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Abstra
t

An approximation of an ALC-
on
ept by an ALE-
on
ept 
an be 
om-

puted in double exponential time [4℄. Consequently, one needs powerful

optimization te
hniques for approximating an entire unfoldable TBox.

Addressing this issue we identify a spe
ial form of ALC-
on
epts, whi
h


an be divided into parts s.t. ea
h part 
an be approximated indepen-

dently. This independent approximation in turn fa
ilitates 
a
hing during

the 
omputation of approximation.

�
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1 Motivation

This report presents some preliminary results on optimization te
hniques for

the 
omputation of approximations. Approximation is a new non-standard in-

feren
e servi
e in Des
ription Logi
s (DLs) introdu
ed in [4℄. Approximating a


on
ept, de�ned in one DL, means to translate this 
on
ept to another 
on
ept,

de�ned in a se
ond typi
ally less expressive DL, su
h that both 
on
epts are as


losely related as possible with respe
t to subsumption. Like other non-standard

inferen
es su
h as 
omputing the least 
ommon subsumer (l
s) or mat
hing of


on
epts, approximation has been introdu
ed to support the 
onstru
tion and

maintenan
e of DL knowledge-bases (see [8, 5℄). Approximation has a number

of di�erent appli
ations some of whi
h we will mention here, see [4℄ for others.

Computation of 
ommonalities of 
on
epts. Typi
ally, the l
s is employed to

a

omplish this task. In 
ase the DL L provides 
on
ept disjun
tion, the l
s

is just the disjun
tion of C

1

and C

2

(C

1

t C

2

). Thus, a user inspe
ting this


on
ept does not learn anything about the 
ommonalities between C

1

and C

2

.

By using approximation, however, one 
an make the 
ommonalities expli
it to

some extent by �rst approximating C

1

and C

2

in a sublanguage of L whi
h does

not provide disjun
tion, and then 
omputing the l
s of the approximations in L.

Translation of knowledge-bases. Approximation 
an be used to (automati
ally)

translate a knowledge-base written in an expressive DL into a another (seman-

ti
ally 
losely related) knowledge-base in a less expressive DL. The translation

may be
ome ne
essary to port knowledge-bases between di�erent knowledge

representation systems or to integrate di�erent knowledge-bases.

We investigate the 
ase of translating an unfoldable ALC-TBox into an ALE-

TBox by 
omputing the approximation of ea
h 
on
ept de�ned in the ALC-TBox.

In [4℄, a �rst in-depth investigation of the approximation inferen
e has been pre-

sented. Parti
ularly, a double-exponential time algorithm has been devised to

approximate ALC-
on
epts by ALE-
on
epts. Consequently, approximating an

entire TBox requires substantial optimizations. We address this problem by

identifying a form of ALC-
on
ept des
riptions whose 
onjun
ts 
an be approx-

imated independently. This approa
h does not only speed-up the 
omputation

of a single approximation, but also allows to re-use an obtained approximation

in subsequent approximations. The obtained approximations 
an dire
tly be

inserted into the approximations of su
h a 
onjun
tion. The identi�
ation of


onjun
tions with 
onjun
ts that 
an be approximated independently is thereby

a prerequisite for applying 
a
hing te
hniques to approximation.
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Syntax Semanti
s ALE ALC

> � x x

C uD C

I

\D

I

x x

9r:C fx 2 � j 9y : (x; y) 2 r

I

^ y 2 C

I

g x x

8r:C fx 2 � j 8y : (x; y) 2 r

I

! y 2 C

I

g x x

:A, A 2 N

C

� nA

I

x x

? ; x x

C tD C

I

[D

I

x

:C � n C

I

x

Table 1: Syntax and semanti
s of 
on
ept des
riptions.

2 Preliminaries

As usual 
on
ept des
riptions are indu
tively de�ned based on a set of 
on
ept


onstru
tors, starting with a set N

C

of 
on
ept names and a set N

R

of role

names. In this report, we 
onsider 
on
ept des
riptions built from the 
on-

stru
tors shown in Table 1. Note that in ALC every 
on
ept des
ription 
an be

negated whereas inALE negation is only allowed in front of 
on
ept names. For a

DL L, su
h as ALE and ALC, a 
on
ept des
ription formed with the 
onstru
tors

allowed in L is 
alled L-
on
ept des
ription in the following.

As usual, the semanti
s of a 
on
ept des
ription is de�ned in terms of an

interpretation I = (�; �

I

). The domain � of I is a non-empty set and the

interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a set A

I

� � and

ea
h role name r 2 N

R

to a binary relation r

I

� ���. The extension of �

I

to

arbitrary 
on
ept des
riptions is de�ned indu
tively, as shown in Table 1.

For the sake of simpli
ity, we assume that the set N

R

of role names is the

singleton frg. However, all de�nitions and results 
an easily be generalized to

arbitrary sets of role names. We also assume that ea
h 
onjun
tion in an ALE-


on
ept des
ription 
ontains at most one value restri
tion of the form 8r:C

0

(this

is w.l.o.g. due to the equivalen
e 8r:E u 8r:F � 8r:(E u F )).

A TBox is a �nite set of 
on
ept de�nitions of the form A

:

= C, where

A 2 N

C

and C is a 
on
ept des
ription. In addition, we require that TBoxes

are unfoldable, i.e. they are a
y
li
 and do not 
ontain multiple de�nitions (see,

e.g., [9℄). Con
ept names o

urring on the left-hand side of a de�nition are


alled de�ned 
on
epts. All other 
on
ept names are 
alled primitive 
on
epts.

In TBoxes of the DL ALE , negation may only be applied to primitive 
on
epts.

An interpretation I is a model of the TBox T i� it satis�es all its 
on
ept

de�nitions, i.e., A

I

= C

I

for all de�nitions A

:

= C in T .

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription C is

subsumed by the des
ription D (C v D) i� C

I

� D

I

holds for all interpretations

I; C and D are equivalent (C � D) i� C v D and D v C. Subsumption and
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equivalen
e in ALC is PSPACE-
omplete [10℄ and NP-
omplete in ALE [6℄.

2.1 ALE-Approximation for ALC

In order to approximate ALC-
on
ept des
riptions by ALE-
on
ept des
riptions,

we need to 
ompute the l
s in ALE .

De�nition 1 Given L-
on
ept des
riptions C

1

; : : : ; C

n

with n � 2 for some

des
ription logi
 L, the L-
on
ept des
ription C is the least 
ommon subsumer

(l
s) of C

1

; : : : ; C

n

(C = l
s(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all 1 �

i � n, and (ii) C is the least 
on
ept des
ription with this property, i.e., if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

As already mentioned, inALC the l
s trivially exists sin
e l
s(C;D) � CtD. For

ALE the existen
e is not obvious. It was shown in [2℄, that the l
s of two or more

ALE-
on
ept des
riptions always exists, that its size may grow exponentially in

the size of the input des
riptions, and that it 
an be 
omputed in exponential

time.

Intuitively, to approximate an ALC-
on
ept des
ription from \above" means

to 
ompute an ALE-
on
ept des
ription that is more general than the input


on
ept des
ription but minimal w.r.t. subsumption.

De�nition 2 Let L

1

and L

2

be two DLs, and let C be an L

1

- and D be an L

2

-


on
ept des
ription. Then, D is 
alled an upper L

2

-approximation of C (D =

approx

L

2

(C) for short) i� (i) C v D, and (ii) D is minimal with this property,

i.e., C v D

0

and D

0

v D implies D

0

� D for all L

2

-
on
ept des
riptions D

0

.

Although de�ned in [4℄ lower approximations are not yet further investigated.

In this report, we restri
t our investigations to upper ALE-approximations of

ALC-
on
ept des
riptions. Therefore, whenever we speak of approximations, we

mean upper ALE-approximations. Thus, having de�ned approximation we turn

now to how to a
tually 
ompute them.

2.2 The Approximation Algorithm

Before a de�ned 
on
ept from a TBox 
an be approximated it has to be unfolded

w.r.t. the underlying TBox to make the information 
aptured in the 
on
ept def-

initions expli
it. To this end, every de�ned 
on
ept is repla
ed by the 
on
ept

des
ription on the right-hand side of its 
on
ept de�nition until no de�ned 
on-


ept o

urs in the 
on
ept des
ription. It is well known that this pro
ess 
an


ause an exponential blow-up of the 
on
ept des
ription, see [9℄. To re
apitulate

the approximation algorithm presented in [4℄, we need to introdu
e ALC-normal

forms and some notation for a

essing the di�erent parts of a 
on
ept.
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For an unfolded 
on
ept des
ription C the role-depth rd(C) is indu
tively

de�ned as follows:

rd(N) := 0 , where N 2 N

C

[ f?;>g

rd(:C) := rd(C)

rd(C

1

� C

2

) := maxfrd(C

1

); rd(C

2

)g , where � 2 fu;tg

rd(Qr:C) := 1 + rd(C) , where Q 2 f9; 8g

A role-level of a 
on
ept C is the set of all 
on
ept des
riptions o

urring on the

same role-depth in C. The topmost role-level of a 
on
ept des
ription is also


alled its top-level.

We 
all a 
on
ept des
ription top-level t-free if it is in negation normal form

(NNF), i.e., negation is pushed inwards until in front of a 
on
ept name, and

does not 
ontain any disjun
tion on top-most role-level. Some notation is needed

to a

ess the di�erent parts of an ALE-
on
ept des
ription or a top-level t-free

ALC-
on
ept des
ription C:

� prim(C) denotes the set of all (negated) 
on
ept names and the bottom


on
ept o

urring on the top-level of C;

� val

r

(C) := C

1

u � � � u C

n

, if there exist value restri
tions of the form

8r:C

1

; : : : ; 8r:C

n

on the top-level of C; otherwise, val

r

(C) := >;

� ex

r

(C) := fC

0

j there exists 9r:C

0

on the top-level of Cg.

Equipped with these we 
an de�ne the ALC-normal form where 
onjun
ts are

distributed over the disjun
ts. An arbitrary ALC-
on
ept des
ription is trans-

formed into a 
on
ept des
ription with at most one disjun
tion on top-level of

every 
on
ept of ea
h role-level.

De�nition 3 An ALC-
on
ept des
ription C is in ALC-normal form i�

1. if C � ?, then C = ?; if C � >, then C = >;

2. otherwise, C is of the form C = C

1

t � � � t C

n

with

C

i

= u

A2prim(C

i

)

A u u

C

0

2ex

r

(C

i

)

9r:C

0

u 8r:val

r

(C

i

);

C

i

6� ?, and val

r

(C

i

) and every 
on
ept des
ription in ex

r

(C

i

) is in ALC-

normal form, for all i = 1; : : : ; n.

Every disjun
t of a 
on
ept in ALC-normal form is top-level t-free. Obviously,

every ALC-
on
ept des
ription 
an be turned into an equivalent 
on
ept des
rip-

tion in ALC-normal form. Unfortunately, this may take exponential time, as the

example (A

1

tA

2

)u � � � u (A

2n�1

tA

2n

) shows whose ALC-normal form is of size

exponential in n.
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Input: ALC-
on
ept des
ription C

Output: upper ALE-approximation of C

1. If C � ?, then 
-approx

ALE

(C) := ?;

if C � >, then 
-approx

ALE

(C) := >

2. Otherwise, transform C into ALC-normal form C

1

t � � � t C

n

and return


-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u

u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:l
sf
-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng u

8r:l
sf
-approx

ALE

(val

r

(C

i

)) j 1 � i � ng

Figure 1: The re
ursive algorithm 
-approx

ALE

(C).

The approximation algorithm displayed in Figure 1 
he
ks if the input is

a 
on
ept equivalent to > or ?|in this 
ase the approximation is trivial|

otherwise it pro
eeds re
ursively on the ALC-normal form of the input and ex-

tra
ts the 
ommonalities of all disjun
ts. Unfortunately, the algorithm needs

double-exponential time for arbitrary ALC-
on
epts in the worst 
ase. Despite

of its high 
omplexity, our prototypi
al implementation of the algorithm showed

a quite promising performan
e in respe
t to run-time and resulting 
on
ept sizes

when applied it to 
on
ept des
riptions derived from a 
hemi
al pro
ess engi-

neering appli
ation, for details see [4℄.

3 Optimizing ALE-Approximations

A TBox 
an be translated by 
omputing the approximation of every unfolded


on
ept des
ription appearing on the right-hand side of a 
on
ept de�nition in

the TBox. Ea
h de�ned 
on
ept has to be unfolded and transformed into ALC-

normal form before the approximation algorithm 
an be applied. Unfortunately,

both of these steps 
ause exponential growth of the 
on
ept des
ription.

For standard reasoning tasks [1, 7℄ and also for the 
omputation of the l
s [3℄

the �rst sour
e of 
omplexity 
an often be alleviated by lazy unfolding. Here the

idea is to repla
e a de�ned 
on
ept in a 
on
ept des
ription only if examination

of that part of the des
ription is ne
essary. Lazy unfolding unfolds all de�ned


on
epts appearing on the top-level of the 
on
ept des
ription under 
onsider-

ation while de�ned 
on
epts on deeper role-levels remain un
hanged as long as

possible.
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When 
omputing the l
s the main bene�t of lazy unfolding is that in some


ases de�ned 
on
epts 
an be used dire
tly in the l
s 
on
ept des
ription. If,

for example a de�ned 
on
ept C appears in all input 
on
ept des
riptions on

the same role-level, the 
on
ept de�nition of C does not need to be pro
essed,

but C 
an be inserted into the l
s dire
tly, see [3℄ for details. In the 
ase of

approximation, however, this e�e
t of lazy unfolding 
an not be utilized even

if a de�ned 
on
ept is obviously 
ommon to all disjun
ts. For example, in

(A u C) t (C u (:B)) the 
on
ept name C 
annot be used dire
tly as a name

in the approximation be
ause the ALC-
on
ept des
ription C stands for must

be approximated. Thus unfolding a 
on
ept 
ompletely 
an in prin
iple not be

avoided for approximation.

The double-exponential time 
omplexity of the approximation algorithm,

however, suggests another approa
h to optimization. Instead of approximating

an input 
on
ept C as a whole a signi�
ant amount of time 
ould be saved by

splitting C into its 
onjun
ts and approximating them separately. If, for in-

stan
e, C 
onsists of two 
onjun
ts of size n then the approximation of C takes

some a

b

2n

steps while the 
onjun
t-wise approa
h would just take 2a

b

n

. Unfor-

tunately, splitting an arbitrary input 
on
ept at 
onjun
tions leads to in
orre
t

approximations, as examples show [4℄. In the following se
tion we will there-

fore introdu
e a 
lass of so-
alled ni
e ALC-
on
epts for whi
h the 
onjun
t-wise

approximation still produ
es the 
orre
t result.

3.1 Ni
e Con
epts

In the following we assume that all 
on
ept des
riptions are unfolded and in

NNF. For an ALC-
on
ept des
ription C and i 2 N the quantor set Q

r

(C; i)

denotes the set of quantors used on the role-level i of C (referring to role r).

Hen
e, for 0 � i � rd(C) the quantor set Q

r

(C; i) is a nonempty subset of

f8; 9g. Similarly, the name set N

r

(C; i) denotes the atomi
 
on
epts used on a

spe
i�
 role-level. Formally, Q and N are de�ned as follows.

De�nition 4 Let C := t

k

i=1

C

i

be an ALC-
on
ept des
ription in ALC-normal

form. For d 2 N, the sets Q

r

(C; d) and N

r

(C; d) are indu
tively de�ned by:

� Q

r

(C; 0) := f9 j

k

S

i=1

ex

r

(C

i

) 6= ;g [ f8 j u

k

i=1

val

r

(C

i

) 6� >g

N

r

(C; 0) :=

k

S

i=1

prim(C

i

)

� Q

r

(C; d+ 1) :=

k

S

i=1

S

C

0

2ex

r

(C

i

)

Q

r

(C

0

; d) [

k

S

i=1

Q

r

(val

r

(C

i

); d)

N

r

(C; d+ 1) :=

k

S

i=1

S

C

0

2ex

r

(C

i

)

N

r

(C

0

; d) [

k

S

i=1

N

r

(val

r

(C

i

); d).
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Condition 1 Condition 2

C D C D

8

9

:A! A�

Figure 2: What ni
e 
on
epts look like

For a 
on
ept C not in ALC-normal form, Q and N are de�ned in terms of

the ALC-normal form of C. For example the unfolded 
on
ept C = (9r:(AuB)u

8r:(D t (9r::E))) has the set of quantors Q

r

(C; 0) = f8; 9g, Q

r

(C; 1) = f9g

and Q

r

(C; i) = ; for i � 2. For the name set, we have N(C; 0) = ;, N(C; 1) =

fA;B;Dg, and N(C; 2) = f:Eg.

We are now ready to spe
ify in detail what ni
e 
on
epts are. In general,

an approximation approx

ALE

(C uD) 
annot be split at the 
onjun
tion be
ause

of possible intera
tions between existential and value restri
tions on the one

hand and in
onsisten
ies indu
ed by negation on the other. For example, the

approximation approx

ALE

(9r:>u(8r:At9r:A)) yields 9r:A while the split version

approx

ALE

(9r:>) u approx

ALE

(8r:A t 9r:A) only produ
es 9r:>. Similarly, the


onjun
tion A u (:A tB) 
annot be approximated separately.

We now 
all those 
on
epts ni
e for whi
h this simpli�ed strategy still pro-

du
es the 
orre
t result and for whi
h a simple synta
ti
 dis
rimination rule

exists. Firstly, the role quantors o

urring in ni
e 
on
epts are restri
ted to one

type per role level. Hen
e, on every role level of the syntax tree of a ni
e 
on
ept

either no 8-restri
tions or no 9-restri
tions o

ur. Se
ondly, a 
on
ept name and

its negation may not o

ur on the same same level of the syntax tree of a ni
e


on
ept. Consider Figure 2 for an illustration of these rules.

Formally, we 
an de�ne ni
e 
on
epts by means of the synta
ti
al operators

from De�nition 4.

De�nition 5 Let C be an ALC-
on
ept des
ription in NNF. Then C is ni
e i�

for every d 2 N it holds that

1. jQ

r

(C; d)j � 1 and

2. N

r

(C; d) does not 
ontain a 
on
ept name and its negation.

It remains to be shown that ni
e 
on
epts as de�ned above in fa
t have the

desired property. In preparation for this we �rstly present a simple set-theoreti


result whi
h later on will allow us to redu
e the number of existential restri
tions


omputed in an approximation of a ni
e 
on
ept.
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Lemma 6 Let m;n 2 N. For every i 2 f1; : : : ; mg and j 2 f1; : : : ; ng, let A

i

and B

j

be arbitrary �nite sets, let U

ij

:= A

i

[ B

j

, and let u

ij

2 U

ij

. Denote by

U the set of all u

ij

, i.e., U := fu

ij

j 1 � i � m; 1 � j � ng. Then one of the

following 
laims holds: either, for every i there exist elements a

i

2 A

i

with fa

i

j

1 � i � mg � U ; or, for every j there exist b

j

2 B

j

with fb

j

j 1 � j � ng � U .

For all j 2 f1; : : : ; mg and all j 2 f1; : : : ; ng 
onsider arbitrary u

ij

2 U

ij

.

Assume that the se
ond 
laim for the sets B

1

; : : : ; B

n

does not hold. Then there

is one j

0

with B

j

0

\ U = ;, otherwise b

j

0


ould be 
hosen from this interse
tion

to satisfy the 
laim. Sin
e u

ij

0

2 A

i

[B

j

0

for all i it follows that u

ij

0

2 A

i

for all

i, satisfying the �rst 
laim for A

1

; : : : ; A

m

.

The 
hoi
e of sets in the unions A

i

[B

j

in the above lemma 
orresponds to tu-

ples in the produ
t fA

1

; : : : ; A

m

g�fB

1

; : : : ; B

n

g. The 
laim 
an be generalized to

n-ary produ
ts where every union 
orresponds to a tuple from fS

11

; : : : ; S

1k

1

g�

� � � � fS

n1

; : : : ; S

nk

n

g. The following lemma provides the more general result.

Lemma 7 For every 1 � i � n and 1 � j

i

� k

i

, let S

ij

i

be an arbitrary set. For

every tuple

�

t in the set T := f1; : : : ; k

1

g � � � � � f1; : : : ; k

n

g, denote by U

�

t

the

union

S

n

i=1

S

i

�

t(i)

(with

�

t(i) denoting the ith 
omponent of

�

t). For every

�

t 2 T ,

let u

�

t

2 U

�

t

. Let U := fu

�

t

j

�

t 2 Tg. Then there exists an index i 2 f1; : : : ; ng

and elements s

ij

2 S

ij

for 1 � j � k

i

su
h that the set fs

ij

j 1 � j � k

i

g is a

subset of U.

Consider arbitrary elements u

�

t

. Assume that no index i has the 
laimed property.

Then for every i there exists some j

0

i

su
h that S

ij

0

i

\U = ;, otherwise appropriate

elements from every S

ij

0

i


ould be found. Consider the union U

�

t

where

�

t(i) = j

0

i

for every i. Sin
e u

�

t

2 U

�

t

it holds that there is some i

0

with u

�

t

2 S

i

0

j

0

i

0

. Clearly,

u

�

t

2 U , sin
e

�

t 2 T . But then S

i

0

j

0

i

0

\U 6= ;, in 
ontradi
tion to the assumption.

By means of the above lemma we 
an show that the least 
ommon subsumer

of sets of ni
e ALE-
on
epts of a 
ertain form 
an be simpli�ed. The following

example motivates the relevant 
ase. The ALC-normal form of a ni
e 
on
ept of

the form (C

1

t � � � t C

m

) u (D

1

t � � � t D

n

) with no further disjun
tion on the

toplevel of all C

i

and D

j

results in a disjun
tion of the form t

i;j

C

i

uD

j

. Assume

that all sub
on
epts C

i

, D

j

have only existential restri
tions on toplevel. For the

approximation of this 
on
ept, 
omputing the resulting existential restri
tions

requires to 
ompute the least 
ommon subsumer of (the approximation of) every


ombination of existential restri
tions from the relevant disjun
ts. Thus, for

every pair (i; j), every existential restri
tion E

ij

2 ex

r

(C

i

uD

j

) is approximated,

then the l
s over all fapprox

ALE

(E

ij

) j i; jg is 
omputed. Sin
e ex

r

(C

i

uD

j

) equals

the union ex

r

(C

i

)[ ex

r

(D

j

), the previous lemma 
an be employed to restri
t the

l
s to a mu
h smaller set. The following lemma provides the exa
t proof.
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Lemma 8 For 1 � i � 2, let C

i

and D

i

be ALE-
on
ept des
riptions su
h that

C

1

u C

2

u D

1

u D

2

is a ni
e 
on
ept. Then it holds that l
sfC

i

u D

j

j i; j 2

f1; 2gg � l
sfC

1

; C

2

g u l
sfD

1

; D

2

g.

Proof by indu
tion over the maximum role-depth d of all C

i

, D

j

.

� d = 0

Then C

i

= u

A2prim(C

i

)

A and D

j

= u

A2prim(D

j

)

A for all i; j. The de�-

nition of ni
e guarantees that no in
onsisten
ies 
an be introdu
ed by a


ombination of an atomi
 
on
ept and its negation. Hen
e, the l
sfC

i

u

D

j

j i; j 2 f1; 2gg then yields u

A2S

A where S is the interse
tion of all

sets of primitive 
on
epts of the form prim(C

i

u D

j

). Hen
e, S equals

T

fprim(C

i

) [ prim(D

j

) j i; j 2 f1; 2gg. By distributing the interse
tion

over the union, S 
an be expressed as the union (prim(C

1

) \ prim(C

2

)) [

(prim(D

1

)\ prim(D

2

)). The 
onjun
tion u

A2S

A is therefore equivalent to

u

A2prim(C

1

)\prim(C

2

)

A uu

A2prim(D

1

)\prim(D

2

)

A. By de�nition of the l
s, this


onjun
tion is equivalent to the 
onjun
tion of l
sfC

i

j 1 � i � 2g and

l
sfD

j

j 1 � j � 2g.

� d > 0

Depending on the role quantors on the outermost role level two 
ases are

distinguished. In the �rst 
ase, all C

i

and D

i

are of the formu

A2prim(C

i

)

Au

8r:C

0

i

and u

A2prim(D

j

)

A u 8r:D

0

j

, respe
tively. Then, l
sfC

i

u D

j

j i; j 2

f1; 2gg is de�ned as

u

A2S

A u 8r:l
sfC

0

i

uD

0

j

j i; j 2 f1; 2gg,

where S again equals

T

fprim(C

i

) [ prim(D

j

) j i; j 2 f1; 2gg. Analogously

to the 
ase of d = 0, the set S 
an be expressed as the union of prim(C

1

)\

prim(C

2

) and prim(D

1

) \ prim(D

2

). Due to the indu
tion hypothesis the

l
s in the value restri
tion is equivalent to l
sfC

i

j 1 � i � 2g u l
sfD

j

j

1 � j � 2g. Sin
e a 
onjun
tion in a value restri
tion may be split into a


onjun
tion of value restri
tions, we obtain

u

A2prim(C

1

)\prim(C

2

)

A u u

A2prim(D

1

)\prim(D

2

)

A

u 8r:l
sfC

0

i

j 1 � i � 2g u 8r:l
sfD

0

j

j 1 � j � 2g.

A

ording to the de�nition of the l
s, this expression 
an be written as

l
sfC

i

j 1 � i � 2g u l
sfD

j

j 1 � j � 2g.

In the se
ond 
ase, all C

i

andD

j

are of the formu

A2prim(C

i

)

Auu

C

0

i

2ex

r

(C

i

)

9r:C

0

i

and u

A2prim(D

j

)

Auu

D

0

j

2ex

r

(D

j

)

9r:D

0

j

, respe
tively. The least 
ommon sub-
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sumer l
sfC

i

uD

j

j i; j 2 f1; 2gg then yields

u

A2S

A

u u

E

1

2 ex

r

(C

1

) [ ex

r

(D

1

),

E

2

2 ex

r

(C

1

) [ ex

r

(D

2

),

E

3

2 ex

r

(C

2

) [ ex

r

(D

1

),

E

4

2 ex

r

(C

2

) [ ex

r

(D

2

)

l
sfE

i

j 1 � i � 4g

with S as before. It is shown in Lemma 7 that every set fE

i

j 1 � i � 4g

in the above 
onjun
tion is a superset of a set either of the form fC

0

1

; C

0

2

g

with all C

0

i

2 ex

r

(C

i

) or of the form fD

0

1

; D

0

2

g with all D

0

j

2 ex

r

(D

j

).

Due to the monotoni
ity of the l
s (w.r.t. subsumption) every expression

l
sfE

i

j 1 � i � 4g is therefore more general than either l
sfC

0

1

; C

0

2

g

or l
sfD

0

1

; D

0

2

g for appropriate existential restri
tions C

0

1

; C

0

2

or D

0

1

; D

0

2

.

Conversely, every set of the form fC

0

1

; C

0

2

g and fD

0

1

; D

0

2

g o

urs in the

above 
onjun
tion as one 
hoi
e of E

i

, 1 � i � 4. Hen
e, the above

existential restri
tions 
an be simpli�ed, yielding

u

A2S

A

u u

E

1

2ex

r

(C

1

)

u

E

2

2ex

r

(C

2

)

l
sfE

1

; E

2

g

u u

E

3

2ex

r

(D

1

)

u

E

4

2ex

r

(D

2

)

l
sfE

3

; E

4

g.

Analogously to the previous 
ase the set S of atomi
 
on
epts 
an be

written as a union, yielding the following 
onjun
tion

u

A2prim(C

1

)\prim(C

2

)

A u u

A2prim(D

1

)\prim(D

2

)

A

u u

E

1

2ex

r

(C

1

)

u

E

2

2ex

r

(C

2

)

l
sfE

1

; E

2

g

u u

E

3

2ex

r

(D

1

)

u

E

4

2ex

r

(D

2

)

l
sfE

3

; E

4

g.

By de�nition of the l
s, this is equivalent to

l
sfC

i

j 1 � i � 2g u l
sfD

j

j 1 � j � 2g.

The above 
laim 
an again be generalized to larger 
onjun
tions. Let 1 �

i � n and 1 � j � k

i

and let C

ij

be ALE-
on
epts whose overall 
onjun
tion

is ni
e. For every tuple

�

t 2 f1; : : : ; k

1

g � � � � � f1; : : : ; k

n

g =: T denote by C

�

t

the 
onjun
tion u

n

i=1

C

i

�

t(i)

. Then the least 
ommon subsumer l
sfC

�

t

j

�

t 2 Tg is

equivalent to the 
onjun
tion u

n

i=1

l
sfC

ij

j 1 � j � k

i

g. The proof is analogous

to the one shown above.
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We are now ready to prove that approximating ni
e 
on
epts, as de�ned in

De�nition 5, 
an be simpli�ed to a 
onjun
tion of approximations. For the sake

of simpli
ity we restri
t our attention to binary 
onjun
tions. The proof for

n-ary 
onjun
tions is analogous.

Theorem 9 Let C uD be a ni
e ALC-
on
ept des
ription. Then approx

ALE

(Cu

D) � approx

ALE

(C) u approx

ALE

(D).

Proof by indu
tion over the sum n of the nesting depths of u and t on every

role-level in C and D.

� n = 0

Then no 
onjun
tion or disjun
tion o

urs at any position in C or D,

implying that C and D are ni
e ALE-
on
epts. Hen
e, approx

ALE

(C) � C

and approx

ALE

(D) � D. Sin
e C u D is also an ALE-
on
ept, we also

know that approx

ALE

(CuD) � C uD. Consequently, approx

ALE

(C uD) �

approx

ALE

(C) u approx

ALE

(D).

� n > 0

Due to the de�nition of ni
e, three 
ases have to be distinguished.

1. C = u

k

i=1

C

i

and D = u

l

j=1

D

j

Then the approximation under 
onsideration is approx

ALE

((u

k

i=1

C

i

)u(u

l

j=1

D

j

))

whi
h 
an be 
attened. The nesting depth of the argument 
on
ept thus

has de
reased by 1 and we still have a ni
e 
on
ept. A

ording to the

indu
tion hypothesis, the result is therefore equivalent to

k

u

i=1

approx

ALE

(C

i

) u

l

u

j=1

approx

ALE

(D

j

)

whi
h in turn is equivalent to

approx

ALE

(

k

u

i=1

C

i

) u approx

ALE

(

l

u

j=1

D

j

).

2. C = t

k

i=1

C

i

and D = t

l

j=1

D

j

To 
ompute approx

ALE

(CuD), the approximation algorithm at �rst trans-

forms the input 
on
ept into ALC-normal form. The ALC-normal form of

C is of the form t

k

0

i

0

=1

C

0

i

0

with no disjun
tion on the topmost role-level of

every C

0

i

0

. Similarly, the ALC-normal form of D yields an expression of the

form t

l

0

j

0

=1

D

0

j

0

. Hen
e, the ALC-normal form of C uD is of the form

t

1�i

0

�k; 1�j

0

�l

0

(C

0

i

0

uD

0

j

0

)

The approximation approx

ALE

(C uD) then by de�nition equals

l
sfapprox

ALE

(C

0

i

0

uD

0

j

0

) j 1 � i

0

� k

0

; 1 � j

0

� l

0

g.
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As the maximum nesting depth in all of the o

urring approximation ex-

pressions has de
reased, we may exploit the indu
tion hypothesis, obtain-

ing l
sfapprox

ALE

(C

0

i

0

) u approx

ALE

(D

0

j

0

)) j 1 � i

0

� k

0

; 1 � j

0

� l

0

g. A
-


ording to Lemma 8, the l
s 
an be split into two l
s-expressions of the

form

l
sfapprox

ALE

(C

0

i

0

) j 1 � i

0

� k

0

g u l
sfapprox

ALE

(D

0

j

0

) j 1 � j

0

� l

0

g

whi
h by de�nition of the approximation are equivalent to the 
onjun
tion

of two approximations, namely

approx

ALE

(

k

0

t

i

0

=1

C

0

i

0

) u approx

ALE

(

l

0

t

j

0

=1

D

0

j

0

),

whi
h is equivalent to approx

ALE

(C)u approx

ALE

(D), i.e., the separate ap-

proximation of the input 
on
epts.

3. C = t

k

i=1

C

i

and D = u

l

j=1

D

j

Similar to the previous 
ase. The ALC-normal form of the input 
on
ept

yields an expression of the form t

k

0

i

0

=1

(C

i

u u

l

0

j

0

=1

C

0

j

0

). The approxima-

tion approx

ALE

(C u D) therefore equals l
sfapprox

ALE

(C

0

i

0

u u

l

0

j

0

=1

D

0

j

0

)) j

1 � i

0

� k

0

g. A

ording to the indu
tion hypothesis the approximation


an be split into l
sfapprox

ALE

(C

0

i

0

) u approx

ALE

(u

l

0

j

0

=1

D

0

j

0

) j 1 � i

0

� k

0

g.

Lemma 8 states that this l
s is equivalent to

l
sfapprox

ALE

(C

0

i

0

) j 1 � i

0

� k

0

g u l
sfapprox

ALE

(

l

0

u

j

0

=1

D

0

j

0

)) j 1 � i

0

� k

0

g.

The �rst l
s-expression is equivalent to the approximation of a disjun
tion

while the se
ond one 
ontains k

0

equal 
on
epts. We thus obtain

approx

ALE

(

k

0

t

i

0

=1

C

0

i

0

) u approx

ALE

(

l

0

u

j

0

=1

D

0

j

0

)).

Hen
e, we end up with the 
onjun
tion of the separate approximations

approx

ALE

(C) u approx

ALE

(D).

Due to Theorem 9 it is now possible to split the 
omputation of approxi-

mations into independent parts. Although this does of 
ourse not 
hange the


omplexity 
lass of the approximation algorithm it is still a signi�
ant bene�t

for pra
ti
al appli
ations. The improved approximation algorithm is displayed

in Figure 3. The algorithm requires the unfolded input 
on
ept to be in NNF.

In the �rst step the 
-approx

ALE

fun
tion 
he
ks whether the approximation is

trivial. If it is not the next step is to 
he
k whether the 
on
ept is ni
e. For ni
e
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Input: unfolded ALC-
on
ept des
ription C already in NNF

Output: upper ALE-approximation of C


-approx

ALE

1. If C � ?, then 
-approx

ALE

(C) := ?;

if C � >, then 
-approx

ALE

(C) := >

2. If ni
e-
on
ept-p(C) then return 
-approx

ALE

(C) := 
-ni
e-approx

ALE

(C)

3. Otherwise, transform the top-level of C into ALC-normal form C

1

t� � �tC

n

and return


-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u 8r:l
sf
-approx

ALE

(val

r

(C

i

)) j 1 � i � ng u

u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:l
sf
-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng


-ni
e-approx

ALE

1. If C � ?, then 
-ni
e-approx

ALE

(C) := ?;

if C � >, then 
-ni
e-approx

ALE

(C) := >

2. If C = C

1

u � � � u C

n

, then return


-ni
e-approx

ALE

(C) := u

n

i=1


-ni
e-approx

ALE

(C

i

)

3. Otherwise, return


-ni
e-approx

ALE

(C) :=

u

A2

T

n

i=1

prim(C

i

)

A u 8r:l
sf
-ni
e-approx

ALE

(val

r

(C

i

)) j 1 � i � ng u

u

(C

0

1

;:::;C

0

n

)2ex

r

(C

1

)�����ex

r

(C

n

)

9r:l
sf
-ni
e-approx

ALE

(C

0

i

u val

r

(C

i

)) j 1 � i � ng

Figure 3: The improved algorithm 
-approx

ALE

and 
-ni
e-approx

ALE

.


on
epts the 
-ni
e-approx

ALE

fun
tion is invoked. For all other 
on
epts the

ALC-normal form is 
omputed lazily, i.e., the 
onjun
tions are distributed over

the disjun
tions only for the 
urrent top-level. Then the 
-approx

ALE

algorithm

pro
eeds as before. The 
-ni
e-approx

ALE

fun
tion for ni
e 
on
epts works simi-

lar. Having treated the trivial 
ases, the se
ond step is to test if the 
on
ept is a


onjun
tion. In that 
ase the approximation is obtained by splitting the 
on
ept


onjun
t-wise and making a re
ursive 
all for ea
h 
onjun
t. For all other ni
e


on
epts the approximation is 
omputed as in 
-approx

ALE

, besides the re
ursive


alls refer to 
-ni
e-approx

ALE

.
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Observe that the test 
ondition for ni
e 
on
epts 
an be 
he
ked in linear

time on
e the 
on
ept des
ription is unfolded and in NNF. Sin
e unfolding and

the transformation into NNF are always ne
essary before applying 
-approx

ALE

,

the test for the ni
e-property adds very little extra 
osts to the approximation.

Moreover, the 
onjun
t-wise approximation of ni
e 
on
epts C of the form

(C

1

tD

1

) u � � � u (C

n

tD

n

) avoids the exponential blow-up 
aused by the ALC-

normalization of C. Hen
e, this optimization improves the 
omputation times

for many 
on
epts whi
h lead the standard algorithm to perform parti
ularly

badly.

3.2 Approximating Ni
e Con
epts in TBoxes

If an entire ALC-TBox is to be translated into anALE-TBox, the 
on
ept des
rip-

tion from the right-hand side of ea
h 
on
ept de�nition has to be repla
ed by

its approximation. For pra
ti
al appli
ations it is obviously not feasible to per-

form su
h a translation in a naive way, simply be
ause of the size of appli
ation

TBoxes. The idea for optimizing this pro
edure is to re-use the approxima-

tion of a de�ned 
on
ept when approximating 
on
ept des
riptions that in turn

make use of this de�ned 
on
ept. More pre
isely, if we have already obtained

the approximation of C and want for example to 
ompute the approximation of

(Du9r:C), we would like to be able to insert the 
on
ept des
ription approx(C)

dire
tly into the right pla
e in the 
on
ept des
ription of approx(Du9r:C). Un-

fortunately, this approa
h does not work for arbitrary ALC-
on
ept des
riptions

due to possible intera
tions between di�erent parts of the 
on
ept des
ription.

Ni
e 
on
epts, however, are de�ned to rule out this kind of intera
tion. Hen
e,

besides speeding-up the 
omputation of a single approximation, the property of

being a ni
e 
on
ept also is a prerequisite for 
a
hing and the re-use of already


omputed approximations. For example, if the de�ned 
on
epts C

1

; C

2

; C

3

from

the following TBox (with A;B and D being primitive 
on
epts)

T = f C

1

= (9r::A) t (9r:B);

C

2

= 9r:(8r:D t :E) u C

1

u :B;

C

3

= : (8r:9r:(:D u A) t :C

1

t :C

2

) g

are to be approximated and C

1

is approximated �rst, then this 
on
ept des
rip-

tion 
an be re-used in subsequent approximations. If unfolded and transformed

into NNF the 
on
epts C

2

and C

3

are ni
e 
on
epts. So the approximation of

C

2

is the 
onjun
tion of approx(9r:(8r:D t:E)) and approx(C

1

) and approx(B),

where the already 
omputed approximation of C

1


an be employed dire
tly. For

C

3

we 
an re-use both approximations of C

1

and C

2

dire
tly and have only to


ompute the approximation of 9r:8r:(:Dt:A). Thus, the 
ost for approximat-

ing the entire TBox is redu
ed heavily.
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4 Con
lusion and Future Work

In this report we have presented some �rst steps towards optimizing the 
om-

putation of approximations. The main idea is to identify 
on
epts that 
an be

de
omposed into parts whi
h then 
an be approximated independently. These

so 
alled ni
e 
on
epts are stru
tured in su
h a way that the top-level 
onjun
ts


annot intera
t with one another therefore ea
h 
onjun
t 
an be approximated

separately. Dete
ting ni
e 
on
epts and approximating ea
h of their 
onjun
ts

independently should be espe
ially powerful in the 
ontext of translating entire

ALC-TBoxes into ALE-TBoxes be
ause it enables the dire
t re-use of already


omputed approximations and 
a
hing. Unfortunately, the 
onditions for ni
e


on
epts are very stri
t.

It is an open problem whether the rather stri
t 
onditions for ni
e 
on
epts


an be relaxed. To determine if independent approximation of ni
e 
on
epts is

a real bene�t for pra
ti
al appli
ations, requires an implementation of modular

approximation. Moreover, it is unknown if ni
e 
on
epts o

ur frequently in

appli
ation TBoxes.

Another open problem is whether the given 
onditions for ni
e 
on
epts 
an

be extended to the 
ase where ALCN -
on
ept des
riptions are approximated by

ALEN -
on
ept des
riptions.
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