
Dresden University of Tehnology

Institute for Theoretial Computer Siene

Chair for Automata Theory

LTCS{Report

Keys, Nominals, and Conrete Domains

Carsten Lutz, Carlos Arees, Ian Horroks, Ulrike Sattler

LTCS-Report 02-04

Lehrstuhl f�ur Automatentheorie

Institut f�ur Theoretishe Informatik

TU Dresden

http://lat.inf.tu-dresden.de

Hans-Grundig-Str. 25

01062 Dresden

Germany

Keys, Nominals, and Conrete Domains

Carsten Lutz, Carlos Arees, Ian Horroks, Ulrike Sattler

Abstrat

Many desription logis (DLs) ombine knowledge representation on an abstrat,

logial level with an interfae to \onrete" domains suh as numbers and strings

with built-in prediates suh as <, +, and pre�x-of. These hybrid DLs have turned

out to be quite useful for reasoning about oneptual models of information systems,

and as the basis for expressive ontology languages. We propose to further extend

suh DLs with key onstraints that allow the expression of statements like \US

itizens are uniquely identi�ed by their soial seurity number". Based on this

idea, we introdue a number of natural desription logis and perform a detailed

analysis of their deidability and omputational omplexity. It turns out that naive

extensions with key onstraints easily lead to undeidability, whereas more areful

extensions yield NExpTime-omplete DLs for a variety of useful onrete domains.

1 Motivation

Desription logis (DLs) are a family of formalisms that allow the representation of and

reasoning about oneptual knowledge in a strutured and semantially well-understood

manner [8, 2℄. The entral entities for representing suh knowledge are onepts, whih

are onstruted from atomi onept names (unary prediates) and role names (binary

relations) by means of the onept and role onstrutors o�ered by a partiular DL. For

example, in the basi propositionally losed desription logi ALC, we an desribe a

ompany that has part-time employees but only full-time managers using the onept

Company u 9employee:Parttime u 8employee:(:Manager t :Parttime):

In this example, all upperase words denote onept names while the lowerase employee

denotes a role name.

Rather than being viewed only as oneptual entities in a knowledge base, onepts

an, more generally, be understood as the entral notion in various kinds of lass-

entered formalisms. In the last deade, this observation has given rise to various

new and exiting appliations of desription logis suh as reasoning about database

oneptual models expressed in entity-relationship diagrams or objet-oriented shemas

and reasoning about ontologies for use in the semanti web, see [18, 16℄ and [6, 29, 30℄,

respetively. These new appliations have, in turn, stimulated researh in desription

logis sine the expressive power of existing DLs was insuÆient for the new tasks.

One important extension of \lassial" desription logis onerns so-alled onrete

domains: assume, e.g., that we want to ontinue our example from above by equipping

1

ompanies with a founding year and employees with a hiring year. Then, we may want

to desribe ompanies that were founded before 1970 and state that the hiring year of

employees is not prior to the founding year of the employing ompany. To do this, we

obviously need a way to talk about natural numbers (suh as 1970) and omparisons

between natural numbers.

Nowadays, the standard approah to integrate numbers and other datatypes into

desription logis is to extend DLs with so-alled onrete domains as �rst proposed by

Baader and Hanshke in [3℄, see also the survey [38℄. More preisely, a onrete domain

D onsists of a set (suh as the natural numbers) and prediates whih are assoiated

with a �xed extension over this set

1

(suh as the unary =

0

, the binary <, and the

ternary +). The integration of onrete domains into, say, the desription logi ALC is

ahieved by adding

1. so-alled abstrat features, whih are funtional relations;

2. so-alled onrete features, whih are (partial) funtions assoiating values from

the onrete domain (e.g., natural numbers) with logial objets;

3. a onrete domain-based onept onstrutor.

The DL that is obtained by extending ALC in this way is alled ALC(D), where D

denotes a onrete domain that an be viewed as a parameter to the logi. For ex-

ample, when using a suitable onrete domain D, we an now desribe the onstraints

formulated above: the onept

Employee u 9employer:(9foundingyear:<

1970

) u 9hiringyear; employer foundingyear:�

desribes an employee who is employed by a ompany founded before 1970 and whose

hiring year is not prior to the ompany's founding year. Here, the term inside parenthesis

and the third onjunt are instanes of the onrete domain onept onstrutor (not

to be onfused with the existential value restrition as in 9employee:Parttime), employer

is an abstrat feature, and foundingyear and hiringyear are onrete features.

Conrete domains an be onsidered rather important in the \modern" appliations

of DLs mentioned above:

{ the standard way of using desription logis for reasoning about oneptual database

models is to translate a given model into a DL representation and then use a

desription logi reasoning proedure for deteting inonsistenies and inferring

onsequenes of the information provided expliitly in the model suh as addi-

tional, impliit ontainments between entities/lasses [18℄. Sine most databases

store \onrete" data like numbers and strings, onstraints onerning suh data

are usually part of the oneptual model and should thus also be aptured by the

desription logi used for reasoning. Indeed, the above example onepts an be

viewed as the DL enoding of onstraints from a database about ompanies and

their employees. As disussed in [41℄, desription logis with onrete domains are

well-suited for oneptual modelling appliations involving onrete datatypes.

1

This �xed extension is why these prediates are often alled \built-in".

2

{ in the onstrution of ontologies for the semanti web, so-alled onrete datatypes

play a prominent role [30℄. Say, for example, that we want to onstrut an ontology

whih an be used for desribing ar dealers' web pages and web servies. In suh

an ontology, onrete datatypes suh as pries, manufaturing years, and names of

ar models will doubtlessly be very important. To formulate this ontology using

a DL, we thus need a way to represent these onrete datatypes. Consequently,

almost all DLs that have been proposed as an ontology language for the semanti

web are equipped with some form of onrete domain [20, 30, 19℄.

In this paper, we propose to further extend the expressive power of desription logis

with onrete domains in a way that is useful both for knowledge representation and

the two appliations skethed above. Let us desribe the basi idea, whih is to use

onrete features for de�ning \key onstraints", using three examples:

1. Suppose that, in a knowledge representation appliation, we represent nationalities

by onept names suh as US and German and, for US itizens, we store the soial

seurity number using a onrete feature ssn. Then it would be natural to state

that US itizens are uniquely identi�ed by their soial seurity number, i.e. any

two distint instanes of

Human u 9nationality:US

must have di�erent values for the ssn feature. In our extension of DLs with

onrete domains, this an be expressed by using the key de�nition

(ssn keyfor Human u 9nationality:US):

2. Returning to our database about ompanies and employees, it ould be useful to

equip every employee with (i) a onrete feature branh storing the branh-ID in

whih she is working and (ii) a onrete feature id storing her personnel-ID. It

would then be natural to enfore that even though personnel-IDs are not unique,

the branh-ID together with the personnel-ID uniquely identi�es employees. We

an do this by using the n-ary key de�nition

(branh; id keyfor Employee):

3. In the ar dealers' ontology, we may assume that ars as well as manufaturers

are equipped with identi�ation numbers and that every ar is uniquely identi�ed

by the ombination of its own identi�ation number and its manufaturers one.

To express this, we ould employ an n-ary key de�nition referring to sequenes of

features:

(id;manufaturer id keyfor Car):

More formally, we propose to extend DLs to provide for onrete domains with key

boxes, whih are sets of key de�nitions of the form

(u

1

; : : : ; u

n

keyfor C);

3

where the u

i

are sequenes f

1

� � � f

n

g of n abstrat features f

1

; : : : ; f

n

followed by a

single onrete feature g, and C is a onept. As the above examples illustrate, the idea

of key onstraints is a very natural one. Sine, moreover, keys play an important role

in databases and, as mentioned above, reasoning about database oneptual models

is an important, hallenging appliation of desription logis, several approahes to

extend desription logis with keys have already been investigated [15, 17, 35℄. What

distinguishes our approah from existing ones, however, is the idea to use onrete

domains for onstruting key onstraints, rather than de�ning keys on an abstrat,

logial level.

The goal of this paper is to provide a omprehensive analysis of the e�ets on de-

idability and omputational omplexity of adding key boxes to desription logis with

onrete domains. To this end, we extend the two desription logis with onrete do-

mains ALC(D) and SHOQ(D) with key boxes, in this way obtaining ALCK(D) and

SHOQK(D), respetively. While ALC(D) an be viewed as the basi DL with on-

rete domains and has already been disussed above, SHOQ(D) was proposed as an

ontology language in [31℄. It provides a wealth of expressive possibilities suh as gen-

eral onept inlusion axioms (GCIs), transitive roles, role hierarhies, nominals, and

qualifying number restritions. Moreover, it o�ers a restrited variant of the onrete

domain onstrutor that disallows the use of sequenes of features in order to avoid

undeidability of reasoning.

The main outome of our investigations is that key onstraints an have a dramati

impat on the deidability and omplexity of reasoning: for example, whereas satis�a-

bility of ALC(D)-onepts is known to be PSpae-omplete [40℄, we are able to show

that satis�ability of ALCK(D)-onepts w.r.t. key boxes is, in general, undeidable.

Deidability an be reovered if we restrit the onepts used in key boxes to Boolean

ombinations of onept names, thus obtaining Boolean key boxes. Interestingly, satis�-

ability of ALCK(D)-onepts w.r.t. Boolean key boxes is still NExpTime-omplete even

for very simple onrete domains. In the ase of SHOQ(D) and SHOQK(D), the leap in

omplexity is somewhat less dramati sine SHOQ(D)-onept satis�ability is already

ExpTime-omplete: again, the addition of key boxes results in NExpTime-omplete

reasoning problems (more details are given below).

It is interesting to note that there exists a lose onnetion between key de�nitions

and so-alled nominals, i.e. onept names that an have at most one instane, suh as

Pope. Nominals are a standard means of expressivity in desription logis and some-

times appear in disguise as the \one-of" operator [14, 30℄. It is not hard to see that

key boxes an \simulate" nominals: if, for example, we use a onrete domain based on

the natural numbers and providing unary prediates =

n

for equality with n 2 N, then

the key de�nition (g keyfor >), where > stands for logial truth, obviously makes the

onept 9g:=

3

behave like a nominal. For this reason, we also onsider ALCO(D), the

extension of ALC(D) with nominals, and ALCOK(D), the extension of ALCK(D) with

nominals.

2

Our main result onerning nominals is that, although in general being of

lower expressive power than key boxes, nominals already lead to NExpTime-hardness of

reasoning if ombined with onrete domains: there exist onrete domains D suh that

2

Note that the logi SHOQ(D) already provides for nominals.

4

ALCO(D)-onept satis�ability is NExpTime-omplete. We should like to stress that

all NExpTime-hardness results obtained in this paper are in aordane with the obser-

vation made in [39℄, namely that the PSpae-upper bound for reasoning with ALC(D)

is not robust w.r.t. extensions of the logi: there exist several \seemingly harmless"

extensions of ALC(D) (for example ayli TBoxes and inverse roles) whih make the

omplexity of reasoning leap from PSpae-ompleteness to NExpTime-ompleteness

for many natural onrete domains.

The remainder of this paper is organized as follows:

In Setion 2, we formally introdue onrete domains, key boxes, and the desription

logi ALCOK(D) together with its fragments ALCK(D) and ALCO(D). We also de�ne

Boolean key boxes and so-alled path-free key boxes whih prohibit the use of sequenes

of features inside key de�nitions. We also introdue unary key boxes and n-ary key

boxes in analogy to the n-ary key de�nitions used in the examples above.

Setion 3 is devoted to establishing lower bounds for desription logis with onrete

domains, key boxes, and nominals. In Setion 3.1, we use a redution of the Post Corre-

spondene Problem to prove that ALCK(D)-onept satis�ability w.r.t. (non-Boolean)

key boxes is undeidable if the onrete domain D provides for the natural numbers,

a unary prediate for equality with zero, binary equality and inequality, and a binary

inrementation prediate. We then shift our attention towards Boolean key boxes sine,

in Setion 4, we show that this restrition reovers deidability. In Setion 3.2, we intro-

due a NExpTime-omplete variant of the domino problem and three onrete domains

that are useful for the redution of this problem to onept satis�ability in DLs provid-

ing for Boolean key boxes or nominals. In Setion 3.3, we use these onrete domains

to prove that ALCK(D)-onept satis�ability w.r.t. Boolean and path-free key boxes

is NExpTime-hard if D provides two unary prediates denoting disjoint singleton sets.

We then strengthen this result to unary key boxes, but, to ompensate for the weaker

key box formalism, we use more expressive onrete domains. For example, it suÆes

that the onrete domain D provides for the natural numbers, a unary prediate =

n

for eah n 2 N, and ternary addition. In Setion 3.4, we prove that ALCO(D)-onept

satis�ability without referene to key boxes is already NExpTime-hard. For this result,

the strongest requirements on the onrete domain are adopted: we additionally need

prediates suh as multipliation and exponentiation. However, we are able to show

that there still exist onrete domains that are omputationally very simple (PTime) if

onsidered in isolation, but lead to NExpTime-hardness if used with the DL ALCO(D).

The purpose of Setion 4 is to develop reasoning proedures for desription logis

with key boxes and to prove upper omplexity bounds mathing the NExpTime lower

bounds established in the previous setion. We start in Setion 4.1 with a tableau algo-

rithm that is apable of deiding ALCOK(D)-onept satis�ability w.r.t. Boolean key

boxes if the onrete domain D is key-admissible. Intuitively, a onrete domain D is

key admissible if there exists an algorithm that takes a �nite onjuntion of prediates

from D over some set of variables, deides whether this onjuntion is satis�able, and

additionally returns information on whih variables must take the same values in solu-

tions of . We have hosen a tableau algorithm sine this type of reasoning proedure

has the potential to be implemented in eÆient reasoners and has been shown to behave

5

well in pratie [33, 23℄. The algorithm provides us with the following upper bound:

ALCOK(D)-onept satis�ability w.r.t. Boolean key boxes is in NExpTime if D is key-

admissible and the algorithm mentioned in the explanation of \key-admissible" runs

in non-deterministi polynomial time. In Setion 4.2, we devise a tableau algorithm

for SHOQK(D)-onept satis�ability w.r.t. path-free key boxes whih might involve

non-Boolean onepts. The restrition to Boolean onepts in key boxes was neessary

for ALCOK(D) in order to avoid undeidability. For SHOQK(D), this restrition is

not neessary sine SHOQK(D)'s onrete domain onstrutor is weaker than the one

provided by ALCOK(D): it does not admit the use of sequenes of features as argu-

ments. As a by-produt of the orretness proof of the algorithm, we obtain a bounded

model property for SHOQK(D), whih implies that SHOQK(D)-onept satis�ability

w.r.t. path-free key boxes is in NExpTime if D is key-admissible and the orresponding

algorithm runs in non-deterministi polynomial time.

In Setion 5, we summarize the results obtained and give an outlook to possible

future researh.

2 Desription Logis with Conrete Domains

In the following, we introdue the desription logi ALCOK(D). Let us start with

de�ning onrete domains:

De�nition 1 (Conrete Domain). A onrete domain D is a pair (�

D

;�

D

), where

�

D

is a set and �

D

a set of prediate names. Eah prediate name P 2 �

D

is assoiated

with an arity n and an n-ary prediate P

D

� �

n

D

. �

Based on onrete domains, we an now de�ne ALCOK(D)-onepts and key boxes.

De�nition 2 (ALCOK(D) Syntax). Let N

C

, N

O

, N

R

, N

F

be pairwise disjoint and

ountably in�nite sets of onept names, nominals, role names, and onrete features.

Furthermore, we assume that N

R

ontains a ountably in�nite subset N

aF

of abstrat

features. A path u is a omposition f

1

� � � f

n

g of n abstrat features f

1

; : : : ; f

n

(n � 0)

and a onrete feature g. Let D be a onrete domain. The set of ALCOK(D)-onepts

is the smallest set suh that

� every onept name and every nominal is a onept, and

� if C and D are onepts, R is a role name, g is a onrete feature, u

1

; : : : ; u

n

are

paths, and P 2 �

D

is a prediate of arity n, then the following expressions are

also onepts:

:C; C uD; C tD; 9R:C; 8R:C; 9u

1

; : : : ; u

n

:P; and g":

A key de�nition is an expression

(u

1

; : : : ; u

k

keyfor C);

where u

1

; : : : ; u

k

(k � 1) are paths and C is a onept. A �nite set of key de�nitions is

alled key box. �

6

As usual, we use > as abbreviation for an arbitrary propositional tautology, ? as ab-

breviation for :>, C ! D as abbreviation for :C tD, and C $ D as abbreviation for

(C ! D) u (D ! C). Throughout this paper, we will also onsider several fragments

of the desription logi ALCOK(D). The DL ALCO(D) is obtained from ALCOK(D)

by admitting only empty key boxes. In partiular, the set of ALCO(D)-onepts is just

the set of ALCOK(D)-onepts. Furthermore, by disallowing the use of nominals, we

obtain the fragment ALC(D) of ALCO(D) and ALCK(D) of ALCOK(D).

The desription logi ALCOK(D) is equipped with a Tarski-style set-theoreti se-

mantis. Along with the semantis, we introdue the two standard inferene problems:

onept satis�ability and onept subsumption.

De�nition 3 (ALCOK(D) Semantis). An interpretation I is a pair (�

I

; �

I

), where

�

I

is a non-empty set, alled the domain, and �

I

is the interpretation funtion. The

interpretation funtion maps

{ eah onept name C to a subset C

I

of �

I

,

{ eah nominal N to a singleton subset N

I

of �

I

,

{ eah role name R to a subset R

I

of �

I

��

I

,

{ eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

{ eah onrete feature g to a partial funtion g

I

from �

I

to �

D

.

If u = f

1

� � � f

n

g is a path, then u

I

(d) is de�ned as g

I

(f

I

n

� � � (f

I

1

(d)) � � �). The interpre-

tation funtion is extended to arbitrary onepts as follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j There is e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g

(8R:C)

I

:= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g

(9u

1

; : : : ; u

n

:P)

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: u

I

i

(d) = x

i

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg:

Let I be an interpretation. Then I is a model of a onept C i� C

I

6= ;. Moreover, I

satis�es a key de�nition (u

1

; : : : ; u

n

keyfor C) if, for any a; b 2 C

I

,

if, for 1 � i � n, u

I

i

(a) = u

I

i

(b), then a = b.

I is a model of a key box K i� I satis�es all key de�nitions in K. A onept C is

satis�able w.r.t. a key box K i� C and K have a ommon model. C is subsumed by a

onept D w.r.t. a key box K (written C v

K

D) i� C

I

� D

I

for all models I of K. �

7

It is well-known that, in desription logis providing for negation, subsumption an

be redued to (un)satis�ability and vie versa: C v

K

D i� C u :D is unsatis�able

w.r.t. K and C is satis�able w.r.t. K i� C 6v

K

?. This allows us to onentrate on

onept satis�ability when devising omplexity bounds for reasoning with desription

logis: lower and upper omplexity bounds for onept satis�ability imply orresponding

bounds for onept subsumption|only for the omplementary omplexity lass.

If deision proedures for desription logis with onrete domains are to be devised

without ommitting to a partiular onrete domain, then a well-de�ned interfae be-

tween the deision proedure and a onrete domain reasoner is needed. Usually, the

onrete domain is required to be admissible [3, 37, 38℄:

De�nition 4 (D-onjuntion, admissibility). Let D be a onrete domain and V a

set of variables. A D-onjuntion is a (�nite) prediate onjuntion of the form

 =

^

i<k

(x

(i)

0

; : : : ; x

(i)

n

i

) : P

i

;

where P

i

is an n

i

-ary prediate for i < k and the x

(i)

j

are variables from V. A D-

onjuntion is satis�able i� there exists a funtion Æ mapping the variables in to

elements of �

D

suh that (Æ(x

(i)

0

); : : : ; Æ(x

(i)

n

i

)) 2 P

D

i

for eah i < k. Suh a funtion is

alled a solution for . We say that the onrete domain D is admissible i�

1. �

D

ontains a name >

D

for �

D

;

2. �

D

is losed under negation, i.e., for eah n-ary prediate P 2 �

D

, there is a

prediate P 2 �

D

of arity n suh that P

D

= �

n

D

n P

D

;

3. satis�ability of D-onjuntions is deidable.

We refer to the satis�ability of D-onjuntions as D-satis�ability. �

As we shall see, it sometimes makes a onsiderable di�erene w.r.t. omplexity and

deidability to restrit key boxes in various ways, for example to admit only the onept

> on the right-hand side of key de�nitions or to disallow paths of length greater than

one. Therefore, we introdue some useful notions.

De�nition 5 (Boolean, Path-free, Simple). A key box K is alled

� Boolean if all onepts appearing in (key de�nitions in) K are Boolean ombina-

tions of onept names;

� path-free if all key de�nitions in K are of the form (g

1

; : : : ; g

n

keyfor C); where

g

1

; : : : ; g

n

2 N

F

;

� simple if it is both path-free and Boolean;

� a unary key box if all key de�nitions in K are unary key de�nitions, i.e. of the

form (u keyfor C):

8

A onept C is alled path-free if, in all its subonepts of the form 9u

1

; : : : ; u

n

:P ,

u

1

; : : : ; u

n

are onrete features. �

To emphasize that a key box must not neessarily be Boolean or path-free, we sometimes

all suh a key box general. Similarly, to emphasize that a key box is not neessarily a

unary key box, we sometimes all suh a key box n-ary key box.

3 Lower Bounds

In this setion, we prove lower bounds for desription logis with onrete domains

whih provide for key boxes and/or nominals. In Setion 3.1, we start with showing

that the satis�ability of ALCK(D)-onepts w.r.t. (general) key boxes is undeidable for

many interesting onrete domains. This disouraging result is relativized by the fat

that, in Setion 4.1, we shall prove that the restrition to Boolean key boxes reovers

deidability. It is thus interesting to look for lower omplexity bounds that apply under

this restrition. In preparation for this, we introdue in Setion 3.2 a NExpTime-

omplete variant of the domino problem and three onrete domains that are well-

suited for redutions of this problem. In Setion 3.3, we then prove that satis�ability

of path-free ALCK(D)-onepts w.r.t. simple key boxes is NExpTime-hard for a large

lass of onrete domains D and that, for many onrete domains, this does hold even

if we restrit ourselves to unary key boxes. Finally, we onsider the desription logi

ALCO(D) in Setion 3.4 and identify several onrete domains suh that ALCO(D)-

onept satis�ability (without key boxes!) is NExpTime-hard. As we will explain,

key boxes and nominals are losely related: key boxes an express nominals, but are

more powerful. Intuitively, key boxes an be used to de�ne onepts that behaves like

nominals|but the number of \nominals" de�ned in this way annot be bounded in

advane by a simple syntati test.

3.1 Undeidability of ALCK(D) with General Key Boxes

We prove that satis�ability of ALCK(D)-onepts w.r.t. key boxes is undeidable for

a large lass of onrete domains|if we allow omplex ALCK(D)-onepts to our

in key de�nitions. The proof is by a redution of the well-known undeidable Post

Correspondene Problem [43, 27℄.

De�nition 6 (PCP). An instane P of the Post Correspondene Problem is given by

a �nite, non-empty list (`

1

; r

1

); : : : ; (`

k

; r

k

) of pairs of words over some alphabet �. A

sequene of integers i

1

; : : : ; i

m

, with m � 1, is alled a solution for P i�

`

i

1

� � � `

i

m

= r

i

1

� � � r

i

m

:

The Post Correspondene Problem (PCP) is to deide, for a given instane P , whether

P has a solution. �

For reduing the PCP, we need an appropriate onrete domain. It is obviously natural

to use a onrete domain based on words and onatenation. We will later see that

9

Step := u

1�i�k

9f

i

:(:A u 9g:=

�

u 9`; r:6=)

u u

1�i�k

(9`; f

i

`:on

`

i

u 9r; f

i

r:on

r

i

)

C

P

:= 9`:=

�

u 9r:=

�

u 9R:(A u 9g:=

�

u :Step)

u Step

K

P

:= fg keyfor :Stepg

Figure 1: The ALCK(W) redution onept C

P

and key box K

P

.

the results obtained for this onrete domain arry over to other, more natural on-

rete domains based on numbers and arithmetis. The following onrete domain was

introdued in [39℄.

De�nition 7 (Conrete domain W). Let � be an alphabet. The onrete domain

W is de�ned by setting �

W

:= �

�

and de�ning �

W

as the smallest set ontaining the

following prediates:

� unary prediates word and nword with word

W

= �

W

and nword

W

= ;,

� unary prediates =

�

and 6=

�

with =

W

�

= f�g and 6=

W

�

= �

+

,

� a binary equality prediate = and a binary inequality prediate 6= with the obvious

interpretation, and

� for eah w 2 �

+

, two binary prediates on

w

and non

w

with

on

W

w

= f(u; v) j v = uwg and non

W

w

= f(u; v) j v 6= uwg:

�

It is readily heked that W satis�es Properties 1 and 2 of admissibility. In [39℄, the

omplexity of W-satis�ability is investigated.

Theorem 8. W-satis�ability is in PTime.

Thus, W is admissible. This is important sine our aim is to demonstrate that the

undeidability of ALCK(W)-onept satis�ability is due to the presene of keys, and

not due to the undeidability of W-satis�ability.

We an now disuss the redution of the PCP. A given instane (`

1

; r

1

); : : : ; (`

k

; r

k

)

is translated into an ALCK(D)-onept and key box as shown in Figure 1. In this

�gure, f

1

; : : : ; f

k

denote abstrat features while g, `, and r denote onrete features.

The de�nition of the onept Step just serves as an abbreviation. The idea behind

the redution is that a ommon model of C

P

and K

P

enodes all potential solutions

10

`

r

=

�

on

r

k

f

1

f

k

`

r

r

`

f

1

f

1

f

k

f

k

on

`

k

on

`

1

on

r

1

� � �

� � � � � �

� � � � � �

=

�

R

x

9g:=

�

A

Figure 2: An example model of C

P

and K

P

.

(i.e., sequenes that an be ompleted to a solution) for the PCP P and, moreover,

the existene of suh a model guarantees that no potential solution is indeed a solution.

Models of C

P

and K

P

, suh as the one displayed in Figure 2, have the form of an in�nite

k-ary tree whose root is onneted to an \extra node" x via the role R. Intuitively, eah

node of the tree represents one sequene of indies i

1

; : : : ; i

n

, its `-suessor represents

the orresponding left onatenation `

i

1

� � � `

i

n

, and its r-suessor the orresponding

right onatenation r

i

1

� � � r

i

n

. To enfore the existene of the in�nite tree, we employ

the key box K

P

: onsider for example the root node's f

1

-suessor in Figure 2|let us

all this node y. Due to Line 3 of C

P

and Line 1 of Step, we have y 2 (9g:=

�

)

I

. Due

to Line 2 of C

P

, we also have x 2 (9g:=

�

)

I

and x 2 (:Step)

I

, where x is the \extra

node" mentioned above. In view of the key box K

P

, this implies that either (i) x = y

or (ii) y 2 Step

I

. It is easy to see that (i) is impossible sine Line 2 of C

P

and Line 1 of

Step imply that x 2 A

I

and y 2 (:A)

I

. Hene y 2 Step

I

and, by Line 2 of Step, y has

the appropriate f

i

-suessors for 1 � i � n. In the same way, the onstrution of the

tree an be ontinued ad in�nitum. The seond line in the de�nition of Step enfores

that `

I

(z) = `

i

1

� � � `

i

n

and r

I

(z) = r

i

1

� � � r

i

n

for z an f

i

1

� � � f

i

n

-suessor of the root

node. Finally, the onept 9`; r:6= in Line 1 of Step implies that `

I

(z) 6= r

I

(z) holds at

all nodes z of the tree (exept for the root), whih implies that no potential solution is

a solution.

Sine the size of C

P

and K

P

is learly polynomial in k and the key box K

P

is a

unary key box, we obtain the following proposition.

Proposition 9. The satis�ability of ALCK(W)-onepts w.r.t. (general) unary key

boxes is undeidable.

To emphasize that this undeidability result was obtained using a very simple onrete

domain, let us ombine Theorem 8 with Proposition 9.

Theorem 10. There exists a onrete domain D suh that D-satis�ability is in PTime

and satis�ability of ALCK(D)-onepts w.r.t. (general) unary key boxes is undeidable.

11

On �rst sight, the onrete domain W might look arti�ial and one may question the

relevane of lower bounds that have been obtained using W. However, it is straightfor-

ward to enode words as natural numbers and to de�ne onatenation of words as rather

simple operations on the natural numbers [5℄: words w 6= � over the alphabet � of ardi-

nality #� an be interpreted as numbers written at base #�+1 where the symbol that

is the \0 digit" does never our. Hene, we an use the orresponding natural number

(at base 10) to represent a word w and the number 0 to represent the empty word. The

onatenation of two words v and w an then be expressed as vw = v � (#�+1)

jwj

+w,

where jwj denotes the length of the word w. Moreover, exponentiation an be expressed

as multiple multipliations, multipliation as multiple additions, and addition as mul-

tiple inrementation (see [39℄ for details). This observation gives rise to the following

theorem:

Theorem 11. Let D be a onrete domain suh that N � �

D

, �

D

ontains a unary

prediate =

0

with (=

0

)

D

= f0g, binary equality and inequality prediates, and a binary

prediate inr with inr

D

\ f(n; x) j n 2 N and x 2 �

D

g = f(k; k + 1) j k 2 Ng. Then

satis�ability of ALCK(D)-onepts w.r.t. (general) unary key boxes is undeidable.

Sine subsumption an be redued to satis�ability as desribed in Setion 2, we obtain

orresponding undeidability results for onept subsumption.

3.2 Domino Problems and Conrete Domains

In this setion, we introdue a NExpTime-omplete variant of the well-known, undeid-

able domino problem [11, 36℄, and then de�ne three onrete domains D

1

, D

2

, and D

3

.

These onrete domains will be used in Setions 3.3 and 3.4 to establish lower bounds

for reasoning with ALCK(D) and Boolean key boxes, and for reasoning with ALCO(D).

In general, a domino problem is given by a �nite set of tile types. All tile types

are of the same size, eah type having a square shape and olored edges. An unlimited

number of tiles of eah type is available. In the NExpTime-hard variant of the domino

problem that we use, the task is to tile a 2

n+1

�2

n+1

-torus (i.e., a 2

n+1

�2

n+1

-retangle

whose borders are \glued" together) where neighboring edges have the same olor.

De�nition 12 (Domino System). A domino system D is a triple (T;H; V), where

T � N is a �nite set of tile types and H;V � T � T represent the horizontal and

vertial mathing onditions. Let D be a domino system and a = a

0

; : : : ; a

n�1

an initial

ondition, i.e. an n-tuple of tiles. A mapping � : f0; : : : ; 2

n+1

g � f0; : : : ; 2

n+1

g ! T is a

solution for D and a i�, for all x; y < 2

n+1

, the following holds:

{ if �(x; y) = t and �(x�

2

n+1 1; y) = t

0

, then (t; t

0

) 2 H

{ if �(x; y) = t and �(x; y �

2

n+1
1) = t

0

, then (t; t

0

) 2 V

{ �(i; 0) = a

i

for i < n.

where �

i

denotes addition modulo i. �

12

As shown in, e.g., Corollary 4.15 of [37℄, it follows from results in [13℄ that the above

variant of the domino problem is NExpTime-omplete.

We now de�ne the onrete domain D

1

whih will be used in the redution of

the NExpTime-omplete domino problem to ALCK(D

1

)-onept satis�ability w.r.t.

Boolean key boxes.

De�nition 13 (Conrete Domain D

1

). The onrete domain D

1

is de�ned by setting

�

D

1

:= f0; 1g and �

D

1

to the (smallest) set ontaining the following prediates:

{ a unary prediate >

D

1

with (>

D

1

)

D

1

= �

D

1

and a unary prediate ?

D

1

with

(?

D

1

)

D

1

= ;;

{ unary prediates =

0

and =

1

with (=

i

)

D

1

= fig.

�

It is readily heked that the onrete domain D

1

is admissible and that D

1

-satis�ability

is in PTime.

Proposition 14. D

1

-satis�ability is in PTime.

The seond onrete domain D

2

will be used for a redution of the NExpTime-omplete

domino problem to ALCK(D

2

)-onept satis�ability w.r.t. Boolean unary key boxes. For

this redution we need to \store" vetors of bits in single onrete domain elements.

De�nition 15 (Conrete Domain D

2

). For every n 2 N, a funtion v : f0; : : : ; n�

1g ! f0; 1g is alled a bit vetor of dimension n. We use BV

n

to denote the set of all bit

vetors of dimension n. The onrete domain D

2

is de�ned by setting �

D

2

:=

S

i>0

BV

i

and �

D

2

to the (smallest) set ontaining the following prediates:

{ a unary prediate >

D

2

with (>

D

2

)

D

2

= �

D

2

and a unary prediate ?

D

2

with

(?

D

2

)

D

2

= ;;

{ for every k; i 2 N with i < k, unary prediates bit0

i

k

and bit1

i

k

with

(bitn

i

k

)

D

2

= fv 2 �

D

2

j v 2 BV

k

and v(i) = ng:

Moreover, unary prediates bit0

i

k

and bit1

i

k

with (bitn

i

k

)

D

2

= �

D

2

n (bitn

i

k

)

D

2

.

�

It is obvious that D

2

satis�es Conditions 1 and 2 of admissibility, and, as we will see

now, an algorithm for D

2

-satis�ability is easily devised.

Proposition 16. D

2

-satis�ability is in PTime.

13

Proof. Let be a D

2

-onjuntion. We show that is satis�able i� none of the following

onditions applies:

1. ontains a onjunt ?

D

2

(x);

2. ontains onjunts bit0

i

k

(x) and bit1

i

k

(x);

3. ontains onjunts bitn

i

k

(x) and bitm

j

`

(x) with k 6= `;

4. ontains onjunts bitn

i

k

(x) and bitn

i

k

(x);

5. ontains onjunts bitn

i

k

(x), bit0

j

k

(x), and bit1

j

k

(x).

It is easily seen that is unsatis�able if one of the onditions applies. Assume now that

Conditions 1 to 5 do not apply to and let X be the set of variables used in . For

eah x 2 X, set t(x) = k if bitn

i

k

(x) 2 for some n; i 2 N.

3

If bitn

i

k

(x) =2 for all

n; i; k 2 N, then set t(x) = r for some r not appearing as an index �

r

to a prediate

in . The mapping t is well-de�ned sine is �nite, Condition 3 does not apply, and the

only prediates available are bitn

i

k

(�), ?

D

2

(�), and >

D

2

(�). We de�ne a solution Æ for

as follows: for eah x 2 X, set Æ(x) to the bit vetor v 2 BV

t(x)

in whih the i'th bit

is 1 if bit1

i

t(x)

(x) 2 or bit0

i

t(x)

(x) 2 , and 0 otherwise. It remains to prove that Æ is

indeed a solution for :

� Let bit0

i

k

(x) 2 . Then t(x) = k and thus Æ(x) 2 BV

k

. Sine Condition 2 does not

apply, we have bit1

i

k

(x) =2 . Moreover, non-appliability of Condition 4 implies

bit0

i

k

(x) =2 . By de�nition of Æ, the i'th bit of Æ(x) is thus 0.

� Let bit1

i

k

(x) 2 . Then t(x) = k and Æ(x) 2 BV

k

. By de�nition of Æ, the i'th bit

of Æ(x) is 1.

� Let bit0

i

k

(x) 2 . If t(x) 6= k, then Æ(x) =2 BV

k

. Thus Æ(x) 2 (bit0

i

k

)

D

2

and we are

done. If t(x) = k, then the i'th bit of Æ(x) is 1 by de�nition of Æ and thus again

Æ(x) 2 (bit0

i

k

)

D

2

.

� Let bit1

i

k

(x) 2 . If t(x) 6= k, then Æ(x) =2 BV

k

and we are done. If t(x) = k,

then bitn

j

k

(x) 2 for some n; j 2 N. Sine Condition 5 does not apply, we thus

have bit0

i

k

(x) =2 . Moreover, non-appliability of Condition 4 yields bit1

i

k

(x) =2 .

Thus, by de�nition of Æ, the i'th bit of Æ(x) is 0.

It is obvious that the listed properties an be heked in polynomial time. ❏

3

We use \P (x) 2 " as an abbreviation for \P (x) is a onjunt in ".

14

The last onrete domain D

3

is used in the redution of the NExpTime-omplete

domino problem to ALCO(D

3

)-onept satis�ability. In this redution, the onrete

domain D

3

serves two main purposes: �rstly, we store the whole 2

n+1

� 2

n+1

-torus in a

single element of �

D

3

. Seondly, positions in the torus are addressed using elements of

�

D

3

. Thus, the set �

D

3

ontains two di�erent types of elements: \domino arrays" for

representing tori and \vetors" for addressing positions in domino arrays. Intuitively,

vetors of length n+1 an be understood as bit vetors representing the binary oding

of numbers between 0 and 2

n+1

�1, i.e. x-positions and y-positions in the torus. Domino

arrays are then funtions mapping pairs of vetors to natural numbers (representing tile

types). However, as is disussed below, it is advisable to de�ne D

3

in a slightly more

general way by admitting vetors of natural numbers rather than bit vetors.

De�nition 17 (Conrete Domain D

3

). For every k 2 N, a funtion v : f0; : : : ; k �

1g ! N is alled a vetor of dimension k. We use VE

k

to denote the set of all vetors of

dimension k. For every k 2 N, a funtion k : VE

k

� VE

k

! N is alled a domino array

of dimension k. We use DA

k

to denote the set of all domino arrays of dimension k. The

onrete domain D

3

is de�ned by setting �

D

3

:=

S

i>0

VE

i

[

S

i>0

DA

i

and �

D

3

to the

(smallest) set ontaining the following prediates:

� unary prediates >

D

3

with (>

D

3

)

D

3

= �

D

3

and ?

D

3

with (?

D

3

)

D

3

= ;;

� for every k; i 2 N with i < k, unary prediates pos0

i

k

and pos1

i

k

with

(posn

i

k

)

D

3

= fv 2 �

D

3

j v 2 VE

k

and v(i) = ng

and unary prediates pos0

i

k

and pos1

i

k

with (posn

i

k

)

D

3

= �

D

3

n (posn

i

k

)

D

3

.

� for every k; i 2 N, a prediate tile

i

k

of arity 3 with

(tile

i

k

)

D

3

= f(v

x

; v

y

; d) j v

x

; v

y

2 VE

k

; d 2 DA

k

; and d(v

x

; v

y

) = ig

and a prediate tile

i

k

of arity 3 with (tile

i

k

)

D

3

= (�

D

3

)

3

n (tile

i

k

)

D

3

.

�

The reason for using vetors of natural numbers rather than bit vetors in the de�nition

of D

3

is that we want D

3

-satis�ability to be of low omplexity, preferably in PTime:

onsider the D

3

-onjuntion

pos0

0

2

(x) ^ pos0

0

2

(y) ^ pos0

0

2

(z) ^

pos0

0

2

(v) ^ pos0

1

2

(v) ^

tile

7

2

(x; v; d) ^ tile

8

2

(y; v; d) ^ tile

9

2

(z; v; d):

If we use bit vetors rather than vetors of natural numbers, then at least two out of

the three variables x, y, and z must take the same value and thus the above onjuntion

is unsatis�able. It seems unlikely that this kind of inonsisteny an be deteted in

polynomial time. This problem is eliminated by using vetors of natural numbers in the

de�nition of D

3

(but enforing them to be bit vetors in the redution): in this ase,

the above onjuntion is learly satis�able. The following proposition is proved in [39℄:

Proposition 18. D

3

-satis�ability is in PTime.

15

3.3 NExpTime-hardness of ALCK(D) with Boolean Key Boxes

In this setion, we prove two NExpTime-lower bounds for ALCK(D)-onept satis�a-

bility w.r.t. Boolean key boxes by reduing the NExpTime-omplete domino problem

introdued in the previous setion. The �rst redution uses the very simple onrete do-

main D

1

, but depends on n-ary key de�nitions. The seond redution uses the slightly

more omplex (and more unnatural) onrete domain D

2

, but only needs unary key

de�nitions. As we will see, the two redutions yield di�erent, inomparable results.

We �rst redue the NExpTime-omplete domino problem to ALCK(D

1

)-onept

satis�ability w.r.t. Boolean key boxes admitting n-ary key de�nitions. Eah domino

system D = (T;H; V) with initial ondition a = a

0

; : : : ; a

n�1

is translated into an

ALCK(D

1

)-onept C

D;a

as displayed in Figure 3. Names suh as TreeX and TreeY

are used as abbreviations whih should not be onfused with so-alled TBoxes (see

Setion 4.2 for the de�nition of TBoxes). We use 8R

i

:C as an abbreviation for the n-

fold nesting 8R: � � � 8R:C. The names xpos

i

and ypos

i

used in the �gure denote onrete

features. In the de�nition of the Init onept, for eah n 2 N, bit

i

(n) is supposed to

denote the i'th bit of the binary representation of n. We laim that C

D;a

is satis�able

w.r.t. the key box

f(xpos

0

; : : : ; xpos

n

; ypos

0

; : : : ; ypos

n

keyfor >)g

i� there exists a solution for D and a. To substantiate this laim, let us walk through

the redution and explain the various parts of the onept C

D;a

. The �rst step towards

understanding the struture of models of C

D;a

(whih is the key to understanding the

redution itself) is to note that the purpose of the �rst line of C

D;a

is to enfore a tree

struture of depth 2(n + 1), whose leaves orrespond to positions in the 2

n+1

� 2

n+1

-

torus. More preisely, the TreeX onept guarantees that, in every model I of C

D;a

,

there exists a binary tree of depth n + 1. Moreover, the DistX

k

onepts (there exists

one for eah k 2 f0; : : : ; ng) ensure that the leaves of this tree are binarily numbered

(from 0 to 2

n+1

� 1) by the onept names X

0

; : : : ;X

n

. More preisely, for a domain

objet d 2 �

I

, set

xpsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

�

1 if d 2 X

I

i

0 otherwise.

The TreeX and DistX onepts ensure that there exist leaves of the tree d

0

; : : : ; d

2

n+1

�1

suh that xpsn(d

i

) = i. Intuitively, this numbering represents the horizontal positions in

the 2

n+1

�2

n+1

-torus. The vertial positions are oded in a similar way by the Y

0

; : : : ; Y

n

onept names. More spei�ally, the onepts TreeY, DistX, and DistY ensure that

every d

i

(i � 2

n+1

� 1) is the root of another tree, in whih (i) every node has the same

\X

0

; : : : ;X

n

-on�guration" as its root node, and (ii) the leaves are numbered binarily

using the onept names Y

0

; : : : ; Y

n

(note that the TreeY onept appears in C

D;a

inside

a 8R

n+1

value restrition). De�ne

ypsn(d) = �

n

i=0

�

i

(d) � 2

i

where �

i

(d) =

�

1 if d 2 Y

I

i

0 otherwise.

16

TreeX := 9R:X

0

u 9R::X

0

u u

i=1::n

8R

i

:(DistX

i�1

u 9R:X

i

u 9R::X

i

)

TreeY := DistX

n

u 9R:Y

0

u 9R::Y

0

u

u

i=1::n

8R

i

:(DistY

i�1

u DistX

n

u 9R:Y

i

u 9R::Y

i

)

DistX

k

:= u

i=0::k

((X

i

! 8R:X

i

) u (:X

i

! 8R::X

i

))

DistY

k

:= u

i=0::k

((Y

i

! 8R:Y

i

) u (:Y

i

! 8R::Y

i

))

TransXPos := u

i=0::n

(X

i

! 9xpos

i

: =

1

) u (:X

i

! 9xpos

i

: =

0

)

TransYPos := u

i=0::n

(Y

i

! 9ypos

i

: =

1

) u (:Y

i

! 9ypos

i

: =

0

)

Sus := 9R

x

:(TransXPos u TransYPos) u 9R

y

:(TransXPos u TransYPos)

XSuOk := u

i=0::n

�

(Y

i

! 8R

x

:Y

i

) u (:Y

i

! 8R

x

::Y

i

)

�

u

k=0::n

�

u

j=0::k

X

j

�

!

�

(X

k

! 8R

x

::X

k

) u (:X

k

! 8R

x

:X

k

)

�

u

k=0::n

�

t

j=0::k

:X

j

�

!

�

(X

k

! 8R

x

:X

k

) u (:X

k

! 8R

x

::X

k

)

�

YSuOk := u

i=0::n

�

(X

i

! 8R

y

:X

i

) u (:X

i

! 8R

y

::X

i

)

�

u

k=0::n

�

u

j=0::k

Y

j

�

!

�

(Y

k

! 8R

y

::Y

k

) u (:Y

k

! 8R

y

:Y

k

)

�

u

k=0::n

�

t

j=0::k

:Y

j

�

!

�

(Y

k

! 8R

y

:Y

k

) u (:Y

k

! 8R

y

::Y

k

)

�

Label :=t

i2T

D

i

u u

i;j2T;i 6=j

:(D

i

uD

j

)

ChekMath := t

(i;j)2H

(D

i

u 8R

x

:D

j

) u t

(i;j)2V

(D

i

u 8R

y

:D

j

)

Init := u

i=0::n�1

�

�

u

j=0::n;bit

j

(i)=0

:X

j

u u

j=0::n;bit

j

(i)=1

X

j

u u

j=0::n

:Y

j

�

! D

a

i

�

C

D;a

:= TreeX u 8R

n+1

:TreeY

u 8R

2(n+1)

:(TransXPos u TransYPos u Sus u XSuOk u YSuOk)

u 8R

2(n+1)

:(Label u ChekMath u Init)

Figure 3: The ALCK(D

1

) redution onept C

D;a

.

In the set of leave nodes of all the trees enfored by the TreeY onept, there exists an

4

objet e

i;j

2 �

I

for eah i; j < 2

n+1

suh that xpsn(e

i;j

) = i and ypsn(e

i;j

) = j, i.e.,

eah e

i;j

represents the position (i; j) in the 2

n+1

� 2

n+1

-torus.

The next step is to translate the individual bits of the numbering of the e

i;j

-onepts,

4

So far, we do not are if there is more than one suh objet.

17

whih are up to now represented by onept names, into onrete domain values. This

is done by the TransXPos and TransYPos onepts whih ensure that, for all ` � n, we

have xpos

I

`

(e

i;j

) = 0 if e

i;j

2 :X

`

, xpos

I

`

(e

i;j

) = 1 if e

i;j

2 X

`

, and similar for ypos

`

and Y

`

. Sine I is a model for the key box

f(xpos

0

; : : : ; xpos

n

; ypos

0

; : : : ; ypos

n

keyfor >)g;

grid positions are uniquely represented by domain elements from (TransXPosuTransYPos)

I

,

i.e., if d; e 2 (TransXPos u TransYPos)

I

suh that xpsn(d) = xpsn(e) and ypsn(d) =

yxpsn(e), then d = e. This fat is used in the onepts Sus, XSuOk, and YSuOk

to enfore that, for the two roles R

x

and R

y

and eah i; j � n, the following holds:

R

I

x

\ (fe

i;j

g ��

I

) = f(e

i;j

; e

(i�

2

n+1

1);j

g

R

I

y

\ (fe

i;j

g ��

I

) = f(e

i;j

; e

i;(j�

2

n+1

1)

g:

(�)

The Sus onept ensures that, for eah e

i;j

, there exists an R

x

-suessor and an R

y

-

suessor, and that both are in (TransXPos u TransYPos)

I

. Let d be an R

x

-suessor of

e

i;j

. Then the XSuOk onept ensures that xpsn(d) = i�

2

n+1 1 and ypsn(d) = j. Before

we explain how it does this, let us note that, sine all e

i;j

are in (TransXPosuTransYPos)

I

and the grid positions are uniquely represented by elements of (TransXPosuTransYPos)

I

,

this implies d = e

(i�

2

n+1

1);j

whih shows that the upper line of (�) does indeed hold.

Let us now onsider the XSuOk onept in some more detail. It is essentially the

DL-formulation of the well-known propositional formula

n

^

k=0

(

k�1

^

j=0

x

j

= 1)! (x

k

= 1$ x

0

k

= 0) ^

n

^

k=0

(

k�1

_

j=0

x

j

= 0)! (x

k

= x

0

k

)

whih enodes inrementation modulo 2

n+1

, i.e., if t is the number (binarily) enoded by

the propositional variables x

0

; : : : ; x

n

and t

0

is the number enoded by the propositional

variables x

0

0

; : : : ; x

0

n

, then we have t

0

= t+1 modulo 2

n+1

, .f. [13℄. Taking into aount

the 8R

x

quanti�ers in XSuOk, it is readily heked that this onept has just the

desired e�et: to ensure that, for every R

x

-suessor d of e

i;j

, we have xpsn(x) =

xpsn(e

(i�

2

n+1

1);j

) = i �

2

n+1
1. The explanation of YSuOk and how it enfores the

lower line of (�) is omitted sine it is analogous to the XSuOk ase.

It remains to ensure that every grid position is labeled with preisely one tile and

that the initial ondition as well as the horizontal and vertial mathing onditions are

satis�ed. The tiles are represented by onept names D

i

(where i is from the set of tiles

T) and the desribed tasks are aomplished in the standard way by the onepts Label,

Init, and ChekMath.

It is interesting to note that the redution onept is path-free and the key box

is simple, i.e., path-free and Boolean. Path-freeness of onepts is often used to tame

the omplexity of desription logis with onrete domains (although it largely sari-

�es their expressive power) [38, 7, 24, 31℄. For example, if ALC(D) is augmented

with so-alled general TBoxes, then reasoning with arbitrary onepts is undeidable

while reasoning with path-free onepts is ExpTime-omplete if D is admissible and

18

D-satis�ability is in ExpTime [37℄. This \taming approah" does not work in the pres-

ene of key boxes sine, as we have just seen, both reasoning with arbitrary and with

path-free ALCK(D)-onepts is (under some natural assumptions) NExpTime-hard.

Sine the size of C

D;a

and of the used key box is learly polynomial in n, we obtain

the following proposition.

Proposition 19. The satis�ability of path-free ALCK(D

1

)-onepts w.r.t. simple key

boxes is NExpTime-hard.

In [40℄, it is proved that (non path-free) ALC(D)-onept satis�ability is PSpae-

omplete if D-satis�ability is in PSpae. In partiular, it thus follows from Propo-

sition 14 that ALC(D

1

)-onept satis�ability is PSpae-omplete. Thus, there is a

rather dramati inrease of omplexity if key boxes are added to ALC(D

1

). To stress

that this inrease is due to the key boxes themselves and not to the omplexity of

D

1

-satis�ability, we reformulate Proposition 19:

Theorem 20. There exists a onrete domain D suh that D-satis�ability is in PTime

and satis�ability of path-free ALCK(D)-onepts w.r.t. simple key boxes is NExpTime-

hard.

Sine onept satis�ability an be redued to onept non-subsumption as noted in Se-

tion 2, we obtain a orresponding o-NExpTime-hardness bound for the subsumption

of path-free ALCK(D)-onepts w.r.t. simple key boxes.

Although, due to its very low expressivity, the onrete domain D

1

itself is not very

natural for knowledge representation, it is a fragment of many onrete domains that

have been proposed in the literature [5, 23, 38, 40℄. Indeed, the presented redution

strategy an be adapted to quite many \standard" onrete domains. Let us formulate

a (very weak) ondition that a onrete domain must satisfy in order for the presented

redution strategy to be appliable.

Theorem 21. Let D be a onrete domain. If there exist a; b 2 �

D

and P

1

; P

2

2 �

D

suh that P

D

1

= fag and P

D

2

= fbg, then the satis�ability of path-free ALCK(D)-onepts

w.r.t. simple key boxes is NExpTime-hard.

Again, a orresponding o-NExpTime-hardness result for onept subsumption is easily

obtained.

We now present the seond NExpTime-hardness result for ALCK(D)-onept satis-

�ability. This time, we redue the NExpTime-omplete domino problem to the satis�-

ability of path-free ALCK(D

2

)-onepts w.r.t. simple unary key boxes. The redution is

very similar to the previous one and we only disuss the di�erenes. In the �rst redu-

tion, we represented the individual bits of grid positions by individual onrete features

xpos

i

and ypos

i

. This approah led to a n-ary key box. To replae it by a unary key

box, in the seond redution, we represent entire positions in the torus (i; j) by the

bit vetors provided by the onrete domain D

2

. The modi�ed redution onept C

D;a

an be found in Figure 4, where bv denotes a onrete feature and the onepts TreeX,

TreeY, DistX

k

, DistY

k

, XSuOk, YSuOk, Label, ChekMath, and Init are de�ned as in

19

Sus2 := 9R

x

:TransPos u 9R

y

:TransPos

TransPos := u

i=0::n

�

(X

i

! 9bv:bit1

i

2(n+1)

) u :X

i

! 9bv:bit0

i

2(n+1)

)

�

u

u

i=0::n

�

(Y

i

! 9bv:bit1

n+i+1

2(n+1)

) u :Y

i

! 9bv:bit0

n+i+1

2(n+1)

)

�

C

D;a

:= TreeX u 8R

n+1

:TreeY

u 8R

2(n+1)

:(TransPos u Sus2 u XSuOk u YSuOk)

u 8R

2(n+1)

:(Label u ChekMath u Init)

Figure 4: The ALCK(D

2

) redution onept C

D;a

.

Figure 3. The translation of the position in the torus enoded by X

0

; : : : ;X

n

; Y

0

; : : : ; Y

n

into a bit vetor is done by the TransPos onept in a straightforward manner. Given

what was said about the �rst redution, it is not hard to see that C

D;a

is satis�able

w.r.t. the key box

f(bv keyfor >)g

i� there exists a solution for D and a. We thus obtain the following proposition.

Proposition 22. The satis�ability of path-free ALCK(D

2

)-onepts w.r.t. simple unary

key boxes is NExpTime-hard.

Again, we relate the NExpTime lower bound to the omplexity of D

2

-omplexity, whih

is determined in Theorem 16.

Theorem 23. There exists a onrete domain D suh that D-satis�ability is in PTime

and the satis�ability of path-free ALCK(D)-onepts w.r.t. simple unary key boxes is

NExpTime-hard.

As for the previous lower bounds, we obtain a orresponding o-NExpTime-hardness

bound for onept subsumption.

Sine the elements of �

D

2

are bit vetors, the onrete domain D

2

annot be on-

sidered a natural hoie for many appliation areas. But, in the redution, D

2

an be

replaed by several natural onrete domains. The entral observation is that we use

bit vetors only to injetively translate sequenes of bits into values of the onrete

domain, i.e., we translate sequenes of 2(n+1) bits (represented by the onept names

X

0

; : : : ;X

n

and Y

0

; : : : ; Y

n

) into elements of �

D

2

suh that, for distint sequenes, the

results of the translation are also distint. Due to this restrited use of bit vetors, there

are several ways to replae them by natural numbers. For example, we ould de�ne a

new TransPos onept suh that

s

I

2n+1

(d) = xpsn(d) + 2

n+1

ypsn(d)

20

as follows:

TransPos

0

:= 9zero:=

0

u (:X

0

! 9s

0

:=

0

) u (X

0

! 9s

0

:=

1

)

u u

i=1::n

�

9t

i

:=

2

i
u

�

:X

i

! 9(s

i�1

; zero; s

i

):+

�

u

�

X

i

! 9(s

i�1

; t

i

; s

i

):+

�

�

u u

i=0::n

�

9t

n+i+1

:=

2

n+i+1
u

�

:Y

i

! 9(s

n+i

; zero; s

n+i+1

):+

�

u

�

Y

i

! 9(s

n+i

; t

n+i+1

; s

n+i+1

):+

�

�

where zero and the s

i

and t

i

denote onrete features, =

k

(with k 2 N) denotes a unary

prediate with the obvious extension, and + denotes a ternary addition prediate. It

is easy to hek that, whenever two objets d; e 2 TransPos

I

do not agree on the

interpretation of the X

0

; : : : ;X

n

; Y

0

; : : : ; Y

n

, then s

I

2n+1

(d) 6= s

I

2n+1

(e), and thus the key

box

f(s

2n+1

keyfor >)g

an be used for the redution. The size of TransPos

0

is obviously polynomial in n if the

numbers k appearing in =

k

prediates are oded in binary. We thus obtain the following

theorem:

Theorem 24. Let D be a onrete domain suh that

1. N � �

D

,

2. �

D

ontains a prediate =

k

with (=

k

)

D

= fng for eah k 2 N where the size of

(the representation of) =

k

is logarithmi in k, and

3. �

D

ontains a prediate + with (+)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g =

f(k

1

; k

2

; k

1

+ k

2

) j k

1

; k

2

2 Ng.

Then the satis�ability of path-free ALCK(D)-onepts w.r.t. simple unary key boxes is

NExpTime-hard.

For example, this theorem yields NExpTime-lower bounds for ALCK(D) instantiated

with the onrete domains proposed in [5, 23, 38, 40℄. An alternative to adding the

addition prediate is to use multipliation to injetively translate sequenes of bits into

natural numbers. More preisely, �x a sequene of distint prime numbers p

0

; : : : ; p

2n+1

and de�ne another version of TransPos as follows:

TransPos

00

:= 9one:=

1

u (:X

0

! 9s

0

:=

0

) u (X

0

! 9s

0

:=

1

)

u u

i=1::n

�

9t

i

:=

p

i

u

�

:X

i

! 9(s

i�1

; one; s

i

):�

�

u

�

X

i

! 9(s

i�1

; t

i

; s

i

):�

�

�

u u

i=0::n

�

9t

n+i+1

:=

p

n+i+1

u

�

:Y

i

! 9(s

n+i

; one; s

n+i+1

):�

�

u

�

Y

i

! 9(s

n+i

; t

n+i+1

; s

n+i+1

):�

�

�

where � is a ternary multipliation prediate. Sine the fatorization of natural numbers

into prime numbers is unique, we an again use the key box

f(s

2n+1

keyfor >)g

21

for the redution. Moreover, it is well-known that the k'th prime is polynomial in k [21℄,

and thus the size of the onept TransPos

00

is polynomial in n even if the numbers k

in =

k

prediates are oded unarily. We thus obtain another theorem onerning quite

natural onrete domains:

Theorem 25. Let D be a onrete domain suh that

1. N � �

D

,

2. �

D

ontains a prediate =

k

with (=

k

)

D

= fkg for eah k 2 N, and

3. �

D

ontains a prediate � with (�)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g =

f(k

1

; k

2

; k

1

� k

2

) j k

1

; k

2

2 Ng.

Then the satis�ability of path-free ALCK(D)-onepts w.r.t. simple unary key boxes is

NExpTime-hard.

3.4 NExpTime-hardness of ALCO(D)

As we already pointed out in Setion 1, the relationship between onrete domain keys

and nominals is rather lose: the latter an be \simulated" by the former if the onrete

domain provides for prediates that an be used to uniquely desribe elements of �

D

.

For example, in ALCO(D

1

) the onept 9g:=

0

behaves as a nominal if we use the key

de�nition (g keyfor >). We an even de�ne n nominals using n single onrete feature in

unary-key de�nitions. In the logis ALCO(D

2

) and ALCO(D

3

), a single onrete feature

and unary key de�nitions are suÆient to simulate an arbitrary number of nominals:

for example, in ALCK(D

2

) the onept C = 9g:bit0

0

2

u 9g:bit1

1

2

uniquely desribes the

bit vetor (0; 1) 2 BV

2

� �

D

2

, i.e., a 2 C

I

implies g

I

(a) = (0; 1). Obviously, any other

bit vetor (of any length!) an be desribed in a similar way. This illustrates that, for

most non-trivial onrete domains D, the logi ALCK(D) is (at least) as expressive as

ALCO(D). Although the onverse does not hold, the expressive power of ALCO(D)

is still suÆient to prove NExpTime-hardness of onept satis�ability, provided that a

suitable onrete domain D is used. In this setion, we redue the NExpTime-omplete

domino-problem to ALCO(D

3

)-onept satis�ability.

Again, let D = (T;H; V) be a domino system and a = a

0

; : : : ; a

n�1

an initial ondi-

tion. Then the redution onept C

D;a

is de�ned as in Figure 5, where bvx, bvy, bvxs,

bvys, and darr denote onrete features, N denotes a nominal, and the onepts TreeX,

TreeY, DistX

k

, and DistY

k

are de�ned as in Figure 3. As in the previous redutions, we

now give a detailed explanation of the redution strategy to show that C

D;a

is satis�able

i� there exists a solution for D and a.

Let I be a model for C

D;a

. To explain the struture of I, whih is the key to

understanding the redution strategy, it is onvenient to start with the �rst line of

C

D;a

. As in the previous redutions, the TreeX and TreeY onepts are used to ensure

that I ontains a tree-shaped substruture of depth n + 1 whose leaf nodes are the

roots of additional trees of depth n+ 1 suh that the set of the leafs of the latter trees

orrespond to the positions in the 2

n+1

� 2

n+1

-torus, i.e., for eah position, there is

22

Nominal := 9f:N

XSu := u

k=0::n

�

u

j=0::k

X

j

�

! (X

k

$:X

0

k

) u u

k=0::n

�

t

j=0::k

:X

j

�

! (X

k

$ X

0

k

)

YSu := u

k=0::n

�

u

j=0::k

Y

j

�

! (Y

k

$:Y

0

k

) u u

k=0::n

�

t

j=0::k

:Y

j

�

! (Y

k

$ Y

0

k

)

TransXPos := u

i=0::n

�

(X

i

! 9bvx:pos1

i

2(n+1)

) u :X

i

! 9bvx:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

i

! 9bvx:pos1

n+i+1

2(n+1)

) u :Y

i

! 9bvx:pos0

n+i+1

2(n+1)

)

�

TransYPos := u

i=0::n

�

(X

i

! 9bvy:pos1

i

2(n+1)

) u :X

i

! 9bvy:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

i

! 9bvy:pos1

n+i+1

2(n+1)

) u :Y

i

! 9bvy:pos0

n+i+1

2(n+1)

)

�

TransXSu := u

i=0::n

�

(X

0

i

! 9bvxs:pos1

i

2(n+1)

) u :X

0

i

! 9bvxs:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

i

! 9bvxs:pos1

n+i+1

2(n+1)

) u :Y

i

! 9bvxs:pos0

n+i+1

2(n+1)

)

�

TransYSu := u

i=0::n

�

(X

i

! 9bvys:pos1

i

2(n+1)

) u :X

i

! 9bvys:pos0

i

2(n+1)

)

�

u

i=0::n

�

(Y

0

i

! 9bvys:pos1

n+i+1

2(n+1)

) u :Y

0

i

! 9bvys:pos0

n+i+1

2(n+1)

)

�

ChekHMath := t

i;j2H

(9(bvx; bvy; f Æ darr):tile

i

2(n+1)

u 9(bvxs; bvy; f Æ darr):tile

j

2(n+1)

)

ChekVMath := t

i;j2V

(9(bvx; bvy; f Æ darr):tile

i

2(n+1)

u 9(bvx; bvys; f Æ darr):tile

j

2(n+1)

)

Init2 := u

i=0::n�1

�

�

u

j=0::n;bit

j

(i)=0

:X

j

u u

j=0::n;bit

j

(i)=1

X

j

u u

j=0::n

:Y

j

�

! 9(bvx; bvy; f Æ darr):tile

a

i

2(n+1)

�

C

D;a

:= TreeX u 8R

n+1

:TreeY u 8R

2(n+1)

:Nominal

u 8R

2(n+1)

:(TransXPos u TransYPos)

u 8R

2(n+1)

:(XSu u YSu u TransXSu u TransYSu)

u 8R

2(n+1)

:(Init2 u ChekHMath u ChekVMath)

Figure 5: The ALCO(D

3

) redution onept C

D;a

.

a leaf node representing it. The torus positions are binarily enoded by the onept

names X

0

; : : : ;X

n

and Y

0

; : : : ; Y

n

and we use e

i;j

to refer to the leaf with xpsn(e

i;j

) = i

and ypsn(e

i;j

) = j (.f. Setion 3.3).

As in the previous redution, the numbers oded by X

0

; : : : ;X

n

and Y

0

; : : : ; Y

n

have

to be translated into onrete domain values, whih is done by the TransXPos and

TransYPos onepts. Note that, in ontrast to the ALCK(D

2

)-redution, the x-position

and the y-position are not stored in the same bit vetor, but rather in the two distint

ones bvx and bvy. Also in ontrast to the previous redution, the atual tiling of the

23

TreeY

TreeX

...

...
TreeY TreeY

f

f

N

f

darr

Figure 6: The struture of models of C

D;a

.

torus is not represented by the leaf nodes e

i;j

, but rather by a domino array: the last

onjunt in the �rst line of C

D;a

ensures that every leaf e

i;j

is onneted via the abstrat

feature f to the (unique) element w of �

I

that is in the extension of the nominal N . The

domain element w is assoiated with a domino array via the onrete feature darr (as

we shall see later, this is guaranteed by the ChekHMath and ChekVMath onepts).

This domino array represents the tiling of the 2

n+1

� 2

n+1

-torus. Summing up, the

struture of I is roughly as shown in Figure 6.

If the tiling is stored in a domino array, what is the purpose of the leaf node e

i;j

?

They are needed to enfore the initial ondition and the horizontal and vertial mathing

ondition. Let us disuss the horizontal mathing ondition (the vertial mathing

ondition is enfored analogously): the XSu onept is the DL reformulation of the

propositional logi formula for inrementation modulo 2

n+1

disussed on Page 18 and

ensures that, for eah e

i;j

, the onept names X

0

0

; : : : ;X

0

n

enode the number i�

2

n+1
1,

i.e., the horizontal position of e

i;j

's horizontal neighbor. Whereas the horizontal and

vertial position of e

i;j

are stored in bvx(e

i;j

) and bvy(e

i;j

), we store the horizontal

position i + 1 of e

i;j

s horizontal suessor in bvxs(e

i;j

) (whose vertial position is j).

This translation from X

0

0

; : : : ;X

0

n

into bvxs is realized by the onept TransXSu.

Finally, ChekHMath veri�es that the tiles of the positions (i; j) and (i�

2

n+1 1; j),

whih are both stored in the domino array, are ompatible with the horizontal mathing

ondition. Note that ChekHMath also ensures that the domain element w (with fwg =

N

I

) has a domino array attahed via the onrete feature darr and that, for eah position

24

of the torus, the (unique!) tile stored in the domino array is from the set T . The initial

ondition is ensured via the Init2 onept in a similar way. We (again) use bit

j

(i) to

denote the j'th bit of the binary enoding of the natural number i.

Using the above onsiderations, the orretness of the redution is readily heked.

Moreover, the size of C

D;a

is at most polynomial in n. Note that C

D;a

is not path-free:

paths of length two appear in the onepts ChekHMath, ChekVMath, and Label2.

Summing up, the redution desribed yields the following result:

Proposition 26. The satis�ability of ALCO(D

3

)-onepts is NExpTime-hard.

Again, we relate the NExpTime lower bound to the omplexity of D

3

-omplexity, whih

is determined in Theorem 18.

Theorem 27. There exists a onrete domain D suh that D-satis�ability is in PTime

and the satis�ability of ALCO(D)-onepts is NExpTime-hard.

Note that the redution uses only a single nominal N . Hene, a single nominal is

suÆient for the above hardness result. This is a dramati inrease of omplexity sine

it was shown in [40℄ that satis�ability of ALC(D)-onepts (i.e., without nominals and

key boxes) is PSpae-omplete even for onrete domains with D-satis�ability being in

PSpae. Let us one more note that we obtain a orresponding o-NExpTime-hardness

bound for onept subsumption.

As in previous setions, we note that D

3

an be replaed by more natural onrete

domains in the NExpTime-hardness proof presented. The idea is to represent the

whole domino array by a single natural number and then to use arithmeti operations

to aess the individual positions: a natural number k an be viewed as a domino array

by partitioning its binary representation into 2

n+1

� 2

n+1

= 2

2(n+1)

\setions" of length

dlog(#T)e, where #T denotes the ardinality of T . Eah suh setion desribes the tile

of a single position in the torus. To aess the setions, we need ternary prediates div for

integer division and mod for omputing the remainder of a division. More preisely, we

replae TransXPos and TransYPos by the TransPos

0

onept from Setion 3.3 to translate

the two numbers enoded by X

1

; : : : ;X

n

and Y

1

; : : : ; Y

n

into a single natural number

that is then stored in the onrete feature s

2n+1

. We an then devise a new onept

Tile[i℄ (for eah i 2 T) enforing that the position identi�ed by the feature s

2n+1

is

labeled with tile i:

Tile[i℄ := 9r:=

dlog(#T)e

u 9s

2n+1

; r; r

0

:� u 9r

0

; r

00

:2

x

u 9one:=

1

u 9r; one; t:+ u 9t; t

0

:2

x

u 9f Æ torus; r

00

; u:div u 9u; t

00

; tile:mod

u 9tile:=

i

Here, r; r

0

; r

00

; t; t

0

; u; one; torus, and tile are onrete features and 2

x

is a binary prediate

expressing exponentiation with basis 2. The torus feature is the ounterpart of the darr

feature in the original redution, i.e., it stores the natural number that represents the

torus. Somewhat more suintly, the Tile[i℄ onept states that, if N

I

= fwg, then all

elements e in its extension satisfy the equation

(torus

I

(w) div 2

s

I

2n+1

(e)�dlog(#T)e

) mod 2

dlog(#T)e

+ 1 = i:

25

We an use the Tile[i℄ onept in the obvious way inside the ChekHMath, ChekVMath,

and Init2 onepts. The size of the resulting redution onept is polynomial in n if the

numbers k appearing in =

k

prediates are oded in binary. We thus obtain the following

theorem:

Theorem 28. Let D be a onrete domain suh that N � �

D

and �

D

ontains the

following prediates:

1. unary =

k

with (=

k

)

D

= fng for eah k 2 N suh that the size of (the representa-

tion of) =

k

is logarithmi in k, and

2. ternary + with (+)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

+ k

2

) j

k

1

; k

2

2 Ng.

3. ternary � with (�)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

� k

2

) j

k

1

; k

2

2 Ng.

4. binary 2

x

with (2

x

)

D

\ f(k; x) j k 2 N and x 2 �

D

g = f(k; 2

k

) j k 2 Ng.

5. ternary div with (div)

D

\f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

div k

2

) j

k

1

; k

2

2 Ng.

6. ternary mod with (mod)

D

\ f(k

1

; k

2

; x) j k

1

; k

2

2 N and x 2 �

D

g = f(k

1

; k

2

; k

1

mod k

2

) j k

1

; k

2

2 Ng.

Then the satis�ability of ALCO(D)-onepts is NExpTime-hard.

4 Reasoning Proedures

This setion is devoted to developing reasoning proedures for desription logis with

onrete domains, nominals, and keys. We start with devising a tableau algorithm

that deides the satis�ability of ALCOK(D)-onepts w.r.t. Boolean key boxes. This

algorithm yields a NExpTime upper omplexity bound mathing the lower bounds

established in Setion 3.3. Then we onsider the rather powerful desription logi

SHOQK(D). This DL, whih is an extension of SHOQ(D) as introdued in [31, 42℄,

provides a wealth of expressive means suh as transitive roles, role hierarhies, nom-

inals, and qualifying number restritions. Moreover, SHOQK(D) is equipped with a

restrited variant of the onrete domain onstrutor and with key boxes. We develop

a tableau algorithm for deiding the satis�ability of SHOQK(D)-onepts w.r.t. key

boxes. Due to the restritedness of SHOQK(D)'s onrete domain onstrutor, we an

even admit general rather than only Boolean key boxes. Again, the algorithm yields a

tight NExpTime upper omplexity bound.

4.1 A Tableau Algorithm for ALCOK(D) with Boolean Key Boxes

Tableau algorithms deide the satis�ability of the input onept (in our ase w.r.t. the

input key box) by attempting to onstrut a model for it. More preisely, a tableau

26

algorithm starts with an initial data struture indued by the input onept and then

repeatedly applies so-alled ompletion rules to it. This rule appliation an be thought

of as attempting to onstrut a model for the input onept. Finally, either the algorithm

will �nd an obvious ontradition or it will enounter a situation that is ontradition-

free and in whih no more ompletions rules are appliable. In the former ase, the

input onept is unsatis�able, while it is satis�able in the latter ase.

If the goal is to devise a tableau algorithm for a desription logi with onrete

domains without ommitting to a partiular onrete domain, then an \interfae" be-

tween the tableau algorithm and a onrete domain reasoner is needed. Usually, it

suÆes to assume that the onrete domain is admissible, whih implies that there ex-

ists a proedure that an tell the tableau algorithm whether a given D-onjuntion is

satis�able [3, 40, 37℄. In the presene of keys, however, this is not enough: we do not

only need to know whether a given D-onjuntion is satis�able, but also whih vari-

ables in it must take the same value in solutions. As an example, onsider the onrete

domain N = (N; f<

n

j n 2 Ng) and the N-onjuntion

 = <

2

(v

1

) ^<

2

(v

2

) ^<

2

(v

3

):

Obviously, every solution Æ for satis�es

Æ(v

1

) = Æ(v

2

); Æ(v

1

) = Æ(v

3

); or Æ(v

2

) = Æ(v

3

):

This information has to be passed from the onrete domain reasoner to the tableau al-

gorithm sine, in the presene of key boxes, it may have an impat on the struture of the

onstruted model. For example, this information transfer reveals the unsatis�ability of

9R:A u 9R:(:A uB) u 9R:(:A u :B) u 8R:9g:<

2

w.r.t. (g keyfor >):

To formalize this requirement, we strengthen the notion of admissibility into key-

admissibility. Sine the tableau algorithm developed in this setion will be non-determin-

isti, we formulate key-admissibility in a non-deterministi way.

De�nition 29 (key-admissible). A onrete domain D is key-admissible i� it satis�es

the following properties:

1. �

D

ontains a name >

D

for �

D

;

2. �

D

is losed under negation;

3. there exists an algorithm that takes as input a D-onjuntion , returns lash if is

unsatis�able, and otherwise non-deterministially outputs an equivalene relation

� on the set of variables V used in suh that there exists a solution Æ for with

the following property: for all v; v

0

2 V

Æ(v) = Æ(v

0

) i� v � v

0

:

Equivalene relations as desribed in Point 3 are heneforth alled onrete equivalenes.

We say that extended D-satis�ability is in NP if there exists an algorithm as above

running in polynomial time. �

27

:(C uD) :C t :D :(C tD) :C u :D

:(9R:C) 8R::C :(8R:C) 9R::C

::C C

:(9u

1

; : : : ; u

n

:P) 9u

1

; : : : ; u

n

:P t u

1

" t � � � t u

n

"

:(g") 9g:>

D

Figure 7: The NNF rewrite rules.

Note that this property is muh less esoteri than it seems: any onrete domain that

is admissible and provides for an equality prediate is also key-admissible. Due to

admissibility, the presene of an equality prediate implies that an inequality prediate is

also available. We an now onstrut an algorithm for extended D-satis�ability from an

algorithm for D-satis�ability: when presented with a prediate onjuntion , we simply

\guess" an equivalene relation � on the set of variables used in . Then we deide the

(non-extended) satis�ability of the onjuntion ^

V

v�v

0

=(v; v

0

)^

V

v 6�v

0

6=(v; v

0

), return

lash if it is unsatis�able and � otherwise. The rather weak ondition that an equality

prediate should be present is satis�ed by almost all onrete domains proposed in the

literature, see e.g. [38, 4, 34, 22, 9℄.

Throughout this hapter, we assume that any onrete domain is equipped with an

equality prediate. This an we done w.l.o.g. sine any D-onjuntion using equality an

be translated into an equivalent one without equality by identifying variables aording

to the stated equalities. This assumption must not be onfused with what was disussed

in the previous paragraph: even if the onrete domain D is admissible and its set of

prediates is thus losed under negation, this assumption does not imply the presene

of an inequality prediate.

We need some more prerequisites before we an start the presentation of the tableau

algorithm: a onept is in negation normal form (NNF) if negation ours only in front

of onept names and nominals. It is easily seen that, if the onrete domain D is

admissible, then every ALCOK(D)-onept an be onverted into an equivalent one in

NNF by exhaustively applying the rewrite rules displayed in Figure 7. We use _:C

to denote the result of onverting :C to NNF. A key box is in NNF if all onepts

ourring in key de�nitions are in NNF. In what follows, we generally assume input

onepts and key boxes to be in NNF. Let C be an ALCOK(D)-onept and K a key

box. We use sub(C) to denote the set of subonepts of C (inluding C itself) and

on(K) to denote the set of onepts appearing on the right-hand side of key de�nitions

in K. For a set of onepts �, sub(�) denotes the set

S

C2�

sub(C). Moreover, we write

l(C;K) as abbreviation for the set

sub(C) [sub(on(K)) [f _:D j D 2 sub(on(K))g:

Let us now start the presentation of the tableau algorithm by introduing the underlying

data struture.

De�nition 30 (Completion System). Let O

a

and O

be disjoint and ountably

in�nite sets of abstrat and onrete nodes. A ompletion tree for an ALCOK(D)-

28

onept C and a key box K is a �nite, labeled tree T = (V

a

; V

; E;L) with nodes V

a

[V

suh that V

a

� O

a

, V

� O

, and all nodes from V

are leaves. The tree is labeled as

follows:

1. eah node a 2 V

a

is labeled with a subset L(a) of l(C;K);

2. eah edge (a; b) 2 E with a; b 2 V

a

is labeled with a role name L(a; b) ourring

in C or K;

3. eah edge (a; x) 2 E with a 2 V

a

and x 2 V

is labeled with a onrete feature

L(a; x) ourring in C or K.

For a 2 V

a

, we use lev

T

(a) to denote the depth on whih a ours in T (starting with

the root node on depth 0). A ompletion system for an ALCOK(D)-onept C and a

key box K is a tuple (T;P;�;�), where

� T = (V

a

; V

; E;L) is a ompletion tree for C and K,

� P is a funtion mapping eah P 2 �

D

of arity n in C to a subset of V

n

,

� � is a linear ordering of V

a

suh that lev

T

(a) � lev

T

(b) implies a � b, and

� � is an equivalene relation on V

.

Let (V

a

; V

; E;L) be a ompletion tree. A node b 2 V

a

is an R-suessor of a node a 2 V

a

if (a; b) 2 E and L(a; b) = R, while a node x 2 V

is a g-suessor of a if (a; x) 2 E and

L(a; x) = g. For a path u the notion u-suessor is de�ned in the obvious way. �

Intuitively, the relation � reords equalities between onrete nodes that have been

found during the model onstrution proess. The relation � indues an equivalene

relation �

a

on abstrat nodes whih in turn yields another equivalene relation �

� �

on onrete nodes.

De�nition 31 (�

a

and �

Relations). Let S = (T;P;�;�) be a ompletion system

for a onept C and a key box K with T = (V

a

; V

; E;L), and let � be an equivalene

relation on V

a

. For eah R 2 N

R

, a node b 2 V

a

is an R=�-neighbor of a node a 2 V

a

if

there exists a node 2 V

a

suh that a � and b is an R-suessor of . Similarly, for

eah g 2 N

F

a node x 2 V

is a g=�-neighbor of a if there exists a node 2 V

a

suh

that a � and x is a g-suessor of . For paths u, the notion u=�-neighbor is de�ned

in the obvious way.

We de�ne a sequene of equivalene relations �

0

a

� �

1

a

� � � � on V

a

as follows:

�

0

a

= f(a; a) 2 V

2

a

g [

f(a; b) 2 V

2

a

j there is an N 2 N

O

suh that N 2 L(a) \ L(b)g

�

i+1

a

= �

i

a

[

f(a; b) 2 V

2

a

j there is a 2 V

a

and an f 2 N

aF

suh that

a and b are f=�

i

a

-neighbors of g [

f(a; b) 2 V

2

a

j there is a (u

1

; : : : ; u

n

keyfor D) 2 K;

u

i

=�

i

a

-neighbors x

i

of a for 1 � i � n, and

u

i

=�

i

a

-neighbors y

i

of b for 1 � i � n

suh that D 2 L(a) \ L(b) and x

i

� y

i

for 1 � i � ng

29

Finally, set �

a

=

S

i�0

�

i

a

. Then de�ne

�

= � [f(x; y) 2 V

2

j there is an a 2 V

a

and a g 2 N

F

suh that

x and y are g=�

a

-neighbors of ag:

�

LetD be a key-admissible onrete domain. To deide the satis�ability of anALCOK(D)-

onept C

0

w.r.t. a Boolean key box K (both in NNF), the tableau algorithm is started

with the initial ompletion tree

T

C

0

= (fa

0

g; ;; ;; fa

0

7! fC

0

gg)

in the initial ompletion system

S

C

0

= (T

C

0

;P

;

; ;; fg);

where P

;

maps eah P 2 �

D

ourring in C

0

to ;. We now introdue an operation that

is used by the ompletion rules to add new nodes to ompletion trees.

De�nition 32 (\+" Operation). An abstrat or onrete node is alled fresh in a

ompletion tree T if it does not appear in T. Let S = (T;P;�;�) be a ompletion

system with T = (V

a

; V

; E;L). We use the following notions:

� Let a 2 V

a

, b 2 O

a

fresh in T, and R 2 N

R

. We write S + aRb to denote the

ompletion system S

0

that an be obtained from S by adding b to V

a

and (a; b) to

E and setting L(a; b) = R and L(b) = ;. Moreover, b is inserted into � suh that

b � implies lev

T

(b) � lev

T

().

� Let a 2 V

a

, x 2 O

fresh in T and g 2 N

F

. We write S + agx to denote the

ompletion system S

0

that an be obtained from S by adding x to V

and (a; x)

to E and setting L(a; x) = g.

When nesting the + operation, we omit brakets writing, e.g., S + aR

1

b + bR

2

 for

(S + aR

1

b) + bR

2

. Let u = f

1

� � � f

n

g be a path. With S + aux, where a 2 V

a

and

x 2 O

are fresh in T, we denote the ompletion system S

0

that an be obtained from

S by taking distint nodes b

1

; : : : ; b

n

2 O

a

whih are fresh in T and setting

S

0

:= S + af

1

b

1

+ � � �+ b

n�1

f

n

b

n

+ b

n

gx:

�

Stritly speaking, the S + aRb operation is non-deterministi sine we did not speify

how preisely the node b is inserted into �. However, sine this is don't are non-

determinism, we will view the \+" operation as being deterministi.

The ompletion rules an be found in Figure 8. Note that the Rt and Rh rules

are non-deterministi, i.e., they have more than one possible outome (this is true don't

know non-determinism). Some further remarks on the ompletion rules are in order: the

upper �ve rules are well-known from existing tableau algorithms for ALC(D)-onept

satis�ability (.f. for example [37℄). Only R8 deserves a omment sine it onsiders

30

Ru if C

1

u C

2

2 L(a) and fC

1

; C

2

g 6� L(a)

then L(a) := L(a) [fC

1

; C

2

g

Rt if C

1

t C

2

2 L(a) and fC

1

; C

2

g \ L(a) = ;

then L(a) := L(a) [fCg for some C 2 fC

1

; C

2

g

R9 if 9R:C 2 L(a) and there is no R=�

a

-neighbor b of a suh that C 2 L(b),

then set S := S + aRb for a fresh b 2 O

a

and L(b) := fCg

R8 if 8R:C 2 L(a), b is an R=�

a

-neighbor of a, and C =2 L(b)

then set L(b) := L(b) [fCg

R9 if 9u

1

; : : : ; u

n

:P 2 L(a) and there exist no x

1

; : : : ; x

n

2 V

suh that

x

i

is u

i

-suessor of a for 1 � i � n and (x

1

; : : : ; x

n

) 2 P(P)

then set S := (S + au

1

x

1

+ � � � + au

n

x

n

) with x

1

; : : : ; x

n

2 O

fresh

and P(P) := P(P) [f(x

1

; : : : ; x

n

)g

Rh if (u

1

; : : : ; u

n

keyfor C) 2 K and there exist x

1

; : : : ; x

n

2 V

suh that

x

i

is u

i

=�

a

-neighbor of a for 1 � i � n and fC; _:Cg \ L(a) = ;

then set L(a) := L(a) [fDg for some D 2 fC; _:Cg

Rp if L(b) 6� L(a) and a 2 V

a

is minimal w.r.t. � suh that a �

a

b

then set L(a) := L(a) [L(b)

Figure 8: Completion rules for ALCOK(D).

R=�

a

-neighbors rather than R-suessors as usual. Intuitively, if we have a �

a

b for two

abstrat nodes a and b of the ompletion tree, then a and b desribe the same domain

element of the onstruted model (and similarly for the �

relation on onrete nodes).

Thus if a �

a

b and is an R-suessor of a, then should also be an R-suessor of

b. However, sine we want the ompletion tree to be a tree, we do not make the latter

suessorship expliit. To ompensate for this, the R8 rule talks about R=�

a

-neighbors

rather than about R-suessors.

The lower two rules are neessary for dealing with key boxes. The Rh rule is a

so-alled \hoose rule" (.f. [26, 33℄): intuitively, it guesses whether or not an abstrat

node a satis�es C if there exists a key de�nition (u

1

; : : : ; u

n

keyfor C) 2 K suh that

there are neighbors of a for all the paths u

i

. This is neessary sine both possibilities

may have rami�ations: if a satis�es C, then it must be taken into aount in the

onstrution of the relation �

a

; if a does not satisfy C, then we must deal with the

onsequenes of it satisfying _:C (imagine e.g. that C is >).

The Rp rule is dealing with equalities between abstrat nodes as reorded by the �

a

relation: sine a �

a

b means that a and b desribe the same node in the onstruted

model, their node labels should be idential. It suÆes, however, to hoose one repre-

sentative for eah equivalene lass of �

a

and make sure that this representative's node

label ontains the labels of all its �

a

-equivalent nodes. As representative, we use the

node that is minimal w.r.t. the ordering �, whih has been introdued for solely this

reason. The Rp rule does the appropriate opying of node labels.

31

de�ne proedure sat(S)

do

if S ontains a lash then

return unsatis�able

� := hek(�

S

)

ompute �

a

ompute �

while � 6= �

if S ontains a lash then

return unsatis�able

if S is omplete then

return satis�able

S

0

:= the appliation of a ompletion rule to S

return sat(S

0

)

Figure 9: The ALCOK(D) tableau algorithm.

Let us now formalize what it means for a ompletion system to ontain a ontradi-

tion.

De�nition 33 (Clash). Let S = (T;P;�;�) be a ompletion system for a onept C

and a key box K with T = (V

a

; V

;�;�). We say that the ompletion system S is

onrete domain satis�able i� the onjuntion

�

S

=

^

P used in C

^

(x

1

;:::;x

n

)2P(P)

P (x

1

; : : : ; x

n

) ^

^

x�

y

=(x; y)

is satis�able. S is said to ontain a lash i�

1. there is an a 2 V

a

and an A 2 N

C

suh that fA;:Ag � L(a),

2. there are a 2 V

a

and x 2 V

suh that g" 2 L(a) and x is g=�

a

-neighbor of a,

3. S is not onrete domain satis�able.

If S does not ontain a lash, S is alled lash-free. S is alled omplete i� no ompletion

rule is appliable to S. �

The tableau algorithm is desribed in Figure 9 in pseudo-ode notation. In this �gure,

hek refers to the algorithm omputing a onrete equivalene for a given D-onjuntion

as desribed in De�nition 29. Let us spend a few words on the while loop. There

obviously exist lose relationships between the relations � and �

and the prediate

onjuntion �

S

:

� � � �

(note that both �

a

and �

depend on � and are thus reomputed in eah

step of the while loop);

32

� the result of hek(�

S

) yields a relation ontaining �

(and thus also �).

Using these fats, one may hek that, in eah step of the while loop, new tuples are

added to the � relation, but none are deleted (see the proof of Lemma 35 below). The

presene of the while loop leads to a tight oupling between the onrete domain reasoner

and the tableau algorithm: if the onrete domain reasoner �nds that two onrete nodes

are equal, the tableau algorithm may use this to dedue (via the omputation of �

a

and

�

) even more equalities between onrete nodes. These new equalities may then be

used by the onrete domain reasoner to �nd additional ones and so forth.

A similar interplay takes plae in the ourse of several reursion steps: equalities

between onrete nodes provided by the onrete domain reasoner may make new rules

appliable (for example Rp and R9) whih hanges P and thus also �

S

. This may

subsequently lead to the detetion of more equalities between onrete nodes by the

onrete domain reasoner, and so forth. These onsiderations show that, in the presene

of keys, there exists a lose interplay between the onrete domain reasoner and the

tableau algorithm whih is not needed if keys are not present: in this ase, it suÆes to

apply the onrete domain satis�ability hek only one after the ompletion rules have

been exhaustively applied [3℄.

We now prove termination, soundness, and ompleteness of the tableau algorithm,

starting with termination. We �rst need to establish a few notions and tehnial lemmas.

Let C be a onept and K a key box. We use jCj to denote the length of C, i.e. the

number of symbols used to write it down, and jKj to denote

P

(u

1

;:::;u

k

keyfor C)2K

jCj.

The role depth of onepts is de�ned indutively as follows:

rd(A) = rd(N) = rd(g") = 0

rd(9u

1

; : : : ; u

n

:P) = maxfju

i

j j 1 � i � ng � 1

rd(C uD) = rd(C tD) = maxfrd(C); rd(D)g

rd(9R:C) = rd(8R:C) = rd(C) + 1

The following series of lemmas will eventually allow us to prove termination.

Lemma 34. There is a onstant k suh that, if the tableau algorithm is started on

input C

0

;K and T = (V

a

; V

; E;L) is a ompletion tree onstruted during the run of

the algorithm, then #V

a

� 2

jC

0

j

k

and #V

� 2

jC

0

j

k

.

Proof. Using indution on the number of rule appliations and a ase distintion

aording to the applied rule, it is straightforward to show that

C 2 L(a) implies rd(C) � jC

0

j � lev

T

(a) (�)

for all onstruted ompletion trees T. We omit the details but note that, (1) for

treating the Rh rule, one needs to employ the fat that K is Boolean and thus only

adds onepts of role depth 0 to node labels, and (2) for treating the Rp rule, we use

that a � b implies lev

T

(a) � lev

T

(b).

This implies an upper bound on the depth of onstruted ompletion trees: �rst,

only the R9 and R9 rules generate new nodes and an appliation of both rules to a

33

node a 2 V

a

implies L(a) 6= ; and thus lev

T

(a) � jC

0

j by (�). Seond, eah new

(abstrat or onrete) node b generated by an appliation of these rules to a node

a 2 V

a

learly satis�es lev

T

(b) � lev

T

(a) +max(1;mpl(C

0

)), where mpl(C

0

) denotes the

maximum length of paths in C

0

(note that onepts in K may not ontain any paths

sine it is Boolean). Sine mpl(C

0

) � jC

0

j, the above observations imply that the depth

of onstruted ompletion trees is bounded by 2 � jC

0

j.

Now for the out-degree. If a node a is generated, then this is due to the appliation

of a rule R9 or R9 and initially a has at most one suessor. Let us analyze the number

of suessors generated by later appliations of the rules R9 and R9: these rules an

be applied at most one for eah onept 9R:C and 9u

1

; : : : ; u

n

:P appearing in a node

label. By de�nition of l(C

0

;K) and sine K is Boolean, the number of suh onepts per

node label is bounded by #sub(C

0

) � jC

0

j. Moreover, eah rule appliation reates at

most jC

0

j suessors. Hene, the out-degree of onstruted ompletion trees is bounded

by jC

0

j

2

+ 1. ❏

Lemma 35. There is a onstant k suh that, if the tableau algorithm is started with

C

0

;K, then, in every reursion step, the while loop terminates after at most 2

jC

0

j

k

steps.

Proof. Fix an argument S = (T;P;�;�) with T = (V

a

; V

; E;L) passed to the sat

funtion, let �

1

;�

2

; : : : be the sequene of onrete equivalenes omputed in the while

loop, and let �

1

;�

2

; : : : be the orresponding �

relations. We show that

�

1

(�

2

(� � � ; (�)

whih implies Lemma 35: by Lemma 34, there exists a onstant k suh that #V

� 2

jC

0

j

k

.

Hene, we have #�

0

� 2

2�jC

0

j

k

whih, together with (�), implies that the number of

steps performed by the while loop is also bounded by 2

2�jC

0

j

k

.

Now for the proof of (�). If the while loop reahes the i-th step, then we had

�

i�1

6= �

i�1

after step i�1. Sine �

i�1

� �

i�1

by de�nition, this implies �

i�1

(�

i�1

.

By de�nition of �

S

, it is easy to see that �

i�1

� �

i

for i � 0. Hene �

i�1

(�

i

. ❏

Lemma 36. There is a onstant k suh that, if the tableau algorithm is started with

C

0

;K, then the number of reursion alls is bounded by 2

(jC

0

j+jKj)

k

.

Proof. It obviously suÆes to establish an appropriate upper bound on the number of

rule appliations. The Ru, Rt, R9, and R9 rules an be applied at most one for eah

onept in a node label. By Lemma 34, the number of nodes is at most exponential in

jC

0

j + jKj. Sine neither nodes nor onepts in node labels are ever deleted, the fat

that node labels are subsets of l(C

0

;K) thus implies that the number of appliations

of these rules is at most exponential in jC

0

j+ jKj. The same holds for the rules R8 and

Rp, whih an be applied at most one for every onept C 2 l(C

0

;K) and every pair

of (abstrat) nodes. Finally, the number of Rh appliations is at most exponential in

jC

0

j+ jKj sine this rule an be applied at most one for every abstrat node and every

key de�nition in K. ❏

34

Termination is now an obvious onsequene of Lemmas 35 and 36.

Corollary 37 (Termination). The tableau algorithm terminates on any input.

Let us now prove soundness of the algorithm.

Lemma 38 (Soundness). If the tableau algorithm returns satis�able, then the input

onept C

0

is satis�able w.r.t. the input key box K.

Proof. If the tableau algorithm returns satis�able, then there exists a omplete and

lash-free ompletion system S = (T;P;�;�) for C

0

. Let T = (V

a

; V

; E;L). By

de�nition of the tableau algorithm, there is a ompletion system S

0

= (T;P;�;�

0

) suh

that a all to hek(�

S

0

) returned �. Moreover, we have � = �

in S. Thus, there exists

a solution Æ for �

S

0

suh that

Æ(x) = Æ(y) i� x �

y: (y)

Clearly, Æ is also a solution for �

S

: sine the seond omponent P of S and S

0

is idential,

Æ is a solution for the �rst part

^

P used in C

^

(x

1

;:::;x

n

)2P(P)

P (x

1

; : : : ; x

n

)

of �

S

. Moreover, for eah onjunt =(x; y) from the seond part of �

S

, we have x �

y

by de�nition of �

S

and thus Æ(x) = Æ(y) by (y).

We now use S and Æ to onstrut an interpretation I by setting

�

I

= fa 2 V

a

j there is no b 2 V

a

suh that a �

a

b and b � ag [fwg

A

I

= fa 2 �

I

j A 2 L(a)g

N

I

=

�

fa 2 �

I

j N 2 L(a)g if there is an a 2 �

I

suh that N 2 L(a)

fwg otherwise

R

I

= f(a; b) 2 �

I

��

I

j there are a

0

; b

0

2 V

a

suh that a �

a

a

0

, b �

a

b

0

, and

b

0

is R-suessor of a

0

g

g

I

= f(a; Æ(x)) 2 �

I

��

D

j x is g=�

a

-neighbor of ag

for all A 2 N

C

, N 2 N

O

, R 2 N

R

, and g 2 N

F

. We �rst show that I is well-de�ned:

� N

I

is a singleton for eah N 2 N

O

. For assume that there exist a; b 2 �

I

suh

that a 6= b and N 2 L(a) \ L(b). By de�nition of �

a

, N 2 L(a) \ L(b) implies

a �

a

b. This, together with a; b 2 �

I

, yields a � b and b � a, a ontradition.

� f

I

is funtional for eah f 2 N

aF

. For assume that there exist a; b; 2 �

I

suh

that f(a; b); (a;)g � f

I

and b 6= . Then there exist a

1

; a

2

; b

0

;

0

2 V

a

suh that

a �

a

a

1

�

a

a

2

, b �

a

b

0

, �

a

0

, b

0

is an f -suessor of a

1

, and

0

is an f -suessor

of a

2

. By de�nition of �

a

, we thus have b

0

�

a

0

implying b �

a

. Sine b; 2 �

I

,

this yields b � and � b, a ontradition.

35

� g

I

is funtional for eah g 2 N

F

. For assume that there exist an a 2 �

I

and

x; y 2 V

suh that f(a; Æ(x)); (a; Æ(y))g � f

I

and Æ(x) 6= Æ(y). Then x and y

are both g=�

a

-neighbors of a. By de�nition of �

, we thus have x �

y implying

Æ(x) = Æ(y) by (y), a ontradition.

The following laim is entral for showing that I is a model for C

0

and K.

Claim: For all a 2 �

I

and C 2 l(C

0

;K), if C 2 L(a), then a 2 C

I

.

Sine C

0

is in the label of the root node, the laim learly implies that I is a model for C

0

.

Moreover, we an use it to prove that I satis�es all key de�nitions (u

1

; : : : ; u

n

keyfor C)

in K: �x a; b 2 C

I

suh that u

I

i

(a) = u

I

i

(b) for 1 � i � n. Non-appliability of Rh yields

fC; _:Cg \ L(a) 6= ;. If _:C 2 L(a), then the laim implies a 2 (_:C)

I

in ontradition

to a 2 C

I

. Thus we obtain C 2 L(a). In an analogous way, we an argue that C 2 L(b).

Using the onstrution of I and the fat that u

I

i

(a) and u

I

i

(b) are de�ned for 1 � i � n,

it is readily heked that a has an u

i

=�

a

-neighbor x

i

and b an u

i

=�

a

-neighbor y

i

for

1 � i � n. Moreover, the onstrution of I and (y) imply that x

i

�

y

i

and thus x

i

� y

i

for 1 � i � n. The above observations obviously imply that a �

a

b. Sine a; b 2 �

I

, we

obtain a 6� b and b 6� a by de�nition of �

I

and thus a = b.

It remains to prove the above laim, whih an be done by strutural indution:

� C is a onept name or a nominal. Easy by onstrution of I.

� C = :D. Sine C 2 l(C

0

;K), C is in NNF and D is a onept name. Sine S is

lash-free, C 2 L(a) implies D =2 L(a). Thus, a =2 D

I

by onstrution of I, whih

yields a 2 (:D)

I

.

� C = 9u

1

; : : : ; u

n

:P . Sine the R9 rule is not appliable, there exist x

1

; : : : ; x

n

2 V

suh that x

i

is a u

i

-suessor of a for 1 � i � n and (x

1

; : : : ; x

n

) 2 P(P). Using the

onstrution of I and indution on the length of paths, the reader may hek that

this implies u

I

i

(a) = Æ(x

i

) for 1 � i � n (be areful to deal with abstrat nodes that

are not in �

I

but enountered while following paths). Sine (x

1

; : : : ; x

n

) 2 P(P)

and Æ is a solution for �

S

, we have (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

and thus a 2 C

I

.

� C = g". Sine S is lash-free, there exists no x 2 V

suh that x is g=�

a

-neighbor

of a. Thus, by onstrution of I, there is no � suh that (a; �) 2 g

I

.

� C = D uE or C = D tE. Straightforward using ompleteness and the indution

hypothesis.

� C = 9R:D. Sine the R9 rule is not appliable, a has an R=�

a

-neighbor b suh

that D 2 L(b). Let b

0

be minimal w.r.t. � suh that b �

a

b

0

. By de�nition of

I, we have (a; b

0

) 2 R

I

. Non-appliability of the Rp rule yields D 2 L(b

0

). By

indution, we get b

0

2 D

I

and thus a 2 C

I

.

� C = 8R:D. Let (a; b) 2 R

I

. By de�nition of I, this implies that there exist

a

0

; b

0

2 V

a

suh that a is minimal w.r.t. � and a �

a

a

0

, b is minimal w.r.t. � and

b �

a

b

0

, and b

0

is an R-suessor of a

0

. Sine b

0

is learly an R=�

a

-neighbor of

36

a, non-appliability of R8 yields D 2 L(b

0

), whih implies D 2 L(b) due to non-

appliability of Rp. By indution, we get b 2 D

I

. Sine this holds independently

of the hoie of b, we obtain a 2 (8R:D)

I

.

❏

Lemma 39 (Completeness). If the input onept C

0

is satis�able w.r.t. the input key

box K, then the tableau algorithm returns satis�able.

Proof. Let I be a model of C

0

and K. We use I to \guide" the (non-deterministi parts

of) the algorithm suh that it onstruts a omplete and lash-free ompletion system.

A ompletion system S = (T;P;�;�) with T = (V

a

; V

; E;L) is alled I-ompatible if

there exist mappings � : V

a

! �

I

and � : V

! �

D

suh that

(Ca) C 2 L(a)) �(a) 2 C

I

(Cb) b is an R-suessor of a) (�(a); �(b)) 2 R

I

(C) x is a g-suessor of a) g

I

(�(a)) = �(x)

(Cd) (x

1

; : : : ; x

n

) 2 P(P)) (�(x

1

); : : : ; �(x

n

)) 2 P

D

(Ce) x � y) �(x) = �(y)

We �rst establish the following laim:

Claim 1: If a ompletion system S is I-ompatible, then (i) a �

a

b implies �(a) = �(b)

and (ii) x �

y implies �(x) = �(y).

Proof: We show by indution on i that a �

i

a

b implies �(a) = �(b) (.f. De�nition 31),

whih yields (i).

� Start. If a �

0

a

b, then there exists a nominal N suh that N 2 L(a) \ L(b). By

(Ca) we obtain �(a) 2 N

I

and �(b) 2 N

I

, whih yields �(a) = �(b) by de�nition

of the semantis.

� Step. For a �

i

a

b, we distinguish three ases:

1. If a �

i�1

a

b, then �(a) = �(b) by indution.

2. There is a 2 V

a

and an f 2 N

aF

suh that both a and b are f=�

i�1

a

-

neighbors of . Hene, there exist

1

;

2

2 V

a

suh that �

i�1

a

1

�

i�1

a

2

,

a is an f -suessor of

1

, and b is an f -suessor of

2

. By indution, we

have �() = �(

1

) = �(

2

). Thus (Cb) yields f(�(); �(a)); (�(); �(b))g � f

I

whih implies �(a) = �(b) by de�nition of the semantis.

3. There exist (u

1

; : : : ; u

n

keyfor C) 2 K, u

i

=�

i�1

a

-neighbors x

i

of a and u

i

=�

i�1

a

-

neighbors y

i

of b for 1 � i � n suh that C 2 L(a) \ L(b) and x

i

� y

i

for

1 � i � n. (Ca) yields a; b 2 C

I

. Using indution, (Cb), and (C), it

is straightforward to show that u

I

i

(�(a)) = �(x

i

) and u

I

i

(�(b)) = �(y

i

) for

1 � i � n. By (Ce), this implies u

I

i

(�(a)) = u

I

i

(�(b)) for 1 � i � k. Sine

I is a model of the key box K, this yields �(a) = �(b) by de�nition of the

semantis.

37

Now for Part (ii) of Claim 1. If x �

y, then either x � y or there is an a 2 V

a

and a g 2 N

F

suh that both x and y are g=�

a

-neighbors of a. In the former ase,

(Ce) yields �(x) = �(y). In the latter ase, Part (i) of the laim and (C) yields

f(�(a); �(x)); (�(a); �(y))g � g

I

whih implies �(x) = �(y). This �nishes the proof of

Claim 1.

We an now show that the ompletion rules an be applied suh that I-ompatibility is

preserved.

Claim 2: If a ompletion system S is I-ompatible and a rule R is appliable to S,

then R an be applied suh that an I-ompatible ompletion system S

0

is obtained.

Proof: Let S be an I-ompatible ompletion system, � and � be funtions satisfying

(Ca) to (Ce), and let R be a ompletion rule appliable to S. We make a ase distintion

aording to the type of R.

Ru The rule is applied to a onept C

1

uC

2

2 L(a). By (Ca), C

1

uC

2

2 L(a) implies

�(a) 2 (C

1

u C

2

)

I

and hene �(a) 2 C

I

1

and �(a) 2 C

I

2

. Sine the rule adds C

1

and C

2

to L(a), it yields a ompletion system that is I-ompatible via the same

� and � .

Rt The rule is applied to C

1

t C

2

2 L(a). C

1

t C

2

2 L(a) implies �(a) 2 C

I

1

or

�(a) 2 C

I

2

. Sine the rule adds either C

1

or C

2

to L(a), it an be applied suh

that it yields a ompletion system that is I-ompatible via the same � and � .

R9 The rule is applied to a onept 9R:C 2 L(a), generates a new R-suessor b of a

and sets L(b) = fCg. By (Ca), we have �(a) 2 (9R:C)

I

and, hene, there exists a

d 2 �

I

suh that (�(a); d) 2 R

I

and d 2 C

I

. Set �

0

:= � [fb 7! dg. It is readily

heked that the resulting ompletion system is I-ompatible via �

0

and � .

R8 The rule is applied to a onept 8R:C 2 L(a) and adds C to the label L(b) of an

existing R=�

a

-neighbor b of a. Hene, there exists an a

0

suh that a �

a

a

0

and b

is R-suessor of a

0

. By Part (i) of Claim 1, we have �(a) = �(a

0

). Thus, by (Ca)

we have �(a

0

) 2 (8R:C)

I

while (Cb) yields ((�(a

0

); �(b)) 2 R

I

. By de�nition of

the semantis, we obtain �(b) 2 C

I

and thus the resulting ompletion system is

I-ompatible via � and � .

R9 The rule is applied to a onept 9u

1

; : : : ; u

n

:P 2 L(a) with u

i

= f

(i)

1

� � � f

(i)

k

i

g

i

for

1 � i � n. The rule appliation generates new abstrat nodes b

(i)

j

and x

j

for

1 � i � n and 1 � j � k

i

suh that

{ b

(i)

1

is an f

(i)

1

-suessor of a for 1 � i � n,

{ b

(i)

j

is an f

(i)

j

-suessor of b

(i)

j�1

for 1 � i � n and 1 < j � k

i

,

{ x

i

is g

i

-suessor of b

(i)

k

i

for 1 � i � n, and

{ (x

1

; : : : ; x

n

) 2 P(P).

By (Ca), we have �(a) 2 (9u

1

; : : : ; u

n

:P)

I

. Hene, there exist d

(i)

j

2 �

I

for

1 � i � n and 1 � j � k

i

and �

1

; : : : ; �

n

2 �

D

suh that

38

{ (�(a); d

(i)

1

) 2 (f

(i)

1

)

I

for 1 � i � n,

{ (d

(i)

j�1

; d

(i)

j

) 2 (f

(i)

j

)

I

for 1 � i � n and 1 < j � k

i

,

{ g

I

i

(d

(i)

k

i

) = �

i

for 1 � i � n, and

{ (�

1

; : : : ; �

n

) 2 P

D

.

Set

�

0

:= �

[

1�i�n and 1�j�k

i

fb

(i)

j

7! d

(i)

j

g and �

0

:= � [

[

1�i�n

fx

i

7! �

i

g:

The resulting ompletion system is I-ompatible via �

0

and �

0

.

Rh The rule is applied to an abstrat node a and a key de�nition (u

1

; : : : ; u

n

keyfor C)

2 K and non-deterministially adds either C or _:C. By de�nition of the seman-

tis, �(a) 2 C

I

or �(a) 2 (_:C)

I

. Hene, Rh an be applied suh that the

resulting ompletion system is I-ompatible via � and � .

Rp The rule is applied to a onept C 2 L(a) and adds C to the label L(b) of a node

b with a �

a

b. By (Ca), we have �(a) 2 C

I

. Sine Claim 1 yields �(a) = �(b), it

is lear that the resulting ompletion system is I-ompatible via � and � .

Finally, we show that I-ompatibility implies lash-freeness.

Claim 3: Every I-ompatible ompletion system is lash-free.

Proof: Let S = (T;P;�;�) be an I-ompatible ompletion system. To show that S is

lash-free, we make a ase distintion:

� Assume that there exists an a 2 V

a

suh that fA;:Ag 2 L(a) for some onept

name A. Due to (Ca), we have �(a) 2 A

I

\ (:A)

I

, a ontradition.

� Assume that there are a 2 V

a

and x 2 V

suh that g" 2 L(a) and x is g=�

a

-

neighbor of a. Then there exists a b 2 V

a

suh that a �

a

b and x is g-suessor

of b. By Claim 1, a �

a

b yields �(a) = �(b). Thus, g" 2 L(a) and (Ca) give

�(b) 2 (g")

I

. We obtain a ontradition sine (C) yields (�(b); �(x)) 2 g

I

.

� Using Properties (Cd) and (Ce) and Part (ii) of Claim 1, it is easy to hek that

� is a solution for �

S

. Thus, S is onrete domain satis�able.

We an now desribe the \guidane" of the tableau algorithm by the model I in detail:

we ensure that, at all times, the onsidered ompletion systems are I-ompatible. This

does obviously hold for the initial ompletion system

S

C

0

= (T

C

0

;P

;

; ;; ;) with T

C

0

= (fa

0

g; ;; ;; fa

0

7! fCgg):

We guide the non-deterministi hek funtion suh that, when given a prediate on-

juntion �

S

with set of variables V

� O

as input, it returns the relation � de�ned by

setting x � y i� �(x) = �(y) for all x; y 2 V . The relation � is a onrete equivalene

39

sine � is a solution for �

S

(see above). With this guidane (Ce) is obviously satis�ed af-

ter eah all to hek, and the other properties are not a�eted by suh a all. Aording

to Claim 2, we an apply the ompletion rules suh that I-ompatibility is preserved.

By Corollary 37, the algorithm terminates always, hene also when guided in this way.

Sine, by Claim 3, we will not �nd a lash, the algorithm returns satis�able. ❏

The tableau algorithm yields deidability and a tight upper omplexity bound for

ALCOK(D)-onept satis�ability w.r.t. key boxes.

Theorem 40. Let D be a onrete domain that is key-admissible. If extended D-

satis�ability is in NP, then ALCOK(D)-onept satis�ability w.r.t. Boolean key boxes

is in NExpTime.

Proof. Corollary 37 and Lemmas 38 and 39 yield deidability of ALCOK(D)-onept

satis�ability w.r.t. Boolean key boxes. For omplexity, Lemma 36 provides an exponen-

tial bound on the number of reursion alls. Hene, it remains to show that eah single

reursion step needs at most exponential time. By Lemma 35, the while loop terminates

after at most exponentially many steps. In eah suh step, we ompute the relations �

a

and �

, whih are needed for onstruting the prediate onjuntion �

S

and for heking

termination of the while loop. Sine, by Lemma 34, there exists an exponential bound

on the number of abstrat and onrete nodes in the ompletion system S, this an

obviously be done in exponential time. Moreover, Lemma 34 implies that the size of �

S

is at most exponential. This together with the fat that extended D-satis�ability is in

NP implies that the all to hek needs at most exponential time. All remaining tasks

(heking for lashes, ompleteness, and rule appliability) an learly also be performed

in exponential time. ❏

We should note that, in the way it is presented here, the algorithm leaves quite some

room for optimizations. One possible optimization onerns the \re-use" of f -suessors

(for abstrat features f): for example, when applying the R9 rule to a onept 9f:C 2

L(a), where a already has an f -suessor b, we ould simply add C to L(b) instead of

adding a new f -suessor and reording that b �

a

. Another andidate for optimiza-

tions is the hek funtion. Reall that this funtion takes a prediate onjuntion

with set of variables V and non-deterministially returns a onrete equivalene, i.e., a

relation � suh that there exists a solution Æ for with v

i

� v

j

i� Æ(v

i

) = Æ(v

j

) (see

De�nition 29). It is not hard to devise an ALC(D)-onept that enfores ompletion

systems to have exponentially many onrete nodes by slightly adapting well-known

ALC-onepts that enfore models of exponential size [25℄. Hene, the size of input

onjuntions to hek an be exponential in the size of the input onept. Now note

that, even for trivial D-onjuntions

 = >

D

(v

1

) ^ � � � ^ >

D

(v

k

)

with (>

D

)

D

= �

D

, there exist more than k! (i.e. fatorial of k) distint onrete equiv-

alenes �. Thus, the number of possible outomes of a all to the hek funtion may

be double exponential in the size of the input onept. Considering the above example,

a natural approah to attak this problem is to require hek to return only minimal

40

onrete equivalenes: intuitively, an equivalene is minimal if only those variables are

equivalent whose equality is enfored by the onjuntion. More preisely, � is alled

minimal if there exists no onrete equivalene �

0

suh that (i) x �

0

y implies x � y

and (ii) there are x; y with x � y and x 6�

0

y. We onjeture that restriting hek in

this way does not destroy soundness and ompleteness of the tableau algorithm. How-

ever, although this de�nitely is a worthwhile optimization, it does not help to overome

the existene of double exponentially many outomes of hek in the worst ase|at

least not for all onrete domains D: onsider the onrete domain N from Page 27 and

onjuntions of the form

i

= <

i

(v

1

) ^ � � � ^<

i

(v

2i

):

It is readily heked that, for eah i � 1, the number of minimal onrete equivalenes for

i

is exponential in i. Moreover, it is not hard to devise a onept C

i

of size logarithmi

in i that enfores ompletion systems S suh that �

S

=

i

. Hene, there are still double

exponentially many outomes of the hek funtion.

In the example just disussed, the exponential branhing of hek is learly due

to the disreteness of the natural numbers. Indeed, if we use a dense (and in�nite!)

struture for de�ning onrete domains, it seems that the restrition to minimal onrete

equivalenes an have the desired e�et, namely that the number of hek's possible

outomes beomes polynomial in the size of its input and thus exponential in the size

of the input onept. For example, onsider the onrete domain Q, whih is de�ned as

follows:

� �

Q

is the set Q of rational numbers;

� �

Q

provides unary prediates >

Q

and its negation ?

Q

, unary prediates =

q

and

6=

q

for eah q 2 Q, binary omparison prediates f<;�;=; 6=;�; >g, a ternary

addition prediate +, and its negation + (all with the obvious semantis).

It is readily heked that Q is key-admissible (note that it provides for a binary equality

prediate) and thus falls into our framework. We onjeture that there exists only one

minimal onrete equivalene for every Q-prediate onjuntion : intuitively, it seems

possible to (indutively) determine a relation � on the set of variables V used in suh

that (i) x � y implies that Æ(x) = Æ(y) for every solution Æ for and (ii) there exists a

solution Æ for suh that v 6� v

0

implies Æ(v) 6= Æ(v

0

). Clearly, � is a minimal onrete

equivalene. Moreover, due to (i) it is the only one.

4.2 A Tableau Algorithm for SHOQK(D)

Although ALCOK(D) is a quite powerful DL, it laks several expressive means that

an be found in most state-of-the-art desription logi systems suh as FaCT and

RACER [28, 33, 23℄. In this setion, we onsider the very expressive desription logi

SHOQK(D) that provides for onrete domains, key boxes, and nominals, but also for

many other means of expressivity suh as transitive roles, role hierarhies, qualifying

number restritions, and general TBoxes. Modulo some details, SHOQK(D) an be

viewed as the extension of the DL SHOQ(D) with key boxes. SHOQK(D) was pro-

posed in [31℄ and extended in [42℄ as a tool for ontology reasoning in the ontext of the

41

semanti web [12, 6℄. One very important feature of SHOQK(D) are so-alled TBoxes,

i.e. onept equations of the form C

:

= D that are used as a \bakground theory" in rea-

soning. Sine it is well-known that ombining general TBoxes and the onrete domain

onstrutor easily leads to undeidability [5, 39℄, SHOQK(D) only o�ers a path-free

variant of the onrete domain onstrutor|i.e. only onrete features are admitted

inside this onstrutor rather than paths of arbitrary length. [24, 31℄ show that this

restrition regains deidability. Path-freeness of the onrete domain onstrutor obvi-

ously renders abstrat features unneessary, and thus this syntati type is not available

in SHOQK(D). Moreover, in this setion we restrit ourselves to path-free key boxes.

4.2.1 The Desription Logi SHOQK(D)

Let us now de�ne SHOQK(D) in a formal way, starting with the syntax.

De�nition 41 (SHOQK(D) Syntax). A role axiom is either a role inlusion, whih

is of the form R v S with R;S 2 N

R

, or a transitivity axiom Trans(R) where R 2 N

R

.

A role box R is a �nite set of role axioms. A role name R is alled simple if, for v* the

reexive-transitive losure of the role inlusions in R, S v* R implies Trans(S) =2 R for

all role names S. Let D be a onrete domain. The set of SHOQK(D)-onepts is the

smallest set suh that

� every onept name and every nominal is a onept, and

� if C and D are onepts, R is a role name, S a simple role name, n and k are

natural numbers, g

1

; : : : ; g

n

are onrete feature, and P 2 �

D

is a prediate of

arity n, then the following expressions are also onepts:

:C; C uD; C tD; 9R:C; 8R:C; (> k S C); (6 k S C); 9g

1

; : : : ; g

n

:P; and g

1

":

A onept equation is an expression C

:

= D with C and D onepts. A TBox is a �nite

set of onept equations. �

For SHOQK(D), we onsider key boxes that di�er in two aspet from the ones we

onsidered for ALCOK(D): in the following, we assume key boxes to be path-free, but

we admit omplex onepts to our in key de�nitions. Note that abstrat features

and paths do no our in the syntax of SHOQK(D)|as will beome lear after the

semantis has been de�ned, the former an be \simulated" by the more general number

restritions (6 n R C). As usual in desription logis of the SHIQ/SHOQ family, we

require role names in number restritions to be simple sine admitting arbitrary roles

yields undeidability of reasoning [33, 31℄. If the role box R is lear from the ontext, we

will usually write Trans(R) instead of Trans(R) 2 R. We now introdue the semantis

of SHOQK(D) and the relevant reasoning problems.

De�nition 42 (SHOQK(D) Semantis). Interpretations I = (�

I

; �

I

) are de�ned as

in De�nition 3. The interpretation funtion �

I

is extended to SHOQK(D)-onepts as

42

follows:

(:C)

I

:= �

I

n C

I

(C uD)

I

:= C

I

\D

I

(C tD)

I

:= C

I

[D

I

(9R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g \ C

I

6= ;g

(8R:C)

I

:= fd 2 �

I

j fe j (d; e) 2 R

I

g � C

I

g

(6 k R C)

I

:= fd 2 �

I

j ℄fe j (d; e) 2 R

I

g � kg

(> k R C)

I

:= fd 2 �

I

j ℄fe j (d; e) 2 R

I

g � kg

(9g

1

; : : : ; g

n

:P)

I

:= fd 2 �

I

j 9x

1

; : : : ; x

n

2 �

D

: g

I

i

(d) = x

i

and (x

1

; : : : ; x

n

) 2 P

D

g

(g")

I

:= fd 2 �

I

j g

I

(d) unde�nedg:

Let I be an interpretation. Then I satis�es a onept equation C

:

= D if C

I

= D

I

.

I is a model of a TBox T if I satis�es all onept equations in T . Similarly, I satis�es

a role inlusion R v S if R

I

� S

I

and a transitivity axiom Trans(R) if R

I

is a transitive

relation. I is a model of a role box R if I satis�es all role inlusions and transitivity

axioms in R.

Let T be a TBox, R a role box, and K a key box. A onept C is satis�able w.r.t.

T , R, and K i� C, T , R, and K have a ommon model. C is subsumed by a onept

D w.r.t. T , R, and K (written C v

T ;R;K

D) i� C

I

� D

I

for all ommon models I of

T , R, and K. �

Note that, due to the requirement that role names used inside number restritions should

be simple, existential and universal value restritions are no syntati sugar: in ontrast

to number restritions, they an be used on all roles.

It is well-known that, in many expressive desription logis, reasoning with TBoxes

an be redued to reasoning without them [44, 31℄: in SHOQK(D), deiding satis�a-

bility of a onept C w.r.t. T , R, and K is equivalent to deiding satis�ability of the

onept

C u 8R:

�

u

D

:

=E2T

D $ E

�

u u

nominal N used in C, T , or K

�

9R:(N u u

D

:

=E2T

D $ E)

�

w.r.t. R

0

, K, and the empty TBox, where R is a fresh role not appearing in C, R, and

T , and

R

0

:= R[fTrans(R)g [

[

role name S used in C, T , R, or K

fS v Rg:

Sine subsumption an be redued to satis�ability as desribed in Setion 2, in the

following we will only onsider the satis�ability of onepts w.r.t. role boxes and key

boxes, but without TBoxes. We will also generally assume role boxes R to be ayli,

i.e. to satisfy the following ondition: for eah role name R, there are no role names

R

1

; : : : ; R

k

suh that R = R

1

= R

k

and R

i

v R

i+1

2 R for 1 � i < k. It is not hard to

see that this is no restrition sine yles an be eliminated: if R

1

; : : : ; R

k

is a yle in

R, then we have R

I

1

= � � � = R

I

k

for all interpretations I. Thus we an simply remove

43

the yle from R and replae every ourrene of R

2

; : : : ; R

k

in C, R, and K with R

1

.

Moreover, we have to possibly add Trans(R

1

) if, before the yle elimination, we had

Trans(R

i

) for some i with 1 � i � n.

Before we turn our attention towards the onstrution of a tableau algorithm for

SHOQK(D), let us omment on a few minor di�erenes between SHOQK(D) as intro-

dued here and the original version of SHOQ(D) as desribed in [31℄. The main di�er-

ene is that our logi, like the extension investigated in [42℄, allows n-ary prediates while

Horroks and Sattler restrit themselves to unary prediates. Moreover, SHOQ(D) as

introdued in [31℄ uses onrete roles rather than onrete features, the di�erene being

that onrete roles are not neessary funtional. Due to this non-funtionality, the orig-

inal SHOQ(D) admits two variants 9T:P and 8T:P of the onrete domain onstrutor

(where T is a onrete role and P a unary prediate). In SHOQK(D), we an simulate

the universal variant by writing 9g:P t g" sine onrete features g are interpreted as

partial funtions and, in ontrast to Horroks and Sattler, we have the unde�nedness

onstrutor g" available. Exept for the n-ary prediates whih provide important ad-

ditional expressivity, we view these deviations as minor ones sine they are easily seen

to not a�et deidability and omplexity of reasoning.

4.2.2 A Tableau for SHOQK(D)

Similar to the tableau algorithm for ALCOK(D) onept satis�ability, the SHOQK(D)

algorithm will use ompletion systems based on ompletion trees as the underlying data

struture. However, to simplify dealing with transitive roles and role hierarhies, in the

orretness proofs, we will not establish a diret orrespondene between the existene

of omplete and lash-free ompletion systems and the existene of models, but rather

employ an intermediate step involving an abstration of models alled tableau. Intu-

itively, the main di�erene between ompletion systems and tableaux is that ompletion

systems onstruted by the tableau algorithm are �nite objets while a tableau is po-

tentially in�nite. The main di�erene between tableaux and interpretations is that, in

tableaux, roles delared to be transitive must not neessarily be desribed by transitive

relations.

In this setion, we introdue tableaux. Let us start with disussing some prelim-

inaries. As for ALCOK(D), we assume all onepts and key boxes to be in negation

normal form (NNF) and use _:C to denote the NNF of :C. The NNF rewrite rules for

SHOQK(D) an be found in Figure 10. For a onept D, role box R, and key box K,

we de�ne

l(D;K) := sub(D) [sub(on(K)) [f _:C j C 2 sub(D) [sub(on(K))g

l(D;R;K) := l(D;K) [f8R:C j R v* S and 8S:C 2 l(D;K)g;

where v* denotes the reexive transitive losure of the role inlusions in R. Obviously,

the ardinality of l(D;R;K) is linear in the size of D, R, and K. In what follows, we

write N

D;R;K

R

to denote the set of role names ourring in D, R, or K, and N

D;K

F

to

denote the sets of onrete features ourring in D or K. We are now ready to de�ne

tableaux.

44

:(C uD) :C t :D :(C tD) :C u :D

:(9R:C) 8R::C :(8R:C) 9R::C

::C C :(g") 9g:>

D

:(> n R C) (6 (n� 1) R C) if n � 1

:(> 0 R C) ?

:(6 n R C) (> (n+ 1) R C)

:(9g

1

; : : : ; g

n

:P) 9g

1

; : : : ; g

n

:P t g

1

" t � � � t g

n

"

Figure 10: The SHOQK(D) NNF rewrite rules.

De�nition 43 (Tableau). Let D be a SHOQK(D)-onept in NNF, R a role box,

and K a path-free key box in NNF. A tableau T for D w.r.t. R and K is a tuple

(S

a

;S

;L; E;

e

;P) suh that

� S

a

, S

are sets of abstrat and onrete individuals,

� L : S

a

! 2

l(D;R;K)

maps eah abstrat individual to a subset of l(D;R;K),

� E : S

a

� S

a

! 2

N

D;R;K

R

maps pairs of abstrat individuals to sets of roles,

�

e

: S

a

� N

D;K

F

! S

maps pairs of abstrat individuals and onrete features to

onrete individuals,

� P maps eah n-ary onrete prediate ourring in l(D;R;K) to a set of n-tuples

over S

,

� there is an abstrat individual s

0

2 S

a

suh that D 2 L(s

0

), and

for all s; t 2 S

a

, C;C

1

; C

2

2 l(D;R;K), R;S 2 N

D;R;K

R

, and

S

T

(s; C) := ft 2 S

a

j S 2 E(s; t) and C 2 L(t)g;

it holds that:

(T1) if C 2 L(s), then :C =2 L(s),

(T2) if C

1

uC

2

2 L(s), then C

1

2 L(s) and C

2

2 L(s),

(T3) if C

1

tC

2

2 L(s), then C

1

2 L(s) or C

2

2 L(s),

(T4) if R 2 E(s; t) and R v* S, then S 2 E(s; t),

(T5) if 8R:C 2 L(s) and R 2 E(s; t), then C 2 L(t),

(T6) if 9R:C 2 L(s), then there is some t 2 S

a

suh that R 2 E(s; t) and C 2 L(t),

(T7) if 8S:C 2 L(s) and R 2 E(s; t) for some R v* S with Trans(R), then 8R:C 2 L(t),

(T8) if (> n S C) 2 L(s), then ℄S

T

(s; C) > n,

45

(T9) if (6 n S C) 2 L(s), then ℄S

T

(s; C) 6 n,

(T10) if either (6 n S C) 2 L(s) and S 2 E(s; t) or (g

1

; : : : ; g

n

keyfor C) 2 K and

e

(t; g

i

) is de�ned for all 1 � i � n, then fC; _:Cg \ L(t) 6= ;,

(T11) if N 2 L(s) \ L(t), then s = t,

(T12) if 9g

1

; : : : ; g

n

:P 2 L(s), then there are x

1

; : : : ; x

n

2 S

with

e

(s; g

i

) = x

i

and

(x

1

; : : : ; x

n

) 2 P(P),

(T13)

V

P used in D;K

V

(x

1

;:::;x

n

)2P(P)

P (x

1

; : : : ; x

n

) ^

V

x6=y

x 6= y is satis�able,

(T14) if (g

1

; : : : ; g

n

keyfor C) 2 K, C 2 L(s) \ L(t), and

e

(s; g

i

) =

e

(t; g

i

) for all

1 � i � n, then s = t,

(T15) if g" 2 L(s), then e(s; g) is unde�ned.

�

Note that the prediate onjuntion in (T13) uses a binary inequality prediate. In

general, we do not require the onrete domain D to be equipped with suh a prediate

and thus this prediate onjuntion is not neessarily a D-onjuntion. However, it

is nevertheless \safe" to use (T13) in the given form sine tableaux are only used in

proofs and we do not need a onrete domain reasoner that is apable of deiding the

satis�ability of the listed prediate onjuntion. We now show that tableaux are an

adequate abstration of models.

Lemma 44. Let D be a SHOQK(D)-onept in NNF, R a role box, and K a key box

in NNF. Then D is satis�able w.r.t. R and K i� D has a tableau w.r.t. R and K.

Proof. We onentrate on Properties (T10) to (T15) sine (T1) to (T9) are \stan-

dard" and an also be found in tableaux for SHIQ and SHOQ, see [33, 31℄. For the

\only-if" diretion, we onstrut a tableau T from a ommon model I of D, R, and K

as follows:

S

a

:= �

I

S

:= fx 2 �

D

j g

I

(s) = x for some s 2 S

a

g

L(s) := fC 2 l(D;R;K) j s 2 C

I

g

E(s; t) := fS 2 N

D;R;K

R

j (s; t) 2 S

I

g

e

(s; g) := g

I

(s) if g

I

(s) is de�ned

P(P) := f(x

1

; : : : ; x

n

) 2 S

n

j (x

1

; : : : ; x

n

) 2 P

D

g:

It an be easily veri�ed that T is a tableau for D w.r.t. R and K: the proof that T

satis�es (T1) { (T9) is idential to the orresponding ases in [33, 31℄; (T10) holds

by de�nition of L; (T11) by de�nition of L and the fat that nominals are interpreted

as singleton sets; (T12) by de�nition of L, e, and P together with the semantis of

onepts 9g

1

; : : : ; g

n

:P ; (T13) sine the identity funtion on S

is learly a solution

for the listed prediate onjuntion; (T14) by de�nition of L and e together with the

semantis of key onstraints; and �nally (T15) by de�nition of L and e together with

the semantis of onepts g".

46

For the \if" diretion, let T = (S

a

;S

;L; E;

e

;P) be a tableau for D w.r.t. R and K

and let Æ be a solution for the prediate onjuntion in (T13). We onstrut a model

I for D as follows:

�

I

:= S

a

A

I

:= fs 2 �

I

j A 2 L(s)g

N

I

:= fs 2 �

I

j N 2 L(s)g

R

I

:=

(

S

S v* R

S 6=R

S

I

[f(s; t) j R 2 E(s; t)g for R 2 N

R

n N

F

with not Trans(R)

f(s; t) j R 2 E(s; t)g

+

for R 2 N

R

n N

F

with Trans(R)

g

I

(s) :=

�

Æ(x) if

e

(s; g) = x

unde�ned if

e

(s; g) is unde�ned

for g 2 N

F

:

Due to (T11), the interpretation of nominals is a singleton. Moreover, the interpretation

of roles is well-de�ned sine role boxes are ayli. The following laim is entral for

proving that I is indeed a model for C, R, and K:

Claim: For eah D 2 l(D;R;K), D 2 L(s) implies s 2 D

I

.

Proof: We proeed by indution on the struture of D. For onept names A and

nominals N , the laim follows by de�nition of A

I

and N

I

. For the negation of onept

names A and nominals N (note that D is in NNF), we may use the de�nition of A

I

and

N

I

together with (T1). ConeptsD of the form C

1

uC

2

and C

1

tC

2

an be treated using

(T2) and (T3) together with the indution hypothesis. For existential, universal, and

number restritions, the proof is analogous to the one for SHIQ in [33℄. For onepts of

the form D = 9g

1

; : : : g

n

:P 2 L(s), s 2 D

I

is an immediate onsequene of (T12), the

de�nition of g

I

i

, and the fat that (x

1

; : : : ; x

n

) 2 P(P) implies (Æ(x

1

); : : : ; Æ(x

n

)) 2 P

D

by (T13). Finally, for onepts D = g", s 2 D

I

is an immediate onsequene of the

de�nition of g

I

together with (T15). This �nishes the proof of the laim.

By de�nition of tableaux, there exists an s

0

2 S

a

suh that C 2 L(s

0

). By the laim,

s

0

2 C

I

and thus I is a model of C.

Next, we show that I is a model of R. By de�nition of R

I

, it is obvious that

Trans(R) 2 R implies that R

I

is a transitive relation. Now let S v R 2 R. If

Trans(R) =2 R, then we have S

I

� R

I

by de�nition of R

I

. Now let Trans(R) 2 R and

(s; t) 2 S

I

. If S 2 E(s; t), then (T4) implies R 2 E(s; t), and thus (s; t) 2 E

I

. Other-

wise, there is an S

0

v* S with Trans(S

0

) 2 R and (s; t) 2 f(u; v) j S

0

2 E(u; v)g

+

. Now

(T4) together with S

0

v* R implies that f(u; v) j S

0

2 E(u; v)g � f(u; v) j R 2 E(u; v)g,

and thus Trans(R) 2 R implies that (s; t) 2 R

I

.

It remains to show that I is a model of K. To this end, let (g

1

; : : : ; g

n

keyfor D) 2 K

and s; t 2 D

I

suh that g

I

i

(s) = g

I

i

(t) for 1 � i � n. Sine the prediate onjuntion

in (T13) ontains expliit inequalities for all distint onrete individuals, this im-

plies that

e

(s; g

i

) =

e

(t; g

i

) for 1 � i � n. (T10) implies fD; _:Dg \ L(s) 6= ; and

fD; _:Dg \ L(t) 6= ;. If _:D 2 L(s), then the laim yields s 2 (_:D)

I

ontraditing

s 2 D

I

. Thus we obtain D 2 L(s), and, in a similar way, D 2 L(t). Finally, (T14)

implies that s = t, and thus I satis�es K. ❏

47

4.2.3 A Tableau Algorithm for SHOQK(D)

Lemma 44 shows that, in order to deide satis�ability of SHOQK(D)-onepts w.r.t.

role and key boxes, we may use a (tableau) algorithm that tries to onstrut a tableau

for the input. In the following, we will desribe suh an algorithm in detail. As in the

previous setion, the algorithm works on ompletion systems. However, in the ase of

SHOQK(D), the ore omponent of ompletion systems is a ompletion forest rather

than a ompletion tree. The reason for this is that some ompletion rules remove nodes

from the ompletion system and in this way an disonnet one tree into two subtrees.

De�nition 45 (Completion System). Let D be a SHOQK(D)-onept in NNF, R a

role box, and K a path-free key box in NNF. For eah onept (> n R C) 2 l(D;R;K)

and 1 � i � n, we reserve a onept name A

nRC

i

not appearing in l(D;R;K) and de�ne

an extended losure

l

+

(D;R;K) := l(D;R;K) [fA

nR

1

; : : : ; A

nR

n

j (> n R C) 2 l(D;R;K)g;

Let O

a

and O

be disjoint and ountably in�nite sets of abstrat and onrete nodes. A

ompletion forest for D, R, and K is a struture F = (V

a

; V

; E;L) suh that

� V

a

� O

a

, V

� O

,

� there is a node s

0

2 V

a

suh that D 2 L(s

0

),

� L : S

a

! 2

l

+

(D;R;K)

maps eah abstrat node to a subset of l

+

(D;R;K),

� eah edge (a; b) 2 E with a; b 2 V

a

is labeled with a non-empty set of role names

L(a; b) ourring in D, R, or K, and

� eah edge (a; x) 2 E with a 2 V

a

and x 2 V

is labeled with a onrete feature

L(a; x) ourring in D, R, or K.

A ompletion system for D, R, and K is a struture S = (F;P;�

;�) suh that

� F = (V

a

; V

; E;L) is a ompletion forest for D, R, and K,

� P maps eah n-ary onrete prediate ourring in l(D;R;K) to a set of n-tuples

in V

,

� �

is an equivalene relation on V

, and

� � is a linear ordering on V

a

.

A node t 2 V

a

is alled an R-suessor of a node s 2 V

a

if, for some R

0

with R

0

v* R, we

have R

0

2 L(s; t). A node x 2 V

is alled a g-suessor of a node s 2 V

a

if L(s; x) = g.

Finally, we write s 6

:

= t if s and t are R-suessors of the same node and there is some

A

nRC

i

2 L(s) and A

nRC

j

2 L(t) with i 6= j. �

48

Some remarks are in order here. Firstly, in ontrast to the ALCOK(D) ase, the relation

� is no longer required to respet the level of a node. This is due to the fat that (a)

we have to enfore termination arti�ially anyway, and this property of � is not used to

prove termination, and (b) the level of a node might hange anyway sine a node might

beome a root node beause some ompletion rules will remove edges.

Seondly, the relation �

will be returned by the onrete domain solver, and is used

to ompute a relation �

a

whih is then used by the tableau algorithm. However, we do

not need to ompute the relation �

from �

a

sine, in ontrast to the ALCOK(D) ase,

all onepts and key boxes are assumed to be path-free.

Thirdly, the new onept names A

nRC

i

are introdued to ensure that suessors of a

node x introdued for some (> n R C) 2 L(x) will not be merged later|neither by the

ompletion rules, nor when we onstrut a tableau. Intuitively, we onstrut a �nite,

yli tableau for a omplete and lash-free ompletion system, and we re-use nodes:

sometimes, instead of having an edge to an R-suessor y of x, we will have an edge to

\a node z similar to y". Now, if a node z ould be \similar" to two R-suessor y

1

, y

2

of

x, we might not have enough R-suessors of x to satisfy a restrition (> n R C) 2 L(x).

Sine SHOQK(D) provides for transitive roles, we need some yle-detetion meha-

nism in order to guarantee termination of our algorithm: roughly spoken, if we enounter

a node whih is \similar" to an already existing one, then this node does not need to be

further explored. Speaking in terms of [33, 10℄, we employ a mehanism alled subset

bloking.

De�nition 46 (Bloked). Let � be the reexive losure of �. A node t 2 V

a

is bloked

by a node s 2 V

a

if L(t) � L(s), and s � s

0

, for all s

0

with L(t) � L(s

0

). �

Note that, unlike to what is done, e.g., in [33℄, the bloking node is not neessarily an

anestor of the bloked node, but an be anywhere in the forest. This modi�ation is

used to design a NExpTime algorithm. Moreover, bloked nodes may have unbloked

suessors.

To deide the satis�ability of an ALCOK(D)-onept D w.r.t. a role box R and a

path-free key box K (where D and K are in NNF), the tableau algorithm is started with

the initial ompletion system

S

D

= (F

D

;P

;

; ;; ;); where

F

D

= (fs

0

g; ;; ;; fs

0

7! fDgg) and

P

;

maps eah P 2 �

D

ourring in D and K to ;:

Then the algorithm repeatedly applies ompletion rules. Before the atual rules are

given, we introdue some new notions: we use S

F

(s; C) to denote the set

ft 2 S

a

j t is an S-suessor of s in F and C 2 L(t)g:

For s; t 2 S

a

, we write s �

a

t if one of the following onditions is satis�ed:

� N 2 L(s) \ L(t) for some nominal N or

� (g

1

: : : ; g

n

keyfor C) 2 K, C 2 L(s)\L(t), there are x

i

; y

i

suh that g

i

2 E(s; x

i

)\

E(t; y

i

) and x

i

�

y

i

for 1 � i � n.

49

Intuitively, two abstrat nodes related via the �

a

relation desribe the same individual

in a tableau and should thus have the same label. Note that �

a

might hange after

eah rule appliation. However, as mentioned above, we do not use the �

a

relation to

ompute a relation �

. Intuitively, we do not need �

sine, if s �

a

t, then we only

\keep" the one smaller w.r.t. � and hene do not are if both s and t have a g-suessor

for a onrete feature g.

We are now ready to formulate the ompletion rules, whih are given in Figure 11.

Some abbreviations are used in the formulation of the R6 and R9 rules (written in

italis), whih have the following meaning:

� To remove an abstrat node s and all its inoming and outgoing edges, remove s

from V

a

and eah (s; t) and (t; s) from E for all t 2 V

a

[V

.

� Adding a g-suessor of an abstrat node s means doing nothing if there exists a

g-suessor x 2 V

of s and, otherwise, adding E(s; x) = g for some x 2 V

that

does not yet our in the ompletion forest.

� To update the relation �

, the onrete domain solver is asked to deide the sat-

is�ability of the D-onjuntion

^

P used inD;K

(x

1

;:::;x

n

)2P(P)

P (x

1

; : : : ; x

n

) ^

^

x�

y

x = y

and returns, in ase that this onjuntion is satis�able, an \updated" onrete

equivalene �

as de�ned in De�nition 29.

Some explanation of the rules is in order. The rules Rt, R6, R9, and Rh are non-

deterministi, i.e., their appliation has more than one possible outome. For the R9

rule, this is true due to the update operation performed on �

using the onrete domain

reasoner: as disussed at the end of Setion 4.1, omputing a onrete equivalene for

a given D-onjuntion may result in a high degree of non-determinism. Please note

that, in ontrast to ALCOK(D), we now only need to all the onrete domain in one

rule|and not after eah rule appliation.

Next, the R�

a

rule simply takes are that two similar nodes s �

a

b have the same

label, i.e., if s � t, then s will possibly blok t (if t is not bloked by other nodes), and

thus L(t) is added to L(s).

The R6 rule removes a surplus R-suessor t of a node s with (6 n R C) 2 L(s).

Sine the subtree below s is not removed, t's suessor are new, additional root nodes.

This behavior is the reason why we work on a ompletion forest. Moreover, no other

rule removes nodes or edges and would thus yield \new" root nodes.

As in the previous setion, the tableau algorithm stops applying rules if it �nds an

obvious ontradition (a \lash") or no more ompletion rules are appliable.

De�nition 47 (Clash). Let S = (F;P;�

;�) be a ompletion system for D, R, and

K and F = (V

a

; V

; E;L). Then S is said to ontain a lash if one of the following

onditions applies:

50

Ru if C

1

u C

2

2 L(s), s is not bloked, and fC

1

; C

2

g 6� L(s),

then L(s) := L(s) [fC

1

; C

2

g

Rt if C

1

t C

2

2 L(s), s is not bloked, and fC

1

; C

2

g \ L(s) = ;,

then L(s) := L(s) [fCg for some C 2 fC

1

; C

2

g

R9 if 9R:C 2 L(s), s is not bloked, and s has no R-suessor t with C 2 L(t)

then reate a new node t suh that t

0

� t for all t

0

2 S

a

and set E(s; t) := fRg and L(t) := fCg

R> if (> n S C) 2 L(s), s is not bloked, and there are no n S-suessors

t

1

; : : : ; t

n

of s with C 2 L(t

i

) and t

i

6

:

= t

j

for 1 � i < j � n,

then reate n new nodes t

1

; : : : ; t

n

s.t. t

0

� t

i

for 1 � i � n and all t

0

2 S

a

,

and set E(s; t

i

) := fSg and L(t

i

) := fC;A

nSC

i

g for 1 � i � n

R6 if (6 n S C) 2 L(s), s is not bloked, s has n+ 1 S-suessors t

0

; : : : ; t

n

with C 2 L(t

i

) for 0 � i � n,

then hoose i; j suh that t

i

� t

j

, set L(t

i

) := L(t

i

) [L(t

j

)

and remove t

j

and all its inoming and outgoing edges

R9 if 9g

1

; : : : ; g

n

:P 2 L(s), s is not bloked, and

there are no g

i

-suessors x

i

with (x

1

; : : : ; x

n

) 2 P(P)

then add a g

i

-suessor of s for eah 1 � i � n,

for y

i

the g

i

-suessor of s, add (y

1

; : : : ; y

n

) to P(P), and

update �

R8 if 8R:C 2 L(s), s is not bloked, and

there is an R-suessor t of s with C =2 L(t),

then L(t) := L(t) [fCg

R8

+

if 8S:C 2 L(s), s is not bloked, there is some R with

Trans(R) and R v* S, and an R-suessor t of s with 8R:C =2 L(t),

then L(t) := L(t) [f8R:Cg

Rh if s is an S-suessor of s

0

and (6 n S C) 2 L(s

0

) or

s has g

i

-suessors x

i

for all 1 � i � n and (g

1

; : : : g

n

keyfor C) 2 K and

s is not bloked and fC; _:Cg \ L(s) = ;,

then L(s) := L(s) [fEg for some E 2 fC; _:Cg

R�

a

if s �

a

t, L(t) 6� L(s), s � t, and s is not bloked,

then set L(s) := L(s) [L(t)

Figure 11: The ompletion rules for SHOQK(D).

(C1) for some onept name A 2 N

C

and some node s 2 V

a

, fA;:Ag � L(s);

(C2) the D-onjuntion

^

P used inD;K

(x

1

;:::;x

n

)2P(P)

P (x

1

; : : : ; x

n

) ^

^

x�

y

x = y

51

is not satis�able;

(C3) s 6

:

= s for some s 2 V

a

;

(C4) for some s 2 V

a

and g 2 N

F

, we have g" 2 L(s) and s has a g-suessor.

A ompletion system not ontaining a lash is alled lash-free. The ompletion system

is omplete if it ontains a lash or if none of the ompletion rules is appliable. �

Due to the simpliity of the algorithm, we refrain from desribing it in pseudo-ode

notation: the algorithm starts with the initial ompletion system and then repeatedly

applies the ompletion rules. If a lash is deteted, it returns unsatis�able. If a omplete

and lash-free ompletion system is found, then the algorithm returns satis�able. Note

that, sine some of the ompletion rules are non-deterministi, the algorithm is also

non-deterministi.

We are now ready for proving termination, soundness, and ompleteness of the

tableau algorithm, starting with termination. In the following, we use jD;R;Kj to

denote j l

+

(D;R;K)j. Reall that this number is polynomial in the size of D, R, K.

Lemma 48 (Termination). When started with a SHOQK(D) onept D in NNF, a

role box R, and a path-free key box K in NNF, the tableau algorithm terminates.

Proof. Assume that there are D, R, and K suh that the tableau algorithm does

not terminate. This means that there is an in�nite sequene S

0

; S

1

; : : : of ompletion

systems suh that (a) S

0

is the initial ompletion system S

D

and (b) S

i+1

is the result

of applying a ompletion rule to S

i

. This is only possible if the R9 or the R> rules

are applied in�nitely often: it is easily seen that the rules Ru, Rt, R6, R9, R8, R8

+

,

Rh, and R�

a

an only be applied �nitely often to ompletion systems whose set of

abstrat nodes V

a

does not inrease sine they either add onepts into node labels

(whose size is bound), they add onrete nodes (whose number is bound linearly by the

number of abstrat nodes), or they remove abstrat nodes from the tree. Hene there is

a sub-sequene S

i

1

; S

i

2

; : : : suh that S

i

j

is the result of applying the R9 or the R> rule

to S

i

j

�1

. Let s

i

`

be the abstrat node to whih the R9 or the R> rule was applied in

S

i

`

�1

. Now, sine s

`

� s

k

implies that s

`

was not generated after s

k

and the number of

suessor nodes of a node is bound, we �nd a further sub-sequene S

j

1

; S

j

2

; : : : satisfying

s

j

k

� s

j

k+1

.

Let L

j

be the labeling funtion in S

j

. Sine eah abstrat node is labeled with a subset

L

j

of l

+

(D;R;K), there are nodes s

j

k

� s

j

`

with k � ` and L

j

k

(s

j

k

) = L

j

`

(s

j

`

). Now

node labels an only inrease and, if a node t is removed, its label is onjoined to the

label of a node

^

t with

^

t � t. Thus there is a node t in the ompletion system S

j

`

with

t � s

j

`

and L

j

`

(s

j

`

) � L

j

`

(t). By de�nition, s

j

`

is thus bloked in S

j

`

, ontraditing the

assumption that the R9 or the R> rule is applied to s

j

`

in S

j

`

. ❏

Lemma 49 (Soundness). If the expansion rules an be applied to a SHOQK(D)

onept D in NNF, a role box R, and a path-free key box K suh that they yield a

omplete and lash-free ompletion forest, then D has a tableau w.r.t. R and K.

52

Proof. Let T = ((V

a

; V

; E;L);P;�

;�) be a omplete and lash-free ompletion

system. Clash-freeness implies the existene of a solution Æ for the onrete prediates

in T satisfying Æ(x) = Æ(y) i� x �

y aording to De�nition 29. From T and Æ, we

de�ne a �nite tableau T = (S

a

;S

;

^

E;

^

L;

^

P) as follows:

S

a

:= fs 2 V

a

j s ours in T and is not blokedg

S

:= fÆ(x) j (s; x) 2 E(g) for some s 2 S

a

and some gg

^

L(s) := L(s) \ l(D;R;K)

^

E(s; t) := fS j t is an S-suessor of s or t bloks an S-suessor t

0

of sg

e

(s; g) :=

�

Æ(x) if x is a g-suessor of s

unde�ned if x has no g-suessor

^

P := the restrition of P to S

:

It remains to show that T satis�es (T1){(T14), whih is basially a onsequene of T

being lash-free and omplete.

� (T1) is satis�ed sine T does not ontain a lash (C1).

� (T2) is satis�ed sine the Ru rule annot be applied, and thus C

1

u C

2

2

^

L(s)

implies C

1

; C

2

2

^

L(s).

� (T3) is satis�ed sine the Rt rule annot be applied, and thus C

1

t C

2

2

^

L(s)

implies fC

1

; C

2

g \

^

L(s) 6= ;.

� For (T4), onsider s; t 2 S

a

with R 2

^

E(s; t) and R v* S. Then R 2

^

E(s; t) implies

that t is or bloks an R-suessor of s. By de�nition of \suessor", t is or bloks

an S-suessor of s, and thus S 2

^

E(s; t).

� For (T5), let 8R:C 2

^

L(s) and R 2

^

E(s; t). If t is an R-suessor of s, then s not

being bloked implies C 2 L(t) sine the R8 rule annot be applied. If t bloks an

R-suessor t

0

of s, then s not being bloked and the fat that the R8 rule annot

be applied yields C 2 L(t

0

), and the bloking ondition implies C 2 L(t).

In both ases, we thus have C 2

^

L(t).

� (T6) and (T7) are satis�ed for the same reasons as (T5) with R8 replaed with

R9 and R8

+

.

� For (T8), onsider s with (> n R C) 2

^

L(s). Hene (> n R C) 2 L(s) and

ompleteness of T implies the existene of R-suessors t

1

; : : : ; t

n

of s with C 2

L(t

i

) and t

i

6

:

= t

j

for all i 6= j. The latter implies, for eah i 6= j, the existene of

A

nRC

k

i

2 L(t

i

) and A

nRC

k

j

2 L(t

j

) with k

i

6= k

j

. For (T8) to be satis�ed, it remains

to verify that

{ no t

i

an blok a t

j

: if this was the ase, the bloking ondition would imply

that fA

nRC

k

i

; A

nRC

k

j

g � L(t

i

).

{ no t an blok both t

i

and t

j

with i 6= j: similarly, this implies that

fA

nRC

k

i

; A

nRC

k

j

g � L(t).

53

In eah ase, we would have a lash (C3), in ontradition to T being lash-free.

� For (T9), onsider s with (6 n R C) 2

^

L(s). Hene (6 n R C) 2 L(s) and, sine

the R6 rule annot be applied, there are at most n R-suessors t

i

of s. Sine

eah t

i

is either not bloked or bloked by exatly one other node, there are at

most n u

i

2 S

a

with R 2

^

E(s; u

i

) and C 2

^

L(u

i

).

� For (T10), let (6 n R C) 2

^

L(s) and R 2

^

E(s; t). Hene (6 n R C) 2 L(s) and

t either is or bloks an R-suessor of s. In the �rst ase, non-appliability of the

Rh rule implies that fC; _:Cg\L(t) 6= ;. In the seond ase, fC; _:Cg\L(t

0

) 6= ;

for t

0

the R-suessor of s bloked by t, and thus the bloking ondition yields

fC; _:Cg \ L(t) 6= ;. In both ases, this implies fC; _:Cg \

^

L(t) 6= ;.

Next, onsider (g

1

; : : : ; g

n

keyfor C) 2 K and s suh that e(s; g

i

) is de�ned for

eah i. Hene s has a g

i

-suessor for eah i, and thus s not being bloked and

the non-appliability of the Rh imply that fC; _:Cg \

^

L(t) 6= ;.

� For (T11), onsider N 2

^

L(s) \

^

L(t). By de�nition, N 2 L(s) \ L(t) and thus

s �

a

t. Moreover, totality of � implies that we an assume without loss of

generality that s � t or s = t. Thus non-appliability of the R�

a

rule implies that

L(t) � L(s), and thus t not being bloked implies s = t.

� (T12) is satis�ed sine the rule R9 annot be applied.

� For (T13), lash-freeness implies the satis�ability of

^

P used in D;K

^

(x

1

;:::;x

n

)2P(P)

P (x

1

; : : : ; x

n

): (*)

By hoie of Æ, Æ(x) = Æ(y) i� x �

y, and thus (T13) is satis�ed.

� For (T14), let (g

1

; : : : ; g

n

keyfor C) 2 K, C 2

^

L(s) \

^

L(t), and e(s; g

i

) = e(t; g

i

),

for all 1 � i � n. Thus C 2 L(s) \ L(t) and, by hoie of e and Æ, we have

x

i

�

y

i

for g

i

2 E(s; x

i

) \ E(t; y

i

). Hene s �

a

t. Without loss of generality, we

assume that s � t or s = t. Thus non-appliability of the R�

a

rule implies that

L(t) � L(s), and thus t not being bloked implies s = t.

� (T15) is satis�ed by de�nition of T and sine T does not ontain a lash (C4).

❏

Lemma 50 (Completeness). If a SHOQK(D)-onept D in NNF has a tableau w.r.t.

R and K, then the expansion rules an be applied to D, R, and K suh that they yield

a omplete and lash-free ompletion forest.

54

Proof. Given a tableau T = (S

a

;S

;

^

L;

^

E; e;

^

P) for D w.r.t. R and K, we an steer

the non-deterministi rules Rt, Rh, and R�

a

in suh a way that eah rule appliation

preserves lash-freeness. This together with termination from Lemma 48 �nishes the

proof.

Indutively with the generation of new nodes, we de�ne a mapping � from nodes of

the ompletion tree to individuals in the tableau and onrete values in suh a way that

� L(s) \ l(D;R;K) �

^

L(�(s)) for eah s 2 S

a

,

� if t is an R-suessor of s, then R 2

^

E(�(s); �(t)),

� if x is a g-suessor of s, then

e

(�(x); g) = �(x), and

� if s 6

:

= t, then �(s) 6= �(t).

A mapping satisfying these three onditions is alled orret in the following. Due to

(T1) and the �rst property, we do not enounter a lash (C1). The �rst and third

property together with (T12) and (T13) ensure that a lash (C2) does not our. A

lash (C3) annot our due to the last property. The �rst and the third property

together with (T15) ensure that a lash (C4) does not our.

The total mapping � is indutively de�ned as follows: let Æ be a solution for the

equation in (T13). Choose a node ŝ

0

with D 2

^

L(ŝ

0

), and set �(s

0

) := ŝ

0

for s

0

the

root node of the ompletion tree. Obviously, � is orret. We will now show that eah

ompletion rule an be applied in suh a way that � either is still orret or that � an

be extended to a orret mapping.

� An appliation of the rule Ru preserves orretness of � due to (T2).

� Due to (T3), the rule Rt an be applied suh that orretness is preserved.

� If the rule R9 adds a new node t for 9R:C 2 L(s), then orretness implies 9R:C 2

^

L(�(s)), and thus (T6) implies the existene of some

^

t 2 S

a

with R 2 E(�(s);

^

t)

and C 2

^

L(

^

t). Thus extending � with �(t) :=

^

t obviously yields a orret mapping.

� If the rule R> adds n nodes t

i

for (> n R C) 2 L(s), then orretness implies

(> n R C) 2

^

L(�(s)), and thus (T8) implies the existene of

^

t

1

; : : : ;

^

t

n

2

^

S

a

with

^

t

i

6=

^

t

j

for i 6= j, R 2 E(�(s);

^

t

i

), and C 2

^

L(

^

t

i

). Thus extending � with �(t

i

) :=

^

t

i

obviously yields a orret mapping.

� Assume that the R6 rule is appliable to a node s with (6 n R C) 2 L(s)

and more than n R-suessors t

i

with C 2 L(t

i

). Then orretness implies that

(6 n R C) 2

^

L(�(s)), R 2

^

E(�(s); �(t

i

)), and C 2

^

L(t

i

). Thus, by (T9), there

are i 6= j with �(t

i

) = �(t

j

). Again, orretness implies that not t

i

6

:

= t

j

and,

without loss of generality, we an assume that t

i

� t

j

. Hene applying the rule

and thereby merging L(t

j

) into L(t

i

) preserves orretness.

� For the rule R9, � an be extended in a similar way: if a new g

i

-suessor x

i

of

s is added, then extending � with �(x

i

) :=

ê

(�(s); g

i

) yields a orret �.

55

� For the R8 rule, � does not need to be extended, and (T5), (T4), and the

de�nition of R-suessors imply that orretness is preserved.

� The R8

+

rule is similar, with the only di�erene that (T7) takes the plae of

(T5).

� Due to (T10), the rule Rh an be applied without violating orretness.

� For R�

a

, we onsider two reasons for R�

a

to be appliable:

{ N 2 L(s) \ L(t). Then orretness of � and (T11) imply that �(s) = �(t).

{ (g

1

; : : : ; g

n

keyfor C) 2 K, C 2 L(s) \ L(t), and g

i

2 E(s; x

i

) \ E(t; y

i

) and

x

i

�

y

i

for 1 � i � n. Then orretness implies that

ê

(�(s); g

i

) =

ê

(�(t); g

i

),

and thus (T14) together with the �rst property of orretness imply that

�(s) = �(t).

In both ases, applying R�

a

to s and t preserves orretness.

❏

As an immediate onsequene of Lemmas 44, 48, 49, and 50, the tableau algorithm

always terminates and answers \D is satis�able w.r.t. R and K" if and only if the input

onept D is satis�able w.r.t. the input role box R and the input key box K. Sine

onept satis�ability w.r.t. TBoxes an be redued to onept satis�ability without

TBoxes, we obtain the following result:

Theorem 51. The tableau algorithm deides satis�ability of SHOQK(D) onepts

w.r.t. TBoxes, role boxes, and path-free key boxes.

Sine onept subsumption an be redued to onept (un)satis�ability, the algorithm

an also be used to deide subsumption of SHOQK(D)-onepts w.r.t. TBoxes, role

boxes, and path-free key boxes.

It is not hard to see that the proof of Lemma 50 together with Lemmas 44 and 48

yield a bounded model property for SHOQK(D): if a SHOQK(D)-onept D is satis�-

able w.r.t. a role box R and a path-free key box K, Lemma 50 implies that the tableau

algorithm onstruts a omplete and lash-free ompletion forest for D, R, and K. By

the de�nition of bloking, the number of abstrat nodes in a ompletion forest that are

not bloked is bounded by 2

m

, where m = # l

+

(D;R;K) is polynomial in the size of

C, R, and K: if s 6= t 2 V

a

are abstrat nodes in a ompletion forest and L(s) = L(t),

then either s bloks t, t bloks s, or they are both bloked by another node u. Moreover,

it is easily seen that the number of onrete suessors per abstrat node is bounded

by the number of onrete features in C, R, and K. Now, in the proof of Lemma 50,

the abstrat nodes in a tableau onstruted from a omplete and lash-free ompletion

forest oinide with the nodes that are not bloked in the ompletion forest. Finally, in

the proof of Lemma 44, the interpretation domain of a model onstruted from a tableau

oinides with the abstrat nodes in the tableau. Summing up, a SHOQK(D)-onept

that is satis�able w.r.t. R and K has a model of size j�

I

j � 2

m

for m = # l

+

(D;R;K).

Thus \guessing" an interpretation with at most 2

m

nodes and then heking whether

it is a model of D, R, and K is an alternative algorithm for deiding satis�ability of

56

SHOQ(D)-onepts w.r.t. role boxes and key boxes. Sine this algorithm an learly be

implemented in NExpTime, Theorem 19 implies the following tight omplexity bound.

Theorem 52. Satis�ability of SHOQK(D) onepts w.r.t. TBoxes, role boxes, and

path-free key boxes is NExpTime-omplete.

By the standard redution of onept subsumption to onept (un)satis�ability and

vie versa, we obtain o-NExpTime-ompleteness for SHOQK(D)-onept subsump-

tion w.r.t. TBoxes, role boxes, and path-free key boxes.

5 Conlusion

In this paper, we have identi�ed key onstraints as an interesting extension of desription

logis with onrete domains. Starting from this observation, we introdued a number

of natural desription logis and provided a omprehensive analysis of the deidability

and omplexity of reasoning. The main observation of our investigations is that key

boxes may have dramati onsequenes on the omplexity of reasoning: for example, the

PSpae-omplete DL ALC(D) beomes NExpTime-omplete if extended with Boolean

key boxes and undeidable if extended with general key boxes. We present various

properties of onrete domains and key boxes whih imply deidability (NExpTime-

ompleteness) of ALC(D) and SHOQ(D) w.r.t. key boxes satisfying this property.

We seleted ALC(D) and SHOQ(D) as the basis for our analysis sine, in our

opinion, these are the most fundamental desription logis with onrete domains. Going

one step further, it would be interesting to ombine key boxes with other extensions

of onrete domains, suh as the ones presented in [38℄ and [39℄. To name only one

possibility, the extension of both ALCOK(D) and SHOQ(D) with inverse roles seems

to be a natural idea. Note that inverse roles interat with several of the available means

of expressivity: while ALC with inverse roles is PSpae omplete [32℄, ALCO with

inverse roles is ExpTime-omplete [1℄ and ALC(D) with inverse roles even NExpTime-

omplete [39℄.

Other options for future researh are more losely related to the material presented

in this paper. For example, is SHOQK(D)-onept satis�ability still deidable if we

drop the requirement of key boxes to be path-free? Moreover, we do not know the time

omplexity of the presented tableau algorithm for SHOQK(D)-onept satis�ability.

If it runs in (non-deterministi) exponential time, it would diretly yield Theorem 52

rather than via a bounded model property.

Referenes

[1℄ C. Arees, P. Blakburn, and M. Marx. A road-map on omplexity for hybrid logis.

In J. Flum and M. Rodr��guez-Artalejo, editors, Computer Siene Logi, number

1683 in Leture Notes in Computer Siene, pages 307{321. Springer-Verlag, 1999.

[2℄ F. Baader. Logi-based knowledge representation. In M. Wooldridge and M. Veloso,

editors, Arti�ial Intelligene Today, Reent Trends and Developments, number

1600 in Leture Notes in Computer Siene, pages 13{41. Springer-Verlag, 1999.

57

[3℄ F. Baader and P. Hanshke. A sheme for integrating onrete domains into on-

ept languages. In Proeedings of the Twelfth International Joint Conferene on

Arti�ial Intelligene (IJCAI-91), pages 452{457, Sydney, Australia, 1991.

[4℄ F. Baader and P. Hanshke. A sheme for integrating onrete domains into onept

languages. DFKI Researh Report RR-91-10, German Researh Center for Arti�ial

Intelligene (DFKI), 1991.

[5℄ F. Baader and P. Hanshke. Extensions of onept languages for a mehanial

engineering appliation. In Proeedings of the 16th German AI-Conferene (GWAI-

92), volume 671 of Leture Notes in Computer Siene, pages 132{143. Springer-

Verlag, 1992.

[6℄ F. Baader, I. Horroks, and U. Sattler. Desription logis for the semanti web. KI

{ K�unstlihe Intelligenz, 3, 2002. To appear.

[7℄ F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of desription logis and

abstrat desription systems. Journal of Arti�ial Intelligene Researh (JAIR),

16:1{58, 2002.

[8℄ F. Baader, D. L. MGuiness, D. Nardi, and P. Patel-Shneider. The Desription

Logi Handbook: Theory, implementation and appliations. Cambridge University

Press, 2002. To appear.

[9℄ F. Baader and U. Sattler. Desription logis with onrete domains and aggrega-

tion. In H. Prade, editor, Proeedings of the Thirteenth European Conferene on

Arti�ial Intelligene (ECAI'98), pages 336{340. John Wiley & Sons, 1998.

[10℄ F. Baader and U. Sattler. Tableau algorithms for desription logis. In R. Dykho�,

editor, Proeedings of the International Conferene on Automated Reasoning with

Tableaux and Related Methods (Tableaux 2000), volume 1847 of Leture Notes in

Arti�ial Intelligene, pages 1{18. Springer-Verlag, 2000.

[11℄ R. Berger. The undeidability of the dominoe problem. Memoirs of the Amerian

Mathematial Soiety, 66, 1966.

[12℄ T. Berners-Lee, J. Hendler, and O. Lassila. The semanti web. Sienti� Amerian,

284(5):34{43, 2001.

[13℄ E. B�orger, E. Gr�adel, and Y. Gurevih. The Classial Deision Problem. Perspe-

tives in Mathematial Logi. Springer-Verlag, 1997.

[14℄ A. Borgida and P. F. Patel-Shneider. A semantis and omplete algorithm for sub-

sumption in the lassi desription logi. Journal of Arti�ial Intelligene Researh,

pages 277{308, 1994.

[15℄ A. Borgida and G. E. Weddell. Adding uniqueness onstraints to desription log-

is (preliminary report). In F. Bry, R. Ramakrishnan, and K. Ramamohanarao,

58

editors, Proeedings of the 5th International Conferene on Dedutive and Objet-

Oriented Databases (DOOD97), volume 1341 of LNCS, pages 85{102. Springer,

1997.

[16℄ D. Calvanese, G. De Giaomo, and M. Lenzerini. On the deidability of query

ontainment under onstraints. In Proeedings of the 17th ACM SIGACT SIGMOD

SIGART Symposium on Priniples of Database Systems (PODS'98), pages 149{

158, 1998.

[17℄ D. Calvanese, G. De Giaomo, and M. Lenzerini. Keys for free in desription

logis. In F. Baader and U. Sattler, editors, Proeedings of the 2000 International

Workshop in Desription Logis (DL2000), number 33 in CEUR-WS (http://eur-

ws.org/), pages 79{88, 2000.

[18℄ D. Calvanese, M. Lenzerini, and D. Nardi. Desription logis for oneptual data

modeling. In J. Chomiki and G. Saake, editors, Logis for Databases and Infor-

mation Systems, pages 229{263. Kluwer Aademi Publisher, 1998.

[19℄ M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horroks, D. L. MGuinness,

P. F. Patel-Shneider, and L. A. Stein. Web ontology language (OWL) referene

version 1.0. W3C Working Draft, 2002.

[20℄ D. Fensel, F. van Harmelen, I. Horroks, D. MGuinness, and P. F. Patel-Shneider.

OIL: An ontology infrastruture for the semanti web. IEEE Intelligent Systems,

16(2):38{45, 2001.

[21℄ R. L. Graham, D. E. Knuth, and O. Patashnik. Conrete Mathematis. Addison

Wesley Publ. Co., Reading, Massahussetts, 1990.

[22℄ V. Haarslev, C. Lutz, and R. M�oller. Foundations of spatioterminologial reason-

ing with desription logis. In A. Cohn, L. Shubert, and S.C.Shapiro, editors,

Proeedings of the Sixth International Conferene on Priniples of Knowledge Rep-

resentation and Reasoning (KR'98), pages 112{124. Morgan Kaufman, 1998.

[23℄ V. Haarslev and R. M�oller. RACER system desription. In R. Gor�e, A. Leitsh,

and T. Nipkow, editors, Proeedings of the First International Joint Conferene

on Automated Reasoning (IJCAR'01), number 2083 in Leture Notes in Arti�al

Intelligene, pages 701{705. Springer-Verlag, 2001.

[24℄ V. Haarslev, R. M�oller, and M. Wessel. The desription logi ALCNH

R

+ extended

with onrete domains: A pratially motivated approah. In R. Gor�e, A. Leitsh,

and T. Nipkow, editors, Proeedings of the First International Joint Conferene

on Automated Reasoning IJCAR'01, number 2083 in Leture Notes in Arti�al

Intelligene, pages 29{44. Springer-Verlag, 2001.

[25℄ J. Y. Halpern and Y. Moses. A guide to ompleteness and omplexity for modal

logis of knowledge and belief. Arti�ial Intelligene, 54(3):319{380, 1992.

59

[26℄ B. Hollunder and F. Baader. Qualifying number restritions in onept languages.

In Proeedings of the Seond International Conferene on Priniples of Knowledge

Representation and Reasoning (KR'91), pages 335{346, Boston, MA, USA, 1991.

[27℄ J. E. Hoproft and J. D. Ullman. Introdution to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.

[28℄ I. Horroks. Using an expressive desription logi: Fat or �tion? In Proeedings of

the Sixth International Conferene on the Priniples of Knowledge Representation

and Reasoning (KR98), pages 636{647, 1998.

[29℄ I. Horroks. Reasoning with expressive desription logis: Theory and pratie.

In A. Voronkov, editor, Proeedings of the 18th International Conferene on Auto-

mated Dedution (CADE 2002), number 2392 in Leture Notes in Arti�ial Intel-

ligene, pages 1{15. Springer, 2002.

[30℄ I. Horroks, P. F. Patel-Shneider, and F. van Harmelen. Reviewing the design of

DAML+OIL: An ontology language for the semanti web. In Proeedings of the

18th National Conferene on Arti�ial Intelligene (AAAI 2002), 2002.

[31℄ I. Horroks and U. Sattler. Ontology reasoning in the SHOQ(D) desription logi.

In B. Nebel, editor, Proeedings of the Seventeenth International Joint Conferene

on Arti�ial Intelligene (IJCAI'01), pages 199{204. Morgan-Kaufmann, 2001.

[32℄ I. Horroks, U. Sattler, and S. Tobies. Pratial reasoning for expressive desription

logis. In H. Ganzinger, D. MAllester, and A. Voronkov, editors, Proeedings of the

6th International Conferene on Logi for Programming and Automated Reasoning

(LPAR'99), number 1705 in Leture Notes in Arti�ial Intelligene, pages 161{180.

Springer-Verlag, 1999.

[33℄ I. Horroks, U. Sattler, and S. Tobies. Pratial reasoning for very expressive

desription logis. Logi Journal of the IGPL, 8(3):239{264, 2000.

[34℄ G. Kamp and H. Wahe. CTL - a desription logi with expressive onrete do-

mains. Tehnial Report LKI-M-96/01, Laboratory for Arti�ial Intelligene (LKI),

Universitity of Hamburg, Germany, 1996.

[35℄ V. L. Khizder, D. Toman, and G. E. Weddell. On deidability and omplex-

ity of desription logis with uniqueness onstraints. In J. V. den Busshe and

V. Vianu, editors, Proeedings of the 8th International Conferene on Database

Theory (ICDT2001), volume 1973 of LNCS, pages 54{67. Springer, 2001.

[36℄ D. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, 1968.

[37℄ C. Lutz. The Complexity of Reasoning with Conrete Domains. PhD thesis, LuFG

Theoretial Computer Siene, RWTH Aahen, Germany, 2002.

[38℄ C. Lutz. Desription logis with onrete domains|a survey. In Advanes in Modal

Logis (AiML) 2002, 2002.

60

[39℄ C. Lutz. NExpTime-omplete desription logis with onrete domains. ACM

Transations on Computational Logi, 2002. to appear.

[40℄ C. Lutz. PSpae reasoning with the desription logi ALCF(D). Logi Journal of

the IGPL, 10(5):535{568, 2002.

[41℄ C. Lutz. Reasoning about entity relationship diagrams with omplex attribute

dependenies. In I. Horroks and S. Tessaris, editors, Proeedings of the Interna-

tional Workshop in Desription Logis 2002 (DL2002), number 53 in CEUR-WS

(http://eur-ws.org/), pages 185{194, 2002.

[42℄ J. Z. Pan and I. Horroks. Reasoning in the SHOQ(D

n

) desription logi. In

I. Horroks and S. Tessaris, editors, Proeedings of the International Workshop in

Desription Logis 2002 (DL2002), number 53 in CEUR-WS (http://eur-ws.org/),

pages 53{62, 2002.

[43℄ E. M. Post. A variant of a reursively unsolvable problem. Bulletin of the Amerian

Mathematial Soiety, 52:264{268, 1946.

[44℄ K. D. Shild. A orrespondene theory for terminologial logis: Preliminary re-

port. In J. Mylopoulos and R. Reiter, editors, Proeedings of the Twelfth Inter-

national Joint Conferene on Arti�ial Intelligene (IJCAI-91), pages 466{471.

Morgan Kaufmann, 1991.

61

