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Abstract

Motivated by medical terminology applications, we investigate the de-

cidability of an expressive and prominent DL, SHIQ, extended with role

inclusion axioms of the form R ◦ S ⊑ T . It is well-known that a naive

such extension leads to undecidability, and thus we restrict our attention

to axioms of the form R ◦ S ⊑ R or S ◦ R ⊑ R, which is the most im-

portant form of axioms in the applications that motivated this extension.

Surprisingly, this extension is still undecidable. However, it turns out

that restricting our attention further to acyclic sets of such axioms, we

regain decidability. We present a tableau-based decision procedure for

this DL and report on its implementation, which behaves well in practise

and provides important additional functionality in a medical terminology

application.
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1 Motivation

The description logic (DL) SHIQ [Horrocks et al., 2000; Horrocks and Sattler,
2002] is an expressive knowledge representation formalism that extends ALC
[Schmidt-Schauß and Smolka, 1991] (a notational variant of the multi modal
logic K [Schild, 1991]) with qualifying number restrictions, inverse roles, role
inclusion axioms (RIAs) R ⊑ S, and transitive roles. The development of
SHIQ was motivated and inspired by several applications, one of which was
the representation of knowledge about complex physically structured domains
found, e.g., in chemical engineering [Sattler, 2000] and medical terminology
[Rector and Horrocks, 1997].

Although SHIQ allows many important properties of such domains to be
captured (e.g., transitive and inverse roles), one extremely useful feature that
it cannot express is the “propagation” of one property along another property
[Padgham and Lambrix, 1994; Rector, 2002; Spackman, 2000]. E.g., it may be
useful to express the fact that certain locative properties are transfered across
certain partonomic properties so that a trauma or lesion located in a part of a
body structure is recognised as being located in the body structure as a whole.
This enables highly desirable inferences such as a fracture of the neck of the
femur being inferred to be a kind of fracture of the femur, or an ulcer located
in the gastric mucosa being inferred to be a kind of stomach ulcer.

The importance of these kinds of inference, particularly in medical terminol-
ogy applications, is illustrated by the fact that the Grail DL [Rector et al., 1997],
which was specifically designed for use with medical terminology, is able to rep-
resent these kinds of propagation (although it is quite weak in other respects).
Moreover, in another medical terminology application using the comparatively
inexpressive DL ALC, a rather complex “work around” is performed in order to
represent similar propagations [Schulz and Hahn, 2001].1 Similar expressiveness
was also provided in the CycL DL by the transfersThro statement [Lenat and
Guha, 1989].

It is quite straightforward to extend SHIQ so that this kind of propagation
can be expressed: simply allow for role inclusion axioms of the form R ◦S ⊑ P ,
which then enforces all models I to interpret the composition of RI with SI as
a sub-relation of P I . E.g., the above examples translate into

hasLocation ◦ isDivisionOf⊑ hasLocation,

which implies that

Fracture⊓ ∃hasLocation.(Neck ⊓ ∃isDivisionOf.Femur)

is subsumed by/a specialization of

Fracture⊓ ∃hasLocation.Femur

Unfortunately, this extension leads to the undecidability of the interesting infer-
ence problems; see [Wessel, 2001] for an undecidability proof and [Baldoni, 1998;

1In this approach, so-called SEP-triplets are used both to compensate for the absence of

transitive roles in ALC, and to express the propagation of properties across a distinguished

“part-of” role.
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Baldoni et al., 1998; Demri, 2001] for the closely related family of Grammar Log-
ics. On closer inspection of the problem, we observe that only RIAs of the form
R ◦ S ⊑ S or S ◦ R ⊑ S are required in order to express propagation. Surpris-
ingly, it turns out that SHIQ extended with this restricted form of RIAs is still
undecidable. Decidability can be regained, however, by further restricting the
set of RIAs to be acyclic. This additional restriction does not seem too severe:
acyclic sets of RIAs should suffice for many applications, and cycles in RIAs
may even be an indicator of modeling flaws [Rector, 2002]. We will call this
decidable logic RIQ.

Here, we present the above undecidability result and prove the decidability
of SHIQ with acyclic RIAs via a tableau-based decision procedure for the
satisfiability of concepts. The algorithm works by transforming concepts of the
form ∀R.C, where R is a role, into concepts of the form ∀A.C, where A is a
non-deterministic finite automaton (NFA). These automata are derived from a
set of RIAs R by first unfolding R into a set of implications exp(R) between
regular expressions and roles, and then transforming the regular expressions into
automata. The algorithm is of the same complexity as the one for SHIQ—in the
size of exp(R) and the length of the input concept—but, unfortunately, exp(R)
is exponential in R. We present a syntactic restriction that avoids this blow-up;
investigating whether this blow-up can be avoided in general will be part of
future work. Finally, in order to evaluate the practicability of this algorithm,
we have extended the DL system FaCT [Horrocks, 1998] to deal with RIQ. We
discuss how the properties of NFAs are exploited in the implementation, and we
present some preliminary results showing that the performance of the extended
system is comparable with that of the original, and that it is able to compute
inferences of the kind mentioned above w.r.t. the well known Galen medical
terminology knowledge base [Rector and Horrocks, 1997; Horrocks, 1998].

2 Preliminaries

In this section, we introduce the DL SH+IQ. This includes the definition of
syntax, semantics, and inference problems.

Definition 1 Let C be a set of concept names and R a set of role names. The
set of roles is R ∪ {R− | R ∈ R}. A role inclusion axiom is an expression of
one of the following forms:

R1 ⊑ R2,

R1 ◦ R2 ⊑ R1, or

R1 ◦ R2 ⊑ R2,

for roles Ri (each of which can be inverse). A generalised role hierarchy is a set
of role inclusion axioms.

An interpretation I = (∆I , ·I) associates, with each role name R, a binary
relation RI ⊆ ∆I × ∆I . Inverse roles are interpreted as usual, i.e.,
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(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} for each role R ∈ R.
An interpretation I is a model of a generalised role hierarchy R if it satisfies
each inclusion assertion in R, i.e., if

RI
1 ⊆ RI

2 for each R1 ⊑ R2 ∈ R and
RI

1 ◦ RI
2 ⊆ RI

3 for each R1 ◦ R2 ⊑ R3 ∈ R,
where ◦ stands for the composition of binary relations.

We did not introduce transitive role names since adding R ◦ R ⊑ R to the
generalised role hierarchy is equivalent to saying that R is a transitive role.

To avoid considering roles such as R−−, we define a function Inv on roles
such that Inv(R) = R− if R is a role name, and Inv(R) = S if R = S−.

Obviously, if S ◦ R ⊑ S ∈ R (R ◦ S ⊑ S ∈ R or R ⊑ S ∈ R), then each
model of R also satisfies Inv(R) ◦ Inv(S) ⊑ Inv(S) (Inv(S) ◦ Inv(R) ⊑ Inv(S) and
Inv(R) ⊑ Inv(S)). Thus, in the following, we assume that a generalised role
hierarchy always contains both “directions” of a role inclusion axiom.

For a generalised role hierarchy R, we define the relation ⊑* to be the
transitive-reflexive closure of ⊑ over R. A role R is called a sub-role (resp.
super-role) of a role S if R ⊑* S (resp. S ⊑* R). Two roles R and S are equivalent
(R ≡ S) if R ⊑* S and S ⊑* R.

Now we are ready to define syntax and semantics of SH+IQ-concepts.

Definition 2 A role is simple if it does not have implied sub-roles, i.e., a simple
role nor any of its sub-roles (or their inverse) occur on the right hand side of a
role inclusion R ◦ S ⊑ T .

The set of SH+IQ-concepts is the smallest set such that

• every concept name is a concept, and,

• if C, D are concepts, R is a role (possibly inverse), S is a simple role
(possibly inverse) , and n is a nonnegative integer, then C ⊓ D, C ⊔ D,
¬C, ∀R.C, ∃R.C, (>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C ⊑ D
for two SH+IQ-concepts C and D. A terminology is a set of GCIs.

An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain of
I, and a valuation ·I which maps every concept to a subset of ∆I and every
role to a subset of ∆I × ∆I such that, for all concepts C, D, roles R, S, and
non-negative integers n, the following equations are satisfied, where ♯M denotes
the cardinality of a set M :

(C ⊓ D)I = CI ∩ DI (conjunction)
(C ⊔ D)I = CI ∪ DI (disjunction)

(¬C)I = ∆I \ CI (negation)
(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI} (exists restriction)
(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI} (value restriction)

(>nR.C)I = {x | ♯{y.〈x, y〉 ∈ RI and y ∈ CI} > n} (at least restriction)
(6nR.C)I = {x | ♯{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n} (at most restriction)
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An interpretation I is a model of a terminology T (written I |= T ) iff
CI ⊆ DI for each GCI C ⊑ D in T .

A concept C is called satisfiable iff there is an interpretation I with CI 6=
∅. A concept D subsumes a concept C (written C ⊑ D) iff CI ⊆ DI holds
for each interpretation. Two concepts are equivalent (written C ≡ D) if they
mutually subsume each other. The above inference problems can be defined w.r.t.
a generalised role hierarchy R and/or a terminology T in the usual way, i.e.,
by replacing interpretation with model of R and/or T .

For an interpretation I, an element x ∈ ∆I is called an instance of a concept
C iff x ∈ CI.

Some remarks are in order here: please note that number restrictions (>nR.C)
and (6nR.C) are restricted to simple roles (intuitively these are (possibly in-
verse) roles that are not implied by others). The reason for this restriction is
that satisfiability and subsumption of SHIQ-concepts without this restriction
are undecidable [Horrocks et al., 1999], even without inverse roles and with un-
qualifying number restrictions only (these are number restrictions of the form
(>nR.⊤) and (6nR.⊤) for ⊤ an abbreviation for A ⊔ ¬A).

For DLs that are closed under negation, subsumption and (un)satisfiability
can be mutually reduced: C ⊑ D iff C ⊓ ¬D is unsatisfiable, and C is un-
satisfiable iff C ⊑ A ⊓ ¬A for some concept name A. It is straightforward to
extend these reductions to generalised role hierarchies and terminologies. In
contrast, the reduction of inference problems w.r.t. a terminology to pure con-
cept inference problems (possibly w.r.t. a role hierarchy), deserve special care:
in [Baader, 1991; Schild, 1991; Baader et al., 1993], the internalisation of GCIs
is introduced, a technique that realises exactly this reduction. For SH+IQ,
this technique only needs to be slightly modified. The following Lemma shows
how general concept inclusion axioms can be internalised using a “universal”
role U , that is, a transitive super-role of all roles occurring in T or R and their
respective inverses.

Lemma 1 Let C, D be concepts, T a terminology, and R a generalised role
hierarchy. We define

CT := ⊓
Ci⊑Di∈T

¬Ci ⊔ Di.

Let U be a role that does not occur in T , C, D, or R. We set

RU := R∪ {U ◦ U ⊑ U} ∪ {R ⊑ U, Inv(R) ⊑ U | R occurs in T , C, D, or R}.

• C is satisfiable w.r.t. T and R iff C ⊓ CT ⊓ ∀U.CT is satisfiable w.r.t.
RU .

• D subsumes C with respect to T and R iff C ⊓ ¬D ⊓ CT ⊓ ∀U.CT is
unsatisfiable w.r.t. RU .

The proof of Lemma 1 is similar to the ones that can be found in [Schild,
1991; Baader, 1991]. Most importantly, it must be shown that, (a) if a SH+IQ-
concept C is satisfiable with respect to a terminology T and a generalised role
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hierarchy R, then C, T have a connected model, i. e., a model where any two
elements are connect by a role path over those roles occurring in C and T , and
(b) if y is reachable from x via a role path (possibly involving inverse roles), then
〈x, y〉 ∈ UI . These are easy consequences of the semantics and the definition of
U .

Theorem 1 Satisfiability and subsumption of SH+IQ-concepts w.r.t. termi-
nologies and generalised role hierarchies are polynomially reducible to (un)sat-
isfiability of SH+IQ-concepts w.r.t. generalised role hierarchies.

2.1 Relationship with Grammar Logics

Grammar logics [Farinãs del Cerro and Penttonen, 1988] are a class of propo-
sitional multi modal logics where the accessibility relations are “axiomatised”
through a grammar. More precisely, for σi, τj modal parameters, the production
rule σ1 . . . σm → τ1 . . . τn can be viewed as an abbreviation for the axioms

[σ1] . . . [σm]p ⇒ [τ1] . . . [τn]p,

or as being a notational variant for the role inclusion axiom

τ1 ◦ . . . ◦ τn ⊑ σ1 ◦ . . . ◦ σm.

Analogously to the description logic case, the semantics of a grammar logic
is defined by taking into account only those frames/relational structures that
“satisfy the grammar”.

Now grammars are traditionally organised in (refinements of) the Chomsky
hierarchy (see any textbook on formal languages, e,g., [Hopcroft and Ullman,
1997]), which induces also classes of grammar logics, e.g., the class of con-
text free grammar logics is the class of those propositional multi modal logics
where the accessibility relations are axiomatised through a context free gram-
mar. Unsurprisingly, the expressiveness of the grammars influences the ex-
pressiveness of the corresponding grammar logics. It was shown that satisfia-
bility of regular grammar logics is ExpTime-complete [Demri, 2001], whereas
this problem is undecidable for context free grammar logics [Baldoni, 1998;
Baldoni et al., 1998]. The latter result is closely related to the undecidability
proof in [Wessel, 2001]. In this paper, we are concerned with

• grammars that are not regular, but we do not allow for arbitrary context-
free grammars (or any known normal forms thereof), and

• multi modal logics that provide a converse operator on modal parameters.
I.e., for σ a modal parameter, both [σ]ϕ and [σ−]ϕ are formulae of our
logic. Moreover, SH+IQ provides graded modalities that restrict the
number of accessible worlds, see, e.g., [Tobies, 2001; Kupferman et al.,
2002].
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For example, in our undecidability proof in Section 3, the main difficulty was to
develop a grammar that generates the language {(ab)n(cd)n | n ≥ 0} where each
production is of the form R → RS or R → SR. We were not able to construct
such a grammar, but used a grammar G such that the language generated by G,
when intersected with (ab)∗(cd)∗, equals {(ab)n(cd)n | n ≥ 0}. This grammar
G contains the four production rules

D → AD,
A → AC,
C → BC,
B → BD, A → a, . . . D → d

and can be found in four versions as the last axioms of RD in Figure 2,
where we use xi, yi, and their inverses instead of A, . . . , B.

2.2 Role value maps

The role inclusion axioms we investigate here are closely related to role value
maps [Brachman and Schmolze, 1985; Schmidt-Schauss, 1989], i.e., concepts of
the form R1 . . . Rm ⊑̇ S1 . . . Sn for Ri, Si roles. The semantics of these concepts
is defined as follows:

(R1 . . . Rm ⊑̇ S1 . . . Sn)I = {x ∈ ∆I | (R1 . . . Rm)I(x) ⊆ (S1 . . . Sn)I(x)},

where (R1 . . . Rm)I(x) denotes the set of those y ∈ ∆I that are reachable from
x via RI

1 ◦ . . . ◦ RI
m.

Thus the role inclusion axioms R◦S ⊑ T is equivalent to the general concept
inclusion axiom ⊤ ⊑ (RS ⊑̇ T ), i.e., both axioms have the same models. The
role value maps used to show the undecidability of KL-ONE [Schmidt-Schauss,
1989] are of a more general form than (RS ⊑ T ), i.e., it uses role chains of
unbounded length on both sides of the ⊑̇, and hence there is no straightforward
translation of the undecidability proof in [Schmidt-Schauss, 1989] to our logic.

3 SH+IQ is undecidable

Due to the syntactic restriction on role inclusion axioms, neither the undecid-
ability proof for ALC with context-free or linear grammars in [Baldoni, 1998;
Baldoni et al., 1998; Demri, 2001] nor the one for ALC with role boxes [Wes-
sel, 2001] can be adapted to prove undecidability of SH+IQ satisfiability. In
the following, we reduce the (undecidable) domino problem [Berger, 1966] to
SH+IQ satisfiability.

This problem asks whether, for a set of domino types, there exists a tiling of
an IN2 grid such that each point of the grid is covered with exactly one of the
domino types, and adjacent dominoes are “compatible” with respect to some
predefined criteria.
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Definition 3 A domino system D = (D, H, V ) consists of a non-empty set
of domino types D = {D1, . . . , Dn}, and of sets of horizontally and vertically
matching pairs H ⊆ D × D and V ⊆ D × D. The problem is to determine if,
for a given D, there exists a tiling of an IN × IN grid such that each point of
the grid is covered with a domino type in D and all horizontally and vertically
adjacent pairs of domino types are in H and V respectively, i.e., a mapping
t : IN × IN → D such that for all m, n ∈ IN, 〈t(m, n), t(m + 1, n)〉 ∈ H and
〈t(m, n), t(m, n + 1)〉 ∈ V .

Given a domino system D, it is undecidable whether a tiling for D exists
[Berger, 1966].

In Figure 2, for a domino system D, we define a SH+IQ-concept CD, a
terminology TD (that can be internalised, see Theorem 1), and a generalised
role hierarchy RD such that D has a tiling iff CD is satisfiable w.r.t. RD and
TD. For a better readability, we use C ⇒ D as an abbreviation for ¬C ⊔ D.

Ensuring that a point is associated with exactly one domino type, that it
has at most one vertical and at most one horizontal successor, and that these
successors satisfy the horizontal and vertical matching conditions induced by H
and V is standard and is done in the first GCI of TD.

v0

v0

HI :

x0

x0

x0

x1

v2 v1

v1

v1

h1 h0 h3

h1

h1

h0

h0

y0

y0

x1

y1

y1

Figure 1: The staircase model structure and the effects of the last 16 axioms in
RD.

The next step is rather special: we do not enforce a grid structure, but a
structure with “staircases”, which is illustrated in Figure 1. To this purpose,
we introduce four sub-roles v0, . . . , v3 of v and four sub-roles h0, . . . , h3 of h,
and ensure that we only have “staircases”. An i-staircase is an alternating
chain of vi and hi edges, without any other vj- or hj-successors. At each point
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on the x-axis, two staircases start that need not meet again, one i-staircase
starting with vi and one i ⊖ 1-staircase starting with hi⊖1 (we use ⊕ and ⊖ to
denote addition and subtraction modulo four). We use a concept HI for those
points on the x-axis, V I for those nodes on the y-axis, and enforce a symmetric
behaviour for the nodes on the y-axis. The second GCI in TD introduces the
concept I for all “initial” points, and then the third GCI enforces the staircase
structure. It contains four implications: one for the vertical and one for the
horizontal successorships, and these two implications once for the “non-initial”
points (i.e., instances of ¬I), and once for the “initial points” (i.e., instances of
HI or V I).

It remains to make sure that two elements b, b′ representing the same point
in the grid have the same domino type associated, where b and b′ “represent the
same point” if there is an n and an instance a of I such that each of them is
reachable following a staircase starting at a for n steps, i.e., if there is

• a vihi-path (resp. hivi-path) of length 2n from a to b, and

• a hi⊖1vi⊖1-path (resp. vi⊕1hi⊕1-path) of length 2n from a to b′.

To this purpose, we add super roles xi of hi and yi of vi (for which we use
dashed arrows in Figure 1), and the last group of role inclusion axioms in RD.
These role inclusion axioms enforce appropriate, additional role successorships
between elements, and we use the additional roles xi and yi since we only want
to have at most one vi or hi-successor. For each 2 staircases starting at the
same element on one of the axes, these role inclusions ensure that each pair of
elements representing the same point is related by yi. That is, each element on
an i ⊕ 1-staircase that is an xi⊕1-successor is related via yi to the element on
the i-staircase (which is a vi-successor) representing the same point, see Figure
1. To see this, start considering the consequences of the role inclusion axioms
for elements neighbouring instances of, say, HI representing the four points
(1, 0), . . . , (2, 1), and start with the last but first axiom. Next, “apply” the last
but second, and finally the last but third one. Then, starting with the last role
inclusion axiom, consider elements representing the four points (2, 1), . . . , (3, 2),
and continue to work up the role inclusion axioms and up the staircase.

Hence the last GCI in TD ensures that two elements representing the same
points in the grid have indeed the same domino type associated.

The above observations imply that the concept CD is satisfiable w.r.t. TD
and RD iff D has a solution. Hence, together with Theorem 1, we have the
following:

Theorem 2 Satisfiability of SH+IQ-concepts w.r.t. generalized role hierar-
chies is undecidable.

4 RIQ is decidable

In this section, we show that SHIQ with acyclic generalised role hierarchies
is decidable. We present a tableau-based algorithm that decides satisfiability
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CD := HI ⊓ V I ⊓ ∃h0.HI ⊓ ∃v1.V I

TD := { ⊤
.
= ( ⊔

1≤i≤n
Di) ⊓ ( ⊓

1≤i<j≤n
¬(Di ⊓ Dj)) ⊓

⊓
1≤i≤n

Di ⇒ ((61v.⊤) ⊓ (∀v. ⊔
(Di,Dj)∈V

Dj)) ⊓

⊓
1≤i≤n

Di ⇒ ((61h.⊤) ⊓ (∀h. ⊔
(Di,Dj)∈H

)Dj)}

I
.
= HI ⊔ V I

⊤
.
= ⊓

0≤i≤3
(∃v−i .⊤ ⊓ ¬I) ⇒

(

∃hi.¬I ⊓⊓
j
∀vj .⊥ ⊓ ⊓

j 6=i
∀hj .⊥)

)

⊓

(∃h−
i .⊤ ⊓ ¬I) ⇒

(

∃vi.¬I ⊓ ⊓
j 6=i

∀vj .⊥ ⊓⊓
j
∀hj .⊥)

)

⊓

(∃h−
i .⊤ ⊓ HI) ⇒

(

∃vi.¬I ⊓ ∃hi⊖1.HI ⊓

⊓
j 6=i⊖1

∀hj .⊥ ⊓ ⊓
j 6=i

∀vj .⊥
)

⊓

(∃v−i .⊤ ⊓ V I) ⇒
(

∃hi.¬I ⊓ ∃vi⊕1.V I ⊓

⊓
j 6=i⊕1

∀vj .⊥ ⊓ ⊓
j 6=i

∀hj .⊥
)

⊓

⊤
.
= ⊓

0≤i≤3
⊓

1≤j≤n
∃x−

i⊕1.⊤ ⇒ (Dj ⇒ ∀yi.Dj)

RD := {vi ⊑ yi, vi ⊑ v, hi ⊑ xi, hi ⊑ h | 0 ≤ i ≤ 3} ∪

{ x−
i⊕1yi ⊑ yi

x−
i⊕1xi ⊑ x−

i⊕1

y−
i⊕1xi ⊑ xi

y−
i⊕1yi ⊑ y−

i⊕1 | 0 ≤ i ≤ 3}

Figure 2: Reduction terminology, generalised role hierarchy, and concept.

of RIQ-concepts w.r.t. acyclic generalised role hierarchies, and therefore also
subsumption in RIQ and, with Theorem 1, both inferences w.r.t. terminologies.
The tableau algorithm implemented in the FaCT system [Horrocks, 1998] was
extended to the one presented here, and the empirical results are reported in
Section 6.

The algorithm tries to construct, for a RIQ-concept C, a tableau for C, that
is, an abstraction of a model of C. Given the appropriate notion of a tableau, it
is then quite straightforward to prove that the algorithm is a decision procedure
for RIQ-satisfiability. Before specifying this algorithm, we transform the role
hierarchy to make the presentation of the algorithm easier—basically, we unfold
or expand the role hierarchy to make all implications explicit.

We start with a definition of acyclic generalised role hierarchies, an explicit
form of generalised role hierarchies obtained by using a form of unfolding, cor-
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responding finite automata, and then finally, a closure of concepts w.r.t. role
hierarchies.

Definition 4 Let R be a generalised role hierarchy (containing R1 ◦ R2 ⊑ R3

iff it contains Inv(R2) ◦ Inv(R1) ⊑ Inv(R3), and containing R ⊑ S iff it contains
Inv(R) ⊑ Inv(S); see above). A role R directly affects a role S if R 6= S and

• R ⊑ S ∈ R,

• R ◦ S ⊑ S ∈ R, or

• S ◦ R ⊑ S ∈ R.

Let “ affects” be the transitive closure of “directly affects”. We call a role that
is not affected by other roles unaffected. A generalised role hierarchy is acyclic
if “affects” has no cycles, i.e., if, for all roles R, R does not affect R.

Please note that, w.l.o.g., we can assume that ⊑* is acyclic: in case R
contains ⊑* cycles, we can simply choose one role name R from each cycle and
replace all other role names on this cycle with R, both in the input role hierarchy
and the input concept.

Please note also that, in acyclic role hierarchies, we can no longer say that
a role R is symmetric using R ⊑ R− and R− ⊑ R since this would yield an
“affects” cycle of length 2.

4.1 Syntactic transformations

In a first step, we unfold an acyclic generalised role hierarchy R into an explicit
form called exp(R) as follows:

• First, for each role R occurring in R, define

τR := (
⋃

S◦R⊑R∈R
S 6=R

S)∗R(
⋃

R◦T⊑R∈R
T 6=R

T )∗.

• Secondly, set

ρR :=

{

τR if R ◦ R ⊑ R 6∈ R
(τR)+ if R ◦ R ⊑ R ∈ R.

• In the third step, we iteratively replace roles in ρR with unions of regular
expressions of roles, working our way up the affecting relation. We start
with roles S which are “almost” minimal w.r.t. affected, i.e., that are
affected only by unaffected roles. We proceed with roles directly affected
by roles that are already treated or unaffected and do the following:

ρR := (ρR with R replaced with R ∪
⋃

P ⊑* R
P 6=R

ρP ) and

for each S 6= R occurring in ρR do
ρR := (ρR with S replaced with

⋃

P ⊑* S ρP ).

After this recursion, we set exp(R) := {ρR ⊑ R | R occurs in R}.
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Due to the acyclicity of R, the recursion in this transformation terminates
after at most n steps for n the number of role inclusion axioms in R. Please
note that, by construction, for each (possibly inverse) role R occurring in R,
exp(R) contains exactly one inclusion ρR ⊑ R.

Let us first consider an example. Given the role inclusion axioms R consist-
ing of

R ◦ S ⊑ S,
S ◦ W ⊑ S,
T1 ◦ R1 ⊑ R1,
R2 ◦ T2 ⊑ R2,
V ◦ T1 ⊑ T1

with R1, R2 ⊑* R, the above transformation yield a set exp(R) consisting of

(R ∪ R2T
∗
2 ∪ (V ∗T1)

∗R1)
∗SW ∗ ⊑ S,

R ∪ R2T
∗
2 ∪ (V ∗T1)

∗R1 ⊑ R,
R2T

∗
2 ⊑ R2, (V ∗T1)

∗R1 ⊑ R1, V ∗T1 ⊑ T1.

Unfortunately, the size of exp(R) can be exponential in the size of R. For
n ∈ N, let Rn be the following acyclic generalised role hierarchy:

Sn ◦ Rn ⊑ Rn Rn ◦ Sn ⊑ Rn

Rn−1 ⊑ Sn

Sn−1 ◦ Rn−1 ⊑ Rn−1 Rn−1 ◦ Sn−1 ⊑ Rn−1

Rn−2 ⊑ Sn−1

...
...

...
...

...
...

R1 ⊑ S2

S1 ◦ R1 ⊑ R1 R1 ◦ S1 ⊑ R1

and it is easily checked that the size of ρn is exponential in n. A further syntactic
restriction which prohibits this exponential blow-up is described in Section 5.

The regular role terms on the left hand side of exp(R) are then read with the
standard semantics for regular role expressions, (i.e., using union, composition,
and transitive closure of binary relations, see, e.g., [Schild, 1991]). We use L(ρ)
to denote the language described by a regular expression ρ. By definition of
exp(R), we have the following Lemma:

Lemma 2 (i) For each ρR ⊑ R ∈ exp(R) we have R ∈ L(ρR).
(ii) If R ◦ S ⊑ S ∈ R, then RS ∈ L(ρP ) for all P with S ⊑* P .
(iii) If S ◦ R ⊑ S ∈ R, then SR ∈ L(ρP ) for all P with S ⊑* P .
(iv) The size | exp(R)| :=

∑

ρ⊑R∈exp(R) |ρ| of exp(R) is at most exponential in
the number of role inclusion axioms in R.

Proof: (i) is obvious since ρR is of the form

(. . .)∗(. . . ∪ R ∪ . . .)(. . .)∗ or ((. . .)∗(. . . ∪ R ∪ . . .)(. . .)∗)+,

and thus we have R ∈ L(ρR).
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For (ii), let R ◦S ⊑ S ∈ R and S ⊑* P . Hence after the second step, we have

ρS is of the form (. . . ∪ R ∪ . . .)∗S(. . .)∗ or ((. . . ∪ R ∪ . . .)∗S(. . .)∗)+

ρP is of the form (. . .)∗P (. . .)∗ or ((. . .)∗P (. . .)∗)+

In the third step, we replace R with ρR in ρS and, by (i), we have R ∈ L(ρR).
Again, by (i), we have S ∈ L(ρS), and thus RS ∈ L(ρS). Now, since S ⊑* P , S
affects P , and we replace P with P∪ρS∪. . . in ρP , which thus yields RS ∈ L(ρP ).

(iii) is symmetric to (ii).
(iv) is a simple consequence of the fact that a tree whose depth and breadth

are bounded by n has at most exponentially many nodes in n. Due to acyclicity
of R, the term tree of each ρR is of breadth and depth bounded by the number
of axioms in R.

It remains to prove that this transformation preserves the semantics, which
is defined as follows: an interpretation I is a model of an explicit role hierarchy
exp(R) if

RI
1 ◦ . . .◦RI

n ⊆ RI for each ρR ⊑ R ∈ exp(R) and each R1 . . . Rn ∈ L(ρR), (1)

where ◦ denotes standard composition of binary relations.

Lemma 3 An interpretation I is a model of an acyclic generalised role hierar-
chy R iff I is a model of exp(R).

Proof: “⇐”: let R ⊑ S ∈ R and let I be a model of exp(R). Due to Lemma 2,
we have that R ∈ L(ρR). Moreover, in the iterative substitution, we have
replaced S in ρS with . . .∪ ρR ∪ . . ., and thus R ∈ L(ρS) and ρS ⊑ S ∈ exp(R).
Hence I satisfies RI ⊆ SI .

Now let R ◦ S ⊑ S ∈ R and let I be a model of exp(R). By Lemma 2,
RS ∈ L(ρS), and thus RI ◦ SI ⊆ SI by definition of the semantics. The case
for R ◦ S ⊑ R ∈ R is analogous.

“⇒”: Let I be a model of R. First, it is easy to see that I satisfies ρR ⊑ R
for each ρR after the second step. Next, we prove by induction on the number
of substitutions carried out during the computation of exp(R) in the third step
(which can be viewed as a refined induction on “affecting”) that I is also a
model of exp(R).

Thus, assume that I satisfies all axioms ρS ⊑ S already computed, and
consider the computation of ρR ⊑ R in the third step of the syntactic transfor-
mation for R a role with R ◦ R ⊑ R 6∈ R.

• In the first part of the third step, we substitute R with R∪
⋃

P ⊑* R

P 6=R

ρP in ρR.

Let R1 . . . Rn ∈ L(ρR) and 〈x, y〉 ∈ (R1 . . . Rn)I . If R1 . . . Rn ∈ L(ρR) for
ρR after the second step, then induction implies 〈x, y〉 ∈ RI . Otherwise,
we can split R1 . . . Rn into uvw such that uRw ∈ L(ρR) and v ∈ L(ρP )
for some P 6= R with P ⊑* R. Since P affects R, ρP is already computed
and, by induction, I satisfies ρP ⊑ P , and thus vI ⊆ P I ⊆ RI . Hence
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〈x, y〉 ∈ (uRw)I and, since uRw ∈ L(ρR), this implies 〈x, y〉 ∈ RI by
induction.

• Call the result of the first part of the third step ρ̃R. In the second part, con-
sider the substitution of some S in ρ̃R with

⋃

P ⊑* S ρP , and call the result

of this substitution ρR. Let R1 . . . Rn ∈ L(ρR) and 〈x, y〉 ∈ (R1 . . . Rn)I .
Again, if R1 . . . Rn ∈ L(ρ̃R), then induction implies 〈x, y〉 ∈ RI . Other-
wise, we can split R1 . . . Rn into uv1xv2w such that uSxSw ∈ L(ρR) and
vi ∈ L(

⋃

P ⊑* S ρP ). By induction, vIi ⊆ SI , and thus 〈x, y〉 ∈ (uSxSw)I

which, since uSxSw ∈ L(ρ̃R), implies by induction that 〈x, y〉 ∈ RI .

The argumentation for roles R with R ◦ R ⊑ R ∈ R is analogous.

4.2 A Tableau for RIQ

In the following, if not stated otherwise, C, D (possibly with subscripts) denote
RIQ-concepts, R, S (possibly with subscripts) roles, and R an acyclic gener-
alised role hierarchy.

We start by defining fclos(C0,R), the closure of a concept C w.r.t. an acyclic
generalised role hierarchy R. Intuitively, this contains all relevant sub-concepts
of C together with universal value restrictions over sets of roles paths described
by nondeterministic finite automata (NFA). These NFAs are used to monitor
the effect of ∀R.C sub-concepts along paths in the tree model.

Let Σ be the alphabet of roles (role names and inverse role names) in exp(R).
We use L(ρ) to denote the (regular) language described by a regular expression
ρ and ε to denote the empty word. For each (possibly inverse) role R occurring
in C0 or R, we define AR as follows:

• if R occurs in R, then ρ ⊑ R ∈ exp(R), and AR is an NFA with
L(AR) = L(ρ). Due to the use of non-deterministic automata, AR can be
constructed in size linear in |ρR|.

• otherwise, AR is a (two-state) automaton with L(AR) = {R}.

Next, for A an NFA and q a state in A, Aq denotes the NFA obtained from

A by making q the (only) initial state of A, and we use q
S
→ q′ ∈ A to denote

that A has a path labelled with S from q to q′.
Without loss of generality, we assume all concepts to be in NNF, that is,

negation occurs in front of concept names only. Any RIQ-concept can easily
be transformed into an equivalent one in NNF by pushing negations in-wards
using a combination of DeMorgan’s laws and the following equivalences:

¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)
¬(6nR.C) ≡ (>(n + 1)R.C) ¬(>(n + 1)R.C) ≡ (6nR.C)

¬(>0R.C) ≡ A ⊓ ¬A for some A ∈ C

We use ¬̇C for the NNF of ¬C. Obviously, the length of ¬̇C is linear in the
length of C.

14



For a concept C0, clos(C0) is the smallest set that contains C and that is
closed under sub-concepts and ¬̇. The set fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0) ∪
{∀AS

q .D | S occurs in R or C0, q is a state in AS , and
∀S.D ∈ clos(C0)}

It is not hard to show and well-known that the size of clos(C0) is polynomial
in the size of C0. The size of fclos(A) is more involved: each ρ with ρ ⊑ R ∈
exp(R) is a regular expression whose size is at most exponential in the size of R
(see Lemma 2), and the number of such expressions in exp(R) is linear in |R|.
The construction of a non-deterministic automaton Aρ from a regular expression
ρ yields an NFA linear in the size of ρ, and thus we have an exponential bound
for the cardinality of fclos(C0,R) in the size of C0 and R. Investigating the size
of fclos(C0,R) more closely and deciding whether this exponential blow-up can
be avoided will be a part of future work. So far, we only define in the Section 5
a further syntactic restriction which avoids this exponential blow-up.

We are now ready to define tableaux as a useful abstraction of models.

Definition 5 T = (S, L, E) is a tableau for D w.r.t. R iff

• S is a non-empty set,

• L : S → 2fclos(A) maps each element in S to a set of concepts and

• E : RA → 2S×S maps each role to a set of pairs of elements in S.

Furthermore, for all s, t ∈ S, C, C1, C2 ∈ fclos(A), and R, S ∈ RA, T satisfies:

(P0) there is some s ∈ S with D ∈ L(s),

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1 ⊓ C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1 ⊔ C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4a) if ∀Ap.C ∈ L(s), 〈s, t〉 ∈ E(S), and p
S
→ q ∈ Ap, then ∀Aq.C ∈ L(t),

(P4b) if ∀Ap.C ∈ L(s) and ε ∈ L(Ap), then C ∈ L(s),

(P5) if ∃S.C ∈ L(s), then there is some t with 〈s, t〉 ∈ E(S) and C ∈ L(t),

(P6) if ∀S.C ∈ L(s), then ∀AS .C ∈ L(s),

(P7) 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)),

(P8) if (6nS.C) ∈ L(s), then ♯ST (s, C) 6 n,

(P9) if (>nS.C) ∈ L(s), then ♯ST (s, C) > n,

(P10) if (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t) or ¬̇C ∈ L(t),

where ⊲⊳ is a place-holder for either 6 or >, and

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S) and C ∈ L(t)}.

Lemma 4 A RIQ-concept D is satisfiable w.r.t. R iff there exists a tableau
for D w.r.t. R.
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Proof: For the if direction, let T = (S, L, E) be a tableau for D w.r.t. R.
We extend the relational structure of T and then prove that this indeed gives
a model. More precisely, a model I = (∆I , ·I) of D and R can be defined as
follows:

∆I := S

for concept names A in clos(A) :
AI := {s | A ∈ L(s)}

for roles names R :
RI := {〈s, t〉 ∈ E(R)} ∪

{〈s0, sn〉 ∈ (∆I)2 | ρ ⊑ R ∈ exp(R) and there is
s1, . . . , sn−1 with 〈si, si+1〉 ∈ E(Si+1) for
0 ≤ i ≤ n − 1 and S1 · · ·Sn ∈ L(ρ)}

The definition of inverse roles and complex concepts is given through the defini-
tion of the SH+IQ semantics. Due to (P7) and the fact that we only consider
acyclic generalised role hierarchies containing both directions of axioms of the
form R ◦S ⊑ S (see the remark immediately above Definition 2), we can indeed
treat role names and inverse roles symmetrically.

We have to show that I is a model of R and D. Due to Lemma 3, it suffices
to prove that I satisfies exp(R).

I is a model of exp(R): Let ρ ⊑ R ∈ exp(R) and 〈s, t〉 ∈ (R1 . . . Rn)I for
some R1 . . . Rn ∈ L(ρ). Then, by definition of RI , we have 〈s, t〉 ∈ RI , and thus
I satisfies exp(R).

I is a model of D: To prove that I is a model of D, we show that C ∈ L(s)
implies s ∈ CI for any s ∈ S. Together with (P0), this implies that I is a model
of D. This proof can be given by induction on the length ‖C‖ of a concept
C ∈ clos(D) in NNF, where we count neither negation nor integers in number
restrictions. The only interesting cases are C = (6nr.E) and C = ∀S.E (for
the others, see [Horrocks et al., 2000; Horrocks and Sattler, 2002]):

• If (6nS.E) ∈ L(s), then S is by definition a simple role, i.e., neither S
nor any of its sub-roles (or their inverse) occur on the right hand of an
axiom of the form R1 ◦ R2 ⊑ R3. Hence SI = E(S), and thus, by (P8)
and induction, we have s ∈ (6nS.E)I .

• Let ∀S.E ∈ L(s) and 〈s, t〉 ∈ SI . From (P6) we have that ∀AS .E ∈ L(s).

– If 〈s, t〉 ∈ E(S), then (P4a) and S ∈ L(AS) (either since L(AS) = {S}
or by Lemma 2.(i)) imply that ∀AS

q .E ∈ L(t) with ε ∈ L(AS
q ), and

thus (P4b) implies that E ∈ L(t).

– Otherwise, there is some ρ ⊑ S ∈ exp(R) and s0, . . . , sn with s0 = s,
sn = t, 〈si, si+1〉 ∈ SI

i+1 for each 0 ≤ i ≤ n− 1, and S1 · · ·Sn ∈ L(ρ).
By definition, L(ρ) = L(AS), hence (P4a) (n times) implies that
∀A.E ∈ L(t) with ε ∈ L(A), and thus (P4b) implies E ∈ L(t).
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By induction, t ∈ EI , and thus s ∈ (∀S.E)I .

For the converse, for I = (∆I , ·I) a model of D w.r.t. R, we define a tableau
T = (S, L, E) for A and R as follows:

S := ∆I ,
E(R) := RI , and
L(s) := {C ∈ clos(D) | s ∈ CI} ∪

{∀AS .C | ∀S.C ∈ clos(D) and s ∈ (∀S.C)I} ∪
{∀AR

q .C ∈ fclos(D,R) | for all S1 · · ·Sn ∈ L(AR
q ),

s ∈ (∀S1.∀S2. · · · ∀Sn.C)I}

We have to show that T satisfies each (Pi). We restrict our attention to the
only new cases are (P4) and (P6).

For (P6), if ∀S.C ∈ L(s), then s ∈ (∀S.C)I , and thus the definition of T
implies that ∀AS . ∈ L(s).

For (P4a), let ∀Ap.C ∈ L(s). Hence s ∈ (∀S1.∀S2. · · · ∀Sn.C)I for each
S1 · · ·Sn ∈ L(Ap). Now let 〈s, t〉 ∈ E(S) ⊆ SI . Then t ∈ (∀S2. · · · ∀Sn.C)I if

s ∈ (∀S.∀S2. · · · ∀Sn.C)I . Moreover, if p
S
→ q in Ap, then SS2 . . . Sn ∈ L(Ap)

implies S2 . . . Sn ∈ L(Aq). Hence t ∈ (∀S2. · · · ∀Sn.C)I if SS2 · · ·Sn ∈ L(Ap),

and thus p
S
→ q in Ap implies that ∀Aq.C ∈ L(t).

For (P4b), if ∀Ap.C ∈ L(s) with ε ∈ L(Ap), then s ∈ (∀ε.C)I = CI , which
implies C ∈ L(s) by definition of L.

4.3 The Tableau Algorithm

In this section, we present a completion algorithm that tries to construct, for
an input RIQ-concept D and an acyclic generalised role hierarchy R, a tableau
for D w.r.t. R. We prove that this algorithm constructs a tableau for D and
R iff there exists a tableau for D and R, and thus decides satisfiability of RIQ
concepts w.r.t. acyclic generalised role hierarchies (and a general terminology).

This algorithm generates a completion tree, a structure that will be unrav-
elled to an (infinite) tableau for the input concept. As usual, in the presence of
transitive roles, blocking is employed to ensure termination of the algorithm. In
the additional presence of inverse roles, blocking is dynamic, i.e., blocked nodes
(and their sub-branches) can be un-blocked and blocked again later. In the
further, additional presence of number restrictions, pairs of nodes are blocked
rather than single nodes [Horrocks et al., 2000; Horrocks and Sattler, 2002].

Definition 6 A completion tree T for a RIQ concept D and a acyclic gen-
eralised role hierarchy R is a tree, where each node x is labelled with a set
L(x) ⊆ fclos(D,R) and each edge 〈x, y〉 from a node x to its successor y is
labelled with a non-empty set L(〈x, y〉) ⊆ R of (possibly inverse) roles occurring
in D and R. Finally, completion trees come with an explicit inequality relation
6
.
= on nodes which is implicitly assumed to be symmetric.
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If R ∈ L(〈x, y〉) for a node x and its successor y and R ⊑* S, then y is called
an S-successor of x and x is called an Inv(S)-predecessor of y. If y is an S-
successor or an Inv(S)-predecessor of x, then y is called an S-neighbour of x.
Finally, ancestor is the transitive closure of predecessor.

For a role S, a concept C and a node x in T we define ST(x, C) by

ST(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

A node is blocked iff it is either directly or indirectly blocked. A node x is
directly blocked iff none of its ancestors are blocked, and it has ancestors x′, y
and y′ such that

1. y is not the root node and

2. x is a successor of x′ and y is a successor of y′ and

3. L(x) = L(y) and L(x′) = L(y′) and

4. L(〈x′, x〉) = L(〈y′, y〉).

If there are no successors x′′, y′′ of x′ and y′ with these properties, then we say
that y blocks x.

A node y is indirectly blocked if one of its ancestors is blocked.
Given a RIQ-concept D (in NNF) and an acyclic generalised role hierarchy

R, the algorithm initialises a completion tree TD,R consisting only of a root
node x0 labelled with {D}. Then TD,R is expanded by repeatedly applying the
rules from Figure 3.

For a node x, L(x) is said to contain a clash if, for some concept name A,
{A,¬A} ⊆ L(x), or if there is some concept (6nS.C) ∈ L(x) and x has n + 1
S-neighbours y0, . . . , yn with C ∈ L(yi) and yi 6

.
= yj for all 0 ≤ i < j ≤ n.

A completion tree is clash-free if none of its nodes contains a clash, and it is
complete if no rule from Figure 3 can be applied to it.

For a RIQ-concept D, the algorithm starts with the completion tree TD,R.
It applies the expansion rules in Figure 3, stopping when a clash occurs, and
answers “D is satisfiable w.r.t. R” iff the completion rules can be applied in
such a way that they yield a complete and clash-free completion tree, and “D is
unsatisfiable w.r.t. R” otherwise.

All but the ∀i-rules have been used before for fragments of RIQ, and the
three ∀i-rules are the obvious counterparts to the tableau conditions (P4) and
(P6).

As usual, we prove termination, soundness, and completeness of the tableau
algorithm to show that it indeed decides satisfiability of RIQ-concepts w.r.t.
acyclic generalised role hierarchies.

Lemma 5 Let D be a RIQ-concept and R an acyclic generalised role hierarchy.
The completion algorithm terminates when started for D and R.
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⊓-rule: if 1. C1 ⊓ C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then L(x) −→ L(x) ∪ {C1, C2}
⊔-rule: if 1. C1 ⊔ C2 ∈ L(x), x is not indirectly blocked, and

2. {C1, C2} ∩ L(x) = ∅
then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y)

then create a new node y with
L(〈x, y〉) := {S} and L(y) := {C}

∀1-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
∀AS .C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀AS .C}

∀2-rule: if 1. ∀Ap.C ∈ L(x), x is not indirectly blocked, p
S
→ q in Ap,

2. and there is an S-neighbour y of x with ∀Aq.C /∈ L(y),
then L(y) −→ L(y) ∪ {∀Aq.C}

∀3-rule: if 1. ∀A.C ∈ L(x), x is not indirectly blocked, ε ∈ L(A),
2. and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}
choose-rule: if 1. (6nS.C) ∈ L(x), x is not indirectly blocked, and

2. there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅
then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and
2. there are no y1, . . . , yn ∈ ST(x, C)

with yi 6
.
= yj for each 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6nS.C) ∈ L(x), x is not indirectly blocked, and
2. #ST(x, C) > n, there are y, z ∈ ST(x, C) with

not y 6
.
= z and y is not an ancestor of z,

then 1. L(z) −→ L(z) ∪ L(y) and
2. if z is an ancestor of x

then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. remove y and the sub-tree below y

Figure 3: The Expansion Rules for the RIQ Tableau Algorithm.
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Proof: Let m = ♯fclos(D,R), n the number of roles occurring in D and R,
and nmax := max{n | (>nR.C) ∈ clos(D)}. Termination is a consequence of the
following properties of the expansion rules:

1. Nodes are labelled with subsets of fclos(D,R) and edges with sets of roles
occurring in D and R, so there are at most 22mn different possible la-
bellings for a pair of nodes and an edge. Therefore, if a path p is of length
at least 22mn, the pair-wise blocking condition implies the existence of a
node x on p such that x is blocked. Since a path on which nodes are
blocked cannot become longer, paths are of length at most 22mn.

2. The expansion rules never remove labels from nodes in the tree, and the
only rule that removes a node from the tree is the 6-rule.

3. Only the ∃- or the >-rule generate new nodes, and each generation is
triggered by a concept of the form ∃R.C or (>nR.C) in the label of a
node x. Each of these concepts triggers at most once the generation of
at most nmax R-successors yi of x: note that if the 6-rule subsequently
causes an R-successor yi of x to be removed, then x will have some R-
neighbour z with L(z) ⊇ L(yi). This, together with the definition of a
clash, implies that the rule application which led to the generation of yi

will not be repeated. Since fclos(D,R) contains a total of at most m ∃R.C,
the out-degree of the tree is bounded by mnmax.

Lemma 6 Let D be a RIQ-concept and R an acyclic generalised role hierarchy.
If the expansion rules can be applied to D and R such that they yield a complete
and clash-free completion tree, then D has a tableau w.r.t. R.

Proof: Let T be a complete and clash-free completion tree. We can “unravel”
T to a tableau T = (S, L, E) as follows: Intuitively, an individual in S corre-
sponds to a path in T from the root node to some node that is not blocked, where
we “jump” up to a blocking node instead of going to a blocked one. Doing this
naively, one “looses” R-successors blocked by the same node. To ensure that
we still have enough successors to satisfy at-least restrictions, we adorn nodes
with the nodes they are blocking.

More precisely, a path is a sequence of pairs of nodes of T of the form
p = [x0

x′
0

, . . . , xn

x′
n
]. For such a path we define Tail(p) := xn and Tail′(p) := x′

n.

With [p|xn+1

x′
n+1

], we denote the path [x0

x′
0

, . . . , xn

x′
n
, xn+1

x′
n+1

]. The set Paths(T) is defined

inductively as follows:

• For the root node x0 of T, [x0

x0
] ∈ Paths(T), and

• For each path p ∈ Paths(T) and each successor z of Tail(p) in T:

– if z is not blocked, then [p| z
z
] ∈ Paths(T), and

– if z is blocked by a node y, then [p|y
z
] ∈ Paths(T).
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Please note that, by construction of Paths(T) and the blocking condition,

1. if p ∈ Paths(T), then Tail(p) is not blocked,

2. Tail(p) = Tail′(p) iff Tail′(p) is not blocked, and

3. L(Tail(p)) = L(Tail′(p)).

We are now ready to define the tableau T = (S, L, E) as follows:

S := Paths(T)

L(p) := L(Tail(p))

E(R) := {〈p, [p| x
x′ ]〉 ∈ S × S | x′ is an R-successor of Tail(p)} ∪

{〈[q| x
x′ ], q〉 ∈ S× S | x′ is an Inv(R)-successor of Tail(q)} ∪

We show that T is a tableau for D.

• T satisfies (P0) because D is in the label of the root node which cannot
be blocked.

• T satisfies (P1) because T is clash-free.

• (P2), (P3), and (P10) are satisfied by T because T is complete and thus
neither the ⊓-, the ⊔-, nor the choose-rule is applicable to T.

• For (P4a), let s, t ∈ S with ∀Ap.C ∈ L(s), 〈s, t〉 ∈ E(S), and p
S
→ q in Ap.

If t = [s| x
x′ ], then x′ is an S-successor of Tail(s) and completeness of T

implies that the ∀2-rule cannot be applied to s, hence ∀Aq.C ∈ L(x′) =
L(x) = L(t).

If s = [t| x
x′ ], then x′ is an Inv(S)-successor of Tail(t) and ∀Ap.C ∈ L(x′).

Again, completeness of T implies ∀Aq.C ∈ L(Tail(t)) = L(t).

• For (P4b), let s ∈ S with ∀A.C ∈ L(s) = L(Tail(s)) and ε ∈ L(A). Since
the ∀3-rule cannot be applied, C ∈ L(Tail(s)), and hence C ∈ L(s).

• For (P5), let ∃R.C ∈ L(s) and Tail(s) = x. Since x is not blocked and T

complete, x has some R-neighbour y with C ∈ L(y).

– If y is a successor of x and y is

∗ not blocked, then t := [s|y
y
] ∈ S.

∗ blocked, then y is directly blocked, say by z. Hence t := [s| z
y
] ∈

S, and the blocking condition implies C ∈ L(z).

– x is an Inv(R)-successor of y, then either

∗ s = [t| x
x′ ] with Tail(t) = y.

∗ s = [t| x
x′ ] with Tail(t) = y′ 6= y. Since x only has one predecessor,

y′ is not the predecessor of x. This implies x 6= x′, x blocks x′,
and y′ is the predecessor of x′ due to the construction of Paths.
The definition of the blocking condition implies L(x′) = L(x)
L(〈y′, x′〉) = L(〈y, x〉), and L(y′) = L(y).
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In all four cases, 〈s, t〉 ∈ E(R) and C ∈ L(t).

• For (P6), let ∀S.C ∈ L(s) = L(Tail(s)). Then completeness implies that
the ∀1-rule cannot be applied, and thus ∀AS .C ∈ L(Tail(s)).

• (P7) holds because of the symmetric definition of the mapping E.

• For (P8) and (P9), let s ∈ S with Tail(s) = x and (⊲⊳ nS.C) ∈ L(s) = L(x)
for ⊲⊳ ∈ {≤,≥}. Then T being complete and clash-free and (⊲⊳ nS.C) ∈
L(x) implies #ST(x, C) ⊲⊳ n. We prove that T satisfies (P8) and (P9) by
showing that

#ST (s, C) = #ST(x, C).

The ≤ part is implied by the definition of E(·) which yields at most one t
with 〈s, t〉 ∈ E(S) and C ∈ L(t) per S-neighbour of x with C in its label:
E(·) yields exactly one such t per S-successor of x with C in its label, and
there is at most one t in S with s = [t| x

x′ ]. The ≥ part is due to the fact
that (a) if x is an Inv(S)-successor of its predecessor y with C ∈ L(y),
then 〈s, t〉 ∈ E(S) for the “prefix” t of s with s = [t| x

x′ ], and (b) if x has
two S-successors y1 6= y2 with C ∈ L(yi), then 〈s, t1〉, 〈s, t2〉 ∈ E(S) for

t1 = [s|y
′
1

y1
] 6= [s|y

′
2

y2
] = t2.

Lemma 7 Let D be a RIQ-concept and R an acyclic generalised role hierarchy.
If D has a tableau w.r.t. R, then the expansion rules can be applied to D and
R such that they yield a complete and clash-free completion tree.

Proof: Let T = (S, L, E) be a tableau for D and R. We use T to trigger the
application of the expansion rules such that they yield a completion tree T that
is both complete and clash-free. To this purpose, we use a function π which
maps the nodes of T to elements of S. The mapping π is defined as follows:

• For the root node x0 of T, we define π(x0) = s0 for some s0 ∈ S with
D ∈ L(s0) (such an s0 exists because of (P0)).

• If π(x) is already defined, and a successor y of x is generated for ∃R.C ∈
L(x), then π(y) = t for some t ∈ S with C ∈ L(t) and 〈π(x), t〉 ∈ E(R).

• If π(x) is already defined, and successors yi of x are generated for (>nR.C) ∈
L(x), then π(yi) = ti for n distinct ti ∈ S with C ∈ L(ti) and 〈π(x), ti〉 ∈
E(R).

Due to the following observations, π is well-defined:
Firstly, the mapping for the initial completion tree for D and R obviously

satisfies the following three conditions:

L(x) ⊆ L(π(x)),
if y is an S-neighbour of x, then 〈π(x), π(y)〉 ∈ E(S), and
x 6

.
= y implies π(x) 6= π(y).







(∗)
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Secondly, we show that the following claim holds:
Claim: Let T be generated by the completion algorithm for D and R and let π
satisfy (∗). If an expansion rule is applicable to T, then this rule can be applied
such that it yields a completion tree T′ and a (possibly extended) π that satisfy
(∗).

As a consequence of this claim, (P1), and (P8) we have that if D and R
have a tableau, then the expansion rules can be applied to D and R such that
they yield a clash-free completion tree, which is eventually also complete due to
Lemma 5.

The claim can be proved by a case distinction on the completion rules: Let
T be generated by the completion algorithm for D and R and let π satisfy (∗).

• If the ⊓-, the ⊔-, the ∀1-, or the ∀3-rule are applicable to T, then the
first line of (∗) together with (P2), (P3), (P6), or (P4b) imply that each
of these rules can be applied in such a way2 that (∗) also holds after its
application.

• If the ∀2- or the choose-rule is applicable to T, then the first two lines
of (∗) together with (P4a) or (P10) imply that each of these rules can be
applied in such a way2 that (∗) also holds after its application.

• If the ∃-rule is applicable to x with ∃S.C ∈ L(x), then (∗) implies that
∃S.C ∈ L(π(x)), and thus (P5) implies the existence of b ∈ S with C ∈
L(b) and 〈π(x), b〉 ∈ E(S). Hence applying the ∃-rule and extending π
with π(y) := b for y the new node y generated preserves (∗).

• If the >-rule is applicable to x with (>nS.C) ∈ L(x), then (∗) implies that
(>nS.C) ∈ L(π(x)), and thus (P9) implies the existence of b1, . . . , bn ∈ S

with C ∈ L(bi), 〈π(x), bi〉 ∈ E(S), and bi 6= bj for all i 6= j. Hence π
can be extended with π(yi) := bi for yi the newly generated nodes, thus
preserving (∗).

• If the 6-rule is applicable to x with (6nS.C) ∈ L(x), then (∗) implies that
(6nS.C) ∈ L(π(x)), and thus (P8) implies that there are at most n bi ∈ S

with C ∈ L(bi) and 〈π(x), bi〉 ∈ E(S). Thus the second line of (∗) implies
that π(yi) = π(yj) for yi, yj two S-neighbours of x with C ∈ L(yi)∩L(yj),
and the (contra-position of the) last line of (∗) ensures that not yi 6

.
= yj .

Hence the 6-rule can be applied while preserving (∗).

From Theorem 1, Lemma 4, 5, 6, and 7, we thus have the following theorem:

Theorem 3 The completion algorithm decides satisfiability and subsumption
of RIQ-concepts with respect to acyclic generalised role hierarchies and termi-
nologies.

2This non-deterministic formulation is due to the non-determinism of the ⊔- resp. the

choose-rule.
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5 Avoiding the blow-up

In the previous section, we have presented an algorithm that decides satisfiability
and subsumption of RIQ-concepts with respect to acyclic generalised role hier-
archies and terminologies. Unfortunately, compared to similar algorithms that
are implemented in state-of-the-art description logic reasoners [Horrocks, 1998;
Patel-Schneider and Horrocks, 1999; Haarslev and Möller, 2001] and behave well
in many cases, we have here an exponential blow-up: the closure fclos(D,R) is
exponential in R since we have “unfolded” the acyclic generalised role hierarchy
R into the possibly exponentially large exp(R). While investigating whether
and how this exponential blow-up can be avoided, we observe that a further re-
striction of the syntax of acyclic generalised role hierarchies avoids this blow-up:

An acyclic generalised role hierarchy R is called simple if, whenever R1◦S ⊑
S and S ◦ R2 ⊑ S are in R, then R1 and R2 do not have a common subrole R′

that occurs on the right hand side of an axiom R′ ◦ S′ ⊑ R′ or S′ ◦ R′ ⊑ R′.
For a simple acyclic generalised role hierarchy R, exp(R) is only polynomial

in the size of R since each term used in the substitution step of the construction
of exp(R) from R is at most used once in each other axiom.

Lemma 8 For a RIQ-concept D and a simple acyclic generalised role hierar-
chy R, the size of fclos(D,R) is polynomial in the size of D and R.

Thus, for simple role hierarchies, the tableau algorithm presented here is of
the same worst case complexity as for SHIQ, namely 2NExpTime. A detailed
investigation of the exact complexity will be part of future work.

6 Evaluation of the RIQ algorithm in FaCT

In order to evaluate the practicability of the above algorithm, we have extended
the DL system FaCT [Horrocks, 1998] to deal with RIQ, and we have carried
out a preliminary empirical evaluation.

From a practical point of view, one potential problem with the RIQ algo-
rithm is that the number of different automata, and hence the number of dif-
ferent ∀A.C concepts, could be very large. Moreover, many of these automata
could be equivalent (i.e., accept the same languages). As blocking depends on
finding ancestor nodes labeled with the same set of concepts, the discovery of
blocks could be unnecessarily delayed, and this can lead to a serious degradation
in performance [Horrocks and Sattler, 2002].

The FaCT implementation addresses these possible problems by transform-
ing all of the initial NFAs into minimal deterministic NFAs (using the AT&T
FSM LibraryTM [Mohri et al., 1998]). Only one finite state automata is con-
structed for each role, the states in each automaton are uniquely numbered, and
the implementation uses concepts of the form ∀A.C, where A is the number of a
state in one of the automata. Because the automata are deterministic, for each
concept of the form ∀A.C in the label of a node, the ∀2-rule can add at most
one concept to the label of a given neighbouring node. Moreover, because the
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automata are minimal, if ∀A.C leads to the presence of ∀A′.C in some successor
node (as a result of repeated applications of the ∀2-rule), then ∀A.C is equiva-
lent to ∀A′.C iff A = A′. As A and A′ are numbers, such comparisons are very
easy, and minimisation of automata avoids unnecessary blocking delays.

The implementation is still at the “beta” stage, but it has been possible
to carry out some preliminary tests using the well known Galen medical ter-
minology KB [Rector and Horrocks, 1997; Horrocks, 1998]. This KB contains
2,740 named concepts and 413 roles, 26 of which are transitive. The roles are
arranged in a relatively complex hierarchy with a maximum depth of 10. Classi-
fying this KB using FaCT’s SHIQ reasoner takes 116s on an 800 MHz Pentium
III equipped Linux PC. Classifying the same KB using the new RIQ reasoner
took a total of 275s, but this includes 135s to compute the minimal determin-
istic NFAs for the role box (it should be noted that this is an unusually large
and complex role box, and that computing the NFAs is a preprocessing step
that will not need to be repeated when the remainder of the KB is extended,
modified, or queried). This result is encouraging as it shows that, in the case
of the Galen KB at least, using automata in ∀A.C concepts does not lead to a
significant degradation in performance. Moreover, the time taken by the RIQ
reasoner includes approximately 100s to compute the minimal deterministic au-
tomata for the role box. This overhead could become significant if optimisations
of the RIQ reasoner result in even better performance, but it should be noted
that (a) this is a preprocessing step that will not need to be repeated when
the remainder of the KB is extended, modified or queried, and (b) this is an
unusually large and complex role box.

The KB was then extended with several role inclusion axioms that express
the propagation of location across various partonomic roles. These included

hasLocation ◦ isSolidDivisionOf⊑ hasLocation

and
hasLocation ◦ isLayerOf ⊑ hasLocation.

Classifying the extended KB took 280s, an increase of only 2% (3.5% if we ex-
clude the NFA computation time). Subsumption queries w.r.t. this KB revealed
that, e.g.,

Fracture⊓ ∃hasLocation.NeckOfFemur

was implicitly a kind of

Fracture⊓ ∃hasLocation.Femur

(NeckOfFemur is a solid division of Femur), and

Ulcer ⊓ ∃hasLocation.GastricMucosa

was implicitly a kind of

Ulcer⊓ ∃hasLocation.Stomach
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(GastricMucosa is a layer of Stomach). None of these subsumption relationships
held w.r.t. the original KB. The times taken to compute these relationships w.r.t.
the classified KB could not be measured accurately as they were of the same
order as a system clock tick (10ms).

7 Discussion

Motivated (primarily) by medical terminology applications, we have investigated
the decidability of the well known expressive DL, SHIQ, extended with RIAs
of the form R ◦ S ⊑ P . We have shown that this extension is undecidable
even when RIAs are restricted to the forms R ◦ S ⊑ R or S ◦ R ⊑ R, but that
decidability can be regained by further restricting RIAs to be acyclic. We have
presented a tableau algorithm for this DL and reported on its implementation
in the FaCT system. A preliminary evaluation suggests that the algorithm
will perform well in realistic applications and demonstrates that it can provide
important additional functionality in a medical terminology application.
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