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Abstrat

We analyze the omplexity of �nite model reasoning in the desription

logi ALCQI, i.e. ALC augmented with qualifying number restritions,

inverse roles, and general TBoxes. It turns out that all relevant reasoning

tasks suh as onept satis�ability and ABox onsisteny are ExpTime-

omplete, regardless of whether the numbers in number restritions are

oded unarily or binarily. Thus, �nite model reasoning with ALCQI is

not harder than standard reasoning with ALCQI.

1 Motivation

Desription logis (DLs) are a family of logial formalisms that originated in

the �eld of knowledge representation and are nowadays used in a wide range

of appliations

[

1

℄

. Similar to many modal logis (to whih DLs are losely

related), most desription logis enjoy the �nite model property (FMP). This

is, for example, the ase for the basi propositionally losed DL ALC that is well-

known to be a notational variant of the multi-modal logi K

[

13

℄

: satis�ability

of ALC-onepts (the DL equivalent of a formula) w.r.t. �nite models oinides

with the satis�ability of ALC-onepts w.r.t. arbitrary models

[

13

℄

. However,

there also exist desription logis that do not enjoy FMP. A rather important

example for suh a DL is ALCQI , whih is obtained from ALC by adding

qualifying number restritions (orresponding to graded modalities in modal

logi), the inverse role onstrutor (inverse modalities), and general TBoxes

(roughly orresponding to the universal modality).

The fat that ALCQI laks FMP beomes partiularly important if we on-

sider this logi's most prominent appliation, whih is reasoning about on-

eptual database models: if suh a model is desribed by one of the standard

formalisms|namely ER diagrams for relational databases and UML diagrams

for objet-oriented databases|then it an be translated into a DL TBox, i.e. a

set of onept equations; afterwards, a desription logi reasoner suh as FaCT

and RACER an be used to detet inonsistenies and to infer impliit IS-A re-
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lationships between entities/lasses

[

3

℄

. This useful and original appliation has

already led to the implementation of tools that provide a GUI for speifying

oneptual models, automatize the translation into desription logis, and dis-

play the information returned by the DL reasoner

[

8

℄

. When doing reasoning

about databases, one is learly interested in reasoning w.r.t. �nite models sine

models desribe databases, and these are �nite objets. However, all available

DL reasoning systems are performing reasoning w.r.t. arbitrary (as opposed to

�nite) models. Sine it is well-known that there exist ER and UML diagrams

whih are satis�able only in in�nite models

[

15

℄

, this means that some inonsis-

tenies and IS-A relationships will not be deteted if existing DL reasoners are

used for reasoning about oneptual models.

The main reason for existing DL reasoners to perform only reasoning w.r.t.

arbitrary models is that �nite model reasoning in desription logis suh as

ALCQI is not yet well-understood. The only known algorithm is presented

by Calvanese in

[

4

℄

, where he proves that reasoning in ALCQI is deidable in

2-ExpTime. The purpose of this paper is to improve the understanding of �nite

model reasoning in desription logis by establishing tight ExpTime omplexity

bounds for �nite model reasoning in the DL ALCQI. More preisely, in this

paper we present the following results:

In Setion 3, we develop an algorithm that is apable of deiding the �-

nite satis�ability of ALCQI-onepts w.r.t. TBoxes. Similar to Calvanese's

approah, the ore idea behind our algorithm is to translate a given satis�a-

bility problem into a set of linear equations that an then be solved by linear

programming methods. The main di�erene to Calvanese's approah is that our

equation systems talk about ertain omponents of models, so-alled mosais,

whih allows us to keep the size of equation systems exponential in the size of

the input. In this way, we improve the best-known 2-ExpTime upper bound to

a tight ExpTime one.

Sine the approah presented in Setion 3 presupposes unary oding of the

numbers ourring inside qualifying number restritions, in Setion 4 we on-

sider �nite model reasoning in ALCQI with numbers oded in binary. We give

a polynomial redution of ALCQI-onept satis�ability w.r.t. TBoxes to the

satis�ability of ALCFI-onept satis�ability w.r.t. TBoxes, where ALCFI is

obtained from ALCQI by allowing only the number 1 to be used in number re-

stritions. Sine �nite model reasoning in ALCFI is in ExpTime by the results

from Setion 3 (the oding of numbers is not an issue here), we obtain a tight

ExpTime bound for �nite model reasoning in ALCQI with numbers oded in

binary.

Finally, in Setion 5 we onsider the �nite satis�abiliy of ABoxes w.r.t.

TBoxes. Intuitively, ABoxes desribe a partiular state of a�airs, a \snapshot"

of the world. By a redution to (�nite) onept satis�ability, we are able to

show that this reasoning task is also ExpTime-omplete, independently of the

way in whih numbers are oded.
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2 Preliminaries

We introdue syntax and semantis of ALCQI .

De�nition 1 (ALCQI Syntax) Let R and C be disjoint and ountably in�-

nite sets of role and onept names. A role is either a role name R 2 R or the

inverse R

�

of a role name R 2 R. The set of ALCQI-onepts is the smallest

set satisfying the following properties:

� eah onept name A 2 C is an ALCQI-onept;

� if C and D are ALCQI-onepts, R is a role, and n a natural number,

then :C, C u D, C t D, (6 n R C), and (> n R C) are also ALCQI-

onepts.

A onept equation is of the form C

:

= D for C;D two ALCQI-onepts. A

TBox is a �nite set of onept equations. �

As usual, we use the standard abbreviations ! and $ as well as 9R:C for

(> 1 R C), 8R:C for (6 0 R :C), > to denote an arbitrary propositional

tautology, and ? as abbreviation for :>. To avoid roles like (R

�

)

�

, we de�ne a

funtion Inv on roles suh that Inv(R) = R

�

if R is a role name, and Inv(R) = S

if R = S

�

. The fragment ALCFI of ALCQI is obtained by admitting only

atmost restritions (6 n R C) with n 2 f0; 1g and only atleast restritions

(> n R C) with n 2 f1; 2g.

De�nition 2 (ALCQI Semantis) An interpretation I is a pair (�

I

; �

I

) where

�

I

is a non-empty set and �

I

is a mapping whih assoiates

� with eah onept name A a set A

I

� �

I

and

� with eah role name R, a binary relation R

I

� �

I

��

I

.

The interpretation of inverse roles and omplex onepts is then de�ned as fol-

lows:

(R

�

)

I

= fhe; di j hd; ei 2 R

I

g

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(6 n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

(> n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

An interpretation I satis�es a onept equation C

:

= D if C

I

= D

I

, and I is

alled a model of a TBox T if I satis�es all onept equations in T .

A onept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A onept C is �nitely satis�able w.r.t. a TBox T if there is a model

I of T with C

I

6= ; and �

I

�nite. �
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Let us onsider a witness for the fat that ALCQI laks FMP: the onept

:A u 9R:A is satis�able w.r.t. the TBox fA

:

= 9R:A u (6 1 R

�

>)g, but eah

of its models ontains an in�nite R-hain.

There exists another important reasoning problem on onepts and TBoxes:

subsumption. However, sine subsumption an be redued to (un)satis�ability

and vie versa, we just note that all omplexity bounds obtained in this paper

also apply to subsumption.

In what follows, we will only onsider TBoxes of the rather simple form

f>

:

= Cg. This an be done w.l.o.g. sine an interpretation I is a model of a

TBox T = fC

i

:

= D

i

j 1 � i � ng i� it is a model of f>

:

=u

1�i�n

(C

i

$ D

i

)g.

3 Unary Coding of Numbers

In this setion, we present a deision proedure for �nite satis�ability ofALCQI-

onepts w.r.t. TBoxes that runs in deterministi exponential time, provided

that numbers in number restritions are oded unarily. In Setion 4, we will

generalize this upper bound to binary oding of numbers.

As observed by Calvanese in

[

4

℄

, ombinatoris is an important issue when

deiding �nite satis�ability of ALCQI-onepts. To illustrate this, onsider the

TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g:

It should be lear that, in any model of T , there are at least twie as many

objets satisfying Bu (6 1 R

�

A) as there are objets satisfying Au (> 2 R B).

This simple example suggests that (i) types (i.e., sets of onepts satis�ed by a

partiular objet in a partiular model) suh as fA; (> 2 R B)g are a natural

notion for dealing with �nite satis�ability, and (ii) the ombinatoris introdued

by �nite domains an be addressed with inequalities like 2 �x

T

� x

T

0

, where the

variable x

T

desribes the number of instane of a type T (e.g. fA; (> 2 R B)g),

while x

T

0

desribes the number of instanes of another type T

0

(e.g. fB; (6

1 R

�

A)g). These ombinatorial onstraints are not an issue if in�nite domains

are admitted: in this ase, we an always �nd a model where all types that have

instanes at all have the same number of instanes, namely ountably in�nitely

many.

Considering the above two points, a �rst idea to devise a deision proedure

for �nite satis�ability of ALCQI-onepts w.r.t. TBoxes is to translate an input

onept and TBox into a system of inequalities with one variable for eah type,

and then to use existing algorithms to hek whether the equation system has

a non-negative integer solution. For example, the satis�ability problem of the

onept A w.r.t. the TBox T above an be translated into the two inequalities

X

fT j(>2 R B)2Tg

2 � x

T

�

X

fT j(61 Inv(R) A)2Tg

x

T

and

X

fT jA2Tg

x

T

> 0

where the sums range over all types indued by the input onept A and TBox T .

It is not hard to see that any non-negative integer solution to this equation

system an be used to onstrut a �nite model for A and T and vie versa.
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:(C uD)  :C t :D :(C tD)  :C u :D

::C  C :(6 n R C)  (> n+ 1 R C)

:(> n R C))  (6 n� 1 R C) if n > 0

:(> n R C))  ? if n = 0

Figure 1: The NNF rewrite rules.

Unfortunately, there is a problem with this approah: assume that the in-

put onept and TBox indue types T

1

to T

5

as follows: (> 1 R C) 2 T

1

,

(> 1 R D) 2 T

2

, (6 1 Inv(R) >) 2 T

3

\ T

4

\ T

5

, C 2 T

3

\ T

4

, and D 2 T

4

\ T

5

.

The translation desribed above yields the inequalities

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

;

whih have x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solu-

tion. Trying to onstrut a model with a

1

, a

2

, and a

4

instanes of T

1

, T

2

,

and T

4

, respetively, we have to use a

4

as a witness of a

1

being an instane of

(> 1 R C) and a

2

being an instane of (> 1 R D). However, this violates the

(6 1 Inv(R) >) onept in T

4

.

This example illustrates that \ounting types" does not suÆe: onits may

arise if a type ontaining an atmost restrition (T

4

) an be used as a witness for

atleast restritions in more than one type (T

1

and T

2

). In suh a situation, it is

thus neessary to (additionally) �x the types that are atually used as witnesses

for atleast restritions. We ahieve this by de�ning systems of inequalities based

on small hunks of models alled mosais, rather than based diretly on types.

Intuitively, a mosai desribes the type of an objet and �xes the type of ertain

\important" witnesses.

Before de�ning mosais, we introdue some preliminaries. In the remainder

of this paper, we assume onepts (also those appearing inside TBoxes) to be in

negation normal form (NNF), i.e., negation is only allowed in front of onept

names. Every ALCQI-onept an be transformed into an equivalent one in

NNF by exhaustively applying the rewrite rules displayed in Figure 1. We use

_:C to denote the NNF of :C. For a onept C

0

and a TBox T = f>

:

= C

T

g,

l(C

0

; T ) is the smallest set ontaining all sub-onepts of C

0

and C

T

that is

losed under _:. It an easily be shown that the ardinality of l(C

0

; T ) is linear

in the size of C

0

and T . We use rol(C

0

; T ) to denote the set of role names R

and their inverses R

�

ourring in C

0

or T .

De�nition 3 (Type) A type T for C

0

; T = f>

:

= C

T

g is a set T � l(C

0

; T )

suh that, for eah D;E 2 l(C

0

; T ), we have

1. D 2 T i� _:D 62 T ,

2. if D u E 2 l(C

0

; T ), then D u E 2 T i� D 2 T and E 2 T ,
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3. if D t E 2 l(C

0

; T ), then D t E 2 T i� D 2 T or E 2 T , and

4. C

T

2 T .

We use type(C

0

; T ) to denote the set of all types over C

0

; T . Let T be a type

and ./ 2 f6;>g. Then we use the following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg

sum

./

(T ) :=

X

(./ n R C)2T

n:

�

We are now ready to de�ne the ore notion of our approah: mosais.

De�nition 4 (Mosai) For two types T

1

; T

2

and a role R, we write lim

R

(T

1

; T

2

)

(T

2

is a limited ressoure for T

1

w.r.t. R) if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 l(C

0

; T ) and n 2 N.

A mosai for C

0

; T is a triple M = (T

M

; L

M

; E

M

) where

� T

M

2 type(C

0

; T ),

� L

M

is a funtion from rol(C

0

; T )� type(C

0

; T ) to N, and

� E

M

is a funtion from rol(C

0

; T )� type(C

0

; T ) to N

suh that the following onditions are satis�ed:

1. if L

M

(R; T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

2. if E

M

(R; T ) > 0, then lim

Inv(R)

(T; T

M

),

3. if (6 n R C) 2 T

M

, then n �

X

fT jC2Tg

E

M

(R; T );

4. #f(R; T ) j L

M

(R; T ) > 0g � sum

>

(T

M

) and max(ran(L

M

)) � max

>

(T

M

).

�

Let us spend a few words on the intuition behind mosais. Consider a mosai

M and one of its \instanes" d in some interpretation. While T

M

is simply the

type of d, L

M

and E

M

are used to desribe ertain \neighbors" of d, i.e. objets

e reahable from d via some role. For simpliity, �x a role R. There exist three

possibilities for the relationship between T

M

and T , the type of e:

1. Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

); Then d may have an arbitrary

number of R-neighbors of type T and every instane of T may have an ar-

bitrary number of Inv(R)-neighbors of type T

M

. Intuitively, R-neighbors

of type T are \unritial" and not reorded in the mosai.
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2. lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary

number of R-neighbors of type T , but every instane of T may only have

a limited number of Inv(R)-neighbors of type T

M

. Thus, R-neighbors of

type T are a limited ressoure and we reord in L

M

the minimal number

of R-neighbors of type T that d needs (\L" for \lower bound").

3. lim

Inv(R)

(T; T

M

). Then d may only have a limited number of R-neighbors

of type T . To prevent the violation of atmost restritions in T

M

, we reord

the exat number of d's R-neighbors of type T in E

M

.

(M1) and (M2) ensure that L

M

and E

M

reord information for the \orret"

types as desribed above; (M3) ensures that atmost restritions are not violated|

by de�nition, this onerns only neighbors with E

M

-types; �nally, (M4) puts

upper bounds on L

M

to ensure that there exist only exponentially many mosais

(see below). Atleast restritions are not mentioned in the de�nition of mosais

and will be treated by the systems of inequalities to be de�ned later.

Now for the number of mosais. The ardinality of type(C

0

; T ) is exponential

in the size of C

0

and T . Next, (M2) and (M3) imply #f(R; T ) j E

M

(R; T ) >

0g � sum

6

(T

M

) and max(ran(E

M

)) � max

6

(T

M

). This, together with (M4)

and the fat that max

./

(T ) and sum

./

(T ) are linear in the size of C

0

and T for

./ 2 f6;>g (sine we assume numbers to be oded in unary), learly implies

that the number of mosais is bounded exponentially in the size of C

0

and T .

We are now ready to de�ne, for an input onept C

0

and TBox T , a orre-

sponding system of inequalities.

De�nition 5 (Equation System) For C

0

an ALCQI-onept and T a TBox,

we introdue a variable x

M

for eah mosai M over C

0

; T and de�ne the equa-

tion system E

C

0

;T

by taking (i) the equation

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ) the equation

X

fM jT

M

=Tg

L

M

(R; T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that

lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ) the equation

X

fM jT

M

=Tg

E

M

(R; T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)

A solution of E

C

0

;T

is admissible if it is a non-negative integer solution and

satis�es the following onditions:

(i) for eah pair of types T; T

0

2 type(C

0

; T ) and role R suh that lim

R

(T; T

0

)

7



and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0: (A1)

(ii) for eah mosai M and eah role R, if x

M

> 0, (> n R C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n;

then (A2)

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0;

�

While inequality (E1) guarantees the existene of an instane of C

0

, inequalities

(E2) and (E3) enfore the lower and exat bounds on the number of neighbors

as desribed by L

M

and E

M

. A speial ase is treated by ondition (A1): in

inequality (E2), it may happen that the left-hand side is zero while the right-

hand side is non-zero. In this ase, there is an instane of a mosai M

0

with

T

M

0

= T

0

and E

M

(Inv(R); T ) > 0 (ounted on the right-hand side), but there is

no instane of a mosai M with T

M

= T (ounted on the left-hand side)|thus

we annot �nd any neighbors as required by E

M

(Inv(R); T ). To ure this defet,

ondition (A1) ensures that, if the right-hand side of (E2) is non-zero, then there

is at least one instane of a mosaiM with T

M

= T .

1

Finally, (A2) takes are of

atleast restritions in types T

M

: if the number of R-neighbors enfored by L

M

and E

M

is not enough for some (> n R C) 2 T

M

, then we make sure that there

is at least one instane of a mosai M

0

suh that C 2 T

M

0

and, for instanes

of M (M

0

), the number of R-neighbors (Inv(R)-neighbors) that are instanes of

M

0

(M) is not limited:

1

Lemma 6 If C

0

is �nitely satis�able w.r.t. T , then the equation system E

C

0

;T

has an admissible solution.

Proof. Let I be a �nite model of C

0

w.r.t. T . From I, we an onstrut an

admissible solution for E

C

0

;T

. First, let us introdue some notions: for e 2 �

I

,

we de�ne the type t(e) that e is instane of as

t(e) := fD 2 l(C

0

; T ) j e 2 D

I

g:

Obviously, t(e) 2 type(C

0

; T ). For T 2 type(C

0

; T ), de�ne

T

I

:= fe 2 �

I

j t(e) = Tg:

1

To see why a single instane suÆes, onsult the proof sketh of Lemma 6.
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Now �x a hoie funtion h(�; �) whih assoiates, with eah e 2 �

I

and role

R, some h(e;R) � �

I

suh that

1. he; e

0

i 2 R

I

, for all e

0

2 h(e;R),

2. #h(e;R) � sum

>

(t(e)),

3. #(h(e;R) \ T

I

) � max

>

(t(e)) for eah T 2 type(C

0

; T ), and

4. if (>nR:C) 2 t(e), then #(h(e;R) \ C

I

) � n:

Using the semantis and the de�nitions of max

>

and sum

>

, it is readily heked

that suh a hoie funtion exists. For eah mosai M , we then de�ne a set

M

I

:= fe 2 �

I

j t(e) = T

M

and, for all roles R and types T

0

,

if lim

R

(T

M

; T

0

); and not lim

Inv(R)

(T

0

; T

M

)

then L

M

(R; T

0

) = #(h(e;R) \ T

0

I

);

if lim

Inv(R)

(T

0

; T

M

)

then E

M

(R; T

0

) = #fe

0

2 T

0

I

j he; e

0

i 2 R

I

gg

Finally, we set x̂

M

:= #M

I

.

In what follows, we show that fx̂

M

jM a mosaig is an admissible solution. We

�rst establish the following laim:

Claim: For eah e 2 �

I

, there exists exatly one mosai M suh that e 2M

I

.

Using the de�nition of mosais, of the setsM

I

, and of the hoie funtion h, it is

straightforward to show that, for eah e 2 �

I

, there exists at least one mosaiM

suh that T

M

= t(e) and e 2M

I

. Now suppose that there exists an e 2 �

I

and

mosaisM

1

andM

2

with e 2M

I

1

\M

I

2

. By de�nition of the setsM

I

, this implies

(i) T

M

1

= T

M

2

, (ii) L

M

1

(R; T

0

) = L

M

2

(R; T

0

) for all roles R and types T

0

with

lim

R

(T

M

1

; T

0

) and not lim

Inv(R)

(T

0

; T

M

1

), and (iii) E

M

1

(R; T

0

) = E

M

2

(R; T

0

) for

all roles R and types T

0

with lim

Inv(R)

(T

0

; T

M

1

). Using Properties 1 and 2 of

mosais, it is now easy to show that M

1

= M

2

. Thus, for eah e 2 �

I

, there

exists exatly one mosai M suh that e 2M

I

, for whih obviously T

M

= t(e).

We now argue that fx̂

M

j M a mosaig satis�es Equations (E1) to (E3) and

admissibility onditions (A1) and (A2). Equation (E1) is satis�ed sine I is a

model for C

0

: there is some e

0

2 C

I

0

implying C

0

2 t(e

0

) and, due to the laim,

we have x̂

M

� 1 for some mosai M with C

0

2 T

M

.

For (E2), let T; T

0

be types, R a role with lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

and �x some e

M

2 M

I

for eah M

I

6= ;. We laim that the following

9



(in)equalities hold whih learly implies (E2).

X

fM jT

M

=Tg

L

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

L

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

#h(e

M

; R) \ T

0

I

� x̂

M

�

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

The �rst equality is obvious. The seond holds sine, for eah mosaiM and e 2

M

I

, we have #(h(e;R)\ T

0

I

) = L

M

(R; T

0

) by de�nition of M

I

(in partiular

this holds if e = e

M

). The �rst inequality holds due to

� the laim,

� Property 1 in the de�nition of h, whih implies that h(e

M

; R)\ T

0

I

is a

lower bound on #fe

0

2 T

0

I

j he; e

0

i 2 R

I

g for eah e 2M

I

,

� a simple graph-theoreti reason: the number of R edges from T

I

into T

0

I

is the same as the number of Inv(R) edges from T

0

I

into T

I

, and

� the fat that eah e 2M

I

with T

M

= T

0

has the same number of inoming

R-edges by de�nition of M

I

.

Finally, the last equation is learly valid by de�nition of the sets M

I

.

Equation (E3) is satis�ed with a similar yet simpler argument: let T; T

0

be

types, R a role with lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ), and �x some e

M

2 M

I

for eah M

I

6= ;. Then we have

X

fM jT

M

=Tg

E

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

#fe

0

2 T

0

I

j he

M

; e

0

i 2 R

I

g � x̂

M

=

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

using similar arguments as for the (E2) ase.

Now for the admissibility of our solution. Obviously it is a non-negative

integer solution. For (A1), onsider types T; T

0

and a role R with lim

R

(T; T

0

),

not lim

Inv(R)

(T

0

; T ), and

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

> 0:

10



Hene there is, by de�nition of M

I

, some he

0

; ei 2 Inv(R)

I

with e

0

2 T

0

I

and

e 2 T

I

. The laim yields

X

fM jT

M

=Tg

x̂

M

> 0;

and thus (A1) is satis�ed.

Finally, for (A2), let M be a mosai with x̂

M

> 0, (>nR:C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n:

Hene there is some e

M

2 T

I

M

and e

1

; : : : ; e

n

with e

i

6= e

j

for all i 6= j and, for

all 1 � i � n, he

M

; e

i

i 2 R

I

and e

i

2 C

I

. By de�nition of M

I

and Property 4

of h, m < n implies that there is some e

`

suh that not lim

Inv(R)

(t(e

M

); t(e

`

))

and not lim

R

(t(e

`

); t(e

M

)). Sine C 2 t(e

`

), the laim yields

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x̂

M

0

� 1;

and (A2) is satis�ed. �

Lemma 7 If the equation system E

C

0

;T

has an admissible solution, then C

0

is

�nitely satis�able w.r.t. T .

Proof. Let fx̂

M

j M a mosaig be an admissible solution of E

C

0

;T

. In what

follows, we onstrut a �nite interpretation I from this solution. For eah mosai

M , �x a set

^

M suh that #

^

M = x̂

M

. Moreover, set

P = maxfn j (> n R C) 2 l(C

0

; T ) or (6 n R C) 2 l(C

0

; T )g:

We de�ne

�

I

=

[

^

M � f0; : : : ; P � 1g:

In the following, we write m(e) = M if e 2

^

M and t(e) = T if e 2

^

M for some

mosai M with T

M

= T . For eah onept name A 2 C, we put

A

I

:= f(e; i) 2 �

I

j A 2 t(e)g:

Role names R 2 R are harder to deal with. We start with de�ning some

auxiliary notions. For eah role R 2 rol(C

o

; T ) and eah pair of types T; T

0

2

type(C

0

; T ) suh that lim

R

(T; T

0

) but not lim

Inv(R)

(T

0

; T ), �x a relation



R

T;T

0

�

[

fM jT

M

=Tg

(

^

M � f0; : : : ; P � 1g) �

[

fM jT

M

=T

0

g

(

^

M � f0; : : : ; P � 1g)

suh that

11



1. for eah (e; i) with t(e) = T , we have

#f((e; i); (e

0

; j)) 2 

R

T;T

0

g � L

m(e)

(R; T

0

);

2. for eah (e; i) with t(e) = T

0

, we have

#f((e

0

; j); (e; i)) 2 

R

T;T

0

g = E

m(e

0

)

(Inv(R); T ):

Let us show that suh a relation exists: by (E2), there exists a mapping

f :

[

fM jT

M

=Tg

^

M �

[

fM jT

M

=T

0

g

^

M ! N

suh that

a) for eah e with t(e) = T , we have

X

fe

0

jt(e

0

)=T

0

g

f(e; e

0

) = L

m(e)

(R; T

0

);

b) for eah e

0

with t(e

0

) = T

0

, we have

X

fejt(e)=Tg

f(e; e

0

) � E

m(e

0

)

(Inv(R); T ):

Using f , we de�ne a relation

r �

[

fM jT

M

=Tg

(

^

M � f0; : : : ; P � 1g) �

[

fM jT

M

=T

0

g

(

^

M � f0; : : : ; P � 1g)

suh that

) for eah (e; i) with t(e) = T , we have

#f((e; i); (e

0

; j)) 2 rg = L

m(e)

(R; T

0

);

d) for eah (e; i) with t(e) = T

0

, we have

#f((e

0

; j); (e; i)) 2 rg � E

m(e

0

)

(Inv(R); T ):

More preisely, this is done by setting

r = f((e; i); (e

0

; i

0

)) j i

0

= i+ k mod P for some k with 1 � k � f(e; e

0

)g:

Using the fats that f satis�es a) and b) and that f(e; e

0

) � P for any e; e

0

, it is

readily heked that r satis�es ) and d).

2

Finally, we an augment r to 

R

T;T

0

by performing, for eah (e; i) 2 ran(r) with

k := #f((e

0

; j); (e; i)) 2 rg < E

m(e

0

)

(Inv(R); T ); (�)

2

To see that f(e; e

0

) � P for any e; e

0

, one may use Properties 2 to 4 of mosais to show

that, for any M , R, and T , we have L

M

(R; T ) � P and E

M

(R; T ) � P .

12



the following step:

Obviously, (�) implies E

m(e)

(Inv(R); T ) > 0. Hene by (A1) there exists

a mosai M suh that

^

M 6= ; and T

M

= T . Fix an e

0

2

^

M . Sine P �

E

m(e

0

)

(Inv(R); T ), we may �x a set X � f0; : : : ; P � 1g suh that

#X = E

m(e

0

)

(Inv(R); T )� k

and ((e

0

; j); (e; i)) =2 r for eah j 2 X . We augment r with the set f((e

0

; j); (e; i)) j

j 2 Xg.

We have now �nished the onstrution of 

R

T;T

0

. As an abbreviation, for eah

role R we de�ne

�

R

=

[

fT;T

0

2type(C

0

;T )j

lim

R

(T;T

0

) and not lim

R

�

(T

0

;T )g



R

T;T

0

:

One more relation needs to be de�ned before the interpretation of role names

an be given: for eah role name R and eah pair of types T; T

0

2 type(C

0

; T )

suh that lim

R

(T; T

0

) and lim

R

�
(T

0

; T ), �x a relation

�

R

T;T

0

�

[

fM jT

M

=Tg

(

^

M � f0; : : : ; P � 1g) �

[

fM jT

M

=T

0

g

(

^

M � f0; : : : ; P � 1g)

suh that

1. for eah (e; i) with t(e) = T , we have

#f((e; i); (e

0

; j)) 2 �

R

T;T

0

g = E

m(e)

(R; T

0

);

2. for eah (e; i) with t(e) = T

0

, we have

#f((e

0

; j); (e; i)) 2 �

R

T;T

0

g = E

m(e

0

)

(Inv(R); T ):

The exat onstrution is omitted sine it is very similar to those of 

R

T;T

0

: �rst

onstrut an appropriate funtion f and then turn it into a relation r whih

an immediately be used as �

R

T;T

0

(the additional augmentation step of the

onstrution of 

R

T;T

0

need not be applied).

As an abbreviation, for eah role name R we de�ne

�

R

=

[

fT;T

0

2type(C

0

;T )j

lim

R

(T;T

0

) and lim

R

�

(T

0

;T )g

�

R

T;T

0

:

Finally, for eah role name R, set




R

:= fh(e; i); (e

0

; i

0

)i j not lim

R

(t(e); t(e

0

)); and not lim

R

�
(t(e

0

); t(e))g

We are now ready to de�ne the interpretation R

I

of role names:

R

I

:= 


R

[ �

R

[ (�

R

�

)

`

[ �

R

;
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where r

`

denotes the onverse of the relation r.

We now show that I is a model of C

0

w.r.t. T . We �rst establish a tehnial

laim:

Claim 1: For all (e; i) 2 �

I

, roles R, and types T

0

with lim

Inv(R)

(T

0

; t(e)), we

have #f(e

0

; i

0

) j ((e; i); (e

0

; i

0

)) 2 R

I

and t(e

0

) = T

0

g = E

m(e)

(R; T

0

).

Proof: In the following, a \witness" is an element (e

0

; i

0

) 2 �

I

suh that

((e; i); (e

0

; i

0

)) 2 R

I

and t(e

0

) = T

0

. We show that there are exatly E

m(e)

(R; T

0

)

witnesses by a ase distintion.

� Not lim

R

(t(e); T

0

) and R is a role name. It is readily heked that then

witnesses are added to R

I

only through the (�

R

�

)

`

omponent, more

preisely through the relation 

R

�

(T

0

;t(e))

. By Property 2 of this relation,

the number of witnesses added in this way is preisely E

m(e)

(R; T

0

) as

desired.

� Not lim

R

(t(e); T

0

) andR = S

�

for some role name S. Then pairs ((e

0

; i

0

); (e; i))

with t(e

0

) = T

0

are added to S

I

only through the �

S

omponent, more

preisely through the relation 

S

(T

0

;t(e))

. Again by Property 2 of this re-

lation and sine S = Inv(R), the number of tuples added in this way is

preisely E

m(e)

(R; T

0

) as desired.

� lim

R

(t(e); T

0

) and R is a role name. It is readily heked that witnesses are

added to R

I

only through the �

R

omponent, more preisely through the

relation �

R

(T

0

;t(e))

. By Property 1 of this relation, the number of witnesses

added in this way is preisely E

m(e)

(R; T

0

) as desired.

� lim

R

(t(e); T

0

) and R = S

�

for some role name S. Then pairs ((e

0

; i

0

); (e; i))

with t(e

0

) = T

0

are added to S

I

only through the �

S

omponent, more

preisely through the relation �

S

(T

0

;t(e))

. By Property 2 of this relation, the

number of tuples added in this way is preisely E

m(e)

(R; T

0

) as desired.

Using Claim 1 just established, we an now prove another laim whih is

entral for showing that I is a model of the input onept C

0

and the input

TBox T :

Claim 2: If C 2 t(e), then (e; i) 2 C

I

for eah i < P .

The proof is by strutural indution. Fix an (e; i) 2 �

I

suh that C 2 t(e).

� C is a onept name. Then e 2 C

I

follows from the de�nition of I.

� C = :D. Sine every onept in l(C

0

; T ) is in NNF, D is a onept

name. If :D 2 T , then D =2 T by de�nition of types. Thus e 2 (:D)

I

by

de�nition of I.

� C = (6 n R D). A \witness" for C is an element (e

0

; i

0

) 2 �

I

suh that

((e; i); (e

0

; i

0

)) 2 R

I

and D 2 t(e

0

). We show that there exist at most n

witnesses.
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By de�nition, we have lim

Inv(R)

(t(e

0

); t(e)) for every witness (e

0

; i

0

). Claim 1

thus yields an exat bound

m =

X

fT jD2Tg

E

m(e)

(R; T )

for the number of witnesses. By Property 3 of mosais, we have n � m.

� C = (> n R D). Again, a \witness" for C is an element (e

0

; i

0

) 2 �

I

suh

that ((e; i); (e

0

; i

0

)) 2 R

I

and D 2 t(e

0

). We need to show that there exist

at least n witnesses.

Firstly, for eah type T with lim

R

(t(e); T ) and not lim

Inv(R)

(T; t(e)), there

are at least L

m(e)

(R; T ) witnesses (e

0

; i) with t(e

0

) = T : if R is a role

name, then the fat that �

R

� R

I

and Property 1 of 

R

t(e);T

yield the

desired result. Similarly, if R = S

�

for some role name S, then the fats

that (�

S

�

)

`

= (�

R

)

`

� S

I

and R

I

= (S

I

)

`

together with Property 1 of



R

t(e);T

yield the desired result.

Together with Claim 1 and Properties 1 and 2 of mosais, we thus have a

lower bound

m =

X

fT jD2Tg

L

m(e)

(R; T ) +

X

fT jD2Tg

E

m(e)

(R; T )

on the number of witnesses. If m � n, then we are done. Other-

wise, (A2) ensures that there exists a mosai M suh that D 2 T

M

, not

lim

R

(t(e); T

M

), not lim

Inv(R)

(T

M

; t(e)), and

^

M 6= ;. Sine 


R

� R

I

, this

yields

#f((e; i); (e

0

; i

0

)) 2 R

I

j m(e

0

) =Mg = P:

Now P � n by de�nition of P and we are done.

� C = D u E and C = D t E. For this ase, the laim follows immediately

from the de�nition of types and the indution hypothesis.

As a onsequene, I is a model of C

0

and T = f>

:

= C

T

g: by Equation (E1)

and due to the fat that x̂

M

> 0 implies #

^

M > 0, there is a mosai M suh

that C

0

2 T

M

and #

^

M > 0. Fix an e 2

^

M . Claim 2 implies that (e; i) 2 C

I

0

for

i < P and thus I is a model of C

0

. Moreover, by de�nition of types, we have

C

T

2 T

M

for eah mosai M . This fat together with Claim 2 implies that I is

a model of T . �

Sine the number of mosais is exponential in the size of C

0

and T , the size of

E

C

0

;T

and of the admissibility ondition is also exponential in the size of C

0

and

T . To prove an ExpTime upper bound for the �nite satis�ability of ALCQI-

onepts, it thus remains to show that the existene of an admissible solution

for the equation systems E

C

0

;T

an be deided in deterministi polynomial time.

Before we atually do this, we �rst �x some notation.
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We assume linear inequalities to be of the form �

i



i

x

i

� b. Suh an inequal-

ity is alled positive if b � 0. A system of linear inequalities is desribed by a

tuple (V; E), where V is a set of variables and E the set of inequalities. Suh

a system is alled simple if all inequalities are positive and all oeÆients are

(possibly negative) integers.

A side ondition for an inequality system (V; E) is a onstraint of the form

x > 0 =) x

1

+ � � �+ x

`

> 0; where x; x

1

; : : : x

`

2 V:

Let (V; E) be an inequality system and I a set of side onditions for (V; E). We

say that (V; E) admits an I-admissible solution if it admits a solution satisfying

all onstraints from I .

It is not hard to hek that the inequality systems from De�nition 5 are

simple and that the onditions (A1) and (A2) an be polynomially transformed

into side onditions:

� (E1) is already simple,

� (E2) an obviously transformed into

P

: : :�

P

: : : � 0,

� the equality (E3) is transformed into two inequalities of the form

P

: : :�

P

: : : � 0,

� eah impliation due to (A1) is transformed into polynomially many by

using a separate side ondition for eah summand appearing in the premise

(this works sine we are interested in non-negative solutions only). Next,

the oeÆients on the left-hand sides of the premise are then omitted by

dropping those side-onditions whose oeÆient is zero and replaing all

other oeÆients with 1.

� (A2) is already in the form of a side ondition.

In the following, we prove that the existene of a non-negative, integer, and

I-admissible solution for a simple system of inequalities (V; E) and a set of side

onditions I an be deided in deterministi polynomial time. In the proof, we

use a lemma that was established by Calvanese in

[

5

℄

and builds on results of

Papadimitriou

[

11

℄

. We state this lemma for the sake of ompleteness.

Lemma 8 Let (V; E) be a system of m = #E linear inequalities in n = #V vari-

ables, in whih all oeÆients and onstants are from the interval [�a; a℄ of inte-

gers. Then, if (V; E) has a solution in N

n

, it also has one in f0; 1; : : : ; H(V; E)g

n

,

where H(V; E) = (n+m)(ma)

2m+1

:

We an now establish the PTime upper bound.

Lemma 9 Let (V; E) be a simple equation system and I a set of side onditions

for (V; E). Then the existene of an integer, non-negative, and I-admissible

solution for (V; E) an be deided in (deterministi) time polynomial in #V +

#E +#I.

16



Proof. For a positive integer k, we use E

I

(k) to denote the set of inequalities

fx � k � (x

1

+ � � �+ x

k

) j x > 0 =) x

1

+ � � �+ x

k

> 0 2 Ig:

It is readily heked that every non-negative solution of (V; E [E

I

(k)) is a (non-

negative and) I-admissible solution of (V; E). We prove the following laim:

Claim: There is an integer k

E

exponential in #V +#E +#I suh that (V; E)

admits a non-negative, integer, and I-admissible solution i� (V; E [ E

I

(k

E

)) ad-

mits a non-negative (rational) solution.

Proof: Let n = #V , m = #E , and r = #I . Then we hoose

k

E

= (n+m+ r)(m + r)

2(m+r)+1

:

It remains to show that k

E

is as required:

For the \if" diretion, let S be a non-negative solution of (V; E [ E

I

(k

E

)). As

noted above, S is also a (non-negative and) I-admissible solution of (V; E). Sine

all inequations in (V; E) are positive, we an onvert S into an integer solution

by multiplying S with the smallest ommon multiplier of the denominators in

S.

Now for the \only if" diretion: assume that there exists an integer, non-

negative, and I-admissible solution S of (V; E). It is readily heked that this

implies the existene of a set P � V suh that S is also an (integer and non-

negative) solution of the system (V; E [ E

P

), where

E

P

= fx > 0 j x 2 Pg [

fx

1

+ � � �+ x

j

> 0 j x 2 P and x > 0 =) x

1

+ � � �+ x

j

> 0 2 Ig [

fx = 0 j x 2 V n Pg:

By Lemma 8, the existene of S implies the existene of a non-negative integer

solution S

0

of (V; E[E

P

) whih is bounded by h

P

= H(V; E[E

P

). It is easily seen

that the solution S

0

is also an (integer and non-negative) solution of (V; E[E

I

(n))

for any n � h

P

. It remains to note that, sine E

P

ontains one inequality for

eah variable in V and at most one inequality for eah impliation in I , we have

h

P

� k

E

.

In view of the laim just established, it is now easy to show that the existene of a

non-negative integer and I-admissible solution for a simple system of inequalities

(V; E) and a set of side onditions I an be deided in deterministi polynomial

time: we may learly view (V; E [ E

I

(k

E

)) as a linear programming problem.

Sine k

E

is exponential in #V + #E + #I , the binary representation of k

E

is

polynomial in #V +#E +#I . Thus, the existene of a rational (non-negative)

solution for (V; E [ E

I

(k

E

)) an be heked in (deterministi) time polynomial

in #V +#E +#I

[

14

℄

. �
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Putting together Lemmas 6, 7, and 9, we obtain the ExpTime upper bound.

The orresponding lower bound is a onsequene of the ExpTime-hardness of

unrestrited satis�ability of ALC w.r.t. TBoxes

[

7; 12; 13

℄

and the fat that this

DL has the �nite model property.

Theorem 10 Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exptime-

omplete if numbers are oded in unary.

If numbers in number restritions are oded binarily, the algorithm developed

in this setion does no longer yield an ExpTime upper bound: in this ase,

the number of mosais is double exponential in the size of the input onept

and TBox. Sine it is not lear whether and how the presented algorithm an

be modi�ed in order to yield an ExpTime upper bound for the ase of binary

oding, we resort to a di�erent approah to attaking this problem: in the

next setion, we redue �nite ALCQI-satis�ability to the �nite satis�ability of

ALCFI-onepts. Sine the employed redution is polynomial, in this way we

obtain an ExpTime upper bound for the �nite satis�ability of ALCQI-onepts

w.r.t. TBoxes, even if numbers are oded in binary.

4 Binary Coding of Numbers

In this setion, we prove that �nite ALCQI-onept satis�ability w.r.t. TBoxes

is deidable in ExpTime even if numbers are oded in binary. The proof is by

a redution to �nite ALCFI-onept satis�ability w.r.t. TBoxes. Sine, in the

ase of ALCFI, the size of numbers appearing in number restritions is onstant

(independently of the oding), the results presented in the previous setion imply

that �nite ALCFI-onept satis�ability w.r.t. TBoxes is ExpTime-omplete.

Thus, this logi is a suitable target for redution. In ontrast to existing redu-

tions of ALCQI to ALCFI, whih only work in the ase of potentially in�nite

models (suh as the one presented in

[

6

℄

), we have to take speial are to deal

with �nite models.

Before we go into tehnial details, let us desribe the intuition behind the re-

dution. The general idea is to replae ounting via quali�ed number restritions

with ounting via onept names: to ount up to a number n, we reserve on-

ept names B

0

; : : : ; B

dlog(n)e

representing the bits of numbers between 0 and n.

For the atual ounting, we an then use well-known (propositional logi) for-

mulas that enode inrementation. But how an we use this approah to ount

the number of role suessors? Intuitively, we rearrange the suessors of eah

domain element in a way that allows to replae qualifying number restritions

with the funtionality of roles provided by ALCFI and ounting via onept

names. Consider, for example, the domain element x and its R-suessors dis-

played on the left-hand side of Figure 2. Ignoring the \diret" R-suessors of

x on the right-hand side for a moment, it is obvious that the R-suessors are

rearranged along a path that is built using an auxiliary role L

R

. Employing

the (6 1 R >) onstrutor of ALCFI, eah node on this path has preisely one

18
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R

Figure 2: Representing role suessor relationships.

L

R

-predeessor and at most one L

R

-suessor. The ounting via onept names

is then performed along the domain elements on L

R

-paths.

However, we annot gather all original R-suessors of x on the L

R

-path.

The reason for this is as follows: assume we are at some domain element on the

L

R

-path desending from x and move along this domain element's outgoing R-

edge. Then we reah either a \real" domain element or arrive on an Inv(R)-path.

If the latter is the ase, we have to ensure that, moving up the Inv(R)-path, we

will �nally reah a \real" domain element. To do this, we ount the lengths of

auxiliary paths via onept names:

3

one we have moved up to node 0 of the

path, its predeessor must be \real". Sine, however, we do not know how many

R-suessors an objet had in the original model, we do not know how many bits

to reserve for this ounting. The solution is to gather only those R-suessors

of x on the R-path whih are onstrained by a (6 n R C) onept applying to x

or whih are witnesses for a (> n R C) onept applying to x|this helps sine

the number of suh domain elements is known in advane. All other domain

elements remain \diret" suessors of x.

Fix an ALCQI-onept C and an ALCQI-TBox T whose �nite satis�ability

is to be deided. In the following, we use nam(C; T ) to denote the set of

onept names appearing in C and T , rnam(C; T ) to denote the set of role

names appearing in C and T , and, as above, rol(C; T ) to denote the set

rnam(C; T ) [ fR

�

j R 2 rnam(C; T )g:

W.l.o.g., we assume C and T to be in NNF. In order to translate C and T to

ALCFI, we need to introdue some additional onept and role names:

1. a fresh (i.e., not appearing in C or T ) onept name Real;

3

this ounter is a di�erent one than the ones mentioned above
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2. for eah R 2 rnam(C; T ), a fresh onept name H

R

and a fresh role

name L

R

;

3. for eah onept D 2 l(C; T ) of the form (./ n R C), where ./ is used as

a plaeholder for > or 6, we reserve a fresh onept name X

D

;

4. again for eah onept D 2 l(C; T ) of the form (./ n R C), we reserve

additional fresh onept names B

./n

C;R;0

; : : : ; B

./n

C;R;k

, where k = dlog(n+1)e;

5. for eah role R 2 rol(C; T ), we reserve fresh onept names B

R;0

; : : : ; B

R;k

,

where k = dlog(depth

R

)e and

depth

R

=

X

(./ n R C)2l(C;T )

n;

The onept names B

R;i

are used to ount the length of auxiliary L

R

paths

as desribed above. The onept names B

./n

C;R;0

are also used for ounting: for

an ALCQI-onept (./ n R C), they are used to ount the \ourrene" of

R-suessors in C along the L

R

path, and will thus replae the ALCQI-onept

(./ n R C). Note that the number of newly introdued onept and role names

is polynomial in the size of C and T . We will use B

./n

C;R

to refer to the number

enoded by the onept names

B

./n

C;R;0

; : : : ; B

./n

C;R;dlog(n+1)e

and B

R

to refer to the number enoded by the onept names

B

R;0

; : : : ; B

R;dlog(depth

R

)e

:

Moreover, we will use the following abbreviations:

� (B

R

= i) to denote the ALCFI-onept expressing that B

R

equals i (and

similar for B

./n

C;R

= i and the omparisons \<" and \>");

� inr(B

R

; S) to denote the ALCFI-onept expressing that, for all S-

suessors, the numberB

R

is inremented by 1 modulo depth

R

(and similar

for inr(B

./n

C;R

; S)). More preisely, these onepts are de�ned as follows

(we use onepts C ! D as an abbreviation for :C tD):

(B

R;0

! 8S::B

R;0

) u (:B

R;0

! 8S:B

R;0

) u

u

k=1::n

�

u

j=0::k�1

B

R;j

�

!

�

(B

R;k

! 8S::B

R;k

) u (:B

R;k

! 8S:B

R;k

)

�

u

u

k=1::n

�

t

j=0::k�1

:B

R;j

�

!

�

(B

R;k

! 8S:B

R;k

) u (:B

R;k

! 8S::B

R;k

)

�

:

We an now indutively de�ne a translation (C) of the onept C into a

Boolean formula (whih is also an ALCFI-onept):

(A) := A

(:C) := :(C)

(C uD) := (C) u (D)

(C tD) := (C) t (D)

(> n R C) := X

(>n R C)

(6 n R C) := X

(6n R C)
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Now set �(C) := (C) u Real and, for T = f>

:

= C

T

g,

�(T ) := f>

:

= Real ! (C

T

)g [ Aux(C; T )

where the TBox Aux(C; T ) is de�ned in Figure 3 in whih we use D v E as

abbreviation for >

:

= D ! E, and in whih all t

:::

, u

:::

, range over all onepts

in l(C; T ) of the form spei�ed. In what follows, we will use Ei to refer to the

i'th onept equation and Ei.j to refer to its j'th line.

Equations E1, E2, and E3 ensure the behaviour skethed above of Real, H

R

,

and the ounting onepts B

R

and B

./n

D;R

. Equation E5 ensures that the ounting

onepts B

./n

D;R

are updated orretly along an L

R

path. To guarantee that a

\real" element d satis�es \number restritions" X

(./ n R D)

, E4 ensures that we

see enough R-suessors in D for at least restritions (> n R D) along an L

R

path starting at d, whereas E6 guarantees that we do not see too many suh

suessors along an L

R

path for at most restritions (6 n R D).

Lemma 11 C is �nitely satis�able w.r.t. T i� �(C) is �nitely satis�able w.r.t.

�(T ).

Proof. Let us start with the \if" diretion. Hene, assume that �(C) is �nitely

satis�able w.r.t. �(T ). The proof strategy is to take a �nite model of �(C) and

�(T ) and transform it into a �nite model of C and T . However, we annot

take an arbitrary model for this purpose, but need to selet a speial, so-alled

singular one: let I be a model of �(C) and �(T ). For eah domain element

d 2 Real

I

and eah R 2 rol(C; T ), we indutively de�ne a sequene of domain

elements h

d;R

0

; : : : ; h

d;R

`

d;R

as follows:

� set h

d;R

0

= d;

� set h

d;R

i+1

to the L

R

-suessor of h

d;R

i

(whih is unique due to E1.3) if it

exists. Otherwise, `

d;R

= i.

The onstruted sequene is �nite due to the use of the B

R

ounter in E2.2,

E3.3, and E3.5. The model I is alled singular if, for all roles R 2 rol(C; T ),

nodes d 2 Real

I

, and i < j � `

d;R

, we have

fe j (h

d;R

i

; e) 2 R

I

g \ fe j (h

d;R

j

; e) 2 R

I

g = ;:

Claim 1. If �(C) is �nitely satis�able w.r.t. �(T ), then there is a �nite, singular

model of �(C) and �(T ).

Proof: Let I be a �nite model for �(C) and �(T ). Fix an injetive mapping Æ

from �

I

to f0; : : : ; (#�

I

�1)g. Then we onstrut a new (�nite) interpretation

J by opying I suÆiently often and \bending R edges" from one opy of I

into others. More preisely, J is de�ned as follows:

� �

J

:= fhd; ii j d 2 �

I

and i < #�

I

g;

� A

J

:= fhd; ii 2 �

J

j d 2 A

I

g for all onept names A;
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>

:

= u

R2rol(C;T )

8R:(Real tH

Inv(R)

) u

8L

R

:H

R

u

(6 1 L

R

>) u

u

(./ n R D)

�

X

(./ n R D)

$ 8L
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:X

(./ n R D)

�

u

u
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u
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(A$ 8L

R

:A) u
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D
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R

u

8L

R

:(B

R
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(6 0 L

�

R

>) u

u
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�
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�
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�

X
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R

:>

�

H

R

v (= 1 R >) u

(= 1 L

�

R

>) u
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R

; L

R

) u

(B

R

= 0)! 9L

�

R
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(B

R

= (depth

R

� 1))! (6 0 L

R
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H

R
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(>n R D)
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(> n R D)

u B

>n

D;R

< n u 8R::(D) u 8L

R
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H
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H

R

v u

(6 n R D)

�
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u B

6n

D;R
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�

Figure 3: The TBox Aux(C; T ).
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� L

J

R

:= f(hd; ii; he; ii) 2 �

J

��

J

j (d; e) 2 L

I

R

g for all role names L

R

with

R 2 rol(C; T );

� R

J

:= f(hd; ii; he; (Æ(d) + i mod #�

I

)i) j (d; e) 2 R

I

g for all role names

R appearing in C or T .

It is straightforward to hek that J is a singular model for �(C) and �(T ),

whih �nishes the proof of Claim 1.

Before we ontinue, let us state an important property of the sequenes of

domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

:

(�) Let d; e 2 Real

I

suh that d 6= e and R 2 rol(C; T ). Then, for all i � `

d;R

,

and j � `

e;R

, we have h

d;R

i

6= h

e;R

j

. This is an easy onsequene of the

hoie of the elements h

d;R

and h

e;R

together with E2.3 and E3.2.

Now let I be a singular, �nite model for �(C) and �(T ) and �x, for eah

d 2 Real

I

and R 2 rol(C; T ), a sequene of domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

as

above. We use I to de�ne an interpretation J as follows:

�

J

:= Real

I

A

J

:= A

I

\ Real

I

R

J

:= f(d; e) 2 �

J

��

J

j 9i � `

d;R

; k � `

e;Inv(R)

: (h

d;R

i

; h

e;Inv(R)

j

) 2 R

I

g

It remains to establish the following laim:

Claim 2. For all d 2 �

J

and D 2 l(C; T ), d 2 (D)

I

implies d 2 D

J

.

For assume that Claim 2 is true. Sine J is a model of �(C), by de�nition

of � there exists a d 2 ((C) u Real)

I

. Clearly we have d 2 �

J

and thus

Claim 2 yields d 2 C

J

. Hene, J is a model of C. By de�nition of �(T ) and

the semantis, we have Real

I

= ((C

T

) \ Real)

I

. Together with Claim 2 and

de�nition of J , we obtain �

J

= C

J

T

and thus J is a model of T .

We prove Claim 2 by indution on the norm jj � jj of onepts D whih is

de�ned indutively as follows:

jjAjj := jj:Ajj := 0 for A onept name

jjC

1

u C

2

jj := jjC

1

t C

2

jj := 1 + jjC

1

jj+ jjC

2

jj

jj(> n R D)jj := jj(6 n R D)jj := 1 + jjDjj

Let d 2 �

J

\ (D)

I

for some D 2 l(C; T ). Then d 2 Real

I

. Sine C and T

are in NNF, D is also in NNF. We only treat the interesting ases:

� Let D = (> n R E) and d 2 (D)

I

= (X

(>n R E)

)

I

. By E1.4, we have

h

d;R

i

2 (X

(>n R E)

)

I

for 1 � i � `

d;R

. Hene, by exploiting the ounter

B

>n

E;R

and its use in E2.4, E2.6, E4, and E5, it is straightforward to show

that there exist a subset I � f1; : : : ; `

d;R

g of ardinality at least n suh

that, for eah i 2 I , there exists an e

i

2 �

I

suh that (h

d;R

i

; e

i

) 2 R

I

and
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e

i

2 (E)

I

. Due to singularity, we have that i 6= j implies e

i

6= e

j

for all

i; j 2 I . By E1.1, we have e

i

2 Real

I

or e

i

2 H

Inv(R)

for all i 2 I . Using

the ounter B

Inv(R)

and E3.2, E3.3, E3.4, it is thus readily heked that,

for eah i 2 I , there exists an f

i

2 �

I

suh that f

i

2 Real

I

and e

i

appears

among the h

f

i

;Inv(R)

0

; : : : ; h

f

i

;Inv(R)

`

f

i

;Inv(R)

. By Property (�), i 6= j implies f

i

6= f

j

for all i; j 2 I . By de�nition of J , we have (d; f

i

) 2 R

J

for eah i 2 I :

{ if R is a role name, then this is an immediate onsequene of the

de�nition of J ;

{ if R = S

�

for some role name S, then (f

i

; d) 2 S

J

by de�nition of

J . The semantis yields (d; f

i

) 2 R

J

.

It thus remains to verify that f

i

2 E

J

: learly, (E) is a Boolean formula

over the set of onept names

nam(C; T ) [ fX

F

j F = (./ n R F

0

) 2 l(C; T )g:

Sine e

i

2 (E)

I

, E1.4 and E1.5 thus yield f

i

2 (E)

I

for eah i 2 I .

Sine f

i

2 Real

I

, it remains to apply the indution hypothesis.

� Let D = (6 n R E) and d 2 (D)

I

= (X

(6n R E)

)

I

. Assume that there

exists a subset W � �

J

of ardinality greater than n suh that, for eah

e 2 W , we have (d; e) 2 R

J

and e 2 E

J

. By de�nition of J , this

implies that, for eah e 2 W , there are s

e

� `

d;R

and t

e

� `

e;R

suh that

(h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

:

{ if R is a role name, then this is an immediate onsequene of the

de�nition of J ;

{ if R = S

�

for some role name S, then (d; e) 2 R

I

implies (e; d) 2 S

I

.

By de�nition of J , this means that there are s

e

� `

d;R

and t

e

� `

e;R

suh that (h

e;S

t

e

; h

d;R

s

e

) 2 S

I

. By semantis and sine S = Inv(R), we

obtain (h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

.

We learly have W � Real

I

. We prove the following three Properties:

1. e 6= e

0

implies h

d;R

s

e

6= h

d;R

s

e

0

for all e; e

0

2 W . By Property (�), e 6= e

0

implies h

e;Inv(R)

t

e

6= h

e

0

;Inv(R)

t

e

0

for all e; e

0

2 W . Thus, E3.1 yields

h

d;R

s

e

6= h

d;R

s

0

e

if e 6= e

0

.

2. h

e;Inv(R)

t

e

2 (E)

I

for eah e 2 W . Suppose that e =2 (E)

I

. Then

e 2 (:(E))

I

and, by E1.6, e 2 ( _:E)

I

. Sine e 2 Real

I

and we are

performing indution over the norm of onepts rather than standard

strutural indution, the indution hypothesis yields e 2 ( _:E)

J

, a

ontradition to e 2 E

J

. Thus, e 2 (E)

I

. Sine (E) is a Boolean

formula, it follows from E1.4 and E1.5 that h

e;Inv(R)

t

e

2 (E).
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3. s

e

6= 0 for all e 2 W . For assume that s

e

= 0. Then h

d;R

s

e

= d. By

E2.5 and sine d 2 (X

(6n R E)

)

I

and (d; h

e;Inv(R)

t

e

) 2 R

I

, this yields

h

e;Inv(R)

t

e

2 (:((E)))

I

in ontradition to Property 2.

Properties 1 to 3 imply the existene of a subset I � f1; : : : ; `

d;R

g of

ardinality greater than n suh that, for eah i 2 I , there exists an e 2 �

I

with (h

d;R

i

; e) 2 R

I

and e 2 (E)

I

. Exploiting the ounter B

6n

E;R

and its

use in E2.4, E5, and E6, it is readily heked that this is a ontradition

to I being a model for Aux(C; T ).

Now for the \only if" diretion: let I be a �nite model of C and T . For

eah d 2 �

I

and eah R 2 rol(C; T ), �x a subset W

d;R

� �

I

of ardinality at

most depth

R

suh that the following onditions are satis�ed:

1. (d; e) 2 R

I

for all e 2W

d;R

;

2. for all (> n R D) 2 l(C; T ) with d 2 (> n R D)

I

, we have

#fe 2W

d;R

j e 2 D

I

g � n;

3. for all (6 n R D) 2 l(C; T ) with d 2 (6 n R D)

I

, we have

fe 2 �

I

j (d; e) 2 R

I

and e 2 D

I

g �W

d;R

;

Using the semantis and the de�nition of depth

R

, it is easy to show that suh

subsets indeed exist. Next, �x a linear ordering on W

d;R

, i.e., an injetive

mapping �

d;R

:W

d;R

�! f0; : : : ;#W

d;R

� 1g. We use these mappings to de�ne

a �nite model J of �(C) w.r.t. �(T ) as follows:

� �

J

= �

I

[ fx

d;R;e

j d 2 �

I

; R 2 rol(C; T ); and e 2W

d;R

g;

� A

J

= A

I

[ fx

d;R;e

j d 2 A

I

; R 2 rol(C; T ); and e 2 W

d;R

g for all

A 2 nam(C; T );

� X

J

(./ n R D)

= (./ n R D)

I

[ fx

d;R;e

j d 2 (./ n R D)

I

and e 2 W

d;R

g for

all (./ n R D) 2 l(C; T );

� Real

J

= �

I

;

� H

J

R

= fx

d;R;e

j d 2 �

I

and e 2 W

d;R

g for all R 2 rol(C; T );

� For eah R 2 rol(C; T ), the ounter B

R

is de�ned as follows: B

R

= 0 for

all instanes of Real

J

; for the instanes of H

J

R

, we de�ne B

R

as follows:

B

R

= i for those x

d;R;e

2 H

J

R

with �

d;R

(e) = i;
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� For eah onept D 2 l(C; T ) with D of the form (./ n R D), the

ounter B

./n

D;R

is de�ned as follows: B

./n

D;R

= 0 for all instanes of Real

J

;

for instanes x

d;R;e

of H

J

R

, we set

B

./n

D;R

= #fe

0

2 W

d;R

j �

d;R

(e

0

) < �

d;R

(e) and e

0

2 D

I

g;

� R

I

= f(x

d;R;e

; x

e;Inv(R);d

) j d; e 2 �

I

with e 2W

d;R

and d 2W

e;Inv(R)

g [

f(x

d;R;e

; e) j d; e 2 �

I

with e 2W

d;R

and d =2W

e;Inv(R)

g [

f(d; x) j d 2 Real

J

; (d; e) 2 R

I

and x = x

e;Inv(R);d

or

x = e and d 62W

e;Inv(R)

g

for all R 2 rnam(C; T );

� L

R

= f(d; x

d;R;e

) j d 2 �

I

; e 2W

d;R

; and �

d;R

(e) = 0g [

f(x

d;R;e

; x

d;R;e

0

) j d 2 �

I

; e; e

0

2 W

d;R

; and �

d;R

(e

0

) = �

d;R

(e) + 1g:

Sine the translation �(C) of an ALCQI-onept C is a Boolean formula, it is

trivial to prove the following laim by strutural indution (using the de�nition

of J ):

Claim 3. For all d 2 �

I

and D 2 l(C; T ), d 2 D

I

implies d 2 (D)

J

.

Sine I is a model of C, Claim 3 learly implies that there is a d 2 �

I

suh

that d 2 (C)

J

. By de�nition of Real

J

, we thus have d 2 �(C)

J

and thus

J is a model of �(C). Moreover, also by Claim 3 J is a model of the TBox

f(D)

:

= (E) j D

:

= E 2 T g. Sine it is tedious but straightforward to verify

that J is also a model of the TBox Aux(C; T ) (details are left to the reader),

J is thus a model of �(T ). �

Taking together Theorem 10, whih implies that �nite satis�ability of ALCFI-

onepts w.r.t. TBoxes is in ExpTime, and Lemma 11, we obtain the following

theorem:

Theorem 12 Finite satis�ability of ALCQI-onepts w.r.t. TBoxes is Exptime-

omplete if numbers are oded in binary.

5 ABox Consisteny

In this setion, we extend the omplexity bounds obtained in Setions 3 and 4

to a more general reasoning task: �nite ALCQI-ABox onsisteny. As noted

in the introdution, ABoxes an be understood as desribing a\snapshot" of

the world. We should like to note that (�nite) ALCQI-ABox onsisteny has

important appliations: whereas �nite ALCQI-onept satis�ability algorithms

an be used to deide the onsisteny of oneptual database models and in-

fer impliit IS-A relationships as desribed in the introdution, ALCQI-ABox

onsisteny an be used as the ore omponent of algorithms deiding on-

tainment of onjuntive queries w.r.t. oneptual database models|a task that

DLs have suesfully been used for and that alls for �nite model reasoning

[

2;

10

℄

.
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De�nition 13 (ABox) Let O be a ountable in�nite set of objet names. An

ABox assertion is an expression of the form a : C or (a; b) : R, where a and

b are objet names, C is a onept name, and R a role name. An ABox is a

�nite set of ABox assertions.

Interpretations I are extended to ABoxes as follows: additionally, the in-

terpretation funtion �

I

maps eah objet name to an element of �

I

suh that

a 6= b implies a

I

6= b

I

for all a; b 2 O (the so-alled unique name assumption).

An interpretation I satis�es an assertion a : C if a

I

2 C

I

and an assertion

(a; b) : R if (a

I

; b

I

) 2 R

I

. It is a model for an ABox A if it satis�es all asser-

tions in A. An ABox is alled �nitely onsistent if it has a �nite model. �

In the following, we will polynomially redue �nite ALCQI-ABox onsisteny

to �nite ALCQI-onept satis�ability. Thus, we prove that ALCQI-ABox on-

sisteny is ExpTime-omplete independently of the way in whih numbers are

oded. We start with �xing some notation.

Let A be an ABox and T a TBox. For eah objet name a used in A, re

A

(a)

denotes the set of role names R suh that

f(a; a) : R; (a; a) : R

�

g \ A 6= ;:

For eah objet a and role R 2 rol(A; T ), N

A

(a;R) denotes the set of objet

names b suh that b 6= a and

f(a; b) : R; (b; a) : Inv(R)g \ A 6= ;:

Moreover, we use l(A; T ) to denote the smallest set ontaining all sub-onepts

of onepts appearing in A and T that is losed under _:. It an easily be shown

that the ardinality of l(A; T ) is linear in the size of A and T . We use rol(A; T )

to denote the set of all roles (i.e., role names or inverses of role names) used in

A or T .

De�nition 14 (Type) A type T for an ABox A and a TBox T is de�ned as

in De�nition 3 where l(C

0

; T ) is replaed with l(A; T ). �

In the following, we will sometimes identify types T with the onjuntion u

C2T

C

and write, e.g., d 2 T

I

for d 2 ( u

C2T

C)

I

. Again, the number of types for an

ABox A and a TBox T is exponential in the size of A and T . The entral notion

in the redution of �nite ALCQI-ABox onsisteny to �nite ALCQI-onept

satis�ability is that of a redution andidate:

De�nition 15 (Redution Candidate) Let A be an ABox and T a TBox.

A redution andidate for A and T is a funtion t that maps eah objet name a

appearing in A to a type t(a) for A and T suh that a : C 2 A implies C 2 t(a).

Let t be a redution andidate for A and T . For eah objet a, role R 2 rol(A; T ),

and type T 2 ran(t) we use #

A

t

(a;R; T ) to denote the number of objets b suh

that b 2 N

A

(a;R) and t(b) = T .
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Now, for eah objet a used in A, we de�ne a redution onept C

A

t

(a) as

follows:

C

A

t

(a) := t(a) uX u u

R2re

A

(a)

9R:(t(a) uX) u

u

R2rol(A;T )

u

T2ran(t)

(> #

A

t

(a;R; T ) R (T u :X));

where X is a onept name not used in A and T . The redution andidate t is

alled realizable i�, for every objet a used in A, the redution onept C

A

t

(a)

is �nitely satis�able w.r.t. T . �

First we establish a tehnial lemma.

Lemma 16 Let A be an ABox, T a TBox, t a redution andidate for A and T ,

and a an objet name used in A. If the redution onept C

A

t

(a) is �nitely

satis�able w.r.t. T , then there exists a �nite model I of T and C

A

t

(a) and some

d 2 (C

A

t

(a))

I

suh that, for all roles R, (a; a) : R 2 A implies (d; d) 2 R

I

.

Proof. Let I be a model of C

A

t

(a) and T and let d 2 (C

A

t

(a))

I

. We onstrut

a new interpretation I

00

in two steps:

1. De�ne a new interpretation I

0

as follows:

� �

I

0

= �

I

� f0; 1g;

� A

I

0

= f(d; i) 2 �

I

0

j d 2 A

I

g for all onept names A;

� R

I

0

= f((d; i); (e; j)) j (d; e) 2 R

I

and i 6= jg for all role names R.

Again, using strutural indution, it is readily heked that, for eah d 2

�

I

and C 2 l(A; T ), d 2 C

I

implies (d; i) 2 C

I

0

for i 2 f0; 1g. Thus

(d; 0) 2 (C

A

t

(a))

I

0

(the same holds for (d; 1)) and I

0

is a model of T .

Moreover, I

0

learly satis�es the following property: for all roles R 2

rol(A; T ) and d 2 �

I

0

, we have (d; d) =2 R

I

0

.

2. We now onstrut the interpretation I

00

from I

0

. Sine the inner struture

of elements from �

I

0

is not important, we heneforth refer to (d; 0) as d

0

.

For eah role name R 2 re

A

(a), �x a domain element e

R

2 �

I

0

suh that

(d

0

; e

R

) 2 R

I

0

and e

R

2 t(a)

I

0

. Suh domain elements exist sine C

A

t

(a)

ontains the onjunt u

R2re

A

(a)

9R:(t(a) u X). The interpretation I

00

is

now de�ned as follows:

� �

I

00

= �

I

0

;

� A

I

00

= A

I

0

for all onept names A;

� R

I

00

= R

I

0

for all role names R =2 re

A

(a);

� R

I

00

= (R

I

0

n f(d

0

; e

R

)g)[ f(d

0

; d

0

); g: for all role names R 2 re

A

(a).
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Using strutural indution, it is not hard to hek that, for eah d 2 �

I

0

and

C 2 l(A; T ), d 2 C

I

0

implies d 2 C

I

00

. Thus, d

0

2 (C

A

t

(a))

I

00

and I

00

is a

model of T . Moreover, (a; a) : R 2 A implies (d

0

; d

0

) 2 R

I

00

: this is true by

de�nition of re

A

and I

00

if R is a role name. If R = S

�

for some role name S,

then (a; a) : R 2 A implies S 2 re

A

. Thus (d

0

; d

0

) 2 S

I

00

by de�nition of I

00

.

By semantis, we obtain (d

0

; d

0

) 2 S

I

00

as required. �

The following lemma desribes the relationship between ABoxes and redution

andidates.

Lemma 17 Let A be an ABox and T a TBox. A is �nitely onsistent w.r.t. T

i� there exists a realizable redution andidate for A and T .

Proof. For the \only if" diretion, let I be a model of A and T . We onstrut

a redution andidate t as follows:

for eah objet a in A, set t(a) = fD 2 l(A; T ) j a

I

2 D

I

g.

It remains to prove that t is realizable. Let a be an objet in A. We onstrut

a model I

00

of C

A

t

(a) from I in two steps as follows: �rst, onstrut I

0

from I

as in the proof of Lemma 16 and set

X

I

0

= f(d; 0) 2 �

I

0

j d 2 �

I

g:

Then I

00

is obtained from I

0

by \bending some R edges", everything else is

unhanged: for eah role name R 2 reA(a), set

R

I

00

= R

I

0

n f((a

I

; 0); (a

I

; 1)); ((a

I

; 1); (a

I

; 0))g [

f((a

I

; 0); (a

I

; 0)); ((a

I

; 1); (a

I

; 1))g:

It an be easily veri�ed that I

00

is indeed a �nite model of C

A

t

(a) w.r.t. T .

For the \if" diretion, assume that there exists a realizable redution andi-

date t for A and T . This implies that, for eah objet name a used in A, there

is a �nite model I

a

of C

A

t

(a) and T . For eah suh model I

a

, �x a domain

element d

a

2 �

I

a

suh that d

a

2 (C

A

t

(a))

I

a

. By Lemma 16, we may w.l.o.g.

assume that, for all objet names a used in A and roles R, (a; a) : R 2 A implies

(d

a

; d

a

) 2 R

I

a

. Moreover, we assume that a 6= b implies �

I

a

\�

I

b

= ;.

In the following, we use the models I

a

to onstrut a (�nite) model I of A

and T . First �x, for eah objet name a used in A and eah role R 2 rol(A; T ),

an injetive funtion �

a

from N

A

(a;R) to �

I

a

suh that, for all b 2 N

A

(a;R),

we have (d

a

; �

a

(b)) 2 R

I

a

and �

a

(b) 2 (t(b) u :X)

I

a

. Suh funtions do learly

exist due to the onjunt u

R2rol(A;T )

u

T2ran(t)

(> #

A

t

(a;R; T ) R (Tu:X)) of C

A

t

(a).

Then de�ne the interpretation I as follows:

� �

I

:=

S

a used in A

�

I

a

;

� A

I

:=

S

a used in A

A

I

a

for all onept names A;
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� R

I

:=

S

a used in A

�

(R

I

a

n

S

b2N

A

(a;R)

f(d

a

; �

a

(b))g) [

S

b2N

A

(a;R)

f(d

a

; d

b

)g

�

for

all role names R;

� a

I

:= d

a

for eah objet name a used in A.

It is straightforward to prove the following laim using strutural indution:

Claim: for eah objet name a used in A, d 2 �

I

a

, and C 2 l(A; T ), d 2 C

I

a

implies d 2 C

I

.

It is thus readily heked that I is indeed a (�nite) model of A and T :

1. Let a : C 2 A. Then the laim together with d

a

2 (C

A

t

(a))

I

a

yields

a

I

= d

a

2 C

I

sine t(a) is a onjunt of C

A

t

(a) and a : C 2 A implies

C 2 t(a).

2. Let (a; a) : R 2 A. Sine a

I

= d

a

, we have (a

I

; a

I

) 2 R

I

a

by hoie of I

a

.

Sine d

a

2 X

I

a

by de�nition of C

A

t

(a) and, for eah b 2 N

A

(a;R), �

a

(b) 2

(:X)

I

a

by de�nition of �

b

, we have a

I

=2 dom(�

a

). Thus, (a

I

; a

I

) 2 R

I

a

implies (a

I

; a

I

) 2 R

I

, both if R is a role name and if R is the inverse of

a role name.

3. Let (a; b) : R 2 A where a 6= b. If R is a role name, then (a

I

; b

I

) 2 R

I

by de�nition of I. If R = S

�

for some role name S, then we have a 2

N

A

(b; S). Thus, (b

I

; a

I

) 2 S

I

by de�nition of I implying (a

I

; b

I

) 2 S

I

by the semantis.

4. Finally, the laim together with the fat that, for eah objet name a used

in A, I

a

is a model of T learly implies that I is also a model of T .

�

It is now easy to establish a tight omplexity bound for �nite ALCQI-ABox

onsisteny.

Theorem 18 Finite ALCQI-ABox onsisteny w.r.t. TBoxes is ExpTime-

omplete if numbers are oded in binary.

Proof. Let A be an ABox and T a TBox. Sine the number of types for A and

T is exponential in the size of A and T and the number of objet names used

in A is linear in the size of A, the number of redution andidates for A and T

is exponential in the size of A and T . Thus, to deide �nite onsisteny of A

w.r.t. T , we may simply enumerate all redution types for A and T and hek

them for realizability: by Lemma 17, A is �nitely onsistent w.r.t. T if we �nd

a realizable redution type. Sine the size of the redution onepts is learly

polynomial in the size of A and T , by Theorem 12 the resulting algorithm an

be exeuted in deterministi time exponential in A and T . �

30



Note that our hoie of the unique name assumption is not ruial for this

result: if we want to deide �nite onsisteny of an ABox A without the unique

name assumption, we may use the following approah: enumerate all possible

partitionings of the objet names used in A. For eah partitioning, hoose a

representative for eah partition and then replae eah objet name with the

representative of its partition. Obviously, the ABox A is �nitely onsistent

without the unique name assumption if and only if any of the resulting ABoxes

is �nitely onsistent with the unique name assumption. Clearly, this yields an

ExpTime upper bound for �nite ABox onsisteny without the unique name

assumption.

6 Outlook

In this paper, we have determined �nite model reasoning in the desription

logi ALCQI to be ExpTime-omplete. This shows that reasoning w.r.t. �nite

models is not harder than reasoning w.r.t. arbitrary models, whih is known

to be also ExpTime-omplete

[

6

℄

. We hope that, ultimately, this researh will

lead to the development of �nite model reasoning systems that behave equally

well as existing DL reasoners doing reasoning w.r.t. arbitrary models. Note,

however, that the urrent algorithm is best-ase ExpTime sine it onstruts

an exponentially large equation system. It an thus not be expeted to have an

aeptable runtime behaviour if implemented in a naive way. Nevertheless, we

believe that the use of equation systems and linear programming is indispensable

for �nite model reasoning in ALCQI. Thus, e�orts to obtain eÆient reasoners

should perhaps onentrate on methods to avoid best-ase exponentiality suh as

on-the-y onstrution of equation systems. Moreover, the redutions presented

in Setion 4 and 5 an also not be expeted to exhibit an aeptable run-time

behaviour and it would thus be interesting to try to replae them by more

\diret" methods.

Theoretially, there exist at least two interesting diretions in whih the

presented researh an be ontinued: �rst, while �nite ALCQI-onept satis�a-

biltiy w.r.t. TBoxes is suÆient for reasoning about oneptual database models

as desribed in the introdution, �nite ALCQI-ABox onsisteny it is not yet

suÆient for deiding the ontainment of onjuntive queries w.r.t. a given on-

eptual model|an intermediate redution step is required. It would thus be

interesting to analyze the omplexity of query ontainment in �nite models. We

believe that it is possible to obtain an ExpTime upper bound by building on

the results presented in Setion 5. Seondly, it would be interesting to extend

ALCQI with nominals, i.e. with onept names interpreted as singleton sets.

Finite and standard reasoning in the resulting DL ALCQOI is known to be

NExpTime-hard

[

16

℄

. An extension in this diretion is rather hallenging sine

the results established in this paper ruially rely on the fat that adding dis-

joint opies of a model preserves the model's properties. Unfortunately, in the

presene of nominals, this is no longer true.
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