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Abstract

An approximation of an ALC-concept by an ALE-concept can be com-
puted in double exponential time [4]. Consequently, one needs powerful
optimization techniques for approximating an entire unfoldable TBox.
Addressing this issue we identify a special form of ALC-concepts, which
can be divided into parts s.t. each part can be approximated indepen-
dently. This independent approximation in turn facilitates caching during
the computation of approximation.

* This work has been supported by the Deutsche Forschungsgemeinschaft, DFG Project
BA 1122/4-1.
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1 Motivation

This report presents some preliminary results on optimization techniques for
the computation of approximations. Approximation is a new non-standard in-
ference service in Description Logics (DLs) introduced in [4]. Approximating a
concept, defined in one DL, means to translate this concept to another concept,
defined in a second typically less expressive DL, such that both concepts are as
closely related as possible with respect to subsumption. Like other non-standard
inferences such as computing the least common subsumer (lcs) or matching of
concepts, approximation has been introduced to support the construction and
maintenance of DL knowledge-bases (see [8, 5]). Approximation has a number
of different applications some of which we will mention here, see [4] for others.

Computation of commonalities of concepts. Typically, the lcs is employed to
accomplish this task. In case the DL £ provides concept disjunction, the lcs
is just the disjunction of Cy and Cy (C} U Cs). Thus, a user inspecting this
concept does not learn anything about the commonalities between C and C5.
By using approximation, however, one can make the commonalities explicit to
some extent by first approximating C'; and C5 in a sublanguage of £ which does
not provide disjunction, and then computing the lcs of the approximations in L.

Translation of knowledge-bases. Approximation can be used to (automatically)
translate a knowledge-base written in an expressive DL into a another (seman-
tically closely related) knowledge-base in a less expressive DL. The translation
may become necessary to port knowledge-bases between different knowledge
representation systems or to integrate different knowledge-bases.

We investigate the case of translating an unfoldable AC-TBox into an ALE-
TBox by computing the approximation of each concept defined in the AC-TBox.
In [4], a first in-depth investigation of the approximation inference has been pre-
sented. Particularly, a double-exponential time algorithm has been devised to
approximate ALC-concepts by ALE-concepts. Consequently, approximating an
entire TBox requires substantial optimizations. We address this problem by
identifying a form of ALC-concept descriptions whose conjuncts can be approx-
imated independently. This approach does not only speed-up the computation
of a single approximation, but also allows to re-use an obtained approximation
in subsequent approximations. The obtained approximations can directly be
inserted into the approximations of such a conjunction. The identification of
conjunctions with conjuncts that can be approximated independently is thereby
a prerequisite for applying caching techniques to approximation.
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[ Syntax | Semantics | ACE | AL ]
T A be be
cnbD cTnD! X X
Ir.C {reA|Fy:(v,y) €erTAyeCT} X X
vr.C {reA|Vy: (v,y)erl 5 yeCl} | x X
-A, A€ N¢ A\ AT X X
L 0 X X
cCubD ctubp! x
- A\ CT X

Table 1: Syntax and semantics of concept descriptions.

2 Preliminaries

As usual concept descriptions are inductively defined based on a set of concept
constructors, starting with a set N of concept names and a set Ny of role
names. In this report, we consider concept descriptions built from the con-
structors shown in Table 1. Note that in AL every concept description can be
negated whereas in ALE negation is only allowed in front of concept names. For a
DL £, such as ALE and ALC, a concept description formed with the constructors
allowed in L is called L-concept description in the following.

As usual, the semantics of a concept description is defined in terms of an
interpretation T = (A,-’). The domain A of Z is a non-empty set and the
interpretation function -/ maps each concept name A € N to aset AT C A and
each role name r € Ny to a binary relation 7/ C Ax A. The extension of -! to
arbitrary concept descriptions is defined inductively, as shown in Table 1.

For the sake of simplicity, we assume that the set Ng of role names is the
singleton {r}. However, all definitions and results can easily be generalized to
arbitrary sets of role names. We also assume that each conjunction in an ALE-
concept description contains at most one value restriction of the form Vr.C” (this
is w.l.o.g. due to the equivalence Vr.E MVr.F = Vr.(ET F)).

A TBozx is a finite set of concept definitions of the form A = C, where
A € N¢ and C'is a concept description. In addition, we require that TBoxes
are unfoldable, i.e. they are acyclic and do not contain multiple definitions (see,
e.g., [9]). Concept names occurring on the left-hand side of a definition are
called defined concepts. All other concept names are called primitive concepts.
In TBoxes of the DL ALE, negation may only be applied to primitive concepts.
An interpretation 7 is a model of the TBox 7 iff it satisfies all its concept
definitions, i.e., AT = C7? for all definitions A = C' in T.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description C'is
subsumed by the description D (C' C D) iff C! C D! holds for all interpretations
Z; C and D are equivalent (C'= D) iff C C D and D C C. Subsumption and
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equivalence in ALC is PSPACE-complete [10] and NP-complete in ALE [6].

2.1 ALE-Approximation for AL

In order to approximate ALC-concept descriptions by ALE-concept descriptions,
we need to compute the les in ALE.

Definition 1 Given L-concept descriptions Ci,...,C, with n > 2 for some
description logic L, the L-concept description C' is the least common subsumer
(les) of Cy,...,Cy (C = lcs(Ch,...,Cy) for short) iff (i) C; © C for all 1 <
i <n, and (i1) C' is the least concept description with this property, i.e., if C'
satisfies C; T C" for all 1 < i <mn, then C C C".

As already mentioned, in ALC the lcs trivially exists since les(C, D) = C'UD. For
ALE the existence is not obvious. It was shown in [2], that the lcs of two or more
ALE-concept descriptions always exists, that its size may grow exponentially in
the size of the input descriptions, and that it can be computed in exponential
time.

Intuitively, to approximate an ALC-concept description from “above” means
to compute an ALE-concept description that is more general than the input
concept description but minimal w.r.t. subsumption.

Definition 2 Let £; and Ly be two DLs, and let C' be an L1- and D be an Lo-
concept description. Then, D is called an upper Ly-approximation of C' (D =
approx.,(C) for short) iff (i) C' T D, and (ii) D is minimal with this property,
i.e., C C D" and D' T D implies D' = D for all Lo-concept descriptions D'.

Although defined in [4] lower approximations are not yet further investigated.
In this report, we restrict our investigations to upper ALE-approximations of
ALC-concept descriptions. Therefore, whenever we speak of approximations, we
mean upper ALE-approximations. Thus, having defined approximation we turn
now to how to actually compute them.

2.2 The Approximation Algorithm

Before a defined concept from a TBox can be approximated it has to be unfolded
w.r.t. the underlying TBox to make the information captured in the concept def-
initions explicit. To this end, every defined concept is replaced by the concept
description on the right-hand side of its concept definition until no defined con-
cept occurs in the concept description. It is well known that this process can
cause an exponential blow-up of the concept description, see [9]. To recapitulate
the approximation algorithm presented in [4], we need to introduce ALC-normal
forms and some notation for accessing the different parts of a concept.
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For an unfolded concept description C' the role-depth rd(C') is inductively
defined as follows:

rd(N) :=0 , where N € No U{L, T}
rd(=C') = rd(C)

rd(Cy p Cy) := max{rd(Cy),rd(Cy)} , where p € {M,U}

rd(Qr.C') := 1+ rd(C) , where @ € {3,V}

A role-level of a concept, C' is the set of all concept descriptions occurring on the
same role-depth in C'. The topmost role-level of a concept description is also
called its top-level.

We call a concept description top-level Li-free if it is in negation normal form
(NNF), i.e., negation is pushed inwards until in front of a concept name, and
does not contain any disjunction on top-most role-level. Some notation is needed
to access the different parts of an ALE-concept description or a top-level Li-free
ALC-concept description C":

e prim(C') denotes the set of all (negated) concept names and the bottom
concept occurring on the top-level of C';

e val,(C) := Cy M --- M C,, if there exist value restrictions of the form
Vr.Cy,...,Vr.Cy, on the top-level of C'; otherwise, val (C') := T;

e ex,(C) := {C" | there exists Ir.C" on the top-level of C'}.

Equipped with these we can define the A{C-normal form where conjuncts are
distributed over the disjuncts. An arbitrary ALC-concept description is trans-
formed into a concept description with at most one disjunction on top-level of
every concept of each role-level.

Definition 3 An ALC-concept description C' is in ALC-normal form iff
1. ifC=1,thenC =1, ifC=T, thenC=T;
2. otherwise, C s of the form C = Cy U ---UC), with
Ci= 11 An 1 3Ir.C' nVrval(C;),
A€eprim(C;) C'eex,(Cy)

C; £ L, and val,(C;) and every concept description in ex,(C;) is in AL-
normal form, for alli=1,...,n.

Every disjunct of a concept in ALC-normal form is top-level Li-free. Obviously,
every ALC-concept description can be turned into an equivalent concept descrip-
tion in ALC-normal form. Unfortunately, this may take exponential time, as the
example (A; U Ay) M-+ (Ag, 1 U Asy,) shows whose ALC-normal form is of size
exponential in n.



Input: ALC-concept description '
Output: upper ALE-approximation of C'

1. If C = L, then c-approx 4. (C) := L;
if C' =T, then c-approx 4,¢(C) := T
2. Otherwise, transform C' into ALC-normal form C; LUl --- U C, and return
c-approx 4 .¢(C') ==
[l AN
AeN7_, prim(C5)

M Ar.les{c- Cinval,(Cy)) |1 <i<n}n
(Ol 1Yo (Cr) X e (C) r.des{c-approx 4.¢ (C Mval (Cy)) | 1 <7 < n}

Vr.les{c-approx 4. (val,(C;)) | 1 <i < n}

Figure 1: The recursive algorithm c-approx 4,.¢(C').

The approximation algorithm displayed in Figure 1 checks if the input is
a concept equivalent to T or L—in this case the approximation is trivial—
otherwise it proceeds recursively on the A{C-normal form of the input and ex-
tracts the commonalities of all disjuncts. Unfortunately, the algorithm needs
double-exponential time for arbitrary ALC-concepts in the worst case. Despite
of its high complexity, our prototypical implementation of the algorithm showed
a quite promising performance in respect to run-time and resulting concept sizes
when applied it to concept descriptions derived from a chemical process engi-
neering application, for details see [4].

3 Optimizing ALE-Approximations

A TBox can be translated by computing the approximation of every unfolded
concept description appearing on the right-hand side of a concept definition in
the TBox. Each defined concept has to be unfolded and transformed into ALC-
normal form before the approximation algorithm can be applied. Unfortunately,
both of these steps cause exponential growth of the concept description.

For standard reasoning tasks [1, 7] and also for the computation of the lcs [3]
the first source of complexity can often be alleviated by lazy unfolding. Here the
idea is to replace a defined concept in a concept description only if examination
of that part of the description is necessary. Lazy unfolding unfolds all defined
concepts appearing on the top-level of the concept description under consider-
ation while defined concepts on deeper role-levels remain unchanged as long as
possible.
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When computing the lcs the main benefit of lazy unfolding is that in some
cases defined concepts can be used directly in the les concept description. If,
for example a defined concept C' appears in all input concept descriptions on
the same role-level, the concept definition of C' does not need to be processed,
but C' can be inserted into the lcs directly, see [3] for details. In the case of
approximation, however, this effect of lazy unfolding can not be utilized even
if a defined concept is obviously common to all disjuncts. For example, in
(AN C)u (Cn(—B)) the concept name C' cannot be used directly as a name
in the approximation because the ALC-concept description C' stands for must
be approximated. Thus unfolding a concept completely can in principle not be
avoided for approximation.

The double-exponential time complexity of the approximation algorithm,
however, suggests another approach to optimization. Instead of approximating
an input concept C' as a whole a significant amount of time could be saved by
splitting ' into its conjuncts and approximating them separately. If, for in-
stance, C' consists of two conjuncts of size n then the approximation of C' takes
some a”" steps while the conjunct-wise approach would just take 2a?". Unfor-
tunately, splitting an arbitrary input concept at conjunctions leads to incorrect
approximations, as examples show [4]. In the following section we will there-
fore introduce a class of so-called nice ALC-concepts for which the conjunct-wise
approximation still produces the correct result.

3.1 Nice Concepts

In the following we assume that all concept descriptions are unfolded and in
NNF. For an ALC-concept description C' and i € N the quantor set Q,(C,1)
denotes the set of quantors used on the role-level i of C' (referring to role r).
Hence, for 0 < i < rd(C) the quantor set @,(C,i) is a nonempty subset of
{¥,3}. Similarly, the name set N,(C,i) denotes the atomic concepts used on a
specific role-level. Formally, () and N are defined as follows.

Definition 4 Let C' := LI*_ C; be an ALC-concept description in ALC-normal
form. For d € N, the sets Q,(C,d) and N,(C,d) are inductively defined by:

0 Qu(C,0)i= (3] U ex(Cs) £ 0} U (| T val (i) £ T)

N,(C,0) := LkJ prim(C})

k k
e Q. (C,d+1):=J U @ (¢ d)ulJ Q.(val(C)),d)
=1 C'cex(C;) i=1
k k
N.(C,d+1):=J U N.(C',d)u |J N,.(val,(Cy),d).
=1 C'eex(Cy) i=1
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Condition 1 Condition 2

C D C D

T 7 - A
i AL

Figure 2: What nice concepts look like

For a concept C not in ALC-normal form, (Q and N are defined in terms of
the AC-normal form of C'. For example the unfolded concept C' = (Ir.(ANB)M
Vr.(D U (3r.—FE))) has the set of quantors Q,(C,0) = {V,3}, Q,(C,1) = {3}
and Q,(C,i) = 0 for i > 2. For the name set, we have N(C,0) =0, N(C,1) =
{A, B, D}, and N(C,2) = {—=FE}.

We are now ready to specify in detail what nice concepts are. In general,
an approximation approz 4.c(C' M D) cannot be split at the conjunction because
of possible interactions between existential and value restrictions on the one
hand and inconsistencies induced by negation on the other. For example, the
approximation approx 4. (3r. TM(Vr.AU3r.A)) yields 3r.A while the split version
approx_uee (Ir.T) M approx 4 (Vr.A U Ir.A) only produces Ir.T. Similarly, the
conjunction A M (=AU B) cannot be approximated separately.

We now call those concepts nice for which this simplified strategy still pro-
duces the correct result and for which a simple syntactic discrimination rule
exists. Firstly, the role quantors occurring in nice concepts are restricted to one
type per role level. Hence, on every role level of the syntax tree of a nice concept
either no V-restrictions or no 3-restrictions occur. Secondly, a concept name and
its negation may not occur on the same same level of the syntax tree of a nice
concept. Consider Figure 2 for an illustration of these rules.

Formally, we can define nice concepts by means of the syntactical operators
from Definition 4.

Definition 5 Let C' be an ALC-concept description in NNF. Then C' is nice iff
for every d € IN it holds that

1. |1Q.(C,d)| <1 and
2. N,(C,d) does not contain a concept name and its negation.

It remains to be shown that nice concepts as defined above in fact have the
desired property. In preparation for this we firstly present a simple set-theoretic
result which later on will allow us to reduce the number of existential restrictions
computed in an approximation of a nice concept.
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Lemma 6 Let m,n € IN. For every i € {1,...,m} and j € {1,...,n}, let A;
and Bj be arbitrary finite sets, let U;; :== A; U B;, and let u;; € U;;. Denote by
U the set of all w;;, i.e., U :={u;; | 1 <i<m,1<j <n}. Then one of the
following claims holds: either, for every i there exist elements a; € A; with {a; |
1 <i<m} CU; or, for every j there exist b; € B; with {b; | 1 <j <n} CU.

For all j € {1,...,m} and all j € {1,...,n} consider arbitrary u;; € Uj;.
Assume that the second claim for the sets By, ..., B, does not hold. Then there
is one j' with B; NU = (), otherwise b; could be chosen from this intersection
to satisfy the claim. Since u;j € A; U By for all 4 it follows that w;; € A; for all
i, satisfying the first claim for A,..., A,,. |

The choice of sets in the unions A;UB; in the above lemma corresponds to tu-
ples in the product { Ay, ..., Ap}x{By,..., B,}. The claim can be generalized to
n-ary products where every union corresponds to a tuple from {Sy, ..., Sy, } X
- X {Sn1,. .+, Snk, }- The following lemma provides the more general result.

Lemma 7 For every 1 <i<nand1 < j; <k;, let S;;, be an arbitrary set. For
every tuple t in the set T := {1,... ki} x -+ x {1,...,k,}, denote by U the
union | J;_, Siziy (with (i) denoting the ith component of t). For every t € T,
let up € Us. Let U :={ug |t € T}. Then there exists an index i € {1,...,n}
and elements s;; € S;; for 1 < j < k; such that the set {s;; | 1 < j < k;} is a
subset of U.

Consider arbitrary elements u;. Assume that no index ¢ has the claimed property.
Then for every i there exists some jj such that S;;NU = (), otherwise appropriate
elements from every S;; could be found. Consider the union Uy where #(i) = j;
for every i. Since uz € Uy it holds that there is some i’ with uz € Sy ;. Clearly,
uz € U, since t € T. But then Sirjr, U # (), in contradiction to the aésumption.

By means of the above lemma we can show that the least common subsumer
of sets of nice ALE-concepts of a certain form can be simplified. The following
example motivates the relevant case. The ALC-normal form of a nice concept of
the form (Cy U ---UCy,) M (Dy U --- U D,) with no further disjunction on the
toplevel of all C; and D; results in a disjunction of the form Ll; ; C;MD;. Assume
that all subconcepts C;, D; have only existential restrictions on toplevel. For the
approximation of this concept, computing the resulting existential restrictions
requires to compute the least common subsumer of (the approximation of) every
combination of existential restrictions from the relevant disjuncts. Thus, for
every pair (7, j), every existential restriction E;; € ex,(C;MD;) is approximated,
then the les over all {approz 4. (Ei;) | i, 7} is computed. Since ex,(C;MD;) equals
the union ex,(C;) Uex,(D;), the previous lemma can be employed to restrict the
lcs to a much smaller set. The following lemma provides the exact proof.
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Lemma 8 For 1 <i <2, let C; and D; be ALE-concept descriptions such that
Ci M Cy N Dy M Dy is a nice concept. Then it holds that les{C; M D; | i,j €
{1,2}} = les{C4, Cy} Mles{ Dy, Ds}.

Proof by induction over the maximum role-depth d of all C;, D;.

e d=0

Then C; = MNyeprim(cy) A and Dj = T1acpim(p;) A for all 4,7. The defi-
nition of nice guarantees that no inconsistencies can be introduced by a
combination of an atomic concept and its negation. Hence, the lcs{C; I
D; | i,5 € {1,2}} then yields M4cg A where S is the intersection of all
sets of primitive concepts of the form prim(C; M D;). Hence, S equals
{prim(C;) U prim(D;) | i,7 € {1,2}}. By distributing the intersection
over the union, S can be expressed as the union (prim(C7) N prim(Cs)) U
(prim(D;) N prim(D,)). The conjunction Mg A is therefore equivalent to
HAEprim(Cl)ﬁprim(Cg) AT HAEprim(Dl)ﬁprim(Dg) A. By definition of the lCS, this
conjunction is equivalent to the conjunction of les{C; | 1 < i < 2} and
les{D; | 1 <j <2}

e d>0
Depending on the role quantors on the outermost role level two cases are
distinguished. In the first case, all C; and D; are of the form I'14cprim(c;) Al
Vr.C} and [Macprim(p;) A 1 Vr.D’;, respectively. Then, les{C; M D; | i,j €
{1,2}} is defined as

AIEISA MVrles{C;M D} | i,j € {1,2}},

where S again equals ({prim(C;) U prim(D;) | i, j € {1,2}}. Analogously
to the case of d = 0, the set S can be expressed as the union of prim(C;) N
prim(Cs) and prim(D;) N prim(D3). Due to the induction hypothesis the
les in the value restriction is equivalent to les{C; | 1 < i < 2} Mles{D; |
1 < j < 2}. Since a conjunction in a value restriction may be split into a
conjunction of value restrictions, we obtain

M AN

Agprim(Cy)Nprim(Ca) A€prim(D1)Nprim(Dyz)
MVrles{C; | 1 <i <2} NVrles{D) |1 <5 <2}
According to the definition of the lcs, this expression can be written as
les{C; |1 <i<2}Mles{D;|1<j <2}

In the second case, all C; and D; are of the form ' scprim(c;) Aﬂﬂcgeex,(c,-) Ar.C]
and I_lAeprim(D].) AT HD;eex,(Dj) E!r.D;-, respectively. The least common sub-
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sumer les{C; M D; | i,j € {1,2}} then yields

M A
AeS
M M les{E; | 1 <i<4}
F, € exr(Cl) U ex,(Dl),
E2 € exr(C’l) U exr(Dg),
Es3 € eXr(Cg) U ex,(Dl),
Ey € eXr(Cg) U ex,(Dg)

with S as before. It is shown in Lemma 7 that every set {F; | 1 <i < 4}
in the above conjunction is a superset of a set either of the form {C}, C’}
with all Cf € ex.(C;) or of the form {Dj, Dy} with all D} € ex. (D).
Due to the monotonicity of the les (w.r.t. subsumption) every expression
les{F; | 1 < i < 4} is therefore more general than either lcs{C], C4}
or les{D}, D}} for appropriate existential restrictions C},C% or D/, D}.
Conversely, every set of the form {C,C5} and {Dj, D}} occurs in the
above conjunction as one choice of E;, 1 < ¢ < 4. Hence, the above
existential restrictions can be simplified, yielding

A
AeS
1 M M |CS{E1, EQ}
Ei€ex./(C1) Ea€ex(C2)
M [l M |CS{E3, E4}

E3€eXr(D1) E4€ex,(D2)

Analogously to the previous case the set S of atomic concepts can be
written as a union, yielding the following conjunction

M A M A

Agprim(Cy)Nprim(Ca) A€prim(D1)Nprim(D32)

1 M M ICS{El, EQ}

E1€ex(C1) Ea€ex.(C2)
no M les{Es, By}

E3€ex, (Dl ) E4€exr(D2)

By definition of the lcs, this is equivalent to

les{C; |1 <i<2}Mles{D;|1<j <2}

The above claim can again be generalized to larger conjunctions. Let 1 <
i <nand 1< j <k and let C;; be ALE-concepts whose overall conjunction
is nice. For every tuple t € {1,...,k} x -+ x {1,...,k,} = T denote by Cf
the conjunction [, Ciz;). Then the least common subsumer les{C7 |t € T} is
equivalent to the conjunction I'_; les{Cj; | 1 < j < k;}. The proof is analogous
to the one shown above.
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We are now ready to prove that approximating nice concepts, as defined in
Definition 5, can be simplified to a conjunction of approximations. For the sake
of simplicity we restrict our attention to binary conjunctions. The proof for
n-ary conjunctions is analogous.

Theorem 9 Let CMD be a nice ALC-concept description. Then approx e (C'T
D) = approz 40e(C) M approx aee (D).

Proof by induction over the sum n of the nesting depths of M and LI on every
role-level in C' and D.

en=0>0
Then no conjunction or disjunction occurs at any position in C' or D,
implying that C' and D are nice ALE-concepts. Hence, approx 4.:(C) = C
and approz 4c(D) = D. Since C'T1 D is also an ALE-concept, we also
know that approz 4..(CM D) = CMND. Consequently, approz 4c(CTID) =

approx_uee (C) M approz e (D).

e n>0
Due to the definition of nice, three cases have to be distinguished.
1. C =M, Cjand D=0_, D,
Then the approximation under consideration is approz 4 (M, C;)M(M'_; D;))
which can be flattened. The nesting depth of the argument concept thus
has decreased by 1 and we still have a nice concept. According to the
induction hypothesis, the result is therefore equivalent to

k !
'|_|1 approx e (C;) M _|_|1 approt e (Dj)
i= j=

which in turn is equivalent to

k I
approx 40 (11 C;) M approx 4. (11 D).

i=1 j=1

2. C=UL, Cjand D=LJ_, D,

To compute approz 4.-(C'M D), the approximation algorithm at first trans-
forms the input concept into ALC-normal form. The A{C-normal form of
C'is of the form LIX_, C% with no disjunction on the topmost role-level of
every C,. Similarly, the AC-normal form of D yields an expression of the
form l_Ig-',:1 D’,. Hence, the ALC-normal form of C'M1 D is of the form

(Ci M Dy)

1<t <k 1</ <U
The approximation approz 4..(C'M D) then by definition equals

les{ approw e (Cyy M DY) |1 <4 <KL 1 <5 < T}
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As the maximum nesting depth in all of the occurring approximation ex-
pressions has decreased, we may exploit the induction hypothesis, obtain-
ing les{approx aee (Cr) M approw 4oe (D)) | 1 < i < K1 <" < U'} Ac-
cording to Lemma 8, the lcs can be split into two lcs-expressions of the
form

les{ approw 4ee (Cir) | 1 < i" <K'} Mles{approz 4ee (D) | 1 < j" <1}

which by definition of the approximation are equivalent to the conjunction
of two approximations, namely

W g
approw_sre (illzl1 Ci) M approx e (jgl D%),

which is equivalent to approz 4. (C) M approx 4 (D), i.e., the separate ap-
proximation of the input concepts.

3. C=U_,C;and D=T1"_, D,

Similar to the previous case. The AL{C-normal form of the input concept
yields an expression of the form I_If,,ﬂ(C’i M I_lg,:1 C%). The approxima-
tion approx 4.-(C' M D) therefore equals lcs{approz 4 (CY) 1 l_lé.,,:1 D%)) |
1 <" <K'}, According to the induction hypothesis the approximation
can be split into lcs{approz 4. (C}) M approxm(l_lg,zl D) | 1< <K'}
Lemma 8 states that this lcs is equivalent to

ll
les{ approz 40 (C}) | 1 < <K'} Ics{approxm(.l_llD},)) |1 <4 <K'}
J'=

The first lcs-expression is equivalent to the approximation of a disjunction
while the second one contains £’ equal concepts. We thus obtain

k/
apPPTOT sre (illzl1 Cl) M approx 4.e (]Dl D).

Hence, we end up with the conjunction of the separate approximations
approx_ue (C) M approz 4ee (D).

Due to Theorem 9 it is now possible to split the computation of approxi-
mations into independent parts. Although this does of course not change the
complexity class of the approximation algorithm it is still a significant benefit
for practical applications. The improved approximation algorithm is displayed
in Figure 3. The algorithm requires the unfolded input concept to be in NNF.
In the first step the c-approx 4,.¢ function checks whether the approximation is
trivial. If it is not the next step is to check whether the concept is nice. For nice
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Input: unfolded ALC-concept description C' already in NNF
Output: upper ALE-approximation of C'

C-approx 4o¢
1. If C = L, then c-approx 4.+ (C) := L;
if C' =T, then c-approx 4,¢(C) := T

2. If nice-concept-p(C') then return c-approx 4.+ (C') := c-nice-approx 4.5 (C)

3. Otherwise, transform the top-level of C' into ALC-normal form CyLI---UC,
and return

c-approx 4 ¢ (C') ==
M A TT  Vrles{c-approx 4.c(val,(C;)) | 1 <i<n} I
AeNi=, prim(C;)

1 = - Cinival, (Cy)) |1 <i <
(Ol Ol Yo (Cr) X xexe(Cn) r.les{c-approx 4.6 (Cf Mval,(C5)) | 1 < i < n}

C-nice-approx 4 ¢

1. If C = L, then c-nice-approx 4. (C) := L;
it C' =T, then c-nice-approx 4, (C) :== T
2. fC=Cyn---ndC,, then return
c-nice-approx 4.¢ (C') := [N, c-nice-approx 4, (C;)
3. Otherwise, return
c-nice-approx 4. (C) 1=
M A T1  Vrles{c-nice-approx 4,¢(val,(C;)) | 1 <i < n} [
AeNiy prim(C;)

M JIr.lcs{c-nice- Cinval,(Cy)) |1 <i <
ey (€ r.les{c-nice-approx 4,¢(C; Mval (C;)) | 1 <i < n}

Figure 3: The improved algorithm c-approx 4. and c-nice-approx 4,¢.

concepts the c-nice-approx 4.0 function is invoked. For all other concepts the
ALC-normal form is computed lazily, i.e., the conjunctions are distributed over
the disjunctions only for the current top-level. Then the c-approx 4, algorithm
proceeds as before. The c-nice-approx 4., function for nice concepts works simi-
lar. Having treated the trivial cases, the second step is to test if the concept is a
conjunction. In that case the approximation is obtained by splitting the concept
conjunct-wise and making a recursive call for each conjunct. For all other nice
concepts the approximation is computed as in c-approx 4.¢, besides the recursive
calls refer to c-nice-approx 4 ¢.
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Observe that the test condition for nice concepts can be checked in linear
time once the concept description is unfolded and in NNF. Since unfolding and
the transformation into NNF are always necessary before applying c-approx 4,
the test for the nice-property adds very little extra costs to the approximation.

Moreover, the conjunct-wise approximation of nice concepts C' of the form
(CyuDy)M---1(C, U D,) avoids the exponential blow-up caused by the ALC-
normalization of C'. Hence, this optimization improves the computation times
for many concepts which lead the standard algorithm to perform particularly
badly.

3.2 Approximating Nice Concepts in TBoxes

If an entire ALC-TBox is to be translated into an ALE-TBox, the concept descrip-
tion from the right-hand side of each concept definition has to be replaced by
its approximation. For practical applications it is obviously not feasible to per-
form such a translation in a naive way, simply because of the size of application
TBoxes. The idea for optimizing this procedure is to re-use the approxima-
tion of a defined concept when approximating concept descriptions that in turn
make use of this defined concept. More precisely, if we have already obtained
the approximation of C' and want for example to compute the approximation of
(DM 3r.C'), we would like to be able to insert the concept description approx(C')
directly into the right place in the concept description of approx(D M 3r.C'). Un-
fortunately, this approach does not work for arbitrary A{C-concept descriptions
due to possible interactions between different parts of the concept description.
Nice concepts, however, are defined to rule out this kind of interaction. Hence,
besides speeding-up the computation of a single approximation, the property of
being a nice concept also is a prerequisite for caching and the re-use of already
computed approximations. For example, if the defined concepts C, Cs, C3 from
the following TBox (with A, B and D being primitive concepts)

T ={ C,=(3r—-A)u(3Ir.B),
Cy=3Fr.(Vr.DU-E)NC, M ~B,
03 =" (\VIT.H’F.(_'D M A) L _|Cl L _|02> }

are to be approximated and (' is approximated first, then this concept descrip-
tion can be re-used in subsequent approximations. If unfolded and transformed
into NNF the concepts C5 and ('3 are nice concepts. So the approximation of
(s is the conjunction of approx(3r.(Vr.D LI =~E)) and approx(C}) and approx(B),
where the already computed approximation of C'; can be employed directly. For
C5 we can re-use both approximations of €'y and C5 directly and have only to
compute the approximation of 3r.¥r.(=D1—A). Thus, the cost for approximat-
ing the entire TBox is reduced heavily.
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4 Conclusion and Future Work

In this report we have presented some first steps towards optimizing the com-
putation of approximations. The main idea is to identify concepts that can be
decomposed into parts which then can be approximated independently. These
so called nice concepts are structured in such a way that the top-level conjuncts
cannot interact with one another therefore each conjunct can be approximated
separately. Detecting nice concepts and approximating each of their conjuncts
independently should be especially powerful in the context of translating entire
ALC-TBoxes into ALE-TBoxes because it enables the direct re-use of already
computed approximations and caching. Unfortunately, the conditions for nice
concepts are very strict.

It is an open problem whether the rather strict conditions for nice concepts
can be relaxed. To determine if independent approximation of nice concepts is
a real benefit for practical applications, requires an implementation of modular
approximation. Moreover, it is unknown if nice concepts occur frequently in
application TBoxes.

Another open problem is whether the given conditions for nice concepts can
be extended to the case where ALCN -concept descriptions are approximated by
ACEN -concept descriptions.
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