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Abstra
t

Des
ription Logi
s (DLs) are a family of knowledge representation

formalisms used for terminologi
al reasoning. They have a wide range

of appli
ations su
h as medi
al knowledge-bases, or the semanti
 web.

Resear
h on DLs has been fo
used on the development of sound and


omplete inferen
e algorithms to de
ide satis�ability and subsumption

for in
reasingly expressive DLs. Non-standard inferen
es are a group

of relatively new inferen
e servi
es whi
h provide reasoning support

for the building, maintaining, and deployment of DL knowledge-bases.

So far, non-standard inferen
es are not available for very expressive

DLs. In this paper we present �rst results on non-standard infer-

en
es for DLs with transitive roles. As a basis, we give a stru
tural


hara
terization of subsumption for DLs where existential and value

restri
tions 
an be imposed on transitive roles. We propose sound and


omplete algorithms to 
ompute the least 
ommon subsumer (l
s).

�
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1 Introdu
tion and Motivation

Des
ription Logi
s (DLs) are a family of formalisms used to represent ter-

minologi
al knowledge of a given appli
ation domain in a stru
tured and

well-de�ned way. The basi
 notions of DLs are 
on
ept-des
riptions and roles,

representing unary predi
ates and binary relations, respe
tively. Atomi
 
on-


epts and 
on
ept des
riptions represent sets of individuals, whereas roles

represent binary relations between individuals [5℄. The main 
hara
teristi


of a DL is the set of 
on
ept 
onstru
tors by whi
h 
omplex 
on
ept des
rip-

tions 
an be built from atomi
 
on
epts and roles. In the present paper, we

are 
on
erned with the DL FLE

+

whi
h provides the 
onstru
tors 
onjun
-

tion (C uD), existential restri
tion (9r:C), value restri
tion (8r:C), and the

top 
on
ept (>).

In FLE

+

, a role 
an be de�ned transitive. In this 
ase it represents the

transitive 
losure of a binary relation. Transitive roles appear naturally in

many appli
ation domains, su
h as medi
ine and pro
ess engineering [1℄.

Consider, for instan
e, a ma
hine that 
omprises several 
omponents whi
h

again 
onsists of several devi
es. A natural way to represent su
h a ma
hine

by means of DLs would be to use some has-part role to re
e
t its 
omposi-

tional stru
ture. It would be natural here to impli
itly regard every part of

a 
omponent also as a part of the whole. To this end, a DL with transitive

roles is ne
essary.

Inferen
e problems for DLs are divided into so-
alled standard and non-

standard ones. Well known standard inferen
e problems are satis�ability and

subsumption of 
on
ept des
riptions. These are well investigated for a great

range of DLs. For many of them, sound and 
omplete de
ision pro
edures


ould be devised and lower and upper bounds for the 
omputational 
om-

plexity have been found [11℄. Many standard inferen
e algorithms have been

su

essfully extended to 
ope with transitive roles [13, 12℄ and are put into

pra
ti
e in state of the art DL Systems.

Prominent non-standard inferen
es are mat
hing, the least 
ommon sub-

sumer (l
s), the most spe
i�
 
on
ept (ms
), and, more re
ently, approxima-

tion. Non-standard inferen
es resulted from the experien
e with real-world

DL-knowledge bases (KBs), where standard inferen
e algorithms sometimes

did not suÆ
e for building and maintaining purposes. For example, the prob-

lem of how to stru
ture the appli
ation domain by means of 
on
ept de�ni-

tions may not be 
lear at the beginning of the modelling task. Moreover, the

expressive power of the DL under 
onsideration sometimes makes it diÆ
ult
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to 
ome up with a faithful formal de�nition of the 
on
ept originally in-

tended. To alleviate these diÆ
ulties it is expedient to employ non-standard

inferen
es [14, 8℄.

The l
s was �rst mentioned as an inferen
e problem for DLs in [10℄.

Given two 
on
ept des
riptions A and B in a des
ription logi
 L, the l
s

of A and B is de�ned as the least (w.r.t. subsumption) 
on
ept des
ription

in L subsuming A and B. It has been argued in [8℄ that the l
s fa
ilitates

a \bottom-up"-approa
h to the above mentioned modelling task: a domain

expert 
an sele
t a number of intuitively related 
on
ept des
riptions already

existent in a KB and use the l
s operation to automati
ally 
onstru
t a new


on
ept des
ription representing the 
losest generalization of them. This

approa
h 
an be extended by means of the ms
. Sele
ting one individual,

i.e., an instan
e of a 
on
ept, from a KB the ms
 
onstru
ts the most spe
i�



on
ept expressible in the underlying DL representing the individual. Using

this inferen
e, the \bottom-up"-design of new 
on
epts 
an start on the level

of a
tual individuals whi
h are sometimes more familiar to a domain expert

than the more abstra
t 
on
epts.

Mat
hing in DLs was �rst proposed in [7℄. A mat
hing problem (modulo

subsumption) 
onsists of a 
on
ept des
ription C and a 
on
ept pattern D,

i.e., a 
on
ept des
ription with variables. Mat
hing D against C means

�nding a substitution of variables in D by 
on
ept des
riptions su
h that C is

subsumed by the instantiated 
on
ept pattern D. Among other appli
ations,

mat
hing 
an be employed for queries in KBs: a domain expert unable to

spe
ify uniquely the 
on
ept he is looking for in a KB 
an use a 
on
ept

pattern to retrieve all those 
on
epts in the KB for whi
h a mat
her exists.

The stru
tural 
onstraints expressible by patterns ex
eed the 
apabilities of

simple \wild
ards" familiar from ordinary sear
h engines [8℄.

Approximation was �rst mentioned as a new inferen
e problem in [4℄.

The upper (lower) approximation of a 
on
ept des
ription C

1

from a DL

L

1

is de�ned as the least (greatest) 
on
ept des
ription in another DL L

2

whi
h subsumes (is subsumed by) C

1

. Approximation 
an be used to make

non-standard inferen
es a

essible to more expressive DLs by transferring a

given inferen
e problem to a less expressive DL where at least an approximate

solution 
an be 
omputed. Another appli
ation of approximation lies in user-

friendly DL-systems o�ering a simpli�ed frame-based view on KBs de�ned

in a more expressive ba
kground DL [6℄. Here approximation 
an be used

to 
ompute simple frame-based representations of otherwise overwhelmingly


ompli
ated 
on
ept des
riptions.
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Table 1: Syntax and semanti
s of FLE

+

-
on
ept des
riptions.

Constru
t name Syntax Semanti
s

top-
on
ept > �

I


onjun
tion C uD C

I

\D

I

existential restri
tions 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restri
tions 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

transitive roles r

+

S

1�n

(r

I

)

n

In 
ontrast to standard inferen
e problems, 
omparatively little resear
h

exists on non-standard inferen
es in DLs with transitive roles [2℄. If exis-

tential restri
tions 
an be expressed in a DL then the inferen
es mat
hing

and approximation are de�ned by means of the l
s operation. This 
entral

role of the l
s for non-standard inferen
es has lead us to make this inferen
e

problem the �rst to be extended to FLE

+

. After introdu
ing some basi
 no-

tions and notation, our �rst step towards the l
s will be a 
hara
terization

of subsumption for FLE

+

-
on
ept des
riptions by means of so-
alled des
rip-

tion graphs. We shall see that for two FLE

+

-
on
ept des
riptions A and B,

subsumption (A v B) holds if and only if there exists a simulation relation

from the des
ription graph of B into the one of A. The l
s inferen
e of A and

B is then de�ned as the graph produ
t of the respe
tive des
ription graphs.

As a result, we shall see that the l
s of a �nite set of FLE

+

-
on
ept des
rip-

tions always exists and is uniquely determined up to equivalen
e. Moreover,

an e�e
tive algorithm for the 
omputation of the l
s will be provided.

2 Preliminaries

DLs are based on the following sets of names: N

C

is the set of 
on
ept names,

and N

R

is the set of role names, and N

T

R

is the set of transitive roles, where

N

R

\ N

T

R

= ;. Con
ept des
riptions are indu
tively de�ned starting from

the set of 
on
ept names and use the 
on
ept 
onstru
tors shown in Table 1.

The DL FLEo�ers the top-
on
ept, 
onjun
tion, existential, and value

restri
tions, as displayed in Table 1. In FLE

+

, transitive roles 
an be used in

existential and value restri
tions.

As usual, the semanti
s of a 
on
ept des
ription is de�ned in terms of an
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FL

0

EL FLE

top-
on
ept x x x


onjun
tion x x x

existential restri
tions x x

value restri
tions x x

Table 2: Des
ription Logi
s

interpretation I = (�; �

I

). The domain � of I is a non-empty set and the

interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a set A

I

� �

and ea
h role name r 2 N

R

[ N

T

R

to a binary relation r

I

� ���. The

extension of �

I

to arbitrary 
on
ept des
riptions is de�ned indu
tively, as

shown in the se
ond 
olumn of Table 1.

The DLs 
overed in this paper are extensions of the DLs shown in Ta-

ble 2. Please note that none of these DLs provides (primitive) negation or

the bottom 
on
ept and therefore 
an not express 
ontradi
tions, thus all


on
ept des
riptions build in the above mentioned DLs are satis�able.

One of the most important traditional inferen
e servi
es provided by DL

systems is 
omputing the subsumption hierar
hy. The 
on
ept des
ription C

is subsumed by the des
ription D (C v D) i� C

I

� D

I

for all interpretations

I; C and D are equivalent (C � D) i� C v D and D v C.

In this paper we fo
us on the non-standard inferen
e of 
omputing the

least 
ommon subsumer (l
s).

De�nition 1 (l
s) Given L-
on
ept des
riptions C

1

; : : : ; C

n

, for some de-

s
ription logi
 L, the L-
on
ept des
ription C is the least 
ommon subsumer

(l
s) of C

1

; : : : ; C

n

(C = l
s(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all

1 � i � n, and (ii) C is the least 
on
ept des
ription with this property, i.e.,

if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

The idea behind the l
s inferen
e is to extra
t the 
ommonalities of the input


on
epts. The l
s is uniquely determined up to equivalen
e. Therefore it is

justi�ed to speak about \the" l
s instead of \an" l
s.
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3 Least 
ommon subsumer for FL

+

0

In a �rst step the DL FL

0

is extended by transitive roles, resulting in FL

+

0

.

For FL

+

0

the propagation of 
on
epts appearing within value restri
tions must

be guaranteed for transitive roles.

We 
hara
terize subsumption of FL

0

-
on
ept des
riptions by a stru
-

tural 
omparison and prove that this 
hara
terization is sound and 
omplete.

Based on this 
hara
terization we develop an algorithm to 
ompute the l
s

of two FL

0

-
on
ept des
riptions.

In order to use a stru
tural 
omparison to test subsumption one has to

make all the information 
aptured in the 
on
ept des
riptions expli
it. In 
ase

of FL

+

0

-
on
ept des
riptions the propagation of value restri
tions regarding

transitive roles has to be ensured.

3.1 Normalizing FL

+

0

-
on
ept des
riptions

We follow the approa
h in [5℄ and use the following normal form of FL

+

0

-


on
ept des
riptions.

De�nition 2 (FL

+

0

-normal form) a FL

+

0

-
on
ept des
ription is in FL

+

0

-

normal form i� it is either > or a 
onjun
tion of the form 8r

1

: � � � :8r

n

:A for

n � 0 role names r

1

; : : : ; r

n

2 N

R

[N

T

R

and a 
on
ept name A 6= >; A 2 N

C

.

We abbreviate 8r

1

: � � � :8r

n

:A by 8r

1

: � � � :r

n

:A where r

1

: : : r

n

is 
onsidered a

role word over N

R

[N

T

R

. In addition, we write 8L:C instead of 8w

1

: : : w

m

:C,

where the role language L = fw

1

; : : : ; w

m

g is a �nite set of words over N

R

[

N

T

R

. The term 8;:A is 
onsidered to be equivalent to >.

De�nition 3 Let L � (N

R

[N

T

R

)

+

be a role language and

br :=

�

r, if r 2 N

R

r

+

, if r 2 N

T

R

then

b

L := fbr

1

br

2

� � � br

n

j r

1

r

2

� � � r

n

2 Lg is the transitive role language of L.

The interpretation fun
tion extends to transitive role languages as 
aptured

by the following Lemma.

Lemma 4 Let A be a FL

+

0

-
on
ept des
ription, then

1. d 2 (8

b

L:A)

I

i� 8w 2

b

L : dw

I

e implies that e 2 A

I

:
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+

0

2. 8L:A � 8

b

L:A

Proof. proof of 1.): follows dire
tly from the semanti
s of value restri
tions

and transitive roles.

proof of 2.): follows dire
tly from de�nition of

b

L.

Let us 
onsider the 
omplexity for 
omputing the FL

+

0

-normal form. For

a 
on
ept C with jCj = n the number of di�erent role-words, the length

of ea
h role-word, and the number of 
on
ept names embedded in the value

restri
tions 
an ea
h be bounded by n. Therefore there are at most n di�erent

role-words. Ea
h one (of length n in the worst 
ase) has to be 
opied for ea
h


onjun
t to obtain value restri
tions with only one embedded 
on
ept name

A. Therefore the FL

+

0

-normal form 
an be 
omputed in polynomial time.

3.2 Chara
terization of subsumption for FL

+

0

Based on the FL

+

0

-normal form we 
an advise a stru
tural 
he
k that de-

termines subsumption between two FL

+

0

-
on
ept des
riptions. This 
hara
-

terization of subsumption is a prerequisite for the 
omputation of the l
s in

FL

+

0

. We begin with a theorem that 
hara
terizes the subsumption between

value restri
tions over possibly transitive roles.

Theorem 5 Let A be a FL

+

0

-
on
ept des
ription , then 8L:A v 8L

0

:A i�

b

L

0

�

b

L.

Proof. \!" It holds that 8L:A v 8L

0

:A. We prove the 
laim by 
on-

tradi
tion and assume

b

L

0

6�

b

L, then there exists a word w = r

1

r

2

� � � r

n

with w 2

b

L

0

n

b

L. This implies that (8w:A)

I

6� (8

b

L:A)

I

and (8w:A)

I

�

(8

b

L

0

:A)

I

. Therefore (8

b

L:A)

I

6� (8

b

L

0

:A)

I

and applying Lemma 4.2 it holds

that (8L:A)

I

6� (8L

0

:A)

I

. Consequently, we obtain a 
ontradi
tion to our

initial assumption.

\ " It holds that

b

L

0

�

b

L. Therefore w 2

b

L

0

implies w 2

b

L. It follows from

Lemma 4.1 that, (8

b

L:A)

I

� (8

b

L

0

:A)

I

and thus 8

b

L:A v 8

b

L

0

:A.

We need to introdu
e some notation to a

ess the di�erent parts of a 
on
ept

des
ription C in FL

+

0

-normal form:

� prim(C) denotes the set of all 
on
ept names and the top 
on
ept

o

urring on the top-level of C.



3.2 Chara
terization of subsumption for FL

+

0

7

� val

w

(C) := C

1

u � � � u C

n

, if there exist value restri
tions of the form

8w:C

1

; : : : ; 8w:C

n

on the top-level of C; otherwise, val

w

(C) := >;

� L(C) denotes the set of role-words appearing in the value restri
tions

on the top-level of C.

� L

A

(C) = fw j 8w:A o

urs on the top-level of Cg.

The 
onditions for subsumption for FL

0


an be extended to arbitrary FL

+

0

-


on
ept des
riptions using Theorem 5.

Theorem 6 Let C and D be two FL

+

0

-
on
ept des
riptions in FL

+

0

-normal

form. Then, C v D i� D = >, or it holds that

1. prim(D) � prim(C) , and

2. for all A 2 N

C

:

b

L

A

(D) �

b

L

A

(C)

Proof. !: Assume C v D.

� Assume prim(D) 6� prim(C). Then there exists an A 2 prim(D) n

prim(C). As all FL

+

0

-
on
ept des
riptions C is 
onsistent. We may

therefore 
onsider a interpretation I with a 
anoni
al model of C. By

de�nition, the individual d

C

2 �

I

for C does not o

ur in A

I

, sin
e

A 62 prim(C). Thus, d 62 D

I

and therefore C 6v D, in 
ontradi
tion to

our assumption.

� Assume that there exists A 2 N

C

with

b

L

A

(D) 6�

b

L

A

(C). Thus there

exists a role-word w 2

b

L

A

(D) and w 62

b

L

A

(C). This implies that

(8w:A)

I

� D

I

and (8w:A)

I

6� C

I

and thus obtain a 
ontradi
tion to

our initial assumption.

 : Conditions 1 and 2 hold.

Assume C 6v D. Due to the normalization C is a 
onjun
tion. Due to our

assumption there must exist at least one 
onjun
t C

i

in C s.t. C

i

v C and

C

i

6v D. There are two 
ases to distinguish:

1. C

i

2 prim(C): from C

i

6v D we 
an 
on
lude that C

i

62 prim(D). Thus

we have a 
ontradi
tion to our assumption that Condition 1 holds.
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+

0

Least 
ommon subsumer for FL

+

0

Input: Two FL

+

0

-
on
ept des
riptions C;D.

Output: FL

+

0

-l
s of C and D.

1. If C v D then 
-l
s-FL

+

0

(C;D) := D

if D v C then 
-l
s-FL

+

0

(C;D) := C

2. Otherwise, transform C and D into FL

+

0

-normal form and return


-l
s-FL

+

0

(C;D) := u

A2prim(C)\prim(D)

A

u u

A2N

C

8 (

b

L

A

(C) \

b

L

A

(D)) : A

Figure 1: The l
s algorithm for FL

+

0

2. C

i

= 8w:A: from C

i

6v D we 
an 
on
lude that 8w:A 6v D, thus

w 2

b

L

A

(C), but w 62

b

L

A

(D), whi
h is a 
ontradi
tion to our assumption

that Condition 2 holds.

The 
omplexity of a subsumption test for two normalized FL

+

0

-
on
ept

des
riptions of size n is polynomial, sin
e there are at most n+1 subset tests

to perform and ea
h of these tests has a 
omplexity in P .

3.3 Computing least 
ommon subsumer for FL

+

0

For DLs providing transitive roles the usual approa
h for 
omputing the

l
s by unwinding the value restri
tions and making a re
ursive 
all for the

embedded 
on
epts does not suÆ
e. For example, if t 2 N

T

R

, then the

l
s(8t:8t:8t:A; 8t:A) 6� 8t:l
s(8t:8t:A; A). Instead the l
s(8t:8t:8t:A; 8t:A) �

8t:8t:8t:A requiring at least 3 value restri
tions for t. So, in general it is

ne
essary for the 
omputation of the l
s to �nd the 
ommonalities of the role

languages that refer to the same 
on
ept name.

In Figure 1 we advise an algorithm for e�e
tively 
omputing the l
s of two

FL

+

0

-
on
ept des
riptions. The algorithm 
he
ks �rst for some 
ases where

the l
s is trivial. Then it transforms both 
on
ept des
riptions in FL

+

0

-normal

form and 
omputes the interse
tion of the 
on
ept names appearing on the
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top-level of C and D. These are then 
onjoined with the value restri
tions

obtained from interse
ting the transitive role languages of role-words referring

to the same 
on
ept name.

Pre
isely, the result obtained by the algorithm from Figure 1 is not in

every 
ase a FL

+

0

-
on
ept des
ription, sin
e it is represented by transitive

role languages. However, these results 
an easily be 
onverted into a FL

+

0

-


on
ept des
ription by performing the steps from De�nition 3 in the inverse

order. More pre
isely, repla
e for every A 2 N

C

ea
h transitive role r

+

i

in the

set

b

L

A

(
-l
s-FL

+

0

(C;D)) with r

i

and write it as a separate value restri
tion.

The size of the sets prim(C) and prim(D) is �nite and the size of their

interse
tion is also. The sets L(C) and L(D) are represented by a �nite

number of elements and their interse
tion 
an also be represented by a �-

nite number of elements. Sin
e there are only �nitely many interse
tions to

be 
omputed during the 
omputation of the l
s it is easy to see that the


-l
s-FL

+

0

-algorithm always terminates.

The next we prove that the 
on
ept obtained by 
-l
s-FL

+

0

is the l
s of the

two input FL

+

0

-
on
ept des
riptions.

Theorem 7 Let C and D be two FL

+

0

-
on
ept des
riptions, then


-l
s-FL

+

0

(C;D) � l
s(C;D).

Proof. We assume that C 6v D and D 6v C sin
e then the l
s(C;D) is

trivial. Let 
-l
s-FL

+

0

(C;D) = E

l
s

. It is suÆ
ient to show that

(i) C v E

l
s

and D v E

l
s

, and

(ii) for all F with C;D v F it follows that E

l
s

v F .

Ad i) Obviously it is suÆ
ient to show C v E

l
s

. Assume E

l
s

6� >.

Then by de�nition of the algorithm 
-l
s-FL

+

0

the Conditions 1 and 2 from

Theorem 6

1. prim(E

l
s

) � prim(C).

2. for all A 2 N

C

:

b

L

A

(E

l
s

) �

b

L

A

(C).

are satis�ed for C and E

l
s

and therefore E

l
s

subsumes C.

Ad ii) Let F be a FL

+

0

-
on
ept des
ription with C;D v F . If C v D or

D v C, we get E

l
s

v F . Assume C 6v D and D 6v C. If F � > nothing has

to be shown. Assume F 6� >. We show that E

l
s

and F satisfy all Conditions

from Theorem 6
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1. Condition 1: sin
e prim(F ) � prim(C) and prim(F ) � prim(C), it

follows prim(F ) � prim(C) \ prim(D) = prim(E

l
s

).

2. Condition 2: analogously. Sin
e for all A 2 N

C

:

b

L

A

(F ) �

b

L

A

(C) and

b

L

A

(F ) �

b

L

A

(C), it follows

b

L

A

(F ) �

b

L

A

(C) \

b

L

A

(D) =

b

L

A

(E

l
s

).

Consequently, E

l
s

v F , whi
h 
ompletes the proof.

The 
omplexity of the 
-l
s-FL

+

0

algorithm is polynomial, sin
e the num-

ber of subsumption tests made and the number of interse
tions 
omputed

during the se
ond step are linear in n and both, 
omputing subsumption and

interse
tion, 
an be performed in polynomial time.

We have advised an algorithm to e�e
tively 
ompute the l
s of FLE

+

-


on
ept des
riptions by representing the value restri
tions by role words.

Thus it was possible to extend the approa
h for FL

0

to transitive roles seam-

lessly.

4 Least 
ommon subsumer for EL

+

The DL EL provides only 
onjun
tion, the 
on
ept >, and existential re-

stri
tions. The stru
tural 
hara
terization of subsumption as well as the


omputation of the l
s in EL have been thoroughly investigated in [4℄. We

extend the approa
h based on des
ription trees presented there to EL

+

and

subsequently to ELH

+

.

In EL

+

transitive roles may be used in existential restri
tions. In FL

+

0

the

value restri
tions implied by transitivity a�e
t all role su

essors \further

down" in a role 
hain. In EL

+

the exist restri
tions implied by transitivity

a�e
t the role su

essors \further up" the role 
hain by the dire
t role rela-

tions indu
ed by transitivity. The following example illustrates this e�e
t:

if 9t:9t:C holds for an individual a, transitivity implies that there is also a

dire
t relation between a and the t-su

essor of the t-su

essor of a. Thus,

9t:C is also implied for a. To 
hara
terize subsumption for EL

+


on
ept

des
riptions these implied role relations must be taken into a

ount.

In addition to prim(C) we need also an a

essor for the existential re-

stri
tions used in 
on
ept des
riptions: ex

r

(C) := fC

0

j there exists 9r:C

0

on

the 
attened top-level 
onjun
tion of Cg. W.l.o.g. we assume all EL-, EL

+

-,

and ELH

+

-
on
ept des
riptions to be in the following normal form:

C = u

P2P

C

P u u

r2N

R

[N

T

R

u

C

0

2ex

r

(C)

9r:C

0
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where P

C

is a subset ofN

C

. This normal form preserves equivalen
e. Observe

that no existential restri
tion is imposed on a role r in 
ase ex

r

(C) is empty.

4.1 Representing EL

+

-
on
ept des
riptions

We extend the approa
h to stru
tural subsumption in EL presented in [4℄ by

using a di�erent embedding me
hanism for the des
ription trees. We �rst

de�ne des
ription trees as an alternative representation for 
on
ept des
rip-

tions. More pre
isely, we 
all this representation EL-
on
ept trees (and not

EL

+

-
on
ept trees) be
ause it does not re
e
t the transitivity of roles t 2 N

T

R

in any expli
it way.

De�nition 8 (EL-des
ription tree) An EL-des
ription tree is a labeled

tree D = (V;E; v

0

; `), with

� root node v

0

2 V ,

� E � V � (N

R

[N

T

R

)� V , and

� a labeling fun
tion ` that labels all v 2 V with `(v) � N

C

(> is the

empty label).

An edge vrw 2 E will be denoted as a 9-edge in the following. For v 2 V the

tree D(v) denotes the subtree of G with root node v.

Every EL

+


on
ept des
ription 
an be translated into am EL- des
ription tree.

For the translation we need the notion of the depth (written as: depth(C)) of

a 
on
ept des
ription C, whi
h is the maximal number of embedded quantors

in the 
on
ept des
ription. The depth (written as: depth(D)) of a des
ription

tree D is the length of its longest path.

The translation of a 
on
ept des
ription into a des
ription tree 
an be

de�ned indu
tively:

� depth(C) = 0: Then C is of the form u

P2prim(C)

P . In this 
ase, de�ne

V := v

o

, E := E

+

:= ;; and `(v

0

) := prim(C).

� depth(C) > 0: For every r 2 N

R

[ N

T

R

and for every C

0

2 ex

r

(C),

let D(C

0

) = (V

0

; E

0

; v

0

0

; `

0

) be the indu
tively de�ned des
ription trees

for the existential restri
tion C

0

in C. W.l.o.g., assume that the sets of

verti
es V

0

are pairwise disjoint. De�ne D

C

by

{ V := fv

o

g [

S

r2N

R

[N

T

R

S

C

0

2ex

r

(C)

V

0

;
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{ E := fv

0

rv

0

0

j r 2 N

R

[N

T

R

^ C

0

2 ex

r

(C) ^ v

0

0

root of D(C

0

)g

[

S

r2N

R

[N

T

R

S

C

0

2ex

r

(C)

E

0

;

{ `(v) :=

(

prim(C) if v = v

0

`

0

(v) if v 2 V

0

for r 2 N

R

[N

T

R

, C

0

2 ex

r

(C)

The inverse translation from a des
ription tree into a 
on
ept des
ription


an also be de�ned indu
tively:

� depth(D) = 0: De�ne C

D

:= u

P2`(v

0

)

P . Note that in 
ase `(v

0

) = ; the

empty 
onjun
tion yields the top-
on
ept >.

� depth(D) > 0: Denote by R

0

be the set of all roles in (N

R

[ N

T

R

) for

whi
h the node v

0

has a dire
t su

essor in E. For every r 2 R

0

, denote

by V

r

the set of r-su

essors of v

0

w.r.t. the role r. For every r and

for every node v

r

2 V

r

, denote by C

v

r

the 
on
ept des
ription obtained

indu
tively by translating the subtree of D indu
ed by v

r

. De�ne

C

D

:= u

P2`(v

0

)

P u u

r2R

0

u

v

r

2V

r

C

v

r

.

The semanti
s of a des
ription tree is de�ned by the semanti
s of its 
or-

responding 
on
ept des
ription. The translation from a 
on
ept des
ription

into a des
ription tree (and ba
k) preserves equivalen
e in the sense that

C � C

D(C)

and D � D

C

D

.

Example 9 Let C

1

= 9r:((9t:9t:9t:A) u (9s:(B u 9s:C)) and C

2

=

9r:((9t:A) u (9s:B))) be two EL

+

-
on
ept des
riptions, where t 2 N

T

R

and

r; s 2 N

R

. The 
orresponding des
ription trees are depi
ted in Figure 2.

Every node v is shown along with its respe
tive label `(v).

4.2 Chara
terization of subsumption for EL

+

Equipped with des
ription trees we 
hara
terize subsumption by a homo-

morphism from the EL-des
ription tree of the subsumer into the one of the

subsumee. For ea
h r-edge with r 2 N

R

in the des
ription tree of the sub-

sumer at least one 
orresponding r-edge must exist in the des
ription tree of

the subsumee. If r is a transitive role, i.e., r 2 N

T

R

, then an r-edge in the

des
ription tree of the subsumer 
an also be asso
iated with an r-path in the

des
ription tree of the subsumee|in the sense that the origin of the r-edge



4.2 Chara
terization of subsumption for EL

+

13

v

0

: ;

v

1

: ;

r

v

2

: ;

t s

v

5

: fBg

v

5

: fCg

v

4

: fAg

v

3

: ;

t s

G

C

1

:

t

t

w

3

: ;

w

4

: fBg

G

C

2

:

t s

w

2

: fAg

w

0

: ;

w

1

: ;

r

Figure 2: EL-des
ription trees

is mapped onto the �rst node of the r-path and the end point of the r-edge

onto the last node of the path.

De�nition 10 (EL

+

-Homomorphism) Let D = (V

D

; E

D

; v

0

; `

D

) and H =

(V

H

; E

H

; w

0

; `

H

) be EL-des
ription trees. A mapping ' : V

H

�! V

G

is an

EL

+

-Homomorphism i� all of the following 
onditions hold:

� '(w

0

) = v

0

,

� for all w 2 V

H

: `

H

(w) � `

G

('(w)), and

� for all vrw 2 E

H

:

(

'(v)r'(w) 2 E

G

if r 2 N

R

'(v)r

+

'(w) 2 E

G

if r 2 N

T

R

.

The following example illustrates the notion of EL

+

-homomorphisms.

Example 11 Let C

1

and C

2

be de�ned as in Example 9. The homomorphism

from D

C

1

to D

C

2

maps w

0

to v

0

, w

1

to v

1

, w

2

to v

2

, and w

3

to v

6

. The node

w

3


an be mapped to v

6

sin
e w

1

is 
onne
ted to w

3

by a t-edge and v

1

is


onne
ted to v

6

by a path 
onsisting only of t-edges. Observe, that transitivity

of t implies a dire
t t-edge from v

1

to v

6

. Therefore v

6

is also a dire
t role-

su

essor of v

0

and w

3


an be mapped to v

6

.
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The 
hara
terization of subsumption for EL

+

-
on
ept des
riptions is now

given by the following theorem.

Theorem 12 Let C and D be EL

+

-
on
ept des
riptions and let D

C

and D

D

be their 
orresponding EL-des
ription trees. Then C v D i� there exists an

EL

+

-homomorphism ' from D

D

to D

C

.

Proof. Let D

C

= (V

C

; E

C

; v

0

; `

C

) and D

D

= (V

D

; E

D

; w

0

; `

D

) be the 
orre-

sponding EL-des
ription trees for C and D.

1.) \�!": C v D

Assume that D < >, otherwise the 
laim trivially holds. We prove the 
laim

by showing that there always exists a mapping fun
tion ' between the EL-

des
ription trees of D and C that ful�lls all 
onditions from De�nition 10.

Condition 1 from De�nition 10 trivially holds sin
e the root nodes 
an be

mapped to ea
h other; '(w

0

) := v

0

.

We show now that the Conditions 2 and 3 from De�nition 10 hold for the

mapping ' by indu
tion on depth(D).

Base 
ase: depth(D) = 0

implies that D = P

1

u � � � u P

n

for n > 0 and P

i

2 N

C

. Thus, `

D

(w

0

) =

fP

1

; : : : ; P

n

g. Sin
e C � D, we have C

I

� (P

1

u � � � u P

n

)

I

this implies

fP

1

; : : : ; P

n

g � `

C

(v

0

) and sin
e v

0

= '(w

0

) we obtain `

D

(w

0

) � `

C

('(w

0

)).

Sin
e depth(D) = 0 implies E

C

= ; there is nothing to show for Condition

3 from De�nition 10.

Indu
tion step: depth(D) > 0

We �rst show that Condition 2 and 3 from De�nition 10 hold for the �rst

role-level and use the indu
tion hypothesis for the subsequent role-levels.

depth(D) > 0 implies D = P

1

u � � � u P

n

u (u

r2N

R

[N

T

R

u

E2ex

r

(D)

9r:E) for

n > 0 and all E being arbitrary EL

+

-
on
ept des
riptions.

Again, for the root node w

0

holds that `

D

(w

0

) = fP

1

; : : : ; P

n

g. Sin
e

C � D, we have C

I

� (P

1

u � � � u P

n

)

I

this implies fP

1

; : : : ; P

n

g � `

C

(v

0

)

and sin
e v

0

= '(w

0

) we obtain `

D

(w

0

) � `

C

('(w

0

)). Thus Condition 2 for

a homomorphism holds for ' and the root node.

By de�nition of D

D

for all existential restri
tions f9r:E j r 2 N

R

[

N

T

R

; E 2 ex

r

(D)g in the 
on
ept D there must exists an edge w

0

rw

r

2 E

D

.

Sin
e D is satis�able, there exists a interpretation I of D and a 
anoni
al

model of D, where for every existential restri
tion 9r:E used on the top role-

level of D there exists an individual a

0

s.t. (a; a

0

) 2 r

I

and a

0

2 E

I

. We have

to make a 
ase distin
tion for r 2 N

R

or r 2 N

T

R

.
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� r 2 N

R

If r 2 N

R

, then C v D implies that there is an existential restri
tion

9r:C

0

on the top role-level of C, s.t. C

0

v E. By de�nition of D

C

, there

must be an r-edge from v

0

in D

C

to another node, say v

r

. Thus we 
an

map w

r

to v

r

by ' and (sin
e v

0

= '(w

0

)) we have v

0

rv

r

= '(w

0

)r'(w

r

)

and the Condition 3 from De�nition 10 holds for ' and all dire
t role-

su

essors of non-transitive roles on top role-level of D.

� r 2 N

T

R

Sin
e C v D and thus there exists in all interpretations of C and a


anoni
al model of C with an individual b whi
h has an r-su

essor

b

0

, with (b; b

0

) 2 r

I

and b

0

2 C

0I

, s.t. C

0

v E. If r 2 N

T

R

, then

(b; b

0

) 2

S

1�n

(r

I

)

n

and thus there has to exist a r-path from b to b

0

with length k (1 � k) in the 
anoni
al model of C. Thus there have

to exist k nested existential restri
tions in C for the role r. From that

follows by the de�nition of D

C

that there exists a r-path of length k

starting from v

0

to another node , say v

r

. Thus we 
an map w

r

to

v

r

by ' and (sin
e v

0

= '(w

0

)) we have v

0

rv

r

= '(w

0

)r'(w

r

) and the

Condition 3 from De�nition 10 holds for ' and all dire
t role-su

essors

of transitive roles on top role-level of D.

For every 9r:E in D there exists a node w

r

2 V

D

of D

D

s.t. w

0

rw

r

2 E

D

and

for every 9r:C

0

in C there exists a node v

r

2 V

C

of D

C

s.t. v

0

rv

r

2 E

+

C

. Sin
e

C v D implies that C

0

v E and v

0

rv

r

= '(w

0

)r'(w

r

) for every existential

restri
tion in D we 
an 
on
lude that there exists a homomorphism '

r

be-

tween D

D

(w

r

) and D

C

(v

r

) by indu
tion hypothesis. So, using the mappings

from the di�erent '

r

s in ', we obtain a homomorphism from D

D

to D

C

.

2.) \ �": a homomorphism ' from D

D

to D

C

exists.

We prove the 
laim by indu
tion on depth(D)

Base 
ase: depth(D) = 0

implies that E

D

= ; and D � D

D

D

= u

P

i

2`

D

(w

0

)

P

i

. Sin
e a homomorphism

' exists, we have '(w

0

) = v

0

and thus `

D

(w

0

) � `

C

('(w

0

)). From this and

the de�nition of C

D

C

we 
an 
on
lude that C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

) and sin
e

C � C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

) = D

D

D

� D we have C v D.

Indu
tion step: depth(D) > 0

By the de�nition of the translation from des
ription tree to 
on
ept des
rip-

tions we know that:

D � D

D

D

= (u

P

i

2`

D

(w

0

)

P

i

) u (u

(w

0

r

j

w

i

)2E

D

9r

j

:D

0

);where D

0

:= D

D

D

(w

i

)

:
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We have to show that (1) for all P

i

2 `

D

(w

0

) holds C v P

i

and that (2) for

all 9r:D

i

2 f9r

j

:D

0

j (r

j

2 N

R

[ N

T

R

) ^ (w

0

r

j

w

i

) 2 E

D

^ D

0

:= D

D

D

(w

i

)

g is

holds that: C v 9r:D

i

The proof for (1) is analogous to the base 
ase: Sin
e a homomorphism

' exists, we have '(w

0

) = v

0

and thus `

D

(w

0

) � `

C

('(w

0

)). From this and

the de�nition of C

D

C

we 
an 
on
lude that C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

) and thus

C � C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

).

For the proof of (2) we use that by de�nition ofD

D

we have for every 9r:D

i

on top-role level of D a node w

i

s.t. (w

0

rw

i

) 2 E

D

and D

D

D

(w

i

)

� D

i

. Sin
e a

homomorphism ' exists from D

D

to D

C

, it holds that ('(w

0

)r'(w

i

)) 2 E

C

,

if r 2 N

R

[N

T

R

for every (w

0

rw

i

) 2 E

D

. W.l.o.g. we assume that '(w

i

) = v

i

for some v

i

2 V

C

and thus have a r-path (possibly of length 1) from v

0

to v

i

in D

C

. Sin
e there exists a homomorphism ' from D

D

to D

C

and

'(w

i

) = v

i

, it follows from the de�nition of a homomorphism that there exists

a homomorphism '

0

from D

D

(w

i

) to D

C

(v

i

) for every r-su

essor for all r.

Applying the indu
tion hypothesis we obtain that C

D

C

(v

i

)

v D

D

D

(w

i

)

� D

i

and thus C v 9r:C

D

C

(v

i

)

v 9r:D

D

D

(w

i

)

� 9r:D

i

for all 9r:D

i

2 f9r

j

:D

0

j (r

j

2

N

R

[ N

T

R

) ^ (w

0

r

j

w

i

) 2 E

D

^ D

0

:= D

D

D

(w

i

)

g. From that and the proof of

(1), where we 
on
luded C v (u

P

i

2`

D

(w

0

)

P

i

) dire
tly follows: C v D, whi
h


ompletes the proof of the theorem.

EL

+

-
on
ept des
riptions 
an be translated into EL-des
ription trees in

polynomial time sin
e only one traversal of the 
on
ept des
ription is needed.

In [3℄ the authors devise a polynomial-time algorithm to de
ide the existen
e

of a homomorphism between two given EL-des
ription trees. In Figure 3, this

algorithm is extended to EL

+

by testing the existen
e of an r-path between

two nodes in 
ase r is a transitive role (see line(��)). The general idea is to

de�ne a mapping Æ : V

G

�! P(V

H

) that labels every node v 2 V

G

with a set

of nodes from V

H

by on
e traversing the des
ription tree D

H

from this leaves

to its root w

0

. If w

0

2 Æ(v

0

), then the mapping Æ indu
es a homomorphism

from D

H

to D

G

.

We 
an now test subsumption between two EL

+

-
on
ept des
riptions C

and D with the following de
ision pro
edure:

1. Translate C and D into the 
orresponding des
ription trees D

C

and

D

D

.

2. De
ide whether there exists a homomorphism from D

C

to D

D

. In 
ase

su
h a homomorphism exists return \true", otherwise return \false".
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Input: EL-Des
ription trees D

H

= (V

H

; E

H

; w

0

; `

H

),

D

G

= (V

G

; E

G

; v

0

; `

G

).

Output: \True", if a homomorphism from D

H

to D

G

exists;

\False" otherwise.

Algorithm: hom(D

H

;D

G

)

Let fv

1

; : : : ; v

n

g be V

H

sorted in post-order.

De�ne a mapping Æ : V

G

�! P(V

H

) as follows:

Initialize Æ with Æ(v) := ; for all v 2 V

G

;

For 1 � i � n

For w 2 V

G

If `

H

(v

i

) � `

G

(w) ^

8v

i

rv 2 E

H

: 9w

0

2 V

G

:

�

v 2 Æ(w

0

) ^

�

(r 2 N

R

^ wrw

0

2 E

G

) _ (r 2 N

T

R

^ wr

+

w

0

2 E

G

)

��

(**)

Then Æ(w) := Æ(w) [ fv

i

g;

If w

0

2 Æ(v

0

), then return\True", else return \False".

Figure 3: Algorithm for de
iding existen
e of an EL

+

-homomorphism between

two EL-des
ription trees.

Proposition 13 For EL

+

-
on
ept des
riptions the subsumption problem C v

D 
an be de
ided in polynomial time.

4.3 Computing least 
ommon subsumer for EL

+

The subsumption test for EL 
ould be extended to EL

+

without signi�
ant


hanges to the de�nition of a des
ription tree. It is therefore natural to try

to extend the existing algorithm for the l
s-
omputation in EL to EL

+

in a

similar way. In [4℄, the l
s of EL-
on
ept des
riptions is obtained from the

tree-produ
t of the respe
tive des
ription trees. For EL

+

, however, we �rst

need to extend the notion of a des
ription tree so as to make expli
it the e�e
t

of transitive roles. To this end, EL

+

-des
ription trees are now introdu
ed.

De�nition 14 (EL

+

-des
ription tree) Let (V;E; v

0

; `) be an EL-des
ription

tree over N

C

, N

R

, and N

T

R

. Let E

+

be a set of edges su
h that urv 2 E

+

i�

r 2 N

T

R

and there exists an r-path from u to v in E whose length is at least
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2. Then the stru
ture (V;E;E

+

; v

0

; `) is 
alled an EL

+

-des
ription tree. An

edge in E

+

is 
alled forward edge.

Hen
e, in EL

+

-des
ription trees additional forward edges re
e
t the tran-

sitivity of a roles. The translation fun
tion from EL

+

-
on
ept des
riptions

to EL-des
ription trees 
an be extended to EL

+

-des
ription trees with little

e�ort:

� If depth(C) = 0 then the set of forward edges E

+

is empty.

� In 
ase depth(C) > 0 the set E

+

is 
omputed indu
tively in the follow-

ing way:

E

+

:=fv

0

rv

0

j r 2 R

+

C

^ 9r-path from v

0

to v

0

in Eg

[

[

r2N

R

[N

T

R

[

C

0

2ex

r

(C)

E

0+

where E

0+

denotes the set of forward edges in the subtree indu
ed by

the existential restri
tion C

0

2 ex

r

(C).

Example 15 Consider the 
on
ept des
riptions C

1

and C

2

from the previous

example. The 
orresponding EL

+

-des
ription trees of C

1

and C

2

are shown

in Figure 4. Forward edges are depi
ted as dotted edges. Sin
e G

C

2

has no

t-path longer than 1, no forward edges are added.

It is easy to see that the size of an EL

+

-des
ription tree is polynomial in

the size of the original EL

+

-
on
ept des
ription. The usage of forward edges

bypassing transitive role paths 
an also be seen as a means of stru
ture

sharing in an otherwise exponentially larger ordinary des
ription tree.

The inverse translation from an des
ription tree into a 
on
ept des
ription


an also be adapted easily from the translation pro
edure for ordinary EL

+

-

des
ription trees. For a given EL

+

-des
ription tree, nothing 
hanges in 
ase

depth(D) = 0. If depth(D) > 0 then the union E [ E

+

is used instead of E

for the indu
tive 
onstru
tion of C

D

. Again, we �nd that the translations for

EL

+

-des
ription trees also preserve equivalen
e in the sense that C � C

D(C)

and D � D

C

D

. It should however be noted that the 
on
ept des
ription

C

D(C)

is not ne
essarily equal to C anymore, as the following example shows.



4.3 Computing least 
ommon subsumer for EL

+

19

v

0

: ;

v

1

: ;

r

v

2

: fCg

t s

v

5

: fBg

v

5

: fCg

v

4

: fAg

v

3

: ;

t s

t

t

G

C

1

:

t

t

w

4

: fBg

G

C

2

:

t s

t

w

3

: fCg

t

w

2

: fAg

w

0

: ;

w

1

: ;

r

Figure 4: EL

+

-Des
ription trees

Example 16 Consider the EL

+

-des
ription tree G

C

1

from Figure 4. The

original EL

+

-
on
ept des
ription was C

1

= 9r:((9t:9t:9t:A) u (9s:(B u

9s:C)). As the ba
kward translation additionally takes into a

ount forward

edges, we obtain

C

D(C

1

)

= 9r:

�

9t:((9t:9t:A) u 9t:A) u 9t:A u 9t:9t:A u (9s:(B u 9s:C))

�

whi
h is equivalent but obviously not equal to C

1

.

The l
s of two normalized EL

+

-
on
ept des
riptions 
an be obtained by


omputing the produ
t of their 
orresponding des
ription trees, with a prod-

u
t operation de�ned indu
tively as follows:

De�nition 17 (Produ
t of EL

+

-des
ription trees) Let G := (V

G

; E

G

; E

+

G

; v

0

; `

G

)

and H := (V

H

; E

H

; E

+

H

; w

0

; `

H

) be two EL

+

-des
ription trees. The produ
t

tree G � H is indu
tively de�ned as follows.

� The root node is (v

0

; w

0

).

� The set of verti
es V

G�H

is a subset of V

G

�V

H


ontaining the root node

and the sets of verti
es indu
tively generated for the su

essors of v

0
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and w

0

:

V

G�H

:= f(v

0

; w

0

)g

[

[

r2N

R

[N

T

R

[

v

0

rv2E

G

[

w

0

rw2E

H

[E

+

H

V

G(v)�H(w)

[

[

r2N

R

[N

T

R

[

v

0

rv2E

+

G

[

w

0

rw2E

H

V

G(v)�H(w)

,

where V

G(v)�H(w)

denotes the vertex set of the tree produ
t G(v)�H(w)

of the subtrees indu
ed by the nodes v and w.

� In the produ
t tree, the root (v

0

; w

0

) node is 
onne
ted to a node (v; w)

by an r-edge whenever the individual r-edges v

0

rv and w

0

rw exist in G

and H respe
tively. The only ex
eption is that not both edges may be

forward edges. The rest of E

G�H

is obtained indu
tively:

E

G�H

:= f(v

0

; w

0

)r(v; w) j v

0

rv 2 E

G

^ w

0

rw 2 E

H

[ E

+

H

g

[ f(v

0

; w

0

)r(v; w) j v

0

rv 2 E

+

G

^ w

0

rw 2 E

H

g

[

[

r2N

R

[N

T

R

[

v

0

rv2E

G

[

w

0

rw2E

H

[E

+

H

E

G(v)�H(w)

[

[

r2N

R

[N

T

R

[

v

0

rv2E

+

G

[

w

0

rw2E

H

E

G(v)�H(w)

where E

G(v)�H(w)

denotes the set of edges of the tree produ
t G(v)�H(w)

of the subtrees indu
ed by the nodes v and w.

The produ
t of two EL

+

-des
ription trees is an ordinary EL-des
ription tree,

i.e., does not 
ontain forward edges. The following example takes up the de-

s
ription trees shown previously to show the e�e
t of the produ
t operation.

Example 18 Consider the EL

+

-des
ription trees G

C

1

and G

C

2

from Exam-

ple 15. By de�nition, the root node of the produ
t tree G

C

1

� G

C

2

is (v

0

; w

0

).

Now we have to 
onsider all pairs of su

essors of v

0

and w

0

that agree on

the edge label|ex
luding those pairs where both su

essors are rea
hed via

forward edges. In 
ase of the root nodes v

0

and w

0

, only the pair (v1; w1) of

r-su

essors is found. Hen
e, the root node of the produ
t tree has (v1; w1)

as the only su

essor. The rest of the produ
t tree is 
omputed indu
tively

as the produ
t of the subtrees G

C

1

(v

1

) and G

C

2

(w

1

). The node v

1

has 3 dire
t
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t

(v

3

; w

3

) : ; (v

4

; w

2

) : fAg

t t s

(v

3

; w

2

) : ;(v

2

; w

3

) : fCg(v

2

; w

2

) : ; (v

3

; w

3

) : ;

tt

ttt

r

(v

4

; w

2

) : fAg (v

5

; w

4

) : fBg

(v

0

; w

0

) : ;

(v

1

; w

1

) : ;

(v

4

; w

3

) : ;

G

C

1

� G

C

2

:

Figure 5: EL

+

-produ
t tree

t-su

essors, namely v

2

and (w.r.t. forward edges) v

3

and v

4

. The node w

1

has 2 dire
t t-su

essors, namely w

2

and, via a forward edge, w

3

. By de�ni-

tion, the node (v

1

; w

1

) in the produ
t tree has therefore 5 dire
t t-su

essors,

namely (v

2

; w

2

), (v

2

; w

3

), (v

3

; w

2

), (v

3

; w

3

), and (v

4

; w

2

). Note that the pairs

(v

3

; w

3

) and v

4

; w

3

) are omitted be
ause the de�nition forbids that both nodes

in a pair are rea
hed via forward edges. As both v

1

and w

1

have exa
tly one

r-su

essor, the node (v

1

; w

1

) furthermore has (v

5

; w

4

) as a dire
t r-su

essor.

The label set of every node `(v

i

; w

j

) is the interse
tion of the label sets `(v

i

)

and `(v

j

). The �nal result of the produ
t tree 
omputation is presented in

Figure 5.

We still have to show that the produ
t tree of two des
ription trees,


omputed in the way des
ribed above, in fa
t produ
es the des
ription tree

of the l
s.

Theorem 19 Let C and D be two EL

+

-
on
ept des
riptions and let D

C

and

D

D

be their 
orresponding EL

+

-des
ription trees. Then C

D

C

�D

D

is the l
s of

C and D.

Proof. Let D

C

�D

D

= (V

D

C

�D

D

; E

D

C

�D

D

; (v

0

; w

0

); `

D

C

�D

D

). We have to

show that C

D

C

�D

D

meets the two 
onditions:

1. C v C

D

C

�D

D

and D v C

D

C

�D

D

, and

2. if E satis�es C v E and D v E, then C

D

C

�D

D

v E.
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We show 1.) by 
onstru
ting a homomorphism ' from C

D

C

�D

D

to D

C

. The

proje
tion �

i

with i 2 f1; 2g, yields a homomorphism from C

D

C

�D

D

to D

C

for i = 1 and to D

D

for i = 2. By Theorem 12 this implies C v C

D

C

�D

D

and

D v C

D

C

�D

D

.

To show 2.) assume that E is an arbitrary subsumer of C and D, and

let D

E

= (V

0

; E

0

; v

0

0

; `

0

) be the 
orresponding des
ription tree. Theorem 12

yields then a homomorphism '

1

from D

E

to D

C

and '

2

from D

E

to D

D

.

De�ne a mapping ' := <'

1

; '

2

> from D

E

to D

C

� D

D

as the produ
t of

'

1

and '

2

, i.e., '(v

0

) := ('

1

(v

0

); '

2

(v

0

)) for all v

0

2 V

0

. We prove that (a)

' is well-de�ned, i.e., '(v

0

) 2 V

D

C

�D

D

for all v

0

2 V

0

, and that (b) ' is a

homomorphism from D

E

to D

C

�D

D

a

ording to De�nition 10.

Claim (a) is shown by indu
tion on the length of the path Æ(v

0

) in D

E

from v

0

0

to v

0

.

� Æ(v

0

) = 0.

Then we have v

0

= v

0

0

and hen
e, '(v

0

0

) = ('

1

(v

0

0

); '

2

(v

0

0

)) = (v

0

; w

0

) 2

V

D

C

�D

D

.

� Æ(v

0

) > 0.

Sin
e D

E

is a tree, there exists a unique prede
essor v

00

2 V

0

of v

0

,

i.e., v

00

rv

0

2 E

0

for some r 2 N

R

[ N

T

R

. Assume v

00

rv

0

2 E

0

for some

r 2 N

R

[N

T

R

. Obviously, we have Æ(v

00

) = Æ(v

0

)� 1. By indu
tion, we

know ('

1

(v

00

); '

2

(v

00

)) 2 V

D

C

�D

D

. Sin
e '

1

and '

2

are homomorphisms

and sin
e C and D are in EL

+

-normal form, we have dire
t r-su

essors

'

1

(v

00

)r'

1

(v

0

) 2 E

C

and '

2

(v

00

)r'

2

(v

0

) 2 E

D

(even if r 2 N

T

R

). De�-

nition 17 yields ('

1

(v

0

); '

2

(v

0

)) as an r-su

essor of ('

1

(v

00

); '

2

(v

00

)) in

D

C

�D

D

and hen
e, ('

1

(v

0

); '

2

(v

0

)) 2 V

D

C

�D

D

.

Now the proof of (2) is rather simple.

1. We have '(v

0

0

) = ('

1

(v

0

0

); '

2

(v

0

0

)) = (v

0

; w

0

), be
ause '

1

('

2

) is a ho-

momorphism from D

E

to D

C

(D

D

).

2. Sin
e `

0

(v

0

) � `

C

('

1

(v

0

)) and `

0

(v

0

) � `

D

('

2

(v

0

)) for all v

0

2 V

0

, we have

`

0

(v

0

) � `

C

('

1

(v

0

)) \ `

D

('

2

(v

0

)) = `

D

C

�D

D

('

1

(v

0

); '

2

(v

0

)).

3. Let v

0

rw

0

2 E

0

. Then we have '

1

(v

0

)r'

1

(w

0

) 2 E

C

and '

2

(v

0

)r'

2

(w

0

) 2

E

D

. Due to (1) we have ('

1

(v

0

); '

2

(v

0

)) 2 V and then by De�nition 17,

it is ('

1

(v

0

); '

2

(v

0

))r('

1

(w

0

); '

2

(w

0

)) 2 E

D

C

�D

D

.

Now Theorem 12 implies C

D

C

�D

D

v E whi
h 
ompletes the proof.



4.3 Computing least 
ommon subsumer for EL

+

23

.

.

.

.

.

.

.

.

.

.

.

.

v

0

: ;

t

t

t

r

v

2

: fBg

tt

v

3

: ;

v

1

: fAg

w

0

: ;

w

1

: fA;Bg

t

G

D

n

r

t

t

G

D

n+1

:G

C

n+1

: G

C

n+1

� G

D

n+1

:

t

(v

2

; w

1

) : fBg

t

r

(v

0

; w

0

) : ;

� � �

(v

1
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Figure 6: EL

+

-least 
ommon subsumer

As a 
onsequen
e of the above result the following pro
edure is suÆ
ient

to 
ompute the l
s of two given EL

+

-
on
ept des
riptions C and D:

1. Translate C and D into their 
orresponding EL

+

-des
ription trees D

C

and D

D

.

2. Compute the produ
t of the des
ription trees D

C

�D

D

.

3. Translate D

C

�D

D

ba
k into the 
on
ept des
ription C

D

C

�D

D

.

The size of the l
s 
an be exponential in the size of the original EL

+

-


on
ept des
riptions. The following example brie
y presents su
h a 
ase.

Example 20 Let N

R

:= frg and N

T

R

:= ftg. For some n 2 N, let C

n

and

D

n

be two EL

+

-
on
ept des
riptions indu
tively de�ned as seen below:

C

0

:= > D

0

:= >

C

n+1

:= 9t:9t:9t:9r:C

n

D

n+1

:= 9t:9t:9r:D

n

The relevant EL

+

-des
ription trees are shown in Figure 6. For n > 0, the

des
ription tree of C

n+1

does not end at the node denoted G

C

n

, but pro
eed just

as it begins at v

0

. The same holds for G

D

n

. The third graph in Figure 6 shows
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that part of the produ
t tree G

C

n+1

�D

n+1

in whi
h the exponential blow-up 
an

be seen easily.

Sin
e v

1

and w

1

are both t-su

essors of their respe
tive root-nodes the

root of the produ
t tree has (v

1

; w

1

) as one t-su

essor. Its label set is fAg,

the interse
tion of `(v

1

) and `(w

1

). From v

1

, the node G

C

n

is rea
hed via one

t-forward edge (rea
hing v

3

) and one r-edge. Similarly, from w

1

we arrive

at node G

C

n

via one t-edge (rea
hing w

2

) and one r-edge. In the produ
t

tree the node (v

1

; w

1

) therefore has a t-su

essor (namely (v

3

; w

2

)) with an

r-su

essor for whi
h the subtree G

C

n

� G

D

n

must be 
omputed.

A similar result is obtained for v

2

and w

1

: the root node of the produ
t

tree has node (v2; w

1

) as t-su

essor (with label set fBg) and from there

we similarly arrive at a node for whi
h G

C

n

� G

D

n

must be 
omputed (see

Figure 6). Be
ause of the di�erent labels in (v

1

; w

1

) and (v

2

; w

1

) none of

these paths is redundant.

The 
omputation of G

C

n

� G

D

n

produ
es the same bran
h as seen at the

root node (v

0

; w

0

), so that �nally a des
ription tree with exponentially many

leaves (in n) emerges. Hen
e, an exponentially large 
on
ept des
ription (in

n) is returned as l
s of C

n+1

and D

n+1

.

The previous example has shown that 
ases exist where the l
s of two

EL

+

-
on
ept des
riptions is exponentially large. On the other hand it is not

diÆ
ult to see that the 
omputation of the l
s takes at most exponential

time in the size of the input 
on
ept des
riptions. In EL, the l
s of two


on
ept des
riptions is polynomial in the size of the input 
on
epts and 
an

be 
omputed in polynomial time. The extension of transitive roles therefore

in
reases the 
omputational 
omplexity both in spa
e and time.

5 Least 
ommon subsumer for FLE

+

The l
s has already been investigated for sub-logi
s of FLE

+

. The work of

Baader, K�usters, and Molitor [4, 3℄ investigates the 
omputation of the l
s

in FLE and its sublanguages. In [1℄, the l
s is de�ned for EL with role-

value maps and terminologi
al 
y
les. Sin
e transitivity is expressible by

role-value-maps, this work might be regarded as the �rst to provide results

on an extension of the l
s to transitive roles.

As long as a sublanguage of FLE does not allow for both existential and

value restri
tions it is 
omparatively easy to adapt the existing l
s algorithms
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to transitive roles as we have seen in the last se
tions of this report. For EL

+

,

it is possible to translate a 
on
ept C into an equivalent one in EL. Thus, all

the additional restri
tions imposed by transitive roles in C are made expli
it.

This simple approa
h, however, does not work for FLE

+

-
on
ept des
riptions,

as the following example illustrates.

Example 21 Consider the FLE

+

-
on
ept des
ription C

ex

:= (8r:9r:A) u

9r:A, where r is transitive. To expli
itly satisfy the (transitive) value restri
-

tion, we need to propagate 8r:9r:A to the existential restri
tion. This yields

(8r:9r:A) u 9r:(A u 9r:A u 8r:9r:A) whi
h equals (8r:9r:A) u 9r:(A u C

ex

).

Obviously, an attempt of exhaustive propagation would not terminate.

Hen
e, our �rst aim is to �nd a �nite representation of FLE

+

-
on
ept

des
riptions in whi
h the transitivity of roles is made expli
it. Su
h a repre-

sentation is introdu
ed by the following se
tion.

5.1 Des
ription Graphs

In this se
tion we will not only introdu
e des
ription graphs as a synta
ti



onstru
t but also provide a model-theoreti
 semanti
s for them|similar to

the semanti
s of 
on
ept des
riptions. This makes it easier to examine the

equivalen
e between a 
on
ept des
ription and a des
ription graphs dire
tly,

i.e., without re-translation of the des
ription graph ba
k into a 
on
ept.

De�nition 22 (des
ription graph) Let G := (V;E; v

0

; `

V

; `

E

) be a rooted,

dire
ted, and 
onne
ted graph with labeling fun
tions for verti
es and edges.

The labeling fun
tion `

V

assigns a set of 
on
ept des
riptions to every vertex

in V and `

E

assigns a label of the form Qr to every edge in E, where Q 2

f8; 9g and r 2 N

R

[ N

T

R

. An edge labeled 8r is 
alled forall-edge, an edge

labeled 9r exists-edge. If every vertex v in G has at most one outgoing forall-

edge per role r then it is 
alled a des
ription graph.

For the sake of simpli
ity, we use the notation (v Qr w) 2 E to express that

(i) (v; w) 2 E and (ii) `

E

(v; w) = fQrg. Note that des
ription graphs 
an be


y
li
. Like 
on
ept des
riptions, des
ription graphs are interpreted w.r.t. a

model-theoreti
 semanti
s to be introdu
ed next.

De�nition 23 (semanti
s of des
ription graphs) Let G := (V;E; v

0

; `

V

; `

E

)

be a des
ription graph and let I := (�; �

I

) be an interpretation. A mapping

� : V ! 2

�

I

n ; is 
alled a model mapping i� for all v; w 2 V it holds that:
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� �(v) � C

I

for all C 2 `(v);

� if (v 9r w) 2 E for r 2 N

R

and x 2 �(v) then there exists some y 2 �

I

with (x; y) 2 r

I

and y 2 �(w);

� if (v 9r w) 2 E for r 2 N

T

R

and x 2 �(v) then there exists some y 2 �

I

with (x; y) 2 (r

I

)

+

and y 2 �(w);

� if (v 8r w) 2 E for r 2 N

R

[N

T

R

and x 2 �(v) then (x; y) 2 r

I

implies

y 2 �(w).

For a given x 2 �

I

, de�ne I; x j= G i� there is a model mapping � with

x 2 �(v

0

). The semanti
s of G w.r.t. I is de�ned as G

I

:= fx 2 �

I

j I; x j=

G

C

g.

There is a similarity between the semanti
s of des
ription graphs and that

of 
on
ept des
riptions as de�ned in Se
tion 2. A (transitive) 9r-edge (v 9r w)

like an existential restri
tion implies a 
orresponding r-edge (r-path) for all

x 2 �(v) in the model. Similarly, every 8r-edge (v 8r w) imposes restri
tions

on every witness in the model rea
hable via an r-edge from some x 2 �(v).

Regarded as a des
ription graph the syntax tree of every FLE-
on
ept de-

s
ription C is equivalent to C. This, however, is not generally true of FLE

+

-


on
ept des
riptions. Moreover, there are des
ription graphs for whi
h no

equivalent FLE

+

-
on
ept des
ription exists. One example is a graph G 
on-

sisting of two verti
es v

0

and v

1


onne
ted by two existential edges (v

0

9r v

1

)

and (v

0

9s v

1

). There is no equivalent 
on
ept be
ause an FLE

+

-
on
ept de-

s
ription 
annot express the fa
t that the same su

essor is required in both

role restri
tions. Ultimately, however, we are interested in des
ription graphs

guaranteed to represent 
on
ept des
riptions. To this end, we introdu
e six


onditions to restri
t des
ription graphs further, leading to the notion of

simple des
ription graphs.

As a prerequisite, we need to spe
ify the notion of a simulation relation

for des
ription graphs.

De�nition 24 (simulation relation) For i 2 f1; 2g, let G

i

:= (V

i

; E

i

; v

0i

; `

V

i

; `

E

i

)

be des
ription graphs. Then, G

2

*

�

G

1

i� there exists a relation R � V

2

� V

1

with:

1. (v

02

; v

01

) 2 R

2. `

V

(v) \N

C

� `

V

(v

0

) \N

C

for all (v; v

0

) 2 R.
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3. If (v Qr w) 2 E

2

and (v; v

0

) 2 R then there exists a vertex w

0

2 V

1

su
h

that (v

0

Qrw

0

) 2 E

1

and (w;w

0

) 2 R.

For verti
es v

1

2 V

1

and v

2

2 V

2

, denote by G

2

(v

2

)

*

�

G

1

(v

1

) the fa
t that a

simulation relation R exists between the subgraph of G

2

rea
hable from v

2

and

the subgraph of G

1

rea
hable from v

1

. In parti
ular, this implies (v

2

; v

1

) 2 R.

With these preliminaries, simple des
ription graphs 
an be introdu
ed.

De�nition 25 (simple des
ription graph) Let G := (V;E; v

0

; `

V

; `

E

) be

a des
ription graph. G is a simple des
ription graph i� the following prop-

erties hold.

1. There exists a spanning tree s.t., G has no forall-forward edges and no


ross edges. Every exists-forward edge only 
onne
ts verti
es 
onne
ted

by a path of exists-tree edges w.r.t. one transitive role.

2. If (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

0

) is a 
y
le in E with pairwise distin
t

verti
es then there exists one transitive role r with r

i

= r for all i.

3. If (v

0

Q

0

r v

1

: : : v

n�1

Q

n�1

r v

0

) is a 
y
le in E with pairwise distin
t

verti
es and r 2 N

T

R

then v

0

has a 8r-su

essor.

4. If f(u 8r v); (u 9r w)g � E then G(v)

*

�

G(w). If r 2 N

T

R

then there

exists a vertex w

0

su
h that (w 8r w

0

) 2 E and G(v)

*

�

G(w

0

).

5. If (u 8r v) 2 E with r 2 N

T

R

then there exists a vertex v

0

su
h that

(v 8r v

0

) 2 E and G(v)

*

�

G(v

0

).

6. If B 2 `(v) then G

B

*

�

G(v), where B is a FLE

+

-
on
ept des
ription

and v 2 V .

The idea behind the above de�nition to is imitate the propagation of ex-

istential and value restri
tions in the graph stru
ture. For instan
e, Condi-

tion 4 ensures that no subgraph representing an existential restri
tion may be

more general that a 
orresponding subgraph representing a value restri
tion.

Hen
e, a value restri
tion must be propagated over all existential restri
tions.

Condition 5 similarly ensures that value restri
tions over transitive roles are

propagated to deeper role levels, as 8r:A implies 8r:(A u (8r:A)) and so on.

Conditions 2 and 3 ensure that 
y
les 
annot o

ur arbitrarily. The last


ondition guarantees that the rea
hability graph of a vertex is \a

ording"
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the label set of that vertex. The �rst 
ondition ex
ludes a number of irregu-

larities whi
h would make the proofs over des
ription graphs more intri
ate.

The following lemma 
an be shown for all des
ription graphs.

Lemma 26 Let G and H be des
ription graphs with H

*

�

G. Then G v H.

Proof. Let I be a model of G, i.e., there is an x 2 �

I

with I; x j= G. It

is to be shown that I; x j= H. To this end, we 
onstru
t a model mapping

�

0

: V

H

! �

I

su
h that x 2 �

0

(root(H)).

The simulation H

*

�

G implies the existen
e of a simulation relation

S � V

H

�V

G

whi
h respe
ts the properties stated in De�nition 24. If I; x j= G

then there exists a model mapping � with x 2 �(root(G)). De�ne

�

0

: V

H

! �

I

v 7!

[

(v;w)2S

�(w).

We have to show that �

0

is a model mapping and that x 2 �

0

(root(H)).

The se
ond 
laim is not diÆ
ult to prove. The de�nition of the simulation

relation S guarantees that (root(H); root(G)) 2 S and the model mapping �

maps root(G) onto a set 
ontaining x.

Consider an arbitrary v 2 V

H

and an x 2 �

0

(v). Then there is a vertex

w 2 V

G

su
h that (v; w) 2 S and x 2 �(w).

� For the pair (v; w) the simulation relation guarantees that `(v) � `(w).

As the model mapping � ensures that x 2 A

I

for all A 2 `(w) we


onsequently obtain x 2 A

I

also for all A 2 `(v).

� If (v 9r v

0

) 2 E

H

for a transitive role r then the simulation relation S

guarantees the existen
e of a vertex w

0

2 V

G

su
h that (v

0

; w

0

) 2 S and

(w 9r w

0

) 2 E

G

. Due to this edge � guarantees some y 2 �(w

0

) su
h

that (x; y) 2 (r

I

)

�

. As by 
onstru
tion y o

urs in �

0

(v

0

) we �nd that

�

0

has the required property. The 
ase of an existential edge w.r.t. a

non-transitive role is analogous.

� If (v 8r v

0

) 2 E

H

for a transitive role r then the simulation relation S

again guarantees an analogous edge (w 8r w

0

) 2 E

G

with (v

0

; w

0

) 2 S.

Assume that (x; y) 2 (r

I

)

�

for some y 2 �

I

. Due to the model mapping

� we know that y 2 �(w

0

). As (v

0

; w

0

) 2 S we �nd that y 2 �

0

(v

0

),


on
luding the argument.



5.2 From FLE

+

-
on
ept des
riptions to FLE

+

-des
ription graphs 29

Note that the reverse does not hold in general. For a non-transitive role

r, 
onsider the two graphs G := (fv

0

; v

1

; v

2

g; f(v

0

8r v

1

); (v

0

9r v

2

)g; `

G

) and

H := (fw

0

; w

1

; w

2

g; f(w

0

8r w

1

); (w

0

9r w

2

)g; `

H

) where `

G

(v

0

) = `

H

(w

0

) = ;

and `

G

(v

1

) = `

H

(w

1

) = `

H

(w

2

) = fAg. The only di�eren
e between G and H

lies in the label of the existential su

essor of the root vertex. Here we have

`

G

(v

2

) = ; and `

H

(w

2

) = fAg. It is easy to show that G � H but H 6

*

�

G.

Having de�ned syntax and semanti
s of des
ription graphs in general the

next step is to translate FLE

+

-
on
ept des
riptions into equivalent des
rip-

tion graphs.

5.2 From FLE

+

-
on
ept des
riptions to FLE

+

-des
ription

graphs

To show that every FLE

+

-
on
ept des
ription has a 
orresponding FLE

+

-de-

s
ription graph we devise a translation of 
on
ept des
riptions to FLE

+

-de-

s
ription graphs. As a te
hni
al prerequisite, we require a normal form for

FLE-
on
ept des
riptions, as introdu
ed in [3℄. The purpose of this normal

form is merely to 
atten 
onjun
tions, to make the top-
on
ept expli
it, and

to propagate value restri
tions over existential restri
tions. The problem of

impli
it information indu
ed by transitive roles remains untou
hed here.

De�nition 27 (FLE normalization rules) Let E; F be two FLE

+

-
on
ept

des
riptions and r 2 N

R

a primitive role. The FLE-normalization rules are

de�ned as follows

1) 8r:> �! > 3) 8r:E u 8r:F �! 8r:(E u F )

2) E u > �! E 4) 8r:E u 9r:F �! 8r:E u 9r:(E u F )

5) E u (F uG) �! E u F uG:

A 
on
ept des
ription is in FLE-normal form if the FLE-normalization rules

have bee applied to it exhaustively.

The normalization rules should be read modulo 
ommutativity of 
onjun
-

tion, e.g., 9r:Eu8r:F is also normalized to 9r:(EuF )u8r:F . Sin
e ea
h nor-

malization rule preserves equivalen
e the resulting normalized FLE

+

-
on
ept

des
ription is equivalent to the original one. It has been shown in [3℄ that

exhaustive appli
ation of the FLE-normalization rules may produ
e 
on
ept
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des
riptions of size exponential in the size of the original 
on
ept des
rip-

tion. During the translation of an FLE

+

-
on
ept des
ription into an FLE

+

-

des
ription graph we need to apply the FLE-normalization rules only to the

top level of the FLE

+

-
on
ept.

The following de�nition provides the framework of the translation of an

FLE

+

-
on
ept des
ription into a des
ription graph. For a given 
on
ept de-

s
ription C we start with an empty des
ription graph G 
onsisting only of a

root vertex v

0

with C in its label. Then we exhaustively apply graph genera-

tion rules (de�ned in detail in Figure 7) produ
ing new verti
es and edges. In

this pro
ess, tree edges (E

D

), forward edges (E

+

), and ba
k edges (E

"

) are

distinguished. As soon as no produ
tion rules are appli
able, all non-atomi



on
ept des
riptions are removed from the label sets of G and the graph is

returned.

For the a
tual de�nition, a shorthand notation needs to be introdu
ed

�rst. For a set fC

1

; : : : ; C

n

g of FLE

+

-
on
ept des
riptions, let fC

1

; : : : ; C

n

g

�

denote the 
orresponding set in whi
h (i) the FLE

+

normalization rules de-

�ned above have been applied exhaustively on the top-level of every C

i

and

(ii) every C

i

is split into its 
onjun
ts. Observe that there is at most one

value restri
tion per role r in fC

1

; : : : ; C

n

g

�

.

De�nition 28 (FLE

+

-des
ription graph) Let C be a FLE

+

-
on
ept de-

s
ription. The FLE

+

-des
ription graph G

C

is obtained by the following pro-


edure:

1. Initialize the sets V := fv

0

g; `

V

= `

V

(v

0

) = fCg

�

, and

E := E

+

:= E

D

:= E

"

:= ;.

2. Apply the FLE

+

-des
ription graph generation rules from Figure 7 ex-

haustively to obtain G

0

C

:= (V;E; v

0

; `

V

; `

E

), where E = E

D

[E

"

[E

+

.

3. Redu
e the label sets of verti
es: 8v 2 V : `

0

V

(v) := `

V

(v) \N

C

.

4. return G

C

:= (V;E; v

0

; `

0

V

; `

E

).

All non-atomi
 
on
ept des
riptions in the label sets of the verti
es of G

are dis
arded afterwards be
ause their information (as we shall see) is then

represented by the stru
ture of the graph. It remains to de�ne the generation

rules used in Step 2 of the above de�nition.

Figure 7 shows the relevant generation rules referred to in De�nition 28.

For every v, �(v) denotes the (unique) path from v

0

to v w.r.t. tree edges.
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R

9

: If (9r:C

0

) 2 `

V

(v), (8r:C

00

) 62 `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v;9r; v

00

) 2 E

D

[E

"

^ fC

0

g

�

= `

V

(v
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Figure 7: FLE

+

-Des
ription Graph Generation Rules.

Intuitively, the idea of the rules is to use the 
on
ept des
riptions o

urring

in the label set of a vertex v to extend the des
ription graph \a

ordingly"

in the following sense: if an existential restri
tion 9r:C o

urs in `

V

(v) then

a vertex w must be introdu
ed (or probably only found) su
h that (i) w is


onne
ted to v by an exists-edge and (ii) a 
on
ept equivalent to C o

urs in

`

V

(w). Moreover, a value restri
tion 8r:D probably also o

urring in `

V

(v)
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9r
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9r8r
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: f 9r:(B u 9r:B);
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Figure 8: FLE

+

-des
ription graphs

must be propagated to `(w) likewise.

Starting at a given vertex v, the rules R

9

, R

98

, and R

98

+

all produ
e

new exists-edges, possibly to a newly generated vertex. R

9

applies if only an

existential restri
tion is present in `

V

(v), R

98

applies if an additional value

restri
tion (w.r.t. the same non-transitive role) is present, and R

98

+


overs

the 
ase of an additional value restri
tion for the transitive 
ase. Similarly,

R

8

and R

8

+

address the 
ase where only a value restri
tion (non-transitive

or transitive) is present. The rule R

9

+

never introdu
es new verti
es but

only adds forward edges over exists-paths w.r.t. one transitive role.

To avoid generating in�nitely many new verti
es, every generation rule

has a blo
king 
ondition

1

testing whether or not a new vertex 
an be avoided

by a ba
k edge to an already existing one. For every vertex v, a ba
k edge

to an an
estor u of v is added instead of a new vertex w if the an
estor

vertex has the same label set the new vertex would get, i.e., `

V

(u) = `

V

(w).

The vertex u is regarded as an
estor of v i� u lies on a (the) tree-path from

the root vertex to v. Note that the 
ondition `

V

(u) = `

V

(w) determines u

uniquely and that v = w is not ex
epted.

The following example shows the 
orresponding FLE

+

-des
ription graph

of two simple FLE

+

-
on
ept des
riptions.

Example 29 Let C

ex

:= 9r:(B u 9r:B u 8r:9r:B) and D

ex

:= 9r:(9r:B u

8r:9r:B) for a transitive role r and an atomi
 
on
ept B. The 
orrespond-

ing FLE

+

-des
ription graphs are depi
ted in Figure 8. The �gure also shows

1

Blo
king strategies originally have been introdu
ed in the DL 
ontext in [9℄ for a

tableaux-based satis�ability tester for expressive DLs. In the relevant work, blo
king


ontrolled the generation of new sub-tableaux in the 
omputation of a 
ompleted tableau.
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the normalized label sets of every vertex. Note that the non-atomi
 
on
ept

des
riptions in the label sets are used only during the generation of the de-

s
ription graphs.

It remains to be shown that the resulting FLE

+

-des
ription graphs are in

fa
t equivalent to the original 
on
ept des
riptions.

Lemma 30 Let C be an FLE

+

-
on
ept des
ription. Then C � G

C

Proof. (w). Consider a model I of G

C

. Show that x 2 G

I

C

implies x 2 C

I

.

If I; x j= G

C

then there exists a model mapping � : V

C

! �

I

with x 2

�(root(G

C

)). To show that x 2 C

I

, it is suÆ
ient to show that the witnesses

of every vertex v 2 V

C

are also witnesses of every 
on
ept in label(v). For a

given v 2 V , let D 2 label(v). Proof by indu
tion on the stru
ture of D.

� D = A 2 N

C

Then the model mapping � guarantees that �(v) 2 A

I

.

� D = 9r:(D

0

1

u � � � uD

0

n

) with r 2 N

T

R

Then by 
onstru
tion of G

C

we know that there exists an 9r-su

essor

w of v su
h that D

0

i

2 label(w) for every i. By indu
tion hypothesis

we know that every y 2 �(w) is a witness of every D

0

i

. A

ording to

the de�nition of �, for every x 2 �(v) and y 2 �(w) it holds that

(x; y) 2 (r

I

)

�

. The fa
t that w is a witness of all D

0

i

thus implies that

every x 2 �(v) is a witness of D.

� D = 9r:(D

0

1

u � � � uD

0

n

) with r 2 N

R

Analogous, only that r

I

is relevant instead of (r

I

)

�

.

� D = 8r:(D

0

1

u � � � uD

0

n

) with r 2 N

T

R

Then by 
onstru
tion of G

C

we know that an 8r-su

essor w of v exists

su
h that every D

0

i

is in label(w). Again, by indu
tion hypothesis every

y 2 �(w) is a witness of every D

0

i

. If x 2 �(v) then the edge (v 8r w)

by de�nition if � implies that every y 2 �

I

with (x; y) 2 (r

I

)

�

o

urs

in �(w). Hen
e, every (transitive) r-su

essor of x in I is a witness of

every D

0

i

. Consequently, x is a witness of D.

� D = 8r:(D

0

1

u � � � uD

0

n

) with r 2 N

T

R

Analogous.
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(v). Consider a model I of C. Show that x 2 G

I

C

implies x 2 C

I

. If

I; x j= G

C

then Lemma 39 states that a witness relation � exists between G

C

and I. It is easy to see that the mapping

� : V

C

! �

I

v 7! �(v)

is a valid model mapping between G

C

and I with x 2 �(root(G

C

)).

Lemma 31 Let C be an FLE

+

-
on
ept des
ription. Then G

C

is a simple

des
ription graph.

Proof. We have to show that G

C

respe
ts Conditions 1 to 5 from De�ni-

tion 25.

1. The pro
edure from De�nition 28 introdu
es 8-edges (v 8r w) only if a

value restri
tion 8r:D is present in label(v). If label(v) equals a label

set on the path from root(G

C

) to v then (v 8r w) be
omes a ba
k edge.

Otherwise, w is introdu
ed as a new node. Hen
e, G

C


ontains no

8-forward edges.

The argument for 
ross edges is analogous. Edges newly introdu
ed

by he pro
edure from De�nition 28 either point to a newly introdu
ed

vertex or to a prede
essor of the starting vertex.

As the last step in the pro
edure, 9-forward edges are introdu
ed over

every existential path (of length greater that 1) w.r.t. one �xed transi-

tive role. Before that step no existential forward edges are introdu
ed

as 
an be seen analogously to the 
ase of 8-forward edges above.

Assume that v 6= w are 
onne
ted both via an 9r-edge and a 8s-edge.

As argued above, both edges are neither forward edges, be
ause (v 8sw)

is no forward edge, nor tree edges, be
ause then their destination ver-

ti
es would be di�erent. As a result of Condition 2 we also know that

s = r and that r is transitive.

2. Consider a 
y
le (v

0

Qr

0

v

1

: : : v

n�1

Qr

n�1

v

0

) with pairwise distin
t ver-

ti
es v

i

. For all i < n � 1, the edge (v

i

Qr

i

v

i+1

) are tree edges,

(v

n�1

Qr

n�1

v

0

) is a ba
k edge. The existen
e of the ba
k edge im-

plies that during the exe
ution of the pro
edure from De�nition 28,

the label set of the Qr

n�1

-su

essor of v

n�1

was found to be equal to
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label(v

0

). Assume that there exists an index i su
h that r

i

6= r

i+1

. Then

the maximum role depth of 
on
epts in label(v

i+2

) is smaller than the

maximum in every label(v

j

) with j � i be
ause no propagation o
-


urs over inhomogeneous role paths. Sin
e the maximum role depth

of 
on
epts in the label set of verti
es 
annot in
rease over tree edges

it follows that the maximum role depth of 
on
epts in the Q

n�1

r

n�1

-

su

essor of v

n�1


annot equal that of label(v

0

). Hen
e, the two label

sets 
annot be equal. Consequently, all role names r

i

= r for all i and

for some role name r. It is obvious that r must be transitive be
ause

otherwise the maximum role depth of 
on
epts in the respe
tive label

sets would de
rease by 1 in every transition of an edge.

3. Consider a 
y
le (v

0

Qr v

1

: : : v

n�1

Qr v

0

) with pairwise distin
t verti
es

v

i

. The above Condition allows us to restri
t our attention to 
y
les

over only one transitive role r. In the pro
edure from De�nition 28, a

value-restri
tion in any label(v

i

) would be propagated to all other sets

label(v

j

) due to the transitivity of r. Hen
e, assume for every i that no

8r-su

essor of v

i

exists. In this 
ase, no propagation o

urs, implying

that the maximum role depth of 
on
epts in label(v

i

) de
reases with

greater i. Again, this 
ontradi
ts the ba
k edge (v

n�1

Qr v

0

).

4. 8-9-Prop

Consider verti
es u; v; w with f(u 8r v); (u 9r w)g � E

C

where r is a

transitive role. In the pro
edure from De�nition 28, the label set of u


ontains a value restri
tion 8r:D and an existential restri
tion 9r:E

su
h that label(v) = fD; 8r:Dg and u label(w) w ufE;D; 8r:Dg.

Hen
e, there is a subsumption relation of the 
on
epts u label(w) v

u label(v). By Lemma 44 this implies G

u label(v)

*

�

G

u label(w)

. It is

easy to see that there are simulation relations between G

u label(v)

and

the subgraph of G

C

rea
hable from v be
ause both are determined by

label(v). The same holds for G

u label(w)

and the subgraph of G

C

rea
h-

able from w. Consequently, we 
an devise a simulation relation between

the two rea
hability subgraphs as a 
ombination of three simulation re-

lations. As G

u label(v)

*

�

G

u label(w)

implies that there exist simulation

relations whi
h 
ontain the pair of the roots of G

u label(v)

and G

u label(w)

it is 
lear that the 
ombined simulation relation 
ontains the pair (v; w).

We have seen that label(w) 
ontains the 
on
ept 8r:D. By the pro
e-

dure from De�nition 28, this implies the existen
e of a 8r-su

essor w

0

of
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w with u label(w

0

) w ufD; 8r:Dg. Hen
e, we again have u label(w

0

) v

u label(v). The rest of the argument is analogous.

In 
ase of a non-transitive role r we 
an use the same approa
h as above

only that the value restri
tion 8r:D is not propagated to existential or

universal su

essors of v and w. Moreover, there is nothing to show for

a universal su

essor w

0

of w.

5. 8-Prop

Consider verti
es u; v with (u 8r v) 2 E

C

where r is a transitive role.

By de�nition of the FLE

+

-des
ription graph generation pro
edure from

De�nition 28, the label set of u 
ontains a value restri
tion 8r:D su
h

that u label(v) � D u 8r:D. By de�nition of the FLE

+

-des
ription

graph generation pro
edure, there exists a 8r-su

essor v

0

of v su
h

that u label(v

0

) � Du8r:D. Analogous to the previous 
ase Lemma 44

yields G

u label(v)

*

�

G

u label(v

0

)

. Based on a simulation relation between

G

u label(v)

and G

u label(v

0

)

we 
an again 
onstru
t the relevant simulation

relations on the rea
hability subgraphs of v and v

0

.

As a result, we know how to en
ode the information represented by FLE

+

-


on
ept des
riptions in FLE

+

-des
ription graphs. Our next step is to �nd a

way to translate des
ription graphs ba
k to 
on
ept des
riptions.

5.3 Translation of simple des
ription graphs into FLE

+

-


on
ept des
riptions

It has already been mentioned in Se
tion 5.1 that des
ription graphs exist

without an equivalent FLE

+

-
on
ept des
ription. We shall see that it suf-

�
es to restri
t our ba
kward translation pro
edure to the 
lass of simple

des
ription graphs introdu
ed in the previous se
tion.

For the ba
kward translation from des
ription graphs to 
on
ept des
rip-

tions we may not rely on 
omplex 
on
ept des
riptions in the label sets of the

graphs in question. On the 
ontrary, the idea is to re-build 
omplex 
on
ept

des
riptions in the label sets while preserving equivalen
e to the original

des
ription graph. This pro
ess is 
ontinued until the desired 
on
ept de-

s
ription o

urs in the root label. Note that this strategy is just the reverse
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of the generation pro
edure of FLE

+

-des
ription graphs, where the label of

the root vertex generated the entire des
ription graph.

To formalize the notion of re-building 
omplex labels we devise an oper-

ation whi
h modi�es a given des
ription graph by altering its label fun
tion.

Intuitively, the fun
tion a

 \a

umulates" 
omplex 
on
ept des
riptions in

the label sets of the verti
es.

De�nition 32 Let G := (V;E; v

0

; `

V

; `

E

) be a des
ription graph and jEj :=

n. Then, a

(G) := (V;E; v

0

; `

0

V

; `

E

) where `

0

V

is de�ned as follows. For every

v 2 V ,

`

0

V

(v) := (`

V

(v) \N

C

)

[

[

r2N

R

[N

T

R

[

(v 9r w)2E

9r:u `

V

(w)

[

[

r2N

R

[N

T

R

[

(v 8r w)2E

�

8r:u(`

V

(w) n f8r:>g) u u

(w 9r w

0

)2E

9r:u `

V

(w

0

)

�

.

De�ne 
on
(G) := u `

V

(v

0

0

), where v

0

0

denotes the root vertex of a



n

(G).

For every vertex v, the modi�ed label fun
tion `

0

V


ontains the same

atomi
 labels as before but additionally has an existential restri
tion based

on the label of every 9r-su

essor of v. Forall-edges are treated similarly

only that a restri
tion 8r:> is ignored. Observe that a

(G) is still a simple

des
ription graph.

To illustrate the e�e
t of the fun
tion a

, 
onsider the a simple de-

s
ription graph G with only one vertex v

0

with a label `

V

(v

0

) = fAg and

edges E := f(v

0

; 9r; v

0

); (v

0

8r v

0

)g. In a

(G) the root vertex has the la-

bel fA; 9r:A; 8r:Ag. Applying a

 again we obtain the root label of a



2

(G)

whi
h equals fA; 9r:(A u 9r:A u 8r:A); 8r:(A u 9r:A u 8r:A)g.

The idea now is to show that applying the fun
tion a

 at most jEj times

produ
es a root label su
h that the 
onjun
tion of all 
ontained 
on
epts is

equivalent to G.

Lemma 33 For every simple des
ription graph G it holds that G � a

(G).

Proof. Let G := (V;E; v

0

; `

V

; `

E

). Show (w). Assume that I is a model of G

and x

0

2 G

I

. Then, by de�nition, there exists a model mapping � : V ! �

I

with x

0

2 �(v

0

). For every v 2 V the modi�
ation of `

V

(v) by a

 
an be
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represented in two steps. Firstly, all non-atomi
 
on
epts are removed from

`

V

(v) and se
ondly, new 
on
epts are in
luded for every exists-edge (v 9r w)

and for every forall edge (v 8r w) with a non-empty label `

V

(w). The �rst

step obviously does not a�e
t the fa
t that � is a model mapping onto I

be
ause, the new label imposes less restri
tions on possible models.

For the se
ond step, assume that an existential restri
tion 9r:(E

1

u � � � u

E

n

) for a transitive role r has been added to the label of v. Then, by de�nition

of a

, there exists a vertex w 2 V with (v 9r w) 2 E and E

i

2 `

V

(w) for

all i. We know that y 2 E

I

i

for all y 2 �(w) and we know that �(w) is not

empty. Moreover, as � is a model mapping, (x; y) 2 (r

I

)

�

. Consequently, x

is a witness of 9r:(E

1

u � � � u E

n

). The non-transitive 
ase is analogous.

Assume that a value restri
tion 8r:(E

1

u� � �uE

n

) for a transitive role r has

been added to the label of v. Then, similarly, there is an edge (v 9r w) 2 E

with E

i

2 `

V

(w) for all i. As be
ause I is a model of G, we know for every

y with (x; y) 2 (r

I

)

�

that y 2 E

I

i

for every i . Hen
e, x is a witness of

8r:(E

1

u � � � u E

n

). The non-transitive 
ase is analogous.

As a result we obtain that � is also a model mapping on a

(G). Hen
e,

x

0

2 a

(G)

I

.

Show (v). Assume that I is a model of a

(G) and x

0

2 G

I

. Then, by

de�nition, there exists a model mapping � : V ! �

I

with x

0

2 �(v

0

). Note

that a

(G) has the same set of verti
es and edges as G. Consider a vertex

v 2 V . Denote by C

1

; : : : ; C

n

the set of non-atomi
 
on
epts present `

V

(v)

before the appli
ation of a

. The modi�
ation from a

(G) ba
k to G 
an

be seen as (1) dis
arding all non-atomi
 labels in `

V

(v) and (2) restoring the

original 
on
epts C

i

. The �rst step, as in the previous 
ase, preserves the

fa
t that � is a model mapping onto I. In the se
ond step, 
on
epts C

i

are

added to the label of v for whi
h we know (Condition 6) that G

C

i

*

�

G(v).

Hen
e, every x 2 �(v) is also a witness of every C

i

, implying that � is still a

model mapping onto I.

As a result we now know that any number of appli
tions of a

 to a simple

des
ription graph G preserves equivalen
e. Our next step is to show that it

suÆ
es to apply a

 as often as there are edges in G to extra
t a 
on
ept

des
ription equivalent to G from its root label. In the following lemma we

need the notion of limited rea
hability graphs whi
h will be introdu
ed in

preparation.

De�nition 34 Let G := (V;E; v

0

; `

V

; `

E

) be a des
ription graph. For a nat-

ural number i 2 N and a vertex v 2 V , denote by rea
h

i

(v) the subgraph of
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G indu
ed by all paths of length at most i starting from v.

Obviously, rea
h

0

(v) = (fvg; ;; v; `

V

; `

E

) and rea
h

1

(G; v) = (fvg; E \

(fvg�V ); v; `

V

; `

E

). With these preliminaries, we 
an show that the 
on
ept


omputed by 
on
(G) is subsumed by G.

Lemma 35 For all v 2 V and for all i 2 N it holds that x 2 (`

0

i

(v))

I

implies

x 2 rea
h

i

(v)

I

.

Proof. Proof by indu
tion on i. In 
ase i = 0 we are only 
on
erned with

graphs 
onsisting of only one vertex without edges. For these the assertion

trivially holds. Assume i > 0 and x 2 (`

0

i

(v))

I

. By de�nition,

`

0

i

(v) = u(`

V

(v) \N

C

)

uu

r

u

(v 9r w)

9r:`

0

i�1

(w)

uu

r

u

(v 8r w)

8r:

�

`

0

i�1

(w) u u

(w 9r w

0

)

9r:`

0

i�1

(w

0

)

�

Let rea
h

i

(v) =: (V

i;v

; E

i;v

; v; `

V

; `

E

). We have to show that there exists a

model mapping � : V

i;v

! �

I

n ; with x 2 �(v).

As I is a model of `

0

i

(v) it follows that I 
ontains submodels for every

existential and value restri
tion in `

0

i

(v). In I these submodels are rea
hable

from x via edges (or paths) of the respe
tive roles. By de�nition of `

0

i

(v), every

existential restri
tion for a role r is of the form 9r:`

0

i�1

(w), where (v 9r w) 2

E

i;v

. Similarly, every value restri
tion is more spe
i�
 than 8r:`

0

i�1

(w) with

(v 8r w) 2 E

i;v

.

Consequently, by indu
tion hypothesis there exists a model mapping

�

(v Qrw)

: V

i�1;w

! �

I

n ; from rea
h

i�1

(w) onto I su
h that every y 2

(`

0

i�1

(w))

I

is in �(w). It is easy to see that rea
h

i

(v) 
an be represented as

a merging of rea
h

1

(v) and all rea
h

i�1

(w) with (v Qr w) 2 E

i;v

. Note that

these subgraphs are not ne
essarily disjoint. Our aim now is to 
onstru
t

� : V

i;v

! �

I

n ; from the individual model mappings �

(v Qr w)

:

�(u) :=

(

T

f�

(v Qrw)

(u) j u 2 V

i�1;w

g

I

for u 6= v

`

0

i

(v)

I

\

T

f�

(v Qrw)

(v) j v 2 V

i�1;w

g

I

otherwise

A ne
essary 
ondition for � to be a model mapping is that ; does not o

ur as

an image of a vertex u, i.e., the interse
tion over all �

(v Qrw)

(u) is never empty.
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For a vertex u 2 V

i�1;w

1

\V

i�1;w

2

, assume that the interse
tion �

(v Q

1

r

1

w

1

)

(u)\

�

(v Q

2

r

2

w

2

)

(u) is empty. This implies that no witness y exists in I whi
h meets

the restri
tions imposed by the edges starting from u in both rea
h

i�1

(w

1

)

and rea
h

i�1

(w

2

). However, already in the �rst step `

0

1

(u) 
ontains a value or

existential restri
tion for every edge starting from u (ex
epting trivial value

restri
tions) implying that eventually `

0

i

(v) 
ontains a 
on
ept des
ription

whi
h enfor
es a witness in I meeting all the restri
tions originating from

the vertex u in both subgraphs rea
h

i�1

(w

1

) and rea
h

i�1

(w

2

).

By 
onstru
tion, x 2 �(v). Hen
e, we still have to show that � is in fa
t a

model mapping from V

i;v

onto �

I

. The fa
t that �(u) � C

I

for all C 2 `

V

(u)

either holds be
ause of an existing model mapping �

(v Qrw)

with u 2 V

i�1;w

in 
ase u 6= v or be
ause of the fa
t that every y 2 �(v) is a witness of `

0

i

(v).

By 
onstru
tion of � we need to show the remaining edge-
onditions only

for edges of the form (v Qr w) not part of one of the subgraphs for whi
h

sub-model mappings have already been obtained by indu
tion hypothesis.

Nevertheless, we need to dis
riminate the 
ase of 
y
li
 edges of the form

(v Qr v).

For w 6= v, 
onsider an exists-edge (v 9r w) 2 E

i;v

w.r.t. a transitive

role r and z 2 �(v). By de�nition, the 
on
ept `

0

i

(v) 
ontains an existential

restri
tion 9r:`

0

i�1

(w). Sin
e z 2 �(v) we know that a witness z

0

2 �

I

exists su
h that (z; z

0

) 2 (r

I

)

�

and z

0

2 `

0

i�1

(w)

I

. By indu
tion hypothesis,

`

0

i�1

(w) is more spe
i�
 than rea
h

i�1

(w) implying that z

0

is also a witness of

rea
h

i�1

(w). Consequently, z

0

appears in �

(v 9r w)

(w) whi
h by 
onstru
tion

implies z

0

2 �(w). The 
ase of a non-transitive role r is analogous.

In 
ase of a 
y
li
 exists-edge (v 9r v) 2 E

i;v

, the indu
tion in prin
iple

works just as in the non-transitive 
ase, yielding z

0

2 �

(v 8r v)

(v). However,

we 
annot analogously dedu
e that z

0

therefore also appears in �(v), be
ause

now we have to make sure that the loop (v 9r v) is also re
e
ted by every

witness in the model I. Condition 2 of simple des
ription graphs guaran-

tees that r is a transitive role. Moreover, Condition 3 implies a forall-edge

(v 8r w) 2 E

i;v

starting at v. We know by Condition 4 that a simulation

relation exists from G(w) into G(v). Altogether, the 
onditions of simple

des
ription graphs imply an exists-edge from w ba
k to v, so that the value

restri
tion imposed by the edge (v 8r w) 2 E

i;v

`
ontains' the existential re-

stri
tion imposed by (v 9r v) 2 E

i;v

. Moreover, on our 
ase Condition 1

implies that there is exa
tly one forall-edge starting at v. Due to the edge

(v 8r w) the 
on
ept `

0

i

(v) 
ontains a value restri
tion in whi
h, as a result of
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the additional 
onjun
tion

u

(w 9r w

0

)

9r:`

0

i�1

(w

0

),

an existential restri
tion for r o

urs whi
h 
an only be satis�ed by a model

with the following property: from every witness of v it is possible to traverse

an arbitrary number (> 1) of r-edges arriving at a witness of v. Hen
e, the


on
ept `

0

i

(v) re
e
ts the loop (v 9r v) 2 E

i;v

in rea
h

i

(v).

For w 6= v, 
onsider a forall-edge (v 8r w) 2 E

i;v

w.r.t. a transitive role

r and assume that z 2 �(v) and (z; z

0

) 2 r

I

. Again, the 
on
ept `

0

i

(v)


ontains a value restri
tion more spe
i�
 than 8r:`

0

i

(v). The fa
t that z 2 �(v)

and (z; z

0

) 2 r

I

implies that z

0

is a witness of `

0

i

(v). Hen
e, by indu
tion

hypothesis, z

0

is also a witness of rea
h

i�1

(w) whi
h means that z

0

o

urs in

�

(v 8r w)

(w). By 
onstru
tion of � this implies z

0

2 �(w). The non-transitive


ase is analogous.

The 
ase of a 
y
li
 forall-edge (v 8r v) 2 E

i;v

is a little simpler than

that of an exists-edge be
ause (i) Condition 2 again guarantees us that r is

transitive and (ii) the value restri
tion 8r:`

0

i�1

(v) automati
ally, i.e., by the

semanti
s of 
on
ept des
riptions, restri
ts all admissible models to those

where every r-path from v leads to a witness of `

0

i

(v). Note that this property


orresponds to Condition 5 for simple des
ription graphs.

Lemma 36 For every simple des
ription graph G := (V;E; v

0

; `

V

; `

E

) it holds

that a



jEj

(G) � 
on
(G).

Proof. Show (v). By de�nition of 
on
 it is suÆ
ient to show for an

arbitrary G that G v C for every C 2 `

V

(v

0

). By de�nition of des
ription

graphs, every model I of G has the property that x 2 C

I

for every x 2 �(x

0

),

where � is the relevant model mapping for I. Hen
e, every witness of G by

de�nition is also a witness of C.

Show (w). This is an immediate 
onsequen
e of Lemma 35 be
ause

rea
h

jEj

(v

0

) = G and 
on
(G) = `

0

jEj

(v

0

).

Hen
e, we obtain the following theorem.

Theorem 37 For every simple des
ription graph G = (V;E; v

0

; `

V

; `

E

) it

holds that 
on
(G) � G.
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The idea of the proof is to show the equivalen
e 
on
(G) � G in three

steps. Firstly, we show for every G that a single appli
ation of a

 preserves

equivalen
e, i.e., G � a

(G). This immediately implies G � a



jEj

(G). Se
-

ondly, due to the semanti
s of des
ription graphs it is also easy to see that

every 
on
ept des
ription in the root label of a



jEj

(G) subsumes a



jEj

(G).

Hen
e, a



jEj

(G) v 
on
(G). Thirdly, we 
an show that every model of


on
(G) is also a model of a



jEj

(G).

Now the ne
essary means are provided to translate FLE

+

-
on
ept des
rip-

tions (ba
k and forth) into a representation where the transitivity of roles is

made expli
it. To de�ne the l
s operation w.r.t. des
ription graphs we �rst

need a 
omplete 
hara
terization of subsumption in this representation.

5.4 Chara
terization of subsumption in FLE

+

In this se
tion the des
ription graphs introdu
ed previously are employed

to 
hara
terize subsumption. As a preliminary, an auxiliary de�nition is

required to simplify the notation for relations.

De�nition 38 R binary relation over S; T and s 2 S. Then R(s) := ft 2

T j (s; t) 2 Rg

The following lemma will show that the subsumption C v D implies the

existen
e of a simulation relation from G

D

into G

C

.

Lemma 39 Let C be an FLE

+

-
on
ept des
ription and G

C

its 
orresponding


on
ept graph. Let I be a model of C. Then there exists a relation � � V

C

��

I

su
h that for all verti
es v; w 2 V

C

:

1. �(root(G

C

)) = C

I

6= ;;

2. v

�

2 (u label(v))

I

for every v

�

2 �(v);

3. if (v 9r w) 2 E

C

and v

�

2 �(v) then there exists one w

�

2 �(w) with

(v

�

; w

�

) 2 r

I

if r 2 N

R

and (v

�

; w

�

) 2 (r

I

)

�

if r 2 N

T

R

;

4. if (v 8r w) 2 E

C

for r 2 N

R

and v

�

2 �(v) and there exists one x 2

r

I

(v

�

) then x 2 �(w).

If (v 8r w) 2 E

C

for r 2 N

T

R

and v

�

2 �(v) and there exists one

x 2 (r

I

)

�

(v

�

) then x 2 �(w).
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Proof. Sin
e G(C) is the 
on
ept graph ofC the 
onjun
tionu label(root(G(C)))

of the 
on
epts in the label of the root node is equivalent to C. As I is a

model of C we also know that there exists a witness x 2 �

I

su
h that x 2 C

I

.

Consequently, by in
luding the pair (root(G(C)); x) in � for every su
h wit-

ness x we have satis�ed Condition 1 and Condition 2 for v = root(G(C)).

v

�

�! v

�

9r

?

y

r

?

y

v

0

�

�! v

0

�

G

C

I

Consider an existential r-edge from root(G(C)) to a vertex w whi
h has

not been traversed yet. If w is a su

essor w.r.t. a transitive role r 2 N

T

R

then

there exists an existential restri
tion C

0

2 ex

r

(C) su
h that the 
onjun
tion

u label(w) is equivalent to C

0

u val

r

(C) u 8r:val

r

(C). The fa
t that x is a

witness of C implies the existen
e of another witness y 2 C

0I

with (x; y) 2

(r

I

)

�

. Moreover, y must also be witness of val

r

(C) and 8r:val

r

(C) be
ause

otherwise x would be no witness of C. Hen
e, y is a witness of C

0

u val

r

(C)u

8r:val

r

(C). We may now extend the relation � by the pair (w; y) for every

su
h witness y and thereby meet Condition 2 for w and Condition 3 for

root(G

C

) and w. The 
ase of a non-transitive role r is analogous|only that

the 
onjun
t 8r:val

r

(C) is missing and that the pair (x; y) 2 r

I

instead of the

transitive 
losure of r

I

.

Consider a universal r-edge from root(G(C)) to w w.r.t. a transitive role

r whi
h has not yet been traversed. If no witness x of root(G(C)) has a

su

essor w.r.t. r in then we do not have to assign witnesses to w as permitted

by Condition 4. If on the other hand the set of r-su

essors (w.r.t. the

transitive 
losure of r

I

) of x is fy

1

; : : : ; y

n

g then we have already seen in the

existential 
ase that every y

i

is a witness of val

r

(C) u 8r:val

r

(C). Otherwise

x would be no witness of u label(G

C

). As val

r

(C) u 8r:val

r

(C) is equivalent

to u label(w) we may extend � by the pair (w; y

i

) for every i. This satis�es

Condition 2 for w and Condition 4 for root(G

C

) and w.

Following the above pro
edure for existential and universal edges re
ur-

sively until all edges in G

C

have been traversed we arrive at a relation � whi
h

satis�es the proposition.

Note: 
all su
h a relation � witness-relation.
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v

*

�

w

�

�! w

�

8r

?

y

8r

?

y

r

?

y

v

0

*

�

w

0

�

�! w

0

�

G

D

G

C

I

Lemma 40 Let C;D be FLE

+

-
on
ept des
riptions su
h that G(D)

*

�

G(C).

Let I be a model of C and let � be a relation over V

C

� �

I

respe
ting the


onditions states in Lemma 39. Then, for all verti
es v 2 V

D

and for all

w 2 V

C

and for all 
on
epts E 2 label(v) it holds that v

*

�

w implies

w

�

2 E

I

for every w

�

2 �(w).

Proof. Proof by indu
tion on the stru
ture of E.

� E 2 N

C

If v

*

�

w then we know that label(v) is a subset of label(w) w.r.t.

primitive labels, implying that E also o

urs in label(w). Hen
e E

subsumes u label(w). By de�nition, every w

�

2 �(w) � �

I

is a witness

of u label(w) and therefore also a witness of E.

� E = 9r:(E

0

1

u � � � u E

0

n

)

If r is transitive then, by de�nition of G(D), there exists an existential

r-su

essor v

0

of v su
h that for every 1 � i � n the 
on
ept E

0

i

o

urs

in u label(v

0

). Due to the simulation relation we know that there exists

a vertex w

0

2 V

C

with v

0

*

�

w

0

. By indu
tion hypothesis, it holds for

w

0

that w

0

�

2 E

0

i

I

for every w

0

�

2 �(w

0

) and for every i. Moreover,

the existential r-edge (v 9r v

0

) 2 E

D

implies that there exists a vertex

w 2 V

C

su
h that v

*

�

w and (wrw

0

) 2 E

C

. By de�nition of the relation

� it holds that (w

�

; w

0

�

) 2 r

I

for every w

�

2 �(w) and w

0

�

2 �(w

0

).

Consequently, every w

�

is a witness of E.

� E = 8r:(E

0

1

u � � � u E

0

n

)

If r is transitive then there exists a universal r-su

essor v

0

of v su
h that

every 
on
ept E

0

i

o

urs in label(v

0

). Again, there exist verti
es w;w

0

2

E

C

su
h that w

0

is a universal r-su

essor of w and the simulations

v

*

�

w and v

0

*

�

w

0

hold. Consider the 
ase where �(w) 6= ;. If �(w

0

)

is empty then, by Condition 4, no w

�

2 �(w) has an r-su

essor in I.

Consequently, every w

�

is a trivial witness of E. If �(w

0

) is not empty
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then we know by Condition 4 that every r-su

essor x of every w

�

is in

�(w

0

). Moreover, we know by indu
tion hypothesis that every su
h x

is a witness of E

i

for every i. Hen
e, every w

�

is a witness of E.

The argument for non-transitive roles r is analogous in both 
ases.

Our next step is to introdu
e a 
lass of models for 
on
ept des
riptions.

The idea is to obtain a simple model for a des
ription graph by renaming the

labels of its edges.

De�nition 41 Let C be an FLE

+

-
on
ept des
ription and G

C

its 
orrespond-

ing 
on
ept graph. The indu
ed model I(C) of C is de�ned as follows:

� �

I(C)

:= V

C

;

� A

I(C)

:= fv 2 V

C

j A 2 label(v)g for all A 2 N

C

;

� For all r 2 N

R

[N

T

R

, (v; w) 2 r

I

i� (v Qr w) 2 E

C

for Q 2 f9; 8g;

To avoid 
onfusion between the sets �

I(C)

and V

C

, every vertex v 2 V

C

is

denoted by v

�

when referring to the 
orresponding vertex in �

I(C)

.

By weak 
ongruen
e we denote the fa
t that a des
ription graph and its

indu
ed model are 
ongruent ex
ept for the quantor signs at the labels. We

still have to show that indu
ed models are in fa
t models of their respe
tive


on
ept des
ription. The following lemma proves this.

Lemma 42 Let C be an FLE

+

-
on
ept des
ription and I(C) its 
orrespond-

ing indu
ed model. Then,

1. I(C) is a model of C;

2. The identity Id := f(v; v) j v 2 V g is a witness-relation on V

C

��

I(C)

.

Proof. Proof by indu
tion on the number s of steps needed to generate G

C

.

� s = 1

Then G

C


onsists of only one vertex v with no edges. A

ording to the

above de�nition, v

�

is a witness of all atomi
 
on
epts o

urring in C.

As G

C

has no edges, we know that C 
onsists of atomi
 
on
epts only.

Obviously, Id is an appropriate witness-relation.
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� s > 1

Consider the 
ase where the algorithm for G

C

adds an existential r-edge

(r transitive) in the �rst step, i.e., (v 9r w) is the �rst edge added to

E

C

. Hen
e, there is an existential restri
tion C

0

in C whi
h 
aused the

algorithm to add the relevant edge. In this 
ase, two separate tasks

remain for the generation of G

C

: �rstly, the subgraph for C

0

uval

r

(C)u

8r:val

r

(C) has to be generated starting at w; se
ondly, the graph for

the rest of C, i.e. C n9r:C

0

has to be generated starting at v. It is easy

to see that the number of steps needed to a

omplish these two tasks

is less than s.

By indu
tion hypothesis, I(C

0

u val

r

(C) u 8r:val

r

(C)) is a model of

C

0

u val

r

(C)u8r:val

r

(C) and I(C nC

0

) a model of C nC

0

. Moreover, id

is a witness-relation between G

C

0

uval

r

(C)u8r:val

r

(C)

and I(C

0

u val

r

(C) u

8r:val

r

(C)) and also between G

CnC

0

and I(C n C

0

).

In the des
ription graph G

C

, an 9r-edge leads from root(G

C

) to the sub-

graph for C

0

uval

r

(C)u8r:val

r

(C)). Consequently, by de�nition of I(C)

(
ongruen
e of G

C

and I(C)), the submodel I(C

0

uval

r

(C)u8r:val

r

(C)))

is also 
onne
ted to the root of I(C) by an r-edge. Similarly, I(C) 
on-

tains a submodel of C n C

0

starting at the root node. Hen
e, I(C)

is a model of C. Moreover, as the 
onjun
tion of all 
on
epts in

label(root(G

C

)) is equivalent to C, the relation id is a witness-relation

between G

C

and I(C). The 
ase of a non-transitive role r is analogous.

If the algorithm for G

C

adds a universal r-edge (v 8r w) in the �rst step

(r transitive) then this is 
aused by the (only) value restri
tion on the

toplevel of C, i.e., val

r

(C). In this 
ase the generation of the entire

des
ription graph G

C

�rstly requires the generation of the des
ription

graph of valr(C) at vertex w and se
ondly that of

E := (C n val

r

(C))[C

0

=C

0

u val

r

(C) u 8r:val

r

(C) j C

0

2 ex

r

(C)℄.

We know by indu
tion hypothesis that I(val

r

(C)) is a model of val

r

(C)

and I(E) one of E. Moreover, in both 
ases Id serves as witness rela-

tion.

In the des
ription graph G

C

, a universal r-edge leads from the root

vertex to the subgraph G

val

r

(C)

. This edge is re
e
ted in the model

I(C) by an r-edge from the root vertex to the submodel I(val

r

(C)).

Moreover, the submodel I(E) shares the root vertex with I(C). Hen
e,
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I(C) is a model of Eu8rval

r

(C). In 
ase of a transitive role r, the value

restri
tion val

r

(C) as well as the 
omplete sub
on
ept 8r:val

r

(C) holds

for every existential restri
tion C

0

2 ex

r

(C). Therefore the 
onjun
tion

E u 8rval

r

(C) is equivalent to C, whi
h makes I(C) a model of C.

By indu
tion hypothesis we know that Id is a witness-relation between

the relevant subdes
riptions and submodels. As the 
onjun
tion of all


on
epts in label(root(G

C

)) is equivalent to C we also obtain that the

identi
al relation Id is is a witness-relation between G

C

The result on indu
ed models will be of use in the following lemma. We

will now show that a subsumption C v D of 
on
ept des
riptions implies a


ertain stru
tural similarity of the respe
tive 
on
ept des
riptions.

Lemma 43 Let C;D be FLE

+

-
on
ept des
riptions with C v D. Let Æ be a

witness-relation between G

D

and I(C). Let P

D

:= (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

n

)

be a path from root(G

D

) to v

n

in G

D

. Then there exists a path P

C

=

(w

0

Q

0

r

0

w

1

: : : w

n�1

Q

n�1

r

n�1

w

n

) from root(G

C

) to w

n

in G

C

su
h that for

all 0 � i � n:

1. If for a pre�x P

0

D

of P

D

a 
orresponding path P

0

C

exists then P

C


an be


hosen as 
ontinuation of P

0

C

.

2. w

�

i

2 Æ(v

i

)

3. atlabel(v

i

) � atlabel(w

i

)

4. For all edges (v

n

Qr v) 2 E

D

and for Q 2 f9; 8g there exists an edge

(w

n

Qr w) 2 E

C

.

Proof. Proof by indu
tion on the length n of P

D

.

� n = 0

Then v

0

= v

n

= root(G

D

). In this 
ase an analogous path P

C

in C ex-

ists trivially. Due to Lemma 42 we know that Id is a witness-relation be-

tween G

C

and I(C). This implies �rstly, root(G

C

)

�

2 Æ(root(G

D

)), and

se
ondly, atlabel(root(G

C

)) = atlabel(root(G

C

))

�

� atlabel(root(G

D

)).

Hen
e, Conditions 1 and 2 hold.
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Consider an existential r-edge (root(G

D

) 9r v) 2 E

D

. Sin
e I(C) is a

model of D we know that a 
orresponding r-edge exists at root(I(C))

be
ause the root of I(C) is a witness of C and thus (by subsumption)

also one ofD. The weak 
ongruen
e between I(C) and G

C


onsequently

implies the existen
e of either an existential or a universal r-edge start-

ing from root(G

C

). Assume that a universal r-edge but no existential

r-edge is present at root(G

C

). In this 
ase we 
an remove the 
orre-

sponding r-edge in I(C), yielding another model I

0

of C. However, I

0

is no model of D any more be
ause the existential r-restri
tion is not

re
e
ted in I

0

, in 
ontradi
tion to the subsumption C v D.

Consider a universal r-edge (root(G

D

) 8r v) 2 E

D

representing a non-

trivial value restri
tion. Again, the fa
t that I(C) is a model of D

together with the weak 
ongruen
e between I(C) and G

C

lets us in-

fer that either a universal or an existential r-edge starts at root(G

C

).

Assume that only an existential r-edge exists but no universal r-edge.

We 
an modify the model I(C) to obtain I

0

by adding another existen-

tial r-edge from root(G

C

) to a new vertex v

0

labeled by a new atomi



on
ept A

0

. The root vertex root(I

0

) of the modi�ed model is still a

witness of C (sin
e C has no value restri
tion w.r.t. the role r that


ould be violated) but obviously no witness of D be
ause the newly in-

trodu
ed existential restri
tion does not re
e
t the r-value restri
tion

on the toplevel of D. This 
ontradi
ts C v D.

� n > 0

Let P

D

:= (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

n

). By indu
tion hypothesis

there exists a path P

0

C

= (w

0

Q

0

r

0

w

1

: : : w

n�2

Q

n�2

r

n�2

w

n�1

) in G

C

whi
h respe
ts Conditions 1 to 4 w.r.t. the subpath (v

0

: : : v

n�1

).

Consider the 
ase Q

n�1

= 9. Then Condition 4 for the path P

0

C

ensures that there is a vertex w

n

2 V

C

with (w

n�1

9r w

n

) 2 E

C

.

It remains to be shown that the Conditions 1 to 4 hold for P

C

:=

(w

0

Q

0

r

0

w

1

: : : w

n�1

9r w

n

).

Condition 1 holds due to the indu
tive 
onstru
tion of P

C

whi
h 
ould

be built as an extension of any shorter path in G

C

mat
hing the respe
-

tive pre�x of P

D

.

By indu
tion hypothesis we already know that Condition 2 holds for

all 1 � i � n � 1. We now show that an appropriate w

n

2 V

C

with

w

�

n

2 Æ(v

n

) 
an always be found. The witness-relation Æ relates v

n

to a
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witness x

n

in I(C) whi
h has a prede
essor x

n�1

w.r.t. the role r su
h

that x

n�1

is a witness of v

n�1

. The weak 
ongruen
e of I(C) and G

C

and the fa
t that Id is a witness relation between G

C

and I(C) implies

(1) that x

n�1

= v

�

n�1

and (2) that x

n

= v

�

n

for some 9r- or 8r-su

essor

v

n

of v

n�1

in G

C

. Analogous to the 
ase for n = 0 we 
an refute the

assumption that no existential r-su

essor v

n


an be found, proving

Condition 2.

For Condition 3 only the 
ase i = n remains to be shown. Sin
e w

�

n

is a

witness of all 
on
epts in label(v

n

) and sin
e atlabel(w

�

n

) = atlabel(w

n

)

the fa
t that Id is a witness-relation between G

C

and I(C) suÆ
es to

show that atlabel(v

n

) � atlabel(w

n

).

To show Condition 4, 
onsider an arbitrary edge (v

n

9r v) 2 E

D

. The

fa
t that w

�

n

is a witness of every 
on
ept des
ription in label(v

n

) im-

plies that w

�

n

has an r-su

essor w

�

. Hen
e, weak 
ongruen
e and the

witness-relation Id between G

C

and I(C) yield an existential or univer-

sal r-su

essor w of w

n

in G

C

. The assumption that w

n

has no existen-

tial su

essor 
an be shown to 
ontradi
t the subsumption C v D in

analogy to the 
ase n = 0. For a universal edge (v

n

9r v) 2 E

D

we 
an

similarly show that the absen
e of a 
orresponding edge (w

n

8r w) 2 E

C

again allows us to modify the model I(C) in su
h a way that we end

up with a model for C whi
h is no model of D, again in 
ontradi
tion

to the subsumption C v D.

Consider the 
ase Q

n�1

= 8. By indu
tion hypothesis, Condition 4

ensures that w

n�1

has a universal r-su

essor w

n

in G

C

, thus proving

the existen
e of a path P

C

in G

C

with the 
orre
t labels. The weak


ongruen
e of G

C

and I(C) implies an r-su

essor w

�

n

of w

�

n�1

related

to w

n

by the witness-relation Id. To prove Condition 2 for i = n,

assume that w

�

n

62 Æ(v

n

). In this 
ase, another r-su

essor w

�

of w

�

n�1

must exist with w

�

2 Æ(v

n

). Consequently, due to the weak 
ongruen
e

of G

C

and I(C), there is an edge from w

n�1

to w in G

C

and w is related

to w

�

by the witness-relation Id. Sin
e every vertex in G

C

has at most

one 8r-su

essor we also know that w is 
onne
ted to w

n�1

by an 9r-

edge. The des
ription graph G

C

, however, is de�ned in su
h a way that

every 9r-su

essor of w

n�1

also respe
ts the value restri
tion, i.e., all


on
epts in label(w

n

). Hen
e, w

n

would also o

ur in Æ(v

n

).

Conditions 3 and 4 
an be shown analogously to the 
ase Q

n�1

= 9
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be
ause here the label of the last edge is not relevant here.

The previous lemma is now employed for our original goal|to show that

subsumption 
an be 
hara
terized by means of simulation relations on the

respe
tive 
on
ept des
riptions.

Theorem 44 Let C;D be FLE

+

-
on
ept des
riptions. Then, C v D i�

G

D

*

�

G

C

.

Proof. ())

If C � ? then C v D trivially holds. Otherwise, we have to show for every

model I of C that x 2 D

I

holds for every witness x 2 C

I

. By Lemma 39 we

may assume a relation � � V

C

��

I

so that Conditions 1 to 4 are satis�ed.

This implies that every witness x of C o

urs in �(root(G

C

)).

Sin
e root(G

D

)

*

�

root(G

C

) we know by Lemma 40 that every x 2

�(root(G

C

)) is a witness of all 
on
epts in label(root(G

D

)). Consequently,

x is a witness of u label(root(G

D

)) whi
h is equivalent to D.

(()

If C v D then we 
an 
onstru
t a simulation relation R between G

D

and

G

C

in the following way: Initially, let R := f(root(G

D

); root(G

C

)g. Starting

from root(G

D

), we 
ondu
t a breadth-�rst sear
h on G

D

. Upon rea
hing an

unvisited vertex v we use Lemma 43 to �nd a path P

C

in G

C


orresponding

to the path (root(G

D

) : : : v) in G

D

. The pair 
onsisting of v and the endpoint

of P

C

is then added to R. For every su

essor v

0

of v in G

D

Condition 1 of

Lemma 43 allows us to �nd an extension of the path P

C

as 
orresponding

path to (root(G

D

) : : : v

0

). Applying this strategy exhaustively on G

D

, we end

up with a simulation relation R.

The reverse dire
tion is only required impli
itly throughout this paper.

However, the proof of the `only if'-dire
tion is easily obtained as a 
onse-

quen
e of Lemma 30, Lemma 31, and two results shown in the following

se
tions, namely Lemma 26 and Theorem 37.

To illustrate the above result, we return to the example introdu
ed in the

previous se
tion.

Example 45 Re
all the example 
on
epts from Example 29. The only dif-

feren
e between C

ex

and D

ex

is the atomi
 
on
ept B in the outermost ex-

istential restri
tion of C

ex

. Hen
e, C

ex

v D

ex

. It is easy to see that R :=
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f(v

0

; v

a

); (v

1

; v




); (v

2

; v

b

)g is in fa
t a simulation relation from G

D

ex

into G

C

ex

.

For all pairs it holds that the label set of the �rst vertex is a subset of that

of the se
ond one and every edge whi
h 
an be traveled starting from the �rst

vertex 
an also be traveled from the se
ond one, rea
hing again a pair in R.

Note that this property does not hold without the transitive edge (v

0

9r v

2

) in

G

D

ex

.

5.5 Computation of the l
s in FLE

+

With all the information 
aptured in a FLE-
on
ept des
ription made expli
it

by simple des
ription graphs the next step is to extra
t the 
ommonalities

of the simple des
ription graphs of the input 
on
epts. Similar to other

approa
hes to 
omputing the l
s [1, 4℄ the graph produ
t is employed to this

end. In a des
ription graph G the depth of a vertex v is de�ned as the distan
e

to the root vertex w.r.t. tree edges of the breadth-�rst-spanning tree.

De�nition 46 (Produ
t of FLE

+

-des
ription graphs) The produ
t G

C

�

G

D

of two FLE

+

-des
ription graphs G

A

= (V

A

; E

A

; v

0A

; `

V

A

; `

E

A

) for A 2

fC;Dg is de�ned by indu
tion on the depth of the FLE

+

-des
ription graphs.

The vertex (v

0C

; v

0D

) labeled with `

V

C

(v

0C

) \ `

V

D

(v

0D

) is the root vertex of

G

C

� G

D

. For ea
h pair (v

C

; v

D

); v

C

2 V

C

; v

D

2 V

D

s.t. v

C

is a Qr-su

essor

of v

0C

in G

C

and for v

D

is a Qr-su

essor of v

0D

in G

D

, we obtain a Qr-

su

essor (v

C

; v

D

) of (v

0C

; v

0D

) in G

C

� G

D

. The vertex (v

C

; v

D

) is the root

vertex of the indu
tively de�ned produ
t of G

C

�G

D

. The graph H = G

C

�G

D

is 
alled the produ
t graph.

The produ
t graph G

C

� G

D

is rooted, 
onne
ted, and dire
ted. Sin
e all

verti
es in G

C

and G

D

have at most one outgoing forall-edge, every vertex

in the produ
t graph has at most one outgoing forall-edge. Thus, produ
t

graphs are des
ription graphs.

Example 47 Let us return to the 
on
ept des
riptions C

ex

and D

ex

from

Example 29. The produ
t of their FLE

+

-des
ription graphs is displayed in

Figure 9. The edges between v

b2

and v


1

are 
ross edges.

Note that by 
onstru
tion of the produ
t graph there trivially exist simu-

lations Z : G

C

�G

D

*

�

G

C

and between Z

0

: G

C

�G

D

*

�

G

D

, s.t. for f(v

C

v

D

)g 2

V

G

C

�G

D

and fv

C

g 2 V

C

holds Z

C

((v

C

v

D

)) = fv

C

g. We 
all this simulation

the origin simulation to C denoted Z

OC

.
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8r

9r

9r

8r9r

v

b1

: f 9r:(B u 9r:B);

8r:9r:B g

v


1

: f 9r:(B u 9r:B);

8r:9r:B g

9r 8r

v

a0

: ;

f9r:(B u 9r:B);

8r:9r:B;

B g

: v

b2

G

C

ex

� G

D

ex

Figure 9: Produ
t Graph for G

C

ex

and G

D

ex

On
e the produ
t graph is obtained, we need to transform this represen-

tation into a FLE

+

-
on
ept des
ription. In order to apply the 
on
 fun
tion

introdu
ed in De�nition 32, we have to 
he
k whether the obtained graph

is a simple des
ription graph. Unfortunately, this is not the 
ase sin
e the

produ
t graph may 
ontain 
ross edges (w.r.t. a breadth-�rst spanning tree).

Cross edges violate the Condition 1 for simple des
ription graphs from

De�nition 25. Thus, we have to perform the translation of a produ
t graph

into a 
on
ept des
ription in two steps. First, we have to eliminate 
ross

edges; then, we 
an use the fun
tion 
on
 to read out the 
on
ept des
ription.

The elimination of 
ross-edges is performed by an unraveling algorithm that

introdu
es a vertex named with the path by whi
h this vertex is 
onne
ted

to the root vertex and yields a tree with additional ba
k-edges. Thus the

obtained graph may still have 
y
le, but is 
ross edge free. In order to present

the algorithm we need some preliminaries for paths. Let p = v

1

v

2

: : : v

n

be a

path, then we denote by Tail(p) = v

n

the last element in p. Let furthermore

q be a path, then pjq is the path obtained by the 
on
atenation of p and q.

We also need the set Final�Path(G) := f(v

1

v

2

: : : v

n

) 2 V

n

G

j (v

i

Qr v

i+1

) 2

E

G

; x

j

6= x

i

for j 6= ig. The unraveling is performed a

ording the unravel-

algorithm depi
ted in Figure 10.

The fun
tion �rst eliminates all existential forward edges in the graph and

then eliminates all 
ross edges re
ursively by 
alling the fun
tion eliminate

with the root vertex as start vertex. This fun
tion in turn traverses the

graph starting from the vertex v

�

and eliminates every 
ross edge (v

�

Qrw)

by removing it from the set of edges, traversing and eliminating the 
ross

edges from the rea
hability graph of w, making a 
opy of this sub-graph

and introdu
ing a new Qr-su

essor for v

�

as the root vertex of this 
opy.

A produ
t graph 
an now be transformed into a 
ross edge-free graph by
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unravel(G = (V;E; v

0

; `

V

; `

E

))

G

1

:= remove transitivity edges(G)

G

2

:= eliminate(G

1

; v

0

; ;)

G

3

:= For r 2 N

T

R

do transitive-
losure(G

2

; 9r)

return G

3

eliminate(G = (V

G

; E

G

; v

0

G

; `

V

G

; `

E

G

))

V

0

:= Final�Path(G)

E

0

:= f(p Qr pjQrv) 2 V

0

�V

0

j (Tail(p) Qr v) 2 E

G

�

g [

f((pjQ

1

r

1

vjq) Qr (pjQ

1

r

1

v)) 2 V

0

�V

0

j (Tail(q)Qr v) 2 E

G

g

`

0

V

G

(p) := `

V

G

(Tail(p))

`

0

E

G

(pQrq) := `

E

G

(Tail(p)QrTail(q))

return G

Figure 10: Unravel Fun
tion for Des
ription Graphs

applying the unravel fun
tion. The graph obtained by the unravel fun
tion

is equivalent to the original one.

Lemma 48 Let C;D be FLE

+

-
on
ept des
riptions and G

C

;G

D

their 
orre-

sponding FLE

+

-des
ription graphs. Then,

1. Z : unravel(G

C

� G

D

)

*

�

G

C

� G

D

and

Z

0

: G

C

� G

D

*

�

unravel(G

C

� G

D

), and

2. Z

00

: unravel(G

C

� G

D

)

*

�

G

C

.

Proof. Proof of 1: We prove the 
laim in two steps, by advising two rela-

tions between unravel(G

C

�G

D

) and G

C

�G

D

and then show that these rela-

tions are simulations. We use G

u

as short-hand notation for unravel(G

C

�G

D

)

and G

x

as short-hand notation for G

C

� G

D

.

� The relation from unravel(G

C

� G

D

) to G

C

� G

D

is de�ned as: Z(p) =

Tail(p). We have to show now that this relation ful�lls the de�nition

of a simulation. Sin
e v

0

G

x

2 Final�Path(G

x

) the roots are mapped

onto ea
h other Z(v

0

G

x

) = Tail(v

0

G

x

) = v

0

G

x

. The label set of ea
h

vertex p 2 Final�Path in the unraveled graph is de�ned by `

0

V

G

u

(p) :=

`

V

G

x

(Tail(p)), thus it ful�lls `

0

V

G

u

(p) � `

V

G

x

(Z(p)). It remains to be
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shown that if (p Qr pjQrq) 2 E

G

u

and jjqjj = 1, then 9v

0

2 V

G

x

:

(v Qr v

0

) 2 E

G

x

and Z(q) = v. If (p Qr pjQrq) 2 E

G

u

then by de�nition

of G

u

= unravel(G

C

� G

D

) : (Tail(p) Qr q) 2 E

G

x

, sin
e for jjqjj = 1

holds that Z(q) = q.

� The relation from G

C

� G

D

to unravel(G

C

� G

D

) is de�ned as: Z

0

(v) =

fp j Tail(p) = vg. We have to show again that all properties from the

de�nition of simulations hold. As above, the roots are mapped onto

ea
h other, sin
e v

0

G

x

2 Tail((v

0

G

x

)) = Z

0

(v

0

G

x

). The de�nition of the

fun
tion unravel implies that the label of the verti
es trivially ful�ll the


ondition: `

V

G

x

(Z

0

(v)) := `

V

G

x

(Tail(fp j Tail(p) = vg)) = `

V

G

x

(v). Thus

it remains to be shown that if (vQrw) 2 E

G

x

then 8p 2 Z

0

(v) : 9q 2

Z

0

(w) : (p Qr pjQrq) 2 E

G

u

. From p 2 Z

0

(v) follows by the de�nition

of Z

0

that Tail(p) = v. A

ording to whether w appears more that on
e

in p we have to make a 
ase distin
tion.

(1) If (p = p

1

jQrwjp

2

) for 9p

1

; p

2

: jjp

i

jj � 1 with i 2 f1; 2g. Sin
e

Tail(p) = Tail(p

2

) = v, we have (Tail(p)Qrw) 2 E

G

x

, thus by de�-

nition of E

G

u

there must exist (p

1

jQrwjp

2

Qr p

1

jQrw) 2 E

G

u

. Sin
e

(p

1

jQrw) 2 Tail(w) we have found the required su

essor.

(2) If p = p

1

Q

0

r

0

v, then by de�nition of Final�Path(G

x

) : (pjQrw) 2

Final�Path(G

x

) and Tail(p) = v and thus (Tail(p) Qr w) 2 E

G

x

and

by de�nition of E

G

u

there must also exist (p Qr pjQrw) 2 E

G

u

.

Thus both relations Z and Z

0

are simulations.

Proof of 2: In the Lemma 48 
laim (2) is an immediate 
onsequen
e of (1).

Sin
e Z

1

: unravel(G

C

�G

D

)

*

�

G

C

�G

D

and there always exists a simulation

Z

2

: G

C

�G

D

*

�

G

C

, there always exists a simulation Z

2

ÆZ

1

: unravel(G

C

�

G

D

)

*

�

G

C

.

Lemma 49 Let C;D be FLE

+

-
on
ept des
riptions and G

C

;G

D

their 
orre-

sponding FLE

+

-des
ription graphs, then unravel(G

C

� G

D

) is a simple de-

s
ription graph.

Proof. Sin
e the root vertex of G

C

�G

D

is also the root vertex of unravel(G

C

�

G

D

) and the unravel fun
tion yields 
onne
ted and dire
ted graphs, unravel(G

C

�

G

D

) is a des
ription graph. To prove the 
laim we show that all proper-

ties from De�nition 25 hold. Again we use G

u

as short-hand notation for

unravel(G

C

� G

D

) and G

x

as short-hand notation for G

C

� G

D

.
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� Proof of Property 1 Sin
e neither G

C

nor G

D

have forall-forward edges,

G

x


annot have forall-forward edges by 
onstru
tion w.r.t. a breadth

�rst sear
h tree. Neither the fun
tion unravel nor the fun
tion eliminate

introdu
e new forall-forward edges.

Sin
e the fun
tion eliminate traverses and unravels the whole graph

the graph G

u

is 
ross edge-free. Sin
e the exists-forward edges in G

x

are removed in the �rst step of the unravel fun
tion, no forward edges

are 
reated by the eliminate fun
tion, but only edges to \fresh" verti
es

or ba
k loops, and sin
e the exists-forward edges introdu
ed by the last

step in the unravel fun
tion are the only forward edges in G

u

and these

edges 
onne
t verti
es 
onne
ted by a path of exists-tree edges w.r.t.

one transitive role. Hen
e Property 6 holds for G

u

.

� Proof of Property 2: We show by 
ontradi
tion that Property 2 holds.

Assume there exists a 
y
le f(v

1

Q

1

r

1

v

2

)(v

2

Q

2

r

2

v

3

) : : : (v

n

Q

n

r

n

v

1

)g 2

E

G

u

, where n � 1 and v

i

6= v

j

for i 6= j and either r

i

6= r

j

or r 62 N

T

R

.

The edges are introdu
ed in the fun
tion unravel by the last step and

the 
all of the fun
tion eliminate. The last step in fun
tion unravel only

introdu
es forward-edges and thus no 
y
les. Sin
e Lemma 48 holds, we

know that the 
y
le f(v

1

Q

1

r

1

v

2

)(v

2

Q

2

r

2

v

3

) : : : (v

n

Q

n

r

n

v

1

)g 2 G

u


an

be simulated in G

x

. Thus G

x


ontains a 
y
le for the same sequen
e of

roles Q

1

r

1

Q

2

r

2

: : : Q

n

r

n

. Sin
e there exist simulation relations G

x

*

�

G

C

and G

x

*

�

G

D


orresponding 
y
les must exist in G

C

and in G

D

. Sin
e

G

C

and G

D

are simple des
ription graph they ful�ll Property 2 and thus

our initial assumption is false.

� Proof of Property 3: Consider a 
y
le (p

1

Qr p

2

: : : p

n

Qr p

1

) in G

u

with

pairwise distin
t verti
es. The above Condition allows us to restri
t

our attention to 
y
les over only one transitive role r. From Lemma 48

follows for G

u

that there exists a simulation to G

x

and vi
e versa. Thus

it suÆ
es to show the 
laim for G

x

. Sin
e there is a simulation Z : G

u

*

�

G

x

, there is also a 
y
le ((w

0C

w

0D

)Qr (w

1C

w

1D

) : : : (w

nC

w

nD

)Qr (w

0C

w

0D

))

in G

x

with pairwise distin
t verti
es. From the de�nition of produ
t

graphs follows that there must exist the 
y
les ((w

0E

Qr w

1E

) : : : (w

nE

Qrw

0E

))

in G

E

with pairwise distin
t verti
es w

iE

for all E 2 fC;Dg. Sin
e

G

C

and G

D

are simple des
ription graphs, Lemma 31 guarantees that

Property 3 holds for G

C

and G

D

. Consequently there must exist a

forall-su

essor of w

0C

in G

C

and there must exist a forall-su

essor of
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w

0D

in G

D

. Sin
e (w

0C

w

0D

) is a vertex in G

x

the de�nition of produ
t

graphs requires that there exists a forall-su

essor of (w

0C

w

0D

). The

simulation from G

x

to G

u

implies that there also exists a forall-su

essor

of (v

0C

v

0D

) in G

u

.

� Proof of Property 4: Sin
e Lemma 48 holds it suÆ
es to show the


laim for G

x

. Assume f((u

C

u

D

) 8r (v

C

v

D

)); ((u

C

u

D

) 9r (w

C

w

D

))g �

E

G

x

. The de�nition of the produ
t graph G

x

implies that there ex-

ist f(u

C

8r v

C

); (u

C

9r w

C

)g � E

G

C

and f(u

D

8r v

D

); (u

D

9r w

D

)g �

E

G

D

. A

ording Lemma 31 G

C

and G

D

are simple des
ription graphs.

Thus G

C

and G

D

ful�ll Property 4 and there exist simulations Z

E

s.t.

G

E

(v

E

)

*

�

G

E

(w

E

) for all E 2 fC;Dg. Thus Z

C

ÆZ

OC

: (G

x

)((v

C

v

D

))

*

�

G

C

(w

C

) and Z

D

ÆZ

OD

: (G

x

)((v

C

v

D

))

*

�

G

D

(w

D

). Thus for every vertex

(vv

0

) in (G

x

)((v

C

v

D

)) holds: If (vv

0

) has aQr

0

-su

essor there must exist

a Qr

0

-su

essor of Z

C

(v) in G

C

and a Qr

0

-su

essor of Z

D

(v

0

) in G

D

. By

de�nition of produ
t graphs there must be a vertex (Z

C

(v)Z

D

(v

0

)) in

G

x

. Consider the labels in G

x

: If

�

Z

C

ÆZ

OC

(vv

0

) Z

D

ÆZ

OD

(vv

0

)

�

= (ww

0

)

then, by the de�nition of simulation holds `

G

x

(vv

0

) � `

G

x

(ww

0

). Sin
e

(Z

C

(v

C

)Z

D

(v

D

)) = (w

C

w

D

) we obtain a simulation from (v

C

v

D

) to

(w

C

w

D

).

If r 2 N

T

R

we have to show that there also exists a vertex (w

0

C

w

0

D

) 2 V

G

x

su
h that ((w

C

w

D

) 8r (w

0

C

w

0

D

)) 2 E

G

x

and (G

x

)((v

C

v

D

))

*

�

(G

x

)((w

0

C

w

0

D

)).

As above we know from Lemma 31 that G

C

and G

D

ful�ll Property 4

and thus there exists a vertex (w

0

C

w

0

D

) and the simulations Z

0

E

s.t.

G

E

(v

E

)

*

�

G

E

(w

0

E

) for all E 2 fC;Dg. Thus there is again a 
om-

position of simulations Z

0

C

Æ Z

OC

: (G

x

)((v

C

v

D

))

*

�

G

C

(w

0

C

) and Z

0

D

Æ

Z

OD

: (G

x

)((v

C

v

D

))

*

�

G

D

(w

0

D

). Hen
e for every vertex (vv

0

) in (G

x

)((v

C

v

D

))

with a Qr

0

-su

essor there must exist a Qr

0

-su

essor of Z

0

C

(v) in G

C

and a Qr

0

-su

essor of Z

0

D

(v

0

) in G

D

. Thus we 
an, as above, 
on
lude

that for every vertex (Z

0

C

(v)Z

0

D

(v

0

)) in G

x

, where for

�

Z

0

C

ÆZ

OC

(vv

0

) Z

0

D

Æ

Z

OD

(vv

0

)

�

= (ww

0

) by the de�nition of simulation holds that `

G

x

(vv

0

) �

`

G

x

(ww

0

). Sin
e (Z

0

C

(v

C

)Z

0

D

(v

D

)) = (w

0

C

w

0

D

) we obtain a simulation

from (v

C

v

D

) to (w

0

C

w

0

D

).

� Proof of Property 5: Proof is analogous to the Proof of Property 4.

Again, sin
e Lemma 48 holds it suÆ
es to show the 
laim for G

x

. As-

sume ((u

C

u

D

) 8r (v

C

v

D

)) 2 E

G

x

for r 2 N

T

R

. The de�nition of G

x

implies that there exist (u

C

8r v

C

) 2 E

G

C

and (u

D

8r v

D

) 2 E

G

D

. A
-
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ording Lemma 31 G

C

and G

D

are simple des
ription graphs. Thus G

C

and G

D

also ful�ll Property 5 and thus there exist the verti
es (v

E

8rv

0

E

)

and simulations Z

E

s.t. G

E

(v

E

)

*

�

G

E

(v

0

E

) for all E 2 fC;Dg. Thus

Z

C

Æ Z

OC

: (G

x

)((u

C

u

D

))

*

�

G

C

(v

0

C

) and Z

D

Æ Z

OD

: (G

x

)((u

C

u

D

))

*

�

G

D

(v

0

D

). Thus for every vertex (uu

0

) in (G

x

)((u

C

u

D

)) holds: If (uu

0

)

has a Qr

0

-su

essor there must exist a Qr

0

-su

essor of Z

C

(u) in G

C

and a Qr

0

-su

essor of Z

D

(u

0

) in G

D

. By de�nition of produ
t graphs

then there must be a vertex (Z

C

(u)Z

D

(u

0

)) in G

x

. Consequently there

is the vertex (Z

C

(u

C

)Z

D

(u

D

)) = (v

0

C

v

0

D

) in G

x

. Consider the labels in

G

x

: If

�

Z

C

ÆZ

OC

(uu

0

) Z

D

ÆZ

OD

(uu

0

)

�

= (vv

0

), then by the de�nition of

simulation holds `

G

x

(uu

0

) � `

G

x

(vv

0

). Sin
e (Z

C

(u

C

)Z

D

(u

D

)) = (v

0

C

v

0

D

)

we obtain a simulation from (u

C

u

D

) to (v

0

C

v

0

D

).

� Proof of Property 6 6: Consider the vertex (v

C

v

D

) 2 V

G

u

with B 2

`

G

u

(v

C

v

D

). On
e again, from Lemma 48 follows for unravel(G

x

) that

there exists a simulation to G

x

and vi
e versa. Thus there exists

(v

0

C

v

0

D

) 2 V

G

x

where B 2 `

G

x

(v

0

C

v

0

D

). It follows from the de�nition

of produ
t graphs that, if B 2 `

G

x

(v

0

C

v

0

D

) then B 2 N

C

. Consequently

the simulation from G

B

to (G

u

(v

C

v

D

) trivially exists.

Sin
e all properties from De�nition 25 hold, G

u

is a simple des
ription graph.

Sin
e the graph obtained by the fun
tion unravel is a simple des
ription

graph, Theorem 37 is appli
able and the 
on
ept des
ription 
orresponding

to the unraveled graph 
an be obtained by the 
on
 fun
tion to read a FLE

+

-


on
ept des
ription from the simple des
ription graph. We are now ready to

prove the main theorem of this paper.

Theorem 50 Let C;D be FLE

+

-
on
ept des
riptions and G

C

;G

D

their 
orre-

sponding simple des
ription graphs, then 
on
(unravel(G

C

�G

D

)) � l
s(C;D).

Proof. Let L = 
on
(unravel(G

C

� G

D

)). We have to show that (1) C v L

and D v L and (2) if there exist another FLE

+

-
on
ept E with E v L,

C v E, and D v E then L v E.

Proof of (1): It is suÆ
ient to show C v L. Lemma 48 implies that there

exists a simulation Z : unravel(G

C

� G

D

)

*

�

G

C

. Applying Lemma 49 to the

unraveled graph and by the de�nition of G

C

we know that unravel(G

C

�G

D

)

and G

C

are both simple des
ription graphs. Thus Lemma 26 implies that
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G

C

v unravel(G

C

� G

D

) sin
e there is a simulation. From Theorem 37 it

follows that unravel(G

C

� G

D

) � 
on
(unravel(G

C

� G

D

)). Sin
e G

C

is a

simple des
ription graph, Lemma 30 and Lemma 31 
an be applied and we


an 
on
lude that G

C

� C v 
on
(unravel(G

C

� G

D

)) � unravel(G

C

� G

D

).

Proof of (2): By 
ontradi
tion: assume C v E, D v E, E v L and

L 6v E. Let G

A

:= (V

A

; E

A

; v

A

0

; `

A

V

; `

A

E

) where A 2 fC;D;E; Lg. From C v E

andD v E follows by Theorem 44 that there exist simulations Z

C

: G

E

*

�

G

C

and Z

D

: G

E

*

�

G

D

. Thus it holds by de�nition of simulations: 8v 2 V

E

:

� 8v

F

2 V

F

: If v

F

2 Z

F

(v) then `

E

V

(v) � `

F

V

(v

F

), and

� 8(v Qr w) 2 E

E

there exist v

F

; w

F

2 V

F

s.t. fv

F

g 2 Z

F

(v); fw

F

g 2

Z

F

(w) and (v

F

Qrw

F

) 2 E

F

,

where F 2 fC;Dg. From the existen
e of both simulation relations and from

the De�nition of produ
t graphs follows that for all v 2 V

E

:

� If v

C

2 Z

C

(v) and v

D

2 Z

D

(v) for v

C

2 V

C

; (v

C

Qr w

C

) 2 E

C

and for

v

D

2 V

D

; (v

D

Qrw

D

) 2 E

D

then there exist the verti
es f(v

C

; v

D

); (w

C

; w

D

)g 2

V

G

C

�G

D

and ((v

C

; v

D

)Qr (w

C

; w

D

)) 2 E

G

C

�G

D

.

� Sin
e `

E

V

(v) � `

C

V

(v

C

) \ `

D

V

(v

D

) = `

G

C

�G

D

V

((v

C

; v

D

))

Thus there exists a simulation relation Z

L

: G

E

*

�

G

C

� G

D

, where Z

L

(v) =

f(v

0

v

00

) 2 V

G

C

�G

D

j v

0

2 Z

C

(v); v

00

2 Z

D

(v)g. By Lemma 48 then there

also must exist a simulation Z

0

L

: G

E

*

�

unravel(G

C

� G

D

). Sin
e G

E

and

unravel(G

C

� G

D

) are simple des
ription graphs, Lemma 26 implies G

E

v

unravel(G

C

� G

D

). From this we obtain by means of Lemma 30, Lemma 31,

and Lemma 49, that G

E

� E v 
on
(unravel(G

C

�G

D

)) � unravel(G

C

�G

D

).

This is a 
ontradi
tion to our initial assumption that L 6v E. Thus we 
an


on
lude that 
on
(unravel(G

C

� G

D

)) � l
s(C;D).

In 
ase the n-ary l
s is to be 
omputed from a set of 
on
epts, the produ
t

of all 
orresponding simple des
ription graphs should be 
omputed �rst and

then the unravel and the 
on
 fun
tion should be applied only on
e.

6 Con
lusion and Outlook

We have shown how the existing l
s algorithms for the DLs EL and FL

0


an

be extended to transitive roles with 
omparatively little e�ort. In 
ase of
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EL

+


on
ept des
riptions, the e�e
t of transitive roles 
ould simply be made

expli
it by adding a number of 
ertain existential restri
tions to the 
on
ept.

For FL

+

0

, the representation of 
on
ept des
riptions by formal languages


ould be extended by means of an operator for the transitive 
losure of formal

languages.

For the DL FLE

+

we have introdu
ed a sound and 
omplete algorithm

for the e�e
tive 
omputation of the l
s. In parti
ular, the l
s of a �nite set

of FLE

+

-
on
ept des
riptions always exists and is uniquely determined up

to equivalen
e. As a key utility for the l
s 
omputation we have proposed

des
ription graphs as a �nite representation of FLE

+

-
on
ept des
riptions

in whi
h all restri
tions additionally imposed by transitive roles are made

expli
it. On this basis the l
s 
ould be de�ned by means of the graph produ
t

of the des
ription graphs of the input 
on
epts.

It is easy to see that the l
s algorithm 
an be optimized in several ways to

produ
e smaller output 
on
ept des
riptions. Firstly, the blo
king 
onditions

used to generate des
ription graphs out of 
on
ept des
riptions so far only

allow for blo
king w.r.t. an
estors. This might be repla
ed by a more general

blo
king strategy 
apable of blo
king between arbitrary verti
es. Se
ondly,

it seems expedient to redu
e redundan
ies possibly produ
ed by the fun
tion


on
. In parti
ular, it is not always ne
essary to apply the a

-fun
tion on
e

for every edge in the des
ription graph. A thorough investigation of the


omputational 
omplexity of the l
s 
omputation in FLE

+

remains future

work. Nevertheless, already for then non-transitive language FLE it is known

that the l
s may be exponentially large in the input size.
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