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Abstra
t

We analyze the 
omplexity of �nite model reasoning in the des
ription

logi
 ALCQI, i.e. ALC augmented with qualifying number restri
tions,

inverse roles, and general TBoxes. It turns out that all relevant reasoning

tasks su
h as 
on
ept satis�ability and ABox 
onsisten
y are ExpTime-


omplete, regardless of whether the numbers in number restri
tions are


oded unarily or binarily. Thus, �nite model reasoning with ALCQI is

not harder than standard reasoning with ALCQI.

1 Motivation

Des
ription logi
s (DLs) are a family of logi
al formalisms that originated in

the �eld of knowledge representation and are nowadays used in a wide range

of appli
ations

[

1

℄

. Similar to many modal logi
s (to whi
h DLs are 
losely

related), most des
ription logi
s enjoy the �nite model property (FMP). This

is, for example, the 
ase for the basi
 propositionally 
losed DL ALC that is well-

known to be a notational variant of the multi-modal logi
 K

[

13

℄

: satis�ability

of ALC-
on
epts (the DL equivalent of a formula) w.r.t. �nite models 
oin
ides

with the satis�ability of ALC-
on
epts w.r.t. arbitrary models

[

13

℄

. However,

there also exist des
ription logi
s that do not enjoy FMP. A rather important

example for su
h a DL is ALCQI , whi
h is obtained from ALC by adding

qualifying number restri
tions (
orresponding to graded modalities in modal

logi
), the inverse role 
onstru
tor (inverse modalities), and general TBoxes

(roughly 
orresponding to the universal modality).

The fa
t that ALCQI la
ks FMP be
omes parti
ularly important if we 
on-

sider this logi
's most prominent appli
ation, whi
h is reasoning about 
on-


eptual database models: if su
h a model is des
ribed by one of the standard

formalisms|namely ER diagrams for relational databases and UML diagrams

for obje
t-oriented databases|then it 
an be translated into a DL TBox, i.e. a

set of 
on
ept equations; afterwards, a des
ription logi
 reasoner su
h as FaCT

and RACER 
an be used to dete
t in
onsisten
ies and to infer impli
it IS-A re-

1



lationships between entities/
lasses

[

3

℄

. This useful and original appli
ation has

already led to the implementation of tools that provide a GUI for spe
ifying


on
eptual models, automatize the translation into des
ription logi
s, and dis-

play the information returned by the DL reasoner

[

8

℄

. When doing reasoning

about databases, one is 
learly interested in reasoning w.r.t. �nite models sin
e

models des
ribe databases, and these are �nite obje
ts. However, all available

DL reasoning systems are performing reasoning w.r.t. arbitrary (as opposed to

�nite) models. Sin
e it is well-known that there exist ER and UML diagrams

whi
h are satis�able only in in�nite models

[

15

℄

, this means that some in
onsis-

ten
ies and IS-A relationships will not be dete
ted if existing DL reasoners are

used for reasoning about 
on
eptual models.

The main reason for existing DL reasoners to perform only reasoning w.r.t.

arbitrary models is that �nite model reasoning in des
ription logi
s su
h as

ALCQI is not yet well-understood. The only known algorithm is presented

by Calvanese in

[

4

℄

, where he proves that reasoning in ALCQI is de
idable in

2-ExpTime. The purpose of this paper is to improve the understanding of �nite

model reasoning in des
ription logi
s by establishing tight ExpTime 
omplexity

bounds for �nite model reasoning in the DL ALCQI. More pre
isely, in this

paper we present the following results:

In Se
tion 3, we develop an algorithm that is 
apable of de
iding the �-

nite satis�ability of ALCQI-
on
epts w.r.t. TBoxes. Similar to Calvanese's

approa
h, the 
ore idea behind our algorithm is to translate a given satis�a-

bility problem into a set of linear equations that 
an then be solved by linear

programming methods. The main di�eren
e to Calvanese's approa
h is that our

equation systems talk about 
ertain 
omponents of models, so-
alled mosai
s,

whi
h allows us to keep the size of equation systems exponential in the size of

the input. In this way, we improve the best-known 2-ExpTime upper bound to

a tight ExpTime one.

Sin
e the approa
h presented in Se
tion 3 presupposes unary 
oding of the

numbers o

urring inside qualifying number restri
tions, in Se
tion 4 we 
on-

sider �nite model reasoning in ALCQI with numbers 
oded in binary. We give

a polynomial redu
tion of ALCQI-
on
ept satis�ability w.r.t. TBoxes to the

satis�ability of ALCFI-
on
ept satis�ability w.r.t. TBoxes, where ALCFI is

obtained from ALCQI by allowing only the number 1 to be used in number re-

stri
tions. Sin
e �nite model reasoning in ALCFI is in ExpTime by the results

from Se
tion 3 (the 
oding of numbers is not an issue here), we obtain a tight

ExpTime bound for �nite model reasoning in ALCQI with numbers 
oded in

binary.

Finally, in Se
tion 5 we 
onsider the �nite satis�abiliy of ABoxes w.r.t.

TBoxes. Intuitively, ABoxes des
ribe a parti
ular state of a�airs, a \snapshot"

of the world. By a redu
tion to (�nite) 
on
ept satis�ability, we are able to

show that this reasoning task is also ExpTime-
omplete, independently of the

way in whi
h numbers are 
oded.
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2 Preliminaries

We introdu
e syntax and semanti
s of ALCQI .

De�nition 1 (ALCQI Syntax) Let R and C be disjoint and 
ountably in�-

nite sets of role and 
on
ept names. A role is either a role name R 2 R or the

inverse R

�

of a role name R 2 R. The set of ALCQI-
on
epts is the smallest

set satisfying the following properties:

� ea
h 
on
ept name A 2 C is an ALCQI-
on
ept;

� if C and D are ALCQI-
on
epts, R is a role, and n a natural number,

then :C, C u D, C t D, (6 n R C), and (> n R C) are also ALCQI-


on
epts.

A 
on
ept equation is of the form C

:

= D for C;D two ALCQI-
on
epts. A

TBox is a �nite set of 
on
ept equations. �

As usual, we use the standard abbreviations ! and $ as well as 9R:C for

(> 1 R C), 8R:C for (6 0 R :C), > to denote an arbitrary propositional

tautology, and ? as abbreviation for :>. To avoid roles like (R

�

)

�

, we de�ne a

fun
tion Inv on roles su
h that Inv(R) = R

�

if R is a role name, and Inv(R) = S

if R = S

�

. The fragment ALCFI of ALCQI is obtained by admitting only

atmost restri
tions (6 n R C) with n 2 f0; 1g and only atleast restri
tions

(> n R C) with n 2 f1; 2g.

De�nition 2 (ALCQI Semanti
s) An interpretation I is a pair (�

I

; �

I

) where

�

I

is a non-empty set and �

I

is a mapping whi
h asso
iates

� with ea
h 
on
ept name A a set A

I

� �

I

and

� with ea
h role name R, a binary relation R

I

� �

I

��

I

.

The interpretation of inverse roles and 
omplex 
on
epts is then de�ned as fol-

lows:

(R

�

)

I

= fhe; di j hd; ei 2 R

I

g

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(6 n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

(> n R C)

I

= fd j #fe 2 C

I

j hd; ei 2 R

I

g � ng

An interpretation I satis�es a 
on
ept equation C

:

= D if C

I

= D

I

, and I is


alled a model of a TBox T if I satis�es all 
on
ept equations in T .

A 
on
ept C is satis�able w.r.t. a TBox T if there is a model I of T with

C

I

6= ;. A 
on
ept C is �nitely satis�able w.r.t. a TBox T if there is a model

I of T with C

I

6= ; and �

I

�nite. �

3



Let us 
onsider a witness for the fa
t that ALCQI la
ks FMP: the 
on
ept

:A u 9R:A is satis�able w.r.t. the TBox fA

:

= 9R:A u (6 1 R

�

>)g, but ea
h

of its models 
ontains an in�nite R-
hain.

There exists another important reasoning problem on 
on
epts and TBoxes:

subsumption. However, sin
e subsumption 
an be redu
ed to (un)satis�ability

and vi
e versa, we just note that all 
omplexity bounds obtained in this paper

also apply to subsumption.

In what follows, we will only 
onsider TBoxes of the rather simple form

f>

:

= Cg. This 
an be done w.l.o.g. sin
e an interpretation I is a model of a

TBox T = fC

i

:

= D

i

j 1 � i � ng i� it is a model of f>

:

=u

1�i�n

(C

i

$ D

i

)g.

3 Unary Coding of Numbers

In this se
tion, we present a de
ision pro
edure for �nite satis�ability ofALCQI-


on
epts w.r.t. TBoxes that runs in deterministi
 exponential time, provided

that numbers in number restri
tions are 
oded unarily. In Se
tion 4, we will

generalize this upper bound to binary 
oding of numbers.

As observed by Calvanese in

[

4

℄

, 
ombinatori
s is an important issue when

de
iding �nite satis�ability of ALCQI-
on
epts. To illustrate this, 
onsider the

TBox

T := fA

:

= (> 2 R B); B

:

= (6 1 R

�

A)g:

It should be 
lear that, in any model of T , there are at least twi
e as many

obje
ts satisfying Bu (6 1 R

�

A) as there are obje
ts satisfying Au (> 2 R B).

This simple example suggests that (i) types (i.e., sets of 
on
epts satis�ed by a

parti
ular obje
t in a parti
ular model) su
h as fA; (> 2 R B)g are a natural

notion for dealing with �nite satis�ability, and (ii) the 
ombinatori
s introdu
ed

by �nite domains 
an be addressed with inequalities like 2 �x

T

� x

T

0

, where the

variable x

T

des
ribes the number of instan
e of a type T (e.g. fA; (> 2 R B)g),

while x

T

0

des
ribes the number of instan
es of another type T

0

(e.g. fB; (6

1 R

�

A)g). These 
ombinatorial 
onstraints are not an issue if in�nite domains

are admitted: in this 
ase, we 
an always �nd a model where all types that have

instan
es at all have the same number of instan
es, namely 
ountably in�nitely

many.

Considering the above two points, a �rst idea to devise a de
ision pro
edure

for �nite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is to translate an input


on
ept and TBox into a system of inequalities with one variable for ea
h type,

and then to use existing algorithms to 
he
k whether the equation system has

a non-negative integer solution. For example, the satis�ability problem of the


on
ept A w.r.t. the TBox T above 
an be translated into the two inequalities

X

fT j(>2 R B)2Tg

2 � x

T

�

X

fT j(61 Inv(R) A)2Tg

x

T

and

X

fT jA2Tg

x

T

> 0

where the sums range over all types indu
ed by the input 
on
ept A and TBox T .

It is not hard to see that any non-negative integer solution to this equation

system 
an be used to 
onstru
t a �nite model for A and T and vi
e versa.
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:(C uD)  :C t :D :(C tD)  :C u :D

::C  C :(6 n R C)  (> n+ 1 R C)

:(> n R C))  (6 n� 1 R C) if n > 0

:(> n R C))  ? if n = 0

Figure 1: The NNF rewrite rules.

Unfortunately, there is a problem with this approa
h: assume that the in-

put 
on
ept and TBox indu
e types T

1

to T

5

as follows: (> 1 R C) 2 T

1

,

(> 1 R D) 2 T

2

, (6 1 Inv(R) >) 2 T

3

\ T

4

\ T

5

, C 2 T

3

\ T

4

, and D 2 T

4

\ T

5

.

The translation des
ribed above yields the inequalities

x

T

1

� x

T

3

+ x

T

4

and x

T

2

� x

T

4

+ x

T

5

;

whi
h have x

T

1

= x

T

2

= x

T

4

= 1 and x

T

3

= x

T

5

= 0 as an integer solu-

tion. Trying to 
onstru
t a model with a

1

, a

2

, and a

4

instan
es of T

1

, T

2

,

and T

4

, respe
tively, we have to use a

4

as a witness of a

1

being an instan
e of

(> 1 R C) and a

2

being an instan
e of (> 1 R D). However, this violates the

(6 1 Inv(R) >) 
on
ept in T

4

.

This example illustrates that \
ounting types" does not suÆ
e: 
on
i
ts may

arise if a type 
ontaining an atmost restri
tion (T

4

) 
an be used as a witness for

atleast restri
tions in more than one type (T

1

and T

2

). In su
h a situation, it is

thus ne
essary to (additionally) �x the types that are a
tually used as witnesses

for atleast restri
tions. We a
hieve this by de�ning systems of inequalities based

on small 
hunks of models 
alled mosai
s, rather than based dire
tly on types.

Intuitively, a mosai
 des
ribes the type of an obje
t and �xes the type of 
ertain

\important" witnesses.

Before de�ning mosai
s, we introdu
e some preliminaries. In the remainder

of this paper, we assume 
on
epts (also those appearing inside TBoxes) to be in

negation normal form (NNF), i.e., negation is only allowed in front of 
on
ept

names. Every ALCQI-
on
ept 
an be transformed into an equivalent one in

NNF by exhaustively applying the rewrite rules displayed in Figure 1. We use

_:C to denote the NNF of :C. For a 
on
ept C

0

and a TBox T = f>

:

= C

T

g,


l(C

0

; T ) is the smallest set 
ontaining all sub-
on
epts of C

0

and C

T

that is


losed under _:. It 
an easily be shown that the 
ardinality of 
l(C

0

; T ) is linear

in the size of C

0

and T . We use rol(C

0

; T ) to denote the set of role names R

and their inverses R

�

o

urring in C

0

or T .

De�nition 3 (Type) A type T for C

0

; T = f>

:

= C

T

g is a set T � 
l(C

0

; T )

su
h that, for ea
h D;E 2 
l(C

0

; T ), we have

1. D 2 T i� _:D 62 T ,

2. if D u E 2 
l(C

0

; T ), then D u E 2 T i� D 2 T and E 2 T ,

5



3. if D t E 2 
l(C

0

; T ), then D t E 2 T i� D 2 T or E 2 T , and

4. C

T

2 T .

We use type(C

0

; T ) to denote the set of all types over C

0

; T . Let T be a type

and ./ 2 f6;>g. Then we use the following abbreviations:

max

./

(T ) := maxfn j (./ n R C) 2 Tg

sum

./

(T ) :=

X

(./ n R C)2T

n:

�

We are now ready to de�ne the 
ore notion of our approa
h: mosai
s.

De�nition 4 (Mosai
) For two types T

1

; T

2

and a role R, we write lim

R

(T

1

; T

2

)

(T

2

is a limited ressour
e for T

1

w.r.t. R) if C 2 T

1

and (6 n Inv(R) C) 2 T

2

for some C 2 
l(C

0

; T ) and n 2 N.

A mosai
 for C

0

; T is a triple M = (T

M

; L

M

; E

M

) where

� T

M

2 type(C

0

; T ),

� L

M

is a fun
tion from rol(C

0

; T )� type(C

0

; T ) to N, and

� E

M

is a fun
tion from rol(C

0

; T )� type(C

0

; T ) to N

su
h that the following 
onditions are satis�ed:

1. if L

M

(R; T ) > 0, then lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

),

2. if E

M

(R; T ) > 0, then lim

Inv(R)

(T; T

M

),

3. if (6 n R C) 2 T

M

, then n �

X

fT jC2Tg

E

M

(R; T );

4. #f(R; T ) j L

M

(R; T ) > 0g � sum

>

(T

M

) and max(ran(L

M

)) � max

>

(T

M

).

�

Let us spend a few words on the intuition behind mosai
s. Consider a mosai


M and one of its \instan
es" d in some interpretation. While T

M

is simply the

type of d, L

M

and E

M

are used to des
ribe 
ertain \neighbors" of d, i.e. obje
ts

e rea
hable from d via some role. For simpli
ity, �x a role R. There exist three

possibilities for the relationship between T

M

and T , the type of e:

1. Not lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

); Then d may have an arbitrary

number of R-neighbors of type T and every instan
e of T may have an ar-

bitrary number of Inv(R)-neighbors of type T

M

. Intuitively, R-neighbors

of type T are \un
riti
al" and not re
orded in the mosai
.

6



2. lim

R

(T

M

; T ) and not lim

Inv(R)

(T; T

M

). Then d may have an arbitrary

number of R-neighbors of type T , but every instan
e of T may only have

a limited number of Inv(R)-neighbors of type T

M

. Thus, R-neighbors of

type T are a limited ressour
e and we re
ord in L

M

the minimal number

of R-neighbors of type T that d needs (\L" for \lower bound").

3. lim

Inv(R)

(T; T

M

). Then d may only have a limited number of R-neighbors

of type T . To prevent the violation of atmost restri
tions in T

M

, we re
ord

the exa
t number of d's R-neighbors of type T in E

M

.

(M1) and (M2) ensure that L

M

and E

M

re
ord information for the \
orre
t"

types as des
ribed above; (M3) ensures that atmost restri
tions are not violated|

by de�nition, this 
on
erns only neighbors with E

M

-types; �nally, (M4) puts

upper bounds on L

M

to ensure that there exist only exponentially many mosai
s

(see below). Atleast restri
tions are not mentioned in the de�nition of mosai
s

and will be treated by the systems of inequalities to be de�ned later.

Now for the number of mosai
s. The 
ardinality of type(C

0

; T ) is exponential

in the size of C

0

and T . Next, (M2) and (M3) imply #f(R; T ) j E

M

(R; T ) >

0g � sum

6

(T

M

) and max(ran(E

M

)) � max

6

(T

M

). This, together with (M4)

and the fa
t that max

./

(T ) and sum

./

(T ) are linear in the size of C

0

and T for

./ 2 f6;>g (sin
e we assume numbers to be 
oded in unary), 
learly implies

that the number of mosai
s is bounded exponentially in the size of C

0

and T .

We are now ready to de�ne, for an input 
on
ept C

0

and TBox T , a 
orre-

sponding system of inequalities.

De�nition 5 (Equation System) For C

0

an ALCQI-
on
ept and T a TBox,

we introdu
e a variable x

M

for ea
h mosai
 M over C

0

; T and de�ne the equa-

tion system E

C

0

;T

by taking (i) the equation

X

fM jC

0

2T

M

g

x

M

� 1; (E1)

(ii) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that lim

R

(T; T

0

)

and not lim

Inv(R)

(T

0

; T ) the equation

X

fM jT

M

=Tg

L

M

(R; T

0

) � x

M

�

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

; (E2)

and (iii) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that

lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ) the equation

X

fM jT

M

=Tg

E

M

(R; T

0

) � x

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

: (E3)

A solution of E

C

0

;T

is admissible if it is a non-negative integer solution and

satis�es the following 
onditions:

(i) for ea
h pair of types T; T

0

2 type(C

0

; T ) and role R su
h that lim

R

(T; T

0

)

7



and not lim

Inv(R)

(T

0

; T ),

if

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x

M

> 0; then

X

fM jT

M

=Tg

x

M

> 0: (A1)

(ii) for ea
h mosai
 M and ea
h role R, if x

M

> 0, (> n R C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n;

then (A2)

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x

M

0

> 0;

�

While inequality (E1) guarantees the existen
e of an instan
e of C

0

, inequalities

(E2) and (E3) enfor
e the lower and exa
t bounds on the number of neighbors

as des
ribed by L

M

and E

M

. A spe
ial 
ase is treated by 
ondition (A1): in

inequality (E2), it may happen that the left-hand side is zero while the right-

hand side is non-zero. In this 
ase, there is an instan
e of a mosai
 M

0

with

T

M

0

= T

0

and E

M

(Inv(R); T ) > 0 (
ounted on the right-hand side), but there is

no instan
e of a mosai
 M with T

M

= T (
ounted on the left-hand side)|thus

we 
annot �nd any neighbors as required by E

M

(Inv(R); T ). To 
ure this defe
t,


ondition (A1) ensures that, if the right-hand side of (E2) is non-zero, then there

is at least one instan
e of a mosai
M with T

M

= T .

1

Finally, (A2) takes 
are of

atleast restri
tions in types T

M

: if the number of R-neighbors enfor
ed by L

M

and E

M

is not enough for some (> n R C) 2 T

M

, then we make sure that there

is at least one instan
e of a mosai
 M

0

su
h that C 2 T

M

0

and, for instan
es

of M (M

0

), the number of R-neighbors (Inv(R)-neighbors) that are instan
es of

M

0

(M) is not limited:

1

Lemma 6 If C

0

is �nitely satis�able w.r.t. T , then the equation system E

C

0

;T

has an admissible solution.

Proof. Let I be a �nite model of C

0

w.r.t. T . From I, we 
an 
onstru
t an

admissible solution for E

C

0

;T

. First, let us introdu
e some notions: for e 2 �

I

,

we de�ne the type t(e) that e is instan
e of as

t(e) := fD 2 
l(C

0

; T ) j e 2 D

I

g:

Obviously, t(e) 2 type(C

0

; T ). For T 2 type(C

0

; T ), de�ne

T

I

:= fe 2 �

I

j t(e) = Tg:

1

To see why a single instan
e suÆ
es, 
onsult the proof sket
h of Lemma 6.
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Now �x a 
hoi
e fun
tion 
h(�; �) whi
h asso
iates, with ea
h e 2 �

I

and role

R, some 
h(e;R) � �

I

su
h that

1. he; e

0

i 2 R

I

, for all e

0

2 
h(e;R),

2. #
h(e;R) � sum

>

(t(e)),

3. #(
h(e;R) \ T

I

) � max

>

(t(e)) for ea
h T 2 type(C

0

; T ), and

4. if (>nR:C) 2 t(e), then #(
h(e;R) \ C

I

) � n:

Using the semanti
s and the de�nitions of max

>

and sum

>

, it is readily 
he
ked

that su
h a 
hoi
e fun
tion exists. For ea
h mosai
 M , we then de�ne a set

M

I

:= fe 2 �

I

j t(e) = T

M

and, for all roles R and types T

0

,

if lim

R

(T

M

; T

0

); and not lim

Inv(R)

(T

0

; T

M

)

then L

M

(R; T

0

) = #(
h(e;R) \ T

0

I

);

if lim

Inv(R)

(T

0

; T

M

)

then E

M

(R; T

0

) = #fe

0

2 T

0

I

j he; e

0

i 2 R

I

gg

Finally, we set x̂

M

:= #M

I

.

In what follows, we show that fx̂

M

jM a mosai
g is an admissible solution. We

�rst establish the following 
laim:

Claim: For ea
h e 2 �

I

, there exists exa
tly one mosai
 M su
h that e 2M

I

.

Using the de�nition of mosai
s, of the setsM

I

, and of the 
hoi
e fun
tion 
h, it is

straightforward to show that, for ea
h e 2 �

I

, there exists at least one mosai
M

su
h that T

M

= t(e) and e 2M

I

. Now suppose that there exists an e 2 �

I

and

mosai
sM

1

andM

2

with e 2M

I

1

\M

I

2

. By de�nition of the setsM

I

, this implies

(i) T

M

1

= T

M

2

, (ii) L

M

1

(R; T

0

) = L

M

2

(R; T

0

) for all roles R and types T

0

with

lim

R

(T

M

1

; T

0

) and not lim

Inv(R)

(T

0

; T

M

1

), and (iii) E

M

1

(R; T

0

) = E

M

2

(R; T

0

) for

all roles R and types T

0

with lim

Inv(R)

(T

0

; T

M

1

). Using Properties 1 and 2 of

mosai
s, it is now easy to show that M

1

= M

2

. Thus, for ea
h e 2 �

I

, there

exists exa
tly one mosai
 M su
h that e 2M

I

, for whi
h obviously T

M

= t(e).

We now argue that fx̂

M

j M a mosai
g satis�es Equations (E1) to (E3) and

admissibility 
onditions (A1) and (A2). Equation (E1) is satis�ed sin
e I is a

model for C

0

: there is some e

0

2 C

I

0

implying C

0

2 t(e

0

) and, due to the 
laim,

we have x̂

M

� 1 for some mosai
 M with C

0

2 T

M

.

For (E2), let T; T

0

be types, R a role with lim

R

(T; T

0

) and not lim

Inv(R)

(T

0

; T ),

and �x some e

M

2 M

I

for ea
h M

I

6= ;. We 
laim that the following

9



(in)equalities hold whi
h 
learly implies (E2).

X

fM jT

M

=Tg

L

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

L

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

#
h(e

M

; R) \ T

0

I

� x̂

M

�

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

The �rst equality is obvious. The se
ond holds sin
e, for ea
h mosai
M and e 2

M

I

, we have #(
h(e;R)\ T

0

I

) = L

M

(R; T

0

) by de�nition of M

I

(in parti
ular

this holds if e = e

M

). The �rst inequality holds due to

� the 
laim,

� Property 1 in the de�nition of 
h, whi
h implies that 
h(e

M

; R)\ T

0

I

is a

lower bound on #fe

0

2 T

0

I

j he; e

0

i 2 R

I

g for ea
h e 2M

I

,

� a simple graph-theoreti
 reason: the number of R edges from T

I

into T

0

I

is the same as the number of Inv(R) edges from T

0

I

into T

I

, and

� the fa
t that ea
h e 2M

I

with T

M

= T

0

has the same number of in
oming

R-edges by de�nition of M

I

.

Finally, the last equation is 
learly valid by de�nition of the sets M

I

.

Equation (E3) is satis�ed with a similar yet simpler argument: let T; T

0

be

types, R a role with lim

R

(T; T

0

) and lim

Inv(R)

(T

0

; T ), and �x some e

M

2 M

I

for ea
h M

I

6= ;. Then we have

X

fM jT

M

=Tg

E

M

(R; T

0

) � x̂

M

=

X

fM jT

M

=T^M

I

6=;g

#fe

0

2 T

0

I

j he

M

; e

0

i 2 R

I

g � x̂

M

=

X

fM jT

M

=T

0

^M

I

6=;g

#fe 2 T

I

j he

M

; ei 2 Inv(R)

I

g � x̂

M

=

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

using similar arguments as for the (E2) 
ase.

Now for the admissibility of our solution. Obviously it is a non-negative

integer solution. For (A1), 
onsider types T; T

0

and a role R with lim

R

(T; T

0

),

not lim

Inv(R)

(T

0

; T ), and

X

fM jT

M

=T

0

g

E

M

(Inv(R); T ) � x̂

M

> 0:
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Hen
e there is, by de�nition of M

I

, some he

0

; ei 2 Inv(R)

I

with e

0

2 T

0

I

and

e 2 T

I

. The 
laim yields

X

fM jT

M

=Tg

x̂

M

> 0;

and thus (A1) is satis�ed.

Finally, for (A2), let M be a mosai
 with x̂

M

> 0, (>nR:C) 2 T

M

, and

m =

X

fT jC2Tg

L

M

(R; T ) +

X

fT jC2Tg

E

M

(R; T ) < n:

Hen
e there is some e

M

2 T

I

M

and e

1

; : : : ; e

n

with e

i

6= e

j

for all i 6= j and, for

all 1 � i � n, he

M

; e

i

i 2 R

I

and e

i

2 C

I

. By de�nition of M

I

and Property 4

of 
h, m < n implies that there is some e

`

su
h that not lim

Inv(R)

(t(e

M

); t(e

`

))

and not lim

R

(t(e

`

); t(e

M

)). Sin
e C 2 t(e

`

), the 
laim yields

X

fM

0

j C2T

M

0

; not lim

R

(T

M

;T

M

0

);

and not lim

Inv(R)

(T

M

0

;T

M

)g

x̂

M

0

� 1;

and (A2) is satis�ed. �

Lemma 7 If the equation system E

C

0

;T

has an admissible solution, then C

0

is

�nitely satis�able w.r.t. T .

Proof. Let fx̂

M

j M a mosai
g be an admissible solution of E

C

0

;T

. In what

follows, we 
onstru
t a �nite interpretation I from this solution. For ea
h mosai


M , �x a set

^

M su
h that #

^

M = x̂

M

. Moreover, set

P = maxfn j (> n R C) 2 
l(C

0

; T ) or (6 n R C) 2 
l(C

0

; T )g:

We de�ne

�

I

=

[

^

M � f0; : : : ; P � 1g:

In the following, we write m(e) = M if e 2

^

M and t(e) = T if e 2

^

M for some

mosai
 M with T

M

= T . For ea
h 
on
ept name A 2 C, we put

A

I

:= f(e; i) 2 �

I

j A 2 t(e)g:

Role names R 2 R are harder to deal with. We start with de�ning some

auxiliary notions. For ea
h role R 2 rol(C

o

; T ) and ea
h pair of types T; T

0

2

type(C

0

; T ) su
h that lim

R

(T; T

0

) but not lim

Inv(R)

(T

0

; T ), �x a relation




R

T;T

0

�

[

fM jT

M

=Tg

(

^

M � f0; : : : ; P � 1g) �

[

fM jT

M

=T

0

g

(

^

M � f0; : : : ; P � 1g)

su
h that
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1. for ea
h (e; i) with t(e) = T , we have

#f((e; i); (e

0

; j)) 2 


R

T;T

0

g � L

m(e)

(R; T

0

);

2. for ea
h (e; i) with t(e) = T

0

, we have

#f((e

0

; j); (e; i)) 2 


R

T;T

0

g = E

m(e

0

)

(Inv(R); T ):

Let us show that su
h a relation exists: by (E2), there exists a mapping

f :

[

fM jT

M

=Tg

^

M �

[

fM jT

M

=T

0

g

^

M ! N

su
h that

a) for ea
h e with t(e) = T , we have

X

fe

0

jt(e

0

)=T

0

g

f(e; e

0

) = L

m(e)

(R; T

0

);

b) for ea
h e

0

with t(e

0

) = T

0

, we have

X

fejt(e)=Tg

f(e; e

0

) � E

m(e

0

)

(Inv(R); T ):

Using f , we de�ne a relation

r �

[

fM jT

M

=Tg

(

^

M � f0; : : : ; P � 1g) �

[

fM jT

M

=T

0

g

(

^

M � f0; : : : ; P � 1g)

su
h that


) for ea
h (e; i) with t(e) = T , we have

#f((e; i); (e

0

; j)) 2 rg = L

m(e)

(R; T

0

);

d) for ea
h (e; i) with t(e) = T

0

, we have

#f((e

0

; j); (e; i)) 2 rg � E

m(e

0

)

(Inv(R); T ):

More pre
isely, this is done by setting

r = f((e; i); (e

0

; i

0

)) j i

0

= i+ k mod P for some k with 1 � k � f(e; e

0

)g:

Using the fa
ts that f satis�es a) and b) and that f(e; e

0

) � P for any e; e

0

, it is

readily 
he
ked that r satis�es 
) and d).

2

Finally, we 
an augment r to 


R

T;T

0

by performing, for ea
h (e; i) 2 ran(r) with

k := #f((e

0

; j); (e; i)) 2 rg < E

m(e

0

)

(Inv(R); T ); (�)

2

To see that f(e; e

0

) � P for any e; e

0

, one may use Properties 2 to 4 of mosai
s to show

that, for any M , R, and T , we have L

M

(R; T ) � P and E

M

(R; T ) � P .
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the following step:

Obviously, (�) implies E

m(e)

(Inv(R); T ) > 0. Hen
e by (A1) there exists

a mosai
 M su
h that

^

M 6= ; and T

M

= T . Fix an e

0

2

^

M . Sin
e P �

E

m(e

0

)

(Inv(R); T ), we may �x a set X � f0; : : : ; P � 1g su
h that

#X = E

m(e

0

)

(Inv(R); T )� k

and ((e

0

; j); (e; i)) =2 r for ea
h j 2 X . We augment r with the set f((e

0

; j); (e; i)) j

j 2 Xg.

We have now �nished the 
onstru
tion of 


R

T;T

0

. As an abbreviation, for ea
h

role R we de�ne

�

R

=

[

fT;T

0

2type(C

0

;T )j

lim

R

(T;T

0

) and not lim

R

�

(T

0

;T )g




R

T;T

0

:

One more relation needs to be de�ned before the interpretation of role names


an be given: for ea
h role name R and ea
h pair of types T; T

0

2 type(C

0

; T )

su
h that lim

R

(T; T

0

) and lim

R

�
(T

0

; T ), �x a relation

�

R

T;T

0

�

[

fM jT

M

=Tg

(

^

M � f0; : : : ; P � 1g) �

[

fM jT

M

=T

0

g

(

^

M � f0; : : : ; P � 1g)

su
h that

1. for ea
h (e; i) with t(e) = T , we have

#f((e; i); (e

0

; j)) 2 �

R

T;T

0

g = E

m(e)

(R; T

0

);

2. for ea
h (e; i) with t(e) = T

0

, we have

#f((e

0

; j); (e; i)) 2 �

R

T;T

0

g = E

m(e

0

)

(Inv(R); T ):

The exa
t 
onstru
tion is omitted sin
e it is very similar to those of 


R

T;T

0

: �rst


onstru
t an appropriate fun
tion f and then turn it into a relation r whi
h


an immediately be used as �

R

T;T

0

(the additional augmentation step of the


onstru
tion of 


R

T;T

0

need not be applied).

As an abbreviation, for ea
h role name R we de�ne

�

R

=

[

fT;T

0

2type(C

0

;T )j

lim

R

(T;T

0

) and lim

R

�

(T

0

;T )g

�

R

T;T

0

:

Finally, for ea
h role name R, set




R

:= fh(e; i); (e

0

; i

0

)i j not lim

R

(t(e); t(e

0

)); and not lim

R

�
(t(e

0

); t(e))g

We are now ready to de�ne the interpretation R

I

of role names:

R

I

:= 


R

[ �

R

[ (�

R

�

)

`

[ �

R

;

13



where r

`

denotes the 
onverse of the relation r.

We now show that I is a model of C

0

w.r.t. T . We �rst establish a te
hni
al


laim:

Claim 1: For all (e; i) 2 �

I

, roles R, and types T

0

with lim

Inv(R)

(T

0

; t(e)), we

have #f(e

0

; i

0

) j ((e; i); (e

0

; i

0

)) 2 R

I

and t(e

0

) = T

0

g = E

m(e)

(R; T

0

).

Proof: In the following, a \witness" is an element (e

0

; i

0

) 2 �

I

su
h that

((e; i); (e

0

; i

0

)) 2 R

I

and t(e

0

) = T

0

. We show that there are exa
tly E

m(e)

(R; T

0

)

witnesses by a 
ase distin
tion.

� Not lim

R

(t(e); T

0

) and R is a role name. It is readily 
he
ked that then

witnesses are added to R

I

only through the (�

R

�

)

`


omponent, more

pre
isely through the relation 


R

�

(T

0

;t(e))

. By Property 2 of this relation,

the number of witnesses added in this way is pre
isely E

m(e)

(R; T

0

) as

desired.

� Not lim

R

(t(e); T

0

) andR = S

�

for some role name S. Then pairs ((e

0

; i

0

); (e; i))

with t(e

0

) = T

0

are added to S

I

only through the �

S


omponent, more

pre
isely through the relation 


S

(T

0

;t(e))

. Again by Property 2 of this re-

lation and sin
e S = Inv(R), the number of tuples added in this way is

pre
isely E

m(e)

(R; T

0

) as desired.

� lim

R

(t(e); T

0

) and R is a role name. It is readily 
he
ked that witnesses are

added to R

I

only through the �

R


omponent, more pre
isely through the

relation �

R

(T

0

;t(e))

. By Property 1 of this relation, the number of witnesses

added in this way is pre
isely E

m(e)

(R; T

0

) as desired.

� lim

R

(t(e); T

0

) and R = S

�

for some role name S. Then pairs ((e

0

; i

0

); (e; i))

with t(e

0

) = T

0

are added to S

I

only through the �

S


omponent, more

pre
isely through the relation �

S

(T

0

;t(e))

. By Property 2 of this relation, the

number of tuples added in this way is pre
isely E

m(e)

(R; T

0

) as desired.

Using Claim 1 just established, we 
an now prove another 
laim whi
h is


entral for showing that I is a model of the input 
on
ept C

0

and the input

TBox T :

Claim 2: If C 2 t(e), then (e; i) 2 C

I

for ea
h i < P .

The proof is by stru
tural indu
tion. Fix an (e; i) 2 �

I

su
h that C 2 t(e).

� C is a 
on
ept name. Then e 2 C

I

follows from the de�nition of I.

� C = :D. Sin
e every 
on
ept in 
l(C

0

; T ) is in NNF, D is a 
on
ept

name. If :D 2 T , then D =2 T by de�nition of types. Thus e 2 (:D)

I

by

de�nition of I.

� C = (6 n R D). A \witness" for C is an element (e

0

; i

0

) 2 �

I

su
h that

((e; i); (e

0

; i

0

)) 2 R

I

and D 2 t(e

0

). We show that there exist at most n

witnesses.
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By de�nition, we have lim

Inv(R)

(t(e

0

); t(e)) for every witness (e

0

; i

0

). Claim 1

thus yields an exa
t bound

m =

X

fT jD2Tg

E

m(e)

(R; T )

for the number of witnesses. By Property 3 of mosai
s, we have n � m.

� C = (> n R D). Again, a \witness" for C is an element (e

0

; i

0

) 2 �

I

su
h

that ((e; i); (e

0

; i

0

)) 2 R

I

and D 2 t(e

0

). We need to show that there exist

at least n witnesses.

Firstly, for ea
h type T with lim

R

(t(e); T ) and not lim

Inv(R)

(T; t(e)), there

are at least L

m(e)

(R; T ) witnesses (e

0

; i) with t(e

0

) = T : if R is a role

name, then the fa
t that �

R

� R

I

and Property 1 of 


R

t(e);T

yield the

desired result. Similarly, if R = S

�

for some role name S, then the fa
ts

that (�

S

�

)

`

= (�

R

)

`

� S

I

and R

I

= (S

I

)

`

together with Property 1 of




R

t(e);T

yield the desired result.

Together with Claim 1 and Properties 1 and 2 of mosai
s, we thus have a

lower bound

m =

X

fT jD2Tg

L

m(e)

(R; T ) +

X

fT jD2Tg

E

m(e)

(R; T )

on the number of witnesses. If m � n, then we are done. Other-

wise, (A2) ensures that there exists a mosai
 M su
h that D 2 T

M

, not

lim

R

(t(e); T

M

), not lim

Inv(R)

(T

M

; t(e)), and

^

M 6= ;. Sin
e 


R

� R

I

, this

yields

#f((e; i); (e

0

; i

0

)) 2 R

I

j m(e

0

) =Mg = P:

Now P � n by de�nition of P and we are done.

� C = D u E and C = D t E. For this 
ase, the 
laim follows immediately

from the de�nition of types and the indu
tion hypothesis.

As a 
onsequen
e, I is a model of C

0

and T = f>

:

= C

T

g: by Equation (E1)

and due to the fa
t that x̂

M

> 0 implies #

^

M > 0, there is a mosai
 M su
h

that C

0

2 T

M

and #

^

M > 0. Fix an e 2

^

M . Claim 2 implies that (e; i) 2 C

I

0

for

i < P and thus I is a model of C

0

. Moreover, by de�nition of types, we have

C

T

2 T

M

for ea
h mosai
 M . This fa
t together with Claim 2 implies that I is

a model of T . �

Sin
e the number of mosai
s is exponential in the size of C

0

and T , the size of

E

C

0

;T

and of the admissibility 
ondition is also exponential in the size of C

0

and

T . To prove an ExpTime upper bound for the �nite satis�ability of ALCQI-


on
epts, it thus remains to show that the existen
e of an admissible solution

for the equation systems E

C

0

;T


an be de
ided in deterministi
 polynomial time.

Before we a
tually do this, we �rst �x some notation.

15



We assume linear inequalities to be of the form �

i




i

x

i

� b. Su
h an inequal-

ity is 
alled positive if b � 0. A system of linear inequalities is des
ribed by a

tuple (V; E), where V is a set of variables and E the set of inequalities. Su
h

a system is 
alled simple if all inequalities are positive and all 
oeÆ
ients are

(possibly negative) integers.

A side 
ondition for an inequality system (V; E) is a 
onstraint of the form

x > 0 =) x

1

+ � � �+ x

`

> 0; where x; x

1

; : : : x

`

2 V:

Let (V; E) be an inequality system and I a set of side 
onditions for (V; E). We

say that (V; E) admits an I-admissible solution if it admits a solution satisfying

all 
onstraints from I .

It is not hard to 
he
k that the inequality systems from De�nition 5 are

simple and that the 
onditions (A1) and (A2) 
an be polynomially transformed

into side 
onditions:

� (E1) is already simple,

� (E2) 
an obviously transformed into

P

: : :�

P

: : : � 0,

� the equality (E3) is transformed into two inequalities of the form

P

: : :�

P

: : : � 0,

� ea
h impli
ation due to (A1) is transformed into polynomially many by

using a separate side 
ondition for ea
h summand appearing in the premise

(this works sin
e we are interested in non-negative solutions only). Next,

the 
oeÆ
ients on the left-hand sides of the premise are then omitted by

dropping those side-
onditions whose 
oeÆ
ient is zero and repla
ing all

other 
oeÆ
ients with 1.

� (A2) is already in the form of a side 
ondition.

In the following, we prove that the existen
e of a non-negative, integer, and

I-admissible solution for a simple system of inequalities (V; E) and a set of side


onditions I 
an be de
ided in deterministi
 polynomial time. In the proof, we

use a lemma that was established by Calvanese in

[

5

℄

and builds on results of

Papadimitriou

[

11

℄

. We state this lemma for the sake of 
ompleteness.

Lemma 8 Let (V; E) be a system of m = #E linear inequalities in n = #V vari-

ables, in whi
h all 
oeÆ
ients and 
onstants are from the interval [�a; a℄ of inte-

gers. Then, if (V; E) has a solution in N

n

, it also has one in f0; 1; : : : ; H(V; E)g

n

,

where H(V; E) = (n+m)(ma)

2m+1

:

We 
an now establish the PTime upper bound.

Lemma 9 Let (V; E) be a simple equation system and I a set of side 
onditions

for (V; E). Then the existen
e of an integer, non-negative, and I-admissible

solution for (V; E) 
an be de
ided in (deterministi
) time polynomial in #V +

#E +#I.

16



Proof. For a positive integer k, we use E

I

(k) to denote the set of inequalities

fx � k � (x

1

+ � � �+ x

k

) j x > 0 =) x

1

+ � � �+ x

k

> 0 2 Ig:

It is readily 
he
ked that every non-negative solution of (V; E [E

I

(k)) is a (non-

negative and) I-admissible solution of (V; E). We prove the following 
laim:

Claim: There is an integer k

E

exponential in #V +#E +#I su
h that (V; E)

admits a non-negative, integer, and I-admissible solution i� (V; E [ E

I

(k

E

)) ad-

mits a non-negative (rational) solution.

Proof: Let n = #V , m = #E , and r = #I . Then we 
hoose

k

E

= (n+m+ r)(m + r)

2(m+r)+1

:

It remains to show that k

E

is as required:

For the \if" dire
tion, let S be a non-negative solution of (V; E [ E

I

(k

E

)). As

noted above, S is also a (non-negative and) I-admissible solution of (V; E). Sin
e

all inequations in (V; E) are positive, we 
an 
onvert S into an integer solution

by multiplying S with the smallest 
ommon multiplier of the denominators in

S.

Now for the \only if" dire
tion: assume that there exists an integer, non-

negative, and I-admissible solution S of (V; E). It is readily 
he
ked that this

implies the existen
e of a set P � V su
h that S is also an (integer and non-

negative) solution of the system (V; E [ E

P

), where

E

P

= fx > 0 j x 2 Pg [

fx

1

+ � � �+ x

j

> 0 j x 2 P and x > 0 =) x

1

+ � � �+ x

j

> 0 2 Ig [

fx = 0 j x 2 V n Pg:

By Lemma 8, the existen
e of S implies the existen
e of a non-negative integer

solution S

0

of (V; E[E

P

) whi
h is bounded by h

P

= H(V; E[E

P

). It is easily seen

that the solution S

0

is also an (integer and non-negative) solution of (V; E[E

I

(n))

for any n � h

P

. It remains to note that, sin
e E

P


ontains one inequality for

ea
h variable in V and at most one inequality for ea
h impli
ation in I , we have

h

P

� k

E

.

In view of the 
laim just established, it is now easy to show that the existen
e of a

non-negative integer and I-admissible solution for a simple system of inequalities

(V; E) and a set of side 
onditions I 
an be de
ided in deterministi
 polynomial

time: we may 
learly view (V; E [ E

I

(k

E

)) as a linear programming problem.

Sin
e k

E

is exponential in #V + #E + #I , the binary representation of k

E

is

polynomial in #V +#E +#I . Thus, the existen
e of a rational (non-negative)

solution for (V; E [ E

I

(k

E

)) 
an be 
he
ked in (deterministi
) time polynomial

in #V +#E +#I

[

14

℄

. �
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Putting together Lemmas 6, 7, and 9, we obtain the ExpTime upper bound.

The 
orresponding lower bound is a 
onsequen
e of the ExpTime-hardness of

unrestri
ted satis�ability of ALC w.r.t. TBoxes

[

7; 12; 13

℄

and the fa
t that this

DL has the �nite model property.

Theorem 10 Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exptime-


omplete if numbers are 
oded in unary.

If numbers in number restri
tions are 
oded binarily, the algorithm developed

in this se
tion does no longer yield an ExpTime upper bound: in this 
ase,

the number of mosai
s is double exponential in the size of the input 
on
ept

and TBox. Sin
e it is not 
lear whether and how the presented algorithm 
an

be modi�ed in order to yield an ExpTime upper bound for the 
ase of binary


oding, we resort to a di�erent approa
h to atta
king this problem: in the

next se
tion, we redu
e �nite ALCQI-satis�ability to the �nite satis�ability of

ALCFI-
on
epts. Sin
e the employed redu
tion is polynomial, in this way we

obtain an ExpTime upper bound for the �nite satis�ability of ALCQI-
on
epts

w.r.t. TBoxes, even if numbers are 
oded in binary.

4 Binary Coding of Numbers

In this se
tion, we prove that �nite ALCQI-
on
ept satis�ability w.r.t. TBoxes

is de
idable in ExpTime even if numbers are 
oded in binary. The proof is by

a redu
tion to �nite ALCFI-
on
ept satis�ability w.r.t. TBoxes. Sin
e, in the


ase of ALCFI, the size of numbers appearing in number restri
tions is 
onstant

(independently of the 
oding), the results presented in the previous se
tion imply

that �nite ALCFI-
on
ept satis�ability w.r.t. TBoxes is ExpTime-
omplete.

Thus, this logi
 is a suitable target for redu
tion. In 
ontrast to existing redu
-

tions of ALCQI to ALCFI, whi
h only work in the 
ase of potentially in�nite

models (su
h as the one presented in

[

6

℄

), we have to take spe
ial 
are to deal

with �nite models.

Before we go into te
hni
al details, let us des
ribe the intuition behind the re-

du
tion. The general idea is to repla
e 
ounting via quali�ed number restri
tions

with 
ounting via 
on
ept names: to 
ount up to a number n, we reserve 
on-


ept names B

0

; : : : ; B

dlog(n)e

representing the bits of numbers between 0 and n.

For the a
tual 
ounting, we 
an then use well-known (propositional logi
) for-

mulas that en
ode in
rementation. But how 
an we use this approa
h to 
ount

the number of role su

essors? Intuitively, we rearrange the su

essors of ea
h

domain element in a way that allows to repla
e qualifying number restri
tions

with the fun
tionality of roles provided by ALCFI and 
ounting via 
on
ept

names. Consider, for example, the domain element x and its R-su

essors dis-

played on the left-hand side of Figure 2. Ignoring the \dire
t" R-su

essors of

x on the right-hand side for a moment, it is obvious that the R-su

essors are

rearranged along a path that is built using an auxiliary role L

R

. Employing

the (6 1 R >) 
onstru
tor of ALCFI, ea
h node on this path has pre
isely one

18
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R

Figure 2: Representing role su

essor relationships.

L

R

-prede
essor and at most one L

R

-su

essor. The 
ounting via 
on
ept names

is then performed along the domain elements on L

R

-paths.

However, we 
annot gather all original R-su

essors of x on the L

R

-path.

The reason for this is as follows: assume we are at some domain element on the

L

R

-path des
ending from x and move along this domain element's outgoing R-

edge. Then we rea
h either a \real" domain element or arrive on an Inv(R)-path.

If the latter is the 
ase, we have to ensure that, moving up the Inv(R)-path, we

will �nally rea
h a \real" domain element. To do this, we 
ount the lengths of

auxiliary paths via 
on
ept names:

3

on
e we have moved up to node 0 of the

path, its prede
essor must be \real". Sin
e, however, we do not know how many

R-su

essors an obje
t had in the original model, we do not know how many bits

to reserve for this 
ounting. The solution is to gather only those R-su

essors

of x on the R-path whi
h are 
onstrained by a (6 n R C) 
on
ept applying to x

or whi
h are witnesses for a (> n R C) 
on
ept applying to x|this helps sin
e

the number of su
h domain elements is known in advan
e. All other domain

elements remain \dire
t" su

essors of x.

Fix an ALCQI-
on
ept C and an ALCQI-TBox T whose �nite satis�ability

is to be de
ided. In the following, we use 
nam(C; T ) to denote the set of


on
ept names appearing in C and T , rnam(C; T ) to denote the set of role

names appearing in C and T , and, as above, rol(C; T ) to denote the set

rnam(C; T ) [ fR

�

j R 2 rnam(C; T )g:

W.l.o.g., we assume C and T to be in NNF. In order to translate C and T to

ALCFI, we need to introdu
e some additional 
on
ept and role names:

1. a fresh (i.e., not appearing in C or T ) 
on
ept name Real;

3

this 
ounter is a di�erent one than the ones mentioned above
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2. for ea
h R 2 rnam(C; T ), a fresh 
on
ept name H

R

and a fresh role

name L

R

;

3. for ea
h 
on
ept D 2 
l(C; T ) of the form (./ n R C), where ./ is used as

a pla
eholder for > or 6, we reserve a fresh 
on
ept name X

D

;

4. again for ea
h 
on
ept D 2 
l(C; T ) of the form (./ n R C), we reserve

additional fresh 
on
ept names B

./n

C;R;0

; : : : ; B

./n

C;R;k

, where k = dlog(n+1)e;

5. for ea
h role R 2 rol(C; T ), we reserve fresh 
on
ept names B

R;0

; : : : ; B

R;k

,

where k = dlog(depth

R

)e and

depth

R

=

X

(./ n R C)2
l(C;T )

n;

The 
on
ept names B

R;i

are used to 
ount the length of auxiliary L

R

paths

as des
ribed above. The 
on
ept names B

./n

C;R;0

are also used for 
ounting: for

an ALCQI-
on
ept (./ n R C), they are used to 
ount the \o

urren
e" of

R-su

essors in C along the L

R

path, and will thus repla
e the ALCQI-
on
ept

(./ n R C). Note that the number of newly introdu
ed 
on
ept and role names

is polynomial in the size of C and T . We will use B

./n

C;R

to refer to the number

en
oded by the 
on
ept names

B

./n

C;R;0

; : : : ; B

./n

C;R;dlog(n+1)e

and B

R

to refer to the number en
oded by the 
on
ept names

B

R;0

; : : : ; B

R;dlog(depth

R

)e

:

Moreover, we will use the following abbreviations:

� (B

R

= i) to denote the ALCFI-
on
ept expressing that B

R

equals i (and

similar for B

./n

C;R

= i and the 
omparisons \<" and \>");

� in
r(B

R

; S) to denote the ALCFI-
on
ept expressing that, for all S-

su

essors, the numberB

R

is in
remented by 1 modulo depth

R

(and similar

for in
r(B

./n

C;R

; S)). More pre
isely, these 
on
epts are de�ned as follows

(we use 
on
epts C ! D as an abbreviation for :C tD):

(B

R;0

! 8S::B

R;0

) u (:B

R;0

! 8S:B

R;0

) u

u

k=1::n

�

u

j=0::k�1

B

R;j

�

!

�

(B

R;k

! 8S::B

R;k

) u (:B

R;k

! 8S:B

R;k

)

�

u

u

k=1::n

�

t

j=0::k�1

:B

R;j

�

!

�

(B

R;k

! 8S:B

R;k

) u (:B

R;k

! 8S::B

R;k

)

�

:

We 
an now indu
tively de�ne a translation 
(C) of the 
on
ept C into a

Boolean formula (whi
h is also an ALCFI-
on
ept):


(A) := A


(:C) := :
(C)


(C uD) := 
(C) u 
(D)


(C tD) := 
(C) t 
(D)


(> n R C) := X

(>n R C)


(6 n R C) := X

(6n R C)
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Now set �(C) := 
(C) u Real and, for T = f>

:

= C

T

g,

�(T ) := f>

:

= Real ! 
(C

T

)g [ Aux(C; T )

where the TBox Aux(C; T ) is de�ned in Figure 3 in whi
h we use D v E as

abbreviation for >

:

= D ! E, and in whi
h all t

:::

, u

:::

, range over all 
on
epts

in 
l(C; T ) of the form spe
i�ed. In what follows, we will use Ei to refer to the

i'th 
on
ept equation and Ei.j to refer to its j'th line.

Equations E1, E2, and E3 ensure the behaviour sket
hed above of Real, H

R

,

and the 
ounting 
on
epts B

R

and B

./n

D;R

. Equation E5 ensures that the 
ounting


on
epts B

./n

D;R

are updated 
orre
tly along an L

R

path. To guarantee that a

\real" element d satis�es \number restri
tions" X

(./ n R D)

, E4 ensures that we

see enough R-su

essors in D for at least restri
tions (> n R D) along an L

R

path starting at d, whereas E6 guarantees that we do not see too many su
h

su

essors along an L

R

path for at most restri
tions (6 n R D).

Lemma 11 C is �nitely satis�able w.r.t. T i� �(C) is �nitely satis�able w.r.t.

�(T ).

Proof. Let us start with the \if" dire
tion. Hen
e, assume that �(C) is �nitely

satis�able w.r.t. �(T ). The proof strategy is to take a �nite model of �(C) and

�(T ) and transform it into a �nite model of C and T . However, we 
annot

take an arbitrary model for this purpose, but need to sele
t a spe
ial, so-
alled

singular one: let I be a model of �(C) and �(T ). For ea
h domain element

d 2 Real

I

and ea
h R 2 rol(C; T ), we indu
tively de�ne a sequen
e of domain

elements h

d;R

0

; : : : ; h

d;R

`

d;R

as follows:

� set h

d;R

0

= d;

� set h

d;R

i+1

to the L

R

-su

essor of h

d;R

i

(whi
h is unique due to E1.3) if it

exists. Otherwise, `

d;R

= i.

The 
onstru
ted sequen
e is �nite due to the use of the B

R


ounter in E2.2,

E3.3, and E3.5. The model I is 
alled singular if, for all roles R 2 rol(C; T ),

nodes d 2 Real

I

, and i < j � `

d;R

, we have

fe j (h

d;R

i

; e) 2 R

I

g \ fe j (h

d;R

j

; e) 2 R

I

g = ;:

Claim 1. If �(C) is �nitely satis�able w.r.t. �(T ), then there is a �nite, singular

model of �(C) and �(T ).

Proof: Let I be a �nite model for �(C) and �(T ). Fix an inje
tive mapping Æ

from �

I

to f0; : : : ; (#�

I

�1)g. Then we 
onstru
t a new (�nite) interpretation

J by 
opying I suÆ
iently often and \bending R edges" from one 
opy of I

into others. More pre
isely, J is de�ned as follows:

� �

J

:= fhd; ii j d 2 �

I

and i < #�

I

g;

� A

J

:= fhd; ii 2 �

J

j d 2 A

I

g for all 
on
ept names A;
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>

:

= u

R2rol(C;T )

8R:(Real tH

Inv(R)

) u

8L

R

:H

R

u

(6 1 L

R

>) u

u

(./ n R D)

�

X

(./ n R D)

$ 8L

R

:X

(./ n R D)

�

u

u

R2rol(C;T )

u

A2
nam(C;T )

(A$ 8L

R

:A) u

u

D

:
(D)! 
( _:(D))

Real v u

R2rol(C;T )

:H

R

u

8L

R

:(B

R

= 0) u

(6 0 L

�

R

>) u

u

(./ n R D)

�

X

(./ n R D)

! 8L

R

:(B

./n

D;R

= 0)

�

u

u

(6 n R D)

�

X

(6n R D)

! 8R::
(D)

�

u

u

(> n R D)

with n>0

�

X

(>n R D)

! 9L

R

:>

�

H

R

v (= 1 R >) u

(= 1 L

�

R

>) u

in
r(B

R

; L

R

) u

(B

R

= 0)! 9L

�

R

:Real u

(B

R

= (depth

R

� 1))! (6 0 L
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Figure 3: The TBox Aux(C; T ).
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� L

J

R

:= f(hd; ii; he; ii) 2 �

J

��

J

j (d; e) 2 L

I

R

g for all role names L

R

with

R 2 rol(C; T );

� R

J

:= f(hd; ii; he; (Æ(d) + i mod #�

I

)i) j (d; e) 2 R

I

g for all role names

R appearing in C or T .

It is straightforward to 
he
k that J is a singular model for �(C) and �(T ),

whi
h �nishes the proof of Claim 1.

Before we 
ontinue, let us state an important property of the sequen
es of

domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

:

(�) Let d; e 2 Real

I

su
h that d 6= e and R 2 rol(C; T ). Then, for all i � `

d;R

,

and j � `

e;R

, we have h

d;R

i

6= h

e;R

j

. This is an easy 
onsequen
e of the


hoi
e of the elements h

d;R

and h

e;R

together with E2.3 and E3.2.

Now let I be a singular, �nite model for �(C) and �(T ) and �x, for ea
h

d 2 Real

I

and R 2 rol(C; T ), a sequen
e of domain elements h

d;R

0

; : : : ; h

d;R

`

d;R

as

above. We use I to de�ne an interpretation J as follows:

�

J

:= Real

I

A

J

:= A

I

\ Real

I

R

J

:= f(d; e) 2 �

J

��

J

j 9i � `

d;R

; k � `

e;Inv(R)

: (h

d;R

i

; h

e;Inv(R)

j

) 2 R

I

g

It remains to establish the following 
laim:

Claim 2. For all d 2 �

J

and D 2 
l(C; T ), d 2 
(D)

I

implies d 2 D

J

.

For assume that Claim 2 is true. Sin
e J is a model of �(C), by de�nition

of � there exists a d 2 (
(C) u Real)

I

. Clearly we have d 2 �

J

and thus

Claim 2 yields d 2 C

J

. Hen
e, J is a model of C. By de�nition of �(T ) and

the semanti
s, we have Real

I

= (
(C

T

) \ Real)

I

. Together with Claim 2 and

de�nition of J , we obtain �

J

= C

J

T

and thus J is a model of T .

We prove Claim 2 by indu
tion on the norm jj � jj of 
on
epts D whi
h is

de�ned indu
tively as follows:

jjAjj := jj:Ajj := 0 for A 
on
ept name

jjC

1

u C

2

jj := jjC

1

t C

2

jj := 1 + jjC

1

jj+ jjC

2

jj

jj(> n R D)jj := jj(6 n R D)jj := 1 + jjDjj

Let d 2 �

J

\ 
(D)

I

for some D 2 
l(C; T ). Then d 2 Real

I

. Sin
e C and T

are in NNF, D is also in NNF. We only treat the interesting 
ases:

� Let D = (> n R E) and d 2 
(D)

I

= (X

(>n R E)

)

I

. By E1.4, we have

h

d;R

i

2 (X

(>n R E)

)

I

for 1 � i � `

d;R

. Hen
e, by exploiting the 
ounter

B

>n

E;R

and its use in E2.4, E2.6, E4, and E5, it is straightforward to show

that there exist a subset I � f1; : : : ; `

d;R

g of 
ardinality at least n su
h

that, for ea
h i 2 I , there exists an e

i

2 �

I

su
h that (h

d;R

i

; e

i

) 2 R

I

and
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e

i

2 
(E)

I

. Due to singularity, we have that i 6= j implies e

i

6= e

j

for all

i; j 2 I . By E1.1, we have e

i

2 Real

I

or e

i

2 H

Inv(R)

for all i 2 I . Using

the 
ounter B

Inv(R)

and E3.2, E3.3, E3.4, it is thus readily 
he
ked that,

for ea
h i 2 I , there exists an f

i

2 �

I

su
h that f

i

2 Real

I

and e

i

appears

among the h

f

i

;Inv(R)

0

; : : : ; h

f

i

;Inv(R)

`

f

i

;Inv(R)

. By Property (�), i 6= j implies f

i

6= f

j

for all i; j 2 I . By de�nition of J , we have (d; f

i

) 2 R

J

for ea
h i 2 I :

{ if R is a role name, then this is an immediate 
onsequen
e of the

de�nition of J ;

{ if R = S

�

for some role name S, then (f

i

; d) 2 S

J

by de�nition of

J . The semanti
s yields (d; f

i

) 2 R

J

.

It thus remains to verify that f

i

2 E

J

: 
learly, 
(E) is a Boolean formula

over the set of 
on
ept names


nam(C; T ) [ fX

F

j F = (./ n R F

0

) 2 
l(C; T )g:

Sin
e e

i

2 
(E)

I

, E1.4 and E1.5 thus yield f

i

2 
(E)

I

for ea
h i 2 I .

Sin
e f

i

2 Real

I

, it remains to apply the indu
tion hypothesis.

� Let D = (6 n R E) and d 2 
(D)

I

= (X

(6n R E)

)

I

. Assume that there

exists a subset W � �

J

of 
ardinality greater than n su
h that, for ea
h

e 2 W , we have (d; e) 2 R

J

and e 2 E

J

. By de�nition of J , this

implies that, for ea
h e 2 W , there are s

e

� `

d;R

and t

e

� `

e;R

su
h that

(h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

:

{ if R is a role name, then this is an immediate 
onsequen
e of the

de�nition of J ;

{ if R = S

�

for some role name S, then (d; e) 2 R

I

implies (e; d) 2 S

I

.

By de�nition of J , this means that there are s

e

� `

d;R

and t

e

� `

e;R

su
h that (h

e;S

t

e

; h

d;R

s

e

) 2 S

I

. By semanti
s and sin
e S = Inv(R), we

obtain (h

d;R

s

e

; h

e;Inv(R)

t

e

) 2 R

I

.

We 
learly have W � Real

I

. We prove the following three Properties:

1. e 6= e

0

implies h

d;R

s

e

6= h

d;R

s

e

0

for all e; e

0

2 W . By Property (�), e 6= e

0

implies h

e;Inv(R)

t

e

6= h

e

0

;Inv(R)

t

e

0

for all e; e

0

2 W . Thus, E3.1 yields

h

d;R

s

e

6= h

d;R

s

0

e

if e 6= e

0

.

2. h

e;Inv(R)

t

e

2 
(E)

I

for ea
h e 2 W . Suppose that e =2 
(E)

I

. Then

e 2 (:
(E))

I

and, by E1.6, e 2 
( _:E)

I

. Sin
e e 2 Real

I

and we are

performing indu
tion over the norm of 
on
epts rather than standard

stru
tural indu
tion, the indu
tion hypothesis yields e 2 ( _:E)

J

, a


ontradi
tion to e 2 E

J

. Thus, e 2 
(E)

I

. Sin
e 
(E) is a Boolean

formula, it follows from E1.4 and E1.5 that h

e;Inv(R)

t

e

2 
(E).
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3. s

e

6= 0 for all e 2 W . For assume that s

e

= 0. Then h

d;R

s

e

= d. By

E2.5 and sin
e d 2 (X

(6n R E)

)

I

and (d; h

e;Inv(R)

t

e

) 2 R

I

, this yields

h

e;Inv(R)

t

e

2 (:(
(E)))

I

in 
ontradi
tion to Property 2.

Properties 1 to 3 imply the existen
e of a subset I � f1; : : : ; `

d;R

g of


ardinality greater than n su
h that, for ea
h i 2 I , there exists an e 2 �

I

with (h

d;R

i

; e) 2 R

I

and e 2 
(E)

I

. Exploiting the 
ounter B

6n

E;R

and its

use in E2.4, E5, and E6, it is readily 
he
ked that this is a 
ontradi
tion

to I being a model for Aux(C; T ).

Now for the \only if" dire
tion: let I be a �nite model of C and T . For

ea
h d 2 �

I

and ea
h R 2 rol(C; T ), �x a subset W

d;R

� �

I

of 
ardinality at

most depth

R

su
h that the following 
onditions are satis�ed:

1. (d; e) 2 R

I

for all e 2W

d;R

;

2. for all (> n R D) 2 
l(C; T ) with d 2 (> n R D)

I

, we have

#fe 2W

d;R

j e 2 D

I

g � n;

3. for all (6 n R D) 2 
l(C; T ) with d 2 (6 n R D)

I

, we have

fe 2 �

I

j (d; e) 2 R

I

and e 2 D

I

g �W

d;R

;

Using the semanti
s and the de�nition of depth

R

, it is easy to show that su
h

subsets indeed exist. Next, �x a linear ordering on W

d;R

, i.e., an inje
tive

mapping �

d;R

:W

d;R

�! f0; : : : ;#W

d;R

� 1g. We use these mappings to de�ne

a �nite model J of �(C) w.r.t. �(T ) as follows:

� �

J

= �

I

[ fx

d;R;e

j d 2 �

I

; R 2 rol(C; T ); and e 2W

d;R

g;

� A

J

= A

I

[ fx

d;R;e

j d 2 A

I

; R 2 rol(C; T ); and e 2 W

d;R

g for all

A 2 
nam(C; T );

� X

J

(./ n R D)

= (./ n R D)

I

[ fx

d;R;e

j d 2 (./ n R D)

I

and e 2 W

d;R

g for

all (./ n R D) 2 
l(C; T );

� Real

J

= �

I

;

� H

J

R

= fx

d;R;e

j d 2 �

I

and e 2 W

d;R

g for all R 2 rol(C; T );

� For ea
h R 2 rol(C; T ), the 
ounter B

R

is de�ned as follows: B

R

= 0 for

all instan
es of Real

J

; for the instan
es of H

J

R

, we de�ne B

R

as follows:

B

R

= i for those x

d;R;e

2 H

J

R

with �

d;R

(e) = i;

25



� For ea
h 
on
ept D 2 
l(C; T ) with D of the form (./ n R D), the


ounter B

./n

D;R

is de�ned as follows: B

./n

D;R

= 0 for all instan
es of Real

J

;

for instan
es x

d;R;e

of H

J

R

, we set

B

./n

D;R

= #fe

0

2 W

d;R

j �

d;R

(e

0

) < �

d;R

(e) and e

0

2 D

I

g;

� R

I

= f(x

d;R;e

; x

e;Inv(R);d

) j d; e 2 �

I

with e 2W

d;R

and d 2W

e;Inv(R)

g [

f(x

d;R;e

; e) j d; e 2 �

I

with e 2W

d;R

and d =2W

e;Inv(R)

g [

f(d; x) j d 2 Real

J

; (d; e) 2 R

I

and x = x

e;Inv(R);d

or

x = e and d 62W

e;Inv(R)

g

for all R 2 rnam(C; T );

� L

R

= f(d; x

d;R;e

) j d 2 �

I

; e 2W

d;R

; and �

d;R

(e) = 0g [

f(x

d;R;e

; x

d;R;e

0

) j d 2 �

I

; e; e

0

2 W

d;R

; and �

d;R

(e

0

) = �

d;R

(e) + 1g:

Sin
e the translation �(C) of an ALCQI-
on
ept C is a Boolean formula, it is

trivial to prove the following 
laim by stru
tural indu
tion (using the de�nition

of J ):

Claim 3. For all d 2 �

I

and D 2 
l(C; T ), d 2 D

I

implies d 2 
(D)

J

.

Sin
e I is a model of C, Claim 3 
learly implies that there is a d 2 �

I

su
h

that d 2 
(C)

J

. By de�nition of Real

J

, we thus have d 2 �(C)

J

and thus

J is a model of �(C). Moreover, also by Claim 3 J is a model of the TBox

f
(D)

:

= 
(E) j D

:

= E 2 T g. Sin
e it is tedious but straightforward to verify

that J is also a model of the TBox Aux(C; T ) (details are left to the reader),

J is thus a model of �(T ). �

Taking together Theorem 10, whi
h implies that �nite satis�ability of ALCFI-


on
epts w.r.t. TBoxes is in ExpTime, and Lemma 11, we obtain the following

theorem:

Theorem 12 Finite satis�ability of ALCQI-
on
epts w.r.t. TBoxes is Exptime-


omplete if numbers are 
oded in binary.

5 ABox Consisten
y

In this se
tion, we extend the 
omplexity bounds obtained in Se
tions 3 and 4

to a more general reasoning task: �nite ALCQI-ABox 
onsisten
y. As noted

in the introdu
tion, ABoxes 
an be understood as des
ribing a\snapshot" of

the world. We should like to note that (�nite) ALCQI-ABox 
onsisten
y has

important appli
ations: whereas �nite ALCQI-
on
ept satis�ability algorithms


an be used to de
ide the 
onsisten
y of 
on
eptual database models and in-

fer impli
it IS-A relationships as des
ribed in the introdu
tion, ALCQI-ABox


onsisten
y 
an be used as the 
ore 
omponent of algorithms de
iding 
on-

tainment of 
onjun
tive queries w.r.t. 
on
eptual database models|a task that

DLs have su

esfully been used for and that 
alls for �nite model reasoning

[

2;

10

℄

.
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De�nition 13 (ABox) Let O be a 
ountable in�nite set of obje
t names. An

ABox assertion is an expression of the form a : C or (a; b) : R, where a and

b are obje
t names, C is a 
on
ept name, and R a role name. An ABox is a

�nite set of ABox assertions.

Interpretations I are extended to ABoxes as follows: additionally, the in-

terpretation fun
tion �

I

maps ea
h obje
t name to an element of �

I

su
h that

a 6= b implies a

I

6= b

I

for all a; b 2 O (the so-
alled unique name assumption).

An interpretation I satis�es an assertion a : C if a

I

2 C

I

and an assertion

(a; b) : R if (a

I

; b

I

) 2 R

I

. It is a model for an ABox A if it satis�es all asser-

tions in A. An ABox is 
alled �nitely 
onsistent if it has a �nite model. �

In the following, we will polynomially redu
e �nite ALCQI-ABox 
onsisten
y

to �nite ALCQI-
on
ept satis�ability. Thus, we prove that ALCQI-ABox 
on-

sisten
y is ExpTime-
omplete independently of the way in whi
h numbers are


oded. We start with �xing some notation.

Let A be an ABox and T a TBox. For ea
h obje
t name a used in A, re


A

(a)

denotes the set of role names R su
h that

f(a; a) : R; (a; a) : R

�

g \ A 6= ;:

For ea
h obje
t a and role R 2 rol(A; T ), N

A

(a;R) denotes the set of obje
t

names b su
h that b 6= a and

f(a; b) : R; (b; a) : Inv(R)g \ A 6= ;:

Moreover, we use 
l(A; T ) to denote the smallest set 
ontaining all sub-
on
epts

of 
on
epts appearing in A and T that is 
losed under _:. It 
an easily be shown

that the 
ardinality of 
l(A; T ) is linear in the size of A and T . We use rol(A; T )

to denote the set of all roles (i.e., role names or inverses of role names) used in

A or T .

De�nition 14 (Type) A type T for an ABox A and a TBox T is de�ned as

in De�nition 3 where 
l(C

0

; T ) is repla
ed with 
l(A; T ). �

In the following, we will sometimes identify types T with the 
onjun
tion u

C2T

C

and write, e.g., d 2 T

I

for d 2 ( u

C2T

C)

I

. Again, the number of types for an

ABox A and a TBox T is exponential in the size of A and T . The 
entral notion

in the redu
tion of �nite ALCQI-ABox 
onsisten
y to �nite ALCQI-
on
ept

satis�ability is that of a redu
tion 
andidate:

De�nition 15 (Redu
tion Candidate) Let A be an ABox and T a TBox.

A redu
tion 
andidate for A and T is a fun
tion t that maps ea
h obje
t name a

appearing in A to a type t(a) for A and T su
h that a : C 2 A implies C 2 t(a).

Let t be a redu
tion 
andidate for A and T . For ea
h obje
t a, role R 2 rol(A; T ),

and type T 2 ran(t) we use #

A

t

(a;R; T ) to denote the number of obje
ts b su
h

that b 2 N

A

(a;R) and t(b) = T .
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Now, for ea
h obje
t a used in A, we de�ne a redu
tion 
on
ept C

A

t

(a) as

follows:

C

A

t

(a) := t(a) uX u u

R2re


A

(a)

9R:(t(a) uX) u

u

R2rol(A;T )

u

T2ran(t)

(> #

A

t

(a;R; T ) R (T u :X));

where X is a 
on
ept name not used in A and T . The redu
tion 
andidate t is


alled realizable i�, for every obje
t a used in A, the redu
tion 
on
ept C

A

t

(a)

is �nitely satis�able w.r.t. T . �

First we establish a te
hni
al lemma.

Lemma 16 Let A be an ABox, T a TBox, t a redu
tion 
andidate for A and T ,

and a an obje
t name used in A. If the redu
tion 
on
ept C

A

t

(a) is �nitely

satis�able w.r.t. T , then there exists a �nite model I of T and C

A

t

(a) and some

d 2 (C

A

t

(a))

I

su
h that, for all roles R, (a; a) : R 2 A implies (d; d) 2 R

I

.

Proof. Let I be a model of C

A

t

(a) and T and let d 2 (C

A

t

(a))

I

. We 
onstru
t

a new interpretation I

00

in two steps:

1. De�ne a new interpretation I

0

as follows:

� �

I

0

= �

I

� f0; 1g;

� A

I

0

= f(d; i) 2 �

I

0

j d 2 A

I

g for all 
on
ept names A;

� R

I

0

= f((d; i); (e; j)) j (d; e) 2 R

I

and i 6= jg for all role names R.

Again, using stru
tural indu
tion, it is readily 
he
ked that, for ea
h d 2

�

I

and C 2 
l(A; T ), d 2 C

I

implies (d; i) 2 C

I

0

for i 2 f0; 1g. Thus

(d; 0) 2 (C

A

t

(a))

I

0

(the same holds for (d; 1)) and I

0

is a model of T .

Moreover, I

0


learly satis�es the following property: for all roles R 2

rol(A; T ) and d 2 �

I

0

, we have (d; d) =2 R

I

0

.

2. We now 
onstru
t the interpretation I

00

from I

0

. Sin
e the inner stru
ture

of elements from �

I

0

is not important, we hen
eforth refer to (d; 0) as d

0

.

For ea
h role name R 2 re


A

(a), �x a domain element e

R

2 �

I

0

su
h that

(d

0

; e

R

) 2 R

I

0

and e

R

2 t(a)

I

0

. Su
h domain elements exist sin
e C

A

t

(a)


ontains the 
onjun
t u

R2re


A

(a)

9R:(t(a) u X). The interpretation I

00

is

now de�ned as follows:

� �

I

00

= �

I

0

;

� A

I

00

= A

I

0

for all 
on
ept names A;

� R

I

00

= R

I

0

for all role names R =2 re


A

(a);

� R

I

00

= (R

I

0

n f(d

0

; e

R

)g)[ f(d

0

; d

0

); g: for all role names R 2 re


A

(a).
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Using stru
tural indu
tion, it is not hard to 
he
k that, for ea
h d 2 �

I

0

and

C 2 
l(A; T ), d 2 C

I

0

implies d 2 C

I

00

. Thus, d

0

2 (C

A

t

(a))

I

00

and I

00

is a

model of T . Moreover, (a; a) : R 2 A implies (d

0

; d

0

) 2 R

I

00

: this is true by

de�nition of re


A

and I

00

if R is a role name. If R = S

�

for some role name S,

then (a; a) : R 2 A implies S 2 re


A

. Thus (d

0

; d

0

) 2 S

I

00

by de�nition of I

00

.

By semanti
s, we obtain (d

0

; d

0

) 2 S

I

00

as required. �

The following lemma des
ribes the relationship between ABoxes and redu
tion


andidates.

Lemma 17 Let A be an ABox and T a TBox. A is �nitely 
onsistent w.r.t. T

i� there exists a realizable redu
tion 
andidate for A and T .

Proof. For the \only if" dire
tion, let I be a model of A and T . We 
onstru
t

a redu
tion 
andidate t as follows:

for ea
h obje
t a in A, set t(a) = fD 2 
l(A; T ) j a

I

2 D

I

g.

It remains to prove that t is realizable. Let a be an obje
t in A. We 
onstru
t

a model I

00

of C

A

t

(a) from I in two steps as follows: �rst, 
onstru
t I

0

from I

as in the proof of Lemma 16 and set

X

I

0

= f(d; 0) 2 �

I

0

j d 2 �

I

g:

Then I

00

is obtained from I

0

by \bending some R edges", everything else is

un
hanged: for ea
h role name R 2 re
A(a), set

R

I

00

= R

I

0

n f((a

I

; 0); (a

I

; 1)); ((a

I

; 1); (a

I

; 0))g [

f((a

I

; 0); (a

I

; 0)); ((a

I

; 1); (a

I

; 1))g:

It 
an be easily veri�ed that I

00

is indeed a �nite model of C

A

t

(a) w.r.t. T .

For the \if" dire
tion, assume that there exists a realizable redu
tion 
andi-

date t for A and T . This implies that, for ea
h obje
t name a used in A, there

is a �nite model I

a

of C

A

t

(a) and T . For ea
h su
h model I

a

, �x a domain

element d

a

2 �

I

a

su
h that d

a

2 (C

A

t

(a))

I

a

. By Lemma 16, we may w.l.o.g.

assume that, for all obje
t names a used in A and roles R, (a; a) : R 2 A implies

(d

a

; d

a

) 2 R

I

a

. Moreover, we assume that a 6= b implies �

I

a

\�

I

b

= ;.

In the following, we use the models I

a

to 
onstru
t a (�nite) model I of A

and T . First �x, for ea
h obje
t name a used in A and ea
h role R 2 rol(A; T ),

an inje
tive fun
tion �

a

from N

A

(a;R) to �

I

a

su
h that, for all b 2 N

A

(a;R),

we have (d

a

; �

a

(b)) 2 R

I

a

and �

a

(b) 2 (t(b) u :X)

I

a

. Su
h fun
tions do 
learly

exist due to the 
onjun
t u

R2rol(A;T )

u

T2ran(t)

(> #

A

t

(a;R; T ) R (Tu:X)) of C

A

t

(a).

Then de�ne the interpretation I as follows:

� �

I

:=

S

a used in A

�

I

a

;

� A

I

:=

S

a used in A

A

I

a

for all 
on
ept names A;
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� R

I

:=

S

a used in A

�

(R

I

a

n

S

b2N

A

(a;R)

f(d

a

; �

a

(b))g) [

S

b2N

A

(a;R)

f(d

a

; d

b

)g

�

for

all role names R;

� a

I

:= d

a

for ea
h obje
t name a used in A.

It is straightforward to prove the following 
laim using stru
tural indu
tion:

Claim: for ea
h obje
t name a used in A, d 2 �

I

a

, and C 2 
l(A; T ), d 2 C

I

a

implies d 2 C

I

.

It is thus readily 
he
ked that I is indeed a (�nite) model of A and T :

1. Let a : C 2 A. Then the 
laim together with d

a

2 (C

A

t

(a))

I

a

yields

a

I

= d

a

2 C

I

sin
e t(a) is a 
onjun
t of C

A

t

(a) and a : C 2 A implies

C 2 t(a).

2. Let (a; a) : R 2 A. Sin
e a

I

= d

a

, we have (a

I

; a

I

) 2 R

I

a

by 
hoi
e of I

a

.

Sin
e d

a

2 X

I

a

by de�nition of C

A

t

(a) and, for ea
h b 2 N

A

(a;R), �

a

(b) 2

(:X)

I

a

by de�nition of �

b

, we have a

I

=2 dom(�

a

). Thus, (a

I

; a

I

) 2 R

I

a

implies (a

I

; a

I

) 2 R

I

, both if R is a role name and if R is the inverse of

a role name.

3. Let (a; b) : R 2 A where a 6= b. If R is a role name, then (a

I

; b

I

) 2 R

I

by de�nition of I. If R = S

�

for some role name S, then we have a 2

N

A

(b; S). Thus, (b

I

; a

I

) 2 S

I

by de�nition of I implying (a

I

; b

I

) 2 S

I

by the semanti
s.

4. Finally, the 
laim together with the fa
t that, for ea
h obje
t name a used

in A, I

a

is a model of T 
learly implies that I is also a model of T .

�

It is now easy to establish a tight 
omplexity bound for �nite ALCQI-ABox


onsisten
y.

Theorem 18 Finite ALCQI-ABox 
onsisten
y w.r.t. TBoxes is ExpTime-


omplete if numbers are 
oded in binary.

Proof. Let A be an ABox and T a TBox. Sin
e the number of types for A and

T is exponential in the size of A and T and the number of obje
t names used

in A is linear in the size of A, the number of redu
tion 
andidates for A and T

is exponential in the size of A and T . Thus, to de
ide �nite 
onsisten
y of A

w.r.t. T , we may simply enumerate all redu
tion types for A and T and 
he
k

them for realizability: by Lemma 17, A is �nitely 
onsistent w.r.t. T if we �nd

a realizable redu
tion type. Sin
e the size of the redu
tion 
on
epts is 
learly

polynomial in the size of A and T , by Theorem 12 the resulting algorithm 
an

be exe
uted in deterministi
 time exponential in A and T . �
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Note that our 
hoi
e of the unique name assumption is not 
ru
ial for this

result: if we want to de
ide �nite 
onsisten
y of an ABox A without the unique

name assumption, we may use the following approa
h: enumerate all possible

partitionings of the obje
t names used in A. For ea
h partitioning, 
hoose a

representative for ea
h partition and then repla
e ea
h obje
t name with the

representative of its partition. Obviously, the ABox A is �nitely 
onsistent

without the unique name assumption if and only if any of the resulting ABoxes

is �nitely 
onsistent with the unique name assumption. Clearly, this yields an

ExpTime upper bound for �nite ABox 
onsisten
y without the unique name

assumption.

6 Outlook

In this paper, we have determined �nite model reasoning in the des
ription

logi
 ALCQI to be ExpTime-
omplete. This shows that reasoning w.r.t. �nite

models is not harder than reasoning w.r.t. arbitrary models, whi
h is known

to be also ExpTime-
omplete

[

6

℄

. We hope that, ultimately, this resear
h will

lead to the development of �nite model reasoning systems that behave equally

well as existing DL reasoners doing reasoning w.r.t. arbitrary models. Note,

however, that the 
urrent algorithm is best-
ase ExpTime sin
e it 
onstru
ts

an exponentially large equation system. It 
an thus not be expe
ted to have an

a

eptable runtime behaviour if implemented in a naive way. Nevertheless, we

believe that the use of equation systems and linear programming is indispensable

for �nite model reasoning in ALCQI. Thus, e�orts to obtain eÆ
ient reasoners

should perhaps 
on
entrate on methods to avoid best-
ase exponentiality su
h as

on-the-
y 
onstru
tion of equation systems. Moreover, the redu
tions presented

in Se
tion 4 and 5 
an also not be expe
ted to exhibit an a

eptable run-time

behaviour and it would thus be interesting to try to repla
e them by more

\dire
t" methods.

Theoreti
ally, there exist at least two interesting dire
tions in whi
h the

presented resear
h 
an be 
ontinued: �rst, while �nite ALCQI-
on
ept satis�a-

biltiy w.r.t. TBoxes is suÆ
ient for reasoning about 
on
eptual database models

as des
ribed in the introdu
tion, �nite ALCQI-ABox 
onsisten
y it is not yet

suÆ
ient for de
iding the 
ontainment of 
onjun
tive queries w.r.t. a given 
on-


eptual model|an intermediate redu
tion step is required. It would thus be

interesting to analyze the 
omplexity of query 
ontainment in �nite models. We

believe that it is possible to obtain an ExpTime upper bound by building on

the results presented in Se
tion 5. Se
ondly, it would be interesting to extend

ALCQI with nominals, i.e. with 
on
ept names interpreted as singleton sets.

Finite and standard reasoning in the resulting DL ALCQOI is known to be

NExpTime-hard

[

16

℄

. An extension in this dire
tion is rather 
hallenging sin
e

the results established in this paper 
ru
ially rely on the fa
t that adding dis-

joint 
opies of a model preserves the model's properties. Unfortunately, in the

presen
e of nominals, this is no longer true.
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