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Abstract

Previous results for combining decision procedures for the word problem
in the non-disjoint case do not apply to equational theories induced by
modal logics—which are not disjoint for sharing the theory of Boolean
algebras. Conversely, decidability results for the fusion of modal logics are
strongly tailored towards the special theories at hand, and thus do not
generalize to other types of equational theories.

In this paper, we present a new approach for combining decision pro-
cedures for the word problem in the non-disjoint case that applies to equa-
tional theories induced by modal logics, but is not restricted to them. The
known fusion decidability results for modal logics are instances of our ap-
proach. However, even for equational theories induced by modal logics our
results are more general since they are not restricted to so-called normal
modal logics.
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1 Introduction

The combination of decision procedures for logical theories arises in many areas of
logic in computer science, such as constraint solving, automated deduction, term
rewriting, modal logics, and description logics. In general, one has two first-order
theories T1 and T2 over the signatures Σ1 and Σ2, for which validity of a certain
type of formulae (e.g., universal, existential positive, etc.) is decidable. The
question is then whether one can combine the decision procedures for T1 and T2

into one for their union T1 ∪ T2. The problem is usually much easier (though not
at all trivial) if the theories do not share symbols, i.e., if Σ1 ∩ Σ2 = ∅. For non-
disjoint signatures, the combination of theories can easily lead to undecidability,
and thus one must find appropriate restrictions on the theories to be combined

In automated deduction, the Nelson-Oppen combination procedure [NO79, Nel84]
as well as the problem of combining decision procedures for the word prob-
lem [Pig74, Tid86, SS89, Nip91, BT97] have drawn considerable attention. The
Nelson-Oppen method combines decision procedures for the validity of quantifier-
free formulae in so-called stably infinite theories. If we restrict the attention to
equational theories,1 then it is easy to see that validity of arbitrary quantifier-free
formulae can be reduced to validity of formulae of the form s1 ≈ t1 ∧ . . . ∧ sn ≈
tn → s ≈ t where s1, . . . , t are terms.2 Thus, in this case the Nelson-Oppen
method combines decision procedures for the conditional word problem (i.e., for
validity of conditional equations of the above form). Though this may at first sight
sound surprising, combining decision procedures for the word problem (i.e., for
validity of equations s ≈ t) is a harder task: the known combination algorithms
for the word problem are more complicated than the Nelson-Oppen method, and
the same applies to their proofs of correctness. The reason is that the algorithms
for the component theories are then less powerful. For example, if one applies
the Nelson-Oppen method to a word problem s ≈ t, then it will generate as
input for the component procedures conditional word problems, not word prob-
lems (see [BT97] for a more detailed discussion). Both the Nelson-Oppen method
and the methods for combining decision procedures for the word problem have
been generalized to the non-disjoint case [DKR94, TR03, BT02, FG03]. The
main restriction on the theories to be combined is that they share only so-called
constructors.

In modal logics, one is interested in the question of which properties (like decid-
ability) of uni-modal logics transfer to multi-modal logics that are obtained as
the fusion of uni-modal logics. For the decidability transfer,3 one usually consid-

1Equational theories are stably infinite if one adds the axiom ∃x, y. x 6≈ y that prevents
trivial one-element models [BT97].

2This is a consequence of the fact that equational theories are convex [Nel84], i.e., a con-
junction of equations implies a disjunction of equations iff it implies one of the disjuncts.

3To simplify and clarify the matter, in this introduction, we consider only Kripke-complete
modal logics (these are the logics arising in most—if not all—concrete applications). Notice,
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ers two different decision problems, the satisfiability problem (Is there a Kripke
structure of the logic that satisfies the formula ϕ?) and the relativized satisfiabil-
ity problem (Is there a Kripke structure of the logic that satisfies the formula ϕ
and in which every world satisfies ψ?). There are strong combination results that
show that in many cases decidability transfers from two modal logics to their fu-
sion [KW91, Spa93, Wol98, Gab99, BLSW02, GKWZ03]. Again, transfer results
for the harder decision problem (relativized satisfiability) are easier to show than
for the simpler one (satisfiability). In fact, for satisfiability the results only apply
to so-called normal modal logics,4 whereas this restriction is not necessary for
relativized satisfiability.

There is a close connection between the (conditional) word problem and the (rel-
ativized) satisfiability problem in modal logics. In fact, modal formulae can be
viewed as terms, on which equivalence of formulae induces an equational theory.5

The fusion of modal logics then corresponds to the union of the corresponding
equational theories, and the (relativized) satisfiability problem to the (condi-
tional) word problem. The union of the equational theories corresponding to
two modal logics is over non-disjoint signatures since the Boolean operators are
shared.

Unfortunately, in this setting the Boolean operators are not shared constructors in
the sense of [TR03, BT02] (see [FG03]), and thus the decidability transfer results
for fusions of modal logics cannot be obtained as special cases of the results in
[TR03, BT02, FG03].

Recently, a new generalization of the Nelson-Oppen combination method to non-
disjoint theories was developed in [Ghi03, GS03]. The main restriction on the
theories T1 and T2 to be combined is that they are compatible with their shared
theory T0, and that their shared theory is locally finite (i.e., its finitely generated
models are finite). A theory T is compatible with a theory T0 iff

1. T0 ⊆ T ;

2. T0 has a model completion T ∗
0 ; and

3. every model of T embeds into a model of T ∪ T ∗
0 .

It is well-known that the theory BA of Boolean algebras is locally finite, and
in [Ghi03] it is shown that the equational theories induced by modal logics are

however, that the decidability transfer results we show in this paper do not depend at all on
Kripke-completeness assumptions, as it is evident from the definitions and the main theorem
of Section 4.

4An exception is [BLSW02], where only the existence of “covering normal terms” is required.
5To be more precise, equivalence of formulae can only be axiomatized as an equational

theory if it is a congruence relation that is closed under substitution, a restriction that is
satisfied by most, also non-normal, modal logics. Such logics are usually called classical modal
logics [Seg71].
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compatible with BA. Thus, the combination method in [Ghi03] applies to (equa-
tional theories induced by) modal logics. However, since it generalizes the Nelson-
Oppen method, it only yields transfer results for decidability of the conditional
word problem (i.e., the relativized satisfiability problem).

In the present paper, we address the harder problem of designing a combination
method for the word problem in the non-disjoint case that has the known transfer
results for decidability of satisfiability in modal logics as instances. In fact, we will
see that our approach strictly generalizes these results since it does not require
the modal logics to be normal. The question whether such transfer results hold
also for non-normal modal logics was a long-standing open problem in modal
logics. In addition to the conditions imposed in [Ghi03, GS03] (i.e., compatibility
of the component theories with the shared theory T0, which is locally finite), our
method needs the shared theory T0 to have local solvers. Roughly speaking, this
is the case if in T0 one can solve an arbitrary system of equations with respect
to any of its variables. Since this allows one to solve systems of equations by an
elimination procedure similar to Gaussian elimination know from linear algebra,
we call such theories Gaussian.

In the next section, we introduce some basic notions for equational theories, and
define the restrictions under which our combination approach applies. In Sec-
tion 3, we describe the new combination procedure, and show that it is sound
and complete. Section 4 shows that the restrictions imposed by our procedure
are satisfied by all modal logics where equivalence of formulae induces an equa-
tional theory. In particular, we show there that the theory of Boolean algebras
is Gaussian. This result is obtained as a consequence of results for unification in
Boolean rings. In this section, we also analyze the complexity of our combination
procedure if applied to modal logics, and illustrate the working of the procedure
on two examples.

2 Preliminaries

In this paper we will use standard notions from equational logic, universal algebra
and term rewriting (see, e.g., [BN98]). We consider only first-order theories (with
equality ≈) over a functional signature. A signature Σ is a set of function symbols,
each with an associated arity, an integer n ≥ 0. A constant symbol is a function
symbol of zero arity. We use the letters Σ,Ω, possibly with subscripts, to denote
signatures. Throughout the paper, we fix a countably-infinite set V of variables
and a countably-infinite set C of free constants, both disjoint with any signature
Σ. For any X ⊆ V ∪C, T (Σ, X) denotes the set of Σ-terms over X, i.e., first-order
terms with variables and free constants in X and function symbols in Σ.6 First-
order Σ-formulae are defined in the usual way, using equality as the only predicate

6Note that Σ may also contain constants.
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symbol. A Σ-sentence is a Σ-formula without free variables. An equational theory
E over Σ is a set of (implicitly universally quantified) Σ-identities of the form
s ≈ t, where s, t ∈ T (Σ, V ). As usual, first-order interpretations of Σ are called
Σ-algebras. We denote algebras by calligraphic letters (A, B, . . . ), and their
carriers by the corresponding Roman letter (A, B, . . . ). A Σ-algebra A is a
model of a set T of Σ-sentences iff it satisfies every sentence in T . For a set
Γ of sentences and a sentence ϕ, we write Γ |=E ϕ if every model of E that
satisfies Γ also satisfies ϕ. When Γ is the empty set, we write just |=E ϕ, as
usual. We denote by ≈E the equational consequences of E, i.e., the relation
≈E = {(s, t) ∈ T (Σ, V ∪ C) × T (Σ, V ∪ C) | |=E s ≈ t}. The word problem for E
is the problem of deciding the relation ≈E , that is, deciding for any two terms
s, t ∈ T (Σ, V ∪ C) whether s ≈E t holds or not.7

In this paper we consider two equational theories E1 and E2 of respective sig-
natures Σ1 and Σ2 with possibly non-empty intersection Σ0. We want to know
under what conditions the decidability of the word problems for E1 and E2 im-
plies the decidability of the word problems for E1 ∪ E2. Before we can define
these conditions, we must introduce some notation.

If B is an Ω-algebra and Σ ⊆ Ω, we denote by BΣ the Σ-reduct of A, i.e., the
algebra obtained from A by ignoring the symbols in Ω \ Σ. An embedding of a
Σ-algebra A into a Σ-algebra B is an injective Σ-homomorphism from A to B. If
such an embedding exists then we say that A can be embedded into B. It is easy
to show that the composition of two embeddings is also an embedding, and that
for all subalgebras A′ of an algebra A the inclusion function is an embedding of
A′ into A. If A is Σ-algebra and B is an Ω-algebra with Σ ⊆ Ω, we say that A
can be Σ-embedded into B if there is an embedding of A into BΣ. We call the
corresponging embedding a Σ-embedding of A into B. If this embedding is the
inclusion function, then we say that A is a Σ-subalgebra of B.

Given a signature Σ and a set X disjoint with Σ, we denote by Σ(X) the signature
obtained by adding the elements of X as constant symbols to Σ. When X is
included in the carrier of a Σ-algebra A, we can view A as a Σ(X)-algebra by
interpreting each x ∈ X by itself. If X is a set of generators for A, the Σ-diagram
∆Σ

X(A) of A (w.r.t. X) consists of all ground Σ(X)-literals (i.e., ground identities
s ≈ t and negated ground identities ¬s ≈ t for terms s, t ∈ T (Σ(X), ∅)) that hold
in A. We write just ∆Σ(A) when X coincides with the whole carrier of A. By a
result known as Robinson’s Diagram Lemma [CK90] embeddings and diagrams
are related as follows.

Lemma 2.1 Let A be a Σ-algebra generated by a set X, and let B be an Ω-algebra
for some Ω ⊇ Σ(X). Then A can be Σ(X)-embedded into B iff B is a model of

7We have defined the word problem for terms including free constants since we will con-
sider such terms later on. Since free constants behave just like variables, the word problem is
decidable for terms in T (Σ, V ∪ C) iff it is decidable for terms in T (Σ, V ).
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∆Σ
X(A), the Σ-diagram of A w.r.t. X.

A consequence of the lemma above, which we will use later, is that if two Σ-
algebras A, B are both generated by a set X and if one of them, say B, satisfies
the other’s diagram w.r.t. X, then they are isomorphic: indeed, if you view A
and B as Σ(X)-algebras, then “B satisfies the diagram of A (w.r.t. X)” implies
that there is a Σ(X)-embedding of A into B. This embedding maps X to X and,
since X generates B, it is surjective, and thus an isomorphism.

Ground formulae are invariant under embeddings in the following sense.

Lemma 2.2 Let A be a Σ-algebra that can be Σ-embedded into an algebra B. For
all ground Σ(A)-formulae ϕ, A satisfies ϕ iff B satisfies ϕ where B is extended
to a Σ(A)-algebra by interpreting a ∈ A by its image under the embedding.

We use the notion of model completion from model theory.

Definition 2.3 (Model Completion) Let E be an equational Σ-theory and let
E∗ be a first-order Σ-theory entailing every identity in E.8 Then E∗ is a model
completion of E iff for every model A of E

1. A can be embedded into a model of E∗, and

2. E∗ ∪ ∆Σ(A) is a complete Σ(A)-theory.9

One can show that when it exists, the model completion of a theory is unique
[CK90].

Given the equational theories E1 and E2 to be combined, we want to define
conditions under which the decidability of the word problem for E1 and E2 implies
decidability of the word problem for their union.

First condition: Our first restriction is that both E1 and E2 are compatible
with a shared subtheory E0 over the shared signature Σ0 := Σ1 ∩ Σ2 in the
following sense.

Definition 2.4 (Compatibility) Let E be an equational theory over the signa-
ture Σ, and let E0 be an equational theory over a subsignature Σ0 ⊆ Σ. We say
that E is E0-compatible iff

8The notion of model completion applies more generally to first-order theories, but we are
interested only in the equational case. Notice that E∗ is usually not equational, even if E is so.

9A first-order Σ-theory T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is entailed
by T .
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1. ≈E0 ⊆ ≈E ;

2. E0 has a model completion E∗
0 ;

3. every model of E embeds into a model of E ∪E∗
0 .

Examples of theories that satisfy this definition can be found in [Ghi03, GS03] and
in Section 4. The intuition underlying the definition is also explained there. Here
we just show two consequences that will be important when proving completeness
of our combination procedure.

Lemma 2.5 Assume that E1 and E2 are both E0-compatible for some equational
theory E0 with signature Σ0 = Σ1 ∩ Σ2. For i = 0, 1, 2, let Ai be a model of Ei

such that A0 is a Σ0-subalgebra of both A1 and A2. Then there are a model A of
E1 ∪E2 and Σi-embeddings fi of Ai into A whose restrictions to A0 coincide.

Proof. To simplify the notation, let us assume that Σ0 contains all the elements of
A0 as constants, and that A0 interprets each such constant by itself, i.e., aA0 = a
for all a ∈ A0. Otherwise we can always add those elements to all the signatures
in question.10 Let i ∈ {1, 2} and let A0 be a Σ0-subalgebra of Ai.

By the E0-compatibility of Ei, there is a model Bi of Ei∪E
∗
0 and a Σi-embedding

hi : Ai −→ Bi. We can assume without loss of generality thatAi is contained in Bi

and that hi is the inclusion mapping, i.e., Ai is a Σi-subalgebra of Bi. Otherwise,
we could just rename the carrier of Bi appropriately. Let Ti be the set of all
first-order Σi(Bi)-sentences satisfied by Bi. We claim that E∗

0 ∪ ∆Σ0(A0) ⊆ Ti.
The inclusion is immediate for E∗

0 as Bi is a model of Ei ∪ E∗
0 . To see that

∆Σ0(A0) ⊆ Ti, note that A0 is a Σ0-subalgebra of Bi. Since A0 ⊆ Σ0, this implies
by Lemma 2.1 that Bi satisfies ∆Σ0(A0), hence ∆Σ0(A0) ⊆ Ti.

We have then that E∗
0 ∪∆Σ0(A0), which is a complete theory by Definition 2.3, is

included in both T1 and T2. It follows by Robinson’s Joint Consistency Lemma
[CK90] that T1∪T2 is satisfiable. Therefore, let A be any model of T1∪T2 and let
i ∈ {1, 2}. By construction of Ti, A satisfies ∆Σi(Bi), therefore, by Lemma 2.1,
there is a Σi(Bi)-embedding h′i of Bi into B. Let fi be the restriction of h′i to
Ai ⊆ Bi.

Finally, to see that f1 coincides with f2 on A0, note that for a ∈ A0 ⊆ Σ0 we have
f1(a) = f1(a

A0) = f1(a
B1) = aA = f2(a

B2) = f2(a
A0) = f2(a). �

In the following, we call conjunctions of Σ-identities e-formulae. We will write
ϕ(x) to denote an e-formula ϕ all of whose variables are included in the tuple
x. If x = (x1, . . . , xn) we will write ϕ(a) to denote that a is a tuple of constant
symbols of the form (a1, . . . , an) and ϕ(a) is the formula obtained from ϕ by
replacing every occurrence of xi by ai for i = 1, . . . , n.

10This causes no loss of generality because a Σ-embedding is a Σ′-embedding for all Σ′ ⊆ Σ.

8



Lemma 2.6 Let E1 be E0-compatible where E1 and E0 are equational theories
over the respective signatures Σ1 and Σ0 with Σ1 ⊇ Σ0. Let ψ1(x,y) be an
e-formula in the signature Σ1 and ψ2(y, z) an e-formula in the signature Σ0

such that ψ1(a1,a0) |=E1 ψ2(a0,a2), where a1, a0 and a2 are tuples of fresh
constants. Then, there is an e-formula ψ0(y) in the signature Σ0, such that
ψ1(a1,a0) |=E1 ψ0(a0) and ψ0(a0) |=E0 ψ2(a0,a2).

Proof. Let Γ0 be the set of ground e-formulae γ0(a0) in the signature Σ′
0 =

Σ0 ∪ a0
11 such that ψ1(a1,a0) |=E1 γ0(a0) or, equivalently stated, such that

E1∪{ψ1(a1,a0)} |= γ0(a0). By compactness, it is enough to show that E0∪Γ0 |=
ψ2(a0,a2).

Let E2 be the equational theory E0 in the signature Σ2 = Σ0. By definition
of model completion, E2 is trivially E0-compatible. Consider now the algebras
A0,A1 and A2 where A0 is an initial model of the equational theory E0 ∪ Γ0

over the signature Σ′
0,

12 A1 is an initial model of the equational theory E1 ∪
{ψ1(a1,a0)} over the signature Σ′

1 = Σ1 ∪ a1 ∪ a0, and A2 is an initial model of
the equational theory E2 ∪ Γ0 over the signature Σ′

2 = Σ2 ∪ a0 ∪ a2. We claim
that A0 can be Σ′

0-embedded into A1 and into A2, from which it follows that
AΣ0

0 , a model of E0, can be Σ0-embedded into AΣ1
1 , a model of E1 and into AΣ2

2 ,
a model of E2.

To see that A0 can be Σ′
0-embedded into A1, by Lemma 2.1 it is enough to show

that A1 satisfies ∆
Σ′

0

∅
(A0). So let P be a positive ground Σ′

0-literal satisfied by
A0. Since A0 is an initial model of E0 ∪Γ0, we have that E0 ∪Γ0 |= P . But then,
E1 ∪{ψ1(a1,a0)} |= P because E1 ∪{ψ1(a1,a0)} |= E0 ∪Γ0. Since A1 is a model
of E1 ∪ {ψ1(a1,a0)}, we can conclude that A1 satisfies P as well. Now let ¬P
be a negative ground Σ′

0-literal satisfied by A0 and assume by contradiction that
A1 satisfies P . Then, since A1 is an initial model of E1 ∪ {ψ1(a1,a0)}, we have
that E1 ∪ {ψ1(a1,a0)} |= P . It follows that P ∈ Γ0 and so it must be satisfied
by A0, against the assumption that A0 satifies ¬P .

To see that A0 can be Σ′
0-embedded into A2 it is enough to observe that A

Σ′
0

2 is a
free model of E0∪Γ0 over the generators a2. Since A0 is an initial model of E0∪Γ0,
it follows by well-known results on free algebras that A0 can be Σ′

0-embedded into

A
Σ′

0
2 .

Thus, let g1 and g2 be Σ0-embeddings of AΣ0
0 into AΣ1

1 and AΣ2
2 , respectively.

By renaming the carriers A1 and A2 appropriately, we can make sure that these
embeddings are in fact inclusion mappings. It follows from Lemma 2.5 that there
is a model B of E1 ∪E2 and embeddings f1 and f2 of AΣ1

1 and AΣ2
2 into B, such

that f1 coincides with f2 on A0. Let A be the expansion of B to the signature

11In this paper, by abuse of notation, we will consider tuples such as a0 also as a sets.
12Since Γ0 is a the set of ground e-formulae, it can be equivalently seen as a set of ground

identities, and thus such an initial model exists.
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Σ′
1 ∪ Σ′

2 defined by interpreting each constant a in a1 as f1(a
A1), each constant

a in a0 as f1(a
A0), and each constant a in a2 as f2(a

A2). It is not difficult to see
that this expansion is well defined and that fi is a Σ′

i-embedding of Ai into A for
i = 1, 2.

Now consider the ground formula ψ1(a1,a0), which is true in A1. Since A1 is
Σ′

1-embedded in A, ψ1(a1,a0) is true in A as well by Lemma 2.2. Since A is a
model of E1∪E2 it follows that it is also a model of E1∪{ψ1(a1,a0)}. Therefore,
by our assumptions, A must be a model of ψ2(a0,a2). By Lemma 2.2 and the
fact that A2 is Σ′

2-embedded in A, we then have that ψ2(a0,a2) is true in A2.
Since ψ2(a0,a2) is a conjunction of ground identities over the signature Σ′

2, and
A2 is an initial model of E2 ∪ Γ0 = E0 ∪ Γ0 over this signature, it follows that
E0 ∪ Γ0 |= ψ2(a0,a2). �

Second condition: The second restriction is that the theory E0 is locally finite,
i.e., all of its finitely generated models are finite. From a more syntactical point of
view this means that if C0 is a finite subset of C, then there are only finitely many
E0-equivalence classes of terms in T (Σ0, C0). For our combination procedure to
be effective, we must be able to compute representatives of these equivalence
classes.

Definition 2.7 An an equational theory E0 over the signature Σ0 is effectively
locally finite iff for every (finite) tuple c of constants from C we can effectively
compute a finite set of terms RE0(c) ⊆ T (Σ0, c) such that

1. s 6≈E0 t for all distinct s, t ∈ RE0(c);

2. for all terms s ∈ T (Σ0, c), there is some t ∈ RE0(c) such that s ≈E0 t.

Example 2.8 A well-known example of an effectively locally finite theory is the
theory BA of Boolean algebras, that is, the equational theory over the signature
{∩,∪, ( ), 1, 0} given by the following identities.

x ∩ y ≈ y ∩ x x ∪ y ≈ y ∪ x
x ∩ (y ∩ z) ≈ (x ∩ y) ∩ z x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z
(x ∩ y) ∪ y ≈ y (x ∪ y) ∩ y ≈ y
x ∩ (y ∪ z) ≈ (x ∩ y) ∪ (x ∩ z) x ∪ (y ∩ z) ≈ (x ∪ y) ∩ (x ∪ z)

x ∩ x ≈ x x ∪ x ≈ x
x ∩ 0 ≈ 0 x ∪ 0 ≈ x
x ∩ 1 ≈ x x ∪ 1 ≈ 1
x ∩ x ≈ 0 x ∪ x ≈ 1

In fact, if c = (c1, . . . , cn), every ground Boolean term over the constants in c is
equivalent in BA to a term in “conjunctive normal form,” a meet of terms of the
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kind d1 ∪ · · · ∪ dn, where each di is either ci or ci. It is easy to see that the set
RBA(c) of such normal forms is isomorphic to the powerset of the powerset of c,
which is effectively computable and has cardinality 22n

.

Third condition: The third restriction on our theories E1 and E2 is that they
are both a conservative extensions of E0, i.e., for i = 1, 2 and for all s, t ∈
T (Σ0, V ),

s ≈E0 t iff s ≈Ei
t.

Fourth condition: The final restriction is that the theory E0 has local solvers,
in the sense that any finite set of equations can be solved with respect to any
of its variables. Since this means that finite sets of equations can be solved
by something similar to the Gaussian elimination procedure known from linear
algebra, we call a theory like that Gaussian.

Definition 2.9 (Gaussian) The equational theory E0 is Gaussian iff for every
e-formula ϕ(x, y) it is possible to compute an e-formula C(x) and a term s(x, z)
with fresh variables z such that

|=E0 ϕ(x, y) ⇔ (C(x) ∧ ∃z.(y = s(x, z))) (1)

We call the formula C the solvability condition of ϕ w.r.t. y, and the term s a
(local) solver of ϕ w.r.t. y in E0.

The precise connection between the above definition and Gaussian elimination is
explained in the following example.

Example 2.10 Let K be a fixed field (e.g., the field of rational or real numbers).
We consider the theory of vector spaces over K whose signature consists of a
symbol for addition, a symbol for additive inverse and, for every scalar k ∈ K,
a unary function symbol k · (−). Axioms are the usual vector spaces axioms
(namely, the Abelian group axioms plus the axioms for scalar multiplication).
In this theory, terms are equivalent to linear homogeneous polynomials (with
non-zero coefficients) over K. Every e-formula ϕ(x, y) can be transformed into a
homogeneous system

t1(x, y) = 0 ∧ · · · ∧ tk(x, y) = 0

of linear equations with unknowns x, y. If y does not occur in ϕ, then ϕ is its
own solvability condition and z is a local solver.13 If y occurs in ϕ, then (modulo
easy algebraic transformations) we can assume that ϕ contains an equation of the

13Note that ϕ is trivially equivalent to ϕ ∧ ∃z.(y = z).
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form y = t(x); this equation gives the local solver, which is t(x) (the sequence of
existential quantifiers ∃z in (1) is empty), whereas the solvability condition is the
e-formula obtained from ϕ by eliminating y, i.e., replacing y by t(x) everywhere
in ϕ.

Another example of a Gaussian theory is the theory of equality over the empty
signature.

Example 2.11 The pure equality theory (that is, the empty theory in the empty
signature) is also Gaussian. To show that one can argue as in the previous
example. Specifically, if ϕ(x, y) does not contain y, then it is its own solvability
condition. Otherwise, ϕ contains an equation like y = xi, and so on. If ϕ contains
only trivial equations y = y involving y, the local solver is again z and in order to
get the solvability condition, we can just remove all such trivial equations from
ϕ, reducing the solvability condition to the tautology ⊤ if no equation survives.

Another Gaussian theory will be discussed Section 4. Specifically, we will show
there that the theory of Boolean algebras is Gaussian. This is a more sophisticated
example, in which the string of existential quantifiers ∃z in (1) can be both not
empty and applied to a non-trivial solver (on the contrary, in the above examples,
we always have that either there are no parameters z, or that the solver is the
trivial term z).

We close this section by observing that the theories introduced in Examples 2.10
and 2.11 also satisfy our other restrictions. It is easy to see that the theory in
the latter example is effectively locally finite since there are no proper terms, and
that the theory in the former example is effectively locally finite if the field K is
finite.

Notice also that the theories in the two examples above admit model completions,
which in both cases are axiomatized by saying that models are infinite. In fact,
every set embeds into an infinite set, and every vector space V1 embeds into an
infinite vector space V2 (take, e.g., V2 equal to the biproduct V1 ⊕ V ′, where V ′

has an infinite basis). Thus, the first condition of Definition 2.3 is satisfied.

To show that the second condition of Definition 2.3 is satisfied, it is sufficient to
observe that both the theory of an infinite set (over the empty signature) and the
theory of an infinite vector space admit quantifier-elimination. Once quantifier-
elimination for E∗ is achieved, Condition 2 of Definition 2.3 becomes immediate.
To see this, let A be a model of E and let ϕ be a Σ(A)-sentence. Now, it is
not possible to find models A1,A2 of E∗ ∪ ∆Σ(A) such that ϕ is true in A1 and
false in A2. By Lemma 2.1, A can be Σ(A)-embedded into both A1 and A2. By
quantifier elimination, ϕ is equivalent (modulo E∗) to a ground Σ(A)-formula ϕ′.
It follows that ϕ′ is true in A1, hence in A (by Lemma 2.2), and finally also in A2

12



(again by Lemma 2.2). Thus ϕ is true in A2, which contradicts our assumption
that ϕ is false in A2.

Finally, let us sketch why the theory of Examples 2.10 extended by axioms that
say that all models are infinite admits quantifier-elimination (the argument for
the theory of Example 2.11 is similar).

With no loss of generality we can consider only formulae of the form ∃x.ϕ, where
ϕ is a conjunction of literals each inequivalent to ⊥ and to ⊤ in the original
theory. To eliminate the quantifier ∃x we can proceed as follows. If ϕ contains
an identity involving x, by solving with respect to x with the usual Gaussian
elimination algorithm, we can convert ϕ into a conjunction of the form x ≈ t∧ϕ′

where neither t nor ϕ′ contain x. The resulting formula ∃x. (x ≈ t ∧ ϕ′) to
which ∃x.ϕ is equivalent in the original theory, is in turn logically equivalent to
ϕ′. If ϕ contains no (positive) identities involving x, we can rewrite each negated
identity in ϕ containing x into one of the form x 6≈ t, with x not occurring in t.
The resulting formula, which is equivalent to ∃x.ϕ in the original theory, has the
form

∃x. (x 6≈ t1 ∧ · · · ∧ x 6≈ tk ∧ ϕ′)

where t1, . . . , tk, and ϕ′ do not contain x. This formula is equivalent to ϕ′ in the
extended theory since all the models of that theory are infinite.

3 The combination procedure

In the following, we assume that E1, E2 are equational theories over the signatures
Σ1,Σ2 with decidable word problems, and that there exists an equational theory
E0 over the signature Σ0 := Σ1 ∩ Σ2 such that

• E0 is Gaussian and effectively locally finite;

• for i = 1, 2, Ei is E0-compatible and a conservative extension of E0.

3.1 Abstraction rewrite systems

Our combination procedure works on the following data structure.

Definition 3.1 An abstraction rewrite system (ARS) R is a finite ground rewrite
system that can be partitioned into R = R1 ∪ R2 so that

• for i = 1, 2, the rules of Ri are of the form a → t where a ∈ C and
t ∈ T (Σi, C), and every constant a occurs at most once as a left-hand side
in Ri;
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• R = R1 ∪R2 is terminating.

The ARS R is an initial ARS iff every constant a occurs at most once as a
left-hand side in the whole R.

Since R is terminating, we can find a strict total ordering > on the left-hand side
constants of R such that for all a → t ∈ R, the term t contains only left-hand
side constants smaller than a. In particular, for i = 1, 2, Ri is also terminating,
and the restriction that every constant occurs at most once as a left-hand side in
Ri implies that Ri is confluent. We denote the unique normal form of a term s
w.r.t. Ri by s↓Ri

.

Given a ground rewrite system R, an equational theory E, and an e-formula ψ,
we write R |=E ψ to express that {l ≈ r | l → t ∈ R} |=E ψ.

Lemma 3.2 Let R = R1∪R2 be an ARS, and s, t ∈ T (Σi, C) for some i ∈ {1, 2}.
Then Ri |=Ei

s ≈ t iff s↓Ri
≈Ei

t↓Ri
.

Proof. Let i ∈ {1, 2}. Let an > an−1 > · · · > a1 be a total ordering of the left-
hand side (lhs) constants of Ri = {aj → tj | j = 1, . . . , n} such that tj contains
only lhs constants smaller than aj .

(⇐) Obviously, s↓Ri
≈Ei

t↓Ri
implies Ri |=Ei

s ≈ t.

(⇒) Assume that Ri |=Ei
s ≈ t. Since Ri |=Ei

s ≈ s↓Ri
and Ri |=Ei

t ≈ t↓Ri
, this

yields Ri |=Ei
s↓Ri

≈ t↓Ri
. Now assume that s↓Ri

6≈Ei
t↓Ri

, i.e., there is a model
A of Ei in which the identity s↓Ri

≈ t↓Ri
does not hold. Since the terms s↓Ri

, t↓Ri

do not contain the constants a1, . . . , an, we may assume that A does not interpret
these constants. We show below that we can expand A to a model Â of Ei that
also interprets the constants a1, . . . , an and satisfies {aj ≈ tj | j = 1, . . . , n}. This
will imply that Ri 6|=Ei

s↓Ri
≈ t↓Ri

, a contradiction.

We define expansions Aj of A that interpret the lhs constants a1, . . . , aj by in-
duction on j:

• The algebra A1 interprets a1 by the interpretation of t1 in A, i.e., aA1
1 := tA1 .

Note that tA1 is well-defined since t1 does not contain any of the constants
a1, . . . , an.

• The algebra Aj extends Aj−1 by interpreting aj by the interpretation of tj
in Aj−1, i.e., a

Aj

j := t
Aj−1

j . Note that t
Aj−1

j is well-defined since tj does not
contain any of the constants aj , . . . , an.

Now, Â is defined to be An. It is easy to see that this algebra has the required
properties, i.e., it is a model of Ei ∪ {aj ≈ tj | j = 1, . . . , n} in which the identity
s↓Ri

≈ t↓Ri
does not hold. �
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If we want to decide the word problem in E1 ∪ E2, it is sufficient to consider
ground terms with free constants, i.e., terms s, t ∈ T (Σ1 ∪ Σ2, C). Given such
terms s, t we can employ the usual abstraction procedures that replace subterms
by new constants in C (see, e.g., [BT02]) to generate terms u, v ∈ T (Σ0, C) and
an initial ARS R = R1 ∪R2 such that

s ≈E1∪E2 t iff R |=E1∪E2 u ≈ v.

For example, assume that Σ1 = {f, g} and Σ2 = {f, h}, and consider the terms
s = f(h(c1), g(h(c1))) and t = g(f(h(c1), c2)). Then we can take u = f(a1, a2),
v = a3, R1 = {a1 → h(c1)}, and R2 = {a2 → g(a1), a3 → g(f(a1, c2))}.

Thus, to decide the word problem in E1∪E2, it is sufficient to devise a procedure
that can solve problems of the form “R |=E1∪E2 u ≈ v?” where R is an initial
ARS and u, v ∈ T (Σ0, C). We present this procedure next.

3.2 The combination procedure

The input of the procedure is an initial ARS R = R1 ∪ R2 and two terms u, v ∈
T (Σ0, C). Let > be a total ordering of the left-hand side (lhs) constants of R
such that for all a → t ∈ R, t contains only lhs constants smaller than a. Given
this ordering, we can assume that R = {ai → ti | i = 1, . . . , n} for some n ≥ 0
where an > an−1 > · · · > a1.

Note that u, v and each ti may also contain free constants from C that are not
left-hand side constants. In the following, we use c to denote a tuple of all
these constants. Furthermore, for j = 1, 2 and i = 0, . . . , n, we denote by R

(i)
j

the restriction of Rj to the rules whose left-hand sides are smaller or equal to

ai—where, by convention, R
(0)
j is the empty system.

The combination procedure is described in Figure 1. First, note that all of the
steps of the procedure are effective. Step 1 of the for loop is trivially effective;
Step 2 is effective because E0 is effectively locally finite by assumption. Step 3
is effective because the test that R

(i)
j |=Ej

t ≈ t′ can be reduced by Lemma 3.2
to testing that t↓

R
(i)
j

≈Ej
t′↓

R
(i)
j

. The latter test is effective because, (i) the

word problem in Ej is decidable by assumption and (ii) R
(i)
j is confluent and

terminating at each iteration of the loop. Now, in Step 4 the formula ϕ can be
computed because T is finite and the local solver in Step 5 can be computed by
the algorithm provided by the definition of a Gaussian theory. Step 6 is trivial
and for the final test after the loop, the same observations as for Step 3 apply.

A few more remarks on the procedure are in order. In the fifth step of the loop,
d is a tuple of new constants introduced by the solver s. In the definition of a
local solver, we have used variables instead of constants, but this difference will
turn out to be irrelevant since free constants behave like variables. One may
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Input: an initial ARS R = R1 ∪ R2 = {ai → ti | i = 1, . . . , n} and
terms u, v ∈ T (Σ0, C).

Let c collect the free constants in R, u, v that are not in {a1, . . . , an}.

for i = 1 to n do

1. Let j be such that ai → ti ∈ Rj and k such that {j, k} = {1, 2}.

2. Let T = RE0(a1, . . . , ai, c) (see Definition 2.7).

3. For each pair of distinct terms t, t′ ∈ T , test whether R
(i)
j |=Ej

t ≈ t′.

4. Let ϕ(a1, . . . , ai, c) be the conjunction of those identities
t ≈ t′ for which the test succeeds.

5. Let s(a1, . . . , ai−1, c,d) be a local solver of ϕ w.r.t. ai in E0.

6. Add to Rk the new rule ai → s(a1, . . . , ai−1, c,d).

done

Output: “yes” if R1 |=E1 u ≈ v, and “no” otherwise.

Figure 1: The combination procedure.

wonder why the procedure ignores the solvability condition for the local solver.
The reason is that this condition follows from both R1 and R2, as will be shown
in the proof of completeness.

Adding the new rule to Rk in the sixth step of the loop does not destroy the
property of R1 ∪R2 being an ARS—although it will make it non-initial. In fact,
s(a1, . . . , ai−1, c,d) contains only lhs constants smaller than ai, and Rk before did
not contain a rule with lhs ai because the input was an initial ARS.

The test after the loop is performed using R1, E1. The choice R1 and E1 versus
R2 and E2 is arbitrary. As it will be made clear by the completeness proof for
the procedure, using R2, E2 instead would produce the same results.

3.3 The correctness proof

Since the combinations procedure obviously terminates on any input, it is suffi-
cient to show soundness and completeness. In this proof, we will use the notation
R1,i, R2,i to denote the updated rewrite systems obtained after step i in the loop
(R1,0 and R2,0 are the input systems R1 and R2).

Proposition 3.3 (Soundness) If the combination procedure yields the answer
“yes”, then R1 ∪R2 |=E1∪E2 u ≈ v.
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Proof. Let i ∈ {1, . . . , n}. We start by showing that

R1,i ∪ R2,i |=E1∪E2 u ≈ v implies R1,i−1 ∪R2,i−1 |=E1∪E2 u ≈ v. (2)

First observe that

R1,i ∪ R2,i = R1,i−1 ∪R2,i−1 ∪ {ai ≈ s(a1, . . . , ai−1, c,d)} (3)

where (i) the term s(a1, . . . , ai−1, c,d) is a local solver of ϕ(a1, . . . , ai, c) w.r.t. the
free constant ai in E0, and (ii) ϕ(a1, . . . , ai, c) is an e-formula such that Rj,i−1 |=Ei

ϕ(a1, . . . , ai, c) for some j ∈ {1, 2}. Now assume that R1,i ∪ R2,i |=E1∪E2 u ≈ v.
By (3) above and the fact that the constants d occur only in the solver s, we
have that

R1,i−1 ∪ R2,i−1 ∪ {∃z.(ai ≈ s(a1, . . . , ai−1, c, z))} |=E1∪E2 u ≈ v.

To prove that R1,i−1 ∪ R2,i−1 |=E1∪E2 u ≈ v it is obviously enough to show
that R1,i−1 ∪ R2,i−1 |=E1∪E2 ∃z.(ai ≈ s(a1, . . . , ai−1, c, z)). To show this, first
observe that R1,i−1 ∪R2,i−1 |=E1∪E2 ϕ(a1, . . . , ai, c) by monotonicity of |= and (ii)
above. Second, by construction of s (see Definition 2.9) and the fact that E1∪E2

extends E0 it follows, again by monotonicity, that R1,i−1∪R2,i−1 |=E1∪E2 ∃z.(ai ≈
s(a1, . . . , ai−1, c, z)).

To prove the proposition now, assume that procedure answers “yes”. Then it
must be that R1,n |=E1 u ≈ v which implies that R1,n ∪ R2,n |=E1∪E2 u ≈ v. But
then, by a repeated application of Property (2) above, we have that R1 ∪ R2 =
R1,0 ∪ R2,0 |=E1∪E2 u ≈ v. �

The following lemma will be useful to prove the completeness of the combination
procedure.

Lemma 3.4 For every i = 1, . . . , n and every ground e-formula ψ(a1, .., ai, c) in
the signature Σ0 ∪ {a1, .., ai} ∪ c

R
(i)
1,i |=E1 ψ iff R

(i)
2,i |=E2 ψ.

In particular, for i = n we have that R1,n |=E1 ψ iff R2,n |=E2 ψ for every ground
e-formula ψ(a1, . . . , an, c) in the signature Σ0 ∪ {a1, .., an} ∪ c.

Proof. We prove the lemma by induction on i. The base case i = 0 is trivial since
R

(0)
1,0, R

(0)
2,0 are empty and E1, E2 are conservative extensions of the same theory

E0 over Σ0.

Let i > 0 and assume that the lemma holds for i− 1. Let j, k, ti, ϕ(a1, . . . , ai, c),
and s(a1, . . . , ai−1, c,d) be defined as in the i-th iteration of the loop in the
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combination procedure. Then we have Rj,i = Rj,i−1 and Rk,i = Rk,i−1 ∪ {ai →
s(a1, . . . , ai−1, c,d)}.

First, we show that R
(i)
j,i |=Ej

ψ implies R
(i)
k,i |=Ek

ψ. Observe that R
(i)
j,i is equal

to R
(i)
j,i−1 and that R

(i)
k,i is equal to to R

(i−1)
k,i−1 ∪ {ai → s(a1, . . . , ai−1, c,d)}. From

R
(i)
j,i |=Ej

ψ it follows that ϕ |=E0 ψ (since, modulo E0, every conjunct of ψ oc-
curs as a conjunct in ϕ by the definition of ϕ). Thus, it is sufficient to show

that R
(i)
k,i |=Ek

ϕ. Because ai → s(a1, . . . , ai−1, c,d) belongs to R
(i)
k,i and since

s(a1, . . . , ai−1, c,d) is a local solver of ϕ w.r.t. ai, it is sufficient to show that
the corresponding solvability condition C(a1, . . . , ai−1, c) follows from Ek and

R
(i)
k,i. However, this formula does not contain ai, and thus we can argue as fol-

lows. Since ϕ implies its own solvability condition (in E0, and thus also in Ej),

R
(i)
j,i |=Ej

ϕ implies R
(i)
j,i |=Ej

C(a1, ..., ai−1, c). Because C(a1, ..., ai−1, c) does not

contain ai and since Rj,i = Rj,i−1, this implies that R
(i−1)
j,i−1 |=Ej

C(a1, ..., ai−1, c) by

Lemma 3.2.14 Thus, the induction hypothesis yields R
(i−1)
k,i−1 |=Ek

C(a1, ..., ai−1, c).

Since R
(i−1)
k,i−1 ⊆ R

(i)
k,i, this finally implies R

(i)
k,i |=Ek

C(a1, ..., ai−1, c). In conclusion,

we have shown that R
(i)
k,i |=Ek

ψ.

Second, we show that R
(i)
k,i |=Ek

ψ implies R
(i)
j,i |=Ej

ψ. Since Rk,i := Rk,i−1∪{ai →

s(a1, . . . , ai−1, c,d)}, we know (again by Lemma 3.2) that R
(i)
k,i |=Ek

ψ implies that

R
(i−1)
k,i−1 |=Ek

ψ2(a1, . . . , ai−1, c,d) where ψ2 is obtained from ψ by replacing every
occurrence of ai by s(a1, . . . , ai−1, c,d). Let ψ1(a1, . . . , ai, c) be the conjunction of

all the identities denoted by R
(i−1)
k,i−1. Applying Lemma 2.6 to ψ1(a1, . . . , ai, c) |=Ek

ψ2(a1, . . . , ai−1, c,d), we then obtain an e-formula ψ0(x1, . . . , xi−1,y) in the shared
signature Σ0 such that

1. R
(i−1)
k,i−1 |=Ek

ψ0(a1, . . . , ai−1, c) and

2. ψ0(a1, . . . , ai−1, c) |=E0 ψ2(a1, . . . , ai−1, c,d).

By induction hypothesis on the first entailment, we then have

R
(i−1)
j,i−1 |=Ej

ψ0(a1, ..., ai−1, c),

and so, since Rj,i−1 = Rj,i, also R
(i)
j,i |=Ej

ψ0(a1, ..., ai−1, c). By the substitutivity
property of equality and the construction of ψ2, the second entailment implies
that ψ0(a1, ..., ai−1, c) ∧ ai ≈ s(a1, . . . , ai−1, c,d) |=E0 ψ, which is equivalent to

ψ0(a1, ..., ai−1, c) ∧ ∃z. (ai ≈ s(a1, . . . , ai−1, c, z)) |=E0 ψ,

14Lemma 3.2 applies here because C(a1, ..., ai−1, c) is a conjunction of identities, and so it is
entailed by a set of formulae iff each of its identities is.
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as the constants d do not occur in ψ. Given that s(a1, . . . , ai−1, c, z) is a local
solver for ϕ(a1, . . . , ai, c, z), we have by Definition 2.9 that ϕ(a1, . . . , ai, c, z) |=E0

∃z. (ai ≈ s(a1, . . . , ai−1, c, z)). It follows that {ψ0, ϕ} |=E0 ψ.

Recalling that R
(i)
j,i |=Ej

ϕ by construction of ϕ and that R
(i)
j,i |=Ej

ψ0 as just seen,

we can conclude that R
(i)
j,i |=Ej

ψ. �

Proposition 3.5 (Completeness) If R1 ∪ R2 |=E1∪E2 u ≈ v, then the combi-
nation procedure answers “yes”.

Proof. Since the procedure is terminating, it is enough to show that R1,0 ∪
R2,0 6|=E1∪E2 u ≈ v whenever the combination procedure answer “no”. We do
that by building a model of R1,0 ∪ R2,0 ∪ E1 ∪E2 that falsifies u ≈ v.

Assume then that the combination procedure answer “no”, let a := (a1, . . . , an)
and let k ∈ {1, 2}. Where c is defined as in Figure 1 and dk is a tuple collecting
all the new constants introduced in the rewrite system Rk during execution of
the procedure (see Step 4 of the loop), let Ak,0 be the initial model of Ek over
the signature Σk ∪ c ∪ dk.

Observe that the final rewrite system Rk,n contains (exactly) one rule of the form
ai → ui for all i = 1, . . . , n. This is because either the rule ai → ti was already
in Rk,0 to begin with (then ui = ti), or a rule of the form ai → si for some solver
si was added to Rk,i−1 at step i to produce Rk,i (in which case ui = si).

Now, as in the proof of Lemma 3.2, we can use the rewrite rules of Rk,n to define
by induction on i = 1, . . . , n an expansion Ak,i of Ak,0 to the constants a1, . . . , ai.

Specifically, Ak,i is defined as the expansion of Ak,i−1 that interprets ai as u
Ak,i−1

i

where ui is the term such that ai → ui ∈ Rk,n. Note that u
Ak,i−1

i is well defined
because ui does not contain any of the constants ai, . . . , an. As a consequence,
all the Ak,i are well defined.

By induction on i we can show that for every ground e-formula ϕ(a1, . . . , ai, c,dk)
in the signature Σk ∪ {a1, . . . , ai} ∪ c ∪ dk, we have that

Ak,i satisfies ϕ(a1, . . . , ai, c,dk) iff R
(i)
k,n |=Ek

ϕ(a1, . . . , ai, c,dk). (4)

In fact, let i = 0 and observe that R
(0)
k,n = ∅. If Ak,0 satisfies ϕ, since ϕ is

a conjunction of ground identities and Ak,0 is an initial model of Ek, we have
immediately that ∅ |=Ek

ϕ. Conversely, if ∅ |=Ek
ϕ then ϕ is satisfied by every

model of Ek, and so in particular by Ak,0. For i > 0 we have that Ak,i satisfies ϕ

iff Ak,i−1 satisfies ϕ[ui/ai]
15 iff (by induction) R

(i−1)
k,n |=Ek

ϕ[ui/ai] iff R
(i−1)
k,n ∪{ai ≈

ui} |=Ek
ϕ iff R

(i)
k,n |=Ek

ϕ.

15Where ϕ[ui/ai] denotes the formula obtained from ϕ by replacing every occurrence of ai

by ui.
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Let Ak = AΩk

k,n where Ωk = Σk ∪ a ∪ c. As a special case of (4) above, we have
that for every ground e-formula ϕ(a, c) in the signature Σ0 ∪ a ∪ c,

Ak satisfies ϕ iff Rk,n |=Ek
ϕ. (5)

For k = 1, 2 let Bk be the subalgebra of AΣ0
k generated by (the interpretations in

Ak of) the constants a ∪ c. We claim that the algebras B1 and B2 satisfy each
other’s diagram. To see that, let ψ be a ground identity of signature Σ0 ∪ a ∪ c.
Then,

ψ ∈ ∆Σ0
a∪c(Bk) iff Bk satisfies ψ [by definition of ∆Σ0

a∪c(Bk)]
iff Ak satisfies ψ [by construction of Bk and Lemma 2.2]
iff Rk,n |=Ek

ψ [by (5) above].

By Lemma 3.4, we can conclude that ψ ∈ ∆Σ0
a∪c(B1) iff ψ ∈ ∆Σ0

a∪c(B2). It follows
from the observation after Lemma 2.1 that B1 and B2 are Σ0-isomorphic, hence
they can be identified with no loss of generality. Therefore, let A0 = B1 = B2 and
observe that (i) AΣk

k is a model of Ek by construction; (ii) A0 is a Σ0-subalgebra
of AΣk

k ; and (iii) A0 is a model of E0 because AΣ0
k is a model of E0 and the set of

models of an equational theory is closed under subalgebras.

By Lemma 2.5 it follows that there is a model A of E1 ∪E2 such that for k = 1, 2
there is a Σk-embedding fk of AΣk

k into A. By the same lemma we also have that
f1(c

A1) = f2(c
A2) for all c ∈ a ∪ c. Let then A′ be the expansion of A to the

signature Σ1 ∪ Σ2 ∪ a ∪ c such that cA
′

= f1(c
A1) for every c ∈ a ∪ c. It is not

difficult to see that fk is an Ωk-embedding of Ak into A′ for k = 1, 2.

Observe that A′, which is clearly a model of E1∪E2, is also a model of R1,0∪R2,0.
In fact, by construction of R1,n and R2,n, for all a → t ∈ R1,0 ∪ R2,0, there is a
k ∈ {1, 2} such that a → t ∈ Rk,n. It follows immediately that Rk,n |=Ek

a ≈ t,
which implies by (5) above that Ak satisfies a ≈ t. But then A′ satisfies a ≈ t as
well by Lemma 2.2.

In conclusion, we have that A′ is a model of R1,0 ∪ R2,0 ∪ E1 ∪ E2. All we need
to show then is that A′ falsifies u ≈ v. Now, since the procedure returns “no”
by assumption, it must be that R1,n 6|=E1 u ≈ v. We then have that A1 falsifies
u ≈ v by (5) above and A′ falsifies u ≈ v by Lemma 2.2. �

Note that in the last paragraph of the proof above we could have given a com-
pletely symmetrical argument if the final test in the procedure had been on
whether R2,n |=E2 u ≈ v. In other words, the procedure’s completeness does
not depend on which component theory is used for the final test.

From the total correctness of the combination procedure, we then obtain the
following modular decidability result.

Theorem 3.6 Let E0, E1, E2 be three equational theories of respective signature
Σ0,Σ1,Σ2 such that
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• Σ0 = Σ1 ∩ Σ2;

• E0 is Gaussian and effectively locally finite;

• for i = 1, 2, Ei is E0-compatible and a conservative extension of E0.

If the word problem in E1 and in E2 is decidable, then the word problem in E1∪E2

is also decidable.

We conclude this section by pointing out that, modulo a minor technicality ex-
plained in the following, the results above can be seen as a generalization of the
corresponding combination result for the disjoint case. This known result (see,
e.g., [Pig74]) states that, if E1 and E2 are two non-trivial16 equational theories
with disjoint signatures and decidable word problem, then E1∪E2 has a decidable
word problem.

To recast this result in terms of Theorem 3.6, one needs to show that for every
two non-trivial equational theories E1 and E2 with disjoint signatures, there is a
theory E0 in the empty signature which is Gaussian, effectively locally finite, and
such that both E1 and E2 conservatively extend E0 and are E0-compatible. Bar
the compatibility requirement, such a theory E0 is the pure equality theory (see
Example 2.11). As discussed in Section 2, this theory is effectively locally finite
and Gaussian, and admits as its model completion E∗

0 the theory of an infinite
set. It is immediate that any non-trivial equational theory E is a conservative
extension of E0. Furthermore, it is almost true that any non-trivial E is E0-
compatible. Specifically, while points 1 and 2 of Definition 2.4 are always satisfied,
point 3 (requiring that every model of E be embeddable in a model of E ∪ E∗

0)
is always satisfied only by non-trivial models of E. The reason is that every
algebra A is embedded into the infinite direct product Aω of A with itself by the
diagonal function.17 If A is a model of E, then Aω is a model of E because the
set of models of an equational theory is closed under direct products. If A is also
non-trivial, then Aω is infinite and so it is also a model of E ∪E∗

0 . If A is trivial,
depending on E, A may or may not be embeddable into a model of E ∪E∗

0 .

Now, the problem with the trivial models can be eliminated by considering the
combination not of equational theories E1 and E2, but of theories of the form
E ′

i = Ei ∪ {∃x, y. x 6≈ y} for i = 1, 2, where Ei is a non-trivial equational theory.
These theories admit only non-trivial models. Moreover, for the purposes of
deciding the word problem, there is no real loss of generality in considering E ′

i

instead of Ei because the word problems for E ′
i and for Ei coincide. While strictly

speaking E ′
1 and E ′

2 are not equational, they satisfy all results stated in this paper
for the equational theories E1 and E2 (although some of the proofs need some
minor adjustments). Hence Theorem 3.6 applies to them as well.

16A theory is non-trivial if it admits non-trivial models, that is, models of cardinality greater
than 1.

17The function that maps every a ∈ A to the infinite tuple of all a’s.
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4 Fusion decidability in modal logics

In this section we define the modal logics to which our combination procedure ap-
plies. Basically, these are modal logics that corresponds to equational extensions
of the theory of Boolean algebras; for this reason, our definition is very liberal
and covers most modal systems considered in the literature (with few exceptions,
as we will see).

4.1 Equational theories induced by modal logics

A modal signature ΣM is a set of operation symbols endowed with corresponding
arities; from ΣM propositional formulae are built up using countably many propo-
sitional variables, the operation symbols in ΣM , the Boolean connectives, and the
constant ⊤ for truth and ⊥ for falsity. We use letters x, x1, . . . , y, y1, . . . for propo-
sitional variables and letters t, t1, . . . , u, u1, . . . as metavariables for propositional
formulae.

The following definition is taken from [Seg71], pp. 8–9:18

Definition 4.1 A classical modal logic L based on a modal signature ΣM is a
set of propositional formulae that

(i) contains all classical tautologies;

(ii) is closed under uniform substitution of propositional variables by proposi-
tional formulae;

(iii) is closed under the modus ponens rule (‘from t and t⇒ u infer u’);

(iv) is closed under the replacement rules, which are specified as follows. We
have one such rule for each n-ary o ∈ ΣM , namely:

t1 ⇔ u1, . . . , tn ⇔ un

o(t1, . . . , tn) ⇔ o(u1, . . . , un)

As classical modal logics (based on a given modal signature) are closed under
intersections, it makes sense to speak of the least classical modal logic [S] con-
taining a certain set of propositional formulae S. If L = [S], we say that S is a
set of axiom schemata for L and write S ⊢ t for t ∈ [S].

18Strictly speaking, K. Segerberg in [Seg71] considers only modal signatures consisting of
a single unary modal operator (i.e., unary unimodal logics; more general multimodal systems
became quite popular only later on). The least classical modal logic with a single unary operator
is usually called E.
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Notice that giving a set of axiom schemata for L is not the only way to introduce
a classical modal logic L: for instance, one can introduce L just by specifying a
certain (e.g. Kripke, neighborhood, algebraic, etc.) semantics and saying that L
is the set of formulae that are valid in that semantics.

We say that a classical modal logic L is decidable iff L is a recursive set of
propositional formulae; the decision problem for L is just the membership problem
for L.

A classical modal logic L is said to be normal iff for every n-ary modal operator
o in the signature of L and every i = 1, . . . , n, L contains the formula

o(x,⊤,x′)

and also the formula

o(x, (y ⇒ z),x′) ⇒ (o(x, y,x′) ⇒ o(x, z,x′)).

where x abbreviates the tuple (x1, . . . , xi−1) and x′ abbreviates (xi+1, . . . , xn).
The latter schema is called the “Aristotle law”.19 The least normal (classical
modal, unary, unimodal) logic is the modal logic usually called K [CZ97].

Most well-known modal logics considered in the literature (both normal and non-
normal) fit Definition 4.1: these include standard unary unimodal systems like
K, T, K4, S4, S5 and so on [CZ97], tense systems like Kt and other tem-
poral logics [GHR94], the propositional dynamic logic PDL [Pra76], common
knowledge systems [HM92], computational tree logic CTL [CE82],20 and the
propositional µ-calculus [Koz83]. Modal logics with so-called graded modalities
[FBDC85, VdHdR95, Tob99] (which correspond to qualified number restrictions
in Description Logics [HB91]) are examples of classical modal logics that are not
normal [BLSW02].

Let us call an equational theory Boolean-based if its signature includes the signa-
ture ΣBA of Boolean algebras and its axioms include the Boolean algebras axioms
BA (see Example 2.8). For notational convenience, we will assume that ΣBA also
contains the binary symbol ⊃, defined by the axiom

x ⊃ y ≈ x ∪ y.

Given a classical modal logic L we can associate with it a Boolean-based equa-
tional theory EL. Conversely, given a Boolean-based equational theory E we can
associate with it a classical modal logic LE. The constructions are the obvious
ones and are recalled in the following.

19The axiom schema o(x,⊤, x′) can be dropped in favor of the necessitation rule: ‘from t infer
o(x, t, x′)’; in that case, thanks to the Aristotle laws, the replacement rules become redundant.

20On the other hand, the full computational tree logic CTL∗ [EH86] is not a classical modal
system in the sense of Definition 4.1, as it is not closed under uniform substitution.
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Given a logic L with modal signature ΣM , we define EL as the theory having as
signature ΣM ∪ ΣBA and as a set of axioms the set

BA ∪ {tBA ≈ 1 | t ∈ L}

where tBA is obtained from t by replacing t’s logical connectives (¬,∧,∨,⇒)
by the corresponding Boolean algebra operators (( ),∩,∪,⊃),21 and the logical
constants ⊤ and ⊥ by 1 and 0, respectively. Vice versa, given a Boolean-based
equational theory E over the signature Σ, we define LE as the classical modal
logic over the modal signature Σ \ ΣBA axiomatized by the formulae

{tL | |=E t ≈ 1}

where tL is obtained from t by the inverse of the replacement process above.

Classical modal logics (in our sense) and Boolean-based equational theories are
equivalent formalisms, as is well-known from algebraic logic [Ras74]. In particular,
for our purposes, the following standard proposition is crucial, as it reduces the
decision problem for a classical modal logic L to the word problem in EL.

Proposition 4.2 For every classical modal logic L and for every propositional
formula t, we have that t ∈ L iff |=EL

tBA ≈ 1.

Proof. The left-to-right direction is immediate from the definition of EL.

For the opposite direction, we can use the well-known Lindenbaum algebra con-
struction (see e.g. [Ras74]).22 We define a model AL of EL as follows. Where ΣL

is the signature of L, the carrier of AL is defined as the set of all the equivalence
classes of ΣL-formulae with respect to the equivalence relation23

≡ := {(t, u) | t⇔ u ∈ L}.

It easy to see that, since L is closed under the replacement rules, ≡ is in fact
a congruence relation with respect to the modal operators in ΣL. We define
these operators in AL as prescribed by L, that is, we interpret each n-ary modal
operator o as the n-ary function oAL such that

oAL([t1]≡, . . . , [tn]≡) = [o(t1, . . . , tn)]≡

We then define the Boolean operators in the obvious way, that is, we interpret
∩, say, as the binary function ∩AL such that ∩AL([t1]≡, [t2]≡) = [t1 ∧ t2]≡, and

21We can assume without loss of generality that t contains no occurrences of ⇔, as that
connective can be expressed in terms of ⇒ and ∧.

22Readers familiar with this construction will notice that the closure conditions required by
Definition 4.1 are precisely the closure conditions that make the construction work.

23That ≡ is in fact an equivalence relation follows from modus ponens and tautologies.
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so on. It is a standard exercise to show that AL is well-defined. From the
closure of L under uniform substitution, we obtain for arbitrary terms t, u that
AL |= tBA ≈ uBA iff t ⇔ u ∈ L; for u = 1, we also get (by modus ponens and
tautologies) that AL |= tBA ≈ 1 iff t ∈ L—this shows, in particular, that AL is a
model of the equational theory EL. Hence if |=EL

tBA ≈ 1, we have in particular
that AL |= tBA ≈ 1 and finally that t ∈ L, as claimed. �

Given two classical modal logics L1 and L2 over two disjoint modal signatures
Σ1

M and Σ2
M , the fusion of L1 and L2 is the classical modal logic

L1 ⊕ L2

over the signature Σ1
M ∪ Σ2

M defined as [L1 ∪ L2].
24 As EL1⊕L2 is easily seen to

be deductively equivalent to the theory EL1 ∪ EL2 (i.e., ≈EL1⊕L2
= ≈EL1

∪EL2
),

it is clear that the decision problem L1 ∪ L2 ⊢ t reduces to the word problem
EL1 ∪ EL2 |= tBA ≈ 1. Our goal in the remainder of this section is to show that,
thanks to the combination result in Theorem 3.6, this combined word problem
for EL1 ∪ EL2 reduces to the single word problems for EL1 and EL2 , and thus to
the decision problems for L1 and L2.

Note that, although the modal signatures Σ1
M and Σ2

M are disjoint, the signatures
of EL1 and EL2 are no longer disjoint, because they share the Boolean operators.
To show that our combination theorem applies to EL1 and EL2 , we thus must
establish that the common subtheory BA of Boolean algebras matches the re-
quirements for our combination procedure. To this end, we will restrict ourselves
to component modal logics L1 and L2 that are consistent, that is, do not include
⊥ (or, equivalently, do not contain all modal formulae). This is a sensible restric-
tion because when either L1 or L2 are inconsistent L1⊕L2 is inconsistent as well,
which means that its decision problem is trivial.

We have already shown in Section 2 that BA satisfies one of our requirements,
namely effective local finiteness. As for the others, for every consistent classical
modal logic L, the theory EL is guaranteed to be a conservative extension of
BA. The main reason is that there are no non-trivial equational extensions of the
theory of Boolean algebras. In fact, as soon as one extends BA with an axiom
s ≈ t for any s and t such that s 6≈BA t, the equation 0 ≈ 1 becomes valid.25 By
Proposition 4.2, this entails that if an equational theory EL induced by a classical
modal logic L is not a conservative extension of BA then L ⊢ ⊥. Hence L cannot
be consistent.

In conclusion, all we need to show is that BA is Gaussian and that EL is BA-
compatible for every consistent L.

24In other words, L1 ⊕ L2 is just the least classical modal logic extending L1 ∪ L2.
25This is can be shown by a proper instantiation of the variables of s ≈ t by 0 and 1, followed

by simple Boolean simplifications.
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4.2 Boolean solved forms

Here we prove that the equational theory of Boolean algebras is Gaussian. Since
we will make essential use of results from the Boolean unification literature, we
prefer to switch temporarily to a Boolean ring notation, commonly adopted in
that literature. It should be recalled anyway that Boolean algebras and Boolean
rings are essentially the same theory, expressed in different signatures. The dif-
ference is merely a notational question, one can convert terms in the signature of
Boolean algebras into terms in the signature of Boolean rings and vice versa, the
conversion being bijective modulo the axioms of the respective theories.

The theory BR of Boolean rings is the theory in the signature ΣBR = {+, ∗, 0, 1}
one of whose possible (equivalent) axiomatizations is the following:

x ∗ y ≈ y ∗ x, x+ y ≈ y + x,
x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z, x+ (y + z) ≈ (x+ y) + z,
x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z), x ∗ x ≈ x,

x+ x ≈ 0, x ∗ 0 ≈ 0,
x+ 0 ≈ x, x ∗ 1 ≈ x.

It is well-known that when working with e-formulae in the theory BA, it is enough
to consider only e-formulae of the form t ≈ 1. The reason is that for every e-
formula ϕ of the form s1 ≈ t1 ∧ · · · ∧ sn ≈ tn in the signature of BA the following
first-order equivalence holds:

|=BA ϕ ⇔ ((s1 ⊃ t1) ∩ (t1 ⊃ s1) ∩ · · · ∩ (sn ⊃ tn) ∩ (tn ⊃ sn)) ≈ 1.

Note that the symbol ⇔ here denotes bi-implication on the first order level; it
should not be confused with bi-implication on the level of modal logics or of
Boolean algebra terms.

In a similar way, when working with e-formulae in the theory BR, it is enough
to consider only e-formulae of the form t ≈ 0. The reason now is that, for every
e-formula ϕ of the form s1 ≈ t1∧· · ·∧sn ≈ tn in the signature of BR the following
equivalence holds:

|=BR ϕ ⇔ (((s1 + t1 + 1) ∗ · · · ∗ (sn + tn + 1)) + 1) ≈ 0.

We show below that every formula of the form t(x, y) ≈ 0 can be effectively
turned into the conjunction of a solvability condition c(x) ≈ 0 and of a local
solver parametrization ∃z. (y ≈ s(x, z)). It will then follow immediately by
Definition 2.9 that BR is Gaussian. As a consequence, we will also have that BA
is Gaussian as well.

We will use the following general result, adapted from [MN89], on the computa-
tion of most general unifiers in the theory BR.
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Proposition 4.3 Let t(c, y) ≈ 0 be a BR-unification problem with (free) con-
stants c and (only) variable y. For all unifiers {y 7→ g(c)} of t(c, y) ≈ 0 and
fresh variables z, the substitution

{y 7→ z + t(c, z) ∗ (z + g(c))}

is a most general BR-unifier of t(c, y) ≈ 0.

We will also need the next two lemmas.

Lemma 4.4 Let t(x, y) be any ΣBR-term and let c(x) = t(x, 1) ∗ t(x, 0). Then,

|=BR c(x) ∗ (1 + t(x, y)) ≈ 0.

Proof. To prove the claim we can use the fact that the two-element Boolean ring
B2, with carrier {0, 1}, generates the whole variety of Boolean rings.26 Then, it
is enough to check that c(x) ∗ (1 + t(x, y)) evaluates to 0 for every assignment V
of the variables y,x into {0, 1}.

Let V be such an assignment and for every term u let V [u] be the value denoted by
u in B2 under the assignment V . If V [t(x, y)] = 1, the claim follows immediately
from the axioms of BR. If instead V [t(x, y)] = 0, depending on whether V [y] = 1
or V [y] = 0, we have also V [t(x, 1)] = 0 or V [t(x, 0)] = 0 and in any case
V [c(x)] = 0. �

Lemma 4.5 Let t(x, y) be a ΣBR-term and let c(x) = t(x, 1) ∗ t(x, 0). The
substitution σ := {y 7→ 1 + t(x, 1)} is a BR-unifier of the unification problem

t(x, y) ∗ (1 + c(x)) ≈ 0

in which the elements of x are treated as (free) constants and y is the only variable.

Proof. For notational convenience, let us denote the term tσ obtained by applying
the substitution σ to t by t(x, 1 + t(x, 1)). Let B2 be again the two-element
Boolean ring with carrier {0, 1} as in the proof of Lemma 4.4. It is enough to
show that the term

u = t(x, 1 + t(x, 1)) ∗ (1 + c(x))

evaluates to 0 for every assignment of the variables y,x into {0, 1}.

26This means that an identity is entailed by BR iff it is satisfied by B2. This may be seen
as a consequence e.g. of Stone representation theorem [BD74], saying that any Boolean ring
embeds into a cartesian power of B2.
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Let V be such an assignment. If V [c(x)] = 1, the whole term u trivially evaluates
to 0. Therefore, suppose that V [c(x)] = 0. Then it is enough to show that
V [t(x, 1 + t(x, 1))] = 0. Since V [c(x)] = 0, from the definition of c(x), it must
be that either (i) V [t(x, 1)] = 0 or (ii) V [t(x, 1)] = 1 and V [t(x, 0)] = 0. In the
first case, we get that V [t(x, 1+ t(x, 1))] = V [t(x, 1)] = 0. In the second case, we
get that V [t(x, 1 + t(x, 1))] = V [t(x, 0)] = 0. �

We are now ready to prove the existence (and computability) of solvability con-
ditions and local solvers in BR for all e-formulae of the form t(x, y) ≈ 0.

Proposition 4.6 For every ΣBR-term t(x, y), there exist ΣBR-terms c(x) and
s(x, z), computable from t in linear time, such that

|=BR t(x, y) ≈ 0 ⇔ (c(x) ≈ 0 ∧ ∃z. (y ≈ s(x, z))).

Proof. Let
c(x) = t(x, 1) ∗ t(x, 0) (6)

as in Lemmas 4.4 and 4.5. We show that we can define a local solver s(x, z) for
t(x, y) ≈ 0 based on the solvability condition c(x) ≈ 0.

By Lemma 4.5, the substitution {y 7→ 1+t(x, 1)} is a BR-unifier of the unification
problem

t(x, y) ∗ (1 + c(x)) ≈ 0 (7)

By Proposition 4.3 then, where z is a fresh variable and

s(x, z) = z + t(x, z) ∗ (1 + c(x)) ∗ (z + 1 + t(x, 1)), (8)

the substitution {y 7→ s(x, z)} is a most general BR-unifier of (7), which means
in particular that s(x, z) is a solution of (7), i.e.,

|=BR t(x, s(x, z)) ∗ (1 + c(x)) ≈ 0. (9)

We use (9) to show that

(i) t(x, y) ≈ 0 |=BR c(x) ≈ 0 ∧ ∃z. (y ≈ s(x, z)) and

(ii) c(x) ≈ 0 ∧ ∃z. (y ≈ s(x, z)) |=BR t(x, y) ≈ 0,

from which the lemma’s equivalence immediately follows.

(i) Let B be any model of BR and V any assignment of the variables x, y into
B such that V [t(x, y)] = 0.27 Then extend V to z by letting V [z] = V [y]. From

27By a slight abuse of notation we denote 0B by 0.
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Lemma 4.4 (and the axioms of BR) we can deduce that V [c(x)] = 0 and that

V [s(x, z)] = V [s(x, y)]

= V [y + t(x, y) ∗ (1 + c(x)) ∗ (y + 1 + t(x, 1))]

= V [y + 0 ∗ (1 + c(x)) ∗ (y + 1 + t(x, 1))]

= V [y + 0] = V [y].

It follows that B satisfies c(x) ≈ 0 ∧ ∃z. (y ≈ s(x, z)) under the assignment V ,
which proves claim (i).

(ii) Let B be any model of BR and V any assignment of x, y into B such that B
satisfies c(x) ≈ 0 ∧ ∃z. (y ≈ s(x, z)). Clearly, it is possible to extend V to z so
that V [c(x)] = 0 and V [y] = V [s(x, z)]. Together with (9), we then have that

V [t(x, y)] = V [t(x, s(x, z))]

= V [t(x, s(x, z)) ∗ (1 + 0)]

= V [t(x, s(x, z)) ∗ (1 + c(x))] = 0.

It follows that B satisfies t(x, y) ≈ 0 under the assignment V , which proves claim
(ii).

To conclude the proof, we would need to show that c(x) and s(x, y) are com-
putable in linear time from t(x, y) ≈ 0. This however is immediate from the
explicit definitions we have provided for them here. �

Strictly speaking, the result above proves that the theory BR of Boolean rings,
not the theory BA of Boolean algebras, is Gaussian. However, given an e-formula
u(x, y) ≈ 1 in the signature ΣBA, one can translate it into a corresponding formula
t(x, y) ≈ 0, compute a satisfiability condition and local solver for t(x, y) ≈ 0 in
BR, and translate those back into a satisfiability condition and local solver for
u(x, y) ≈ 1. Since both translation processes are clearly effective, it follows that,
with the possible exception of the linear complexity claim, a result like that in
Proposition 4.6 holds for BA as well. If follows that the theory BA of Boolean
algebras is Gaussian.

Furthermore, the computational complexity of computing local solvers in BA is
indeed linear. This is thanks to the fact that local solvers in BA can be computed
directly, without a translation into the signature of BR. In fact, for each e-formula
u(x, y) ≈ 1 (and fresh variable z), the term

s′(x, z) = (u(x, 1) ⊃ u(x, z)) ⊃ (z ∩ (u(x, 0) ⊃ u(x, z))) (10)

is a local solver for u(x, y) ≈ 1 in BA w.r.t. y. It is immediate that s′(x, z) can
be computed in linear time from u(x, y). To see that it is indeed a local solver of
u(x, y), one can argue as follows. From formulas (8) and (6), we have that

s(x, z) = z + t(x, z) ∗ (1 + t(x, 1) ∗ t(x, 0)) ∗ (z + 1 + t(x, 1)) (11)
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is a local solver of the formula t(x, y) ≈ 0 for any ΣBR-term t(x, y). Observing
that u ≈ 1 is equivalent in BA to u ≈ 0, let t(x, y) be the translation of u into
the signature of BR.28 Then, modulo the signature translation, t is equivalent
to u. Let uz, u0, u1 abbreviate respectively u(x, z), u(x, 0), u(x, 1). If we replace
every occurrence of t(x, z), t(x, 0), t(x, 1) in (11) by uz, u0, u1, respectively,
and translate the formula (10) into the the signature of BR, we obtain a formula
that is equivalent in BR to (11). To see that, consider the following chains of
equalities modulo the signature translation and the axioms of BA and BR.29

s′(x, z) ≈ (u1 ⊃ uz) ⊃ (z ∩ (u0 ⊃ uz))

≈ u1 ⊃ uz ∪ (z ∩ (u0 ⊃ uz))

≈ (u1 ∩ uz) ∪ (z ∩ (u0 ∪ uz))

≈ (u1uz) ∪ (z(u0 + uz + u0uz))

≈ (u1uz) ∪ (z(1 + u0 + u0uz))

≈ (u1uz) ∪ (z + u0z + u0uzz)

≈ u1uz + z + u0z + u0uzz + u1uzz + u1uzu0z + u1uzu0uzz

≈ u1uz + z + u0z + u0uzz + u1uzz + u0u1uzz

≈ u1 + u1uz + z + u0z + u0uzz + u1z + u1uzz + u0u1z + u0u1uzz

s(x, z) ≈ z + t(x, z)(1 + t(x, 1)t(x, 0))(z + 1 + t(x, 1))

≈ z + uz(1 + u1u0)(z + u1)

≈ z + uz(u1 + u0 + u0u1)(z + u1)

≈ z + uz(u1z + u0z + u0u1z + u1 + u0u1 + u0u1)

≈ z + (1 + uz)(u1z + u0z + u0u1z + u1)

≈ z + u1z + u0z + u0u1z + u1 + u1uzz + u0uzz + u0u1uzz + u1uz

It is easy to verify at this point that both s and s′ reduce to the same ΣBR-term,
hence they are equivalent.

4.3 Fusion of modal logics

To apply our combination procedure to the case of fusions of modal logics we still
have to show compatibility of Boolean-based equational theories with respect to
the theory of Boolean algebras.

Proposition 4.7 For every classical modal logic L, the equational theory EL is
BA-compatible, where BA is the theory of Boolean algebras.

28This translation can be achieved by the rewrite rules x → x + 1, x ∩ y → x ∗ y, and
x ∪ y → x + y + x ∗ y.

29To simplify the notation, we omit writing the operator ∗ explicitly, and use the standard
precedence rules for ∗ and +.
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Proof. This is actually a well known fact. There are at least two proofs of it, an
algebraic proof from [Ghi03] and a logically-oriented proof that can be adapted
from [Wol98]. For the sake of completeness, we report here the latter.

Recall (e.g., from [CK90, GZ02]) that BA admits as a model completion the
theory of atomless Boolean algebras (a Boolean algebra B is said to be atomless
iff it does not have atoms, where an atom is a nonzero element a ∈ B such that
for all b ∈ B we have either a ≤ b or a ≤ b′).30 So we simply need to embed
any EL-algebra A into an EL-algebra B whose Boolean reduct is atomless. Let
Σ′ be the signature ΣL ∪ A ∪ D, where D is an infinite set (disjoint from A)
and let E ′ be the Σ′-theory obtained from EL by adding to it, as new ground
equations, all positive literals from ∆ΣL(A), the ΣL-diagram of A. Consider the
initial E ′-algebra B over the signature Σ′.

Recall that, as B is initial, for every pair of ground terms s, t over the signature Σ′,
we have that sB = tB iff E ′ |= s ≈ t. By the definition of E ′, we have E ′ |= s ≈ t
iff there are identities u1 ≈ v1, . . . , un ≈ vn in the diagram of A such that the
conditional identity

u1 ≈ v1, . . . , un ≈ vn ⇒ t ≈ s

is a logical consequence of EL. This shows in particular that in B exactly the
(ΣL ∪A)-ground identities that are in the diagram of A are true (and not more),
i.e., B satisfies ∆ΣL(A). By Lemma 2.1, we consequently have that A ΣL(A)-
embeds into B. Thus, we only need to prove that the Boolean reduct of B is
atomless.

Take a candidate atom a in B; clearly a = tB for some ground term t ∈ T (ΣL, A∪
D). Pick d from D which does not occur in t (this is possible as D is infinite).
For a = tB to be an atom we must have in B either tB ≤ dB or tB ≤ (dB)′, but in
both cases this yields tB = 0. In fact, in the former case,31 we have

EL |= u1 ≈ v1, . . . , un ≈ vn ⇒ t ≈ t ∩ d,

for some identities ui ≈ vi (i = 1, . . . , n) belonging to the diagram of A. This
means that d does not occur in them, so that if we replace d by 0 in the above
conditional identity, we get (as EL |= t ∩ 0 ≈ 0)

EL |= u1 ≈ v1, . . . , un ≈ vn ⇒ t ≈ 0

proving that in fact a = tB = 0 is not an atom. �

From the results we collected so far, we can immediately conclude that:

Theorem 4.8 If L1, L2 are decidable classical modal logics, so is their fusion
L1 ⊕ L2.

30Here b′ is the Boolean complement of b; recall also that a ≤ b abbreviates the equation
a ∩ b = a.

31The latter case is analogous, just use “replace d by 1” in the argument below.
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4.4 Complexity issues

The complexity of our combination procedure applied to fusion decidability in
modal logic is the same as the complexity of the combination procedures proposed
for the classical normal modal logics case in [Wol98] and for the classical modal
logics with covering normal terms in [BLSW02]. In fact, the same remarks as in
[BLSW02] apply, as we shall see below.

To begin with, let us recall that

• the preprocessing abstraction procedure32 takes only linear time;

• the computation of a local solver takes also linear time—although it might
be applied to an exponentially long formula, as we will see;

• only linearly many iterations of our procedure’s loop (see Fig. 1) need to
be executed on any input.

Consequently, the only sources of real complexity in the whole procedure are the
tests of Step 3 of the loop (the final test, after the loop, is of the same nature).
Hence we have to analyze:

• how many such tests are performed;

• how expensive each of them is.

Suppose that n is the number of the free constants in the procedure’s input—the
initial ARS R and the shared terms u and v. This number is obviously linear in
the size of the input. Let us assume for simplicity that the only free constants
in the input are the lhs constants in R: a1, . . . , an.

33 Now, as we discussed in
Example 2.8, the number of non-equivalent Boolean terms over n constants is 22n

,
hence one might conclude that during the ith iteration of the procedure’s loop we
will need to execute O(22i

· 22i

) equivalence tests in Step 3 of the loop. Instead,
we can limit ourselves to 2i tests for the following reason.

Recall that the e-formula ϕ built at Step 4 of the loop is equivalent in the shared
theory BA to an identity of the form t ≈ 1, where t is a Boolean term. Again
as discussed in Example 2.8, this term is in turn equivalent in BA to a term of
the form t1 ∩ · · · ∩ tm, where each tk is a term-clause, i.e., a term of the form
b1 ∪ · · · ∪ bi where each bj is either aj or aj. Now, it is an immediate consequence
of BA that

|=BA (t1 ∩ · · · ∩ tm) ≈ 1 iff |=BA tk ≈ 1 for all k = 1, . . . , m.

32The one that converts a formula in the signature of the fusion logic into an initial ARS and
two boolean terms u and v.

33The complexity analysis does not change if we ignore other possible free constants.
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It follows that to generate ϕ it is enough to consider in the test of Step 3 only
identities of the form t ≈ 1 where t is a term-clause over a1, . . . , ai. And we
already know that, modulo BA, there are only 2i such identities. As an additional
consequence of the above we have that the size of the e-formula ϕ is linear in 2i,
which in turn means that the local solver computed in Step 6 of the loop is also
linear in 2i, and so exponential in the size of the input.

Let us now consider the cost of the test R
(i)
j |=ELj

t ≈ 1, where t is any term-

clause. This test requires R
(i)
j -normalization first and then a call to the decision

procedure for the input logic Lj . In the worst case R
(i)
j is of the form {a1 →

t1, . . . , ai → ti} with each right-hand side term being a recursively computed,

exponentially long solver. Normalizing the term t with respect to R
(i)
j can then

raise the length of t from linear to 2q(n), where q(n) is a quadratic polynomial.

To see this it is helpful to observe that, the way R
(i)
j is defined, normalizing t

amounts to first replacing every occurrence of a1 in t by t1, then replacing every
occurrence of a2 in the resulting term by t2 and so on. Now let us first consider
how the size of the terms t1, . . . , ti grows when we apply the rewrite system to
them. First of all, t1 is irreducible, and so it does not change in size, i.e., its
size after rewriting is still O(2n). The term t2 is of size O(2n) and thus may
contain at most O(2n) occurrences of a1. Thus, by rewriting, its size may grow
to O(2n +2n · 2n) = O(22n). The term t3 is of size O(2n) and thus may contain at
most O(2n) occurrences of a1, a2. Considering the worst-case that all of them are
occurrences of a2, its size may grow to O(2n + 2n · 22n) = O(23n). If we continue
this argument until we reach tn, we see that indeed tn may grow by rewriting
to size O(2(n2)). Since the size of the term t is linear in n,34 its size may grow
by rewriting (where in the worst case we replace O(n) constants by terms of size
O(2(n2))) to size O(2(n2+1)).

In conclusion, the decision procedures for L1 and for L2 may have to deal with
exponentially many, exponentially long instances of the decision problem in each
of the linearly many iterations of the loop. If these procedures are in PSPACE, we
get an EXPSPACE combined decision procedure. If instead the procedures are in
EXPTIME, we get a 2EXPTIME combined decision procedure. This is the same
as the complexity bound given in [BLSW02] for their combination procedure.

4.5 Examples

Here we give two examples of our combination procedure at work in the case of
classical modal logics.

Example 4.9 Consider the classical modal logic KT with modal signature {�}

34Recall that t is a term clause over {a1, . . . , ai}.
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and obtained by adding to K the axiom schema

�x⇒ x.

Now let KT1 and KT2 be two signature disjoint renamings of KT in which �1

and �2, respectively, replace �, and consider the fusion logic KT1 ⊕ KT2. We
can use our combination procedure to show that

KT1 ⊕KT2 ⊢ �2x ⇒ ♦1x

(where as usual ♦1x abbreviates ¬�1 ¬x).
For i = 1, 2, let Ei be the equational theory corresponding to KTi. It is enough
to show that

|=E1∪E2 (�2(x) ⊃ ♦1(x)) ≈ 1 (12)

where now ♦1x abbreviates �1(x).
After the abstraction process, we get the two rewrite systems:

R1 = {a1 → ♦1(c)},

R2 = {a2 → �2(c)}

and the goal equation
(a2 ⊃ a1) ≈ 1.

where a1, a2 and c are fresh constants.
Recall from our discussion in Section 4.4 that for the test in Step 3 of the pro-
cedure’s loop we need to consider only identities of the form t ≈ 1 where t is a
term-clause over the set of constants under consideration. During the first exe-
cution of the procedure’s loop the constants in question are a1 and c, therefore
there are only four identities to consider:

a1 ∪ c ≈ 1, a1 ∪ c ≈ 1, a1 ∪ c ≈ 1, and a1 ∪ c ≈ 1.

The only identity for which the test is positive is a1 ∪ c. In fact, a1 ∪ c rewrites
to ♦1(c)∪ c, which is equivalent to c ⊃ ♦1(c). This is basically the contrapositive
of (the translation of) the axiom schema �1(c) ⊃ c.35

Using the formula

s(x, z) = (u(x, 1) ⊃ u(x, z)) ⊃ (z ∩ (u(x, 0) ⊃ u(x, z))) (13)

from Subsection 4.2, we can produce a solver for that identity, which reduces to
c ∪ d1 after some simplifications, where d1 is a fresh free constant. Hence, the
following rewrite rule is added to R2 in Step 6 of the loop:

a1 → c ∪ d1.

35Another approach for checking this, and also that the tests for the other term-clauses are
negative, is to translate the rewritten term-clauses into the corresponding modal formulae, and
then check whether their complement is unsatisfiable in all Kripke structures with a reflexive
accessibility relation (see [Che80], Fig. 5.1).
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Note that at this time we could already quit the loop and provide an output using
R2 and E2 in the final test instead of R1 and E1.

36 If we did that, the final test
R2 |=E2 (a2 ⊃ a1) ≈ 1 (that is, |=E2 �2(c) ⊃ (c ∪ d1) ≈ 1) would succeed because
the corresponding modal formula

�2 c⇒ (c ∨ d1)

is in fact a theorem of KT2.
Continuing the execution of the loop with the second—and final—iteration, we
get instead the following. Among the eight term-clauses involving a1, a2, c, the
test in Step 3 is positive for four of them. The conjunction of such term-clauses
gives a Boolean e-formula that is equivalent to (a2 ⊃ c) ∩ (c ⊃ a1) ≈ 1. This
e-formula, once solved with respect to a2, gives (after simplifications) the rewrite
rule

a2 → d2 ∩ ((c ⊃ a1) ⊃ (d2 ⊃ c)).

which is added to R1 before quitting the loop. Using this R1, the final test of the
procedure (R1 |=E1 a2 ⊃ a1 ≈ 1) succeeds because the modal formula

d2 ∧ ((c⇒ ♦1c) ⇒ (d2 ⇒ c)) ⇒ ♦1c

is a theorem of KT1.

Example 4.10 Here we consider the fusion R⊕KTB, where KTB is the clas-
sical modal logic obtained by adding to KT the axiom schema

♦�x⇒ x

and R is obtained from the minimum classical unimodal system E, with modal
operator ©, by adding to it the regularity rule:37

t⇒ u
©t⇒ ©u.

Note that R is classical, but not normal. We can apply our combined procedure
to show that

R ⊕ KTB ⊢ ♦� © x⇒ ©♦x.

After purification, we get the ARS

R1 = {a4 → ©a1, a2 → ©c},

R2 = {a1 → ♦c, a3 → ♦� a2}.

36Recall that it is immaterial whether R1 and E1 or R2 and E2 are used for the final test.
37Instead of the regularity rule, one may equivalently use the axiom schema ©(t ∧ u) ⇒ ©u

to get the logic R (see [Seg71], page 45).
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and the goal identity
(a3 ⊃ a4) ≈ 1.

In the first iteration of the loop, we test the term-clauses over a1, c,
38 and get

(a1 ∪ c) ≈ 1 as the e-formula to be solved with respect to a1. As in the first step
of the previous example, the solver (after simplifications) gives the rewrite rule
a1 → (c ∪ d1).
In the second iteration, nothing relevant happens because the e-formula to be
solved with respect to a2 is equivalent to an e-formula (namely (a1 ∪ c) ≈ 1
again) in which a2 does not occur. This entails that using (13) to compute the
local solver yields the trivial rewrite rule a2 → d2 for some fresh constant d2. In
the third iteration, term-clauses involving a1, a2, a3, c are tested;39 this results in
an e-formula equivalent to (a3 ⊃ a2)∩ (c ⊃ a1) ≈ 1. Solving it with respect to a3

gives (after simplifications) the rule a3 → d3 ∩ ((c ⊃ a1) ⊃ (d3 ⊃ a2)).
We can ignore the last iteration of the loop because it modifies R2, which is not
used afterwards. Performing the final test using R1, the modal formula to be
tested for validity in R is then

(d3 ∧ ((c⇒ (c ∨ d1)) ⇒ (d3 ⇒ ©c))) ⇒ ©(c ∨ d1).

This formula is indeed valid in R. To see that, first notice that the subformula
c⇒ (c ∨ d1) is a tautology. Therefore it is enough to show the validity of

(d3 ∧ (d3 ⇒ ©c)) ⇒ ©(c ∨ d1).

This follows from the transitivity of implication, because (d3∧(d3 ⇒ ©c)) ⇒ ©c
and ©c⇒ ©(c∨d1) are both valid in R (for the latter, apply the regularity rule
to the tautology c⇒ (c ∨ d1)).
As a final remark observe that if we replace in the example the logic R by the
logic E, the execution of the procedure is the same but the final test is negative.
To get a falsifying model for the modal propositional formula in the final test,
it is sufficient to observe that any Boolean algebra in which the operator © is
interpreted as the Boolean complement is a model of E.40

5 Conclusion

In this paper, we have described a new approach for combining decision proce-
dures for the word problem in equational theories over non-disjoint signatures.

38For instance by checking the complement of the modal formulae obtained after rewriting
for unsatisfiability in all Kripke structures with a reflexive and symmetric accessibility relation
(see again [Che80], Fig. 5.1).

39For instance by checking the complement of the modal formulae obtained after rewriting
for unsatisfiability in all neighborhood frames where the set of sets of worlds associated with
each world is closed under supersets (see, e.g., [Seg71], page 43.)

40It goes without saying that these are not models for R, as they violate the regularity rule.
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Unlike the previous combination methods for the word problem [BT02, FG03] in
the non-disjoint case, this approach has the known decidability transfer results
for satisfiability in the fusion of modal logics [KW91, Wol98] as consequences.
Our combination result is however more general than these transfer results since
it applies also to non-normal modal logics—thus answering in the affirmative
a long-standing open question in modal logics—and to equational theories not
induced by modal logics (see, e.g., Example 2.10). Nevertheless, for the modal
logic application, the complexity upper-bounds obtained through our approach
are the same as for the more restricted approaches [Wol98, BLSW02].

Our results are not consequences of combination results for the conditional word
problem (the relativized satisfiability problem) recently obtained by generaliz-
ing the Nelson-Oppen combination method [Ghi03, GS03]. In fact, there are
modal logics (obtained by translating certain description logics into modal logic
notation) for which the satisfiability problem is decidable, but the relativized sat-
isfiability problem is not. This is, e.g, the case for description logics with feature
agreements [BBN+93] or with concrete domains [BH92].

Our new combination approach is orthogonal to the previous combination ap-
proaches for the word problem in equational theories over non-disjoint signature
[BT02, FG03]. On the one hand, the previous results do not apply to theories
induced by modal logics [FG03]. On the other hand, there are equational theories
satisfying the restrictions imposed by the previous approaches, but they are not
locally finite [BT02], and thus do not satisfy our restrictions. Both the approach
described in this paper and those in [BT02, FG03] have the combination results
for the case of disjoint signatures as a consequence. For the previous approaches,
this was already pointed out in [BT02, FG03]. For our approach, the reasons are
those given at the end of Section 3.
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