TECHNISCHE Dresden University of Technology
UNIVERSITAT Institute for Theoretical Computer Science
DRESDEN Chair for Automata Theory

LTCS—Report

Foundations of non-standard inferences for
DLs with transitive roles

Sebastian Brandt and Anni-Yasmin Turhan and Ralf Kiisters

LTCS-Report 03-02

Lehrstuhl fiir Automatentheorie
Institut fiir Theoretische Informatik Hans-Grundig-Str. 25
TU Dresden 01062 Dresden

http://lat.inf.tu-dresden.de Germany




Foundations of non-standard inferences for
DLs with transitive roles

Sebastian Brandt and Anni-Yasmin Turhan and Ralf Kisters *

Abstract

Description Logics (DLs) are a family of knowledge representation
formalisms used for terminological reasoning. They have a wide range
of applications such as medical knowledge-bases, or the semantic web.
Research on DLs has been focused on the development of sound and
complete inference algorithms to decide satisfiability and subsumption
for increasingly expressive DLs. Non-standard inferences are a group
of relatively new inference services which provide reasoning support
for the building, maintaining, and deployment of DL knowledge-bases.
So far, non-standard inferences are not available for very expressive
DLs. In this paper we present first results on non-standard infer-
ences for DLs with transitive roles. As a basis, we give a structural
characterization of subsumption for DLs where existential and value
restrictions can be imposed on transitive roles. We propose sound and
complete algorithms to compute the least common subsumer (Ics).

* This work has been supported by the Deutsche Forschungsgemeinschaft, DFG Project
BA 1122/4-1.
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1 Introduction and Motivation

Description Logics (DLs) are a family of formalisms used to represent ter-
minological knowledge of a given application domain in a structured and
well-defined way. The basic notions of DLs are concept-descriptions and roles,
representing unary predicates and binary relations, respectively. Atomic con-
cepts and concept descriptions represent sets of individuals, whereas roles
represent binary relations between individuals [5]. The main characteristic
of a DL is the set of concept constructors by which complex concept descrip-
tions can be built from atomic concepts and roles. In the present paper, we
are concerned with the DL FLE' which provides the constructors conjunc-
tion (C'M D), existential restriction (Ir.C'), value restriction (Vr.C'), and the
top concept (T).

In FLET, a role can be defined transitive. In this case it represents the
transitive closure of a binary relation. Transitive roles appear naturally in
many application domains, such as medicine and process engineering [1].
Consider, for instance, a machine that comprises several components which
again consists of several devices. A natural way to represent such a machine
by means of DLs would be to use some has-part role to reflect its composi-
tional structure. It would be natural here to implicitly regard every part of
a component also as a part of the whole. To this end, a DL with transitive
roles is necessary.

Inference problems for DLs are divided into so-called standard and non-
standard ones. Well known standard inference problems are satisfiability and
subsumption of concept descriptions. These are well investigated for a great
range of DLs. For many of them, sound and complete decision procedures
could be devised and lower and upper bounds for the computational com-
plexity have been found [11]. Many standard inference algorithms have been
successfully extended to cope with transitive roles [13, 12] and are put into
practice in state of the art DL Systems.

Prominent non-standard inferences are matching, the least common sub-
sumer (lcs), the most specific concept (msc), and, more recently, approxima-
tion. Non-standard inferences resulted from the experience with real-world
DIL-knowledge bases (KBs), where standard inference algorithms sometimes
did not suffice for building and maintaining purposes. For example, the prob-
lem of how to structure the application domain by means of concept defini-
tions may not be clear at the beginning of the modelling task. Moreover, the
expressive power of the DL under consideration sometimes makes it difficult
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to come up with a faithful formal definition of the concept originally in-
tended. To alleviate these difficulties it is expedient to employ non-standard
inferences [14, 8].

The les was first mentioned as an inference problem for DLs in [10].
Given two concept descriptions A and B in a description logic £, the lcs
of A and B is defined as the least (w.r.t. subsumption) concept description
in £ subsuming A and B. It has been argued in [8] that the lcs facilitates
a “bottom-up”’-approach to the above mentioned modelling task: a domain
expert can select a number of intuitively related concept descriptions already
existent in a KB and use the lcs operation to automatically construct a new
concept description representing the closest generalization of them. This
approach can be extended by means of the msc. Selecting one individual,
i.e., an instance of a concept, from a KB the msc constructs the most specific
concept expressible in the underlying DL representing the individual. Using
this inference, the “bottom-up”-design of new concepts can start on the level
of actual individuals which are sometimes more familiar to a domain expert
than the more abstract concepts.

Matching in DLs was first proposed in [7]. A matching problem (modulo
subsumption) consists of a concept description C' and a concept pattern D,
i.e., a concept description with variables. Matching D against C' means
finding a substitution of variables in D by concept descriptions such that C'is
subsumed by the instantiated concept pattern D. Among other applications,
matching can be employed for queries in KBs: a domain expert unable to
specify uniquely the concept he is looking for in a KB can use a concept
pattern to retrieve all those concepts in the KB for which a matcher exists.
The structural constraints expressible by patterns exceed the capabilities of
simple “wildcards” familiar from ordinary search engines [8].

Approximation was first mentioned as a new inference problem in [4].
The upper (lower) approximation of a concept description Cy from a DL
Ly is defined as the least (greatest) concept description in another DL L,
which subsumes (is subsumed by) Cy. Approximation can be used to make
non-standard inferences accessible to more expressive DLs by transferring a
given inference problem to a less expressive DL where at least an approximate
solution can be computed. Another application of approximation lies in user-
friendly DL-systems offering a simplified frame-based view on KBs defined
in a more expressive background DL [6]. Here approximation can be used
to compute simple frame-based representations of otherwise overwhelmingly
complicated concept descriptions.



Table 1: Syntax and semantics of FLE-concept descriptions.

H Construct name ‘ Syntax ‘ Semantics H
top-concept T Az
conjunction cnbD CctnD*
existential restrictions | Ir.C' | {x € Az |Ty: (v,y) e rf Ay e CT}
value restrictions vr.C | {x € Az |Vy:(z,y) €rF —y e CT}
transitive roles rt U<, (r5)"

In contrast to standard inference problems, comparatively little research
exists on non-standard inferences in DLs with transitive roles [2]. If exis-
tential restrictions can be expressed in a DL then the inferences matching
and approximation are defined by means of the lcs operation. This central
role of the lcs for non-standard inferences has lead us to make this inference
problem the first to be extended to FLET. After introducing some basic no-
tions and notation, our first step towards the lcs will be a characterization
of subsumption for FLET-concept descriptions by means of so-called descrip-
tion graphs. We shall see that for two FLE'-concept descriptions A and B,
subsumption (A C B) holds if and only if there exists a simulation relation
from the description graph of B into the one of A. The lcs inference of A and
B is then defined as the graph product of the respective description graphs.

As aresult, we shall see that the Ics of a finite set of FLE T -concept descrip-
tions always exists and is uniquely determined up to equivalence. Moreover,
an effective algorithm for the computation of the les will be provided.

2 Preliminaries

DLs are based on the following sets of names: N¢ is the set of concept names,
and Npis the set of role names, and N7 is the set of transitive roles, where
Nr N NE = (. Concept descriptions are inductively defined starting from
the set of concept names and use the concept constructors shown in Table 1.

The DL FLEoffers the top-concept, conjunction, existential, and value
restrictions, as displayed in Table 1. In FLE™, transitive roles can be used in
existential and value restrictions.

As usual, the semantics of a concept description is defined in terms of an
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H | Lo | €€ | FLE |
top-concept X X X
conjunction X X X
existential restrictions X X
value restrictions X X

Table 2: Description Logics

interpretation T = (A,-T). The domain A of Z is a non-empty set and the
interpretation function -/ maps each concept name A € No to a set AL C A
and each role name r € Np U N} to a binary relation r’ C AxA. The
extension of -/ to arbitrary concept descriptions is defined inductively, as
shown in the second column of Table 1.

The DLs covered in this paper are extensions of the DLs shown in Ta-
ble 2. Please note that none of these DLs provides (primitive) negation or
the bottom concept and therefore can not express contradictions, thus all
concept descriptions build in the above mentioned DLs are satisfiable.

One of the most important traditional inference services provided by DL
systems is computing the subsumption hierarchy. The concept description C
is subsumed by the description D (C' C D) iff C1 C DI for all interpretations
Z; C' and D are equivalent (C'= D) iff C T D and D C C.

In this paper we focus on the non-standard inference of computing the
least common subsumer (Ics).

Definition 1 (lcs) Given L-concept descriptions C4,...,Cp, for some de-
seription logic L, the L-concept description C' is the least common subsumer
(les) of Cy,...,C, (C = lcs(Ch,...,Cy) for short) iff (i) C; T C for all
1 <i<n, and (ii) C is the least concept description with this property, i.e.,
if C" satisfies C; © C" for all1 < i <n, then C C C".

The idea behind the lcs inference is to extract the commonalities of the input
concepts. The les is uniquely determined up to equivalence. Therefore it is
justified to speak about “the” lcs instead of “an” lcs.



3 Least common subsumer for FL;

In a first step the DL FLyis extended by transitive roles, resulting in FL; .
For FL{ the propagation of concepts appearing within value restrictions must
be guaranteed for transitive roles.

We characterize subsumption of FLy-concept descriptions by a struc-
tural comparison and prove that this characterization is sound and complete.
Based on this characterization we develop an algorithm to compute the lcs
of two FLy-concept, descriptions.

In order to use a structural comparison to test subsumption one has to
make all the information captured in the concept descriptions explicit. In case
of FL§-concept descriptions the propagation of value restrictions regarding
transitive roles has to be ensured.

3.1 Normalizing FL{-concept descriptions

We follow the approach in [5] and use the following normal form of FLJ-
concept descriptions.

Definition 2 (FL{-normal form) a FL-concept description is in FLS-
normal form iff it is either T or a conjunction of the form ¥ry.--- Nr,.A for
n >0 role namesry,...,r, € Np UNE and a concept name A # T, A € N¢ .

We abbreviate Vry.--- Vr,.A by Vr{.--- .r,.A where r{ ...r, is considered a
role word over Np UNE . Tn addition, we write VL.C instead of Yy . . . w,,.C,
where the role language L = {wy, ..., w,} is a finite set of words over Ng U
N} . The term V(. A is considered to be equivalent to T.

Definition 3 Let L C (Np UNZL )T be a role language and

Sl if r € Ny
T\t ifre N§

then L = {rry---7y | rirg---ry € L} is the transitive role language of L.

The interpretation function extends to transitive role languages as captured
by the following Lemma.

Lemma 4 Let A be a FL -concept description, then
1. de (VLAY iff Yw € L : dw®e implies that e € AL,
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2. VL.A=VL.A

PROOF. proof of 1.): follows directly from the semantics of value restrictions
and transitive roles.

proof of 2.): follows directly from definition of L.
i

Let us consider the complexity for computing the FL{-normal form. For
a concept C' with |C'| = n the number of different role-words, the length
of each role-word, and the number of concept names embedded in the value
restrictions can each be bounded by n. Therefore there are at most n different
role-words. Each one (of length n in the worst case) has to be copied for each
conjunct to obtain value restrictions with only one embedded concept name
A. Therefore the FLj-normal form can be computed in polynomial time.

3.2 Characterization of subsumption for FL;

Based on the FL;-normal form we can advise a structural check that de-
termines subsumption between two FL{-concept descriptions. This charac-
terization of subsumption is a prerequisite for the computation of the lcs in
FL§. We begin with a theorem that characterizes the subsumption between
value restrictions over possibly transitive roles.

Theorem 5 Let A be a FLJ -concept description , then VL.A T VL'.A iff
L'CL.

PROOF. “—7 It holds that VL.A C VL'.A. We prove the claim by con-
tradiction aEdAassume L' € L, then there exists aAword W = Ty Ty
with w € L'\L. This implies that (Vw.A)? ¢ (VL.A)T and (Vw.A)T C
(VE’.A)I. Therefore (VE.A)I o4 (Vf’.A)I and applying Lemma 4.2 it holds
that (VL.A)Z ¢ (VL'.A)*. Consequently, we obtain a contradiction to our
initial assumption. R R

“«" It holds that L' C L. Therefore w € L’ implies w € L. It follows from
Lemma 4.1 that, (VL.A)T C (VL'.A)? and thus VL.A C VL' A. i

We need to introduce some notation to access the different parts of a concept
description C'in FLg-normal form:

e prim(C) denotes the set of all concept names and the top concept
occurring on the top-level of C'.
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e val,(C) := C; M ---MC,, if there exist value restrictions of the form
Vw.Cy, ..., Yw.C, on the top-level of C'; otherwise, val,,(C') := T;

e L(C) denotes the set of role-words appearing in the value restrictions
on the top-level of C.

o L4(C)={w|Vw.A occurs on the top-level of C'}.

The conditions for subsumption for FLycan be extended to arbitrary FLJ-
concept descriptions using Theorem 5.

Theorem 6 Let C and D be two FL; -concept descriptions in FL§ -normal
form. Then, C'C D iff D =T, or it holds that

1. prim(D) C prim(C) , and
2. for all A€ Neo: Ly(D) C La(C)

PRrROOF. —: Assume C'C D.

e Assume prim(D) € prim(C'). Then there exists an A € prim(D) \
prim(C). As all FL{-concept descriptions C' is consistent. We may
therefore consider a interpretation [ with a canonical model of C'. By
definition, the individual de € A! for C' does not occur in A’, since
A & prim(C). Thus, d ¢ D! and therefore C' [Z D, in contradiction to
our assumption.

e Assume that there exists A € N with EA(D) Z EA(C). Thus there
exists a role-word w € Ly(D) and w ¢ L4(C). This implies that
(Vw.A)* C DT and (Vw.A)r € C* and thus obtain a contradiction to

our initial assumption.

+: Conditions 1 and 2 hold.

Assume C' [Z D. Due to the normalization C' is a conjunction. Due to our
assumption there must exist at least one conjunct C; in C' s.t. C; C C' and
C; L D. There are two cases to distinguish:

1. C; € prim(C): from C; £ D we can conclude that C; & prim(D). Thus
we have a contradiction to our assumption that Condition 1 holds.
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Least common subsumer for FL;
Input: Two FLg -concept descriptions C, D.
Output: FL§-lcs of C' and D.

1. If C C D then cles-F2g (C, D) := D
if D C C then c-les-F£7 (C, D) :=C

2. Otherwise, transform C' and D into FL{-normal form and return
c-les-FL§ (C, D) := M A

Aeprim(C)Nprim(D)

M MV (La(C)NLa(D)). A

AEN¢

Figure 1: The lcs algorithm for FL§

2. ¢ = Yw.A: from C; Z D we can conclude that Vw.A £ D, thus
w € La(C),but w & La(D), which is a contradiction to our assumption
that Condition 2 holds.

The complexity of a subsumption test for two normalized FL{-concept
descriptions of size n is polynomial, since there are at most n+ 1 subset tests
to perform and each of these tests has a complexity in P.

3.3 Computing least common subsumer for FL;

For DLs providing transitive roles the usual approach for computing the
Ics by unwinding the value restrictions and making a recursive call for the
embedded concepts does not suffice. For example, if t € NJ, then the
les(Vt.VE.VE. AVt . A) # Vtlcs(ViVi. A, A). Instead the les(VE.VE.VE. A Vt.A) =
Vt.Vt.Vt.A requiring at least 3 value restrictions for . So, in general it is
necessary for the computation of the Ics to find the commonalities of the role
languages that refer to the same concept name.

In Figure 1 we advise an algorithm for effectively computing the Ics of two
FL§-concept descriptions. The algorithm checks first for some cases where
the lcs is trivial. Then it transforms both concept descriptions in F£§-normal
form and computes the intersection of the concept names appearing on the
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top-level of C' and D. These are then conjoined with the value restrictions
obtained from intersecting the transitive role languages of role-words referring
to the same concept name.

Precisely, the result obtained by the algorithm from Figure 1 is not in
every case a FLJ-concept description, since it is represented by transitive
role languages. However, these results can easily be converted into a FL-
concept description by performing the steps from Definition 3 in the inverse
order. More precisely, replace for every A € N¢ each transitive role ;" in the
set L4 (c-les-FL g (C, D)) with r; and write it as a separate value restriction.

The size of the sets prim(C) and prim(D) is finite and the size of their
intersection is also. The sets L(C') and L(D) are represented by a finite
number of elements and their intersection can also be represented by a fi-
nite number of elements. Since there are only finitely many intersections to
be computed during the computation of the lcs it is easy to see that the
c-les-FL i -algorithm always terminates.

The next we prove that the concept obtained by c-lcs-F£{ is the lcs of the
two input FL, -concept descriptions.

Theorem 7 Let C' and D be two FL; -concept descriptions, then
c-les-FL$(C, D) = les(C, D).
PrROOF. We assume that C' [Z D and D [Z C since then the lcs(C, D) is
trivial. Let c-les-FLJ (C, D) = Eies. It is sufficient to show that

(1) C E Elcs and D E Elcsa and

(ii) for all F with C, D C F it follows that Ejs C F.

Ad i) Obviously it is sufficient to show C' C Ej. Assume Eis Z T.
Then by definition of the algorithm c-les-F£§the Conditions 1 and 2 from
Theorem 6

1. prim(Eis) C prim(C).
2. for all A€ Ne: La(Bis) C La(C).

are satisfied for C' and Ej. and therefore E\ subsumes C'.

Ad ii) Let F be a FL{-concept description with C,D C F. If C C D or
D C C, we get Eis C F. Assume C'IZ D and D Z C. If FF = T nothing has
to be shown. Assume F' # T. We show that Fj, and F' satisfy all Conditions
from Theorem 6
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1. Condition 1: since prim(F) C prim(C) and prim(F) C prim(C), it
follows prim(F) C prim(C) N prim(D) = prim(Fs).

2. Condition 2: analogously. Since for all A € N : EA(F) C /[:A(C') and
LA(F> Q LA(C), it follows LA(F> g LA(C) N LA(D) = LA(EIcs)-

Consequently, Fis C F, which completes the proof. |

The complexity of the c-les-FLg algorithm is polynomial, since the num-
ber of subsumption tests made and the number of intersections computed
during the second step are linear in n and both, computing subsumption and
intersection, can be performed in polynomial time.

We have advised an algorithm to effectively compute the les of FLET-
concept descriptions by representing the value restrictions by role words.
Thus it was possible to extend the approach for FLj to transitive roles seam-
lessly.

4 Least common subsumer for £

The DL &EC provides only conjunction, the concept T, and existential re-
strictions. The structural characterization of subsumption as well as the
computation of the Ics in EL have been thoroughly investigated in [4]. We
extend the approach based on description trees presented there to E£T and
subsequently to ELH™T.

In ELT transitive roles may be used in existential restrictions. In FLg the
value restrictions implied by transitivity affect all role successors “further
down” in a role chain. In £L7 the exist restrictions implied by transitivity
affect the role successors “further up” the role chain by the direct role rela-
tions induced by transitivity. The following example illustrates this effect:
if 3¢.3¢.C' holds for an individual a, transitivity implies that there is also a
direct relation between a and the t-successor of the t-successor of a. Thus,
3t.C' is also implied for a. To characterize subsumption for ££% concept
descriptions these implied role relations must be taken into account.

In addition to prim(C) we need also an accessor for the existential re-
strictions used in concept descriptions: ex,(C') := {C" | there exists Ir.C" on
the flattened top-level conjunction of C'}. W.l.o.g. we assume all EL-, ELT-,
and ELH T -concept descriptions to be in the following normal form:

c=T1P N [l = e

PePc r€NR UNE C'€ex,(C)
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where P is a subset of N¢. This normal form preserves equivalence. Observe
that no existential restriction is imposed on a role r in case ex,(C) is empty.

4.1 Representing ELT-concept descriptions

We extend the approach to structural subsumption in EC presented in [4] by
using a different embedding mechanism for the description trees. We first
define description trees as an alternative representation for concept descrip-
tions. More precisely, we call this representation EL-concept trees (and not
ELT-concept trees) because it does not reflect the transitivity of roles t € Nj
in any explicit way.

Definition 8 (££-description tree) An EL-description tree is a labeled
tree D = (V, E, vy, (), with

e oot node vy € V,
e ECV x(NpUNL)xV, and

e a labeling function ( that labels all v € V with ((v) C Ne (T is the
empty label).

An edge vrw € E will be denoted as a 3-edge in the following. Forv € V the
tree D(v) denotes the subtree of G with root node v.

Every EL7 concept description can be translated into am ££- description tree.
For the translation we need the notion of the depth (written as: depth(C')) of
a concept description €', which is the maximal number of embedded quantors
in the concept description. The depth (written as: depth(D)) of a description
tree D is the length of its longest path.

The translation of a concept description into a description tree can be
defined inductively:

e depth(C') = 0: Then C' is of the form B M (C)P. In this case, define
€prim

Vi=w,, E:=E" =10, and ((vy) := prim(C).

e depth(C) > 0: For every r € Np U NE and for every C’ € ex,(C),
let D(C") = (V', E', v, ') be the inductively defined description trees
for the existential restriction C” in C'. W.l.o.g., assume that the sets of
vertices V' are pairwise disjoint. Define D¢ by

- V.= {Uo} U UTENR UN;{ UC’GexT(C) VI’
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— E:={vgrv) |r € Np UNE AC" € ex,(C) A v}, root of D(C")}
U UTGNR UNT UC’EexT(C) E;

) = prim(C) if v =1
) (w) ifve V' forre Np UNL, C' € ex,(C)

The inverse translation from a description tree into a concept description
can also be defined inductively:

e depth(D) = 0: Define Cp := . lz(l )P. Note that in case ((vg) = () the
€l(vo

empty conjunction yields the top-concept T.

e depth(D) > 0: Denote by Ry be the set of all roles in (Ng U N} ) for
which the node vy has a direct successor in E. For every r € Ry, denote
by V, the set of r-successors of vy w.r.t. the role . For every r and
for every node v, € V,., denote by (', the concept description obtained
inductively by translating the subtree of D induced by v,. Define

Cp= M P O N MNC,.

PGZ(UO) r€ERop v €V,

The semantics of a description tree is defined by the semantics of its cor-
responding concept description. The translation from a concept description
into a description tree (and back) preserves equivalence in the sense that
C = Cp(ey and D = Dy,.

Example 9 Let C; = Fr.((Ft.3t.3t.A) N (Fs.(B N Is.C)) and Cy =
Ir.((Ft.A) 1 (Fs.B))) be two ELT-concept descriptions, where t € NL and
r,s € Nr. The corresponding description trees are depicted in Figure 2.
Every node v is shown along with its respective label ((v).

4.2 Characterization of subsumption for £

Equipped with description trees we characterize subsumption by a homo-
morphism from the &C-description tree of the subsumer into the one of the
subsumee. For each r-edge with r € Ng in the description tree of the sub-
sumer at least one corresponding r-edge must exist in the description tree of
the subsumee. If r is a transitive role, i.e., r € N% , then an r-edge in the
description tree of the subsumer can also be associated with an r-path in the
description tree of the subsumee—in the sense that the origin of the r-edge
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Goy: vo: () Gey: wo: ()
r r
vy: () wy: ()
.y vs: {B) w: {A}  wi: {B)
T
vs: vs: {C} ws: ()
t
vy {A}

Figure 2: £L-description trees

is mapped onto the first node of the r-path and the end point of the r-edge
onto the last node of the path.

Definition 10 (££7-Homomorphism) Let D = (Vp, Ep, vy, {p) and H =
(Vag, Eay, wo, lgg) be EL-description trees. A mapping ¢: Vyy — Vg is an
ELT-Homomorphism iff all of the following conditions hold:

L QO(UJO) = p,

o for all w € Vy: ly(w) C lg(e(w)), and

pv)ro(w) € Eg if r € Ng

o for all vrw € By: .
f " {¢<v>r+¢<w> By ifreN}

The following example illustrates the notion of ££*-homomorphisms.

Example 11 Let C and Cy be defined as in Example 9. The homomorphism
from D¢, to Do, maps wy to vy, wy to vy, wy to va, and ws to ve. The node
w3 can be mapped to vg since wy is connected to ws by a t-edge and vy is
connected to vg by a path consisting only of t-edges. Observe, that transitivity
of t implies a direct t-edge from vy to vg. Therefore vg is also a direct role-
successor of vy and ws can be mapped to vg.
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The characterization of subsumption for ££7-concept descriptions is now
given by the following theorem.

Theorem 12 Let C' and D be ELT-concept descriptions and let Do and Dp
be their corresponding EL-description trees. Then C' T D iff there exists an
ELT-homomorphism ¢ from Dp to D¢.

Proo¥r. Let Do = (Ve, Ec, vy, le) and Dp = (Vp, Ep, wy, p) be the corre-
sponding EL-description trees for C' and D.

1) “—=": CCD
Assume that D C T, otherwise the claim trivially holds. We prove the claim
by showing that there always exists a mapping function ¢ between the EL-
description trees of D and C' that fulfills all conditions from Definition 10.
Condition 1 from Definition 10 trivially holds since the root nodes can be
mapped to each other; p(wp) := vp.
We show now that the Conditions 2 and 3 from Definition 10 hold for the
mapping ¢ by induction on depth(D).
Base case: depth(D) =0
implies that D = Py ---M P, forn > 0 and P, € N¢. Thus, {p(w,) =
{P,...,P,}. Since C' C D, we have C* C (P, 1 ---M P,)* this implies
{Py,...,P,} Clc(vg) and since vy = @(wg) we obtain £p(wy) C le(p(wy)).
Since depth(D) = 0 implies Ec = () there is nothing to show for Condition
3 from Definition 10.

Induction step: depth(D) > 0

We first show that Condition 2 and 3 from Definition 10 hold for the first
role-level and use the induction hypothesis for the subsequent role-levels.
depth(D) > 0 implies D = Py 11 ---T1 P, M (Myen,unt MNeeex,(py Ir.E) for
n > 0 and all F being arbitrary ££%-concept descriptions.

Again, for the root node wy holds that (p(wy) = {Pi,..., P,}. Since
C C D, we have CT C (P, M-+ P,)T this implies {P,..., P} C lc(vg)
and since vy = ¢(wy) we obtain (p(wy) C le(p(wy)). Thus Condition 2 for
a homomorphism holds for ¢ and the root node.

By definition of Dp for all existential restrictions {Ir.F | r € Np U
N} E € ex,(D)} in the concept D there must exists an edge worw, € Ep.
Since D is satisfiable, there exists a interpretation Z of D and a canonical
model of D, where for every existential restriction dr.F used on the top role-
level of D there exists an individual @’ s.t. (a,a’) € r* and o’ € E*. We have
to make a case distinction for r € Np or r € N} .



4.2 Characterization of subsumption for EL* 15

e r € Np
If r € Np, then C' C D implies that there is an existential restriction
Ir.C" on the top role-level of C', s.t. C' C E. By definition of D¢, there
must be an r-edge from vy in D¢ to another node, say v,. Thus we can
map w, to v, by ¢ and (since vy = p(wy)) we have vorv, = @(wg)rp(w,)
and the Condition 3 from Definition 10 holds for ¢ and all direct role-
successors of non-transitive roles on top role-level of D.

e r € N}

Since C' C D and thus there exists in all interpretations of C' and a
canonical model of C' with an individual b which has an r-successor
v, with (b,0') € vZ and O/ € CF, st. C' T E. If r € N%, then
(b,0) € U, (rF)™ and thus there has to exist a r-path from b to b’
with length & (1 < k) in the canonical model of C'. Thus there have
to exist k nested existential restrictions in C' for the role r. From that
follows by the definition of De that there exists a r-path of length &
starting from vy to another node , say v,. Thus we can map w, to
v, by ¢ and (since vy = p(wy)) we have vorv, = p(wp)re(w,) and the
Condition 3 from Definition 10 holds for ¢ and all direct role-successors
of transitive roles on top role-level of D.

For every dr.F in D there exists a node w, € Vp of Dp s.t. wyrw, € Ep and
for every dr.C" in C' there exists a node v, € Vi of D¢ s.t. vorv, € Eg Since
C C D implies that C' C E and vyrv, = ¢(wg)re(w,) for every existential
restriction in D we can conclude that there exists a homomorphism ¢, be-
tween Dp(w,) and D¢(v,) by induction hypothesis. So, using the mappings
from the different ,s in ¢, we obtain a homomorphism from Dp to De.

2.) “—": a homomorphism ¢ from Dp to D exists.

We prove the claim by induction on depth(D)

Base case: depth(D) =0

implies that Ep = 0 and D = Dp,, = Mp,cep(wo)Pi- Since a homomorphism
¢ exists, we have ¢(wg) = vy and thus ¢p(wy) C lo(p(wp)). From this and
the definition of Cp, we can conclude that Cp, T (Mp,cepwe)F;) and since
C = Cp, T (Mperp(wo)Pi) = Dp, = D we have C' C D.

Induction step: depth(D) > 0

By the definition of the translation from description tree to concept descrip-
tions we know that:

D = Dp, = (MpeepwoPs) M (I_I(worjwi)eEDElrj.D'),Where D" := Dp,w)-
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We have to show that (1) for all P; € {p(wp) holds C'C P; and that (2) for
all HTDZ € {E‘T]'.DI | (7’]' € NR U N};) A (UJUT]'UJZ') € ED AND = DDD(wi)} is
holds that: C' C Jr.D;

The proof for (1) is analogous to the base case: Since a homomorphism
¢ exists, we have ¢(wg) = vy and thus ¢p(wy) C le(p(wyp)). From this and
the definition of Cp, we can conclude that Cp, T (Mp,copwe)F;) and thus
C= CDO C (HPiEED(wo)Pi)'

For the proof of (2) we use that by definition of D, we have for every 3r.D;
on top-role level of D a node w; s.t. (worw;) € Ep and Dp,(w,;) = D;. Since a
homomorphism ¢ exists from Dp to D¢, it holds that (p(wg)re(w;)) € Ec,
if r € Np UN} for every (worw;) € Ep. W.lLo.g. we assume that o(w;) = v;
for some v; € Vi and thus have a r-path (possibly of length 1) from v,
to v; in De. Since there exists a homomorphism ¢ from Dp to De and
o(w;) = v;, it follows from the definition of a homomorphism that there exists
a homomorphism ¢’ from Dp(w;) to De(v;) for every r-successor for all r.
Applying the induction hypothesis we obtain that Cp, ) E Dppw;) = D;
and thus C' C 3r.Cp ;) & I7.Dppw;) = Ir.D; for all Ir.D; € {Tr;. D' | (r; €
Nr UNL) A (worjw;) € Ep A D' := Dp (4, }. From that and the proof of
(1), where we concluded C' T (Mp,er(wo)F;) directly follows: €' T D, which
completes the proof of the theorem. [ |

ELT-concept descriptions can be translated into ££-description trees in
polynomial time since only one traversal of the concept description is needed.
In [3] the authors devise a polynomial-time algorithm to decide the existence
of a homomorphism between two given £L-description trees. In Figure 3, this
algorithm is extended to ELT by testing the existence of an r-path between
two nodes in case r is a transitive role (see line(xx)). The general idea is to
define a mapping 6: Vg — P (V) that labels every node v € V; with a set
of nodes from V3 by once traversing the description tree Dy from this leaves
to its root wy. If wy € §(vg), then the mapping ¢ induces a homomorphism
from Dy to Dg.

We can now test subsumption between two ELT-concept descriptions C'
and D with the following decision procedure:

1. Translate C' and D into the corresponding description trees D and
Dp.

2. Decide whether there exists a homomorphism from D¢ to Dp. In case
such a homomorphism exists return “true”, otherwise return “false”.



4.3 Computing least common subsumer for EL* 17

Input: EL-Description trees Dy = (Vyy, By, wo, (1),
Dg = (Vg, Eg, vo, lg).
Output: “True”, if a homomorphism from Dy to Dg exists;
“False” otherwise.

Algorithm: hom(Dy, Dg)
Let {vy,...,v,} be V3 sorted in post-order.
Define a mapping § : Vg — P (V) as follows:
Initialize 0 with d(v) := 0 for all v € Vg;
For1<:i:<n
For w € Vg
If O3y (v;) C Lg(w) A
Vuirv € By - Jw' € Vg -
(vedw) A
((r € Ngp Awrw' € Eg) V (r € N} Awrtw' € Eg))) (**)
Then 6(w) := §(w) U {v; };

If wy € 0(vp), then return“True”, else return “False”.

Figure 3: Algorithm for deciding existence of an EL1-homomorphism between
two EL-description trees.

Proposition 13 For ELT-concept descriptions the subsumption problem C' C
D can be decided in polynomial time.

4.3 Computing least common subsumer for £

The subsumption test for EL could be extended to ELT without significant
changes to the definition of a description tree. It is therefore natural to try
to extend the existing algorithm for the lcs-computation in EL to ELT in a
similar way. In [4], the lcs of EL-concept descriptions is obtained from the
tree-product of the respective description trees. For ELT, however, we first
need to extend the notion of a description tree so as to make explicit the effect
of transitive roles. To this end, EL1-description trees are now introduced.

Definition 14 (E£1-description tree) Let (V, E, vy, () be an EL-description
tree over No, Ng, and Nk . Let E* be a set of edges such that urv € E* iff
r € NL and there exists an r-path from u to v in E whose length is at least
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2. Then the structure (V, E, E™ vy, () is called an ELT-description tree. An
edge in E* is called forward edge.

Hence, in EL1-description trees additional forward edges reflect the tran-
sitivity of a roles. The translation function from £L'-concept descriptions
to EL-description trees can be extended to ELT-description trees with little
effort:

e If depth(C) = 0 then the set of forward edges E™ is empty.

e In case depth(C') > 0 the set E* is computed inductively in the follow-
ing way:

E* :={vorv' | r € RS A Ir-path from vy to v’ in E}

v Y U B

rENgUNE C'€exy(C)

where E'T denotes the set of forward edges in the subtree induced by
the existential restriction C' € ex,(C').

Example 15 Consider the concept descriptions Cy and Cy from the previous
example. The corresponding ELT -description trees of Cy and Cy are shown
in Figure 4. Forward edges are depicted as dotted edges. Since G, has no
t-path longer than 1, no forward edges are added.

It is easy to see that the size of an EL1-description tree is polynomial in
the size of the original ELT-concept description. The usage of forward edges
bypassing transitive role paths can also be seen as a means of structure
sharing in an otherwise exponentially larger ordinary description tree.

The inverse translation from an description tree into a concept description
can also be adapted easily from the translation procedure for ordinary ££7-
description trees. For a given ELT-description tree, nothing changes in case
depth(D) = 0. If depth(D) > 0 then the union E U E™ is used instead of F
for the inductive construction of Cp. Again, we find that the translations for
EL*-description trees also preserve equivalence in the sense that C'= Cp(c
and D = D¢,. It should however be noted that the concept description
Cp(c) is not necessarily equal to C' anymore, as the following example shows.
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Gey: vo: Go,: wo: 0

Figure 4: EL*-Description trees

Example 16 Consider the ELT-description tree Ge, from Figure 4. The
original ELY-concept description was C; = Ir.((It.3t.I.A) 1 (Is.(B N
3s.C)). As the backward translation additionally takes into account forward
edges, we obtain

Cpcyy = Ir.(3t.((3t.3A) N3A) 1 3A N F3A N (3s.(B 1 3s.0)))

which s equivalent but obviously not equal to C4.

The les of two normalized ELT-concept descriptions can be obtained by
computing the product of their corresponding description trees, with a prod-
uct operation defined inductively as follows:

Definition 17 (Product of ££-description trees) LetG := (Vg, Eg, EJ, vo, (g)
and H = (Vy, By, B, wo, ly) be two ELT-description trees. The product
tree G x H is inductively defined as follows.

e The root node is (vg, wy).

o The set of vertices Vgyuy s a subset of Vg x Vi containing the root node
and the sets of wvertices inductively generated for the successors of vy
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and wy:
Vo = {(vo, wo)}

U U U U Vo (o) x H(w)

rENg U]\/}Yz1 vorvEEg on‘wGE’HUEi

v Y U U Vewsuw:

r€NRUNE vorve EF worweky

where Vgwyxuw) denotes the vertex set of the tree product G(v) x H(w)
of the subtrees induced by the nodes v and w.

e In the product tree, the root (vg, wo) node is connected to a node (v, w)
by an r-edge whenever the individual r-edges vorv and worw exist in G
and H respectively. The only exception is that not both edges may be
forward edges. The rest of Egyy 1s obtained inductively:

Egy3 = {(vo, wo)r(v,w) | vorv € Eg Aworw € Ey U Ej}
U {(vo, wo)r (v, w) | vorv € EF Aworw € Ey}

U U U U Eg o) x#(w)

reNg UNE v0rv€EG worwe By UES,

U U U U Eg(v)x1(w)

réNg UN;"{ ’UOT’UEEJ worw€Eky

where Eg)xu(w) denotes the set of edges of the tree product G(v) xH(w)
of the subtrees induced by the nodes v and w.

The product of two EL'-description trees is an ordinary £L-description tree,
i.e., does not contain forward edges. The following example takes up the de-
scription trees shown previously to show the effect of the product operation.

Example 18 Consider the ELT-description trees G, and Ge, from Exam-
ple 15. By definition, the root node of the product tree Ge, X Ge, is (vg, wp).
Now we have to consider all pairs of successors of vy and wq that agree on
the edge label—excluding those pairs where both successors are reached via
forward edges. In case of the root nodes vy and wy, only the pair (v1,wl) of
r-successors is found. Hence, the root node of the product tree has (v1,wl)
as the only successor. The rest of the product tree is computed inductively
as the product of the subtrees G, (v1) and G, (wy). The node vy has 3 direct
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Gy X Gyt (vo,wo): 0

(v2,w2): 0 (va,w3): {C} (v3,w2): O (v3,w3): B (va,w2): {A} (vs,wa): {B}

/\ t

(v3,w3): B (va,wa): {A} (vg,ws3): O

Figure 5: EL*-product tree

t-successors, namely vy and (w.r.t. forward edges) vy and vy. The node wy
has 2 direct t-successors, namely wo and, via a forward edge, ws. By defini-
tion, the node (vy,wy) in the product tree has therefore 5 direct t-successors,
namely (ve, ws), (v, w3), (vs, ws), (v3,ws), and (vy,ws). Note that the pairs
(v3,w3) and vy, w3) are omitted because the definition forbids that both nodes
in a pair are reached via forward edges. As both vy and wy have exactly one
r-successor, the node (vy,wy) furthermore has (vs,wy) as a direct r-successor.
The label set of every node ((v;,w;) is the intersection of the label sets ((v;)
and ((v;). The final result of the product tree computation is presented in
Figure 5.

We still have to show that the product tree of two description trees,
computed in the way described above, in fact produces the description tree
of the lcs.

Theorem 19 Let C' and D be two ELT -concept descriptions and let Do and
Dp be their corresponding ELT-description trees. Then Cp.xp,, is the lcs of
C and D.

PROOF. Let DC X DD = (VDCXDDaEDCXDpa (/UU)wU))éDCX'DD)' We have to
show that C'p.«p, meets the two conditions:

1. C E CDCX'DD and D E CDCX'DD) and
2. if E satisfies C C F and D C FE, then Cp,xp, C E.
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We show 1.) by constructing a homomorphism ¢ from Cp_«p, to Dc. The
projection m; with i € {1,2}, yields a homomorphism from Cp,xp, to D¢
for i =1 and to Dp for ¢ = 2. By Theorem 12 this implies C' C Cp,xp,, and
D C Cpoxpp-

To show 2.) assume that E is an arbitrary subsumer of C' and D, and
let D = (V', E', v}, (") be the corresponding description tree. Theorem 12
yields then a homomorphism ¢; from Dg to De and ¢y from Dg to Dp.
Define a mapping ¢ := <@y, 2> from Dg to De X Dp as the product of
o1 and o, i.e., p(v') = (p1(v), pa(v')) for all ' € V. We prove that (a)
¢ is well-defined, i.e., ¢(v') € Vp,xp, for all v' € V' and that (b) ¢ is a
homomorphism from Dg to De x Dp according to Definition 10.

Claim (a) is shown by induction on the length of the path 6(v') in Dg
from vf to v'.

e §(v')=0.
Then we have v’ = v and hence, p(v}) = (v1(v}), p2(v})) = (v, wy) €
VDCXDD-

e 5(v') > 0.
Since Dpg is a tree, there exists a unique predecessor v € V' of v/,
ie., v"rv' € E' for some r € Ng UNE . Assume v"rv’ € E’ for some
r € Np UNZL . Obviously, we have §(v”) = 6(v') — 1. By induction, we
know (p1(v"), p2(v")) € Vp.xpp- Since ¢; and ¢, are homomorphisms
and since C' and D are in E£1-normal form, we have direct r-successors
o1 (V")rp1(v) € Ec and @o(v")rpo(v') € Ep (even if r € N} ). Defi-
nition 17 yields (¢1(v"), p2(v)) as an r-successor of (1 (v"), p2(v")) in
De x Dp and hence, (p1(v'), p2(v')) € Vpaxpp-

Now the proof of (2) is rather simple.

1. We have o(v)) = (¢1(vg), p2(v5)) = (vo, wyg), because p1 (p2) is a ho-
momorphism from D to De (Dp).

2. Since ('(v") C le(pr(v") and '(v") C €p(pa(v')) for all o' € V', we have
(") € Lo (V') N lp(2(v") = lpexpp (#1(v1), 2(v1)).

3. Let v'rw” € E'. Then we have ¢, (v/)r¢1(w') € Ec and oo (v')rps(w') €
Ep. Due to (1) we have (¢1(v'), p2(v")) € V and then by Definition 17,
it is (01 (v'), @2(v"))r (1 (w'), p2(w')) € Epgxpp,-

Now Theorem 12 implies C'p,xp,, T E which completes the proof. [ |
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GO GDyyrt wo: 0 GCpir X GDyyt (vo,wo): 0
AT t wi: {4, B} (v1,wi): {A} (v2,w1): {B}
0 {B) vzt 0 (v3,w2): 0 (vg,w3): 0
e’ G, x Gp,  Ge, X Op,
A AN
Ge,

Figure 6: EL1-least common subsumer

As a consequence of the above result the following procedure is sufficient
to compute the lcs of two given EL1-concept descriptions C' and D:

1. Translate C' and D into their corresponding ELT-description trees D¢
and DD.

2. Compute the product of the description trees Do X Dp.

3. Translate De x Dp back into the concept description Cp.xp,,-

The size of the lcs can be exponential in the size of the original EL7-
concept descriptions. The following example briefly presents such a case.

Example 20 Let Np := {r} and N} := {t}. For somen € N, let C,, and
D,, be two ELT-concept descriptions inductively defined as seen below:

CO =T D[] =T
Chyy =3ttt Ir.C, Dy :=3dt.3t.3r.D,
The relevant ELT-description trees are shown in Figure 6. For n > 0, the

description tree of C,, 41 does not end at the node denoted G¢., , but proceed just
as it begins at vy. The same holds for Gp, . The third graph in Figure 6 shows
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that part of the product tree Ge, ., «xp,., 1 which the exponential blow-up can
be seen easily.

Since v1 and wy are both t-successors of their respective root-nodes the
root of the product tree has (vi,w;) as one t-successor. Its label set is {A},
the intersection of {(v1) and (wy). From vy, the node G, is reached via one
t-forward edge (reaching vs) and one r-edge. Similarly, from w; we arrive
at node Ge, via one t-edge (reaching wy) and one r-edge. In the product
tree the node (vy,wy) therefore has a t-successor (namely (vs,wsy)) with an
r-successor for which the subtree G, X Gp. must be computed.

A similar result is obtained for vy and wy: the root node of the product
tree has node (v2,w;) as t-successor (with label set {B}) and from there
we similarly arrive at a node for which Go, X Gp, must be computed (see
Figure 6). Because of the different labels in (vy,wy) and (v, wy) none of
these paths is redundant.

The computation of Ge, X Gp, produces the same branch as seen at the
root node (vg, wg), so that finally a description tree with exponentially many
leaves (in n) emerges. Hence, an exponentially large concept description (in
n) is returned as lcs of Cyyq and Dy .

The previous example has shown that cases exist where the lcs of two
ELT-concept descriptions is exponentially large. On the other hand it is not
difficult to see that the computation of the lcs takes at most exponential
time in the size of the input concept descriptions. In &L, the lcs of two
concept descriptions is polynomial in the size of the input concepts and can
be computed in polynomial time. The extension of transitive roles therefore
increases the computational complexity both in space and time.

5 Least common subsumer for FLE™

The lcs has already been investigated for sub-logics of FLET. The work of
Baader, Kiisters, and Molitor [4, 3] investigates the computation of the lcs
in FLE and its sublanguages. In [1], the lcs is defined for EC with role-
value maps and terminological cycles. Since transitivity is expressible by
role-value-maps, this work might be regarded as the first to provide results
on an extension of the lcs to transitive roles.

As long as a sublanguage of FLE does not allow for both existential and
value restrictions it is comparatively easy to adapt the existing lcs algorithms
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to transitive roles as we have seen in the last sections of this report. For ££7,
it is possible to translate a concept C' into an equivalent one in ££. Thus, all
the additional restrictions imposed by transitive roles in C' are made explicit.
This simple approach, however, does not work for FLE *-concept descriptions,
as the following example illustrates.

Example 21 Consider the FLE-concept description Cop := (Vr.3r.A) M
Ar. A, where r is transitive. To explicitly satisfy the (transitive) value restric-
tion, we need to propagate Vr.3r.A to the existential restriction. This yields
(Vr.3r.A) 0 3r.(A N Ir. AN Vr.3r.A) which equals (Yr.3r.A) M 3Ir. (AN Ce).
Obuviously, an attempt of exhaustive propagation would not terminate.

Hence, our first aim is to find a finite representation of FLE-concept
descriptions in which the transitivity of roles is made explicit. Such a repre-
sentation is introduced by the following section.

5.1 Description Graphs

In this section we will not only introduce description graphs as a syntactic
construct but also provide a model-theoretic semantics for them—similar to
the semantics of concept descriptions. This makes it easier to examine the
equivalence between a concept description and a description graphs directly,
i.e., without re-translation of the description graph back into a concept.

Definition 22 (description graph) Let G := (V, E, vy, ly, (g) be a rooted,
directed, and connected graph with labeling functions for vertices and edges.
The labeling function (v assigns a set of concept descriptions to every vertex
in V oand lg assigns a label of the form Qr to every edge in E, where Q) €
{V,3} and r € Np UNL . An edge labeled Vr is called forall-edge, an edge
labeled Ar exists-edge. If every vertex v in G has at most one outgoing forall-
edge per role v then it is called a description graph.

For the sake of simplicity, we use the notation (v @Qrw) € E to express that
(i) (v,w) € E and (ii) (g(v,w) = {Qr}. Note that description graphs can be
cyclic. Like concept descriptions, description graphs are interpreted w.r.t. a
model-theoretic semantics to be introduced next.

Definition 23 (semantics of description graphs) Let G := (V, E, vy, (v, ()
be a description graph and let T := (A,-") be an interpretation. A mapping
TV o= 28" \ 0 is called a model mapping iff for all v,w € V' it holds that:
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o w(v) CCT for all C € ((v);

e if (vIrw) € E forr € N and x € nn(v) then there exists some y € AT
with (z,y) € r* and y € 7(w);

e if (vIrw) € E forr € N} and x € w(v) then there exists some y € AT
with (z,y) € (rH)* and y € 7(w);

o if (WVrw) € E forr € Np UNE and x € w(v) then (z,y) € r¥ implies
y € m(w).

For a given v € AT, define Z,x = G iff there is a model mapping m with
v € w(vg). The semantics of G w.r.t. T is defined as GF == {x € AT | T,z |
Ge}.

There is a similarity between the semantics of description graphs and that
of concept descriptions as defined in Section 2. A (transitive) Jr-edge (v Ir w)
like an existential restriction implies a corresponding r-edge (r-path) for all
r € (v) in the model. Similarly, every Vr-edge (vVrw) imposes restrictions
on every witness in the model reachable via an r-edge from some z € 7(v).

Regarded as a description graph the syntax tree of every FLE-concept de-
scription C' is equivalent to C'. This, however, is not generally true of FLE -
concept descriptions. Moreover, there are description graphs for which no
equivalent FLE T-concept description exists. One example is a graph G con-
sisting of two vertices vy and vy connected by two existential edges (vg Ir vy)
and (vg 3swvy). There is no equivalent concept because an FLE T-concept de-
scription cannot express the fact that the same successor is required in both
role restrictions. Ultimately, however, we are interested in description graphs
guaranteed to represent concept descriptions. To this end, we introduce six
conditions to restrict description graphs further, leading to the notion of
simple description graphs.

As a prerequisite, we need to specify the notion of a simulation relation
for description graphs.

Definition 24 (simulation relation) Fori € {1,2}, letG; := (V;, E;, voi, lv;, ()
be description graphs. Then, Go = Gy iff there exists a relation R C Vo x V)
with:

1. (’UUQ,UOl) €ER

2. ly(v) N Ne C ly(v") N Ne for all (v,v') € R.
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3. If (vQrw) € Ey and (v,v") € R then there exists a vertex w' € Vi such
that (v' Qrw') € Ey and (w,w') € R.

For vertices vi € Vi and vy € Vy, denote by Go(vs) = Gy(v1) the fact that a
simulation relation R exists between the subgraph of Go reachable from vy and
the subgraph of Gy reachable from vy. In particular, this implies (v, v1) € R.

With these preliminaries, simple description graphs can be introduced.

Definition 25 (simple description graph) Let G := (V, E, vg, ly, () be
a description graph. G is a simple description graph iff the following prop-
erties hold.

1. There exists a spanning tree s.t., G has no forall-forward edges and no
cross edges. Fvery exists-forward edge only connects vertices connected
by a path of exists-tree edges w.r.t. one transitive role.

2. If (v Qoro vy -« - V1 Qn_1Tn_1 Vo) is a cycle in E with pairwise distinct
vertices then there exists one transitive role r with r; = r for all 1.

3. If (v Qorvy...Uy_1Qun_1rvg) is a cycle in E with pairwise distinct
vertices and r € NL then vy has a Vr-successor.

4. If {(u¥rv),(uIrw)} C E then G(v) = G(w). If r € NL then there
exists a verter w' such that (wVrw') € E and G(v) = G(w').

5 If (u¥rv) € E with r € Nk then there exists a vertex v' such that
(vVrv') € E and G(v) = G(v').

6. If B € ((v) then Gg = G(v), where B is a FLET-concept description
andv € V.

The idea behind the above definition to is imitate the propagation of ex-
istential and value restrictions in the graph structure. For instance, Condi-
tion 4 ensures that no subgraph representing an existential restriction may be
more general that a corresponding subgraph representing a value restriction.
Hence, a value restriction must be propagated over all existential restrictions.
Condition 5 similarly ensures that value restrictions over transitive roles are
propagated to deeper role levels, as Vr.A implies Vr.(AM (Vr.A)) and so on.
Conditions 2 and 3 ensure that cycles cannot occur arbitrarily. The last
condition guarantees that the reachability graph of a vertex is “according”
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the label set of that vertex. The first condition excludes a number of irregu-
larities which would make the proofs over description graphs more intricate.
The following lemma can be shown for all description graphs.

Lemma 26 Let G and H be description graphs with H = G. Then G C H.

PRrROOF. Let I be a model of G, i.e., there is an v € Al with I,z = G. Tt
is to be shown that I,z = H. To this end, we construct a model mapping
7' Vi — AT such that x € 7' (root(H)).

The simulation H = G implies the existence of a simulation relation
S C V3 x Vg which respects the properties stated in Definition 24. If I,z E G
then there exists a model mapping 7 with = € w(root(G)). Define

' Vy — Al

v U 7(w).
(

v,w)eS

We have to show that 7' is a model mapping and that € 7'(root(H)).
The second claim is not difficult to prove. The definition of the simulation
relation S guarantees that (root(?),root(G)) € S and the model mapping 7
maps root(G) onto a set containing x.

Consider an arbitrary v € V3 and an x € 7'(v). Then there is a vertex
w € Vg such that (v,w) € S and x € w(w).

e For the pair (v, w) the simulation relation guarantees that ¢(v) C {(w).
As the model mapping 7 ensures that x € A’ for all A € ((w) we
consequently obtain x € A’ also for all A € ((v).

e If (v3rv') € Ey for a transitive role r then the simulation relation S
guarantees the existence of a vertex w’ € Vg such that (v/,w') € S and
(w3rw') € Eg. Due to this edge m guarantees some y € m(w') such
that (x,y) € (r')*. As by construction y occurs in 7'(v') we find that
7' has the required property. The case of an existential edge w.r.t. a
non-transitive role is analogous.

o If (vVrv') € Ey for a transitive role r then the simulation relation S
again guarantees an analogous edge (wVrw') € Eg with (v/,w') € S.
Assume that (z,y) € (r!)* for some y € Al. Due to the model mapping
m we know that y € w(w'). As (v/,w') € S we find that y € 7'(v'),
concluding the argument.
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Note that the reverse does not hold in general. For a non-transitive role
r, consider the two graphs G := ({wvg, v1,va}, {(vo Vrvy), (vg Irve)}, lg) and
H = ({wo, wi, wa}, {(wo Vrwy), (weIrwa)}, ly) where lg(vg) = l3(wy) = 0
and (g(vy) = l3(wy) = ly(wy) = {A}. The only difference between G and H
lies in the label of the existential successor of the root vertex. Here we have
lg(vg) = 0 and ly(ws) = {A}. Tt is easy to show that G = H but H £ G.

Having defined syntax and semantics of description graphs in general the
next step is to translate FLET-concept descriptions into equivalent descrip-
tion graphs.

5.2 From FLET-concept descriptions to FLE T-description
graphs

To show that every FLE -concept description has a corresponding FLE T -de-
scription graph we devise a translation of concept descriptions to FLE-de-
scription graphs. As a technical prerequisite, we require a normal form for
FLE-concept descriptions, as introduced in [3]. The purpose of this normal
form is merely to flatten conjunctions, to make the top-concept explicit, and
to propagate value restrictions over existential restrictions. The problem of
implicit information induced by transitive roles remains untouched here.

Definition 27 (FLE normalization rules) Let E, F be two FLE™ -concept
descriptions and r € Ng a primitive role. The FLE-normalization rules are
defined as follows

1) vr. T — T 3) VYr.ENOVr.F — Vr(ENF)
2) ENT — E 4)  YrEN3IrF — VYr.EN3r(ENF)
5) EN(FNG) — ENFNG.

A concept description is in FLE-normal form if the FLE -normalization rules
have bee applied to it exhaustively.

The normalization rules should be read modulo commutativity of conjunc-
tion, e.g., Ir. EMVr.F is also normalized to Ir.(EMNF)NVr.F. Since each nor-
malization rule preserves equivalence the resulting normalized FLE*-concept
description is equivalent to the original one. It has been shown in [3] that
exhaustive application of the FLE-normalization rules may produce concept
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descriptions of size exponential in the size of the original concept descrip-
tion. During the translation of an FLET-concept description into an JFLE -
description graph we need to apply the FLE-normalization rules only to the
top level of the FLET-concept.

The following definition provides the framework of the translation of an
FLET-concept description into a description graph. For a given concept de-
scription C' we start with an empty description graph G consisting only of a
root vertex vg with C' in its label. Then we exhaustively apply graph genera-
tion rules (defined in detail in Figure 7) producing new vertices and edges. In
this process, tree edges (ET), forward edges (E*), and back edges (E“) are
distinguished. As soon as no production rules are applicable, all non-atomic
concept descriptions are removed from the label sets of G and the graph is
returned.

For the actual definition, a shorthand notation needs to be introduced
first. For a set {C4,...,C,} of FLET-concept descriptions, let {C1, ..., C,}*
denote the corresponding set in which (i) the FL£E normalization rules de-
fined above have been applied exhaustively on the top-level of every C; and
(i) every Cj is split into its conjuncts. Observe that there is at most one
value restriction per role r in {C,...,C,}*.

Definition 28 (FLEt-description graph) Let C' be a FLEY-concept de-
scription. The FLE*-description graph G is obtained by the following pro-
cedure:

1. Initialize the sets V := {vo}, by = ly(vg) = {C}*, and
E:=E*:=EP:= E° = .

2. Apply the FLET -description graph generation rules from Figure 7 ex-
haustively to obtain Gt := (V, E, vy, lv, (), where E = EPUE® UE*.

3. Reduce the label sets of vertices: Yv € V: ({,(v) := ly(v) N N¢ .
4. return Go = (V, E, vy, (4, ().

All non-atomic concept descriptions in the label sets of the vertices of G
are discarded afterwards because their information (as we shall see) is then
represented by the structure of the graph. It remains to define the generation
rules used in Step 2 of the above definition.

Figure 7 shows the relevant generation rules referred to in Definition 28.
For every v, p(v) denotes the (unique) path from vy to v w.r.t. tree edges.
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Ry:  If (3r.C) € ly(v), (Vr.C") & ly(v) for some C', C", and
there is no v’ € V' : (v,3r,0") € EPUEY A {C"}* = (y(v"),
then if there is v; € V : v; appears in p(v) A ly(v;) = {C'}*,
then E© := E© U {(v,3r,v;)},
else V:=V U{v'}, EP := EP U {(v,3r, ")}, ty(v') := {C"}*.

Ray: If r € Np, and {(3r.C"), (Vr.C")} C ly(v) for some C',C", and
there is no v’ € V: (v,3r,0") € EPUEY A {C"}* = (y(v"),
then if there is v; € V : v; appears in p(v) A ly(v;) = {C'}*
then E© := E© U {(v,3r,v;)},
else V:=V U{v'}, EP := EP U {(v,3r, ")}, ty(v') := {C"}*.

Ray+: If r € NE, and {(Ir.C"), (¥r.C")} C ly(v) for some C’,C", and
there is no v” € V : (v, 3r,0") € EPUE® A{C",Vr.C"} = (y(v"),
then if there is v; € V : v; appears in p(v) A ly(v;) = {C',Vr.C"}*
then E© := E© U {(v,3r,v;)},
else V := VU{v'}, EP := EPU{(v, 3r,v")}, (y(v') := {C’,Vr.C"}*.

Ry:  If r € Ng, and (Vr.C") € {y(v) for some C’, and
there is no v” € V' : (v,Vr,v") € EP U E©
then if there is v; € V : v; appears in p(v) A ly(v;) = {C'}*
then E© := E© U {(v,Yr,v;)},
else V:=V U{v'}, EP := EP U {(v,Vr,v")}, (y(v') := {C'}*.

Ry+: If r € N}, and (Vr.C') € (y(v) for some C’, and
there is no v” € V' : (v,¥r,0") € EP U E©
then if there is v; € V' : v; appears in p(v) A ly(v;) = {C",Vr.C'}*
then E© := E© U {(v,Yr,v;)},
else V := VU{v'}, EP := EPU{(v,Vr,v")}, ty(v') := {C',Vr.C"}*.

Rp+: If re NE, and {(v,3r,7'), (', 3r,0")} € EP and (v,3r,0") ¢ E*
then BT := E*U{(v,3r,v")}

Figure 7: FLE'-Description Graph Generation Rules.

Intuitively, the idea of the rules is to use the concept descriptions occurring
in the label set of a vertex v to extend the description graph “accordingly”
in the following sense: if an existential restriction 3r.C' occurs in ¢y(v) then
a vertex w must be introduced (or probably only found) such that (i) w is
connected to v by an exists-edge and (ii) a concept equivalent to C' occurs in
ly(w). Moreover, a value restriction Vr.D probably also occurring in (y(v)
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gcex e v.: {Ir( BN QDeX e vo: {Ir.( Ir(BMNIr.B) M
Ir.(BN3r.B) N - Vr.3r.B)}
ar vr3r.B)}
Ir CO w: { B, Ir @O vi: { FIr(BN3Ir.B),
Ir.(BMN3r.B), Vr.3r.B}
vr| |3 vr3rB} Ir| | Vr
: B
WC. ve: { Ir(BN3Ir.B), HTCO va: { B,
vr.3r.B} Ir.(BN3r.B),
Vr.3r.B}

Figure 8: FLET-description graphs

must be propagated to ((w) likewise.

Starting at a given vertex v, the rules R3, Ray, and Ray+ all produce
new exists-edges, possibly to a newly generated vertex. Rz applies if only an
existential restriction is present in (y(v), Ray applies if an additional value
restriction (w.r.t. the same non-transitive role) is present, and Ray+ covers
the case of an additional value restriction for the transitive case. Similarly,
Ry and Ry+ address the case where only a value restriction (non-transitive
or transitive) is present. The rule Ra+ never introduces new vertices but
only adds forward edges over exists-paths w.r.t. one transitive role.

To avoid generating infinitely many new vertices, every generation rule
has a blocking condition' testing whether or not a new vertex can be avoided
by a back edge to an already existing one. For every vertex v, a back edge
to an ancestor u of v is added instead of a new vertex w if the ancestor
vertex has the same label set the new vertex would get, i.e., ly(u) = (y(w).
The vertex u is regarded as ancestor of v iff u lies on a (the) tree-path from
the root vertex to v. Note that the condition (y(u) = ly(w) determines u
uniquely and that v = w is not excepted.

The following example shows the corresponding FLE -description graph
of two simple FLE T-concept descriptions.

Example 29 Let Cep := Ir.(B M Ir.BNVr.3r.B) and De, := Ir.(Ir.B M
Vr.3r.B) for a transitive role r and an atomic concept B. The correspond-
ing FLE T -description graphs are depicted in Figure 8. The figure also shows

!Blocking strategies originally have been introduced in the DL context in [9] for a
tableaux-based satisfiability tester for expressive DLs. In the relevant work, blocking
controlled the generation of new sub-tableaux in the computation of a completed tableau.
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the normalized label sets of every vertex. Note that the non-atomic concept
descriptions in the label sets are used only during the generation of the de-
seription graphs.

It remains to be shown that the resulting FLE-description graphs are in
fact equivalent to the original concept descriptions.

Lemma 30 Let C' be an FLE -concept description. Then C' = G¢

PrOOF. (3). Consider a model I of Go. Show that x € G implies € C”.
If I, = G then there exists a model mapping m: Vo — Al with 2 €
m(root(Ge)). To show that x € C7, it is sufficient to show that the witnesses
of every vertex v € Vi are also witnesses of every concept in label(v). For a
given v € V., let D € label(v). Proof by induction on the structure of D.

e D=A¢c N¢
Then the model mapping 7 guarantees that 7(v) € AL

e D=3 (D|M---M D)) with r € N}
Then by construction of G~ we know that there exists an Jr-successor
w of v such that D) € label(w) for every i. By induction hypothesis
we know that every y € w(w) is a witness of every D.. According to
the definition of m, for every x € m(v) and y € m(w) it holds that
(z,y) € (r1)*. The fact that w is a witness of all D! thus implies that
every = € 7(v) is a witness of D.

e D=3dr(D\M---n D)) with r € Ng
Analogous, only that r’ is relevant instead of (r”)*.

e D=Vr.(D|M---1 D)) with r € N}
Then by construction of G- we know that an Vr-successor w of v exists
such that every D! is in label(w). Again, by induction hypothesis every
y € w(w) is a witness of every Di. If x € 7(v) then the edge (vVrw)
by definition if 7 implies that every y € A’ with (x,y) € (r')* occurs
in 7(w). Hence, every (transitive) r-successor of x in [ is a witness of
every D.. Consequently, = is a witness of D.

e D=Vr(D|M---1 D)) with r € N}
Analogous.
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(E). Consider a model I of C. Show that x € G/ implies x € C'. If
I,z = Ge then Lemma 39 states that a witness relation p exists between G
and I. It is easy to see that the mapping

7 Vo — Al
v p(v)
is a valid model mapping between Go and I with x € m(root(G¢)). |

Lemma 31 Let C' be an FLE T -concept description. Then Go is a simple
description graph.

ProoOF. We have to show that G- respects Conditions 1 to 5 from Defini-
tion 25.

1. The procedure from Definition 28 introduces V-edges (v Vrw) only if a
value restriction Vr.D is present in label(v). If label(v) equals a label
set on the path from root(Gc) to v then (v Vrw) becomes a back edge.
Otherwise, w is introduced as a new node. Hence, G- contains no
V-forward edges.

The argument for cross edges is analogous. Edges newly introduced
by he procedure from Definition 28 either point to a newly introduced
vertex or to a predecessor of the starting vertex.

As the last step in the procedure, 3-forward edges are introduced over
every existential path (of length greater that 1) w.r.t. one fixed transi-
tive role. Before that step no existential forward edges are introduced
as can be seen analogously to the case of V-forward edges above.

Assume that v # w are connected both via an dr-edge and a Vs-edge.
As argued above, both edges are neither forward edges, because (v Vs w)
is no forward edge, nor tree edges, because then their destination ver-
tices would be different. As a result of Condition 2 we also know that
s = r and that r is transitive.

2. Consider a cycle (vg Qro vy ... vy_1 Qrnp_1 vg) with pairwise distinct ver-
tices v;. For all @ < n — 1, the edge (v; Qr;v;11) are tree edges,
(Un—1 Qrp_1 vg) is a back edge. The existence of the back edge im-
plies that during the execution of the procedure from Definition 28,
the label set of the r,,_i-successor of v,_; was found to be equal to
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label(vg). Assume that there exists an index ¢ such that r; # ;1. Then
the maximum role depth of concepts in label(v;,5) is smaller than the
maximum in every label(v;) with j < i because no propagation oc-
curs over inhomogeneous role paths. Since the maximum role depth
of concepts in the label set of vertices cannot increase over tree edges
it follows that the maximum role depth of concepts in the Q,_17,_1-
successor of v, 1 cannot equal that of label(vy). Hence, the two label
sets cannot be equal. Consequently, all role names r; = r for all 7 and
for some role name r. It is obvious that » must be transitive because
otherwise the maximum role depth of concepts in the respective label
sets would decrease by 1 in every transition of an edge.

3. Consider a cycle (vg Qruvy ... v, 1 Qruvy) with pairwise distinct vertices
v;. The above Condition allows us to restrict our attention to cycles
over only one transitive role r. In the procedure from Definition 28, a
value-restriction in any label(v;) would be propagated to all other sets
label(v;) due to the transitivity of r. Hence, assume for every ¢ that no
Vr-successor of v; exists. In this case, no propagation occurs, implying
that the maximum role depth of concepts in label(v;) decreases with
greater i. Again, this contradicts the back edge (v,,_1 Qrvg).

4. V-3-Prop
Consider vertices u, v, w with {(«Vrv), (u3Irw)} C Ec where r is a
transitive role. In the procedure from Definition 28, the label set of u
contains a value restriction Vr.D and an existential restriction dr.F
such that label(v) = {D,Vr.D} and [Mlabel(w) 3 T{FE, D,Vr.D}.
Hence, there is a subsumption relation of the concepts [label(w) C
Mlabel(v). By Lemma 44 this implies G label(s) ~ an label(w)- It is
easy to see that there are simulation relations between G Tabel(v) and
the subgraph of G reachable from v because both are determined by
label(v). The same holds for G4, and the subgraph of G¢ reach-
able from w. Consequently, we can devise a simulation relation between
the two reachability subgraphs as a combination of three simulation re-
lations. As g label(v) =~ 9m label(w) implies that there exist simulation
relations which contain the pair of the roots of G label (1) and g label(1)
it is clear that the combined simulation relation contains the pair (v, w).

We have seen that label(w) contains the concept Vr.D. By the proce-
dure from Definition 28, this implies the existence of a Vr-successor w’ of
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w with [Mlabel(w’) 3 T{D,Vr.D}. Hence, we again have ['1label(w') C
MMlabel(v). The rest of the argument is analogous.

In case of a non-transitive role » we can use the same approach as above
only that the value restriction Vr.D is not propagated to existential or
universal successors of v and w. Moreover, there is nothing to show for
a universal successor w’ of w.

5. V-Prop

Consider vertices u,v with (uVrv) € Ec where r is a transitive role.
By definition of the FLE T -description graph generation procedure from
Definition 28, the label set of u contains a value restriction Vr.D such
that Mlabel(v) = D M Vr.D. By definition of the FLE'-description
graph generation procedure, there exists a Vr-successor v' of v such
that [Nlabel(v') = DNVr.D. Analogous to the previous case Lemma 44
yields G label(v) ~ 9N label(1')- Based on a simulation relation between
gn label(v) and g label(v') WE CALL again construct the relevant simulation
relations on the reachability subgraphs of v and v'.

As a result, we know how to encode the information represented by FLE -
concept descriptions in FLET-description graphs. Our next step is to find a
way to translate description graphs back to concept descriptions.

5.3 Translation of simple description graphs into FLE*-
concept descriptions

It has already been mentioned in Section 5.1 that description graphs exist
without an equivalent FLE'-concept description. We shall see that it suf-
fices to restrict our backward translation procedure to the class of simple
description graphs introduced in the previous section.

For the backward translation from description graphs to concept descrip-
tions we may not rely on complex concept descriptions in the label sets of the
graphs in question. On the contrary, the idea is to re-build complex concept
descriptions in the label sets while preserving equivalence to the original
description graph. This process is continued until the desired concept de-
scription occurs in the root label. Note that this strategy is just the reverse
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of the generation procedure of FLE T-description graphs, where the label of
the root vertex generated the entire description graph.

To formalize the notion of re-building complex labels we devise an oper-
ation which modifies a given description graph by altering its label function.
Intuitively, the function acc “accumulates” complex concept descriptions in
the label sets of the vertices.

Definition 32 Let G := (V, E, vy, ly, () be a description graph and |E| :=
n. Then, acc(G) := (V, E, vy, 0}, () where (4, is defined as follows. For every
velV,

Cy(v) := (tv(v) N Ne)

v U U Irnnew)

reNRUNT (vIrw)eE

v U U <Vr.|_|(€V( )\ {vr.TH

reNgUNE (vVrw)er

3.1 ev(w')> .

(w3r w’)GE

Define conc(G) := [y (v}), where vy denotes the root vertezx of acc™(G).

For every vertex v, the modified label function ¢, contains the same
atomic labels as before but additionally has an existential restriction based
on the label of every dr-successor of v. Forall-edges are treated similarly
only that a restriction Vr.T is ignored. Observe that acc(G) is still a simple
description graph.

To illustrate the effect of the function acc, consider the a simple de-
scription graph G with only one vertex vy with a label ¢y(vy) = {A} and
edges E := {(vg,3r,vg), (voVruvg)}. In acc(G) the root vertex has the la-
bel {A,3r.A,Vr.A}. Applying acc again we obtain the root label of acc?(G)
which equals {A,Ir.(ANIr. ANVr.A),Vr. (AN Ir.ANVr.A)}.

The idea now is to show that applying the function acc at most |E| times
produces a root label such that the conjunction of all contained concepts is
equivalent to G.

Lemma 33 For every simple description graph G it holds that G = acc(G).

PROOF. Let G := (V, E, vy, ly, (g). Show (J). Assume that I is a model of G
and xy € G'. Then, by definition, there exists a model mapping 7: V — A!
with xy € m(vy). For every v € V the modification of ¢y(v) by acc can be
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represented in two steps. Firstly, all non-atomic concepts are removed from
ly(v) and secondly, new concepts are included for every exists-edge (v Ir w)
and for every forall edge (vVrw) with a non-empty label ¢y (w). The first
step obviously does not affect the fact that 7 is a model mapping onto I
because, the new label imposes less restrictions on possible models.

For the second step, assume that an existential restriction Jr.(E; M ---M
E,) for a transitive role r has been added to the label of v. Then, by definition
of acc, there exists a vertex w € V with (v3rw) € E and E; € (y(w) for
all i. We know that y € E/ for all y € 7(w) and we know that 7(w) is not
empty. Moreover, as 7 is a model mapping, (z,y) € (r)*. Consequently, x
is a witness of Ir.(E; M ---M E,). The non-transitive case is analogous.

Assume that a value restriction Vr.(E, M- - -ME,,) for a transitive role r has
been added to the label of v. Then, similarly, there is an edge (v3rw) € E
with E; € (y(w) for all i. As because I is a model of G, we know for every
y with (z,y) € (r!)* that y € E! for every i . Hence, x is a witness of
Vr.(EyM---1 E,). The non-transitive case is analogous.

As a result we obtain that 7 is also a model mapping on acc(G). Hence,
xy € acc(G).

Show (C). Assume that I is a model of acc(G) and 2y € G. Then, by
definition, there exists a model mapping m: V — Al with 2y € 7(vg). Note
that acc(G) has the same set of vertices and edges as G. Consider a vertex
v € V. Denote by C,...,C, the set of non-atomic concepts present (y(v)
before the application of acc. The modification from acc(G) back to G can
be seen as (1) discarding all non-atomic labels in ¢y(v) and (2) restoring the
original concepts C;. The first step, as in the previous case, preserves the
fact that 7 is a model mapping onto I. In the second step, concepts C; are
added to the label of v for which we know (Condition 6) that G, = G(v).
Hence, every x € m(v) is also a witness of every C;, implying that 7 is still a
model mapping onto /. [ |

As a result we now know that any number of applictions of acc to a simple
description graph G preserves equivalence. Our next step is to show that it
suffices to apply acc as often as there are edges in G to extract a concept
description equivalent to G from its root label. In the following lemma we
need the notion of limited reachability graphs which will be introduced in
preparation.

Definition 34 Let G := (V, E, vy, ly, (g) be a description graph. For a nat-
ural number i € N and a vertex v € V', denote by reach;(v) the subgraph of
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G induced by all paths of length at most i starting from v.

Obviously, reachg(v) = ({v},0,v, 0y, (g) and reach,(G,v) = ({v},E N
({v} x V), v, by, (). With these preliminaries, we can show that the concept
computed by conc(G) is subsumed by G.

Lemma 35 For allv € V and for alli € N it holds that x € (¢.(v))! implies
x € reach;(v)!.

ProoOF. Proof by induction on 7. In case 1 = 0 we are only concerned with
graphs consisting of only one vertex without edges. For these the assertion
trivially holds. Assume 7 > 0 and x € (¢}(v))’. By definition,

li(v) = T(lA(v) N Ne)
nr m 3rd  (w)

r (v3Irw)
ar o ve(6_(w)yn M 3l (v
r (vVrw) ( t 1( ) (w3Irw') 1( >>

Let reach;(v) =: (Viy, Eiy,v, by, (). We have to show that there exists a
model mapping 7: V;, — AL\ () with 2 € 7(v).

As I is a model of ¢;(v) it follows that I contains submodels for every
existential and value restriction in ¢ (v). In I these submodels are reachable
from x via edges (or paths) of the respective roles. By definition of ¢;(v), every
existential restriction for a role r is of the form 3r.¢;_, (w), where (v3Irw) €
E;,. Similarly, every value restriction is more specific than Vr.¢;_, (w) with
(vVrw) € Ej,.

Consequently, by induction hypothesis there exists a model mapping
Tworw): Vietw — AT\ 0 from reach;_;(w) onto I such that every y €
(0!, (w))! is in 7(w). Tt is easy to see that reach;(v) can be represented as
a merging of reach;(v) and all reach;_(w) with (vQrw) € E;,. Note that
these subgraphs are not necessarily disjoint. Our aim now is to construct
m: Viy — AT\ () from the individual model mappings T Qrw):

( ) L m{ﬂ-(erw)(u) | u € V;fl,w}l for u 7& v

= Co) N T worw(v) | v € Viiiw}  otherwise
A necessary condition for 7 to be a model mapping is that () does not occur as
an image of a vertex u, i.e., the intersection over all 7, Qm)(u) is never empty.
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For a vertex u € Vi1, NV _1,4,, assume that the intersection m(, g, r, w,)(w)N
(v Qars ws) () is empty. This implies that no witness y exists in I which meets
the restrictions imposed by the edges starting from w in both reach; ;(wy)
and reach;_;(w,). However, already in the first step ¢;(u) contains a value or
existential restriction for every edge starting from u (excepting trivial value
restrictions) implying that eventually (;(v) contains a concept description
which enforces a witness in I meeting all the restrictions originating from
the vertex u in both subgraphs reach;_;(w;) and reach;_(ws).

By construction, = € 7(v). Hence, we still have to show that 7 is in fact a
model mapping from V;,, onto A’. The fact that 7(u) C CT for all C' € (y(u)
either holds because of an existing model mapping 7(, grw) With u € Vi_y
in case u # v or because of the fact that every y € m(v) is a witness of ¢(v).

By construction of m we need to show the remaining edge-conditions only
for edges of the form (v @rw) not part of one of the subgraphs for which
sub-model mappings have already been obtained by induction hypothesis.
Nevertheless, we need to discriminate the case of cyclic edges of the form
(vQrwv).

For w # v, consider an exists-edge (v3rw) € E;, w.r.t. a transitive
role r and z € m(v). By definition, the concept ¢ (v) contains an existential
restriction 3r.0;_ (w). Since z € m(v) we know that a witness 2/ € Af
exists such that (z,2') € (r')* and 2’ € ¢/_;(w)’. By induction hypothesis,
¢;_,(w) is more specific than reach; ;(w) implying that 2’ is also a witness of
reach;_;(w). Consequently, 2" appears in m(,3,4)(w) which by construction
implies 2z’ € m(w). The case of a non-transitive role r is analogous.

In case of a cyclic exists-edge (v3rv) € E;,, the induction in principle
works just as in the non-transitive case, yielding 2" € m(,v,y)(v). However,
we cannot analogously deduce that 2’ therefore also appears in 7(v), because
now we have to make sure that the loop (v3rw) is also reflected by every
witness in the model I. Condition 2 of simple description graphs guaran-
tees that r is a transitive role. Moreover, Condition 3 implies a forall-edge
(vVrw) € E;, starting at v. We know by Condition 4 that a simulation
relation exists from G(w) into G(v). Altogether, the conditions of simple
description graphs imply an exists-edge from w back to v, so that the value
restriction imposed by the edge (vVrw) € E;, ‘contains’ the existential re-
striction imposed by (v3rv) € E;,. Moreover, on our case Condition 1
implies that there is exactly one forall-edge starting at v. Due to the edge
(vVrw) the concept ¢(v) contains a value restriction in which, as a result of
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the additional conjunction

M el (v,

(w Irw')

an existential restriction for r occurs which can only be satisfied by a model
with the following property: from every witness of v it is possible to traverse
an arbitrary number (> 1) of r-edges arriving at a witness of v. Hence, the
concept (;(v) reflects the loop (v3rv) € E;, in reach;(v).

For w # v, consider a forall-edge (vVrw) € E;, w.r.t. a transitive role
r and assume that z € w(v) and (z,2') € r’. Again, the concept ¢i(v)
contains a value restriction more specific than Vr.¢}(v). The fact that z € 7(v)
and (z,2') € r’ implies that 2’ is a witness of (i(v). Hence, by induction
hypothesis, 2’ is also a witness of reach;_;(w) which means that 2’ occurs in
Twvrw)(w). By construction of m this implies 2’ € m(w). The non-transitive
case is analogous.

The case of a cyclic forall-edge (vVrv) € E;, is a little simpler than
that of an exists-edge because (i) Condition 2 again guarantees us that r is
transitive and (ii) the value restriction Vr.¢,_,(v) automatically, i.e., by the
semantics of concept descriptions, restricts all admissible models to those
where every r-path from v leads to a witness of £;(v). Note that this property
corresponds to Condition 5 for simple description graphs.

Lemma 36 For every simple description graph G := (V, E, vy, Uy, (g) it holds
that accl”l(G) = conc(G).

PROOF. Show (C). By definition of conc it is sufficient to show for an
arbitrary G that G C C for every C' € (y(vp). By definition of description
graphs, every model I of G has the property that x € C7 for every x € 7(xy),
where 7 is the relevant model mapping for I. Hence, every witness of G by
definition is also a witness of C.

Show (J). This is an immediate consequence of Lemma 35 because
reachyp|(v) = G and conc(G) = {5 (vo). |

Hence, we obtain the following theorem.

Theorem 37 For every simple description graph G = (V, E, vy, by, (g) it
holds that conc(G) = G.
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The idea of the proof is to show the equivalence conc(G) = G in three
steps. Firstly, we show for every G that a single application of acc preserves
equivalence, i.e., G = acc(G). This immediately implies G = acc!®l(G). Sec-
ondly, due to the semantics of description graphs it is also easy to see that
every concept description in the root label of accl®l(G) subsumes accl?l(G).
Hence, acc/”/(G) C conc(G). Thirdly, we can show that every model of
conc(G) is also a model of acc!”!(G).

Now the necessary means are provided to translate FLE T-concept descrip-
tions (back and forth) into a representation where the transitivity of roles is
made explicit. To define the lcs operation w.r.t. description graphs we first
need a complete characterization of subsumption in this representation.

5.4 Characterization of subsumption in FLE*

In this section the description graphs introduced previously are employed
to characterize subsumption. As a preliminary, an auxiliary definition is
required to simplify the notation for relations.

Definition 38 R binary relation over S,T and s € S. Then R(s) := {t €
T | (s,t) € R}

The following lemma will show that the subsumption C' C D implies the
existence of a simulation relation from Gp into G¢.

Lemma 39 Let C be an FLET -concept description and G its corresponding
concept graph. Let I be a model of C'. Then there exists a relation p C Vo x Al
such that for all vertices v,w € Ve:

1. p(root(Ge)) = CT #0;
2. v, € (Mlabel(v))! for every v, € p(v);

3. if (vIrw) € Ec and v, € p(v) then there erists one w, € p(w) with
(vy,w,) €71 if r € Ng and (v, w,) € (r1)* if r € NE ;

4. if (vVrw) € E¢ forr € Ng and v, € p(v) and there exists one x €
r(v,) then x € p(w).
If (W¥rw) € E¢ for r € N} and v, € p(v) and there exists one
x € (r')*(v,) then x € p(w).
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PROOF. Since G(C') is the concept graph of C' the conjunction ['1label(root(G(C')))
of the concepts in the label of the root node is equivalent to C'. As I is a
model of C' we also know that there exists a witness 2 € Af such that x € CZ.
Consequently, by including the pair (root(G(C)), z) in p for every such wit-
ness © we have satisfied Condition 1 and Condition 2 for v = root(G(C)).

v 2 v,
Hrl Tl
o L

o

Ge I

Consider an existential r-edge from root(G(C')) to a vertex w which has
not been traversed yet. If w is a successor w.r.t. a transitive role 7 € Nj then
there exists an existential restriction C” € ex,(C) such that the conjunction
Mlabel(w) is equivalent to C’' Mval,.(C) M Vr.val.(C'). The fact that x is a
witness of C' implies the existence of another witness y € C"1 with (x,y) €
(r1)*. Moreover, y must also be witness of val,(C') and Vr.val,(C) because
otherwise z would be no witness of C'. Hence, y is a witness of C' Mval,(C) M
Vr.al,.(C). We may now extend the relation p by the pair (w,y) for every
such witness y and thereby meet Condition 2 for w and Condition 3 for
root(Ge) and w. The case of a non-transitive role r is analogous—only that
the conjunct Vr.val,(C') is missing and that the pair (z,y) € r! instead of the
transitive closure of r’.

Consider a universal r-edge from root(G(C')) to w w.r.t. a transitive role
r which has not yet been traversed. If no witness = of root(G(C)) has a
successor w.r.t. 7 in then we do not have to assign witnesses to w as permitted
by Condition 4. If on the other hand the set of r-successors (w.r.t. the
transitive closure of r’) of z is {y1,...,y.} then we have already seen in the
existential case that every y; is a witness of val,.(C') M Vr.val,(C'). Otherwise
x would be no witness of Mlabel(Gs). As val,(C) M Vr.val,(C) is equivalent
to MMlabel(w) we may extend p by the pair (w,y;) for every i. This satisfies
Condition 2 for w and Condition 4 for root(G¢) and w.

Following the above procedure for existential and universal edges recur-
sively until all edges in G have been traversed we arrive at a relation p which
satisfies the proposition. [ |

Note: call such a relation p witness-relation.
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1]
v W — W,

Vrl Vrl Tl

P
v'ﬁw'—>w;

Gp Ge I

Lemma 40 Let C, D be FLET -concept descriptions such that G(D) = G(C').
Let I be a model of C and let p be a relation over Vo x Al respecting the
conditions states in Lemma 39. Then, for all vertices v € Vp and for all
w € Ve and for all concepts E € label(v) it holds that v = w implies
w, € E' for every w, € p(w).

PROOF. Proof by induction on the structure of E.

e F e Ngo

If v =~ w then we know that label(v) is a subset of label(w) w.r.t.
primitive labels, implying that E also occurs in label(w). Hence FE
subsumes [Mlabel(w). By definition, every w, € p(w) C AT is a witness
of Mlabel(w) and therefore also a witness of E.

E=3r(EiN---NE)

If r is transitive then, by definition of G(D), there exists an existential
r-successor v’ of v such that for every 1 <i < n the concept E! occurs
in MMlabel(v'). Due to the simulation relation we know that there exists
a vertex w' € Ve with v' = w'. By induction hypothesis, it holds for
w' that w), € E!" for every wy, € p(w') and for every i. Moreover,
the existential r-edge (v3rv') € Ep implies that there exists a vertex
w € Vi such that v = w and (wrw') € E¢. By definition of the relation
p it holds that (w,,w!) € r' for every w, € p(w) and w/, € p(w").

p
Consequently, every w, is a witness of E.

E=Vr(EiN---NE))

If r is transitive then there exists a universal r-successor v’ of v such that
every concept E! occurs in label(v'). Again, there exist vertices w, w' €
E- such that w’ is a universal r-successor of w and the simulations
v = w and v' = w' hold. Consider the case where p(w) # 0. If p(w’)
is empty then, by Condition 4, no w, € p(w) has an r-successor in /.
Consequently, every w, is a trivial witness of E. If p(w’) is not empty
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then we know by Condition 4 that every r-successor x of every w, is in
p(w'). Moreover, we know by induction hypothesis that every such x
is a witness of E; for every i. Hence, every w, is a witness of E.

The argument for non-transitive roles r is analogous in both cases. |

Our next step is to introduce a class of models for concept descriptions.
The idea is to obtain a simple model for a description graph by renaming the
labels of its edges.

Definition 41 Let C be an FLE™ -concept description and Ge its correspond-
ing concept graph. The induced model I(C) of C' is defined as follows:

o A1O) .= V:
o AIC) =1y e V| Ac€label(v)} for all A € Ne¢;
e Forallr € Np UNE, (v,w) er’ iff (wQrw) € Ec for Q € {3,V};

To avoid confusion between the sets A'C) and Ve, every vertex v € Ve is
denoted by v™ when referring to the corresponding vertex in A'(C).

By weak congruence we denote the fact that a description graph and its
induced model are congruent except for the quantor signs at the labels. We
still have to show that induced models are in fact models of their respective
concept description. The following lemma proves this.

Lemma 42 Let C' be an FLE T -concept description and I(C') its correspond-
ing tnduced model. Then,

1. I(C) is a model of C;

2. The identity Id := {(v,v) | v € V'} is a witness-relation on Ve x A1),

ProOF. Proof by induction on the number s of steps needed to generate G¢.

e s=1
Then G¢ consists of only one vertex v with no edges. According to the
above definition, v® is a witness of all atomic concepts occurring in C.
As G¢ has no edges, we know that C' consists of atomic concepts only.
Obviously, Id is an appropriate witness-relation.
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o s>1

Consider the case where the algorithm for G~ adds an existential r-edge
(r transitive) in the first step, i.e., (v3rw) is the first edge added to
Ec. Hence, there is an existential restriction C” in C' which caused the
algorithm to add the relevant edge. In this case, two separate tasks
remain for the generation of G¢: firstly, the subgraph for C' Mval,.(C) M
Vr.al,.(C') has to be generated starting at w; secondly, the graph for
the rest of C', i.e. C'\ Ir.C" has to be generated starting at v. It is easy
to see that the number of steps needed to accomplish these two tasks
is less than s.

By induction hypothesis, I(C' M val,.(C) M Vr.val,(C)) is a model of
C'Mval,.(C)MVr.val,.(C) and I(C'\ C') a model of C'\ C'. Moreover, id

is a witness-relation between G crryal, (¢)rvrvar,(c) and 1(C' Mval,(C) M
Vr.val,(C')) and also between G'ener and I(C'\ 7).

In the description graph G, an Ir-edge leads from root(G¢) to the sub-
graph for C'Mval,.(C)MVr.val,.(C)). Consequently, by definition of I(C')
(congruence of Ge and I(C')), the submodel I(C'Mval,(C)V¥r.val,(C)))
is also connected to the root of I(C') by an r-edge. Similarly, I(C') con-
tains a submodel of C'\ C" starting at the root node. Hence, I(C)
is a model of C'. Moreover, as the conjunction of all concepts in
label(root(G¢)) is equivalent to C, the relation id is a witness-relation
between G and I(C'). The case of a non-transitive role r is analogous.

If the algorithm for G- adds a universal r-edge (v Vr w) in the first step
(r transitive) then this is caused by the (only) value restriction on the
toplevel of C, i.e., val,(C'). In this case the generation of the entire
description graph G firstly requires the generation of the description
graph of valr(C) at vertex w and secondly that of

E = (C'\val,(C))[C"/C’ Mval,(C) MVryal,(C) | " € ex,(C)].

We know by induction hypothesis that I(val,.(C)) is a model of val,(C)
and I(F) one of E. Moreover, in both cases Id serves as witness rela-
tion.

In the description graph Go, a universal r-edge leads from the root
vertex to the subgraph G, (). This edge is reflected in the model
I(C) by an r-edge from the root vertex to the submodel I(val,(C)).
Moreover, the submodel I(E) shares the root vertex with I(C'). Hence,
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I(C) is a model of EMVrval,(C'). In case of a transitive role r, the value
restriction val,(C') as well as the complete subconcept Vr.val,(C') holds
for every existential restriction C” € ex,(C'). Therefore the conjunction
E M Vrval,.(C) is equivalent to C', which makes I(C) a model of C.
By induction hypothesis we know that Id is a witness-relation between
the relevant subdescriptions and submodels. As the conjunction of all
concepts in label(root(Gc)) is equivalent to C' we also obtain that the
identical relation Id is is a witness-relation between Go

The result on induced models will be of use in the following lemma. We
will now show that a subsumption C' C D of concept descriptions implies a
certain structural similarity of the respective concept descriptions.

Lemma 43 Let C, D be FLE T -concept descriptions with C' T D. Let § be a
witness-relation between Gp and I(C'). Let Pp := (vg Qorovy - .. Un 1 Qn 1701 Vn)
be a path from root(Gp) to v, in Gp. Then there erists a path Po =
(wo Qorowy - .. Wy_1 Qu_17n_1wy) from root(Ge) to w, in Go such that for

all 0 <1< n:

1. If for a prefix Py, of Pp a corresponding path Pl exists then Pc can be
chosen as continuation of Pf.

2. wd € §(vy)
3. atlabel(v;) C atlabel(w;)

4. For all edges (v, Qrv) € Ep and for Q € {3,V} there exists an edge
(w, Qrw) € Ec.

PROOF. Proof by induction on the length n of Pp.

e n=>0
Then vy = v, =root(Gp). In this case an analogous path Pc in C' ex-
ists trivially. Due to Lemma 42 we know that Id is a witness-relation be-
tween Go and I(C). This implies firstly, root(Ge)® € 6(root(Gp)), and
secondly, atlabel(root(Gc)) = atlabel(root(Ge))® D atlabel(root(Gp)).
Hence, Conditions 1 and 2 hold.
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Consider an existential r-edge (root(Gp)3rv) € Ep. Since I(C) is a
model of D we know that a corresponding r-edge exists at root(I(C'))
because the root of I(C') is a witness of C' and thus (by subsumption)
also one of D. The weak congruence between I(C') and G¢ consequently
implies the existence of either an existential or a universal r-edge start-
ing from root(Ge). Assume that a universal r-edge but no existential
r-edge is present at root(Ge). In this case we can remove the corre-
sponding r-edge in I(C'), yielding another model I’ of C'. However, I’
is no model of D any more because the existential r-restriction is not
reflected in I’, in contradiction to the subsumption C' C D.

Consider a universal r-edge (root(Gp)Vrv) € Ep representing a non-
trivial value restriction. Again, the fact that I(C') is a model of D
together with the weak congruence between I(C) and G¢ lets us in-
fer that either a universal or an existential r-edge starts at root(Gc).
Assume that only an existential r-edge exists but no universal r-edge.
We can modify the model I(C') to obtain I' by adding another existen-
tial r-edge from root(Ge) to a new vertex v’ labeled by a new atomic
concept A’. The root vertex root(I’) of the modified model is still a
witness of C' (since C' has no value restriction w.r.t. the role r that
could be violated) but obviously no witness of D because the newly in-
troduced existential restriction does not reflect the r-value restriction
on the toplevel of D. This contradicts C' C D.

n>0
Let Pp := (vo Qorov1 ... Un_1 Qn_1Tn_1vy). By induction hypothesis
there exists a path P = (woQorow; ... wn_oQpu oty _2w,_1) in Go

which respects Conditions 1 to 4 w.r.t. the subpath (vg...v, 1).

Consider the case @,—1 = 3. Then Condition 4 for the path P/
ensures that there is a vertex w, € Ve with (w,_Irw,) € Ec.
It remains to be shown that the Conditions 1 to 4 hold for Pr :=
(wo Qoro Wy . .. Wy 1 I wy,).

Condition 1 holds due to the inductive construction of P which could
be built as an extension of any shorter path in G- matching the respec-
tive prefix of Pp.

By induction hypothesis we already know that Condition 2 holds for
all 1 <7 < n—1. We now show that an appropriate w, € Vg with
ws € §(v,) can always be found. The witness-relation § relates v, to a
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witness x,, in I(C') which has a predecessor ,, ; w.r.t. the role r such
that x, 1 is a witness of v, 1. The weak congruence of I(C') and G¢
and the fact that Id is a witness relation between G and I(C') implies
(1) that x,_; = v, and (2) that x,, = v2 for some Jr- or Vr-successor
v, of v,_1 in Go. Analogous to the case for n = 0 we can refute the
assumption that no existential r-successor v, can be found, proving

Condition 2.

For Condition 3 only the case i = n remains to be shown. Since w3 is a

witness of all concepts in label(v,,) and since atlabel(w?') = atlabel(w,,)
the fact that Id is a witness-relation between G and I(C') suffices to
show that atlabel(v,) C atlabel(w,).

To show Condition 4, consider an arbitrary edge (v, Irv) € Ep. The
fact that w2 is a witness of every concept description in label(v,) im-
plies that w2 has an r-successor w>. Hence, weak congruence and the
witness-relation Id between G and I(C) yield an existential or univer-
sal r-successor w of w,, in Go. The assumption that w, has no existen-
tial successor can be shown to contradict the subsumption C' = D in
analogy to the case n = 0. For a universal edge (v, Irv) € Ep we can
similarly show that the absence of a corresponding edge (w,, Vr w) € E¢
again allows us to modify the model 7(C) in such a way that we end
up with a model for C' which is no model of D, again in contradiction
to the subsumption C' C D.

Consider the case Q,_; = V. By induction hypothesis, Condition 4
ensures that w,_; has a universal r-successor w, in G¢, thus proving
the existence of a path Pg in Go with the correct labels. The weak
congruence of Go and I(C) implies an r-successor w2 of w2 | related
to w, by the witness-relation Id. To prove Condition 2 for i = n,
assume that w2 & §(vy,). In this case, another r-successor w> of w2 |
must exist with w® € §(v,). Consequently, due to the weak congruence
of Go and I(C'), there is an edge from w,,_; to w in G and w is related
to w® by the witness-relation Id. Since every vertex in Go has at most
one Vr-successor we also know that w is connected to w,_; by an dr-
edge. The description graph G¢, however, is defined in such a way that
every dr-successor of w,_; also respects the value restriction, i.e., all
concepts in label(w, ). Hence, w, would also occur in d(v,).

Conditions 3 and 4 can be shown analogously to the case @, ;1 = 3
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because here the label of the last edge is not relevant here.

The previous lemma is now employed for our original goal—to show that
subsumption can be characterized by means of simulation relations on the
respective concept descriptions.

Theorem 44 Let C,D be FLE -concept descriptions. Then, C' T D iff
Gp = Ge-

PROOF. (=)

If C'= 1 then C' C D trivially holds. Otherwise, we have to show for every
model I of C' that o € D' holds for every witness z € C'’. By Lemma 39 we
may assume a relation p C Ve x Al so that Conditions 1 to 4 are satisfied.
This implies that every witness = of C' occurs in p(root(Ge)).

Since root(Gp) = root(Ge) we know by Lemma 40 that every z €
p(root(Ge)) is a witness of all concepts in label(root(Gp)). Consequently,
x is a witness of [label(root(Gp)) which is equivalent to D.

(<)

If C C D then we can construct a simulation relation R between Gp and
Gc in the following way: Initially, let R := {(root(Gp),root(Ge)}. Starting
from root(Gp), we conduct a breadth-first search on Gp. Upon reaching an
unvisited vertex v we use Lemma 43 to find a path Pz in G corresponding
to the path (root(Gp)...v) in Gp. The pair consisting of v and the endpoint
of Pc is then added to R. For every successor v’ of v in Gp Condition 1 of
Lemma 43 allows us to find an extension of the path Ps as corresponding
path to (root(Gp)...v"). Applying this strategy exhaustively on Gp, we end
up with a simulation relation R. |

The reverse direction is only required implicitly throughout this paper.
However, the proof of the ‘only if’-direction is easily obtained as a conse-
quence of Lemma 30, Lemma 31, and two results shown in the following
sections, namely Lemma 26 and Theorem 37.

To illustrate the above result, we return to the example introduced in the
previous section.

Example 45 Recall the ezample concepts from Ezample 29. The only dif-
ference between Cy, and De, s the atomic concept B in the outermost ezx-
istential restriction of Cep. Hence, Cop & De,. It is easy to see that R :=
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{(vo, va), (v1,0c), (v2,vp) } is in fact a simulation relation from Gp,, into Ge,, -
For all pairs it holds that the label set of the first vertex is a subset of that
of the second one and every edge which can be traveled starting from the first
verter can also be traveled from the second one, reaching again a pair in R.
Note that this property does not hold without the transitive edge (vg Irvy) in

gDez :

5.5 Computation of the lcs in FLET

With all the information captured in a FLE-concept description made explicit,
by simple description graphs the next step is to extract the commonalities
of the simple description graphs of the input concepts. Similar to other
approaches to computing the lcs [1, 4] the graph product is employed to this
end. In a description graph G the depth of a vertex v is defined as the distance
to the root vertex w.r.t. tree edges of the breadth-first-spanning tree.

Definition 46 (Product of FLE"-description graphs) The product G X
Gp of two FLET -description graphs G4 = (Va, Ea,von, ly,, (p,) for A €

{C, D} is defined by induction on the depth of the FLEY-description graphs.

The vertex (voc, vop) labeled with Cy, (voc) N Ly, (vop) is the root vertex of
Ge X Gp. For each pair (ve,vp),ve € Vo, vp € Vp s.t. ve is a Qr-successor

of voc in Ge and for vp is a Qr-successor of vop in Gp, we obtain a Qr-

successor (ve,vp) of (Voe, vop) in Go X Gp. The vertex (ve, vp) is the root

vertex of the inductively defined product of Go X Gp. The graph H = Go X Gp

is called the product graph.

The product graph Go x Gp is rooted, connected, and directed. Since all
vertices in G- and Gp have at most one outgoing forall-edge, every vertex
in the product graph has at most one outgoing forall-edge. Thus, product
graphs are description graphs.

Example 47 Let us return to the concept descriptions C,p and D, from
Ezxample 29. The product of their FLET-description graphs is displayed in
Figure 9. The edges between vy and v., are cross edges.

Note that by construction of the product graph there trivially exist simu-
lations Z: GoXGp = Ge and between Z': GexGp = Gp, s.t. for {(vcvp)} €
Voexap and {ve} € Vi holds Zo((vevp)) = {ve}. We call this simulation
the origin simulation to C' denoted Zpc.
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GCox X GDox ® Uawo: 0
dr
® v, : { Ir(BMNIAr.B),
Ir Vr VT.HT.B}
{3Ir. (BN 3Ir.B), u Ver : { Ir.(BM3Ir.B),
Vr.3r. B @ Vr.3r.B}
Vr

Figure 9: Product Graph for G¢,, and Gp,,

Once the product graph is obtained, we need to transform this represen-
tation into a FLE T-concept description. In order to apply the conc function
introduced in Definition 32, we have to check whether the obtained graph
is a simple description graph. Unfortunately, this is not the case since the
product graph may contain cross edges (w.r.t. a breadth-first spanning tree).

Cross edges violate the Condition 1 for simple description graphs from
Definition 25. Thus, we have to perform the translation of a product graph
into a concept description in two steps. First, we have to eliminate cross
edges; then, we can use the function conc to read out the concept description.
The elimination of cross-edges is performed by an unraveling algorithm that
introduces a vertex named with the path by which this vertex is connected
to the root vertex and yields a tree with additional back-edges. Thus the
obtained graph may still have cycle, but is cross edge free. In order to present,
the algorithm we need some preliminaries for paths. Let p = vjv5...v, be a
path, then we denote by Tail(p) = v, the last element in p. Let furthermore
q be a path, then p|q is the path obtained by the concatenation of p and g.
We also need the set Final—Path(G) := {(viva...v,) € VI | (0, Qruiyy) €
Eg,xj # x; for j # i}. The unraveling is performed according the unravel-
algorithm depicted in Figure 10.

The function first eliminates all existential forward edges in the graph and
then eliminates all cross edges recursively by calling the function eliminate
with the root vertex as start vertex. This function in turn traverses the
graph starting from the vertex v* and eliminates every cross edge (v* Qrw)
by removing it from the set of edges, traversing and eliminating the cross
edges from the reachability graph of w, making a copy of this sub-graph
and introducing a new @r-successor for v* as the root vertex of this copy.
A product graph can now be transformed into a cross edge-free graph by
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unravel(G = (V, E, vo, ly, (f))
G := remove transitivity edges(G)
G, := eliminate(Gy, vy, 0)
Gs := For r € N} do transitive-closure(G,, 3r)
return Gs
eliminate(G = (Vg, Eg, Vog, Ly, EEQ»
V' := Final—Path(G)
B = {(p Qr plQrv) € V'xV'| (Tail(p) Qr v) € Fg-} U
{((plQir1vlq) @r (p|Qiriv)) € V' x V" [ (Tail(q) Qrv) € Eg}
ly, (p) = Cy,(Tail(p))
Us, (pQrq) := (g, (Tail(p)QrTail(q))

return g

Figure 10: Unravel Function for Description Graphs

applying the unravel function. The graph obtained by the unravel function
is equivalent to the original one.

Lemma 48 Let C, D be FLE T -concept descriptions and Go, Gp their corre-
sponding FLE T -description graphs. Then,

1. Z: unravel(Ge X Gp) = Go X Gp and
7" Go x Gp = unravel(Ge X Gp), and

2. Z": unravel(Ge X Gp) = Ge.

PROOF. Proof of 1: We prove the claim in two steps, by advising two rela-
tions between unravel(Ge X Gp) and Go X Gp and then show that these rela-
tions are simulations. We use G,, as short-hand notation for unravel(Ge X Gp)
and G, as short-hand notation for G- X Gp.

e The relation from unravel(Ge X Gp) to Go x Gp is defined as: Z(p) =
Tail(p). We have to show now that this relation fulfills the definition
of a simulation. Since vy, € Final—Path(G,) the roots are mapped
onto each other Z(vy, ) = Tail(vo, ) = wvo,, . The label set of each
vertex p € Final —Path in the unraveled graph is defined by (i, (p) :=
Uy, (Tail(p)), thus it fulfills &, (p) C (v, (Z(p)). It remains to be
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shown that if (p Qr p|Qrq) € Eg, and ||q|| = 1, then F' € Vg,
(vQrv') € Eg, and Z(q) = v. If (p Qr p|Qrq) € Eg, then by definition
of G, = unravel(Go x Gp) : (Tail(p) Qr q) € Eg,, since for ||g|| = 1
holds that Z(q) = q.

e The relation from G X Gp to unravel(Ge X Gp) is defined as: Z'(v) =
{p | Tail(p) = v}. We have to show again that all properties from the
definition of simulations hold. As above, the roots are mapped onto
each other, since vy, € Tail((vo,, )) = Z'(vo,, ). The definition of the
function unravel implies that the label of the vertices trivially fulfill the
condition: (v, (Z'(v)) := ly,, (Tail({p | Tail(p) = v})) = ly,, (v). Thus
it remains to be shown that if (vQrw) € Eg, then Vp € Z'(v) : 3¢ €
Z'(w) : (p Qr p|Qrq) € Eg,. From p € Z'(v) follows by the definition
of Z' that Tail(p) = v. According to whether w appears more that once
in p we have to make a case distinction.

(1) If (p = p|@rwlpz) for Ipi,ps : ||psf| > 1 with 7 € {1,2}. Since
Tail(p) = Tail(ps) = v, we have (Tail(p) Qrw) € FEg,, thus by defi-
nition of Eg, there must exist (p;|Qrw|p: Qr p1|Qrw) € Eg,. Since
(p1|@Qrw) € Tail(w) we have found the required successor.

(2) If p = p; Q'r'v, then by definition of Final—Path(G,) : (p|Qrw) €
Final—Path(G,) and Tail(p) = v and thus (Tail(p) Qr w) € Eg, and
by definition of Eg, there must also exist (p Qr p|Qrw) € Eg, .

Thus both relations Z and Z’ are simulations.
Proof of 2: In the Lemma 48 claim (2) is an immediate consequence of (1).

Since Z;: unravel(Ge X Gp) = Ge X Gp and there always exists a simulation
Zs: Go X Gp = Ge, there always exists a simulation Z5 o Z;: unravel(Go X

Gp) = Ge.

Lemma 49 Let C, D be FLE  -concept descriptions and G, Gp their corre-
sponding FLET -description graphs, then unravel(Ge X Gp) is a simple de-
seription graph.

PROOF. Since the root vertex of GoxGp is also the root vertex of unravel (G x
Gp) and the unravel function yields connected and directed graphs, unravel (G x
Gp) is a description graph. To prove the claim we show that all proper-
ties from Definition 25 hold. Again we use G, as short-hand notation for
unravel(Ge x Gp) and G, as short-hand notation for Gz X Gp.
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e Proof of Property 1 Since neither G- nor Gp have forall-forward edges,
G, cannot have forall-forward edges by construction w.r.t. a breadth
first search tree. Neither the function unravel nor the function eliminate
introduce new forall-forward edges.

Since the function eliminate traverses and unravels the whole graph
the graph G, is cross edge-free. Since the exists-forward edges in G,
are removed in the first step of the unravel function, no forward edges
are created by the eliminate function, but only edges to “fresh” vertices
or back loops, and since the exists-forward edges introduced by the last
step in the unravel function are the only forward edges in G, and these
edges connect vertices connected by a path of exists-tree edges w.r.t.
one transitive role. Hence Property 6 holds for G, .

e Proof of Property 2: We show by contradiction that Property 2 holds.
Assume there exists a cycle {(v; Q71 v9)(v2 Qarav3) ... (v Qurpvy)} €
Eg,, where n > 1 and v; # v; for i # j and either r; # r; or r & N} .

The edges are introduced in the function unravel by the last step and
the call of the function eliminate. The last step in function unravel only
introduces forward-edges and thus no cycles. Since Lemma 48 holds, we
know that the cycle {(v; Q171 v2)(v2 Qarav3) ... (v Qurnvi)} € G, can
be simulated in G,. Thus G, contains a cycle for the same sequence of
roles Q1r1Qors ... Q,r,. Since there exist simulation relations G, = G¢
and G, = Gp corresponding cycles must exist in G- and in Gp. Since
Ge and Gp are simple description graph they fulfill Property 2 and thus
our initial assumption is false.

e Proof of Property 3: Consider a cycle (p1 Qrps...p, Qrp1) in G, with
pairwise distinct vertices. The above Condition allows us to restrict
our attention to cycles over only one transitive role . From Lemma 48
follows for G, that there exists a simulation to G, and vice versa. Thus
it suffices to show the claim for G,. Since there is a simulation Z: G, =
G., there is also a cycle ((wocwop) Qr (wicwip) . .. (Wacwnp) Qr (Wocwop))
in G, with pairwise distinct vertices. From the definition of product
graphs follows that there must exist the cycles ((wop Qrwig) . .. (War Qrwor))
in G with pairwise distinct vertices w;p for all E € {C,D}. Since
Ge and Gp are simple description graphs, Lemma 31 guarantees that
Property 3 holds for G- and Gp. Consequently there must exist a
forall-successor of wye in G and there must exist a forall-successor of
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wop in Gp. Since (wycwyp) is a vertex in G, the definition of product
graphs requires that there exists a forall-successor of (wocwyp). The
simulation from G, to G, implies that there also exists a forall-successor

Of (Uocvgp) in gu

Proof of Property 4: Since Lemma 48 holds it suffices to show the
claim for G,. Assume {((ucup)Vr(vcvp)), ((ucup)3Ir (wewp))} C
Eg,. The definition of the product graph G, implies that there ex-
ist {(ucVrve), (ucIrwe)} C Eg. and {(upVrop), (upIrwp)} C
Eg,. According Lemma 31 G- and Gp are simple description graphs.
Thus G- and Gp fulfill Property 4 and there exist simulations Zg s.t.
gE(UE) =~ gE(wE) forall F € {C, D} Thus ZcoZoc: (gx)((vch)) =
Go(we) and ZpoZop: (G)((vevp)) = Gp(wp). Thus for every vertex
(vv") in (G2)((vevp)) holds: If (vv') has a Qr'-successor there must exist
a Qr'-successor of Z¢(v) in Ge and a Qr'-successor of Zp(v') in Gp. By
definition of product graphs there must be a vertex (Zq(v)Zp(v')) in
G,. Consider the labels in G,: If (ZCOZOC(UU’) ZDoZoD(vv’)) = (ww')
then, by the definition of simulation holds (g, (vv') C g, (ww'). Since
(Zc(ve)Zp(vp)) = (wewp) we obtain a simulation from (vevp) to
(wewp).

If r € N} we have to show that there also exists a vertex (wiwh) € Vg,
such that ((wewp) Vr (wewp)) € Eg, and (G:)((vevp)) = (Gx) ((wewp)).
As above we know from Lemma 31 that G- and Gp fulfill Property 4
and thus there exists a vertex (wpwp) and the simulations Z7; s.t.
Or(ve) = Gr(wy) for all E € {C,D}. Thus there is again a com-
position of simulations 7 o Zoc: (G:)((vevp)) = Geo(wy) and 74 o
Zop: (G:)((vevp)) = Gp(w'y). Hence for every vertex (vv') in (G,)((vevp))
with a Qr'-successor there must exist a Qr'-successor of Z(v) in Go
and a Qr'-successor of Z7,(v') in Gp. Thus we can, as above, conclude
that for every vertex (Z¢(v)Z(v')) in G, where for (Z0Zoc(vv') Zjo
Zop(vv')) = (ww') by the definition of simulation holds that (g, (vv') C
(g, (ww'). Since (Z4(ve)Zp(vp)) = (wpw'y) we obtain a simulation
from (vevp) to (wpw'h).

Proof of Property 5: Proof is analogous to the Proof of Property 4.
Again, since Lemma 48 holds it suffices to show the claim for G,. As-
sume ((ucup)Vr (vevp)) € Eg, for 1 € NE. The definition of G,
implies that there exist (ucVrve) € Eg, and (upVrup) € Eg,. Ac-
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cording Lemma 31 G and Gp are simple description graphs. Thus G
and Gp also fulfill Property 5 and thus there exist the vertices (vgVrovf)
and simulations Zg s.t. Gg(vg) = Gp(vy) for all E € {C, D}. Thus
Zc o Zoc: (Gz)((ucup)) = Gelve) and Zp o Zop: (Ga)((ucup)) =
Gp(v). Thus for every vertex (uu') in (G,)((ucup)) holds: If (uu')
has a @Qr'-successor there must exist a Qr'-successor of Z¢(u) in Go
and a Qr'-successor of Zp(u') in Gp. By definition of product graphs
then there must be a vertex (Z¢(u)Zp(u')) in G,. Consequently there
is the vertex (Z¢(ue)Zp(up)) = (vpv)) in G,. Consider the labels in
Gu: If (Zoo Zoc(uu') Zpo Zop(uu')) = (vv'), then by the definition of
simulation holds (g, (uu') C g, (vv'). Since (Zc(uc)Zp(up)) = (vpv'h)
we obtain a simulation from (ucup) to (vpvl).

e Proof of Property 6 6: Consider the vertex (vcvp) € Vg, with B €
(g, (vcvp). Once again, from Lemma 48 follows for unravel(G,) that
there exists a simulation to G, and vice versa. Thus there exists
(vpvp) € Vg, where B € (g, (vpvh). It follows from the definition
of product graphs that, if B € (g, (v, v],) then B € N¢. Consequently
the simulation from Gg to (G,(vcvp) trivially exists.

Since all properties from Definition 25 hold, G, is a simple description graph.

Since the graph obtained by the function unravel is a simple description
graph, Theorem 37 is applicable and the concept description corresponding
to the unraveled graph can be obtained by the conc function to read a FLE™-
concept description from the simple description graph. We are now ready to
prove the main theorem of this paper.

Theorem 50 Let C, D be FLET -concept descriptions and Ge, Gp their corre-
sponding simple description graphs, then conc(unravel(GexGp)) = les(C, D).

PROOF. Let L = conc(unravel(Ge x Gp)). We have to show that (1) C C L
and D C L and (2) if there exist another FLE-concept E with E C L,
CCFE,and DC F then LC E.

Proof of (1): Tt is sufficient to show C' C L. Lemma 48 implies that there
exists a simulation Z: unravel(Ge X Gp) = Ge. Applying Lemma 49 to the
unraveled graph and by the definition of G- we know that unravel(Ge x Gp)
and G are both simple description graphs. Thus Lemma 26 implies that
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Go C unravel(Ge x Gp) since there is a simulation. From Theorem 37 it
follows that unravel(Ge X Gp) = conc(unravel(Ge x Gp)). Since G¢ is a
simple description graph, Lemma 30 and Lemma 31 can be applied and we
can conclude that G = C' C conc(unravel(Ge x Gp)) = unravel (Ge X Gp).
Proof of (2): By contradiction: assume C' C E, D C E, E C L and
LIZE. Let Ga := (Vy, Ea, vy, 3+, () where A € {C,D,E,L}. From C C E
and D C FE follows by Theorem 44 that there exist simulations Z¢ : G = Go
and Zp : Gg = Gp. Thus it holds by definition of simulations: Vv € Vg:

o Yup € Vp: If vp € Zp(v) then (E(v) C (¥ (vg), and

e V(vQrw) € Ep there exist vp,wp € Vi s.t. {vp} € Zp(v),{wr} €
Zp(w) and (vp Qrwr) € EF,

where F' € {C, D}. From the existence of both simulation relations and from
the Definition of product graphs follows that for all v € Vj:

o If ve € Zco(v) and vp € Zp(v) for ve € Vi, (ve Qrwe) € Ee and for
vp € Vp, (vp Qrwp) € Ep then there exist the vertices {(ve, vp), (we, wp)} €
Viexop and ((ve,vp) Qr (we,wp)) € Egexgy-

e Since (E(v) C (S (ve) NER(vp) = (57797 ((ve, vp))

Thus there exists a simulation relation 7, : Gg = Go X Gp, where Zp(v) =
{(VV") € Vgaxgy, | V' € Zeo(v),v" € Zp(v)}. By Lemma 48 then there
also must exist a simulation Z; : Gr = unravel(Ge x Gp). Since Gp and
unravel(Ge x Gp) are simple description graphs, Lemma 26 implies Gp C
unravel(Ge x Gp). From this we obtain by means of Lemma 30, Lemma 31,
and Lemma 49, that Gg = F C conc(unravel(Ge X Gp)) = unravel(Ge X Gp).
This is a contradiction to our initial assumption that L [Z E. Thus we can
conclude that conc(unravel(Ge X Gp)) = les(C, D). |

In case the n-ary lcs is to be computed from a set of concepts, the product
of all corresponding simple description graphs should be computed first and
then the unravel and the conc function should be applied only once.

6 Conclusion and Outlook

We have shown how the existing lcs algorithms for the DLs &€ and FL, can
be extended to transitive roles with comparatively little effort. In case of
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ELT concept descriptions, the effect of transitive roles could simply be made
explicit by adding a number of certain existential restrictions to the concept.
For FL{, the representation of concept descriptions by formal languages
could be extended by means of an operator for the transitive closure of formal
languages.

For the DL FLE' we have introduced a sound and complete algorithm
for the effective computation of the lcs. In particular, the lcs of a finite set
of FLET-concept descriptions always exists and is uniquely determined up
to equivalence. As a key utility for the lcs computation we have proposed
description graphs as a finite representation of FLET-concept descriptions
in which all restrictions additionally imposed by transitive roles are made
explicit. On this basis the lIcs could be defined by means of the graph product
of the description graphs of the input concepts.

It is easy to see that the lcs algorithm can be optimized in several ways to
produce smaller output concept descriptions. Firstly, the blocking conditions
used to generate description graphs out of concept descriptions so far only
allow for blocking w.r.t. ancestors. This might be replaced by a more general
blocking strategy capable of blocking between arbitrary vertices. Secondly,
it seems expedient to reduce redundancies possibly produced by the function
conc. In particular, it is not always necessary to apply the acc-function once
for every edge in the description graph. A thorough investigation of the
computational complexity of the lcs computation in FLET remains future
work. Nevertheless, already for then non-transitive language FLE it is known
that the lcs may be exponentially large in the input size.
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