal-

ized EL-TBox T with primitive 
on
epts N

prim

, de�ned 
on
epts N

def

, and roles

N

role

.

De�nition 10 An EL-des
ription graph is a graph G = (V;E; L) where

� V is a set of nodes;

� E � V �N

role

� V is a set of edges labeled by role names;

� L: V ! 2

N

prim

is a fun
tion that labels nodes with sets of primitive 
on
epts.

The TBox T 
an be translated into the following EL-des
ription graph G

T

=

(N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned 
on
epts of T ;

� if A is a de�ned 
on
ept and

A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its de�nition in T , then

{ L

T

(A) = fP

1

; : : : ; P

m

g, and

{ A is the sour
e of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

Any primitive interpretation J = (�

J

; �

J

) 
an be translated into the following

EL-des
ription graph G

J

= (�

J

; E

J

; L

J

):

10



� the nodes of G

J

are the elements of �

J

;

� E

J

:= f(x; r; y) j (x; y) 2 r

J

g;

� L

J

(x) = fP 2 N

prim

j x 2 P

J

g for all x 2 �

J

.

Simulations are binary relations between nodes of two EL-des
ription graphs that

respe
t labels and edges in the sense de�ned below.

De�nition 11 Let G

i

= (V

i

; E

i

; L

i

) (i = 1; 2) be two EL-des
ription graphs. The

binary relation Z � V

1

� V

2

is a simulation from G

1

to G

2

i�

(S1) (v

1

; v

2

) 2 Z implies L

1

(v

1

) � L

2

(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E

1

, then there exists a node v

0

2

2 V

2

su
h

that (v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E

2

.

We write Z: G

1

*

� G

2

to express that Z is a simulation from G

1

to G

2

.

It is easy to see that the set of all simulations from G

1

to G

2

is 
losed under

arbitrary unions. Consequently, there always exists a greatest simulation from

G

1

to G

2

. If G

1

;G

2

are �nite, then this greatest simulation 
an be 
omputed in

polynomial time [7℄. As an easy 
onsequen
e of this fa
t, the following proposition

is proved in [1℄.

Proposition 12 Let G

1

;G

2

be two �nite EL-des
ription graphs, v

1

a node of G

1

and v

2

a node of G

2

. Then we 
an be de
ide in polynomial time whether there is

a simulation Z: G

1

*

� G

2

su
h that (v

1

; v

2

) 2 Z.

3.2 Subsumption w.r.t. gfp-semanti
s

Subsumption w.r.t. gfp-semanti
s 
orresponds to the existen
e of a simulation

relation su
h that the subsumee simulates the subsumer:

Theorem 13 Let T be an EL-TBox and A;B de�ned 
on
epts in T . Then the

following are equivalent:

1. A v

gfp;T

B.

2. There is a simulation Z: G

T

*

� G

T

su
h that (B;A) 2 Z.

The theorem together with Proposition 12 shows that subsumption w.r.t. gfp-

semanti
s in EL is tra
table.

11



Corollary 14 Subsumption w.r.t. gfp-semanti
s in EL 
an be de
ided in polyno-

mial time.

This result is quite surprising sin
e, for the DL FL

0

(whi
h allows for 
onjun
-

tion and value restri
tions only), subsumption w.r.t. gfp-semanti
s is already

PSPACE-
omplete.

The proof of the above theorem given in [1℄ depends on a 
hara
terization of

when an individual of a gfp-model belongs to a de�ned 
on
ept in this model.

Proposition 15 Let J be a primitive interpretation and I the gfp-model of T

based on J . Then the following are equivalent for any A 2 N

def

and x 2 �

J

:

1. x 2 A

I

.

2. There is a simulation Z: G

T

*

� G

J

su
h that (A; x) 2 Z.

This proposition will be
ome relevant later on when we extend the 
hara
teriza-

tion of subsumption to a 
hara
terization of the instan
e problem.

3.3 Subsumption w.r.t. des
riptive semanti
s

Let T be an EL-TBox and G

T

the 
orresponding EL-des
ription graph. Sin
e

every gfp-model of T is a model of T , A v

T

B implies A v

gfp;T

B. Consequently,

A v

T

B implies that there is a simulation Z: G

T

*

� G

T

with (B;A) 2 Z. However,

the simulation Z must satisfy some additional properties for the impli
ation in

the other dire
tion to hold. To de�ne these properties, we must introdu
e some

notation.

Let T be an EL-TBox, G

T

the 
orresponding EL-des
ription graph, and Z: G

T

*

�

G

T

a simulation.

De�nition 16 The path p

1

: B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � in G

T

is Z-

simulated by the path p

2

: A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � � in G

T

i� (B

i

; A

i

) 2 Z

for all i � 0. In this 
ase we say that the pair (p

1

; p

2

) is a (B;A)-simulation 
hain

w.r.t. Z. (see Figure 1).

If (B;A) 2 Z, then (S2) of De�nition 11 implies that, for every in�nite path p

1

starting with B

0

:= B, there is an in�nite path p

2

starting with A

0

:= A su
h

that p

1

is Z-simulated by p

2

. In the following we 
onstru
t su
h a simulating

path step by step. The main point is, however, that the de
ision whi
h 
on
ept

A

n

to take in step n should depend only on the partial (B;A)-simulation 
hain

already 
onstru
ted, and not on the parts of the path p

1

not yet 
onsidered.
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B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! A

2

r

3

! A

3

r

4

! � � �

Figure 1: A (B;A)-simulation 
hain.

B = B

0

r

1

! B

1

r

2

! � � �

r

n�1

! B

n�1

r

n

! B

n

Z# Z# Z#

A = A

0

r

1

! A

1

r

2

! � � �

r

n�1

! A

n�1

Figure 2: A partial (B;A)-simulation 
hain.

De�nition 17 A partial (B;A)-simulation 
hain is of the form depi
ted in Fig-

ure 2. A sele
tion fun
tion S for A;B and Z assigns to ea
h partial (B;A)-

simulation 
hain of this form a de�ned 
on
ept A

n

su
h that (A

n�1

; r

n

; A

n

) is an

edge in G

T

and (B

n

; A

n

) 2 Z.

Given a path B = B

0

r

1

! B

1

r

2

! B

2

r

3

! B

3

r

4

! � � � and a de�ned 
on
ept A su
h

that (B;A) 2 Z, one 
an use a sele
tion fun
tion S for A;B and Z to 
onstru
t a

Z-simulating path. In this 
ase we say that the resulting (B;A)-simulation 
hain

is S-sele
ted.

De�nition 18 Let A;B be de�ned 
on
epts in T , and Z: G

T

*

� G

T

a simulation

with (B;A) 2 Z. Then Z is 
alled (B;A)-syn
hronized i� there exists a sele
tion

fun
tion S for A;B and Z su
h that the following holds: for every in�nite S-

sele
ted (B;A)-simulation 
hain of the form depi
ted in Figure 1 there exists an

i � 0 su
h that A

i

= B

i

.

We are now ready to state the 
hara
terization of subsumption w.r.t. des
riptive

semanti
s proved in [1℄.

Theorem 19 Let T be an EL-TBox, and A;B de�ned 
on
epts in T . Then the

following are equivalent:

1. A v

T

B.

2. There is a (B;A)-syn
hronized simulation Z: G

T

*

� G

T

su
h that (B;A) 2

Z.

In [1℄ it is also shown that, for a given EL-TBox T and de�ned 
on
epts A;B in

T , the existen
e of a (B;A)-syn
hronized simulation Z: G

T

*

� G

T

with (B;A) 2 Z


an be de
ided in polynomial time.

13



Corollary 20 Subsumption w.r.t. des
riptive semanti
s in EL 
an be de
ided in

polynomial time.

4 Computing the l
s

We will �rst show how the 
hara
terization of subsumption w.r.t. gfp-semanti
s

given in Theorem 13 
an be used to 
hara
terize the gfp-l
s. Deriving a 
hara
-

terization of the l
s (w.r.t. des
riptive semanti
s) from Theorem 19 turns out to

be more involved.

4.1 Computing the gfp-l
s

Let T

1

be an EL-TBox, let G

T

1

= (N

def

; E

T

1

; L

T

1

) be the 
orresponding des
ription

graph, and let A;B be de�ned 
on
epts in T

1

(i.e., elements of N

def

). In prin
iple,

the l
s of A;B in T

1

is de�ned in a TBox whose des
ription graph is the produ
t

of G

T

1

with itself.

De�nition 21 Let G

1

= (V

1

; E

1

; L

1

) and G

2

= (V

2

; E

2

; L

2

) be two des
ription

graphs. Their produ
t is the des
ription graph G

1

� G

2

:= (V;E; L) where

� V = V

1

� V

2

;

� E := f((v

1

; v

2

); r; (v

0

1

; v

0

2

)) j (v

1

; r; v

0

1

) 2 E

1

^ (v

2

; r; v

0

2

) 2 E

2

g;

� L(v

1

; v

2

) := L

1

(v

1

) \ L

2

(v

2

).

The des
ription graph G

T

1

�G

T

1

yields a TBox T su
h that G

T

= G

T

1

�G

T

1

. Now,

T

2

:= T

1

[ T is a 
onservative extension of T

1

. In fa
t, G

T

1

� G

T

1

(and thus T )

is based on the same primitive 
on
epts and roles as G

T

1

, and the set of de�ned


on
epts in T is N

def

� N

def

, whi
h is disjoint from N

def

. Let G

2

= (V

2

; E

2

; L

2

)

be the EL-des
ription graph 
orresponding to T

2

. Note that G

2

is the disjoint

union of G

T

= G

T

1

� G

T

1

and G

T

1

. Let G

T

= (V;E; L) and G

T

1

= (V

1

; E

1

; L

1

).

Lemma 22 (A;B) in T

2

is the gfp-l
s of A and B in T

1

.

Proof. (1) First, we show that A v

gfp;T

2

(A;B). (Note that B v

gfp;T

2

(A;B) 
an

be shown analogously.) A

ording to Theorem 13 it is suÆ
ient to show that

there exists a simulation relation Z: G

T

2

*

� G

T

2

su
h that ((A;B); A) 2 Z. We

de�ne Z as the proje
tion of elements of N

def

�N

def

to the �rst 
omponent, i.e.,

Z := f((u; v); u) j (u; v) 2 N

def

�N

def

g:
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Note that the nodes (u; v) 2 N

def

�N

def

are exa
tly the de�ned 
on
epts of T .

Obviously, ((A;B); A) 2 Z by de�nition of Z. It remains to be shown that Z is

a simulation relation:

(S1) By the de�nition of the produ
t of EL-des
ription graphs, L

2

(u; v) =

L(u; v) = L

1

(u) \ L

1

(v) � L

1

(u) = L

2

(u).

(S2) Consider ((u; v); u) 2 Z and assume that ((u; v); r; w) 2 E

2

for some node

w 2 V

2

. Sin
e G

2

is the disjoint union of G

T

= G

T

1

� G

T

1

and G

T

1

, and

(u; v) is a node of G

T

, w must also be a node of G

T

, i.e., w is of the

form (u

0

; v

0

) and the edge ((u; v); r; (u

0

; v

0

)) 2 E

2

is an edge in G

T

. Thus,

((u; v); r; (u

0

; v

0

)) 2 E, and the de�nition of the produ
t of EL-des
ription

graphs implies that (u; r; u

0

) 2 E

1

� E

2

. Sin
e ((u

0

; v

0

); u

0

) 2 Z, this shows

that property (S2) in the de�nition of simulation relations really holds for

Z.

(2) Now, assume that T

3

is a 
onservative extension of T

2

and that F is a de�ned


on
ept in T

3

su
h that A v

gfp;T

3

F and B v

gfp;T

3

F . Where G

T

3

= (V

3

; E

3

; L

3

),

this implies that there are simulation relations Y

1

: G

T

3

*

� G

T

3

and Y

2

: G

T

3

*

� G

T

3

su
h that (F;A) 2 Y

1

and (F;B) 2 Y

2

.

We must show that (A;B) v

gfp;T

3

F , i.e., that there is a simulation relation

Y : G

T

3

*

� G

T

3

su
h that (F; (A;B)) 2 Y . Basi
ally, Y is de�ned as the \produ
t"

of Y

1

and Y

2

. To be more pre
ise,

Y := f(u; (v

1

; v

2

)) j (u; v

1

) 2 Y

1

^ (u; v

2

) 2 Y

2

^ (v

1

; v

2

) 2 V = N

def

�N

def

g:

Sin
e (F;A) 2 Y

1

and (F;B) 2 Y

2

, and (A;B) 2 V = N

def

�N

def

, we know that

(F; (A;B)) 2 Y . It remains to be shown that Y is in fa
t a simulation relation.

(S1) Assume that (u; (v

1

; v

2

)) 2 Y , i.e., (u; v

1

) 2 Y

1

, (u; v

1

) 2 Y

2

, and (v

1

; v

2

) 2

V . Sin
e Y

1

and Y

2

are simulation relations, the �rst two fa
ts imply that

L

3

(u) � L

3

(v

1

) and L

3

(u) � L

3

(v

2

), and thus L

3

(u) � L

3

(v

1

) \ L

3

(v

2

).

Sin
e (v

1

; v

2

) 2 V and T

3

is a 
onservative extension of T

2

, we have for

i = 1; 2: L

3

(v

i

) = L

2

(v

i

) = L

1

(v

i

). By the de�nition of the produ
t, this

implies L

3

(u) � L

3

(v

1

) \ L

3

(v

2

) = L

1

(v

1

) \ L

1

(v

2

) = L(v

1

; v

2

) = L

3

(v

1

; v

2

).

(S2) Assume that (u; (v

1

; v

2

)) 2 Y and that (u; r; u

0

) 2 E

3

. By the de�nition of

Y , and sin
e Y

1

and Y

2

are simulation relations, there exist nodes v

0

1

and v

0

2

in V

3

su
h that (v

1

; r; v

0

1

) 2 E

3

, (u

0

; v

0

1

) 2 Y

1

, (v

2

; r; v

0

2

) 2 E

3

, and (u

0

; v

0

2

) 2

Y

2

. Again by the de�nition of Y , v

1

; v

2

are nodes in V

1

= N

def

. By the

de�nition of T

2

, and sin
e T

3

is a 
onservative extension of T

2

, this implies

that the edges (v

1

; r; v

0

1

) and (v

2

; r; v

0

2

) are a
tually edges in E

1

, and thus the

de�nition of the produ
t yields ((v

1

; v

2

); r; (v

0

1

; v

0

2

)) 2 E � E

3

. In addition,
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this shows that (v

0

1

; v

0

2

) 2 V , and thus (u

0

; v

0

1

) 2 Y

1

and (u

0

; v

0

2

) 2 Y

2

imply

that (u

0

; (v

0

1

; v

0

2

)) 2 Y .

Computing the (binary) produ
t of two EL-des
ription graphs 
an obviously be

done in polynomial time, and thus the gfp-l
s 
an be 
omputed in polynomial

time.

Theorem 23 Let T

1

be an EL-TBox, and let A;B be de�ned 
on
epts in T

1

.

Then the gfp-l
s of A;B in T

1

always exists, and it 
an be 
omputed in polynomial

time.

4.2 The l
s w.r.t. des
riptive semanti
s

First, we will show that, w.r.t. des
riptive semanti
s, the l
s of two 
on
epts

de�ned in an EL-TBox need not exist. Subsequently, we will introdu
e possible

\
andidates" P

k

(k � 0) for the l
s, and show that the l
s exists i� one of these


andidates is the l
s. Finally, we will give a suÆ
ient 
ondition for the existen
e

of the l
s.

4.2.1 The l
s need not exist

Theorem 24 Let T

1

:= fA � 9r:A; B � 9r:Bg. Then, A;B in T

1

do not have

an l
s.

Proof. Assume to the 
ontrary that T

2

is a 
onservative extension of T

1

and that

the de�ned 
on
ept E in T

2

is an l
s of A;B in T

1

. Let G

2

= (V

2

; E

2

; L

2

) be the

des
ription graph indu
ed by T

2

.

First, we show that there 
annot be an in�nite path in G

2

starting with E. In

fa
t, assume that

E = E

0

r

1

! E

1

r

2

! E

2

r

3

! � � �

is su
h an in�nite path. Sin
e A v

T

1

E, there is an (E;A)-syn
hronized simulation

Z

1

: G

2

*

� G

2

su
h that (E;A) 2 Z

1

. Consequently, the 
orresponding sele
tion

fun
tion S

1


an be used to turn the above in�nite 
hain issuing from E into an

(E;A)-simulation 
hain. Sin
e the only edge with sour
e A is the edge (A; r; A),

this simulation 
hain is a
tually of the form

E = E

0

r

! E

1

r

! E

2

r

! E

3

r

! � � �

Z

1

# Z

1

# Z

1

# Z

1

#

A

r

! A

r

! A

r

! A

r

! � � �
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Sin
e Z

1

is (E;A)-syn
hronized with sele
tion fun
tion S

1

, this implies that there

is an index j

1

su
h that E

j

1

= A, and thus E

i

= A for all i � j

1

.

Analogously, we 
an show that there is an index j

2

su
h that E

j

2

= B, and thus

E

i

= B for all i � j

2

. Sin
e A 6= B, this is a 
ontradi
tion. Thus, we know

that there is a positive integer n

0

su
h that every path in G

2

starting with E has

length � n

0

.

Se
ond, we de�ne 
onservative extensions T

0

n

(n � 1) of T

2

su
h that the de�ned


on
ept F

n

in T

0

n

is a 
ommon subsumer of A;B:

T

0

n

:= T

2

[ fF

n

� 9r:F

n�1

; :::; F

1

� 9r:F

0

; F

0

� >g:

It is easy to see that A v

T

0

n

F

n

and B v

T

0

n

F

n

.

Third, we 
laim that, for n > n

0

, E 6v

T

0

n

F

n

. In fa
t, the path

F

n

r

! F

n�1

r

! F

n�2

r

! � � �

r

! F

0

has length n, and thus it 
annot be simulated by any path starting with E. This

shows that E 6v

T

0

n

F

n

, and thus 
ontradi
ts our assumption that E in T

2

is the

l
s of A;B in T

1

.

4.2.2 Chara
terizing when the l
s exists

Given an EL-TBox T

1

and de�ned 
on
epts A;B in T

1

, we will de�ned for ea
h

k � 0 a 
onservative extension T

(k)

2

of T

1


ontaining a de�ned 
on
ept P

k

, and

show that A;B have an l
s i� there is a k su
h that P

k

is the l
s of A;B.

To prove this result, we will need a sleight modi�
ation of Theorem 19. However,

this modi�ed theorem follows easily from the the proof of Theorem 19 given in

[1℄. Re
all that a sele
tion fun
tion S for A;B and Z assigns to ea
h partial

(B;A)-simulation 
hain of the form depi
ted in Figure 2 a de�ned 
on
ept A

n

su
h that (A

n�1

; r

n

; A

n

) is an edge in G

T

and (B

n

; A

n

) 2 Z.

De�nition 25 We 
all a sele
tion fun
tion S ni
e i� it satis�es the following two


onditions:

1. It is memoryless, i.e., its result A

n

depends only on B

n�1

; A

n�1

; r

n

; B

n

, and

not on the other parts of the partial (B;A)-simulation 
hain.

2. If B

n�1

= A

n�1

, then its result A

n

is just B

n

.

The simulation relation Z is 
alled strongly (B;A)-syn
hronized i� there exists a

ni
e sele
tion fun
tion S for A;B and Z su
h that the following holds: for every

in�nite S-sele
ted (B;A)-simulation 
hain of the form depi
ted in Figure 1 there

exists an i � 0 su
h that A

i

= B

i

.
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Corollary 26 Let T be an EL-TBox, and A;B be de�ned 
on
epts in T . Then

the following are equivalent:

1. A v

T

B.

2. There is a strongly (B;A)-syn
hronized simulation Z: G

T

*

� G

T

su
h that

(B;A) 2 Z.

Proof. (2) 1) is an immediate 
onsequen
e of Theorem 19.

(1) 2) follows from the fa
t that the simulation relation Y de�ned in the proof

of (1 ) 2) of Theorem 19 (see page 27 in [1℄) is strongly (B;A)-syn
hronized.

In fa
t, it is easy to 
he
k that the sele
tion fun
tion S de�ned in the proof of

Lemma 35 in [1℄ is indeed ni
e.

Strongly (B;A)-syn
hronized simulations satisfy the following property:

Lemma 27 Let T be an EL-TBox 
ontaining at most n de�ned 
on
epts, let A;B

be de�ned 
on
epts in T , and let Z: G

T

*

� G

T

be a strongly (B;A)-syn
hronized

simulation relation. Consider an in�nite S-sele
ted (B;A)-simulation 
hain of

the form depi
ted in Figure 1. Then there exists an m < n

2

su
h that B

m

= A

m

.

Proof. Consider the n

2

+ 1 tuples (A

0

; B

0

); : : : ; (A

n

2

; B

n

2

). By de�nition of n,

there are at most n

2

di�erent tuples of this kind, and thus there exist indi
es

0 � i < j � n

2

su
h that (B

i

; A

i

) = (B

j

; A

j

). Sin
e S is memoryless, the

following is also an S-sele
ted simulation 
hain:

B = B

0

r

1

! � � �

r

i

! B

j

= B

i

r

i+1

! B

i+1

r

i+2

! � � �

r

j

! B

j

= B

i

r

i+1

! � � �

Z# Z# Z# Z#

A = A

0

r

1

! � � �

r

i

! A

j

= A

i

r

i+1

! A

i+1

r

i+2

! � � �

r

j

! A

j

= A

i

r

i+1

! � � �

Now, the fa
t that this 
hain must be syn
hronized shows that there is indeed an

m < j � n

2

su
h that B

m

= A

m

.

Obviously, the lemma also holds for �nite S-sele
ted (B;A)-simulation 
hains,

provided that they are long enough, i.e., of length at least n

2

.

Now, let T

1

be an EL-TBox, let G

T

1

= (N

def

; E

T

1

; L

T

1

) be the 
orresponding

des
ription graph, and let A;B be de�ned 
on
epts in T

1

(i.e., elements of N

def

).

We 
onsider the produ
t G := G

T

1

� G

T

1

of G

T

1

with itself. Let G = (V;E; L).

The produ
t graph G as a whole 
annot be part of the l
s of A;B sin
e it may


ontain 
y
les rea
hable from (A;B), whi
h would prevent the subsumption re-

lationship between A and (A;B) to hold. Nevertheless, the l
s must \
ontain"

paths in G starting with (A;B) up to a 
ertain length k. In order to obtain these
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paths without also getting the 
y
les in G, we make 
opies of the nodes in G on

levels between 1 and k. A
tually, we will not need nodes of the form (u; u) sin
e

they are represented by the nodes u in G

T

1

.

To be more pre
ise, we de�ne

P

k

:= f(A;B)

0

g [ f(u; v)

n

j u 6= v; (u; v) 2 N

def

�N

def

and 1 � n � kg:

For p = (u; v)

n

2 P we 
all (u; v) the node of p and n the level of p.

The edges of G indu
e edges between elements of P

k

. To be more pre
ise, we

de�ne the set of edges E

P

k

as follows: (p; r; q) 2 E

P

k

i� the following 
onditions

are satis�ed:

� p; q 2 P

k

;

� p = (u; v)

n

for some n; 0 � n � k;

� q = (u

0

; v

0

)

n+1

;

� ((u; v); r; (u

0

; v

0

)) 2 E;

Note that the graph (P

k

; E

P

k

) is a dire
ted a
y
li
 graph. The only element on

level 0 is (A;B)

0

.

The label of an element of P

k

is the label of its node in G, i.e., if p = (u; v)

n

2 P,

then

L

P

k

(p) := L(u; v) = L

1

(u) \ L

1

(v):

We are now ready to de�ne an EL-des
ription graph G

(k)

2

whose 
orresponding

TBox T

(k)

2

is a 
onservative extension of T

1

, and whi
h 
ontains a de�ned 
on
ept

P

k

that is a 
ommon subsumer of A;B.

De�nition 28 For all k � 0, we de�ne G

(k)

2

:= (V

(k)

2

; E

(k)

2

; L

(k)

2

) where

� V

(k)

2

:= N

def

[ P

k

;

� L

(k)

2

= L

1

[ L

P

k

, i.e.

L

(k)

2

(v) :=

�

L

1

(v) if v 2 N

def

L

P

k

(v) if v 2 P

k

� E

(k)

2


onsists of the edges in E

1

and E

P

k

, extended by some additional edges

from P

k

to N

def

:

E

(k)

2

:= E

1

[ E

P

[ f(p; r; w) j p = (u; v)

n

2 P

k

and

(u; r; w) 2 E

1

and (v; r; w) 2 E

1

g:
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Let T

(k)

2

be the EL-TBox su
h that G

(k)

2

= G

T

(k)

2

. It is easy to see that T

(k)

2

is a


onservative extension of T

1

.

Lemma 29 A v

T

(k)

2

(A;B)

0

and B v

T

(k)

2

(A;B)

0

.

Proof. We prove A v

T

(k)

2

(A;B)

0

. (The other subsumption relationship 
an be

shown analogously.)

A

ording to Theorem 19, it is enough to show that there is an ((A;B)

0

; A)-

syn
hronized simulation Z: G

T

(k)

2

*

� G

T

(k)

2

su
h that ((A;B)

0

; A) 2 Z. We de�ne

this simulation relation as follows:

Z := f(p; u) j p 2 P

k

; u 2 N

def

; and the node of p is of the form (u; v)g [

f(u; u) j u 2 N

def

g:

First, note that obviously ((A;B)

0

; A) 2 Z.

Se
ond, we show that Z is indeed a simulation relation, i.e., it satis�es (S1) and

(S2) of De�nition 11.

(S1) First, 
onsider (p; u) 2 Z for some p 2 P

k

. If (u; v) is the node of p, then

L

(k)

2

(p) = L

P

k

(p) = L

1

(u) \ L

1

(v) � L

1

(u) = L

(k)

2

(u). The 
ase (u; u) 2 Z is

trivial.

(S2) For the 
ase (u; u) 2 Z, this property is trivially satis�ed. Now, 
onsider

(p; u) 2 Z for p 2 P

k

and u 2 N

def

, and let (u; v) be the node of p.

Case 1: (p; r; q) 2 E

(k)

2

for some q 2 P

k

.

Consequently,

p = (u; v)

n

and q = (u

0

; v

0

)

n+1

for two distin
t nodes u

0

; v

0

2 N

def

and some n; 0 � n < k. The de�nitions of E

P

k

and E imply that (u; r; u

0

) 2 E

1

� E

(k)

2

. In addition, (q; u

0

) 2 Z by de�nition of

Z.

Case 2: (p; r; u

0

) 2 E

(k)

2

for some u

0

2 N

def

.

Re
all that (u; v) is the node of p. By de�nition of E

(k)

2

, (p; r; u

0

) 2 E

(k)

2

implies

that (u; r; u

0

) 2 E

1

� E

(k)

2

, and by the de�nition of Z we have (u

0

; u

0

) 2 Z.

To sum up, we have shown that Z is a simulation relation su
h that ((A;B)

0

; A) 2

Z. It remains to be shown that Z is ((A;B)

0

; A)-syn
hronized. Our proof of (S2)

yields the desired sele
tion fun
tion:

� In the situation (p; r; q) 2 E

(k)

2

and (p; u) 2 Z, S takes the �rst 
omponent

of the node of q.

� In the situation (p; r; u

0

) 2 E

(k)

2

and (p; u) 2 Z, S takes u

0

.
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� In the situation (u; r; v) 2 E

(k)

2

and (u; u) 2 Z, S takes v.

Why does S satisfy the syn
hronization property? Sin
e the dire
ted a
y
li


graph (P

k

; E

P

k

) only 
ontains paths of length � k, any in�nite ((A;B)

0

; A)-

simulation 
hain must 
ontain nodes from N

def

also in the upper 
omponent.

Restri
ted to these nodes in the �rst 
omponent, Z is the identity relation.

What we want show next is that every 
ommon subsumer of A;B also subsumes

(A;B)

0

in T

(k)

2

for an appropriate k.

To make this more pre
ise, assume that T

2

is a 
onservative extension of T

1

, and

that F is a de�ned 
on
ept in T

2

su
h that A v

T

2

F and B v

T

2

F . Where

G

T

2

= (V

2

; E

2

; L

2

), this implies that there is

� an (F;A)-syn
hronized simulation relation Y

1

: G

T

2

*

� G

T

2

with sele
tion

fun
tion S

1

su
h that (F;A) 2 Y

1

, and

� an (F;B)-syn
hronized simulation relation Y

2

: G

T

2

*

� G

T

2

with sele
tion

fun
tion S

2

su
h that (F;B) 2 Y

2

.

By Corollary 26 we may assume without loss of generality that the sele
tion

fun
tions S

1

; S

2

are ni
e. Consequently, if k = jV

2

j

2

, then Lemma 27 shows that

the sele
tion fun
tions S

1

; S

2

ensure syn
hronization after less than k steps.

In the following, let k := jV

2

j

2

. In order to have a subsumption relationship

between P

k

and F , both must \live" in the same TBox. For this, we simply take

the union T

3

of T

(k)

2

and T

2

. Note that we may assume without loss of generality

that the only de�ned 
on
epts that T

(k)

2

and T

2

have in 
ommon are the ones from

T

1

. In fa
t, none of the new de�ned 
on
epts in T

(k)

2

(i.e., the elements of P

k

) lies

on a 
y
le, and thus we 
an rename them without 
hanging the meaning of these


on
epts. (Note that the 
hara
terization of subsumption given in Theorem 19

implies that only for de�ned 
on
epts o

urring on 
y
les their a
tual names are

relevant.) Thus, T

3

is a 
onservative extension of both T

(k)

2

and T

2

.

Lemma 30 (A;B)

0

v

T

3

F

Proof. We must show that there is an (F; (A;B)

0

)-syn
hronized simulation rela-

tion Y : G

T

3

*

� G

T

3

su
h that (F; (A;B)

0

) 2 Y .

Again, Y is based on the \produ
t" of Y

1

and Y

2

:

Y := f(u; p) j (u; v

1

) 2 Y

1

and (u; v

2

) 2 Y

2

where (v

1

; v

2

) is the node of p 2 P

k

g [

f(u; v) j v 2 N

def

and (u; v) 2 Y

1

g:
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By de�nition of Y , (F;A) 2 Y

1

and (F;B) 2 Y

2

imply (F; (A;B)

0

) 2 Y . In

order to show that Y is (F; (A;B)

0

)-syn
hronized, we must de�ne an appropriate

sele
tion fun
tion S. Thus, 
onsider the following partial (F; (A;B)

0

)-simulation


hain:

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y # Y # Y #

(A;B)

0

= w

0

r

1

! w

1

r

2

! � � �

r

n�1

! w

n�1

Sin
e T

3

is a 
onservative extension of T

(k)

2

, the nodes w

i

are all nodes of G

(k)

2

,

i.e., elements of P

k

or of N

def

.

First, assume that w

n�1

2 N

def

. But then (F

n�1

; w

n�1

) 2 Y

1

by the de�nition of

Y , and the sele
tion fun
tion S

1

yields a node w

n

2 V

3

su
h that (w

n�1

; r

n

; w

n

) 2

E

3

and (F

n

; w

n

) 2 Y

1

. Sin
e w

n�1

2 N

def

and T

3

is a 
onservative extension of T

1

,

(w

n�1

; r

n

; w

n

) 2 E

3

implies w

n

2 N

def

. Consequently, (F

n

; w

n

) 2 Y

1

also yields

(F

n

; w

n

) 2 Y . Thus, the sele
tion fun
tion S simply 
hooses w

n

.

Now, assume that w

n�1

belongs to P

k

(and thus also the other nodes w

i

). Conse-

quently, the above partial (F; (A;B)

0

)-simulation 
hain is of the following form:

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y # Y # Y #

(A;B)

0

= p

0

r

1

! p

1

r

2

! � � �

r

n�1

! p

n�1

for elements p

1

; : : : ; p

n�1

of P

k

. Assume that (u

i

; v

i

) is the node of p

i

(i =

0; : : : ; n� 1).

1

By the de�nitions of P

k

, Y and E

2

, this implies

� n� 1 � k,

� u

i

6= v

i

for i = 0; : : : ; n� 1,

� (F

i

; u

i

) 2 Y

1

and (F

i

; v

i

) 2 Y

2

for i = 0; : : : ; n� 1, and

� (u

i�1

; r

i

; u

i

) 2 E

1

� E

3

and (v

i�1

; r

i

; v

i

) 2 E

1

� E

3

for i = 1; : : : ; n� 1.

This yields the following partial simulation 
hains:

(�)

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y

1

# Y

1

# Y

1

#

A = u

0

r

1

! u

1

r

2

! � � �

r

n�1

! u

n�1

(��)

F = F

0

r

1

! F

1

r

2

! � � �

r

n�1

! F

n�1

r

n

! F

n

Y

2

# Y

2

# Y

2

#

B = v

0

r

1

! v

1

r

2

! � � �

r

n�1

! v

n�1

1

The level of p

i

is obviously i.
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The sele
tion fun
tions S

1

; S

2

thus yield nodes u

n

; v

n

su
h that

� (u

n�1

; r

n

; u

n

) 2 E

1

� E

3

and (F

n

; u

n

) 2 Y

1

;

� (v

n�1

; r

n

; v

n

) 2 E

1

� E

3

and (F

n

; v

n

) 2 Y

2

.

Case 1: u

n

= v

n

.

In this 
ase, (p

n�1

; r

n

; u

n

) 2 E

(k)

2

� E

3

, and (F

n

; u

n

) 2 Y . Thus, the sele
tion

fun
tion 
an 
hoose u

n

.

Case 2: u

n

6= v

n

.

We will show that this implies n � k. Consequently, p

n

:= (u

n

; v

n

)

n

2 P

k

, and

thus (p

n�1

; r

n

; p

n

) 2 E

P

k

� E

(k)

2

� E

3

and (F

n

; p

n

) 2 Y . Hen
e, the sele
tion

fun
tion 
an 
hoose p

n

.

Assume to the 
ontrary that n > k. Consider the partial simulation 
hains (�) and

(��) from above. Sin
e k = jV

2

j

2

and n�1 � k, there exist indi
es m

1

; m

2

� n�1

su
h that F

m

1

= u

m

1

and F

m

2

= v

m

2

(by Lemma 27). However, sin
e the sele
tion

fun
tions S

1

; S

2

were assumed to be ni
e, we have F

m

= u

m

for all m � m

1

and

F

m

0

= v

m

0

for all m

0

� m

2

. Consequently, u

n�1

= F

n�1

= v

n�1

, whi
h 
ontradi
ts

our assumption that (u

n�1

; v

n�1

) is the node of the element p

n�1

of P

k

.

Why does S satisfy the syn
hronization property? Sin
e the dire
ted a
y
li


graph (P

k

; E

P

k

) only 
ontains paths of length � k, any in�nite (F; (A;B)

0

)-

simulation 
hain 
an only have �nitely many elements of P

k

in the lower 
om-

ponent. After that, the lower 
omponent only 
ontains elements from N

def

. Re-

stri
ted to these nodes in the se
ond 
omponent, Y 
oin
ides with Y

1

. Sin
e Y

1

satis�es the syn
hronization property, this implies that Y satis�es this property

as well.

In the following, we assume without loss of generality that the TBoxes T

(k)

2

(k � 0) are renamed su
h that they share only the de�ned 
on
epts of T

1

. For

example, in addition to the upper index des
ribing the level of a node in P

k

we


ould add a lower index k. Thus, (u; v)

n

k

denotes a node on level n in P

k

. For

k � 0, we denote (A;B)

0

k

by P

k

. Using this notation, we 
an reformulate what

we have shown until now as follows: every P

k

is a 
ommon subsumer of A;B, and

if F is a 
ommon subsumer of A;B then there is a k su
h that F subsumes P

k

.

As a 
onsequen
e of this lemma we 
an show that an l
s of A;B must be equivalent

to one of the P

k

.

Theorem 31 Let T

1

be an EL-TBox and A;B de�ned 
on
epts in T

1

. Then A;B

in T

1

have an l
s i� there is a k � 0 su
h that P

k

in T

(k)

2

is the l
s of A;B in T

1

.

Proof. The dire
tion from right to left is trivial. Thus, assume that T

2

is a


onservative extension of T

1

and that P in T

2

is the l
s of A;B.
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We de�ne k := n

2

where n is the number of de�ned 
on
epts in T

2

. Let T

3

be

the union of T

2

and T

(k)

2

, where we assume without loss of generality that the

only de�ned 
on
epts shared by T

2

and T

(k)

2

are the ones in T

1

. Then Lemma 30

shows that P

k

v

T

3

P .

Sin
e P

k

is a 
ommon subsumer of A;B, the fa
t that P is the least 
ommon

subsumer of A;B implies that subsumption in the other dire
tion holds as well:

P v

T

3

P

k

. Thus, P and P

k

are equivalent, and this implies that P

k

is also an l
s

of A;B.

The 
on
epts P

k

form a de
reasing 
hain w.r.t. subsumption.

Lemma 32 Let T := T

(k)

2

[ T

(k+1)

2

. Then P

k+1

v

T

P

k

.

Proof. First note that T is a 
onservative extension of both T

(k)

2

and T

(k+1)

2

.

The simulation relation Z with (P

k

; P

k+1

) 2 Z is de�ned as follows:

Z := f((u; v)

n

k

; (u; v)

n

k+1

) j (u; v)

n

k

2 P

k

g [ f(u; u) j u 2 N

def

g:

It is easy to see that Z is indeed a syn
hronized simulation relation.

The 
on
epts A;B have an l
s i� this de
reasing 
hain be
omes stable.

Corollary 33 P

k

is the l
s of A;B i� it is equivalent to P

k+i

for all i � 1.

Proof. In this proof we do not expli
itly name the TBoxes w.r.t. whom the sub-

sumption relationships hold. Basi
ally, these TBoxes are all 
onservative exten-

sions of T

1

obtained as union with some of the TBoxes T

(`)

2

. Sin
e these TBoxes

share only the de�ned 
on
epts in T

1

and the names of their newly de�ned 
on-


epts are irrelevant for subsumption, it is always possible to 
hoose the right

extension.

()) Lemma 32 implies that P

k

subsumes P

k+i

. Sin
e P

k+i

is a 
ommon subsumer

of A;B, the fa
t that P

k

is the l
s of A;B implies that P

k+i

also subsumes P

k

.

(() We know that P

k

is a 
ommon subsumer of A;B. It remains to be shown that

it is the least 
ommon subsumer. Thus, assume that F is a 
ommon subsumer

of A;B. We must show that F subsumes P

k

.

By Lemma 30 there is an ` su
h that F subsumes P

`

. If ` � k, then Lemma 32

implies that P

`

subsumes P

k

, and thus F subsumes P

k

. If ` > k, then our

assumption (right-hand side of the 
orollary) yields that P

k

and P

`

are equivalent,

and this again implies that F subsumes P

k

.
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Example 34 Let us re
onsider the TBox T

1

de�ned in Theorem 24. In this 
ase,

the TBoxes T

(k)

2

are basi
ally of the form

2

T

1

[ fP

k

� 9r:(A;B)

1

k

; (A;B)

1

k

� 9r:(A;B)

2

k

; : : : ; (A;B)

k�1

k

� 9r:(A;B)

k

k

g;

and it is easy to see that there always is a stri
t subsumption relationship between

P

k

and P

k+1

(sin
e P

k+1

requires an r-
hain of length k+1 whereas P

k

only requires

one of length k).

The following is an example where the l
s exists.

Example 35 Let us 
onsider the following TBox

T

1

:= fA � 9r:A u 9r:C; B � 9r:B u 9r:C; C � 9r:Cg:

In this 
ase, k = 0 does the job, and thus the l
s of A;B is P

0

:

T

(0)

2

:= T

1

[ fP

0

� 9r:Cg:

In fa
t, it is easy to see that the path P

0

r

! C

r

! C

r

! � � � 
an simulate any path

starting with some P

`

for ` � 1. Sin
e the in�nite paths starting with P

`

must

eventually also lead to C (after at most ` steps), this really yields a syn
hronized

simulation relation.

The next example is very similar to the previous one. However, in this 
ase the

l
s does not exist.

Example 36 Let us 
onsider the following TBox

T

1

:= fA � 9r:Au9r:C u9r:D; B � 9r:Bu9r:C u9r:D; C � 9r:C; D � 9r:Dg:

In this 
ase, there always is a stri
t subsumption relationship between P

k

and

P

k+1

for the following reason. Consider the path

P

k+1

r

! (A;B)

1

k+1

r

! � � �

r

! (A;B)

k+1

k+1

issuing from P

k+1

. If this path is simulated by a path

P

k

r

! u

1

r

! � � �

r

! u

k+1

issuing from P

k

, then either u

k+1

= C or u

k+1

= D. Assume without loss of

generality that u

k+1

= C. Then we 
annot get syn
hronization when simulating

the path

P

k+1

r

! (A;B)

1

k+1

r

! � � �

r

! (A;B)

k+1

k+1

r

! D:

2

We have restri
ted the attention to elements of P

k

that are rea
hable from P

k

.
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One might think that the de
reasing 
hain of 
on
epts P

k

(k � 0) be
omes stable

as soon as P

k

is equivalent to P

k+1

. Our �nal example shows that this is not the


ase. It demonstrates that P

k

� P

k+1

need not imply P

k+1

� P

k+2

.

Example 37 Let us 
onsider the following TBox

T

1

:=fA

1

� 9r

1

:A

2

; A

2

� 9r

2

:A

1

u 9r

2

:C;

B

1

� 9r

1

:B

2

; B

2

� 9r

2

:B

1

u 9r

2

:C;

C � 9r

2

:Cg:

First, we 
laim that P

1

is subsumed by P

2

, and thus P

1

and P

2

are equivalent. In

fa
t, the only 
riti
al simulation 
hains are those of length 2 where the nodes of

the upper 
omponent all belong to P

2

:

(1)

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

r

2

! (A

1

; B

1

)

2

2

# # #

P

1

= (A

1

; B

1

)

0

1

r

1

! (A

2

; B

2

)

1

1

r

2

! C

(2)

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

r

2

! (A

1

; C)

2

2

# # #

P

1

= (A

1

; B

1

)

0

1

r

1

! (A

2

; B

2

)

1

1

r

2

! C

(3)

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

r

2

! (C;B

1

)

2

2

# # #

P

1

= (A

1

; B

1

)

0

1

r

1

! (A

2

; B

2

)

1

1

r

2

! C

In all three 
ases, the upper node does not have any su

essor node in G

T

(2)

2

, and

thus these 
hains are unproblemati
.

In 
ontrast, P

2

is not subsumed by P

3

. In fa
t, 
onsider the following situation:

P

3

= (A

1

; B

1

)

0

3

r

1

! (A

2

; B

2

)

1

3

r

2

! (A

1

; B

1

)

2

3

r

1

! (A

2

; B

2

)

3

3

# #

P

2

= (A

1

; B

1

)

0

2

r

1

! (A

2

; B

2

)

1

2

We 
an simulate (A

1

; B

1

)

2

3

only by one of the following nodes: (A

1

; B

1

)

2

2

, (A

1

; C)

2

2

,

(C;B

1

)

2

2

, or C. However, none of these nodes has an r

1

-su

essor in G

T

(2)

2

.

4.2.3 A suÆ
ient 
ondition for the existen
e of the l
s

If we want to use the results from the previous subse
tion to 
ompute the l
s,

we must be able to de
ide whether there is an index k su
h that P

k

is the l
s of

A;B, and if yes we must also be able to 
ompute su
h a k. Though we strongly


onje
ture that this is possible, we have not yet found su
h a pro
edure. For this
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reason, we must restri
t ourself to give a suÆ
ient 
ondition for the l
s of two


on
epts de�ned in an EL-TBox to exist.

As before, let T

1

be an EL-TBox, let G

T

1

= (N

def

; E

T

1

; L

T

1

) be the 
orresponding

des
ription graph, and let A;B be de�ned 
on
epts in T

1

(i.e., elements of N

def

).

We 
onsider the produ
t G := G

T

1

� G

T

1

of G

T

1

with itself. Let G = (V;E; L).

De�nition 38 We say that (A;B) is syn
hronized in T

1

i�, for every in�nite

path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

in G, there exists an index i � 0, su
h that u

i

= v

i

.

For example, in the TBox T

1

introdu
ed in Theorem 24, (A;B) is not syn
hro-

nized. The same is true for the TBox de�ned in Example 35. As another example,


onsider the TBox

T

0

1

:= fA

0

� 9r

1

:A

0

u 9r:C; B

0

� 9r

2

:B

0

u 9r:C; C � 9r:Cg:

In this TBox, (A

0

; B

0

) is syn
hronized.

Lemma 39 Assume that (A;B) is syn
hronized in T

1

, and let k := jN

def

j

2

.

Then, for every path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

in G of length k, there exists an index i; 0 � i � k su
h that u

i

= v

i

.

Proof. Assume to the 
ontrary that there is a path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

su
h that u

i

6= v

i

for all i; 0 � i � k. Sin
e (u

i

; v

i

) 2 N

def

�N

def

for i = 0; : : : ; k

and k = jN

def

� N

def

j, there exist indi
es 0 � i < j � k su
h that (u

i

; v

i

) =

(u

j

; v

j

).

But then we 
an 
onstru
t an in�nite path

(A;B) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! � � � (u

i

; v

i

)

r

i+1

! � � �

r

j

! (u

j

; v

j

) = (u

i

; v

i

)

r

i+1

! � � �

su
h that the �rst 
omponent in the tuples is always di�erent from the se
ond


omponent. This 
ontradi
ts our assumption that (A;B) is syn
hronized in G.

As an easy 
onsequen
e of this lemma we obtain that k = jN

def

j

2

is su
h that P

k

is the l
s of A;B.
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Lemma 40 Assume that (A;B) is syn
hronized in T

1

, and let k := jN

def

j

2

. Then

P

k

in T

(k)

2

is the l
s of A;B in T

1

.

Proof. By the previous lemma, every path in G starting with (A;B) and of

length at least k 
ontains some node of the form (u; u). Thus, if we 
onsider a

path starting with P

`

for some ` � k, then we know that only an initial segment

of length � k 
an belong to P

`

. Basi
ally, this initial segment also belongs to

P

k

(modulo the lower index). This observation 
an be used to show that P

k

is

equivalent to P

`

for all ` � k, and thus P

k

is the l
s of A;B.

As an immediate 
onsequen
e of Lemma 40 we obtain that the l
s of A;B in T

1

always exists, provided that (A;B) is syn
hronized in T

1

. Our 
onstru
tion of

the TBox T

(k)

2

is obviously polynomial in k and the size of T

1

. Sin
e k is also

polynomial in the size of T

1

, the size of T

2

is polynomial in the size of T

1

.

Theorem 41 Let T

1

be an EL-TBox, and let A;B be de�ned 
on
epts in T

1

su
h

that (A;B) is syn
hronized in T

1

. Then the l
s of A;B in T

1

always exists, and

it 
an be 
omputed in polynomial time.

Example 24 shows that the l
s may exist even if (A;B) is not syn
hronized in T

1

.

Thus, this is a suÆ
ient, but not ne
essary 
ondition for the existen
e of the l
s.

We 
lose this se
tion by showing that this suÆ
ient 
ondition 
an be de
ided in

polynomial time.

Proposition 42 Let T

1

be an EL-TBox, and let A;B be de�ned 
on
epts in T

1

.

Then it 
an be de
ided in polynomial time whether (A;B) is syn
hronized in T

1

or not.

Proof. As before, 
onsider the produ
t G := G

T

1

� G

T

1

of G

T

1

with itself. Let

G = (V;E; L).

We de�ne

W

0

:= f(u; u) j (u; u) 2 V g;

W

i+1

:= W

i

[ f(u; v) j (u; v) 2 V and all edges with sour
e (u; v) in G

lead to elements of W

i

g; and

W

1

:=

[

i�0

W

i

:

Obviously, W

1


an be 
omputed in time polynomial in the size of G.

Claim 1: (A;B) is syn
hronized in T

1

i� (A;B) 2 W

1

.
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From this, the proposition immediately follows. To prove this 
laim, we show the

following:

Claim 2: (u; v) 2 W

n

i� for every path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

in G of length n, there exists an index i; 0 � i � n su
h that u

i

= v

i

.

We prove Claim 2 by indu
tion on n. If n = 0, then (u; v) 2 W

n

i� u = v. In

addition, the above path has length 0, i.e., 
onsists of (u; v) = (u

0

; v

0

) only. Thus,

the existen
e of an i; 0 � i � 0 su
h that u

i

= v

i

is equivalent to u = v.

(n! n+ 1) First, assume that (u; v) 2 W

n+1

. If (u; v) 2 W

n

, then the indu
tion

hypothesis 
an be applied. Thus, assume that (u; v) 2 W

n+1

nW

n

, i.e., all edges

with sour
e (u; v) in G lead to elements of W

n

. Now, 
onsider a path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

r

n+1

! (u

n+1

; v

n+1

)

in G of length n + 1. Sin
e (u

1

; v

1

) 2 W

n

, there exists an index i; 1 � i � n + 1

su
h that u

i

= v

i

, and we are done.

Se
ond assume that, for every path

(�) (u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

r

n+1

! (u

n+1

; v

n+1

)

in G of length n + 1, there exists an index i; 0 � i � n + 1 su
h that u

i

= v

i

.

If u = v, then (u; v) 2 W

0

� W

n+1

. Thus, assume that u 6= v. To show that

(u; v) 2 W

n+1

, we 
onsider an arbitrary edge ((u; v); r

1

; (u

1

; v

1

)) in G and show

that (u

1

; v

1

) 2 W

n

. Thus, 
onsider a path in G of length n starting with (u

1

; v

1

):

(u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

n

! (u

n

; v

n

)

r

n+1

! (u

n+1

; v

n+1

):

Together with the edge ((u; v); r

1

; (u

1

; v

1

)) this yields a path of length n + 1 of

the form (�) above. Thus, there exists an index i; 0 � i � n+1 su
h that u

i

= v

i

.

Sin
e we have assumed that u 6= v, we a
tually have 1 � i � n + 1, whi
h shows

that (u

1

; v

1

) 2 W

n

. This 
ompletes the proof of Claim 2.

It remains to be shown that Claim 2 implies Claim 1. First, assume that (A;B)

is syn
hronized in T

1

. By Lemma 39, there is a k su
h that, for every path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

in G of length k, there exists an index i; 0 � i � k su
h that u

i

= v

i

. By Claim 2,

this implies (A;B) 2 W

k

� W

1

.

Conversely, assume that (A;B) 2 W

1

. Thus, there is a k su
h that (A;B) 2 W

k

.

By Claim 2, this implies that, for every path

(u; v) = (u

0

; v

0

)

r

1

! (u

1

; v

1

)

r

2

! (u

2

; v

2

)

r

3

! � � �

r

k

! (u

k

; v

k

)

in G of length k, there exists an index i; 0 � i � k su
h that u

i

= v

i

. In parti
ular,

this shows that (A;B) is syn
hronized in T

1

.
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5 The instan
e problem and most spe
i�
 
on-


epts

One motivation for 
onsidering 
y
li
 terminologies in EL is the fa
t that the

most spe
i�
 
on
ept of an ABox individual need not exist in EL (without 
y
li


terminologies). An example is the simple 
y
li
 ABox A := fr(b; b)g, where b has

no most spe
i�
 
on
ept, i.e., there is no least EL-
on
ept des
ription D su
h

that b is an instan
e of D w.r.t. A [9℄. However, if one allows for 
y
li
 TBoxes

with gfp-semanti
s, then the de�ned 
on
ept B with B � 9r:B is su
h a most

spe
i�
 
on
ept.

In the following, we restri
t the attention to gfp-semanti
s. First, we show how

the 
hara
terization of subsumption (Theorem 13) 
an be extended to the in-

stan
e problem w.r.t. gfp-semanti
s. Then, we will use this 
hara
terization to


hara
terize the most spe
i�
 
on
ept w.r.t. gfp-semanti
s (gfp-ms
).

5.1 The instan
e problem w.r.t. gfp-semanti
s

Assume that T is an EL-TBox and A an EL-ABox. In the following, we assume

that T is �xed and that all instan
e problems for A are 
onsidered w.r.t. this

TBox.

In this setting, A 
an be translated into an EL-des
ription graph G

A

by viewing

A as a graph and extending it appropriately by the graph G

T

asso
iated with

T . The idea is then that the 
hara
terization of the instan
e problem should be

similar to the statement of Proposition 15: the individual a is an instan
e of A

in A i� there is a simulation Z: G

T

*

� G

A

su
h that (A; a) 2 Z.

Before giving an exa
t de�nition of G

A

, we 
onsider an example that demonstrates

that a too simple-minded realization of this idea does not work. Let

A := fA(a); P (a)g and

T := fA � 9r:A; B � P u 9r:Bg:

The ABox A itself 
an be viewed as an EL-des
ription graph 
onsisting of a single

node a with label fPg. Sin
e A � 9r:A is in T and sin
e A(a) is in A, we extend

this graph by an r-loop from a to a. Figure 3 shows the graph G obtained this

way as well as the EL-des
ription graph G

T


orresponding to T .

Obviously, there is a simulation Z: G

T

*

� G su
h that (B; a) 2 Z. However, a is

not an instan
e of B. In fa
t, of a we only know that it belongs to P and that it

is the starting point of an in�nite r-
hain. The instan
es of B must belong to P

and they must be the starting point of an in�nite r-
hain su
h that every element

on this 
hain also belongs to P .
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r

A

;

r

fPg

a

G

r

B

fPgG

T

fPg

a

r

A

;

G

A

r

Figure 3: The EL-des
ription graphs G, G

T

, and G

A

of our example.

The reason for this problem is that our 
onstru
tion of G was too simple minded.

In fa
t, node labels and edges in G

T

state fa
ts that must hold for all individuals

that are instan
es of the de�ned 
on
ept labeling a given node. Assertions of the

ABox make statements about properties of parti
ular named individuals. The


onstru
tion of G in the above example mixes these di�erent things, and thus

leads to unfounded 
on
lusions.

In order to separate edges and labels 
oming from ABox assertions from the ones


oming from TBox de�nitions, we do not \identify" the node a with the node A

if A(a) belongs to A (as done in the 
onstru
tion of G above). Instead, we do

a \one-step expansion" of the de�nition of A. The right-most graph in Figure 3

shows the graph G

A

obtained this way in our example. Obviously, there is no

simulation Z: G

T

*

� G

A

su
h that (B; a) 2 Z.

Below, we give a formal de�nition of the EL-des
ription graph G

A

asso
iated with

the ABox A and the TBox T in the general 
ase.

De�nition 43 Let T be an EL-TBox, A an EL-ABox, and G

T

= (V;E; L) be

the EL-des
ription graph asso
iated with T . The EL-des
ription graph G

A

=

(V

A

; E

A

; L

A

) asso
iated with A and T is de�ned as follows:

� the nodes of G

A

are the individual names o

urring in A together with the

de�ned 
on
epts of T , i.e.,

V

A

:= V [ fa j a is an individual name o

urring in Ag;

� the edges of G

A

are the edges of G, the role assertions of A, and additional

edges linking the ABox individuals with de�ned 
on
epts:

E

A

:= E [ f(a; r; b) j r(a; b) 2 Ag [

f(a; r; B) j A(a) 2 A and (A; r; B) 2 Eg;

� if u 2 V

A

is a de�ned 
on
ept, then it inherits its label from G

T

, i.e.,

L

A

(u) := L(u) if u 2 V ;

31



otherwise, u is an ABox individual, and then its label is derived from the


on
ept assertions for u in A. In the following, let P denote primitive and

A denote de�ned 
on
epts.

L

A

(u) := fP j P (u) 2 Ag [

[

A(u)2A

L(A) if u 2 V

A

n V :

Before we 
an 
hara
terize the instan
e problem via the existen
e of 
ertain sim-

ulation relations from G

T

to G

A

, we must 
hara
terize under what 
onditions

a gfp-model of T is a model of A. In the following we assume that primitive

interpretations also interpret ABox individuals.

De�nition 44 Let J be a primitive interpretation and G

J

the EL-des
ription

graph asso
iated with J . We say that the simulation Z: G

A

*

� G

J

respe
ts ABox

individuals i�

fx j (a; x) 2 Zg = fa

J

g

for all individual names a o

urring in A.

Proposition 45 Let J be a primitive interpretation and I the gfp-model of T

based on J . Then the following are equivalent:

1. I is a model of A.

2. There is a simulation Z: G

A

*

� G

J

that respe
ts ABox individuals.

Proof. (2) 1) Assume that a simulation Z: G

A

*

� G

J

respe
ting ABox individ-

uals is given. We must show that I satis�es all the assertions in A.

First, assume that r(a; b) is a role assertion in A. Sin
e I 
oin
ides with J on

role and individual names, we must show that (a

J

; b

J

) 2 r

J

. Be
ause Z respe
ts

ABox individuals, we know that (a; a

J

) 2 Z, and thus (a; r; b) 2 E

A

implies that

there exists a y 2 �

J

su
h that (a

J

; y) 2 r

J

and (b; y) 2 Z. Sin
e Z respe
ts

ABox individuals, (b; y) 2 Z implies that y = b

J

, whi
h yields (a

J

; b

J

) 2 r

J

.

Se
ond, assume that P (a) is a 
on
ept assertion in A where P is a primitive


on
ept. By de�nition of L

A

, we have P 2 L

A

(a). In addition, sin
e Z respe
ts

ABox individuals, we know that (a; a

J

) 2 Z, whi
h implies L

A

(a) � L

J

(a

J

).

Consequently, P 2 L

J

(a

J

), whi
h implies a

I

= a

J

2 P

J

= P

I

.

Finally, assume that A(a) is a 
on
ept assertion inA where A is a de�ned 
on
ept.

We use Proposition 15 to show that a

J

= a

I

2 A

I

. Thus, we need to �nd a

simulation Y : G

T

*

� G

J

su
h that (A; a

J

) 2 Y . We de�ne the relation Y as

follows:

Y := f(A; a

J

)g [ f(B; x) j (B; x) 2 Z and B 2 V g:
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Thus, Y is the restri
tion of Z to the nodes of G

T

, extended by the tuple (A; a

J

).

It remains to be shown that Y is a simulation relation, i.e., satis�es (S1) and (S2)

of De�nition 11.

(S1) Let (B; x) 2 Y . If (B; x) 2 Z, then L(B) = L

A

(B) � L

J

(x) sin
e Z is

a simulation. Thus, 
onsider (A; a

J

) 2 Y and let P 2 L(A). By de�nition of

G

A

, A(a) 2 A and P 2 L(A) imply that P 2 L

A

(a). Sin
e Z respe
ts ABox

individuals, we know that (a; a

J

) 2 Z, and thus P 2 L

A

(a) � L

J

(a

J

).

(S2) Let (B; x) 2 Y and (B; r; B

0

) 2 E. If (B; x) 2 Z, then (B; r; B

0

) 2 E � E

A

implies the existen
e of a y su
h that (B

0

; y) 2 Z and (x; r; y) 2 E

J

. Now,

(B; r; B

0

) 2 E yields B

0

2 V , and thus (B

0

; y) 2 Z implies (B

0

; y) 2 Y .

Thus, 
onsider (A; a

J

) 2 Y and (A; r; B

0

) 2 E. Sin
e A(a) 2 A, the de�nition of

G

A

shows that (a; r; B

0

) 2 E

A

. In addition, sin
e Z respe
ts ABox individuals,

we know that (a; a

J

) 2 Z. Consequently, there is a y su
h that (a

J

; r; y) 2 E

J

and (B

0

; y) 2 Z. Now, (A; r; B

0

) 2 E yields B

0

2 V , and thus (B

0

; y) 2 Y .

This 
ompletes the proof that Y : G

T

*

� G

J

is a simulation su
h that (A; a

J

) 2 Y .

Thus, Proposition 15 implies that a

I

= a

J

2 A

I

.

(1 ) 2) Assume that I is a model of A. In parti
ular, this implies that a

J

=

a

I

2 A

I

holds for all 
on
ept assertions A(a) 2 A. Thus, Proposition 15 implies

the existen
e of simulation relations Z

A(a)

: G

T

*

� G

J

su
h that (A; a

J

) 2 Z

A(a)

.

Let Y be the union of these simulations, i.e.,

Y :=

[

A(a)2A

Z

A(a)

:

Then Y is a simulation relation that satis�es (A; a

J

) 2 Y for all 
on
ept assertions

A(a) 2 A. We de�ne the relation Z as follows:

Z := Y [ f(a; a

J

) j a is an individual name o

urring in Ag:

By de�nition of Z, fx j (a; x) 2 Zg = fa

J

g, and thus it remains to be shown

that Z is a simulation from G

A

to G

J

.

(S1) Sin
e Y satis�es this property, it is enough to 
onsider the 
ase (a; a

J

) 2 Z.

If P 2 L

A

(a), then P (a) 2 A or P 2 L(A) and A(a) 2 A for some de�ned 
on
ept

A. In both 
ases, the fa
t that I is a model ofA implies that a

J

= a

I

2 P

I

= P

J

,

and thus P 2 L

J

(a

J

).

(S2) First, 
onsider the 
ase where (B; x) 2 Y for some de�ned 
on
ept B and

element x of �

J

. Sin
e any edge (B; r; u) in G

A

with sour
e B 2 V is also an

edge in G

T

, the fa
t that Y satis�es (S2) implies the existen
e of a y su
h that

(x; r; y) 2 E

J

and (u; y) 2 Y � Z.

Se
ond, 
onsider (a; a

J

) 2 Z and assume that (a; r; u) 2 E

A

. By the de�nition

of E

A

, this means that one of the following two 
ases applies:
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1. u is an ABox individual and r(a; u) 2 A.

2. u is a de�ned 
on
ept and (A; r; u) 2 E and A(a) 2 A for some de�ned


on
ept A.

In the �rst 
ase, we have (u; u

J

) 2 Z, and (a

J

; u

J

) 2 r

J

sin
e I is a model of

A and 
oin
ides with J on role and individual names. Sin
e (a

J

; u

J

) 2 r

J

is

equivalent to (a

J

; r; u

J

) 2 E

J

, we have shown that (S2) holds in this 
ase.

In the se
ond 
ase, A(a) 2 A implies that (A; a

J

) 2 Y by the de�nition of Y .

Sin
e Y is a simulation, this together with (A; r; u) 2 E implies that there exists

a y su
h that (u; y) 2 Y � Z and (a

J

; r; y) 2 E

J

. This 
ompletes the proof of

the proposition.

The following 
hara
terization of the instan
e problem is an easy 
onsequen
e of

this proposition.

Theorem 46 Let T be an EL-TBox, A an EL-ABox, A a de�ned 
on
ept in T

and a an individual name o

urring in A. Then the following are equivalent:

1. A j=

gfp;T

A(a).

2. There is a simulation Z: G

T

*

� G

A

su
h that (A; a) 2 Z.

Proof. (2) 1) Assume that there is a simulation Z: G

T

*

� G

A

su
h that (A; a) 2

Z. We must show A j=

gfp;T

A(a), i.e., if I is a gfp-model of T that is also a

model of A, then a

I

2 A

I

. Thus, let J be a primitive interpretation and I the

gfp-model of T based on J .

If I is a model of A, then Proposition 45 yields a simulation Y : G

A

*

� G

J

that

respe
ts ABox individuals. The 
omposition X := Z Æ Y is a simulation from

G

T

to G

J

su
h that (A; a

J

) 2 X. In fa
t, we know that (A; a) 2 Z and the fa
t

that Y respe
ts ABox individuals implies that (a; a

J

) 2 Y . Thus, Proposition 15

yields a

I

= a

J

2 A

I

.

(1 ) 2) Assume that A j=

gfp;T

A(a). The EL-des
ription graph G

A


an be

viewed as the graph of a primitive interpretation. Thus, let J be this primitive

interpretation, i.e., G

A

= G

J

, and let I be the gfp-model of T based on J .

We 
laim that I is a model of A. This is an immediate 
onsequen
e of Proposi-

tion 45 sin
e the identity on G

A

is a simulation from G

A

to G

J

= G

A

that respe
ts

ABox individuals.

Consequently, the fa
t that A j=

gfp;T

A(a) implies that a = a

J

= a

I

2 A

I

. But

then Proposition 15 yields the desired simulation Z: G

T

*

� G

J

= G

A

su
h that

(A; a) 2 Z.
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The theorem together with Proposition 12 shows that the instan
e problem w.r.t.

gfp-semanti
s in EL is tra
table.

Corollary 47 The instan
e problem w.r.t. gfp-semanti
s in EL 
an be de
ided

in polynomial time.

5.2 Computing the gfp-ms


Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the individual name a. Let

G

A

= (V

A

; E

A

; L

A

) be the EL-des
ription graph 
orresponding to A and T

1

, as

introdu
ed in De�nition 43. In order to obtain the gfp-ms
 of a, we view G

A

as

the EL-des
ription graph of an EL-TBox T

2

, i.e., let T

2

be the TBox su
h that

G

A

= G

T

2

. By the de�nition of G

A

, the de�ned 
on
epts of T

2

are the de�ned


on
epts of T

1

together with the individual names o

urring in A.

Lemma 48 T

2

is a 
onservative extension of T

1

Proof. This is an easy 
onsequen
e of the de�nitions of E

A

and L

A

.

To avoid 
onfusion we will denote the de�ned 
on
ept in T

2


orresponding to the

individual name b in A by C

b

. Using the results of the previous subse
tion, we


an show that C

a

is the gfp-ms
 of a.

Proposition 49 The de�ned 
on
ept C

a

in T

2

is the gfp-ms
 of a in A and T

1

.

Proof. First, we show that a is an instan
e of C

a

w.r.t. gfp-semanti
s, i.e.,

A j=

gfp;T

2

C

a

(a). The identity on G

T

2

is a simulation from G

T

2

= G

A

to G

A

that 
ontains the tuple (C

a

; a).

3

Thus, Theorem 46 yields A j=

gfp;T

2

C

a

(a).

Se
ond, assume that T

3

is a 
onservative extension of T

2

and that F is a de�ned


on
ept in T

3

su
h that A j=

gfp;T

3

F (a). Let

b

G

A

be the EL-des
ription graph


orresponding to A and T

3

, as introdu
ed in De�nition 43. By Theorem 46,

A j=

gfp;T

3

F (a) implies that there is a simulation Z: G

T

3

*

�

b

G

A

su
h that (F; a) 2

Z. We must show that C

a

v

gfp;T

3

F . By Theorem 13, it is enough to show that

there is a simulation Y : G

T

3

*

� G

T

3

su
h that (F;C

a

) 2 Y .

To de�ne Y , �rst note that the set of nodes of

b

G

A


onsists of the nodes of G

T

3

and the individuals o

urring in A. Also note that T

3

extends T

2

, and that G

T

2

in prin
iple also 
ontains the individuals o

urring in A. However, we assume

without loss of generality that the individual names b in T

2

have been renamed

into 
on
ept names C

b

. The de�nition of

b

G

A

is illustrated by Figure 4. The

3

Re
all that C

a

in T

2


orresponds to a.
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A

C

a

A

a

F

G

T

1

G

A

= G

T

2

G

T

3

Figure 4: The EL-des
ription graph

b

G

A

.

arrows indi
ate that there may be edges from one subgraph into the other. The

inner oval marked with A indi
ates the ABox A as used within G

T

2

. There, the

individual name a is renamed into C

a

(and an analogous renaming is done for the

other individual names).

The simulation Y is de�ned as follows:

Y := f(u; v) 2 Z j v is a node of T

3

g [

f(u; C

b

) j (u; b) 2 Z and b is an individual name in Ag:

Sin
e (F; a) 2 Z, we have (F;C

a

) 2 Y . Thus, it remains to be shown that Y is a

simulation relation.

(S1) Assume that (u; v) 2 Y . If v is a node of G

T

3

, then property (S1) holds sin
e

it is satis�ed by Z. If v = C

b

for the individual name b in A, then (u; b) 2 Z.

But then (S1) holds sin
e the label of b in

b

G

A


oin
ides with the label of C

b

in

G

T

2

= G

A

.

(S2) Assume that (u; v) 2 Y and that (u; r; u

0

) is an edge in G

T

3

. If v is a node

of G

T

3

, then (u; v) 2 Z, and thus there exists a node v

0

su
h that (v; r; v

0

) is an

edge in

b

G

A

and (u

0

; v

0

) 2 Z. Sin
e, in

b

G

A

, edges from nodes of G

T

3

lead to nodes

of G

T

3

, we know that v

0

is a node of G

T

3

, whi
h yields (u

0

; v

0

) 2 Y .

Finally, assume that v = C

b

for the individual name b in A. Then, we know that

(u; b) 2 Z, and thus there is a node v

0

su
h that (b; r; v

0

) is an edge in

b

G

A

and

(u

0

; v

0

) 2 Z. If v

0

is an individual name in A, then (u

0

; C

v

0

) 2 Y . In addition,

the existen
e of the edge (b; r; v

0

) implies that there is an assertion r(b; v

0

) 2 A.

Consequently, we also have the edge (C

b

; C

v

0

) in G

T

3

.
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It remains to 
onsider the 
ase where v

0

is a node in G

T

1

. But then (u

0

; v

0

) 2 Z

implies that (u

0

; v

0

) 2 Y . In addition, the existen
e of the edge (b; r; v

0

) in

b

G

A

implies that there is the 
orresponding edge (C

b

; v

0

) in G

A

= G

T

3

.

Given T and A, the graph G

A


an obviously be 
omputed in polynomial time,

and thus the gfp-ms
 
an be 
omputed in polynomial time.

Theorem 50 Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the indi-

vidual name a. Then the gfp-ms
 of a in T

1

and A always exists, and it 
an be


omputed in polynomial time.

6 Simple role-value-maps

As mentioned in the introdu
tion, one would sometimes like to express 
ertain

relationships between roles. The DL of the original Kl-One system [4℄ 
ontained

a 
onstru
tor 
alled role-value-map that allowed the user to express su
h relation-

ships. However, it was shown in [14℄ that role-value-maps make the subsumption

problem in Kl-One unde
idable.

The role-value-maps that we 
onsider in the following di�er from the ones in

[4, 14℄ in the following respe
ts:

1. Instead of arbitrary role-value-maps of the form r

1

Æ � � � Æ r

m

v s

1

Æ � � � Æ s

n

we restri
t the attention to role-value-maps of the form r

1

Æ r

2

v s, i.e., the

right-hand side must be a single role.

2. We 
onsider global role-value-maps, whi
h must hold for all individuals of

an interpretation, rather than lo
al ones, whi
h 
an be asserted sele
tively

for 
ertain individuals.

3. We 
onsider the DL EL, whi
h does not allow value restri
tions, whereas

the DLs 
onsidered in [4, 14℄ have value restri
tions.

The unde
idability proof in [14℄ would also work with the se
ond restri
tion in

pla
e. However, the proof does not work in the presen
e of the �rst or the third

restri
tion. Role-value-maps satisfying the �rst and the se
ond restri
tion have

re
ently drawn 
onsiderable attention [6, 19, 8℄. However, for the expressive DLs

usually 
onsidered there, subsumption easily be
omes unde
idable [6, 19℄, and it

is quite hard to obtain de
idable spe
ial 
ases [8℄.

For EL (with or without 
y
li
 terminologies), things are a lot simpler. Not

only does subsumption remain de
idable, it even stays polynomial when we add

role-value-maps satisfying the �rst two restri
tions. We will also show that sub-

sumption be
omes unde
idable if one adds arbitrary global role-value-maps to

EL (even without 
y
li
 terminologies).
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De�nition 51 A (global) role-value-map is an expression of the form r

1

Æ � � � Æ

r

m

v s

1

Æ� � �Æs

n

where m;n � 1 and r

1

; : : : ; s

n

are role names. It is satis�ed in an

interpretation I i� r

I

1

Æ� � �Ær

I

m

� s

I

1

Æ� � �Æs

I

n

, where Æ denotes 
omposition of binary

relations. We say that this role-value-map is restri
ted if m = 2 and n = 1.

4

A

�nite set of restri
ted role-value-maps is 
alled an RBox. The interpretation I is

a model of the RBox R i� I satis�es every role-value-map in R.

Given an EL-TBox T and an RBox R, subsumption w.r.t. T and R is de�ned

in the obvious way:

De�nition 52 Let A;B be de�ned 
on
epts in T . Then

� A v

R

T

B i� A

I

� B

I

holds for all models of T and R.

� A v

R

gfp;T

B i� A

I

� B

I

holds for all gfp-models of T that are models of R.

In order to solve the subsumption problem w.r.t. a 
y
li
 EL-TBox T and an

RBox R, we view the restri
ted role-value-maps r Æ s v t 2 R as rules that add

new edges to G

T

.

De�nition 53 We say that the role-value-map r Æ s v t applies to the EL-

des
ription graph G i� G 
ontains edges (u; r; v) and (v; s; w), but does not 
ontain

the edge (u; t; w). An appli
ation of this rule then adds the edge (u; t; w).

Given an EL-des
ription graph G and an RBox R, we 
an iterate the appli
ation

of the role-value-maps in R to G until no role-value-map applies. We 
all the

EL-des
ription graph

b

G obtained this way the 
ompletion of G w.r.t. R.

Lemma 54 Given a �nite EL-des
ription graph G and an RBox R, the 
omple-

tion

b

G of G w.r.t. R always exists, is unique, and 
an be 
omputed in polynomial

time.

Proof. The appli
ability of role-value-maps to a graph is monotoni
 in the fol-

lowing sense: if the role-value-map r Æ s v t applies to the edges (u; r; v) and

(v; s; w) in G, and G

0

is obtained from G by applying some role-value-map, then

r Æ s v t is still appli
able to the edges (u; r; v) and (v; s; w) in G

0

(sin
e no edges

have been removed), unless G

0

already 
ontains the edge (u; t; w). Thus, the

order of appli
ations of role-value-maps to the graph is irrelevant, whi
h shows

uniqueness.

4

The restri
tion m = 2 is not really ne
essary. It is easy to see that all our results would

still hold if the left-hand sides were 
ompositions of m � 1 roles. However, the restri
tion n = 1

is vital (see Theorem 60 below).
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The appli
ation of a role-value-map does not add new nodes to the graph. Thus,

if n is the number of nodes in the original graph G and m is the number of roles

o

urring in role-value-maps, then at most n

2

�m edges 
an be added. This implies

that an exhaustive appli
ation of role-value-maps to the graph G terminates after

at most n

2

�m appli
ations of rules. Consequently, the 
ompletion

b

G exists and


an be 
omputed in polynomial time.

Let T be an EL-TBox, R an RBox, and

b

G

T

the 
ompletion of G

T

w.r.t. R. The

EL-des
ription graph

b

G

T


orresponds to a TBox

b

T (i.e., there is a TBox

b

T su
h

that

b

G

T

= G

b

T

). We 
all this TBox the 
ompletion of T w.r.t. R.

Lemma 55 Let T be an EL-TBox, R an RBox, and

b

T the 
ompletion of T

w.r.t. R. If I is a model of R, then the following are equivalent:

� I is a model of T .

� I is a model of

b

T .

Proof. Sin
e

b

G

T

is obtained from G

T

by a �nite number of appli
ations of role-

value-maps, it is enough to show the following: Assume that G

0

is obtained from

G

T

by applying the role-value-map r Æ s v t 2 R to the edges (A; r; B) and

(B; s; B

0

) in G

T

, and let T

0

be the TBox 
orresponding to G

0

. If I is a model of

R, then I is a model of T i� it is a model of T

0

.

The only di�eren
e between T and T

0

is that the de�nition of A in T (say

A � D) is extended in T

0

by an additional 
onjun
t 9t:B

0

(i.e., it is of the form

A � D u 9t:B

0

).

The existen
e of the edges (A; r; B) and (B; s; B

0

) in G implies that A v

T

9r:9s:B

0

. Sin
e R 
ontains the role-value-map r Æ s v t, this implies that

A v

R

T

9t:B

0

. Thus, if I is a model of R and T , then is satis�es A

I

� (9t:B

0

)

I

.

This shows that A

I

= D

I

= D

I

\ (9t:B

0

)

I

= (D u 9t:B

0

)

I

, and thus I is also a

model of T

0

.

Conversely, if I is a model ofR and T

0

, then A

I

= D

I

\(9t:B

0

)

I

. In addition, the

existen
e of the edges (A; r; B) and (B; s; B

0

) in G implies that D

I

� (9r:9s:B

0

)

I

(sin
e these edges 
ome from D). Sin
e I is a model of R, this implies D

I

�

(9t:B

0

)

I

. Consequently, A

I

= D

I

\ (9t:B

0

)

I

= D

I

, and thus I is also a model of

T .

In order to test subsumption w.r.t. T and R, we 
ompute the 
ompletion

b

T of

T w.r.t. R, and then test subsumption w.r.t.

b

T .

Theorem 56 Let T be an EL-TBox, R an RBox, and

b

T the 
ompletion of T

w.r.t. R. Then the following are equivalent for all de�ned 
on
epts A;B:
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1. A v

R

gfp;T

B.

2. A v

gfp;

b

T

B.

Proof. (2 ) 1) Assume that A v

gfp;

b

T

B. Let I be a gfp-model of T that is a

model of R. We must show that A

I

� B

I

. Assume that this gfp-model is based

on the primitive interpretation J . Note that the fa
t that I is a model of R

depends only on J (sin
e J already �xes the interpretation of the roles).

As an easy 
onsequen
e of Lemma 55 we obtain that I is also a gfp-model of

b

T .

In fa
t, Lemma 55 shows that I is a model of

b

T . It remains to be shown that it

is the greatest model based on J . Assume that I

0

is a model of

b

T that is based

on J , but larger that I. Then I

0

is also a model of R (sin
e this depends only

on J ). But then Lemma 55 implies that I

0

is a model of T , whi
h 
ontradi
ts

our assumption that I is a gfp-model of T based on J .

Sin
e I is a gfp-model of

b

T , A v

gfp;

b

T

B implies A

I

� B

I

.

(1 ) 2) Assume that A 6v

gfp;

b

T

B. Then Theorem 13 implies that there is no

simulation Z: G

b

T

*

� G

b

T

su
h that (B;A) 2 Z. We may view G

b

T

as the graph of a

primitive interpretation J , i.e. G

b

T

= G

J

. Let I be the gfp-model of

b

T based on

J . Then Proposition 15 implies that A 62 B

I

. Sin
e the identity is a simulation

from G

b

T

to G

b

T

= G

J


ontaining the tuple (A;A), we know that A 2 A

I

.

If we 
an show that I is a gfp-model of T that is a model of R, then this implies

that A 6v

R

gfp;T

B. However, sin
e

b

T is 
omplete w.r.t.R, J (and thus I) obviously

satis�es all role-value-maps in R. Finally, using Lemma 55 it is easy to show that

I is also a gfp-model of T .

Sin
e the 
ompletion

b

T of an EL-TBox T 
an be 
omputed in polynomial time,

and sin
e subsumption w.r.t. gfp-semanti
s in EL 
an be de
ided in polynomial

time, we have the following 
orollary.

Corollary 57 The subsumption problem w.r.t. gfp-semanti
s in EL remains poly-

nomial in the presen
e of RBoxes.

Subsumption w.r.t. des
riptive semanti
s 
an be treated similarly.

Theorem 58 Let T be an EL-TBox, R an RBox, and

b

T the 
ompletion of T

w.r.t. R. Then the following are equivalent for all de�ned 
on
epts A;B:

1. A v

R

T

B.

2. A v

b

T

B.
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Proof. (2) 1) This 
an be proved just as in the proof of Theorem 56.

(1) 2) Assume that A v

R

T

B. As in the proof of Theorem 56, we view G

b

T

as the

graph of a primitive interpretation J , i.e. G

b

T

= G

J

. Sin
e

b

T is 
omplete w.r.t.

R, the primitive interpretation J obviously satis�es all role-value-maps in R.

As done in the proof of (1 ) 2) of Theorem 29 in [1℄, we 
onstru
t a model I

of

b

T that is based on J . Lemma 34 in [1℄ shows that A 2 A

I

. Sin
e J (and

thus also I) is a model of R, Lemma 55 above yields that I is also a model of T .

Consequently, A v

R

T

B implies that A 2 B

I

.

We 
an now pro
eed as in the proof of Lemma 35 in [1℄ to show that the simulation

Y : G

b

T

*

� G

b

T

de�ned in [1℄ is a (B;A)-syn
hronized simulation satisfying (B;A) 2

Y . By Theorem 19, this implies A v

b

T

B.

Sin
e the 
ompletion

b

T of an EL-TBox T 
an be 
omputed in polynomial time,

and sin
e subsumption w.r.t. des
riptive semanti
s in EL 
an be de
ided in poly-

nomial time, we have the following 
orollary.

Corollary 59 The subsumption problem w.r.t. des
riptive semanti
s in EL re-

mains polynomial in the presen
e of RBoxes.

The main restri
tion on the role-value-maps allowed to o

ur in RBoxes is that

the right-hand side must 
onsist of a single role. If we allow for arbitrary role-

value-maps, then subsumption be
omes unde
idable.

Theorem 60 Subsumption in EL be
omes unde
idable in the presen
e of general

(global) role-value-maps.

Proof. We redu
e the word problem for semigroups [11℄ to the subsumption prob-

lem in EL with general (global) role-value-maps.

Let � be a �nite alphabet. A semi-Thue system (STS) over � is a �nite set of rules

of the form x ! y where x; y 2 �

+

. Given an STS T and two words u; v 2 �

+

we write u !

T

v i� there is a rule x ! y 2 T and words u

1

; u

2

2 �

�

su
h that

u = u

1

xu

2

and v = u

1

yu

2

. Let �

T

denote the re
exive, transitive, and symmetri



losure of!

T

. The relation �

T

is an equivalen
e relation that is 
ompatible with


on
atenation of words, i.e., u �

T

u

0

and v �

T

v

0

imply that uv �

T

u

0

v

0

. By

[u℄

T

we denote the �

T

-equivalen
e 
lass of the word u. Con
atenation indu
es a

binary asso
iative operation on these 
lasses:

[u℄

T

� [v℄

T

:= [uv℄

T

:

Thus the equivalen
e 
lasses of words in �

+

together with this operation form a

semigroup. We 
all this the semigroup presented by T .
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The word problem for (the semigroup presented by) T is the following question:

given words u; v 2 �

+

, does u �

T

v hold or not. It is well-known that this

problem is in general unde
idable [11℄.

In our redu
tion, we view the elements of � as role names. A non-empty word

w = r

1

: : : r

m

over � then stands for the 
omposition r

1

Æ � � � Æ r

m

of the roles

r

1

; : : : ; r

m

. If I is an interpretation, the w

I

stands for r

I

1

Æ � � � Æ r

I

m

. Given a word

w = r

1

: : : r

m

over �, we abbreviate 9r

1

:9r

2

: : : :9r

m

:C by 9w:C.

A given STS T indu
es the following set of role-value-maps:

R

T

:= fx v y; y v x j x! y 2 Tg:

Given two word u; v 2 �

+

, we de�ne the EL-TBox

T

u;v

:= fA � 9u:P; B � 9v:Pg:

Sin
e T

u;v

is a
y
li
, des
riptive semanti
s 
oin
ides with gfp-semanti
s.

Claim 1: If A is subsumed by B w.r.t. T

u;v

and R

T

, then u �

T

v.

Proof of Claim 1. Assume that A is subsumed by B w.r.t. T

u;v

and R

T

. We us

the semigroup S presented by T to de�ne a model of T

u;v

and R

T

. Let S be the


arrier set of S, i.e., S = f[w℄

T

j w 2 �

+

g.

We de�ne

�

I

:= fd

0

g [ S;

and for every role r 2 �

r

I

:= f(d

0

; [r℄

T

)g [ f([w℄

T

; [wr℄

T

) j w 2 �

+

g:

This de�nition implies that all roles are interpreted by fun
tional relations. It is

easy to show that

(�) w

I

= f(d

0

; [w℄

T

)g [ f([w

0

℄

T

; [w

0

℄

T

� [w℄

T

) j w

0

2 �

+

g

holds for all words w 2 �

+

. In addition, we de�ne

P

I

= f[u℄

T

g:

Finally, by de�ning

A

I

:= (9u:P )

I

and B

I

:= (9v:P )

I

we make sure that I is a model of T

u;v

.

First, we show that I is also a model of R

T

. Given x ! y 2 T , we must show

that x

I

� y

I

and y

I

� x

I

. By de�nition of �

T

, x! y 2 T implies that x �

T

y,

and thus [x℄

T

= [y℄

T

. Consequently x

I

= y

I

is an easy 
onsequen
e of (�) above.
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Se
ond, we know that d

0

2 A

I

sin
e (d

0

; [u℄

T

) 2 u

I

and [u℄

T

2 P

I

. Sin
e A is

subsumed by B w.r.t. T

u;v

andR

T

, this implies d

0

2 B

I

= (9v:P )

I

. Sin
e the only

element that 
an be rea
hed from d

0

via v

I

is [v℄

T

, this implies [v℄

T

2 P

I

= f[u℄

T

g,

and thus [u℄

T

= [v℄

T

, i.e., u �

T

v. This 
ompletes the proof of Claim 1.

Claim 2: If u �

T

v, then A is subsumed by B w.r.t. T

u;v

and R

T

.

Proof of Claim 2. Assume that u �

T

v. Then there are a no-negative integer

k � 0 and words u

0

; : : : ; u

k

su
h that u = u

0

, v = u

k

, and for all i; 1 � i � k,

u

i�1

!

T

u

i

or u

i

!

T

u

i�1

. We prove the 
laim by indu
tion on k. If k = 0, then

u = v, and the 
laim is trivially true.

For the indu
tion step, it is suÆ
ient to show the following: if u!

T

v or v !

T

u,

then A is subsumed by B w.r.t. T

u;v

and R

T

. Sin
e the de�nition of R

T

is

symmetri
, it is suÆ
ient to 
onsider the 
ase u!

T

v. Now, u!

T

v means that

there is a rule x ! y in T su
h that u = u

1

xu

2

and v = u

1

yu

2

for some words

u

1

; u

2

2 �

�

.

Assume that I is a model of T

u;v

and R

T

, and that d

0

2 �

I

is an element of this

model that belongs to A

I

. We must show that d

0

2 B

I

. Sin
e A

I

= (9u:P )

I

and

u = u

1

xu

2

, there are elements d

1

; d

2

; d

3

2 �

I

su
h that (d

0

; d

1

) 2 u

I

1

, (d

1

; d

2

) 2

x

I

, (d

2

; d

3

) 2 u

I

2

, and d

3

2 P

I

. Sin
e x v y 2 R

T

and I is a model of R

T

,

(d

1

; d

2

) 2 x

I

implies (d

1

; d

2

) 2 y

I

, and thus (d

0

; d

3

) 2 v

I

. This shows that

d

0

2 (9v:P )

I

= B

I

, whi
h 
ompletes the proof of Claim 2.

Thus, we have shown that the word problem for semigroups 
an e�e
tively be

redu
ed to the subsumption problem in EL with general (global) role-value-maps,

whi
h shows that this subsumption problem is unde
idable.

7 Con
lusion

Computing the least 
ommon subsumer (l
s) and the most spe
i�
 
on
ept (ms
)

are important steps in the bottom-up 
onstru
tion of DL knowledge bases. In DLs

with existential restri
tions, the most spe
i�
 
on
ept of a given ABox individual

need not exist. We have shown that allowing for 
y
li
 de�nitions with greatest

�xpoint (gfp) semanti
s in the DL EL over
omes this problem: in this setting,

the most spe
i�
 
on
ept exists and 
an be 
omputed in polynomial time. But

then subsumption and the l
s operation must also be 
onsidered w.r.t. 
y
li


de�nitions. In [1℄ it was shown that the subsumption problem remains polynomial

if one allows for 
y
li
 de�nitions in EL. In the present report we have shown

that, w.r.t. gfp-semanti
s, the l
s always exists, and that the binary l
s 
an be


omputed in polynomial time.

Subsumption is also polynomial w.r.t. des
riptive semanti
s [1℄. For the l
s,

des
riptive semanti
s is not that well-behaved: the l
s need not exist in general.
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In addition, we 
ould only give a suÆ
ient 
ondition for the existen
e of the l
s.

If this 
ondition applies, then the l
s 
an be 
omputed in polynomial time. Thus,

one of the main te
hni
al problems left open by this report is the question how to


hara
terize the 
ases in whi
h the l
s exists w.r.t. des
riptive semanti
s, and to

determine whether in these 
ases it 
an always be 
omputed in polynomial time.

Another problem that was not addressed by this report is the question of how to


hara
terize and 
ompute the most spe
i�
 
on
ept w.r.t. des
riptive semanti
s.

We have also shown that adding restri
ted (global) role-value-maps of the form

r Æ s v t to EL leaves subsumption polynomial, both w.r.t. des
riptive and gfp-

semanti
s. These role-value-maps are of interest in appli
ations in medi
ine [15℄.

It should be noted that there are indeed medi
al appli
ation where the expressive

power of the small DL EL appears to be suÆ
ient. In fa
t, SNOMED, the

Systematized Nomen
lature of Medi
ine [5℄ uses EL [17, 15, 16℄.
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