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Abstract

We analyze the complexity of finite model reasoning in the description
logic ALCQZ, i.e. ALC augmented with qualifying number restrictions,
inverse roles, and general TBoxes. It turns out that all relevant reasoning
tasks such as concept satisfiability and ABox consistency are ExXpTIME-
complete, regardless of whether the numbers in number restrictions are
coded unarily or binarily. Thus, finite model reasoning with ALCQOT is
not harder than standard reasoning with ALCQOT.

1 Motivation

Description logics (DLs) are a family of logical formalisms that originated in
the field of knowledge representation and are nowadays used in a wide range
of applications [1]. Similar to many modal logics (to which DLs are closely
related), most description logics enjoy the finite model property (FMP). This
is, for example, the case for the basic propositionally closed DL ALC that is well-
known to be a notational variant of the multi-modal logic K [13]: satisfiability
of ALC-concepts (the DL equivalent of a formula) w.r.t. finite models coincides
with the satisfiability of ALC-concepts w.r.t. arbitrary models [13]. However,
there also exist description logics that do not enjoy FMP. A rather important
example for such a DL is ALCQZ, which is obtained from ALC by adding
qualifying number restrictions (corresponding to graded modalities in modal
logic), the inverse role constructor (inverse modalities), and general TBoxes
(roughly corresponding to the universal modality).

The fact that ALCOT lacks FMP becomes particularly important if we con-
sider this logic’s most prominent application, which is reasoning about con-
ceptual database models: if such a model is described by one of the standard
formalisms—namely ER diagrams for relational databases and UML diagrams
for object-oriented databases—then it can be translated into a DL TBox, i.e. a
set of concept equations; afterwards, a description logic reasoner such as FaCT
and RACER can be used to detect inconsistencies and to infer implicit IS-A re-



lationships between entities/classes [3]. This useful and original application has
already led to the implementation of tools that provide a GUI for specifying
conceptual models, automatize the translation into description logics, and dis-
play the information returned by the DL reasoner [8]. When doing reasoning
about databases, one is clearly interested in reasoning w.r.t. finite models since
models describe databases, and these are finite objects. However, all available
DL reasoning systems are performing reasoning w.r.t. arbitrary (as opposed to
finite) models. Since it is well-known that there exist ER and UML diagrams
which are satisfiable only in infinite models [15], this means that some inconsis-
tencies and IS-A relationships will not be detected if existing DL reasoners are
used for reasoning about conceptual models.

The main reason for existing DL reasoners to perform only reasoning w.r.t.
arbitrary models is that finite model reasoning in description logics such as
ALCQT is not yet well-understood. The only known algorithm is presented
by Calvanese in [4], where he proves that reasoning in ALCQT is decidable in
2-EXPTIME. The purpose of this paper is to improve the understanding of finite
model reasoning in description logics by establishing tight EXPTIME complexity
bounds for finite model reasoning in the DL ALCQT. More precisely, in this
paper we present the following results:

In Section 3, we develop an algorithm that is capable of deciding the fi-
nite satisfiability of ALCQZ-concepts w.r.t. TBoxes. Similar to Calvanese’s
approach, the core idea behind our algorithm is to translate a given satisfia-
bility problem into a set of linear equations that can then be solved by linear
programming methods. The main difference to Calvanese’s approach is that our
equation systems talk about certain components of models, so-called mosaics,
which allows us to keep the size of equation systems exponential in the size of
the input. In this way, we improve the best-known 2-EXPTIME upper bound to
a tight EXPTIME one.

Since the approach presented in Section 3 presupposes unary coding of the
numbers occurring inside qualifying number restrictions, in Section 4 we con-
sider finite model reasoning in ALCQ7 with numbers coded in binary. We give
a polynomial reduction of ALCQT-concept satisfiability w.r.t. TBoxes to the
satisfiability of ALCFZ-concept satisfiability w.r.t. TBoxes, where ALCFT is
obtained from ALC QT by allowing only the number 1 to be used in number re-
strictions. Since finite model reasoning in ALCF7T is in EXPTIME by the results
from Section 3 (the coding of numbers is not an issue here), we obtain a tight
ExPTIME bound for finite model reasoning in ALC QT with numbers coded in
binary.

Finally, in Section 5 we consider the finite satisfiabiliy of ABoxes w.r.t.
TBoxes. Intuitively, ABoxes describe a particular state of affairs, a “snapshot”
of the world. By a reduction to (finite) concept satisfiability, we are able to
show that this reasoning task is also ExXpPTiME-complete, independently of the
way in which numbers are coded.



2 Preliminaries

We introduce syntax and semantics of ALCQT.

Definition 1 (ALCQT Syntax) Let R and C be disjoint and countably infi-
nite sets of role and concept names. A role is either a role name R € R or the
inverse R~ of a role name R € R. The set of ALCQT-concepts is the smallest
set satisfying the following properties:

e cach concept name A € C is an ALCQZL-concept;

e if C and D are ALCQT-concepts, R is a role, and n a natural number,
then =C, CMD, CUD, (<n RCQC), and (= n R C) are also ALCQT-
concepts.

A concept equation is of the form C = D for C,D two ALCQT-concepts. A
TBox is a finite set of concept equations. O

As usual, we use the standard abbreviations — and < as well as IR.C' for
(> 1R C), VR.C for (< 0 R =C), T to denote an arbitrary propositional
tautology, and L as abbreviation for —=T. To avoid roles like (R~)~, we define a
function Inv on roles such that Inv(R) = R~ if R is a role name, and Inv(R) = S
if R = S7. The fragment ALCFT of ALCQT is obtained by admitting only
atmost restrictions (< n R C) with n € {0,1} and only atleast restrictions
(=n RC) withn € {1,2}.

Definition 2 (ALCQT Semantics) An interpretation T is a pair (AL, 1) where
AT is a non-empty set and -~ is a mapping which associates

o with each concept name A a set AT C AT and
e with each role name R, a binary relation R C AT x AT,

The interpretation of inverse roles and complexr concepts is then defined as fol-
lows:

(R‘)i = {A<§7d> |I<d7 e) € R}
coor Zoorape
(CuD) = CcTuD?
(KnRC)Y = {d|#{e€C?|(de)e R} <n}
(znRC)Y = {d|#{e€C?|(de) € R"} >n}

An interpretation T satisfies a concept equation C = D if C* = DT, and T is
called a model of a TBox T if T satisfies all concept equations in T .

A concept C is satisfiable w.r.t. a TBox T if there is a model T of T with
CT #£0. A concept C is finitely satisfiable w.r.t. a TBox T if there is a model
T of T with CT # 0 and AT finite. O



Let us consider a witness for the fact that ALCQT lacks FMP: the concept
-~AM3R.A is satisfiable w.r.t. the TBox {A =3JR.AMN (L1 R T)}, but each
of its models contains an infinite R-chain.

There exists another important reasoning problem on concepts and TBoxes:
subsumption. However, since subsumption can be reduced to (un)satisfiability
and vice versa, we just note that all complexity bounds obtained in this paper
also apply to subsumption.

In what follows, we will only consider TBoxes of the rather simple form
{T = C}. This can be done w.l.o.g. since an interpretation Z is a model of a
TBox 7 ={C; = D; |1 <i <n}iff it is a model of {T =[li<;<,(C; < D)}.

3 Unary Coding of Numbers

In this section, we present a decision procedure for finite satisfiability of ALC QZ-
concepts w.r.t. TBoxes that runs in deterministic exponential time, provided
that numbers in number restrictions are coded unarily. In Section 4, we will
generalize this upper bound to binary coding of numbers.

As observed by Calvanese in [4], combinatorics is an important issue when
deciding finite satisfiability of ALC QZ-concepts. To illustrate this, consider the
TBox

T:={A=(>2RB), B=(<1R A}

It should be clear that, in any model of 7, there are at least twice as many
objects satisfying BM (< 1 R~ A) as there are objects satisfying AM (> 2 R B).
This simple example suggests that (i) types (i.e., sets of concepts satisfied by a
particular object in a particular model) such as {4, (> 2 R B)} are a natural
notion for dealing with finite satisfiability, and (ii) the combinatorics introduced
by finite domains can be addressed with inequalities like 2-z7 < x7, where the
variable xp describes the number of instance of a type T' (e.g. {4, (> 2 R B)}),
while 7 describes the number of instances of another type 7" (e.g. {B, (<
1 R~ A)}). These combinatorial constraints are not an issue if infinite domains
are admitted: in this case, we can always find a model where all types that have
instances at all have the same number of instances, namely countably infinitely
many.

Considering the above two points, a first idea to devise a decision procedure
for finite satisfiability of ALC QZ-concepts w.r.t. TBoxes is to translate an input
concept and TBox into a system of inequalities with one variable for each type,
and then to use existing algorithms to check whether the equation system has
a non-negative integer solution. For example, the satisfiability problem of the
concept. A w.r.t. the TBox T above can be translated into the two inequalities

Z 2-xp < Z rr and Z xr >0
{T|(>2 R B)eT} {T|(<1 Inv(R) A)ET} {T|A€T}

where the sums range over all types induced by the input concept A and TBox T .
It is not hard to see that any non-negative integer solution to this equation
system can be used to construct a finite model for A and 7 and vice versa.



-(CND) ~ =CU-D -(CUD) ~ =Cn-D
-=C ~ C “(<nRC) ~ (Zn+1RC)
-(ZnRC)) ~ (En—1RC) ifn>0
~(>nRC)) ~ L if n =0

Figure 1: The NNF rewrite rules.

Unfortunately, there is a problem with this approach: assume that the in-
put concept and TBox induce types 77 to T5 as follows: (> 1 R C) € T,
(2 ].RD) € T2, (S 1 Inv(R) T) € T3ﬂT4ﬂT5, C €T30T4, and D € Ty NTs.
The translation described above yields the inequalities

rr, < r + 2, and 2, <2 + 27,

which have z7, = 27, = o7, = 1 and 2, = 27, = 0 as an integer solu-
tion. Trying to construct a model with ay, as, and a4 instances of Ty, Ts,
and Ty, respectively, we have to use a4 as a witness of a; being an instance of
(> 1R C) and az being an instance of (> 1 R D). However, this violates the
(<1 Inv(R) T) concept in Ty.

This example illustrates that “counting types” does not suffice: conflicts may
arise if a type containing an atmost restriction (7) can be used as a witness for
atleast restrictions in more than one type (77 and T%). In such a situation, it is
thus necessary to (additionally) fix the types that are actually used as witnesses
for atleast restrictions. We achieve this by defining systems of inequalities based
on small chunks of models called mosaics, rather than based directly on types.
Intuitively, a mosaic describes the type of an object and fixes the type of certain
“important” witnesses.

Before defining mosaics, we introduce some preliminaries. In the remainder
of this paper, we assume concepts (also those appearing inside TBoxes) to be in
negation normal form (NNF), i.e., negation is only allowed in front of concept
names. Every ALCQTZ-concept can be transformed into an equivalent one in
NNF by exhaustively applying the rewrite rules displayed in Figure 1. We use
+C to denote the NNF of =C. For a concept Cy and a TBox T = {T = Cr},
cl(Cy,T) is the smallest set containing all sub-concepts of Cy and C'y that is
closed under =. Tt can easily be shown that the cardinality of cl(Cp, T) is linear
in the size of Cy and T. We use rol(Cp, T) to denote the set of role names R
and their inverses R~ occurring in C or 7.

Definition 3 (Type) A type T for Co, T ={T =C7} is a set T C cl(Co, T)
such that, for each D, E € cl(Co,T), we have

1. DeTiff“DgT,
2. if DNE € c(Co,T), then DNE€T iff DT and E€ T,



3. if DUE € cl(Co,T), then DUE €T iff DT or E€T, and
4. CreT.

We use type(Co, T) to denote the set of all types over Co,T. Let T be a type
and < € {<, >}. Then we use the following abbreviations:

max™(T) = max{n|(xnRC)eT}
sum™(T) = Z n.
(xn RC)ET

We are now ready to define the core notion of our approach: mosaics.

Definition 4 (Mosaic) For two types T, T> and a role R, we write limpg (T}, T)
(T is a limited ressource for Ty w.r.t. R) if C € Ty and (< n Inv(R) C) € Ty
for some C € cl(Co,T) and n € N.

A mosaic for Co, T is a triple M = (T, Ly, Eng) where
o Ty € type(Cy, T),
e Ly is a function from rol(Co, T) x type(Co, T) to N, and
e Ey is a function from rol(Co, T) X type(Co,T) to N
such that the following conditions are satisfied:
1. if Ly (R, T) > 0, then limg(Tar, T) and not limyn, gy (T, Tar),
2. if Ex(R,T) > 0, then limyny gy (T, Thr),
3. if (KnRC) €Ty, thenn> > Ey(RT),
{T|CeT}

4. #{(R,T) | Ly(R,T) > 0} <sum?(Thy) and max(ran(Lys)) < max (Thy).
%

Let us spend a few words on the intuition behind mosaics. Consider a mosaic
M and one of its “instances” d in some interpretation. While T, is simply the
type of d, Lys and Ejs are used to describe certain “neighbors” of d, i.e. objects
e reachable from d via some role. For simplicity, fix a role R. There exist three
possibilities for the relationship between Ty and T', the type of e:

1. Not limg (T, T) and not limyy, gy (T, Tar); Then d may have an arbitrary
number of R-neighbors of type T" and every instance of T'may have an ar-
bitrary number of Inv(R)-neighbors of type Th. Intuitively, R-neighbors
of type T are “uncritical” and not recorded in the mosaic.



2. limg(Th,T) and not limjn(g) (T, Tar). Then d may have an arbitrary
number of R-neighbors of type T, but every instance of T" may only have
a limited number of Inv(R)-neighbors of type Ths. Thus, R-neighbors of
type T are a limited ressource and we record in Lj; the minimal number
of R-neighbors of type T that d needs (“L” for “lower bound”).

3. limpy(g) (T, Tar). Then d may only have a limited number of R-neighbors
of type T'. To prevent the violation of atmost restrictions in T}, we record
the ezact number of d’s R-neighbors of type T in E);.

(M1) and (M2) ensure that Ljs and Ej; record information for the “correct”
types as described above; (M3) ensures that atmost restrictions are not violated—
by definition, this concerns only neighbors with Ej/-types; finally, (M4) puts
upper bounds on Lj; to ensure that there exist only exponentially many mosaics
(see below). Atleast restrictions are not mentioned in the definition of mosaics
and will be treated by the systems of inequalities to be defined later.

Now for the number of mosaics. The cardinality of type(Co, T) is exponential
in the size of Cy and 7. Next, (M2) and (M3) imply #{(R,T) | Em(R,T) >
0} < sumS(Ty) and max(ran(Eys)) < maxS(Tyy). This, together with (M4)
and the fact that max™(7T") and sum™(7") are linear in the size of Cy and T for
> € {<, >} (since we assume numbers to be coded in unary), clearly implies
that the number of mosaics is bounded exponentially in the size of Cy and T.

We are now ready to define, for an input concept Cy and TBox T, a corre-
sponding system of inequalities.

Definition 5 (Equation System) For Cy an ALCQZ-concept and T o TBox,
we introduce a variable xas for each mosaic M over Cy,T and define the equa-
tion system Ec, 1 by taking (i) the equation

Yoo au 1, (E1)
{M|Co€TM}
(i) for each pair of types T, T' € type(Co, T) and role R such that limg(T,T")
and not limyn, gy (T",T') the equation
LuRT) 2 < > Eu(nv(R),T)-zu, (E2)
{M|Tu=T}% {M|Tnu=T"}
and (11) for each pair of types T, T' € type(Co,T) and role R such that
limg (T, T") and lim(g)(T",T) the equation
>  EuRTI)-rxvy= >, Ey(nv(R),T)-zy. (E3)
{M|Tw=T} {M|Tn=T"}

A solution of Ec, 1 is admissible if it is a non-negative integer solution and
satisfies the following conditions:

(i) for each pair of types T, T € type(Co,T) and role R such that limg(T,T")



and not limn,(g) (1", T),

if > Eum(nv(R).T)-zp >0, then > ay>o0. (A1)
{M|Ta=T"} {M|Tn=T}

(i) for each mosaic M and each role R, if xpy >0, (=n RC) € Ty, and

{T|CeT} {T|CeT}

then (A2)

Z x>0,

{M'"| CeTyr, not limp(Tar, Ty ),

and not limy gy (ThrTar)}

O

While inequality (E1) guarantees the existence of an instance of Cy, inequalities
(E2) and (E3) enforce the lower and exact bounds on the number of neighbors
as described by Lys and Ej. A special case is treated by condition (Al): in
inequality (E2), it may happen that the left-hand side is zero while the right-
hand side is non-zero. In this case, there is an instance of a mosaic M’ with
Ty =T" and Ep(Inv(R),T) > 0 (counted on the right-hand side), but there is
no instance of a mosaic M with T, = T (counted on the left-hand side)—thus
we cannot find any neighbors as required by Eys(Inv(R),T). To cure this defect,
condition (A1) ensures that, if the right-hand side of (E2) is non-zero, then there
is at least one instance of a mosaic M with Ty = T.! Finally, (A2) takes care of
atleast restrictions in types Thy: if the number of R-neighbors enforced by Ly,
and Ejy is not enough for some (= n R C) € Ty, then we make sure that there
is at least one instance of a mosaic M’ such that C' € Ty, and, for instances
of M (M'), the number of R-neighbors (Inv(R)-neighbors) that are instances of
M' (M) is not limited.!

Lemma 6 If Cy is finitely satisfiable w.r.t. T, then the equation system Ec, T
has an admissible solution.

Proof. Let Z be a finite model of Cy w.r.t. 7. From Z, we can construct an
admissible solution for £c, 7. First, let us introduce some notions: for e € AZ,
we define the type ¢(e) that e is instance of as

t(e) :={D € cl(Cy,T) | e € D}.
Obviously, t(e) € type(Co, T). For T € type(Co, T), define

T :={ec AT |t(e)=T}.

1To see why a single instance suffices, consult the proof sketch of Lemma 6.



Now fix a choice function ch(-,-) which associates, with each e € A% and role
R, some ch(e, R) C AT such that

1. {e,e’) € RT, for all ¢’ € ch(e, R),

[N)

. #ch(e, R) < sum?(t(e)),

w

#(ch(e, R) N TT) < max>(t(e)) for each T € type(Co, T), and

S

. if (>nR.C) € t(e), then #(ch(e, R) N CT) > n.

Using the semantics and the definitions of max® and sum?, it is readily checked
that such a choice function exists. For each mosaic M, we then define a set

MT = {e € AT | t(e) = T and, for all roles R and types 1",

if limg(Thr,T"), and not limyay(g) (T, Tar)
then Ly (R, T') = #(ch(e, R) N T'"),

lf lim|m,(R) (T’, TM)
then Ey (R, T') = #{e' € T'" | (e, ') € RT}}

Finally, we set s := #£M7.

In what follows, we show that {#3s | M a mosaic} is an admissible solution. We
first establish the following claim:

Claim: For each e € AT, there exists exactly one mosaic M such that e € M7Z.

Using the definition of mosaics, of the sets A/ ”, and of the choice function ch, it is
straightforward to show that, for each e € A”, there exists at least one mosaic M
such that Ty = t(e) and e € MZ. Now suppose that there exists an e € AT and
mosaics M, and M, with e € M{ENMF. By definition of the sets M7, this implies
(1) Tar, = Tasy, (i) Lag, (R, T") = L, (R, T") for all roles R and types T” with
limR (T}\/[1 s T’) and not limlnv(R) (T’, TM1 ), and (111) EM1 (R, T’) = EM2 (R, T’) for
all roles R and types 7" with limy,,(g) (7", Thr, ). Using Properties 1 and 2 of
mosaics, it is now easy to show that M; = M,. Thus, for each e € A, there
exists ezactly one mosaic M such that e € M7, for which obviously Ty = t(e).

We now argue that {Zp; | M a mosaic} satisfies Equations (E1) to (E3) and
admissibility conditions (A1) and (A2). Equation (E1) is satisfied since 7 is a
model for C: there is some ey € CZ implying Cy € t(eg) and, due to the claim,
we have 37 > 1 for some mosaic M with Cq € Thy.

For (E2), let T, T" be types, R arole with limg (T, T") and not lima, gy (T", T,
and fix some ey € M7 for each M7 # (). We claim that the following



(in)equalities hold which clearly implies (E2).

> Lu(RT) iy = > Lu(RT') iy =
{M|Ty=T} {M|Ty=TAMT#0}

S d#ch(ear, R)NTT -y <
{M|Ty=TAMTA()}

Z #{e e TT | (err,e) € Inv(R)T} - iy =

{M| Ty =T' AMT£0}

> Ey(Inv(R),T) - iy
{M|Ta=T"}

The first equality is obvious. The second holds since, for each mosaic M and e €
MZ, we have #(ch(e, R)NT"") = Ly (R, T') by definition of M7 (in particular
this holds if e = ejy). The first inequality holds due to

e the claim,

e Property 1 in the definition of ch, which implies that ch(eys, R) N T is a
lower bound on #{¢' € T'" | (e,e') € RT} for each e € MZ,

e a simple graph-theoretic reason: the number of R edges from T7 into T" o
is the same as the number of Inv(R) edges from T'" into T7, and

e the fact that each e € M7 with Ty, = T has the same number of incoming
R-edges by definition of M7.

Finally, the last equation is clearly valid by definition of the sets M7”.

Equation (E3) is satisfied with a similar yet simpler argument: let T, 7" be
types, R a role with limg(7,T") and limyy(g)(T",T), and fix some ey € M*
for each M7T # (). Then we have

S Eu®RT)-iv= Y #{e €T |(em€) € RT} - du =
{M|Tn=T} {M|Ty=TAMZT£0}

Z #{lec T | (enr,e) € Inv(R)T} - iy =

{M|Tar=T'AMT#0}

> Ey(nv(R),T) - iy
{M|Tn=T"}

using similar arguments as for the (E2) case.

Now for the admissibility of our solution. Obviously it is a non-negative
integer solution. For (A1), consider types T,T" and a role R with limg(7T,T"),
not limyn, (g (7', T), and

> Eum(Inv(R),T)- iy > 0.
{M|Ty=T"}

10



Hence there is, by definition of MZ, some (¢',e) € Inv(R)% with ¢’ € T'* and
e € TT. The claim yields
Z Ty > 07
{M|Ty=T}%}
and thus (A1) is satisfied.
Finally, for (A2), let M be a mosaic with & > 0, (ZnR.C') € T, and

m= > Luy(RT)+ >  Eu(RT)<n
{T|CeT} {T|CeT}

Hence there is some ey € T2, and ey, ..., e, with e; # e; for all i # j and, for
all 1 <i <, {enrr,e;) € RT and e; € CT. By definition of M” and Property 4
of ch, m < n implies that there is some e, such that not lim,,(g)(t(err),t(er))
and not limp(t(ep), t(ear)). Since C € t(es), the claim yields

E Ty > 1,
{M'"| CETyr, not limpr(Tar,Tyyr),
and not limy gy (Ty,Tar)}

and (A2) is satisfied. O

Lemma 7 If the equation system Ec, 7 has an admissible solution, then Cy is
finitely satisfiable w.r.t. T.

Proof. Let {#a | M a mosaic} be an admissible solution of £, 7. In what
follows, we construct a finite interpretation 7 from this solution. For each mosaic
M, fix a set M such that #M = &,;. Moreover, set

P=max{n|(=ZnRC)ecl(Cy,T)or (<nRC)ec(CyT)}

We define .
AT =M x{0,...,P -1},

In the following, we write m(e) = M if e € M and t(e) = T if e € M for some
mosaic M with Th; = T'. For each concept name A € C, we put

AT = {(e,i) € AT | A € t(e)}.

Role names R € R are harder to deal with. We start with defining some
auxiliary notions. For each role R € rol(C,,T) and each pair of types T,T" €
type(Co, T) such that limg (T, T") but not limy,(g)(T",T), fix a relation

e C o @rx{o...P-1}) x |J (Mx{0,....,P-1})
{M|Ta=T} {M|Ta=T"}

such that

11



1. for each (e, i) with t(e) =T, we have
#{((evi)v (el7j)) € VZI?,T’} Z Lm(e) (Rle)v
2. for each (e, i) with t(e) = T", we have
#{((elvj)v (67 Z)) € 7$,T’} = Em(e’)(InV(R)7 T)
Let us show that such a relation exists: by (E2), there exists a mapping
U oM ox | M o- N
{M|Tn =T} {M|Tu=T"}

such that

a) for each e with t(e) = T, we have

f(ea el) = Lm(e) (RaT,)§
{e'[t(e)=T"}
b) for each ¢’ with t(e') = T’, we have
f(67 el) < Em(e’)(InV(R)vT)'
{elt(e)=T%

Using f, we define a relation

rc |y wrx{o,....p-1} x |J (Mx{,...,P-1})

{M|Tw =T} {M|T\=T"}

such that

c) for each (e,i) with t(e) =T, we have

#{((e;), (€',)) € 1} = Lun(e) (R, T");
d) for each (e,7) with t(e) = T’, we have
#{((¢', 1), (e,1)) € r} < Eyn(ery(Inv(R), T).

More precisely, this is done by setting

r={((e,i),(e',i')) | i =i+ k mod P for some k with 1 < k < f(e,e')}.

Using the facts that f satisfies a) and b) and that f(e,e’) < P for any e, ¢’, it is
readily checked that r satisfies ¢) and d).2 Finally, we can augment r to vﬁT,
by performing, for each (e, ) € ran(r) with

k.= #{((elaj)a (evi)) € 7‘} < Em(e’)(lnv(R)vT)a (*)

2To see that f(e,e’) < P for any e, e, one may use Properties 2 to 4 of mosaics to show
that, for any M, R, and T', we have Lj;(R,T) < P and Ep (R, T) < P.
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the following step:
Obviously, () implies Ey,)(Inv(R),T) > 0. Hence by (Al) there exists

a mosaic M such that M # 0 and Ty = T. Fix an €' € M. Since P >
Epery(Inv(R), T), we may fix a set X C {0,..., P — 1} such that

#X = Epe(Inv(R),T) — k

and ((e',7), (e,4)) ¢ r for each j € X. We augment r with the set {((¢’, j), (e, 7)) |
je X}

We have now finished the construction of 7737 7. As an abbreviation, for each
role R we define

k= U 'yql%T,.

{T,T" etype(Co,T)|
limp(T,T") and not lim,  (T",7)}

One more relation needs to be defined before the interpretation of role names
can be given: for each role name R and each pair of types T, T" € type(Co, T)
such that limg (7, T") and limp- (7", T), fix a relation

Moo | (rx{o,....,p-1}) x | (Mx{o,... P-1})
{M|Th =T} {M|To=T"}

such that
1. for each (e,i) with t(e) = T, we have
#{((e.0), (¢', 1) € Mip} = Ee) (R, T");
2. for each (e, i) with t(e) = T, we have

#{((elaj)a (evi)) € )‘%T’} = Em(e’)(lnv(R)vT)'

The exact construction is omitted since it is very similar to those of v, : first
construct an appropriate function f and then turn it into a relation r which
can immediately be used as )\%T, (the additional augmentation step of the
construction of 44, need not be applied).

As an abbreviation, for each role name R we define

AR = U A
{T.,T" etype(Co,T)|
limpz(7T,T") and lim,  (T",T)}
Finally, for each role name R, set
Qf = {{(e,q), (¢/,i")) | not limp(t(e),t(e')), and not limg- (t(e'),t(e))}

We are now ready to define the interpretation R” of role names:

RT .= QR UTRU (TR )~ UAE,

13



where r~ denotes the converse of the relation r.

We now show that 7 is a model of Cy w.r.t. 7. We first establish a technical
claim:

Claim 1: For all (e,i) € AZ, roles R, and types T’ with limyny(ry (77, t(e)), we
have #{(¢',7') | ((e,i), (¢/,7")) € R and t(¢') =T'} = Ep ey (R, T").

Proof: In the following, a “witness” is an element (e’,i’) € AZ such that
((e,i),(e',i")) € RT and t(e') = T". We show that there are exactly E,, (. (R, T")
witnesses by a case distinction.

e Not limg(t(e),T'") and R is a role name. It is readily checked that then
witnesses are added to R” only through the (I'® )~ component, more
precisely through the relation 7(}}_,7“6)). By Property 2 of this relation,
the number of witnesses added in this way is precisely FE,,)(R,T") as

desired.

e Notlimp(t(e),T") and R = S~ for some role name S. Then pairs ((¢’,i"), (e, ))
with t(e') = T" are added to S only through the I'Y component, more
precisely through the relation AVEgT', te)): Again by Property 2 of this re-
lation and since S = Inv(R), the number of tuples added in this way is

precisely E,,)(R,T") as desired.

e limp(t(e),T’) and R is a role name. It is readily checked that witnesses are

added to R” only through the A" component, more precisely through the

relation )\f{T, te))* By Property 1 of this relation, the number of witnesses

added in this way is precisely E,,(.)(R,T") as desired.

e limp(t(e),T") and R = S~ for some role name S. Then pairs ((¢’,i), (e, 7))
with t(e’) = T' are added to ST only through the A® component, more
precisely through the relation )\(ST,’ te)): By Property 2 of this relation, the
number of tuples added in this way is precisely F,,)(R,T") as desired.

Using Claim 1 just established, we can now prove another claim which is
central for showing that 7 is a model of the input concept Cp and the input
TBox T

Claim 2: If C € t(e), then (e,i) € C* for each i < P.
The proof is by structural induction. Fix an (e,i) € A? such that C € t(e).
e (' is a concept name. Then e € C7 follows from the definition of 7.

e ' = —=D. Since every concept in cl(Cp,T) is in NNF, D is a concept
name. If =D € T, then D ¢ T by definition of types. Thus e € (=D)? by
definition of 7.

e C'=(<nRD). A “witness” for C' is an element (e',i') € AT such that
((e,i),(e',i")) € RT and D € t(e'). We show that there exist at most n
witnesses.

14



By definition, we have limy,,(g)(t(e’), t(e)) for every witness (e’,i'). Claim 1
thus yields an exact bound

m = Z Em(e) (Ra T)
{T|DeT}

for the number of witnesses. By Property 3 of mosaics, we have n > m.

e C'=(>n R D). Again, a “witness” for C is an element (¢/,i’) € AT such
that ((e,7), (¢/,i")) € RT and D € t(e'). We need to show that there exist
at least m witnesses.

Firstly, for each type T' with limg(t(e),T') and not limy,,(g) (T, t(e)), there
are at least L, (R,T) witnesses (e',i) with t(e') = T if R is a role
name, then the fact that I'® C R? and Property 1 of %}?e),T yield the
desired result. Similarly, if R = .S~ for some role name S, then the facts
that (%)~ = (T)~ C ST and R? = (S%)~ together with Property 1 of
'yt}:({e),T yield the desired result.

Together with Claim 1 and Properties 1 and 2 of mosaics, we thus have a
lower bound

m = Z Lm(e) (R,T) + Z Em(e) (R7 T)

{T|DeT} {T|DeT}

on the number of witnesses. If m > n, then we are done. Other-
wise, (A2) ensures that there exists a mosaic M such that D € Ty, not
limp(t(e), Tar), not limy, ) (Tar, t(e)), and M # §. Since QF C R7, this
yields

#{((e,1), (¢,i")) € RE | m(e') = M} = P.

Now P > n by definition of P and we are done.

e C=DNE and C = DU E. For this case, the claim follows immediately
from the definition of types and the induction hypothesis.

As a consequence, Z is a model of Cy and 7 = {T = C7}: by Equation (E1)
and due to the fact that £, > 0 implies #M > 0, there is a mosaic M such
that Cy € Ty and #M > 0. Fix an e € M. Claim 2 implies that (e,i) € CF for
i < P and thus 7 is a model of Cy. Moreover, by definition of types, we have
C1 € Ty for each mosaic M. This fact together with Claim 2 implies that 7 is
a model of T . 0

Since the number of mosaics is exponential in the size of Cy and T, the size of
Ecy,,7 and of the admissibility condition is also exponential in the size of Cjy and
T. To prove an EXPTIME upper bound for the finite satisfiability of ALC QZ-
concepts, it thus remains to show that the existence of an admissible solution
for the equation systems ¢, 7 can be decided in deterministic polynomial time.
Before we actually do this, we first fix some notation.
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We assume linear inequalities to be of the form X;c;x; > b. Such an inequal-
ity is called positive if b > 0. A system of linear inequalities is described by a
tuple (V, &), where V is a set of variables and £ the set of inequalities. Such
a system is called simple if all inequalities are positive and all coefficients are
(possibly negative) integers.

A side condition for an inequality system (V, ) is a constraint of the form

r>0= 21+ ---+2x, >0, where z,x1,... 20 € V.

Let (V, &) be an inequality system and I a set of side conditions for (V, ). We
say that (V, &) admits an I-admissible solution if it admits a solution satisfying
all constraints from 1.

It is not hard to check that the inequality systems from Definition 5 are
simple and that the conditions (A1) and (A2) can be polynomially transformed
into side conditions:

e (E1) is already simple,
e (E2) can obviously transformed into > ... —> ... >0,

e the equality (E3) is transformed into two inequalities of the form ) ... —
>...>0,

e cach implication due to (Al) is transformed into polynomially many by
using a separate side condition for each summand appearing in the premise
(this works since we are interested in non-negative solutions only). Next,
the coefficients on the left-hand sides of the premise are then omitted by
dropping those side-conditions whose coefficient is zero and replacing all
other coefficients with 1.

e (A2) is already in the form of a side condition.

In the following, we prove that the existence of a non-negative, integer, and
I-admissible solution for a simple system of inequalities (V, £) and a set of side
conditions I can be decided in deterministic polynomial time. In the proof, we
use a lemma that was established by Calvanese in [5] and builds on results of
Papadimitriou [11]. We state this lemma for the sake of completeness.

Lemma 8 Let (V,E) be a system of m = #E linear inequalities inn = #V vari-
ables, in which all coefficients and constants are from the interval [—a;a] of inte-
gers. Then, if (V,E) has a solution in N™, it also has one in {0,1,..., H(V,&E)}",
where H(V,E) = (n + m)(ma)?™ 1,

We can now establish the PTIME upper bound.

Lemma 9 Let (V,E) be a simple equation system and I a set of side conditions
for (V,E). Then the existence of an integer, non-negative, and I-admissible
solution for (V,&) can be decided in (deterministic) time polynomial in #V +
#E + #1.
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Proof. For a positive integer k, we use £;(k) to denote the set of inequalities
{z<k-(mi4+-+z) | 2>0= 21+ -4+, >0€ I}

It is readily checked that every non-negative solution of (V,£UE&;(k)) is a (non-
negative and) I-admissible solution of (V,&). We prove the following claim:

Claim: There is an integer kg exponential in #V + #& + #1 such that (V,€)
admits a non-negative, integer, and I-admissible solution iff (V,£ U &;(ke)) ad-
mits a non-negative (rational) solution.

Proof: Let n = #V, m = #&, and r = #1. Then we choose
ke = (n +m 4 r)(m + r)2m++L

It remains to show that kg is as required:

For the “if” direction, let S be a non-negative solution of (V,& U Er(ke)). As
noted above, S is also a (non-negative and) I-admissible solution of (V, ). Since
all inequations in (V,€) are positive, we can convert S into an integer solution

by multiplying S with the smallest common multiplier of the denominators in
S.

Now for the “only if” direction: assume that there exists an integer, non-
negative, and I-admissible solution S of (V,&). It is readily checked that this
implies the existence of a set P C V such that S is also an (integer and non-
negative) solution of the system (V,€ U Ep), where

Ep = {z>0]|zxeP}U
{e1+--4+2z;>0|z€ePande>0= 2,4+ ---+2; >0€ I} U

By Lemma 8, the existence of S implies the existence of a non-negative integer
solution S of (V,EUEp) which is bounded by hp = H(V,EUEp). It is easily seen
that the solution S is also an (integer and non-negative) solution of (V, EUE(n))
for any n > hp. It remains to note that, since £p contains one inequality for
each variable in V' and at most one inequality for each implication in I, we have
hp < ke.

In view of the claim just established, it is now easy to show that the existence of a
non-negative integer and I-admissible solution for a simple system of inequalities
(V,€) and a set of side conditions I can be decided in deterministic polynomial
time: we may clearly view (V,£UE&(ke)) as a linear programming problem.
Since kg is exponential in #V + #& + #I, the binary representation of k¢ is
polynomial in #V + #E& + #I. Thus, the existence of a rational (non-negative)
solution for (V,& U Er(ke)) can be checked in (deterministic) time polynomial
in #V + #E + #1 [14]. O
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Putting together Lemmas 6, 7, and 9, we obtain the EXPTIME upper bound.
The corresponding lower bound is a consequence of the EXPTIME-hardness of
unrestricted satisfiability of ALC w.r.t. TBoxes [7; 12; 13] and the fact that this
DL has the finite model property.

Theorem 10 Finite satisfiability of ALCQTL-concepts w.r.t. TBozxes is EXPTIME-
complete if numbers are coded in unary.

If numbers in number restrictions are coded binarily, the algorithm developed
in this section does no longer yield an EXPTIME upper bound: in this case,
the number of mosaics is double exponential in the size of the input concept
and TBox. Since it is not clear whether and how the presented algorithm can
be modified in order to yield an EXPTIME upper bound for the case of binary
coding, we resort to a different approach to attacking this problem: in the
next section, we reduce finite ALC QZ-satisfiability to the finite satisfiability of
ALCFT-concepts. Since the employed reduction is polynomial, in this way we
obtain an EXPTIME upper bound for the finite satisfiability of ALC QZ-concepts
w.r.t. TBoxes, even if numbers are coded in binary.

4 Binary Coding of Numbers

In this section, we prove that finite ALC QT-concept satisfiability w.r.t. TBoxes
is decidable in EXPTIME even if numbers are coded in binary. The proof is by
a reduction to finite ALCFZ-concept satisfiability w.r.t. TBoxes. Since, in the
case of ALCFT, the size of numbers appearing in number restrictions is constant
(independently of the coding), the results presented in the previous section imply
that finite ALCFZ-concept satisfiability w.r.t. TBoxes is ExpTIME-complete.
Thus, this logic is a suitable target for reduction. In contrast to existing reduc-
tions of ALCQT to ALCFT, which only work in the case of potentially infinite
models (such as the one presented in [6]), we have to take special care to deal
with finite models.

Before we go into technical details, let us describe the intuition behind the re-
duction. The general idea is to replace counting via qualified number restrictions
with counting via concept names: to count up to a number n, we reserve con-
cept names By, . .., Bliog(n)] representing the bits of numbers between 0 and n.
For the actual counting, we can then use well-known (propositional logic) for-
mulas that encode incrementation. But how can we use this approach to count
the number of role successors? Intuitively, we rearrange the successors of each
domain element in a way that allows to replace qualifying number restrictions
with the functionality of roles provided by ALCFZ and counting via concept
names. Consider, for example, the domain element z and its R-successors dis-
played on the left-hand side of Figure 2. Ignoring the “direct” R-successors of
x on the right-hand side for a moment, it is obvious that the R-successors are
rearranged along a path that is built using an auxiliary role L. Employing
the (< 1 R T) constructor of ALCFZ, each node on this path has precisely one
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Figure 2: Representing role successor relationships.

L-predecessor and at most one Lg-successor. The counting via concept names
is then performed along the domain elements on Lg-paths.

However, we cannot gather all original R-successors of z on the Lg-path.
The reason for this is as follows: assume we are at some domain element on the
Lp-path descending from z and move along this domain element’s outgoing R-
edge. Then we reach either a “real” domain element or arrive on an Inv(R)-path.
If the latter is the case, we have to ensure that, moving up the Inv(R)-path, we
will finally reach a “real” domain element. To do this, we count the lengths of
auxiliary paths via concept names:® once we have moved up to node 0 of the
path, its predecessor must be “real”. Since, however, we do not know how many
R-successors an object had in the original model, we do not know how many bits
to reserve for this counting. The solution is to gather only those R-successors
of x on the R-path which are constrained by a (< n R C') concept applying to x
or which are witnesses for a (> n R C') concept applying to z—this helps since
the number of such domain elements is known in advance. All other domain
elements remain “direct” successors of z.

Fix an ALC QZ-concept C' and an ALCQZ-TBox T whose finite satisfiability
is to be decided. In the following, we use cnam(C,7T) to denote the set of
concept names appearing in C' and T, rnam(C,7T) to denote the set of role
names appearing in C' and 7, and, as above, rol(C, T) to denote the set

mam(C,T)U{R" | R € rnam(C,T)}.

W.lo.g., we assume C' and T to be in NNF. In order to translate C' and T to
ALCFT, we need to introduce some additional concept and role names:

1. afresh (i.e., not appearing in C' or 7) concept name Real;

3this counter is a different one than the ones mentioned above
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2. for each R € rnam(C,T), a fresh concept name Hp and a fresh role
name Lpg;

3. for each concept D € cl(C,T) of the form (x1n R C), where > is used as
a placeholder for > or <, we reserve a fresh concept name Xp;

4. again for each concept D € cl(C,T) of the form (< n R C), we reserve
additional fresh concept names BZ'% o, ..., B&'g 1., where k = [log(n+1)7;

5. for each role R € rol(C, T'), we reserve fresh concept names Bg o, - . ., BRr k.,
where k = [log(depthy)] and

depthy, = Z n;

(an R C)ed(C,T)

The concept names Bp; are used to count the length of auxiliary Lz paths
as described above. The concept names B??,Tiz,o are also used for counting: for
an ALCQT-concept (< n R C), they are used to count the “occurrence” of
R-successors in C' along the Ly path, and will thus replace the ALC QZ-concept
(<in R C). Note that the number of newly introduced concept and role names
is polynomial in the size of C' and 7. We will use Bg’i‘f};{ to refer to the number
encoded by the concept names

B?ﬁiov T B?,%,[log(nﬁ-l)]
and Bp to refer to the number encoded by the concept names
BRro,- - BR,log(depthy)] -
Moreover, we will use the following abbreviations:

e (Bg = i) to denote the ALCFT-concept expressing that Bg equals i (and
similar for BZ", = i and the comparisons “<” and “>");

e incr(Bg,S) to denote the ALCFI-concept expressing that, for all S-
successors, the number By, is incremented by 1 modulo depth (and similar
for incr(BEﬁ’};{,S)). More precisely, these concepts are defined as follows
(we use concepts C' — D as an abbreviation for =C' U D):

(BI—IT’O — VS.ﬁBR’o) M (—|BR’0 — VS.BR,O) M

We can now inductively define a translation v(C) of the concept C into a
Boolean formula (which is also an ALCFZ-concept):

y(A4) = A
y(=C) = —(0O)
y(CnND) = ~(C)ny(D)
y(CuD) = ~(C)uy(D)
YZ=nRC) = Xiznro)
YL RC) = Xnro)
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Now set o(C') := v(C) M Real and, for 7 ={T = Cr},
o(T) :={T =Real = v(C7)} UAux(C,T)

where the TBox Aux(C,T) is defined in Figure 3 in which we use D C E as
abbreviation for T = D — E, and in which all L1, ['], range over all concepts

in cl(C,T) of the form specified. In what follows, we will use Ei to refer to the
1’th concept equation and Ez.j to refer to its j’th line.

Equations E1, E2, and E3 ensure the behaviour sketched above of Real, Hpg,
and the counting concepts Br and Bbﬁ‘f}z. Equation E5 ensures that the counting
concepts B'>D<‘7’}% are updated correctly along an L path. To guarantee that a
“real” element d satisfies “number restrictions” X (.4, r p), E4 ensures that we
see enough R-successors in D for at least restrictions (= n R D) along an Lg
path starting at d, whereas E6 guarantees that we do not see too many such
successors along an Lg path for at most restrictions (< n R D).

Lemma 11 C is finitely satisfiable w.r.t. T iff o(C) is finitely satisfiable w.r.t.
a(T).

Proof. Let us start with the “if” direction. Hence, assume that o(C') is finitely
satisfiable w.r.t. (7). The proof strategy is to take a finite model of o(C') and
o(T) and transform it into a finite model of C' and 7. However, we cannot
take an arbitrary model for this purpose, but need to select a special, so-called
singular one: let Z be a model of ¢(C) and o(7). For each domain element
d € Real’ and each R € rol(C', T'), we inductively define a sequence of domain
elements hg’R, e hf,?;i as follows:

o set hg’R =d;

bl

e set h?ﬁ to the Lg-successor of h"™ (which is unique due to E1.3) if it
exists. Otherwise, {4 r = t.

The constructed sequence is finite due to the use of the By counter in E2.2,
E3.3, and E3.5. The model 7 is called singular if, for all roles R € rol(C,T),
nodes d € Real?, and i < j < Ulg,g, we have

{e| (h" e) € RTYn{e| (h{" e) € RT} = 0.

Claim 1. If o(C) is finitely satisfiable w.r.t. o(7), then there is a finite, singular
model of o(C) and o(T).

Proof: Let Z be a finite model for o(C') and o(7). Fix an injective mapping &
from AT to0 {0,..., (#AT —1)}. Then we construct a new (finite) interpretation
J by copying 7 sufficiently often and “bending R edges” from one copy of 7
into others. More precisely, J is defined as follows:

o AT :={(d,i)|de AT and i < #AT};

o A7 :={(d,i) € A | d € AT} for all concept names A;
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Figure 3: The TBox Aux(C,T).
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o L :={((d,i), (e,i)) € AT x AT | (d,e) € L%} for all role names Lp with
R erol(C,T);

e R7 = {((d,i), e, (6(d) +i mod #AT))) | (d,e) € R?} for all role names
R appearing in C or T.

It is straightforward to check that 7 is a singular model for o(C') and o(7),
which finishes the proof of Claim 1.

Before we continue, let us state an important property of the sequences of
domain elements hg’R R, hg;i :

(x) Let d,e € Real” such that d # e and R € rol(C,T). Then, for all i < {4 g,
and j < (. g, we have hf’R #* h';-’R. This is an easy consequence of the
choice of the elements h*® and h®¥ together with E2.3 and E3.2.

Now let Z be a singular, finite model for o(C) and o(7) and fix, for each

d € Real” and R € rol(C, T), a sequence of domain elements hg’R, Y

ton O
above. We use 7 to define an interpretation 7 as follows:

A7 = Real
AT = AT Real”
R = {(de) € AT x AT |3i < lyp, k < lopnury - (b7 0S™ ) € RTY

It remains to establish the following claim:
Claim 2. For all d € A7 and D € cl(C,T), d € v(D)* implies d € D7 .

For assume that Claim 2 is true. Since J is a model of o(C), by definition
of o there exists a d € (y(C) M Real)”. Clearly we have d € A7 and thus
Claim 2 yields d € C7. Hence, J is a model of C'. By definition of o(7") and
the semantics, we have Real” = (y(C'r) N Real)Z. Together with Claim 2 and
definition of 7, we obtain A7 = C’7‘Z and thus J is a model of 7.

We prove Claim 2 by induction on the norm || - || of concepts D which is
defined inductively as follows:

[|A]l = [|-A]] := 0 for A concept name
ICL TGl = (ICL UGl = L+][|Ci]] +[|Ch|
I(ZnRD)|| = |[(SnRD)| = 14D

Let d € A7 Nn~(D)T for some D € cl(C,T). Then d € Real”. Since C' and T

are in NNF, D is also in NNF. We only treat the interesting cases:
eLet D=(>nRE)andde y(D) = (Xnrp)'. By E14, we have
hf’R € (Xzn RE))I for 1 < i < {4 r. Hence, by exploiting the counter

B;’}{ and its use in E2.4, E2.6, E4, and E5, it is straightforward to show
that there exist a subset I C {1,...,0q r} of cardinality at least n such
that, for each i € I, there exists an e; € A such that (b, ;) € R and
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e; € 7(E)T. Due to singularity, we have that i # j implies e; # e; for all
i,j € I. By E1.1, we have e; € Real” or ¢; € Hyn(r) for all i € I. Using
the counter Bjn,(gr) and E3.2, E3.3, E3.4, it is thus readily checked that,
for each i € I, there exists an f; € AT such that f; € Real” and e; appears
among the hgi’lnv(R), ey hg;flzl"‘:((f)). By Property (x), ¢ # j implies f; # f;
for all i,7 € I. By definition of J, we have (d, f;) € RV for each i € I

— if R is a role name, then this is an immediate consequence of the
definition of 7;

— if R = S~ for some role name S, then (f;,d) € S7 by definition of
J. The semantics yields (d, f;) € R7.

It thus remains to verify that f; € E: clearly, v(E) is a Boolean formula
over the set of concept names

cnam(C, T)U{Xr | F=(<nRF')ec(C,T)}

Since e; € v(E)T, E1.4 and E1.5 thus yield f; € v(E)? for each i € I.
Since f; € Real”, it remains to apply the induction hypothesis.

Let D = (< n RE)and d € y(D) = (X<, r p))*. Assume that there
exists a subset W C AY of cardinality greater than n such that, for each
e € W, we have (d,e) € R7 and e € EY. By definition of 7, this
implies that, for each e € W, there are s, < {4 r and t. < ¢, g such that

Jnv(R
(hd-B, pe™R)) ¢ RT.

— if R is a role name, then this is an immediate consequence of the
definition of 7;

— if R = S~ for some role name S, then (d,e) € R implies (e,d) € ST.
By definition of 7, this means that there are s, < {4 g and t. < . r
such that (hf;s, h-H) € ST. By semantics and since S = Inv(R), we
obtain (hZ;R,hfe’lnv(R)) € RT.

We clearly have W C Real”. We prove the following three Properties:

1. e # €' implies h‘si;R # h‘sif for all e, e’ € W. By Property (%), e # €'
implies 1™ 2 hf;;'"v(R) for all e,e’ € W. Thus, E3.1 yields
hbR £ hGTif e £ .

2. hf;'"v(R) € v(E)T for each e € W. Suppose that e ¢ v(E). Then

e € (+v(E))T and, by E1.6, e € y(~E)”. Since e € Real” and we are
performing induction over the norm of concepts rather than standard
structural induction, the induction hypothesis yields e € (2E)7, a
contradiction to e € E7. Thus, e € v(E)%. Since v(E) is a Boolean

formula, it follows from E1.4 and E1.5 that h{"™") e y(E).
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3. s¢ # 0 for all e € W. For assume that s, = 0. Then h‘si;R =d. By
E2.5 and since d € (X(<n g )" and (d, hf;lnv(R)) € RT, this yields
hf;lnv(R) € (=(y(E)))? in contradiction to Property 2.

Properties 1 to 3 imply the existence of a subset I C {1,...,04 r} of
cardinality greater than n such that, for each i € I, there exists an e € A
with (11?7R,e) € RT and e € v(E)”. Exploiting the counter B;”R and its
use in E2.4, E5, and E6, it is readily checked that this is a contradiction
to Z being a model for Aux(C,T).

Now for the “only if” direction: let 7 be a finite model of C' and 7. For
each d € AT and each R € rol(C,T), fix a subset Wy g C AT of cardinality at
most depthp such that the following conditions are satisfied:

1.
2.

3.

(d,e) € R for all e € Wy g;
for all (>n R D) € cl(C,T) with d € (>n R D)?, we have

#{eEWd’R|e€DI}2n;

for all (< n R D) € cl(C,T) with d € (< n R D)%, we have

{e€ AT | (d,e) € RT and e € DT} C Wy g;

Using the semantics and the definition of depthy, it is easy to show that such
subsets indeed exist. Next, fix a linear ordering on Wy g, i.e., an injective
mapping vg r : Wa,.r — {0,...,#War —1}. We use these mappings to define
a finite model J of ¢(C) w.r.t. o(T) as follows:

AT = AT U{xgre|de AT, Rerol(C,T), and e € Wy r};

AT = AT U{rgr. | d € AT, R € rol(C,T), and e € Wy g} for all
A € cnam(C, T);

ngnRD) =(<n RD)IU{zgpe|d€e (xn R D)T and e € Wy g} for

all (xn R D) € c(C,T);
Real” = AZ;
Hy = {24, |de AT and e € Wy g} for all R € rol(C, T);

For each R € rol(C, T), the counter By is defined as follows: Bg = 0 for
all instances of Real”; for the instances of Hg, we define Bp as follows:

Bg =i for those x4 r. € Hy with vy r(e) = i;
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e For each concept D € cl(C,7T) with D of the foorm (> n R D), the
counter BR", is defined as follows: BE"; = 0 for all instances of Real”;

for instances x4 g.. of HY . we set
R, R

B = #{e' € Wy r | var(e') <var(e) and e’ € D%},

e RT = {(xagR@,ernv(R),d) | d,e € AT with e € Wi rand d € We,lnv(R)} U
{(xd7R7e,e) | d,e € AT with e € Wd,R and d ¢ We,lnv(R)} U
{(d,x) | d € Real’, (d,e) € R” and & = ¥, oy ()4 OF
r=ecand d € W, n(r)}
for all R € rnam(C, T);

o Lp= {(d, xd’Rﬁ) | de AI, e c Wd,Ra and l/d,R(e) = 0} U
{(xdﬁ’e,xd,}g’e/) | de AI, 6,6’ S Wd,Ra and l/d,R(el) = l/d’R(e) + ].}

Since the translation o(C') of an ALC QZ-concept C is a Boolean formula, it is
trivial to prove the following claim by structural induction (using the definition

of J):
Claim 3. For all d € AT and D € cl(C,T), d € DT implies d € y(D)7.

Since T is a model of C, Claim 3 clearly implies that there is a d € AT such
that d € v(C)7. By definition of Real”, we thus have d € o(C)7 and thus
J is a model of o(C'). Moreover, also by Claim 3 7 is a model of the TBox
{v(D) =~(E) | D = E € T}. Since it is tedious but straightforward to verify
that J is also a model of the TBox Aux(C,T) (details are left to the reader),
J is thus a model of o(T). O

Taking together Theorem 10, which implies that finite satisfiability of ALCFZ-
concepts w.r.t. TBoxes is in EXPTIME, and Lemma 11, we obtain the following
theorem:

Theorem 12 Finite satisfiability of ALCQTL-concepts w.r.t. TBozxes is EXPTIME-
complete if numbers are coded in binary.

5 ABox Consistency

In this section, we extend the complexity bounds obtained in Sections 3 and 4
to a more general reasoning task: finite ALCQTZ-ABox consistency. As noted
in the introduction, ABoxes can be understood as describing a“snapshot” of
the world. We should like to note that (finite) ALCQZ-ABox consistency has
important applications: whereas finite ALC QZ-concept satisfiability algorithms
can be used to decide the consistency of conceptual database models and in-
fer implicit IS-A relationships as described in the introduction, ALC Q7-ABox
consistency can be used as the core component of algorithms deciding con-
tainment of conjunctive queries w.r.t. conceptual database models—a task that
DLs have succesfully been used for and that calls for finite model reasoning [2;
10].
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Definition 13 (ABox) Let O be a countable infinite set of object names. An
ABox assertion is an expression of the form a : C or (a,b) : R, where a and
b are object names, C' is a concept name, and R a role name. An ABox is a
finite set of ABox assertions.

Interpretations T are extended to ABoxzes as follows: additionally, the in-
terpretation function X maps each object name to an element of AT such that
a # b implies a® # b* for all a,b € O (the so-called unique name assumption ).
An interpretation T satisfies an assertion a : C if a* € CT and an assertion
(a,b) : R if (a*,b7) € RT. It is a model for an ABoz A if it satisfies all asser-
tions in A. An ABozx is called finitely consistent if it has a finite model. %

In the following, we will polynomially reduce finite ALC QZ-ABox consistency
to finite ALC QT-concept satisfiability. Thus, we prove that ALC QZ-ABox con-
sistency is EXPTIME-complete independently of the way in which numbers are
coded. We start with fixing some notation.

Let A be an ABox and 7 a TBox. For each object name a used in A, refl 4 (a)
denotes the set of role names R such that

{(a,a) : R, (a,a) : R~} N A # 0.

For each object a and role R € rol(A,T), Na(a,R) denotes the set of object
names b such that b # a and

{(a,b) : R, (b,a):Inv(R)} N A # 0.

Moreover, we use cl(A, T) to denote the smallest set containing all sub-concepts
of concepts appearing in A and 7T that is closed under . Tt can easily be shown
that the cardinality of cI(A, 7) is linear in the size of .4 and 7. We use rol(A, T)
to denote the set of all roles (i.e., role names or inverses of role names) used in

AorT.

Definition 14 (Type) A type T for an ABox A and a TBox T is defined as
in Definition 3 where c|(Co,T) is replaced with cl(A,T). O

In the following, we will sometimes identify types T with the conjunction C’|_|T C
€
and write, e.g., d € T* for d € (O|_|T C)T. Again, the number of types for an
€
ABox A and a TBox 7 is exponential in the size of A and 7. The central notion

in the reduction of finite ALCQZ-ABox consistency to finite ALC QZ-concept
satisfiability is that of a reduction candidate:

Definition 15 (Reduction Candidate) Let A be an ABox and T o TBoz.

A reduction candidate for A and T is a function t that maps each object name a

appearing in A to a type t(a) for A and T such that a: C € A implies C' € t(a).
Let t be a reduction candidate for A and T . For each object a, role R € rol(A,T),

and type T € ran(t) we use #{'(a, R, T) to denote the number of objects b such

that b € N4(a,R) and t(b) =T.
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Now, for each object a used in A, we define a reduction concept C7(a) as
follows:

Cia) == tl@nXn [1 3JR(tla)nnX)N
Rerefl 4 (a)
[T (#(aR7T)R(TN-X)),

Rerol(A,T) Teran(t)

where X is a concept name not used in A and T. The reduction candidate t is
called realizable iff, for every object a used in A, the reduction concept C7*(a)
is finitely satisfiable w.r.t. T . O

First we establish a technical lemma.

Lemma 16 Let A be an ABozx, T a TBoz, t a reduction candidate for A and T,
and a an object name used in A. If the reduction concept C7*(a) is finitely
satisfiable w.r.t. T, then there exists a finite model T of T and C7*(a) and some
d € (Cf(a))T such that, for all roles R, (a,a) : R € A implies (d,d) € R™.

Proof. Let 7 be a model of C/A(a) and T and let d € (C7*(a))%. We construct
a new interpretation Z' in two steps:

1. Define a new interpretation 7’ as follows:

o AT = AT x {0,1};
o AT ={(d,i) € AT | d € AT} for all concept names A;
o R ={((d,i),(e,7)) | (d,e) € RT and i # j} for all role names R.

Again, using structural induction, it is readily checked that, for each d €
AT and C € cl(A,T), d € C7 implies (d,i) € CT for i € {0,1}. Thus
(d,0) € (C#(a))” (the same holds for (d,1)) and Z’ is a model of 7.
Moreover, 7' clearly satisfies the following property: for all roles R €
rol(A,7) and d € AT, we have (d,d) ¢ RT .

2. We now construct the interpretation Z" from 7’. Since the inner structure
of elements from A7’ is not important, we henceforth refer to (d,0) as d'.
For each role name R € refl4(a), fix a domain element er € A7 such that
(d',er) € R and eg € t(a)”'. Such domain elements exist since C7(a)

contains the conjunct [T 3R.(t(a) N X). The interpretation I" is
Rerefl 4 (a)

now defined as follows:
o AT = AT,
o AT" = AT for all concept names A;
e RT" = R for all role names R ¢ refl 4(a);
RT" = (R \ {(d',er)}) U{(d',d'), }. for all role names R € refl 4(a).
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Using structural induction, it is not hard to check that, for each d € AT and
C e d(A,T), de CT implies d € CT'. Thus, d' € (CA(a))r" and " is a
model of T. Moreover, (a,a) : R € A implies (d',d') € R™": this is true by
definition of refl 4 and 7" if R is a role name. If R = S~ for some role name S,
then (a,a) : R € A implies S € refly. Thus (d',d') € ST by definition of Z".
By semantics, we obtain (d’,d’) € ST as required. O

The following lemma describes the relationship between ABoxes and reduction
candidates.

Lemma 17 Let A be an ABox and T o TBox. A is finitely consistent w.r.t. T
iff there exists a realizable reduction candidate for A and T.

Proof. For the “only if” direction, let Z be a model of A and 7. We construct
a reduction candidate ¢ as follows:

for each object a in A, set t(a) = {D € cl(A,T) | a € D*}.

It remains to prove that ¢ is realizable. Let a be an object in A. We construct
a model " of C{*(a) from T in two steps as follows: first, construct Z' from T
as in the proof of Lemma 16 and set

X' ={(d,0) € AT" | d € AT}.

Then 7" is obtained from 7' by “bending some R edges”, everything else is
unchanged: for each role name R € refl A(a), set

R™ = R™ \ {((a%,0), (a%,1)), ((a%, 1), (a%,0))} U
{((a®,0), (a%,0)), ((a®, 1), (a%,1))}.

It can be easily verified that Z” is indeed a finite model of C/A(a) w.r.t. T.

For the “if” direction, assume that there exists a realizable reduction candi-
date t for A and 7. This implies that, for each object name a used in A, there
is a finite model Z, of C{*(a) and 7. For each such model Z,, fix a domain
element d, € A’ such that d, € (C{/*(a))*. By Lemma 16, we may w.l.o.g.
assume that, for all object names a used in A and roles R, (a,a) : R € A implies
(dq,d,) € RT=. Moreover, we assume that a # b implies ATe 0 AT = ).

In the following, we use the models Z, to construct a (finite) model Z of A
and T. First fix, for each object name a used in A and each role R € rol(A, T),
an injective function 1, from N4(a, R) to A= such that, for all b € N4(a, R),
we have (dy,1,(b)) € RT* and n,(b) € (t(b) M =X)%+. Such functions do clearly

ist due to the conjunct  ['] M (= #/(a,R.T) R (TN-X)) of C{*(a).
exist due to the conjunc Reml(A’T)Teran(t)(/ #7(a,R,T) R ( )) of C¢*(a)

Then define the interpretation 7 as follows:

o AT = U A

b
a used in A

o AT:= |J  ATs for all concept names A;
a used in A
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e rRP:= U (B"\ U A{en®)HU U {(da,dy)}) for

a used in A bENA(a,R) bEN 4(a,R)
all role names R;

e o :=d, for each object name a used in A.

It is straightforward to prove the following claim using structural induction:

Claim: for each object name a used in A, d € A« and C € cl(A,T), d € C*a
implies d € C7.

It is thus readily checked that 7 is indeed a (finite) model of A and T

1. Let a : C € A. Then the claim together with d, € (C#(a))%+ yields
at = d, € CT since t(a) is a conjunct of C*(a) and a : C' € A implies
C € t(a).

2. Let (a,a) : R € A. Since at = d,, we have (af,a?) € R%+ by choice of Z,,.
Since d, € X”a by definition of C{*(a) and, for each b € N 4(a, R), n,(b) €
(=X)T by definition of 7,, we have a’ ¢ dom(n,). Thus, (a’,a’) € R
implies (a”,a”) € R, both if R is a role name and if R is the inverse of
a role name.

3. Let (a,b) : R € A where a # b. If R is a role name, then (a”,b?) € RZ
by definition of Z. If R = S~ for some role name .S, then we have a €
N(b,S). Thus, (b*,a’) € ST by definition of Z implying (a”,b?) € ST
by the semantics.

4. Finally, the claim together with the fact that, for each object name a used
in A, 7, is a model of T clearly implies that Z is also a model of 7.
|

It is now easy to establish a tight complexity bound for finite ALC Q7-ABox
consistency.

Theorem 18 Finite ALCQT-ABox consistency w.r.t. TBozes is EXPTIME-
complete if numbers are coded in binary.

Proof. Let A be an ABox and 7 a TBox. Since the number of types for A4 and
T is exponential in the size of A and 7 and the number of object names used
in A is linear in the size of A, the number of reduction candidates for A and T
is exponential in the size of A and 7. Thus, to decide finite consistency of A
w.r.t. 7, we may simply enumerate all reduction types for A and 7 and check
them for realizability: by Lemma 17, A is finitely consistent w.r.t. 7 if we find
a realizable reduction type. Since the size of the reduction concepts is clearly
polynomial in the size of A and T, by Theorem 12 the resulting algorithm can
be executed in deterministic time exponential in A and 7. a
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Note that our choice of the unique name assumption is not crucial for this
result: if we want to decide finite consistency of an ABox A without the unique
name assumption, we may use the following approach: enumerate all possible
partitionings of the object names used in A. For each partitioning, choose a
representative for each partition and then replace each object name with the
representative of its partition. Obviously, the ABox A is finitely consistent
without the unique name assumption if and only if any of the resulting ABoxes
is finitely consistent with the unique name assumption. Clearly, this yields an
ExPTIME upper bound for finite ABox consistency without the unique name
assumption.

6 Outlook

In this paper, we have determined finite model reasoning in the description
logic ALCQT to be EXPTIME-complete. This shows that reasoning w.r.t. finite
models is not harder than reasoning w.r.t. arbitrary models, which is known
to be also EXPTIME-complete [6]. We hope that, ultimately, this research will
lead to the development of finite model reasoning systems that behave equally
well as existing DL reasoners doing reasoning w.r.t. arbitrary models. Note,
however, that the current algorithm is best-case EXPTIME since it constructs
an exponentially large equation system. It can thus not be expected to have an
acceptable runtime behaviour if implemented in a naive way. Nevertheless, we
believe that the use of equation systems and linear programming is indispensable
for finite model reasoning in ALCQZ. Thus, efforts to obtain efficient reasoners
should perhaps concentrate on methods to avoid best-case exponentiality such as
on-the-fly construction of equation systems. Moreover, the reductions presented
in Section 4 and 5 can also not be expected to exhibit an acceptable run-time
behaviour and it would thus be interesting to try to replace them by more
“direct” methods.

Theoretically, there exist at least two interesting directions in which the
presented research can be continued: first, while finite ALC QZ-concept satisfia-
biltiy w.r.t. TBoxes is sufficient for reasoning about conceptual database models
as described in the introduction, finite ALC Q7-ABox consistency it is not yet
sufficient for deciding the containment of conjunctive queries w.r.t. a given con-
ceptual model—an intermediate reduction step is required. It would thus be
interesting to analyze the complexity of query containment in finite models. We
believe that it is possible to obtain an EXPTIME upper bound by building on
the results presented in Section 5. Secondly, it would be interesting to extend
ALCQT with nominals, i.e. with concept names interpreted as singleton sets.
Finite and standard reasoning in the resulting DL ALCQOZ is known to be
NExPTME-hard [16]. An extension in this direction is rather challenging since
the results established in this paper crucially rely on the fact that adding dis-
joint copies of a model preserves the model’s properties. Unfortunately, in the
presence of nominals, this is no longer true.
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