Aachen University of Technology
Rm Research group for
Theoretical Computer Science

LTCS—Report

Reasoning about Entity Relationship Diagrams
with Complex Attribute Dependencies

Carsten Lutz
LuFG Theoretical Computer Science, RWTH Aachen, Germany
Email: lutzQinformatik.rwth-aachen.de

LTCS-Report 02-01

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

Reasoning about Entity Relationship Diagrams
with Complex Attribute Dependencies

Carsten Lutz
LuFG Theoretical Computer Science, RWTH Aachen, Germany
Email: lutz@informatik.rwth-aachen.de

1 Motivation

Entity Relationship (ER) diagrams are among the most popular formalisms for
the support of database design [7, 12, 17, 6]. Their classical use in the (usu-
ally computer aided) database design process can roughly be described as fol-
lows: after evaluating the requirements of the application, the database designer
constructs an ER schema, which represents the conceptual model of the new
database. CASE tools can be used to automatically transform the ER schema
into a relational database schema, which is then manually fine-tuned. During the
last years, the initially rather simple ER formalism has been extended by various
means of expressivity to account for new, more complex application areas such
as schema integration for data warehouses [12, 3, 13]. Designing a conceptual
model with such enriched ER diagrams is a nontrivial task: there exist complex
interactions between the various means of expressivity, which quite often result
in unnoticed inconsistencies in the ER schemas and in implicit ramifications of
the modeling that have not been intended by the designer. To address this prob-
lem, Description Logics (DLs) have been proposed and successfully used as a
tool for reasoning about ER diagrams and thereby detecting the aforementioned
anomalies [5, 6, 8].

In the classical ER formalism, elementary properties of entities such as their
size, age, or prize play only a minor role: these properties are represented by so-
called attributes, which the database designer can merely list and associate with
a type such as integer and string. However, in the actual database, there usually
exist various constraints on attribute values that have to be satisfied. For exam-
ple, if the Employee entity of a company is equipped with two attributes birth-year
and recruitment-year, then we certainly want to enforce that, for all instances of
Employee, the value of birth-year is smaller than the value of recruitment-year.
Such “attribute dependencies” for relational databases are well-known and have
been investigated in, e.g., [9, 4, 18]. However, research about this topic has

focussed on the consistency and implication problems for sets of attribute de-
pendencies. If reasoning about ER schemas (translated into an appropriate DL)
is used to infer properties of the conceptual model, it seems more appropriate
to strive for an integrated approach to reasoning with the conceptual model and
attribute dependencies. Indeed, the presence of such dependencies can have a
severe impact on, e.g., the consistency of a conceptual model. In this paper, we
propose such an integrated approach by extending ER diagrams with (various
kinds of) attribute dependencies and showing how the extended ER formalism
can be translated into Description Logics with concrete domains.

2 ER Diagrams

The basic elements of an FR schema, such as the one depicted in Figure 1, are
entities (displayed as boxes), relationships (rhombes), and attributes (circles).!
Intuitively, an entity describes a set of objects and a relationship describes an
n-ary relation between objects. Attributes represent elementary properties and
their values belong to one of several predefined basic domains such as the inte-
gers, the rationals, or the set of ASCII strings. Since an entity may participate
more than once in a relationship, ER-roles, such as employer in Figure 1, are
used to assign names to positions in relationships: the number of ER-roles of a
relationship coincides with the arity of this relationship. Cardinality constraints
are placed on ER-roles to restrict the number of times an instance of a given
entity may participate via an ER-role in a given relationship. For example, the
(1,00) constraint on the ER-role employer states that every Company appears
at least once in the employer position of the relationship Employs. The links
between Employee and Manager and between Employee and Worker are ISA links
denoting that every Manager also is an Employee and similarly for Worker. More
details on ER schemas can be found in, e.g., [5, 6].

The semantics of ER schemas is described in terms of database states. Basic
domains are represented by domain symbols D and associated sets Ap.

Definition 2.1. A database state is a tuple (Ag, -%), where Ag is a nonempty
finite set disjoint from all basic domains and -Z is a function mapping
e every entity E to a set E® C Ag,

e every attribute A to a partial function A% from Az to the union, for all
basic domains D, of Ap, and

e every relationship R to a set of relation instances over Ag, i.e., to a set of
partial functions from the set of ER-roles to A5.

ITn the literature, these are frequently referred to as entity types, relationship types, and
attribute types.

recruitment-year founding—year
Ipos-integer Ipos—integer

birth-year
/pos—intege

wage/rational wage/rational

Figure 1: An example ER schema

The relation instance r that maps ER-role U; to e;, for i € {1,...,k}, is denoted
Uy :er,..., U : eg].

To give a semantics to ER schemas, it remains to define the set of database
states that they describe.

Definition 2.2. A database state B is legal for an ER schema & if it satisfies
the following conditions:

e For each entity F, if E' has an attribute A with basic domain D, then for
each instance e € EB, AB(e) is defined and in Ap.

e For each relationship R of arity k& between entities Ey, ..., F, to which R
is connected by means of ER-roles Uy, ..., U, respectively, all instances of
R are of the form [U; : ey,...,Uy : eg], where ¢; € EF, fori € {1,... k}.

e For each ER-role U associated to relationship R and entity F, and for each
instance e of F, it holds that

cming(U) < #{r € RP | r(U) = e} < cmaxs(U),

where cming(U) (cmaxs(U)) denotes the lower (upper) cardinality con-
straint on U in S.

e For each pair of entities Fy, F, related by an ISA-link, we have EF C EB.

3 Reasoning with ER Diagrams

The Description Logic ALC QT extends the basic propositionally closed DL ALC
with qualifying number restrictions and inverse roles. As described in [6], this
logic is well-suited for reasoning about entity relationship schemas: ER schemas
can be translated into general ALCQZ TBoxes (also known as GClIs), and
ALC QT reasoning procedures can then be used to check, for a given ER schema S,
(i) whether an entity or relationship G' in S is consistent (i.e., whether there
exists a legal database state B for S such that G® # () and (ii) whether S
implies ISA links and cardinality constraints that are not explicitly represented.
Throughout this paper, when talking of “reasoning” with a DL, we mean de-
ciding the satisfiability of concepts w.r.t. general TBoxes. Observe that, since
database states are required to be finite, we are usually interested in finite model
reasoning. It is known that finite model reasoning with ALCQZ is decidable,
more precisely in 2-EXPTIME [5]. In this section, we describe the standard
way of encoding ER schemas as ALCQT TBoxes. Later, this encoding will be
modified such that attribute dependencies can be taken into account.

The TBox ¢(S) derived from an ER schema S is defined as follows: we
introduce an concept name ¢(G) for each entity symbol, relationship symbol,
and domain symbol G in S, and a role name ¢(H) for each ER role symbol and
attribute symbol H in S. The knowledge base ¢(S) then contains the following
concept equations:

1. For each entity E with attributes Aq,..., Ag, with domains Dy,..., Dy,
the equation

O(E) T Fé(A1).6(Dy) M ---113p(A).0(Dy)
M3 G(A) M- 1137 G (Ay).

2. For each relationship R of arity k& between entities E, ..., F}, to which R
is connected by means of ER-roles Uy, ..., U, respectively, the equations

o(R) T Vo(Ur).¢(Er) N ---NVP(Ur).¢(Ey)
N 3= e(U,) M---n 37 e(Uy)

o(E;) T Vo(Ui) .¢(R)M---NVo(Uk) .¢(R).
3. For each ER-role U associated to relationship R and entity FE, the equa-

tions
¢(E) C E]ZCmins(U)qs(U),
¢(E) C IFsm>sOo(U)~ if cmaxs(U) # oo.

4. For each pair of entities Fy, F5 such that there is an ISA link between FE;
and FE5, the equation F C FE.

recruitment-year founding-year
Ipos~integer /pos—integel

birth-year
/pos—intege

wage/rational wage/rational

Figure 2: The augmented ER schema

5. For each pair of domain symbols C7, Cs such that Cy # Cy, the equation
¢(C1) E =¢(Cs).

The correctness of this encoding is proved in [5]. Note that we generally view
attributes to be single-valued rather than multi-valued. In the following, we will
advocate a more sophisticated treatment of attributes and basic domains.

4 Adding Attribute Dependencies

In the ER formalism and encoding described in the previous sections, attributes
and basic domains play only a minor role. However, as we have argued in
Section 1, it is rewarding to explicitly represent attribute dependencies if ER
schemas are not only used for representing the conceptual model, but also for
reasoning about it.

We propose to extend ER schemas with three kinds of attribute dependen-

cies: entity attribute dependencies (EADs), relationship attribute dependencies
(RADs), and global attribute dependencies (GADs). Figure 2 shows an exten-
sion of the ER schema from Figure 1 that illustrates all three types of attribute
dependencies:
EAD. The dash-dotted edge between the birth-year and recruitment-year at-
tributes of the Employee entity denotes an EAD. Note that this edge is labeled
with a predicate (“<”) whose arity coincides with the number of involved at-
tributes. The EAD states that every Employee must be born before she is em-
ployed. Observe that, in EADs, all involved attributes are associated with the
same entity.

RAD. The dashed edges between the attribute recruitment-year of entity Employee,
the ER-roles employee and employer of the relationship Employs, and the attribute
founding-year of entity Company denotes a RAD. It states that companies do not
hire employees prior to their founding. In general, all ER-roles participating in
a RAD must be associated with the same relationship. However, the arity of a
RAD for a relationship R may be smaller than R’s arity.

GAD. The dash-doubledotted edge between the wage attribute of the Manager
entity and the wage attribute of the Worker entity denotes a GAD. It states
that every manager earns more than any worker. For a GAD, we make no
assumptions on whether and how the entities of the involved attributes are
related in the ER schema.

We do not pose any restrictions on the arity of attribute dependencies. Note that
(unless the involved predicate is unary), EADs are not special cases of GADs: if,
for example, we replace the dash-dotted edge in Figure 2 by a dash-doubledotted
edge, then the modified dependency states that every employee was born before
any employee (i.e., not necessarily the same) was hired.

In the following, we refine the notion “legal database” to capture the seman-
tics of attribute dependencies. We assume that every predicate P appearing in
attribute dependencies is associated with an arity n, an n-tuple of basic domains
(Dy,...,Dy,) called P’s type, and with a fixed extension £(P) C Ap, X --- X Ap_.
In the presence of attribute dependencies, we require that any legal database
instance B additionally satisfies the following conditions:

e For every EAD of arity k referring to (i) attributes A; with basic do-
mains D;, for i € {1,...,k}, of an entity E, and (ii) a predicate P
of arity k and type (Dy,...,Dy), the following holds: if e € E, then
(A5 (e),...,AB(e)) € £(P).

e For every RAD of arity k referring to (i) a relationship R of arity n
equipped with ER-roles Uy, ..., U, connecting entities E, ..., F,, respec-
tively, (ii) indexes h; with 1 < h; <n, fori € {1,...,k}, (iii) attributes A;
of the entity Ej,, with basic domains D;, for i € {1,...,k}, and (iv) a
predicate P of arity k and type (Dj,...,Dy), the following holds: if
(Ui :er,...,Upy:e,) € R, then (A¥(en,), ..., AB(en,)) € E(P).

e For every GAD of arity k referring to (i) attributes A; of entities F; with
basic domains D, for i € {1,...,k}, and (ii) a predicate P of arity k£ and
type (D1, ..., D), the following holds: if e; € E;, for i € {1,...,k}, then
(A5(e1), ..., AB(er)) € E(P).

How can attribute dependencies be captured by Description Logics? The
general idea is to extend ALCQZ with concrete domains [1, 15] and then to
modify the standard encoding accordingly. Recall that a concrete domain D
is a pair (Ap, ®p), where Ap is a set and ®p a set of predicate names. Each
predicate name P € ®p is associated with an arity n and an n-ary predicate

PP C AZ. Given a concrete domain D, we obtain the DL. ALCQZ(D) by
extending ALC Q7T with

1. an additional syntactic type called concrete features; interpretations Z map
each concrete feature g to a partial function g7 from Az to the concrete
domain Ap.

2. concept constructors Uy, ...,U,.P and YU,,...,U,.P, where P € ®p is
a predicate of arity n and the U; are paths, i.e., sequences Ry - - - Ryg, with
R; a role name or the inverse of a role name, and ¢ a concrete feature.
Given a path U = R, - -+ R;g and an interpretation Z, U? is defined as

{(de) gAIX A'D |3d1;---;dk+1:d:d1,
(d;,diy) € R for 1 <i <k, and ¢%(dpy,) = x}.

The semantics of the additional constructors is defined as follows:

(VU,,...,U,.P)t :={d € Az | For all a,...,z, with (d,z;) € UF
for 1 <i <mn, we have (z,...,7,) € PP}
@U,,...,U,.P)T = (=W, ..., Up.P)"

We now modify the standard encoding of ER schemas from Section 3 to take into
account attribute dependencies. This time, the target language is ALCQZ(D).
For a start, assume that we admit only EADs, but no RADs and GADs. Clearly,
basic domains can be viewed as concrete domains. However, we assume that all
basic domains are represented by a single concrete domain D: if Dy,...,D,, are
the basic domains, then we have Ap = Ap, U---UAp and ®p contains (among
others) a predicate T p, for each 1 <7 < m such that Tgi = Ap,. Unifying all
basic domains in a single concrete domain is vital for admitting predicates that
have a “mixed type”, i.e., predicates P with extension £(P) C Dy x --- x D,
such that D; # D; for some 1 <14,j <n.

In contrast to what was done in Section 3, we introduce a concrete fea-
ture ¢(A) for each attribute A (instead of a role name). When translating ER
schemas S to TBoxes, we replace Rule 1 from the translation in Section 3 by
the following one:

1. For each entity E with attributes Ay, ..., Ay, with domains Dy, ..., Dy,
add the equation ¢(E) C Ip(Ay).Tp, M---M3IPp(Ag). Tp,.

Moreover, we need additional concept equations to deal with EADs:

6. For every EAD of arity k referring to (i) attributes A;, for i € {1,...,k},
of an entity F, and (ii) a predicate P of arity k, add the equation ¢(E) C
(A, .., B(Ar).P.

It is rather straightforward to prove the correctness of this encoding by slightly
modifying the correctness proof of the original encoding given in [5]. But is
reasoning with ALCQZ(D) still decidable? Let us defer this question for a
moment and instead note that the described encoding uses only a restricted
variant of the concrete domain constructors, as introduced in [11]: only concrete
features are used inside these constructors, but no paths of length greater one.
We use the name ALCQZ™ (D) to denote the fragment of ALCQT(D) that
is obtained by restricting the concrete domain constructors in the described
way. The restrictedness allows us to make some claims about reasoning with
infinite models: as proved in [2], the extension of any decidable Description
Logic with the restricted concrete domain constructors is again decidable if the
employed concrete domain satisfies some minor conditions. Moreover, it seems
possible to prove an EXPTIME upper bound for infinite model reasoning with
ALCQT (D) analogous to the proof of Theorem 2.15 in [15]. But what about
finite model reasoning? It is not hard to see that, analogous to the proof of
Theorem 2.14 in [15], we can reduce reasoning with ALCQZ™ (D) to reasoning
with ALCQT (at the cost of an exponential blow-up in the concept/TBox size).
Since finite model reasoning with ALCQZ is known to be in 2-ExXPTIME [5],
we thus obtain that finite model reasoning with ALCQZ (D) is decidable in
3-EXPTIME, at least if the satisfiability of finite conjunctions of predicates from
D can be tested in 3-EXPTIME (testing the satisfiability of such conjunctions is
part of the reduction).

If RADs are admitted, we can neither offer general decidability results for
infinite model reasoning nor for finite model reasoning. Let us consider the
obvious way of encoding RADs:

7. For every RAD of arity k referring to (i) a relationship R of arity n
equipped with ER-roles Uy, ..., U, connecting entities E, ..., F,, respec-
tively, (ii) indexes h; with 1 < h; < n, for i € {1,...,k}, (iii) attributes
A; of the entity Ej., for i € {1,...,k}, and (iv) a predicate P of arity k,
add the equation ¢(R) C Vo(Up,) ¢(A1), ..., ¢(Un,) ¢(Ay).P.

In this encoding, paths of length 2 appear inside the concrete domain construc-
tors. Thus, we cannot use ALCQZ™ (D) but have to resort to ALCQZ(D).
Unfortunately, it is well-known that reasoning with ALCQZ(D) and general
TBoxes is undecidable for a large class of concrete domains [16]. Does this
mean that reasoning with RADs and GADs is not possible? Certainly not! It
just means that we have to be very careful in choosing our basic domains.

For the remainder of this section, assume that there exists only a single
basic domain: the rational numbers. Moreover, assume that only the follow-
ing predicates are available for EADs and RADs: (i) unary predicates P, for
Pe{<,<,=#,> >} and ¢ € Q, and (ii) binary predicates <, <, =, #, >,
and >. Call the corresponding concrete domain Q. We can then translate EADs

as before and RADs as follows: For each pair (A, E), with A attribute and E
entity, introduce a concrete feature g4 . Then augment the encoding by the
following rule:

7. For every RAD of arity k referring to (i) a relationship R of arity n
equipped with ER-roles Uy, ..., U, connecting entities F, ..., E,, respec-
tively, (ii) indexes h; with 1 < h; < n, for i € {1,...,k}, (iii) attributes
A; of the entity Ej,., for i € {1,...,k}, and (iv) a predicate P of arity k,
add the equations

¢(R) E v¢(th) ¢(Az)a JA; E;- = for i € {17) k}
d)(R) C ElgAl,Elv s 7gAi,Ei'P

Note that k£ must be either 1 or 2 since we admit only unary and binary
predicates. In this encoding, the concrete domain constructors appear only
in the forms VRgy, ¢>.P and 3Jg,...,g,.P. Let ALCQZ*(D) be the restric-
tion of ALCQZ(D) to this form of concrete domain constructor. In [14], we
show that infinite model reasoning with Q-SHZQ, of which ALCQT*(Q) (i.e.,
ALCQT*(D) instantiated with the concrete domain Q) is a fragment, is decid-
able in EXPTIME. A decidability result for finite model reasoning is not known.

Let us now consider GADs. As we have already noted, unary GADs are
nothing but EADs and can thus be translated using Rule 6. To deal with binary
GADs, we have to exploit the connected model property of ALCQT*(Q): if an
ALCQT*(Q)-concept is satisfiable (finitely satisfiable) w.r.t. a general TBox T,
then C' and T are satisfiable (finitely satisfiable) in a connected model, i.e., in
a model that has a “root node” from which every other node can be reached
by travelling along role relationships. The idea for dealing with binary GADs
is now as follows: for each attribute A of an entity F, we introduce two new

concrete features gT% and ¢T73. Our concept equations will ensure that, for

every connected model Z, there exist ¢;,¢o € @ such that gx’i}‘;(d) = ¢; and
g% (d) = gy for each d € Az. Moreover, we enforce that ¢(4)*(d) > ¢ and
p(A)I(d) < ¢ for every d € ¢(E)L. Finally, we can use the ¢g™" and gma
features to ensure that the GADs are satisfied. For technical reasons, we must
also introduce an additional concept name Xg for every entity E. Intuitively,
Xg holds at every point of a connected model if the entity E has at least one
instance in this model.

Let R be the set of all roles (role names or inverses of role names) used in

the encoding. Then we add the following rules:

8. For every attribute A of an entity F, add the following concept equations:

T C EIRgQ;j’JE, gz’i}‘;.: forall ReR
T C dJRgT%, ghp= foral RER
¢(E) T 3gihh, ¢(A).<
¢(E) T Jgh% ¢(4).>

9. For every entity F, add the following concept equations:

o(E) C Xg
E‘RXE E XE forall R e R
XE E VRXE forall Re R

10. For every binary GAD referring to (i) attributes Ay, A, of entities Ey, Es,
respectively, and (ii) a binary predicate P, add the equation

Xp N Xp T 3977, 90, P if Pe{<,<}
Xp, N Xp T 37, 90%%, P if Pe{>>}
Xp, M X, T 307, 00, =397, 072, = if Pis “=

max

min _
M 3900, e =

In Rule 10, there exists no equation for the “#” predicate. This is not by
accident: it is not hard to see that the pursued approach to encoding GADs
does not work for this predicate. Indeed, we have to leave the encoding of “#”
as an open problem.

Let us spend a few more words on the Xz concepts. They are needed to deal
with the “non-transitivity” of GADs. Suppose, for example, that there exists a
<-GAD between a pair Ay, F; and a pair Ay, F> and another <-GAD between
As, F5 and a pair Az, F3. From this, we can not infer a <-GAD between A, E;
and As, Fy: let B be a legal database state such that EF = (); by the semantics
of GADs, there may exist e; € EP and e3 € EF such that AB(e;) > AB(e3). In
the translation of GADs to ALCQT*(Q) using the ¢g™" and g™ features, we
must be careful to preserve this property. This is achieved by using Xg, M Xg,
as the left-hand side of the concept equations in Rule 10: only if E; and E> do
both have instances, which is represented by the fact that Xz, M Xz, holds at
every point in the (connected) model, the GADs concerning these two entities
do have an “effect”.

Similar to the encoding of RADs, the encoding of GADs uses only con-
crete domain constructors of a rather particular form, namely those offered by
ALCQT*(Q). Thus, infinite model reasoning with EADs, RADs, and GAD:s for
the basic domain based on the rational numbers is decidable in EXPTIME if the
“#£” predicate is not used inside GADs. Again, we cannot offer any decidability
or complexity results for finite model reasoning.

5 Conclusion

In this paper, we proposed an extension of entity relationship diagrams with at-
tribute dependencies and showed how the extended formalism can be translated
into Description Logics with concrete domains. This is only a first step towards

reasoning with attribute dependencies since the decidability and complexity of
reasoning with the involved Description Logics is in many cases unknown, and
“practical” algorithms (i.e., algorithms that show an acceptable run-time be-
haviour if implemented) are still to be found:

e A tight complexity bound for finite model reasoning with ALC QT itself is
currently not known. The best known lower bound is ExPTIME while the
best known upper bound is 2-EXpPTIME [5].

e The decidability and complexity of finite model reasoning with Description
Logics providing for non-trivial concrete domains such as Q has never
been formally investigated. It would be interesting to check whether the
techniques developed in [5] can be generalized in this direction.

e As long as there exist no algorithms for finite model reasoning, infinite
model reasoning can be used as an approximation. However, for several
interesting concrete domains, it is currently unknown whether they can be
combined with general TBoxes without losing decidability of infinite model
reasoning. Examples for such concrete domains are the spatial concrete
domain introduced in [10] or an analogue of our concrete domain Q that
uses the natural numbers instead of the rationals.

As the above points indicate, if taken seriously, attribute dependencies are likely
to stimulate interesting future research on Description Logics with concrete do-
mains.

Furthermore, it would be interesting to compare the expressive power of
the attribute dependencies proposed in this paper with related formalizations
developed, e.g., in [9, 4, 18]. On first sight, it seems that our proposal is, at
least in some aspects, orthogonal to existing proposals:? our EADs and GADs
can be expressed as logical formulas as proposed in [9] and [4], but it seems that
our RADs cannot. Moreover, the formalism in [9] and [4] can be used to define
conditional dependencies of the form “if employee el is younger than employee
e2, then el earns less than e2”, which cannot be expressed by our attribute
dependencies in their current form.

Acknowledgements. I would like to thank the anonymous referees of DL2002
for valuable comments.

References

[1] F. Baader and P. Hanschke. A scheme for integrating concrete domains
into concept languages. In Proceedings of the Twelfth International Joint

2Moreover, as was mentioned in the introduction, our approach differs in that it allows
integrated reasoning about the conceptual schema and attribute dependencies.

Conference on Artificial Intelligence (IJCAI-91), pages 452-457, Sydney,
Australia, 1991.

[2] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics
and abstract description systems. Journal of Artificial Intelligence Research
(JAIR), 16:1-58, 2002.

[3] C. Batini, S. Ceri, and S. Navathe. Conceptual Database Design- an Entity-
Relationship Approach. Benjamin/Cummings, 1992.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating depen-
dencies. Journal of Computer and System Sciences, 59, 1999.

[5] D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based
Representation Formalisms. Dottorato di ricerca in informatica, Universita
degli Studi di Roma “La Sapienza”, Italia, 1996.

[6] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for con-
ceptual data modeling. In J. Chomicki and G. Saake, editors, Logics for
Databases and Information Systems, pages 229-263. Kluwer Academic Pub-
lisher, 1998.

[7] P. P.-S. Chen. The entity-relationship model-toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9-36, 1976.

[8] E. Franconi and G. Ng. The i.com tool for intelligent conceptual modeling.
In M. Bouzeghoub, M. Klusch, W. Nutt, and U. Sattler, editors, Proceedings
of the Seventh International Workshop on Knowledge Representation Meets
Databases (KRDB2000), number 29 in CEUR-WS (http://ceur-ws.org/),
pages 45-53, 2000.

[9] S. Ginsburg and R. Hull. Order dependency in the relational model. The-
oretical Computer Science, 26(1-2):149-195, 1983.

[10] V. Haarslev, C. Lutz, and R. Mdller. A description logic with concrete

domains and role-forming predicates. Journal of Logic and Computation,
9(3):351-384, 1999.

[11] V. Haarslev, R. Moller, and M. Wessel. The description logic ALCN Hp+
extended with concrete domains: A practically motivated approach. In
R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of the First In-
ternational Joint Conference on Automated Reasoning IJCAR’01, number
2083 in Lecture Notes in Artifical Intelligence, pages 29-44. Springer-Verlag,
2001.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Hull and R. King. Semantic database modeling: Survey, applications,
and research issues. ACM Computing Surveys, 19(3):201-260, 1987.

M. Jarke, M. Lenzerini, Y. Vassilious, and P. Vassiliadis, editors. Funda-
mentals of Data Warehousing. Springer-Verlag, 2000.

C. Lutz. Adding numbers to the SHIQ description logic—first
results. LTCS-Report 01-07, LuFG Theoretical Computer Science,
RWTH Aachen, Germany, 2000. See http://www-lti.informatik.rwth-
aachen.de/Forschung/Reports.html.

C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD thesis,
Teaching and Research Area for Theoretical Computer Science, RWTH
Aachen, 2001.

C. Lutz. NExpTime-complete description logics with concrete domains. In
R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of the First Inter-
national Joint Conference on Automated Reasoning (IJCAR’01), number
2083 in Lecture Notes in Artifical Intelligence, pages 45—-60. Springer-Verlag,
2001.

T. J. Teorey. Database Modeling and Design - the Entity-Relationship Ap-
proach. Morgan Kaufmann, 1990.

D. Toman and G. Weddell. On attributes, roles, and dependencies in
description logics and the ackermann case of the decision problem. In
C. Goble, D. L. McGuinness, R. Moller, and P. F. Patel-Schneider, edi-
tors, Proceedings of the International Workshop in Description Logics 2001
(DL2001), number 49 in CEUR-WS (http://ceur-ws.org/), pages 76-85,
2001.

