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Abstrat

Desription Logis (DLs) are a family of knowledge representation

formalisms used for terminologial reasoning. They have a wide range

of appliations suh as medial knowledge-bases, or the semanti web.

Researh on DLs has been foused on the development of sound and

omplete inferene algorithms to deide satis�ability and subsumption

for inreasingly expressive DLs. Non-standard inferenes are a group

of relatively new inferene servies whih provide reasoning support

for the building, maintaining, and deployment of DL knowledge-bases.

So far, non-standard inferenes are not available for very expressive

DLs. In this paper we present �rst results on non-standard infer-

enes for DLs with transitive roles. As a basis, we give a strutural

haraterization of subsumption for DLs where existential and value

restritions an be imposed on transitive roles. We propose sound and

omplete algorithms to ompute the least ommon subsumer (ls).

�

This work has been supported by the Deutshe Forshungsgemeinshaft, DFG Projet
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1 Introdution and Motivation

Desription Logis (DLs) are a family of formalisms used to represent ter-

minologial knowledge of a given appliation domain in a strutured and

well-de�ned way. The basi notions of DLs are onept-desriptions and roles,

representing unary prediates and binary relations, respetively. Atomi on-

epts and onept desriptions represent sets of individuals, whereas roles

represent binary relations between individuals [5℄. The main harateristi

of a DL is the set of onept onstrutors by whih omplex onept desrip-

tions an be built from atomi onepts and roles. In the present paper, we

are onerned with the DL FLE

+

whih provides the onstrutors onjun-

tion (C uD), existential restrition (9r:C), value restrition (8r:C), and the

top onept (>).

In FLE

+

, a role an be de�ned transitive. In this ase it represents the

transitive losure of a binary relation. Transitive roles appear naturally in

many appliation domains, suh as mediine and proess engineering [1℄.

Consider, for instane, a mahine that omprises several omponents whih

again onsists of several devies. A natural way to represent suh a mahine

by means of DLs would be to use some has-part role to reet its omposi-

tional struture. It would be natural here to impliitly regard every part of

a omponent also as a part of the whole. To this end, a DL with transitive

roles is neessary.

Inferene problems for DLs are divided into so-alled standard and non-

standard ones. Well known standard inferene problems are satis�ability and

subsumption of onept desriptions. These are well investigated for a great

range of DLs. For many of them, sound and omplete deision proedures

ould be devised and lower and upper bounds for the omputational om-

plexity have been found [11℄. Many standard inferene algorithms have been

suessfully extended to ope with transitive roles [13, 12℄ and are put into

pratie in state of the art DL Systems.

Prominent non-standard inferenes are mathing, the least ommon sub-

sumer (ls), the most spei� onept (ms), and, more reently, approxima-

tion. Non-standard inferenes resulted from the experiene with real-world

DL-knowledge bases (KBs), where standard inferene algorithms sometimes

did not suÆe for building and maintaining purposes. For example, the prob-

lem of how to struture the appliation domain by means of onept de�ni-

tions may not be lear at the beginning of the modelling task. Moreover, the

expressive power of the DL under onsideration sometimes makes it diÆult
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to ome up with a faithful formal de�nition of the onept originally in-

tended. To alleviate these diÆulties it is expedient to employ non-standard

inferenes [14, 8℄.

The ls was �rst mentioned as an inferene problem for DLs in [10℄.

Given two onept desriptions A and B in a desription logi L, the ls

of A and B is de�ned as the least (w.r.t. subsumption) onept desription

in L subsuming A and B. It has been argued in [8℄ that the ls failitates

a \bottom-up"-approah to the above mentioned modelling task: a domain

expert an selet a number of intuitively related onept desriptions already

existent in a KB and use the ls operation to automatially onstrut a new

onept desription representing the losest generalization of them. This

approah an be extended by means of the ms. Seleting one individual,

i.e., an instane of a onept, from a KB the ms onstruts the most spei�

onept expressible in the underlying DL representing the individual. Using

this inferene, the \bottom-up"-design of new onepts an start on the level

of atual individuals whih are sometimes more familiar to a domain expert

than the more abstrat onepts.

Mathing in DLs was �rst proposed in [7℄. A mathing problem (modulo

subsumption) onsists of a onept desription C and a onept pattern D,

i.e., a onept desription with variables. Mathing D against C means

�nding a substitution of variables in D by onept desriptions suh that C is

subsumed by the instantiated onept pattern D. Among other appliations,

mathing an be employed for queries in KBs: a domain expert unable to

speify uniquely the onept he is looking for in a KB an use a onept

pattern to retrieve all those onepts in the KB for whih a mather exists.

The strutural onstraints expressible by patterns exeed the apabilities of

simple \wildards" familiar from ordinary searh engines [8℄.

Approximation was �rst mentioned as a new inferene problem in [4℄.

The upper (lower) approximation of a onept desription C

1

from a DL

L

1

is de�ned as the least (greatest) onept desription in another DL L

2

whih subsumes (is subsumed by) C

1

. Approximation an be used to make

non-standard inferenes aessible to more expressive DLs by transferring a

given inferene problem to a less expressive DL where at least an approximate

solution an be omputed. Another appliation of approximation lies in user-

friendly DL-systems o�ering a simpli�ed frame-based view on KBs de�ned

in a more expressive bakground DL [6℄. Here approximation an be used

to ompute simple frame-based representations of otherwise overwhelmingly

ompliated onept desriptions.
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Table 1: Syntax and semantis of FLE

+

-onept desriptions.

Construt name Syntax Semantis

top-onept > �

I

onjuntion C uD C

I

\D

I

existential restritions 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

value restritions 8r:C fx 2 �

I

j 8y : (x; y) 2 r

I

! y 2 C

I

g

transitive roles r

+

S

1�n

(r

I

)

n

In ontrast to standard inferene problems, omparatively little researh

exists on non-standard inferenes in DLs with transitive roles [2℄. If exis-

tential restritions an be expressed in a DL then the inferenes mathing

and approximation are de�ned by means of the ls operation. This entral

role of the ls for non-standard inferenes has lead us to make this inferene

problem the �rst to be extended to FLE

+

. After introduing some basi no-

tions and notation, our �rst step towards the ls will be a haraterization

of subsumption for FLE

+

-onept desriptions by means of so-alled desrip-

tion graphs. We shall see that for two FLE

+

-onept desriptions A and B,

subsumption (A v B) holds if and only if there exists a simulation relation

from the desription graph of B into the one of A. The ls inferene of A and

B is then de�ned as the graph produt of the respetive desription graphs.

As a result, we shall see that the ls of a �nite set of FLE

+

-onept desrip-

tions always exists and is uniquely determined up to equivalene. Moreover,

an e�etive algorithm for the omputation of the ls will be provided.

2 Preliminaries

DLs are based on the following sets of names: N

C

is the set of onept names,

and N

R

is the set of role names, and N

T

R

is the set of transitive roles, where

N

R

\ N

T

R

= ;. Conept desriptions are indutively de�ned starting from

the set of onept names and use the onept onstrutors shown in Table 1.

The DL FLEo�ers the top-onept, onjuntion, existential, and value

restritions, as displayed in Table 1. In FLE

+

, transitive roles an be used in

existential and value restritions.

As usual, the semantis of a onept desription is de�ned in terms of an



4 2 PRELIMINARIES

FL

0

EL FLE

top-onept x x x

onjuntion x x x

existential restritions x x

value restritions x x

Table 2: Desription Logis

interpretation I = (�; �

I

). The domain � of I is a non-empty set and the

interpretation funtion �

I

maps eah onept name A 2 N

C

to a set A

I

� �

and eah role name r 2 N

R

[ N

T

R

to a binary relation r

I

� ���. The

extension of �

I

to arbitrary onept desriptions is de�ned indutively, as

shown in the seond olumn of Table 1.

The DLs overed in this paper are extensions of the DLs shown in Ta-

ble 2. Please note that none of these DLs provides (primitive) negation or

the bottom onept and therefore an not express ontraditions, thus all

onept desriptions build in the above mentioned DLs are satis�able.

One of the most important traditional inferene servies provided by DL

systems is omputing the subsumption hierarhy. The onept desription C

is subsumed by the desription D (C v D) i� C

I

� D

I

for all interpretations

I; C and D are equivalent (C � D) i� C v D and D v C.

In this paper we fous on the non-standard inferene of omputing the

least ommon subsumer (ls).

De�nition 1 (ls) Given L-onept desriptions C

1

; : : : ; C

n

, for some de-

sription logi L, the L-onept desription C is the least ommon subsumer

(ls) of C

1

; : : : ; C

n

(C = ls(C

1

; : : : ; C

n

) for short) i� (i) C

i

v C for all

1 � i � n, and (ii) C is the least onept desription with this property, i.e.,

if C

0

satis�es C

i

v C

0

for all 1 � i � n, then C v C

0

.

The idea behind the ls inferene is to extrat the ommonalities of the input

onepts. The ls is uniquely determined up to equivalene. Therefore it is

justi�ed to speak about \the" ls instead of \an" ls.
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3 Least ommon subsumer for FL

+

0

In a �rst step the DL FL

0

is extended by transitive roles, resulting in FL

+

0

.

For FL

+

0

the propagation of onepts appearing within value restritions must

be guaranteed for transitive roles.

We haraterize subsumption of FL

0

-onept desriptions by a stru-

tural omparison and prove that this haraterization is sound and omplete.

Based on this haraterization we develop an algorithm to ompute the ls

of two FL

0

-onept desriptions.

In order to use a strutural omparison to test subsumption one has to

make all the information aptured in the onept desriptions expliit. In ase

of FL

+

0

-onept desriptions the propagation of value restritions regarding

transitive roles has to be ensured.

3.1 Normalizing FL

+

0

-onept desriptions

We follow the approah in [5℄ and use the following normal form of FL

+

0

-

onept desriptions.

De�nition 2 (FL

+

0

-normal form) a FL

+

0

-onept desription is in FL

+

0

-

normal form i� it is either > or a onjuntion of the form 8r

1

: � � � :8r

n

:A for

n � 0 role names r

1

; : : : ; r

n

2 N

R

[N

T

R

and a onept name A 6= >; A 2 N

C

.

We abbreviate 8r

1

: � � � :8r

n

:A by 8r

1

: � � � :r

n

:A where r

1

: : : r

n

is onsidered a

role word over N

R

[N

T

R

. In addition, we write 8L:C instead of 8w

1

: : : w

m

:C,

where the role language L = fw

1

; : : : ; w

m

g is a �nite set of words over N

R

[

N

T

R

. The term 8;:A is onsidered to be equivalent to >.

De�nition 3 Let L � (N

R

[N

T

R

)

+

be a role language and

br :=

�

r, if r 2 N

R

r

+

, if r 2 N

T

R

then

b

L := fbr

1

br

2

� � � br

n

j r

1

r

2

� � � r

n

2 Lg is the transitive role language of L.

The interpretation funtion extends to transitive role languages as aptured

by the following Lemma.

Lemma 4 Let A be a FL

+

0

-onept desription, then

1. d 2 (8

b

L:A)

I

i� 8w 2

b

L : dw

I

e implies that e 2 A

I

:
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+

0

2. 8L:A � 8

b

L:A

Proof. proof of 1.): follows diretly from the semantis of value restritions

and transitive roles.

proof of 2.): follows diretly from de�nition of

b

L.

Let us onsider the omplexity for omputing the FL

+

0

-normal form. For

a onept C with jCj = n the number of di�erent role-words, the length

of eah role-word, and the number of onept names embedded in the value

restritions an eah be bounded by n. Therefore there are at most n di�erent

role-words. Eah one (of length n in the worst ase) has to be opied for eah

onjunt to obtain value restritions with only one embedded onept name

A. Therefore the FL

+

0

-normal form an be omputed in polynomial time.

3.2 Charaterization of subsumption for FL

+

0

Based on the FL

+

0

-normal form we an advise a strutural hek that de-

termines subsumption between two FL

+

0

-onept desriptions. This hara-

terization of subsumption is a prerequisite for the omputation of the ls in

FL

+

0

. We begin with a theorem that haraterizes the subsumption between

value restritions over possibly transitive roles.

Theorem 5 Let A be a FL

+

0

-onept desription , then 8L:A v 8L

0

:A i�

b

L

0

�

b

L.

Proof. \!" It holds that 8L:A v 8L

0

:A. We prove the laim by on-

tradition and assume

b

L

0

6�

b

L, then there exists a word w = r

1

r

2

� � � r

n

with w 2

b

L

0

n

b

L. This implies that (8w:A)

I

6� (8

b

L:A)

I

and (8w:A)

I

�

(8

b

L

0

:A)

I

. Therefore (8

b

L:A)

I

6� (8

b

L

0

:A)

I

and applying Lemma 4.2 it holds

that (8L:A)

I

6� (8L

0

:A)

I

. Consequently, we obtain a ontradition to our

initial assumption.

\ " It holds that

b

L

0

�

b

L. Therefore w 2

b

L

0

implies w 2

b

L. It follows from

Lemma 4.1 that, (8

b

L:A)

I

� (8

b

L

0

:A)

I

and thus 8

b

L:A v 8

b

L

0

:A.

We need to introdue some notation to aess the di�erent parts of a onept

desription C in FL

+

0

-normal form:

� prim(C) denotes the set of all onept names and the top onept

ourring on the top-level of C.
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+

0

7

� val

w

(C) := C

1

u � � � u C

n

, if there exist value restritions of the form

8w:C

1

; : : : ; 8w:C

n

on the top-level of C; otherwise, val

w

(C) := >;

� L(C) denotes the set of role-words appearing in the value restritions

on the top-level of C.

� L

A

(C) = fw j 8w:A ours on the top-level of Cg.

The onditions for subsumption for FL

0

an be extended to arbitrary FL

+

0

-

onept desriptions using Theorem 5.

Theorem 6 Let C and D be two FL

+

0

-onept desriptions in FL

+

0

-normal

form. Then, C v D i� D = >, or it holds that

1. prim(D) � prim(C) , and

2. for all A 2 N

C

:

b

L

A

(D) �

b

L

A

(C)

Proof. !: Assume C v D.

� Assume prim(D) 6� prim(C). Then there exists an A 2 prim(D) n

prim(C). As all FL

+

0

-onept desriptions C is onsistent. We may

therefore onsider a interpretation I with a anonial model of C. By

de�nition, the individual d

C

2 �

I

for C does not our in A

I

, sine

A 62 prim(C). Thus, d 62 D

I

and therefore C 6v D, in ontradition to

our assumption.

� Assume that there exists A 2 N

C

with

b

L

A

(D) 6�

b

L

A

(C). Thus there

exists a role-word w 2

b

L

A

(D) and w 62

b

L

A

(C). This implies that

(8w:A)

I

� D

I

and (8w:A)

I

6� C

I

and thus obtain a ontradition to

our initial assumption.

 : Conditions 1 and 2 hold.

Assume C 6v D. Due to the normalization C is a onjuntion. Due to our

assumption there must exist at least one onjunt C

i

in C s.t. C

i

v C and

C

i

6v D. There are two ases to distinguish:

1. C

i

2 prim(C): from C

i

6v D we an onlude that C

i

62 prim(D). Thus

we have a ontradition to our assumption that Condition 1 holds.
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+

0

Least ommon subsumer for FL

+

0

Input: Two FL

+

0

-onept desriptions C;D.

Output: FL

+

0

-ls of C and D.

1. If C v D then -ls-FL

+

0

(C;D) := D

if D v C then -ls-FL

+

0

(C;D) := C

2. Otherwise, transform C and D into FL

+

0

-normal form and return

-ls-FL

+

0

(C;D) := u

A2prim(C)\prim(D)

A

u u

A2N

C

8 (

b

L

A

(C) \

b

L

A

(D)) : A

Figure 1: The ls algorithm for FL

+

0

2. C

i

= 8w:A: from C

i

6v D we an onlude that 8w:A 6v D, thus

w 2

b

L

A

(C), but w 62

b

L

A

(D), whih is a ontradition to our assumption

that Condition 2 holds.

The omplexity of a subsumption test for two normalized FL

+

0

-onept

desriptions of size n is polynomial, sine there are at most n+1 subset tests

to perform and eah of these tests has a omplexity in P .

3.3 Computing least ommon subsumer for FL

+

0

For DLs providing transitive roles the usual approah for omputing the

ls by unwinding the value restritions and making a reursive all for the

embedded onepts does not suÆe. For example, if t 2 N

T

R

, then the

ls(8t:8t:8t:A; 8t:A) 6� 8t:ls(8t:8t:A; A). Instead the ls(8t:8t:8t:A; 8t:A) �

8t:8t:8t:A requiring at least 3 value restritions for t. So, in general it is

neessary for the omputation of the ls to �nd the ommonalities of the role

languages that refer to the same onept name.

In Figure 1 we advise an algorithm for e�etively omputing the ls of two

FL

+

0

-onept desriptions. The algorithm heks �rst for some ases where

the ls is trivial. Then it transforms both onept desriptions in FL

+

0

-normal

form and omputes the intersetion of the onept names appearing on the
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+

0

9

top-level of C and D. These are then onjoined with the value restritions

obtained from interseting the transitive role languages of role-words referring

to the same onept name.

Preisely, the result obtained by the algorithm from Figure 1 is not in

every ase a FL

+

0

-onept desription, sine it is represented by transitive

role languages. However, these results an easily be onverted into a FL

+

0

-

onept desription by performing the steps from De�nition 3 in the inverse

order. More preisely, replae for every A 2 N

C

eah transitive role r

+

i

in the

set

b

L

A

(-ls-FL

+

0

(C;D)) with r

i

and write it as a separate value restrition.

The size of the sets prim(C) and prim(D) is �nite and the size of their

intersetion is also. The sets L(C) and L(D) are represented by a �nite

number of elements and their intersetion an also be represented by a �-

nite number of elements. Sine there are only �nitely many intersetions to

be omputed during the omputation of the ls it is easy to see that the

-ls-FL

+

0

-algorithm always terminates.

The next we prove that the onept obtained by -ls-FL

+

0

is the ls of the

two input FL

+

0

-onept desriptions.

Theorem 7 Let C and D be two FL

+

0

-onept desriptions, then

-ls-FL

+

0

(C;D) � ls(C;D).

Proof. We assume that C 6v D and D 6v C sine then the ls(C;D) is

trivial. Let -ls-FL

+

0

(C;D) = E

ls

. It is suÆient to show that

(i) C v E

ls

and D v E

ls

, and

(ii) for all F with C;D v F it follows that E

ls

v F .

Ad i) Obviously it is suÆient to show C v E

ls

. Assume E

ls

6� >.

Then by de�nition of the algorithm -ls-FL

+

0

the Conditions 1 and 2 from

Theorem 6

1. prim(E

ls

) � prim(C).

2. for all A 2 N

C

:

b

L

A

(E

ls

) �

b

L

A

(C).

are satis�ed for C and E

ls

and therefore E

ls

subsumes C.

Ad ii) Let F be a FL

+

0

-onept desription with C;D v F . If C v D or

D v C, we get E

ls

v F . Assume C 6v D and D 6v C. If F � > nothing has

to be shown. Assume F 6� >. We show that E

ls

and F satisfy all Conditions

from Theorem 6
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1. Condition 1: sine prim(F ) � prim(C) and prim(F ) � prim(C), it

follows prim(F ) � prim(C) \ prim(D) = prim(E

ls

).

2. Condition 2: analogously. Sine for all A 2 N

C

:

b

L

A

(F ) �

b

L

A

(C) and

b

L

A

(F ) �

b

L

A

(C), it follows

b

L

A

(F ) �

b

L

A

(C) \

b

L

A

(D) =

b

L

A

(E

ls

).

Consequently, E

ls

v F , whih ompletes the proof.

The omplexity of the -ls-FL

+

0

algorithm is polynomial, sine the num-

ber of subsumption tests made and the number of intersetions omputed

during the seond step are linear in n and both, omputing subsumption and

intersetion, an be performed in polynomial time.

We have advised an algorithm to e�etively ompute the ls of FLE

+

-

onept desriptions by representing the value restritions by role words.

Thus it was possible to extend the approah for FL

0

to transitive roles seam-

lessly.

4 Least ommon subsumer for EL

+

The DL EL provides only onjuntion, the onept >, and existential re-

stritions. The strutural haraterization of subsumption as well as the

omputation of the ls in EL have been thoroughly investigated in [4℄. We

extend the approah based on desription trees presented there to EL

+

and

subsequently to ELH

+

.

In EL

+

transitive roles may be used in existential restritions. In FL

+

0

the

value restritions implied by transitivity a�et all role suessors \further

down" in a role hain. In EL

+

the exist restritions implied by transitivity

a�et the role suessors \further up" the role hain by the diret role rela-

tions indued by transitivity. The following example illustrates this e�et:

if 9t:9t:C holds for an individual a, transitivity implies that there is also a

diret relation between a and the t-suessor of the t-suessor of a. Thus,

9t:C is also implied for a. To haraterize subsumption for EL

+

onept

desriptions these implied role relations must be taken into aount.

In addition to prim(C) we need also an aessor for the existential re-

stritions used in onept desriptions: ex

r

(C) := fC

0

j there exists 9r:C

0

on

the attened top-level onjuntion of Cg. W.l.o.g. we assume all EL-, EL

+

-,

and ELH

+

-onept desriptions to be in the following normal form:

C = u

P2P

C

P u u

r2N

R

[N

T

R

u

C

0

2ex

r

(C)

9r:C

0
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where P

C

is a subset ofN

C

. This normal form preserves equivalene. Observe

that no existential restrition is imposed on a role r in ase ex

r

(C) is empty.

4.1 Representing EL

+

-onept desriptions

We extend the approah to strutural subsumption in EL presented in [4℄ by

using a di�erent embedding mehanism for the desription trees. We �rst

de�ne desription trees as an alternative representation for onept desrip-

tions. More preisely, we all this representation EL-onept trees (and not

EL

+

-onept trees) beause it does not reet the transitivity of roles t 2 N

T

R

in any expliit way.

De�nition 8 (EL-desription tree) An EL-desription tree is a labeled

tree D = (V;E; v

0

; `), with

� root node v

0

2 V ,

� E � V � (N

R

[N

T

R

)� V , and

� a labeling funtion ` that labels all v 2 V with `(v) � N

C

(> is the

empty label).

An edge vrw 2 E will be denoted as a 9-edge in the following. For v 2 V the

tree D(v) denotes the subtree of G with root node v.

Every EL

+

onept desription an be translated into am EL- desription tree.

For the translation we need the notion of the depth (written as: depth(C)) of

a onept desription C, whih is the maximal number of embedded quantors

in the onept desription. The depth (written as: depth(D)) of a desription

tree D is the length of its longest path.

The translation of a onept desription into a desription tree an be

de�ned indutively:

� depth(C) = 0: Then C is of the form u

P2prim(C)

P . In this ase, de�ne

V := v

o

, E := E

+

:= ;; and `(v

0

) := prim(C).

� depth(C) > 0: For every r 2 N

R

[ N

T

R

and for every C

0

2 ex

r

(C),

let D(C

0

) = (V

0

; E

0

; v

0

0

; `

0

) be the indutively de�ned desription trees

for the existential restrition C

0

in C. W.l.o.g., assume that the sets of

verties V

0

are pairwise disjoint. De�ne D

C

by

{ V := fv

o

g [

S

r2N

R

[N

T

R

S

C

0

2ex

r

(C)

V

0

;
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{ E := fv

0

rv

0

0

j r 2 N

R

[N

T

R

^ C

0

2 ex

r

(C) ^ v

0

0

root of D(C

0

)g

[

S

r2N

R

[N

T

R

S

C

0

2ex

r

(C)

E

0

;

{ `(v) :=

(

prim(C) if v = v

0

`

0

(v) if v 2 V

0

for r 2 N

R

[N

T

R

, C

0

2 ex

r

(C)

The inverse translation from a desription tree into a onept desription

an also be de�ned indutively:

� depth(D) = 0: De�ne C

D

:= u

P2`(v

0

)

P . Note that in ase `(v

0

) = ; the

empty onjuntion yields the top-onept >.

� depth(D) > 0: Denote by R

0

be the set of all roles in (N

R

[ N

T

R

) for

whih the node v

0

has a diret suessor in E. For every r 2 R

0

, denote

by V

r

the set of r-suessors of v

0

w.r.t. the role r. For every r and

for every node v

r

2 V

r

, denote by C

v

r

the onept desription obtained

indutively by translating the subtree of D indued by v

r

. De�ne

C

D

:= u

P2`(v

0

)

P u u

r2R

0

u

v

r

2V

r

C

v

r

.

The semantis of a desription tree is de�ned by the semantis of its or-

responding onept desription. The translation from a onept desription

into a desription tree (and bak) preserves equivalene in the sense that

C � C

D(C)

and D � D

C

D

.

Example 9 Let C

1

= 9r:((9t:9t:9t:A) u (9s:(B u 9s:C)) and C

2

=

9r:((9t:A) u (9s:B))) be two EL

+

-onept desriptions, where t 2 N

T

R

and

r; s 2 N

R

. The orresponding desription trees are depited in Figure 2.

Every node v is shown along with its respetive label `(v).

4.2 Charaterization of subsumption for EL

+

Equipped with desription trees we haraterize subsumption by a homo-

morphism from the EL-desription tree of the subsumer into the one of the

subsumee. For eah r-edge with r 2 N

R

in the desription tree of the sub-

sumer at least one orresponding r-edge must exist in the desription tree of

the subsumee. If r is a transitive role, i.e., r 2 N

T

R

, then an r-edge in the

desription tree of the subsumer an also be assoiated with an r-path in the

desription tree of the subsumee|in the sense that the origin of the r-edge
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v

0

: ;

v

1

: ;

r

v

2

: ;

t s

v

5

: fBg

v

5

: fCg

v

4

: fAg

v

3

: ;

t s

G

C

1

:

t

t

w

3

: ;

w

4

: fBg

G

C

2

:

t s

w

2

: fAg

w

0

: ;

w

1

: ;

r

Figure 2: EL-desription trees

is mapped onto the �rst node of the r-path and the end point of the r-edge

onto the last node of the path.

De�nition 10 (EL

+

-Homomorphism) Let D = (V

D

; E

D

; v

0

; `

D

) and H =

(V

H

; E

H

; w

0

; `

H

) be EL-desription trees. A mapping ' : V

H

�! V

G

is an

EL

+

-Homomorphism i� all of the following onditions hold:

� '(w

0

) = v

0

,

� for all w 2 V

H

: `

H

(w) � `

G

('(w)), and

� for all vrw 2 E

H

:

(

'(v)r'(w) 2 E

G

if r 2 N

R

'(v)r

+

'(w) 2 E

G

if r 2 N

T

R

.

The following example illustrates the notion of EL

+

-homomorphisms.

Example 11 Let C

1

and C

2

be de�ned as in Example 9. The homomorphism

from D

C

1

to D

C

2

maps w

0

to v

0

, w

1

to v

1

, w

2

to v

2

, and w

3

to v

6

. The node

w

3

an be mapped to v

6

sine w

1

is onneted to w

3

by a t-edge and v

1

is

onneted to v

6

by a path onsisting only of t-edges. Observe, that transitivity

of t implies a diret t-edge from v

1

to v

6

. Therefore v

6

is also a diret role-

suessor of v

0

and w

3

an be mapped to v

6

.
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The haraterization of subsumption for EL

+

-onept desriptions is now

given by the following theorem.

Theorem 12 Let C and D be EL

+

-onept desriptions and let D

C

and D

D

be their orresponding EL-desription trees. Then C v D i� there exists an

EL

+

-homomorphism ' from D

D

to D

C

.

Proof. Let D

C

= (V

C

; E

C

; v

0

; `

C

) and D

D

= (V

D

; E

D

; w

0

; `

D

) be the orre-

sponding EL-desription trees for C and D.

1.) \�!": C v D

Assume that D < >, otherwise the laim trivially holds. We prove the laim

by showing that there always exists a mapping funtion ' between the EL-

desription trees of D and C that ful�lls all onditions from De�nition 10.

Condition 1 from De�nition 10 trivially holds sine the root nodes an be

mapped to eah other; '(w

0

) := v

0

.

We show now that the Conditions 2 and 3 from De�nition 10 hold for the

mapping ' by indution on depth(D).

Base ase: depth(D) = 0

implies that D = P

1

u � � � u P

n

for n > 0 and P

i

2 N

C

. Thus, `

D

(w

0

) =

fP

1

; : : : ; P

n

g. Sine C � D, we have C

I

� (P

1

u � � � u P

n

)

I

this implies

fP

1

; : : : ; P

n

g � `

C

(v

0

) and sine v

0

= '(w

0

) we obtain `

D

(w

0

) � `

C

('(w

0

)).

Sine depth(D) = 0 implies E

C

= ; there is nothing to show for Condition

3 from De�nition 10.

Indution step: depth(D) > 0

We �rst show that Condition 2 and 3 from De�nition 10 hold for the �rst

role-level and use the indution hypothesis for the subsequent role-levels.

depth(D) > 0 implies D = P

1

u � � � u P

n

u (u

r2N

R

[N

T

R

u

E2ex

r

(D)

9r:E) for

n > 0 and all E being arbitrary EL

+

-onept desriptions.

Again, for the root node w

0

holds that `

D

(w

0

) = fP

1

; : : : ; P

n

g. Sine

C � D, we have C

I

� (P

1

u � � � u P

n

)

I

this implies fP

1

; : : : ; P

n

g � `

C

(v

0

)

and sine v

0

= '(w

0

) we obtain `

D

(w

0

) � `

C

('(w

0

)). Thus Condition 2 for

a homomorphism holds for ' and the root node.

By de�nition of D

D

for all existential restritions f9r:E j r 2 N

R

[

N

T

R

; E 2 ex

r

(D)g in the onept D there must exists an edge w

0

rw

r

2 E

D

.

Sine D is satis�able, there exists a interpretation I of D and a anonial

model of D, where for every existential restrition 9r:E used on the top role-

level of D there exists an individual a

0

s.t. (a; a

0

) 2 r

I

and a

0

2 E

I

. We have

to make a ase distintion for r 2 N

R

or r 2 N

T

R

.
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� r 2 N

R

If r 2 N

R

, then C v D implies that there is an existential restrition

9r:C

0

on the top role-level of C, s.t. C

0

v E. By de�nition of D

C

, there

must be an r-edge from v

0

in D

C

to another node, say v

r

. Thus we an

map w

r

to v

r

by ' and (sine v

0

= '(w

0

)) we have v

0

rv

r

= '(w

0

)r'(w

r

)

and the Condition 3 from De�nition 10 holds for ' and all diret role-

suessors of non-transitive roles on top role-level of D.

� r 2 N

T

R

Sine C v D and thus there exists in all interpretations of C and a

anonial model of C with an individual b whih has an r-suessor

b

0

, with (b; b

0

) 2 r

I

and b

0

2 C

0I

, s.t. C

0

v E. If r 2 N

T

R

, then

(b; b

0

) 2

S

1�n

(r

I

)

n

and thus there has to exist a r-path from b to b

0

with length k (1 � k) in the anonial model of C. Thus there have

to exist k nested existential restritions in C for the role r. From that

follows by the de�nition of D

C

that there exists a r-path of length k

starting from v

0

to another node , say v

r

. Thus we an map w

r

to

v

r

by ' and (sine v

0

= '(w

0

)) we have v

0

rv

r

= '(w

0

)r'(w

r

) and the

Condition 3 from De�nition 10 holds for ' and all diret role-suessors

of transitive roles on top role-level of D.

For every 9r:E in D there exists a node w

r

2 V

D

of D

D

s.t. w

0

rw

r

2 E

D

and

for every 9r:C

0

in C there exists a node v

r

2 V

C

of D

C

s.t. v

0

rv

r

2 E

+

C

. Sine

C v D implies that C

0

v E and v

0

rv

r

= '(w

0

)r'(w

r

) for every existential

restrition in D we an onlude that there exists a homomorphism '

r

be-

tween D

D

(w

r

) and D

C

(v

r

) by indution hypothesis. So, using the mappings

from the di�erent '

r

s in ', we obtain a homomorphism from D

D

to D

C

.

2.) \ �": a homomorphism ' from D

D

to D

C

exists.

We prove the laim by indution on depth(D)

Base ase: depth(D) = 0

implies that E

D

= ; and D � D

D

D

= u

P

i

2`

D

(w

0

)

P

i

. Sine a homomorphism

' exists, we have '(w

0

) = v

0

and thus `

D

(w

0

) � `

C

('(w

0

)). From this and

the de�nition of C

D

C

we an onlude that C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

) and sine

C � C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

) = D

D

D

� D we have C v D.

Indution step: depth(D) > 0

By the de�nition of the translation from desription tree to onept desrip-

tions we know that:

D � D

D

D

= (u

P

i

2`

D

(w

0

)

P

i

) u (u

(w

0

r

j

w

i

)2E

D

9r

j

:D

0

);where D

0

:= D

D

D

(w

i

)

:
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We have to show that (1) for all P

i

2 `

D

(w

0

) holds C v P

i

and that (2) for

all 9r:D

i

2 f9r

j

:D

0

j (r

j

2 N

R

[ N

T

R

) ^ (w

0

r

j

w

i

) 2 E

D

^ D

0

:= D

D

D

(w

i

)

g is

holds that: C v 9r:D

i

The proof for (1) is analogous to the base ase: Sine a homomorphism

' exists, we have '(w

0

) = v

0

and thus `

D

(w

0

) � `

C

('(w

0

)). From this and

the de�nition of C

D

C

we an onlude that C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

) and thus

C � C

D

C

v (u

P

i

2`

D

(w

0

)

P

i

).

For the proof of (2) we use that by de�nition ofD

D

we have for every 9r:D

i

on top-role level of D a node w

i

s.t. (w

0

rw

i

) 2 E

D

and D

D

D

(w

i

)

� D

i

. Sine a

homomorphism ' exists from D

D

to D

C

, it holds that ('(w

0

)r'(w

i

)) 2 E

C

,

if r 2 N

R

[N

T

R

for every (w

0

rw

i

) 2 E

D

. W.l.o.g. we assume that '(w

i

) = v

i

for some v

i

2 V

C

and thus have a r-path (possibly of length 1) from v

0

to v

i

in D

C

. Sine there exists a homomorphism ' from D

D

to D

C

and

'(w

i

) = v

i

, it follows from the de�nition of a homomorphism that there exists

a homomorphism '

0

from D

D

(w

i

) to D

C

(v

i

) for every r-suessor for all r.

Applying the indution hypothesis we obtain that C

D

C

(v

i

)

v D

D

D

(w

i

)

� D

i

and thus C v 9r:C

D

C

(v

i

)

v 9r:D

D

D

(w

i

)

� 9r:D

i

for all 9r:D

i

2 f9r

j

:D

0

j (r

j

2

N

R

[ N

T

R

) ^ (w

0

r

j

w

i

) 2 E

D

^ D

0

:= D

D

D

(w

i

)

g. From that and the proof of

(1), where we onluded C v (u

P

i

2`

D

(w

0

)

P

i

) diretly follows: C v D, whih

ompletes the proof of the theorem.

EL

+

-onept desriptions an be translated into EL-desription trees in

polynomial time sine only one traversal of the onept desription is needed.

In [3℄ the authors devise a polynomial-time algorithm to deide the existene

of a homomorphism between two given EL-desription trees. In Figure 3, this

algorithm is extended to EL

+

by testing the existene of an r-path between

two nodes in ase r is a transitive role (see line(��)). The general idea is to

de�ne a mapping Æ : V

G

�! P(V

H

) that labels every node v 2 V

G

with a set

of nodes from V

H

by one traversing the desription tree D

H

from this leaves

to its root w

0

. If w

0

2 Æ(v

0

), then the mapping Æ indues a homomorphism

from D

H

to D

G

.

We an now test subsumption between two EL

+

-onept desriptions C

and D with the following deision proedure:

1. Translate C and D into the orresponding desription trees D

C

and

D

D

.

2. Deide whether there exists a homomorphism from D

C

to D

D

. In ase

suh a homomorphism exists return \true", otherwise return \false".
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Input: EL-Desription trees D

H

= (V

H

; E

H

; w

0

; `

H

),

D

G

= (V

G

; E

G

; v

0

; `

G

).

Output: \True", if a homomorphism from D

H

to D

G

exists;

\False" otherwise.

Algorithm: hom(D

H

;D

G

)

Let fv

1

; : : : ; v

n

g be V

H

sorted in post-order.

De�ne a mapping Æ : V

G

�! P(V

H

) as follows:

Initialize Æ with Æ(v) := ; for all v 2 V

G

;

For 1 � i � n

For w 2 V

G

If `

H

(v

i

) � `

G

(w) ^

8v

i

rv 2 E

H

: 9w

0

2 V

G

:

�

v 2 Æ(w

0

) ^

�

(r 2 N

R

^ wrw

0

2 E

G

) _ (r 2 N

T

R

^ wr

+

w

0

2 E

G

)

��

(**)

Then Æ(w) := Æ(w) [ fv

i

g;

If w

0

2 Æ(v

0

), then return\True", else return \False".

Figure 3: Algorithm for deiding existene of an EL

+

-homomorphism between

two EL-desription trees.

Proposition 13 For EL

+

-onept desriptions the subsumption problem C v

D an be deided in polynomial time.

4.3 Computing least ommon subsumer for EL

+

The subsumption test for EL ould be extended to EL

+

without signi�ant

hanges to the de�nition of a desription tree. It is therefore natural to try

to extend the existing algorithm for the ls-omputation in EL to EL

+

in a

similar way. In [4℄, the ls of EL-onept desriptions is obtained from the

tree-produt of the respetive desription trees. For EL

+

, however, we �rst

need to extend the notion of a desription tree so as to make expliit the e�et

of transitive roles. To this end, EL

+

-desription trees are now introdued.

De�nition 14 (EL

+

-desription tree) Let (V;E; v

0

; `) be an EL-desription

tree over N

C

, N

R

, and N

T

R

. Let E

+

be a set of edges suh that urv 2 E

+

i�

r 2 N

T

R

and there exists an r-path from u to v in E whose length is at least
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+

2. Then the struture (V;E;E

+

; v

0

; `) is alled an EL

+

-desription tree. An

edge in E

+

is alled forward edge.

Hene, in EL

+

-desription trees additional forward edges reet the tran-

sitivity of a roles. The translation funtion from EL

+

-onept desriptions

to EL-desription trees an be extended to EL

+

-desription trees with little

e�ort:

� If depth(C) = 0 then the set of forward edges E

+

is empty.

� In ase depth(C) > 0 the set E

+

is omputed indutively in the follow-

ing way:

E

+

:=fv

0

rv

0

j r 2 R

+

C

^ 9r-path from v

0

to v

0

in Eg

[

[

r2N

R

[N

T

R

[

C

0

2ex

r

(C)

E

0+

where E

0+

denotes the set of forward edges in the subtree indued by

the existential restrition C

0

2 ex

r

(C).

Example 15 Consider the onept desriptions C

1

and C

2

from the previous

example. The orresponding EL

+

-desription trees of C

1

and C

2

are shown

in Figure 4. Forward edges are depited as dotted edges. Sine G

C

2

has no

t-path longer than 1, no forward edges are added.

It is easy to see that the size of an EL

+

-desription tree is polynomial in

the size of the original EL

+

-onept desription. The usage of forward edges

bypassing transitive role paths an also be seen as a means of struture

sharing in an otherwise exponentially larger ordinary desription tree.

The inverse translation from an desription tree into a onept desription

an also be adapted easily from the translation proedure for ordinary EL

+

-

desription trees. For a given EL

+

-desription tree, nothing hanges in ase

depth(D) = 0. If depth(D) > 0 then the union E [ E

+

is used instead of E

for the indutive onstrution of C

D

. Again, we �nd that the translations for

EL

+

-desription trees also preserve equivalene in the sense that C � C

D(C)

and D � D

C

D

. It should however be noted that the onept desription

C

D(C)

is not neessarily equal to C anymore, as the following example shows.
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: ;
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1

: ;
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Figure 4: EL

+

-Desription trees

Example 16 Consider the EL

+

-desription tree G

C

1

from Figure 4. The

original EL

+

-onept desription was C

1

= 9r:((9t:9t:9t:A) u (9s:(B u

9s:C)). As the bakward translation additionally takes into aount forward

edges, we obtain

C

D(C

1

)

= 9r:

�

9t:((9t:9t:A) u 9t:A) u 9t:A u 9t:9t:A u (9s:(B u 9s:C))

�

whih is equivalent but obviously not equal to C

1

.

The ls of two normalized EL

+

-onept desriptions an be obtained by

omputing the produt of their orresponding desription trees, with a prod-

ut operation de�ned indutively as follows:

De�nition 17 (Produt of EL

+

-desription trees) Let G := (V

G

; E

G

; E

+

G

; v

0

; `

G

)

and H := (V

H

; E

H

; E

+

H

; w

0

; `

H

) be two EL

+

-desription trees. The produt

tree G � H is indutively de�ned as follows.

� The root node is (v

0

; w

0

).

� The set of verties V

G�H

is a subset of V

G

�V

H

ontaining the root node

and the sets of verties indutively generated for the suessors of v

0
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and w

0

:

V

G�H

:= f(v

0

; w

0

)g

[

[

r2N

R

[N

T

R

[

v

0

rv2E

G

[

w

0

rw2E

H

[E

+

H

V

G(v)�H(w)

[

[

r2N

R

[N

T

R

[

v

0

rv2E

+

G

[

w

0

rw2E

H

V

G(v)�H(w)

,

where V

G(v)�H(w)

denotes the vertex set of the tree produt G(v)�H(w)

of the subtrees indued by the nodes v and w.

� In the produt tree, the root (v

0

; w

0

) node is onneted to a node (v; w)

by an r-edge whenever the individual r-edges v

0

rv and w

0

rw exist in G

and H respetively. The only exeption is that not both edges may be

forward edges. The rest of E

G�H

is obtained indutively:

E

G�H

:= f(v

0

; w

0

)r(v; w) j v

0

rv 2 E

G

^ w

0

rw 2 E

H

[ E

+

H

g

[ f(v

0

; w

0

)r(v; w) j v

0

rv 2 E

+

G

^ w

0

rw 2 E

H

g

[

[

r2N

R

[N

T

R

[

v

0

rv2E

G

[

w

0

rw2E

H

[E

+

H

E

G(v)�H(w)

[

[

r2N

R

[N

T

R

[

v

0

rv2E

+

G

[

w

0

rw2E

H

E

G(v)�H(w)

where E

G(v)�H(w)

denotes the set of edges of the tree produt G(v)�H(w)

of the subtrees indued by the nodes v and w.

The produt of two EL

+

-desription trees is an ordinary EL-desription tree,

i.e., does not ontain forward edges. The following example takes up the de-

sription trees shown previously to show the e�et of the produt operation.

Example 18 Consider the EL

+

-desription trees G

C

1

and G

C

2

from Exam-

ple 15. By de�nition, the root node of the produt tree G

C

1

� G

C

2

is (v

0

; w

0

).

Now we have to onsider all pairs of suessors of v

0

and w

0

that agree on

the edge label|exluding those pairs where both suessors are reahed via

forward edges. In ase of the root nodes v

0

and w

0

, only the pair (v1; w1) of

r-suessors is found. Hene, the root node of the produt tree has (v1; w1)

as the only suessor. The rest of the produt tree is omputed indutively

as the produt of the subtrees G

C

1

(v

1

) and G

C

2

(w

1

). The node v

1

has 3 diret
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) : fCg(v

2

; w

2

) : ; (v

3

; w

3

) : ;

tt

ttt

r

(v

4

; w

2

) : fAg (v

5

; w

4

) : fBg

(v

0

; w

0

) : ;
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Figure 5: EL

+

-produt tree

t-suessors, namely v

2

and (w.r.t. forward edges) v

3

and v

4

. The node w

1

has 2 diret t-suessors, namely w

2

and, via a forward edge, w

3

. By de�ni-

tion, the node (v

1

; w

1

) in the produt tree has therefore 5 diret t-suessors,

namely (v

2

; w

2

), (v

2

; w

3

), (v

3

; w

2

), (v

3

; w

3

), and (v

4

; w

2

). Note that the pairs

(v

3

; w

3

) and v

4

; w

3

) are omitted beause the de�nition forbids that both nodes

in a pair are reahed via forward edges. As both v

1

and w

1

have exatly one

r-suessor, the node (v

1

; w

1

) furthermore has (v

5

; w

4

) as a diret r-suessor.

The label set of every node `(v

i

; w

j

) is the intersetion of the label sets `(v

i

)

and `(v

j

). The �nal result of the produt tree omputation is presented in

Figure 5.

We still have to show that the produt tree of two desription trees,

omputed in the way desribed above, in fat produes the desription tree

of the ls.

Theorem 19 Let C and D be two EL

+

-onept desriptions and let D

C

and

D

D

be their orresponding EL

+

-desription trees. Then C

D

C

�D

D

is the ls of

C and D.

Proof. Let D

C

�D

D

= (V

D

C

�D

D

; E

D

C

�D

D

; (v

0

; w

0

); `

D

C

�D

D

). We have to

show that C

D

C

�D

D

meets the two onditions:

1. C v C

D

C

�D

D

and D v C

D

C

�D

D

, and

2. if E satis�es C v E and D v E, then C

D

C

�D

D

v E.
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We show 1.) by onstruting a homomorphism ' from C

D

C

�D

D

to D

C

. The

projetion �

i

with i 2 f1; 2g, yields a homomorphism from C

D

C

�D

D

to D

C

for i = 1 and to D

D

for i = 2. By Theorem 12 this implies C v C

D

C

�D

D

and

D v C

D

C

�D

D

.

To show 2.) assume that E is an arbitrary subsumer of C and D, and

let D

E

= (V

0

; E

0

; v

0

0

; `

0

) be the orresponding desription tree. Theorem 12

yields then a homomorphism '

1

from D

E

to D

C

and '

2

from D

E

to D

D

.

De�ne a mapping ' := <'

1

; '

2

> from D

E

to D

C

� D

D

as the produt of

'

1

and '

2

, i.e., '(v

0

) := ('

1

(v

0

); '

2

(v

0

)) for all v

0

2 V

0

. We prove that (a)

' is well-de�ned, i.e., '(v

0

) 2 V

D

C

�D

D

for all v

0

2 V

0

, and that (b) ' is a

homomorphism from D

E

to D

C

�D

D

aording to De�nition 10.

Claim (a) is shown by indution on the length of the path Æ(v

0

) in D

E

from v

0

0

to v

0

.

� Æ(v

0

) = 0.

Then we have v

0

= v

0

0

and hene, '(v

0

0

) = ('

1

(v

0

0

); '

2

(v

0

0

)) = (v

0

; w

0

) 2

V

D

C

�D

D

.

� Æ(v

0

) > 0.

Sine D

E

is a tree, there exists a unique predeessor v

00

2 V

0

of v

0

,

i.e., v

00

rv

0

2 E

0

for some r 2 N

R

[ N

T

R

. Assume v

00

rv

0

2 E

0

for some

r 2 N

R

[N

T

R

. Obviously, we have Æ(v

00

) = Æ(v

0

)� 1. By indution, we

know ('

1

(v

00

); '

2

(v

00

)) 2 V

D

C

�D

D

. Sine '

1

and '

2

are homomorphisms

and sine C and D are in EL

+

-normal form, we have diret r-suessors

'

1

(v

00

)r'

1

(v

0

) 2 E

C

and '

2

(v

00

)r'

2

(v

0

) 2 E

D

(even if r 2 N

T

R

). De�-

nition 17 yields ('

1

(v

0

); '

2

(v

0

)) as an r-suessor of ('

1

(v

00

); '

2

(v

00

)) in

D

C

�D

D

and hene, ('

1

(v

0

); '

2

(v

0

)) 2 V

D

C

�D

D

.

Now the proof of (2) is rather simple.

1. We have '(v

0

0

) = ('

1

(v

0

0

); '

2

(v

0

0

)) = (v

0

; w

0

), beause '

1

('

2

) is a ho-

momorphism from D

E

to D

C

(D

D

).

2. Sine `

0

(v

0

) � `

C

('

1

(v

0

)) and `

0

(v

0

) � `

D

('

2

(v

0

)) for all v

0

2 V

0

, we have

`

0

(v

0

) � `

C

('

1

(v

0

)) \ `

D

('

2

(v

0

)) = `

D

C

�D

D

('

1

(v

0

); '

2

(v

0

)).

3. Let v

0

rw

0

2 E

0

. Then we have '

1

(v

0

)r'

1

(w

0

) 2 E

C

and '

2

(v

0

)r'

2

(w

0

) 2

E

D

. Due to (1) we have ('

1

(v

0

); '

2

(v

0

)) 2 V and then by De�nition 17,

it is ('

1

(v

0

); '

2

(v

0

))r('

1

(w

0

); '

2

(w

0

)) 2 E

D

C

�D

D

.

Now Theorem 12 implies C

D

C

�D

D

v E whih ompletes the proof.
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Figure 6: EL

+

-least ommon subsumer

As a onsequene of the above result the following proedure is suÆient

to ompute the ls of two given EL

+

-onept desriptions C and D:

1. Translate C and D into their orresponding EL

+

-desription trees D

C

and D

D

.

2. Compute the produt of the desription trees D

C

�D

D

.

3. Translate D

C

�D

D

bak into the onept desription C

D

C

�D

D

.

The size of the ls an be exponential in the size of the original EL

+

-

onept desriptions. The following example briey presents suh a ase.

Example 20 Let N

R

:= frg and N

T

R

:= ftg. For some n 2 N, let C

n

and

D

n

be two EL

+

-onept desriptions indutively de�ned as seen below:

C

0

:= > D

0

:= >

C

n+1

:= 9t:9t:9t:9r:C

n

D

n+1

:= 9t:9t:9r:D

n

The relevant EL

+

-desription trees are shown in Figure 6. For n > 0, the

desription tree of C

n+1

does not end at the node denoted G

C

n

, but proeed just

as it begins at v

0

. The same holds for G

D

n

. The third graph in Figure 6 shows
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that part of the produt tree G

C

n+1

�D

n+1

in whih the exponential blow-up an

be seen easily.

Sine v

1

and w

1

are both t-suessors of their respetive root-nodes the

root of the produt tree has (v

1

; w

1

) as one t-suessor. Its label set is fAg,

the intersetion of `(v

1

) and `(w

1

). From v

1

, the node G

C

n

is reahed via one

t-forward edge (reahing v

3

) and one r-edge. Similarly, from w

1

we arrive

at node G

C

n

via one t-edge (reahing w

2

) and one r-edge. In the produt

tree the node (v

1

; w

1

) therefore has a t-suessor (namely (v

3

; w

2

)) with an

r-suessor for whih the subtree G

C

n

� G

D

n

must be omputed.

A similar result is obtained for v

2

and w

1

: the root node of the produt

tree has node (v2; w

1

) as t-suessor (with label set fBg) and from there

we similarly arrive at a node for whih G

C

n

� G

D

n

must be omputed (see

Figure 6). Beause of the di�erent labels in (v

1

; w

1

) and (v

2

; w

1

) none of

these paths is redundant.

The omputation of G

C

n

� G

D

n

produes the same branh as seen at the

root node (v

0

; w

0

), so that �nally a desription tree with exponentially many

leaves (in n) emerges. Hene, an exponentially large onept desription (in

n) is returned as ls of C

n+1

and D

n+1

.

The previous example has shown that ases exist where the ls of two

EL

+

-onept desriptions is exponentially large. On the other hand it is not

diÆult to see that the omputation of the ls takes at most exponential

time in the size of the input onept desriptions. In EL, the ls of two

onept desriptions is polynomial in the size of the input onepts and an

be omputed in polynomial time. The extension of transitive roles therefore

inreases the omputational omplexity both in spae and time.

5 Least ommon subsumer for FLE

+

The ls has already been investigated for sub-logis of FLE

+

. The work of

Baader, K�usters, and Molitor [4, 3℄ investigates the omputation of the ls

in FLE and its sublanguages. In [1℄, the ls is de�ned for EL with role-

value maps and terminologial yles. Sine transitivity is expressible by

role-value-maps, this work might be regarded as the �rst to provide results

on an extension of the ls to transitive roles.

As long as a sublanguage of FLE does not allow for both existential and

value restritions it is omparatively easy to adapt the existing ls algorithms
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to transitive roles as we have seen in the last setions of this report. For EL

+

,

it is possible to translate a onept C into an equivalent one in EL. Thus, all

the additional restritions imposed by transitive roles in C are made expliit.

This simple approah, however, does not work for FLE

+

-onept desriptions,

as the following example illustrates.

Example 21 Consider the FLE

+

-onept desription C

ex

:= (8r:9r:A) u

9r:A, where r is transitive. To expliitly satisfy the (transitive) value restri-

tion, we need to propagate 8r:9r:A to the existential restrition. This yields

(8r:9r:A) u 9r:(A u 9r:A u 8r:9r:A) whih equals (8r:9r:A) u 9r:(A u C

ex

).

Obviously, an attempt of exhaustive propagation would not terminate.

Hene, our �rst aim is to �nd a �nite representation of FLE

+

-onept

desriptions in whih the transitivity of roles is made expliit. Suh a repre-

sentation is introdued by the following setion.

5.1 Desription Graphs

In this setion we will not only introdue desription graphs as a syntati

onstrut but also provide a model-theoreti semantis for them|similar to

the semantis of onept desriptions. This makes it easier to examine the

equivalene between a onept desription and a desription graphs diretly,

i.e., without re-translation of the desription graph bak into a onept.

De�nition 22 (desription graph) Let G := (V;E; v

0

; `

V

; `

E

) be a rooted,

direted, and onneted graph with labeling funtions for verties and edges.

The labeling funtion `

V

assigns a set of onept desriptions to every vertex

in V and `

E

assigns a label of the form Qr to every edge in E, where Q 2

f8; 9g and r 2 N

R

[ N

T

R

. An edge labeled 8r is alled forall-edge, an edge

labeled 9r exists-edge. If every vertex v in G has at most one outgoing forall-

edge per role r then it is alled a desription graph.

For the sake of simpliity, we use the notation (v Qr w) 2 E to express that

(i) (v; w) 2 E and (ii) `

E

(v; w) = fQrg. Note that desription graphs an be

yli. Like onept desriptions, desription graphs are interpreted w.r.t. a

model-theoreti semantis to be introdued next.

De�nition 23 (semantis of desription graphs) Let G := (V;E; v

0

; `

V

; `

E

)

be a desription graph and let I := (�; �

I

) be an interpretation. A mapping

� : V ! 2

�

I

n ; is alled a model mapping i� for all v; w 2 V it holds that:
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� �(v) � C

I

for all C 2 `(v);

� if (v 9r w) 2 E for r 2 N

R

and x 2 �(v) then there exists some y 2 �

I

with (x; y) 2 r

I

and y 2 �(w);

� if (v 9r w) 2 E for r 2 N

T

R

and x 2 �(v) then there exists some y 2 �

I

with (x; y) 2 (r

I

)

+

and y 2 �(w);

� if (v 8r w) 2 E for r 2 N

R

[N

T

R

and x 2 �(v) then (x; y) 2 r

I

implies

y 2 �(w).

For a given x 2 �

I

, de�ne I; x j= G i� there is a model mapping � with

x 2 �(v

0

). The semantis of G w.r.t. I is de�ned as G

I

:= fx 2 �

I

j I; x j=

G

C

g.

There is a similarity between the semantis of desription graphs and that

of onept desriptions as de�ned in Setion 2. A (transitive) 9r-edge (v 9r w)

like an existential restrition implies a orresponding r-edge (r-path) for all

x 2 �(v) in the model. Similarly, every 8r-edge (v 8r w) imposes restritions

on every witness in the model reahable via an r-edge from some x 2 �(v).

Regarded as a desription graph the syntax tree of every FLE-onept de-

sription C is equivalent to C. This, however, is not generally true of FLE

+

-

onept desriptions. Moreover, there are desription graphs for whih no

equivalent FLE

+

-onept desription exists. One example is a graph G on-

sisting of two verties v

0

and v

1

onneted by two existential edges (v

0

9r v

1

)

and (v

0

9s v

1

). There is no equivalent onept beause an FLE

+

-onept de-

sription annot express the fat that the same suessor is required in both

role restritions. Ultimately, however, we are interested in desription graphs

guaranteed to represent onept desriptions. To this end, we introdue six

onditions to restrit desription graphs further, leading to the notion of

simple desription graphs.

As a prerequisite, we need to speify the notion of a simulation relation

for desription graphs.

De�nition 24 (simulation relation) For i 2 f1; 2g, let G

i

:= (V

i

; E

i

; v

0i

; `

V

i

; `

E

i

)

be desription graphs. Then, G

2

*

�

G

1

i� there exists a relation R � V

2

� V

1

with:

1. (v

02

; v

01

) 2 R

2. `

V

(v) \N

C

� `

V

(v

0

) \N

C

for all (v; v

0

) 2 R.
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3. If (v Qr w) 2 E

2

and (v; v

0

) 2 R then there exists a vertex w

0

2 V

1

suh

that (v

0

Qrw

0

) 2 E

1

and (w;w

0

) 2 R.

For verties v

1

2 V

1

and v

2

2 V

2

, denote by G

2

(v

2

)

*

�

G

1

(v

1

) the fat that a

simulation relation R exists between the subgraph of G

2

reahable from v

2

and

the subgraph of G

1

reahable from v

1

. In partiular, this implies (v

2

; v

1

) 2 R.

With these preliminaries, simple desription graphs an be introdued.

De�nition 25 (simple desription graph) Let G := (V;E; v

0

; `

V

; `

E

) be

a desription graph. G is a simple desription graph i� the following prop-

erties hold.

1. There exists a spanning tree s.t., G has no forall-forward edges and no

ross edges. Every exists-forward edge only onnets verties onneted

by a path of exists-tree edges w.r.t. one transitive role.

2. If (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

0

) is a yle in E with pairwise distint

verties then there exists one transitive role r with r

i

= r for all i.

3. If (v

0

Q

0

r v

1

: : : v

n�1

Q

n�1

r v

0

) is a yle in E with pairwise distint

verties and r 2 N

T

R

then v

0

has a 8r-suessor.

4. If f(u 8r v); (u 9r w)g � E then G(v)

*

�

G(w). If r 2 N

T

R

then there

exists a vertex w

0

suh that (w 8r w

0

) 2 E and G(v)

*

�

G(w

0

).

5. If (u 8r v) 2 E with r 2 N

T

R

then there exists a vertex v

0

suh that

(v 8r v

0

) 2 E and G(v)

*

�

G(v

0

).

6. If B 2 `(v) then G

B

*

�

G(v), where B is a FLE

+

-onept desription

and v 2 V .

The idea behind the above de�nition to is imitate the propagation of ex-

istential and value restritions in the graph struture. For instane, Condi-

tion 4 ensures that no subgraph representing an existential restrition may be

more general that a orresponding subgraph representing a value restrition.

Hene, a value restrition must be propagated over all existential restritions.

Condition 5 similarly ensures that value restritions over transitive roles are

propagated to deeper role levels, as 8r:A implies 8r:(A u (8r:A)) and so on.

Conditions 2 and 3 ensure that yles annot our arbitrarily. The last

ondition guarantees that the reahability graph of a vertex is \aording"
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the label set of that vertex. The �rst ondition exludes a number of irregu-

larities whih would make the proofs over desription graphs more intriate.

The following lemma an be shown for all desription graphs.

Lemma 26 Let G and H be desription graphs with H

*

�

G. Then G v H.

Proof. Let I be a model of G, i.e., there is an x 2 �

I

with I; x j= G. It

is to be shown that I; x j= H. To this end, we onstrut a model mapping

�

0

: V

H

! �

I

suh that x 2 �

0

(root(H)).

The simulation H

*

�

G implies the existene of a simulation relation

S � V

H

�V

G

whih respets the properties stated in De�nition 24. If I; x j= G

then there exists a model mapping � with x 2 �(root(G)). De�ne

�

0

: V

H

! �

I

v 7!

[

(v;w)2S

�(w).

We have to show that �

0

is a model mapping and that x 2 �

0

(root(H)).

The seond laim is not diÆult to prove. The de�nition of the simulation

relation S guarantees that (root(H); root(G)) 2 S and the model mapping �

maps root(G) onto a set ontaining x.

Consider an arbitrary v 2 V

H

and an x 2 �

0

(v). Then there is a vertex

w 2 V

G

suh that (v; w) 2 S and x 2 �(w).

� For the pair (v; w) the simulation relation guarantees that `(v) � `(w).

As the model mapping � ensures that x 2 A

I

for all A 2 `(w) we

onsequently obtain x 2 A

I

also for all A 2 `(v).

� If (v 9r v

0

) 2 E

H

for a transitive role r then the simulation relation S

guarantees the existene of a vertex w

0

2 V

G

suh that (v

0

; w

0

) 2 S and

(w 9r w

0

) 2 E

G

. Due to this edge � guarantees some y 2 �(w

0

) suh

that (x; y) 2 (r

I

)

�

. As by onstrution y ours in �

0

(v

0

) we �nd that

�

0

has the required property. The ase of an existential edge w.r.t. a

non-transitive role is analogous.

� If (v 8r v

0

) 2 E

H

for a transitive role r then the simulation relation S

again guarantees an analogous edge (w 8r w

0

) 2 E

G

with (v

0

; w

0

) 2 S.

Assume that (x; y) 2 (r

I

)

�

for some y 2 �

I

. Due to the model mapping

� we know that y 2 �(w

0

). As (v

0

; w

0

) 2 S we �nd that y 2 �

0

(v

0

),

onluding the argument.
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Note that the reverse does not hold in general. For a non-transitive role

r, onsider the two graphs G := (fv

0

; v

1

; v

2

g; f(v

0

8r v

1

); (v

0

9r v

2

)g; `

G

) and

H := (fw

0

; w

1

; w

2

g; f(w

0

8r w

1

); (w

0

9r w

2

)g; `

H

) where `

G

(v

0

) = `

H

(w

0

) = ;

and `

G

(v

1

) = `

H

(w

1

) = `

H

(w

2

) = fAg. The only di�erene between G and H

lies in the label of the existential suessor of the root vertex. Here we have

`

G

(v

2

) = ; and `

H

(w

2

) = fAg. It is easy to show that G � H but H 6

*

�

G.

Having de�ned syntax and semantis of desription graphs in general the

next step is to translate FLE

+

-onept desriptions into equivalent desrip-

tion graphs.

5.2 From FLE

+

-onept desriptions to FLE

+

-desription

graphs

To show that every FLE

+

-onept desription has a orresponding FLE

+

-de-

sription graph we devise a translation of onept desriptions to FLE

+

-de-

sription graphs. As a tehnial prerequisite, we require a normal form for

FLE-onept desriptions, as introdued in [3℄. The purpose of this normal

form is merely to atten onjuntions, to make the top-onept expliit, and

to propagate value restritions over existential restritions. The problem of

impliit information indued by transitive roles remains untouhed here.

De�nition 27 (FLE normalization rules) Let E; F be two FLE

+

-onept

desriptions and r 2 N

R

a primitive role. The FLE-normalization rules are

de�ned as follows

1) 8r:> �! > 3) 8r:E u 8r:F �! 8r:(E u F )

2) E u > �! E 4) 8r:E u 9r:F �! 8r:E u 9r:(E u F )

5) E u (F uG) �! E u F uG:

A onept desription is in FLE-normal form if the FLE-normalization rules

have bee applied to it exhaustively.

The normalization rules should be read modulo ommutativity of onjun-

tion, e.g., 9r:Eu8r:F is also normalized to 9r:(EuF )u8r:F . Sine eah nor-

malization rule preserves equivalene the resulting normalized FLE

+

-onept

desription is equivalent to the original one. It has been shown in [3℄ that

exhaustive appliation of the FLE-normalization rules may produe onept
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desriptions of size exponential in the size of the original onept desrip-

tion. During the translation of an FLE

+

-onept desription into an FLE

+

-

desription graph we need to apply the FLE-normalization rules only to the

top level of the FLE

+

-onept.

The following de�nition provides the framework of the translation of an

FLE

+

-onept desription into a desription graph. For a given onept de-

sription C we start with an empty desription graph G onsisting only of a

root vertex v

0

with C in its label. Then we exhaustively apply graph genera-

tion rules (de�ned in detail in Figure 7) produing new verties and edges. In

this proess, tree edges (E

D

), forward edges (E

+

), and bak edges (E

"

) are

distinguished. As soon as no prodution rules are appliable, all non-atomi

onept desriptions are removed from the label sets of G and the graph is

returned.

For the atual de�nition, a shorthand notation needs to be introdued

�rst. For a set fC

1

; : : : ; C

n

g of FLE

+

-onept desriptions, let fC

1

; : : : ; C

n

g

�

denote the orresponding set in whih (i) the FLE

+

normalization rules de-

�ned above have been applied exhaustively on the top-level of every C

i

and

(ii) every C

i

is split into its onjunts. Observe that there is at most one

value restrition per role r in fC

1

; : : : ; C

n

g

�

.

De�nition 28 (FLE

+

-desription graph) Let C be a FLE

+

-onept de-

sription. The FLE

+

-desription graph G

C

is obtained by the following pro-

edure:

1. Initialize the sets V := fv

0

g; `

V

= `

V

(v

0

) = fCg

�

, and

E := E

+

:= E

D

:= E

"

:= ;.

2. Apply the FLE

+

-desription graph generation rules from Figure 7 ex-

haustively to obtain G

0

C

:= (V;E; v

0

; `

V

; `

E

), where E = E

D

[E

"

[E

+

.

3. Redue the label sets of verties: 8v 2 V : `

0

V

(v) := `

V

(v) \N

C

.

4. return G

C

:= (V;E; v

0

; `

0

V

; `

E

).

All non-atomi onept desriptions in the label sets of the verties of G

are disarded afterwards beause their information (as we shall see) is then

represented by the struture of the graph. It remains to de�ne the generation

rules used in Step 2 of the above de�nition.

Figure 7 shows the relevant generation rules referred to in De�nition 28.

For every v, �(v) denotes the (unique) path from v

0

to v w.r.t. tree edges.
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R

9

: If (9r:C

0

) 2 `

V

(v), (8r:C

00

) 62 `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v;9r; v

00

) 2 E

D

[E

"

^ fC

0

g

�

= `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

,

then E

"

:= E

"

[ f(v;9r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v;9r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

98

: If r 2 N

R

, and f(9r:C

0

); (8r:C

00

)g � `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v;9r; v

00

) 2 E

D

[E

"

^ fC

0

g

�

= `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

then E

"

:= E

"

[ f(v;9r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v;9r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

98

+
: If r 2 N

T

R

, and f(9r:C

0

); (8r:C

00

)g � `

V

(v) for some C

0

; C

00

, and

there is no v

00

2 V : (v;9r; v

00

) 2 E

D

[E

"

^ fC

0

;8r:C

00

g = `

V

(v

00

),

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

;8r:C

00

g

�

then E

"

:= E

"

[ f(v;9r; v

i

)g,

else V := V [fv

0

g, E

D

:= E

D

[f(v;9r; v

0

)g, `

V

(v

0

) := fC

0

;8r:C

00

g

�

.

R

8

: If r 2 N

R

, and (8r:C

0

) 2 `

V

(v) for some C

0

, and

there is no v

00

2 V : (v;8r; v

00

) 2 E

D

[E

"

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

g

�

then E

"

:= E

"

[ f(v;8r; v

i

)g,

else V := V [ fv

0

g, E

D

:= E

D

[ f(v;8r; v

0

)g, `

V

(v

0

) := fC

0

g

�

.

R

8

+ : If r 2 N

T

R

, and (8r:C

0

) 2 `

V

(v) for some C

0

, and

there is no v

00

2 V : (v;8r; v

00

) 2 E

D

[E

"

then if there is v

i

2 V : v

i

appears in �(v) ^ `

V

(v

i

) = fC

0

;8r:C

0

g

�

then E

"

:= E

"

[ f(v;8r; v

i

)g,

else V := V [fv

0

g, E

D

:= E

D

[f(v;8r; v

0

)g, `

V

(v

0

) := fC

0

;8r:C

0

g

�

.

R

E

+
: If r 2 N

T

R

, and f(v;9r; v

0

); (v

0

;9r; v

00

)g 2 E

D

and (v;9r; v

00

) 62 E

+

then E

+

:= E

+

[ f(v;9r; v

00

)g

Figure 7: FLE

+

-Desription Graph Generation Rules.

Intuitively, the idea of the rules is to use the onept desriptions ourring

in the label set of a vertex v to extend the desription graph \aordingly"

in the following sense: if an existential restrition 9r:C ours in `

V

(v) then

a vertex w must be introdued (or probably only found) suh that (i) w is

onneted to v by an exists-edge and (ii) a onept equivalent to C ours in

`

V

(w). Moreover, a value restrition 8r:D probably also ourring in `

V

(v)
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9r

8r

9r8r

v



: f 9r:(B u 9r:B);

8r:9r:B g

v

a

: f 9r:( B u

9r:(B u 9r:B) u

8r:9r:B)g

v

b

: f B;

9r:(B u 9r:B);

8r:9r:B g

9r

G

C

ex

8r

9r

v

2

: f B;

9r:(B u 9r:B);

8r:9r:B g

v

0

: f 9r:( 9r:(B u 9r:B) u

8r:9r:B) g

9r

9r

v

1

: f 9r:(B u 9r:B);

8r:9r:B g

8r

9r

G

D

ex

Figure 8: FLE

+

-desription graphs

must be propagated to `(w) likewise.

Starting at a given vertex v, the rules R

9

, R

98

, and R

98

+

all produe

new exists-edges, possibly to a newly generated vertex. R

9

applies if only an

existential restrition is present in `

V

(v), R

98

applies if an additional value

restrition (w.r.t. the same non-transitive role) is present, and R

98

+

overs

the ase of an additional value restrition for the transitive ase. Similarly,

R

8

and R

8

+

address the ase where only a value restrition (non-transitive

or transitive) is present. The rule R

9

+

never introdues new verties but

only adds forward edges over exists-paths w.r.t. one transitive role.

To avoid generating in�nitely many new verties, every generation rule

has a bloking ondition

1

testing whether or not a new vertex an be avoided

by a bak edge to an already existing one. For every vertex v, a bak edge

to an anestor u of v is added instead of a new vertex w if the anestor

vertex has the same label set the new vertex would get, i.e., `

V

(u) = `

V

(w).

The vertex u is regarded as anestor of v i� u lies on a (the) tree-path from

the root vertex to v. Note that the ondition `

V

(u) = `

V

(w) determines u

uniquely and that v = w is not exepted.

The following example shows the orresponding FLE

+

-desription graph

of two simple FLE

+

-onept desriptions.

Example 29 Let C

ex

:= 9r:(B u 9r:B u 8r:9r:B) and D

ex

:= 9r:(9r:B u

8r:9r:B) for a transitive role r and an atomi onept B. The orrespond-

ing FLE

+

-desription graphs are depited in Figure 8. The �gure also shows

1

Bloking strategies originally have been introdued in the DL ontext in [9℄ for a

tableaux-based satis�ability tester for expressive DLs. In the relevant work, bloking

ontrolled the generation of new sub-tableaux in the omputation of a ompleted tableau.
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the normalized label sets of every vertex. Note that the non-atomi onept

desriptions in the label sets are used only during the generation of the de-

sription graphs.

It remains to be shown that the resulting FLE

+

-desription graphs are in

fat equivalent to the original onept desriptions.

Lemma 30 Let C be an FLE

+

-onept desription. Then C � G

C

Proof. (w). Consider a model I of G

C

. Show that x 2 G

I

C

implies x 2 C

I

.

If I; x j= G

C

then there exists a model mapping � : V

C

! �

I

with x 2

�(root(G

C

)). To show that x 2 C

I

, it is suÆient to show that the witnesses

of every vertex v 2 V

C

are also witnesses of every onept in label(v). For a

given v 2 V , let D 2 label(v). Proof by indution on the struture of D.

� D = A 2 N

C

Then the model mapping � guarantees that �(v) 2 A

I

.

� D = 9r:(D

0

1

u � � � uD

0

n

) with r 2 N

T

R

Then by onstrution of G

C

we know that there exists an 9r-suessor

w of v suh that D

0

i

2 label(w) for every i. By indution hypothesis

we know that every y 2 �(w) is a witness of every D

0

i

. Aording to

the de�nition of �, for every x 2 �(v) and y 2 �(w) it holds that

(x; y) 2 (r

I

)

�

. The fat that w is a witness of all D

0

i

thus implies that

every x 2 �(v) is a witness of D.

� D = 9r:(D

0

1

u � � � uD

0

n

) with r 2 N

R

Analogous, only that r

I

is relevant instead of (r

I

)

�

.

� D = 8r:(D

0

1

u � � � uD

0

n

) with r 2 N

T

R

Then by onstrution of G

C

we know that an 8r-suessor w of v exists

suh that every D

0

i

is in label(w). Again, by indution hypothesis every

y 2 �(w) is a witness of every D

0

i

. If x 2 �(v) then the edge (v 8r w)

by de�nition if � implies that every y 2 �

I

with (x; y) 2 (r

I

)

�

ours

in �(w). Hene, every (transitive) r-suessor of x in I is a witness of

every D

0

i

. Consequently, x is a witness of D.

� D = 8r:(D

0

1

u � � � uD

0

n

) with r 2 N

T

R

Analogous.
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(v). Consider a model I of C. Show that x 2 G

I

C

implies x 2 C

I

. If

I; x j= G

C

then Lemma 39 states that a witness relation � exists between G

C

and I. It is easy to see that the mapping

� : V

C

! �

I

v 7! �(v)

is a valid model mapping between G

C

and I with x 2 �(root(G

C

)).

Lemma 31 Let C be an FLE

+

-onept desription. Then G

C

is a simple

desription graph.

Proof. We have to show that G

C

respets Conditions 1 to 5 from De�ni-

tion 25.

1. The proedure from De�nition 28 introdues 8-edges (v 8r w) only if a

value restrition 8r:D is present in label(v). If label(v) equals a label

set on the path from root(G

C

) to v then (v 8r w) beomes a bak edge.

Otherwise, w is introdued as a new node. Hene, G

C

ontains no

8-forward edges.

The argument for ross edges is analogous. Edges newly introdued

by he proedure from De�nition 28 either point to a newly introdued

vertex or to a predeessor of the starting vertex.

As the last step in the proedure, 9-forward edges are introdued over

every existential path (of length greater that 1) w.r.t. one �xed transi-

tive role. Before that step no existential forward edges are introdued

as an be seen analogously to the ase of 8-forward edges above.

Assume that v 6= w are onneted both via an 9r-edge and a 8s-edge.

As argued above, both edges are neither forward edges, beause (v 8sw)

is no forward edge, nor tree edges, beause then their destination ver-

ties would be di�erent. As a result of Condition 2 we also know that

s = r and that r is transitive.

2. Consider a yle (v

0

Qr

0

v

1

: : : v

n�1

Qr

n�1

v

0

) with pairwise distint ver-

ties v

i

. For all i < n � 1, the edge (v

i

Qr

i

v

i+1

) are tree edges,

(v

n�1

Qr

n�1

v

0

) is a bak edge. The existene of the bak edge im-

plies that during the exeution of the proedure from De�nition 28,

the label set of the Qr

n�1

-suessor of v

n�1

was found to be equal to
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label(v

0

). Assume that there exists an index i suh that r

i

6= r

i+1

. Then

the maximum role depth of onepts in label(v

i+2

) is smaller than the

maximum in every label(v

j

) with j � i beause no propagation o-

urs over inhomogeneous role paths. Sine the maximum role depth

of onepts in the label set of verties annot inrease over tree edges

it follows that the maximum role depth of onepts in the Q

n�1

r

n�1

-

suessor of v

n�1

annot equal that of label(v

0

). Hene, the two label

sets annot be equal. Consequently, all role names r

i

= r for all i and

for some role name r. It is obvious that r must be transitive beause

otherwise the maximum role depth of onepts in the respetive label

sets would derease by 1 in every transition of an edge.

3. Consider a yle (v

0

Qr v

1

: : : v

n�1

Qr v

0

) with pairwise distint verties

v

i

. The above Condition allows us to restrit our attention to yles

over only one transitive role r. In the proedure from De�nition 28, a

value-restrition in any label(v

i

) would be propagated to all other sets

label(v

j

) due to the transitivity of r. Hene, assume for every i that no

8r-suessor of v

i

exists. In this ase, no propagation ours, implying

that the maximum role depth of onepts in label(v

i

) dereases with

greater i. Again, this ontradits the bak edge (v

n�1

Qr v

0

).

4. 8-9-Prop

Consider verties u; v; w with f(u 8r v); (u 9r w)g � E

C

where r is a

transitive role. In the proedure from De�nition 28, the label set of u

ontains a value restrition 8r:D and an existential restrition 9r:E

suh that label(v) = fD; 8r:Dg and u label(w) w ufE;D; 8r:Dg.

Hene, there is a subsumption relation of the onepts u label(w) v

u label(v). By Lemma 44 this implies G

u label(v)

*

�

G

u label(w)

. It is

easy to see that there are simulation relations between G

u label(v)

and

the subgraph of G

C

reahable from v beause both are determined by

label(v). The same holds for G

u label(w)

and the subgraph of G

C

reah-

able from w. Consequently, we an devise a simulation relation between

the two reahability subgraphs as a ombination of three simulation re-

lations. As G

u label(v)

*

�

G

u label(w)

implies that there exist simulation

relations whih ontain the pair of the roots of G

u label(v)

and G

u label(w)

it is lear that the ombined simulation relation ontains the pair (v; w).

We have seen that label(w) ontains the onept 8r:D. By the proe-

dure from De�nition 28, this implies the existene of a 8r-suessor w

0

of
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w with u label(w

0

) w ufD; 8r:Dg. Hene, we again have u label(w

0

) v

u label(v). The rest of the argument is analogous.

In ase of a non-transitive role r we an use the same approah as above

only that the value restrition 8r:D is not propagated to existential or

universal suessors of v and w. Moreover, there is nothing to show for

a universal suessor w

0

of w.

5. 8-Prop

Consider verties u; v with (u 8r v) 2 E

C

where r is a transitive role.

By de�nition of the FLE

+

-desription graph generation proedure from

De�nition 28, the label set of u ontains a value restrition 8r:D suh

that u label(v) � D u 8r:D. By de�nition of the FLE

+

-desription

graph generation proedure, there exists a 8r-suessor v

0

of v suh

that u label(v

0

) � Du8r:D. Analogous to the previous ase Lemma 44

yields G

u label(v)

*

�

G

u label(v

0

)

. Based on a simulation relation between

G

u label(v)

and G

u label(v

0

)

we an again onstrut the relevant simulation

relations on the reahability subgraphs of v and v

0

.

As a result, we know how to enode the information represented by FLE

+

-

onept desriptions in FLE

+

-desription graphs. Our next step is to �nd a

way to translate desription graphs bak to onept desriptions.

5.3 Translation of simple desription graphs into FLE

+

-

onept desriptions

It has already been mentioned in Setion 5.1 that desription graphs exist

without an equivalent FLE

+

-onept desription. We shall see that it suf-

�es to restrit our bakward translation proedure to the lass of simple

desription graphs introdued in the previous setion.

For the bakward translation from desription graphs to onept desrip-

tions we may not rely on omplex onept desriptions in the label sets of the

graphs in question. On the ontrary, the idea is to re-build omplex onept

desriptions in the label sets while preserving equivalene to the original

desription graph. This proess is ontinued until the desired onept de-

sription ours in the root label. Note that this strategy is just the reverse
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of the generation proedure of FLE

+

-desription graphs, where the label of

the root vertex generated the entire desription graph.

To formalize the notion of re-building omplex labels we devise an oper-

ation whih modi�es a given desription graph by altering its label funtion.

Intuitively, the funtion a \aumulates" omplex onept desriptions in

the label sets of the verties.

De�nition 32 Let G := (V;E; v

0

; `

V

; `

E

) be a desription graph and jEj :=

n. Then, a(G) := (V;E; v

0

; `

0

V

; `

E

) where `

0

V

is de�ned as follows. For every

v 2 V ,

`

0

V

(v) := (`

V

(v) \N

C

)

[

[

r2N

R

[N

T

R

[

(v 9r w)2E

9r:u `

V

(w)

[

[

r2N

R

[N

T

R

[

(v 8r w)2E

�

8r:u(`

V

(w) n f8r:>g) u u

(w 9r w

0

)2E

9r:u `

V

(w

0

)

�

.

De�ne on(G) := u `

V

(v

0

0

), where v

0

0

denotes the root vertex of a

n

(G).

For every vertex v, the modi�ed label funtion `

0

V

ontains the same

atomi labels as before but additionally has an existential restrition based

on the label of every 9r-suessor of v. Forall-edges are treated similarly

only that a restrition 8r:> is ignored. Observe that a(G) is still a simple

desription graph.

To illustrate the e�et of the funtion a, onsider the a simple de-

sription graph G with only one vertex v

0

with a label `

V

(v

0

) = fAg and

edges E := f(v

0

; 9r; v

0

); (v

0

8r v

0

)g. In a(G) the root vertex has the la-

bel fA; 9r:A; 8r:Ag. Applying a again we obtain the root label of a

2

(G)

whih equals fA; 9r:(A u 9r:A u 8r:A); 8r:(A u 9r:A u 8r:A)g.

The idea now is to show that applying the funtion a at most jEj times

produes a root label suh that the onjuntion of all ontained onepts is

equivalent to G.

Lemma 33 For every simple desription graph G it holds that G � a(G).

Proof. Let G := (V;E; v

0

; `

V

; `

E

). Show (w). Assume that I is a model of G

and x

0

2 G

I

. Then, by de�nition, there exists a model mapping � : V ! �

I

with x

0

2 �(v

0

). For every v 2 V the modi�ation of `

V

(v) by a an be
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represented in two steps. Firstly, all non-atomi onepts are removed from

`

V

(v) and seondly, new onepts are inluded for every exists-edge (v 9r w)

and for every forall edge (v 8r w) with a non-empty label `

V

(w). The �rst

step obviously does not a�et the fat that � is a model mapping onto I

beause, the new label imposes less restritions on possible models.

For the seond step, assume that an existential restrition 9r:(E

1

u � � � u

E

n

) for a transitive role r has been added to the label of v. Then, by de�nition

of a, there exists a vertex w 2 V with (v 9r w) 2 E and E

i

2 `

V

(w) for

all i. We know that y 2 E

I

i

for all y 2 �(w) and we know that �(w) is not

empty. Moreover, as � is a model mapping, (x; y) 2 (r

I

)

�

. Consequently, x

is a witness of 9r:(E

1

u � � � u E

n

). The non-transitive ase is analogous.

Assume that a value restrition 8r:(E

1

u� � �uE

n

) for a transitive role r has

been added to the label of v. Then, similarly, there is an edge (v 9r w) 2 E

with E

i

2 `

V

(w) for all i. As beause I is a model of G, we know for every

y with (x; y) 2 (r

I

)

�

that y 2 E

I

i

for every i . Hene, x is a witness of

8r:(E

1

u � � � u E

n

). The non-transitive ase is analogous.

As a result we obtain that � is also a model mapping on a(G). Hene,

x

0

2 a(G)

I

.

Show (v). Assume that I is a model of a(G) and x

0

2 G

I

. Then, by

de�nition, there exists a model mapping � : V ! �

I

with x

0

2 �(v

0

). Note

that a(G) has the same set of verties and edges as G. Consider a vertex

v 2 V . Denote by C

1

; : : : ; C

n

the set of non-atomi onepts present `

V

(v)

before the appliation of a. The modi�ation from a(G) bak to G an

be seen as (1) disarding all non-atomi labels in `

V

(v) and (2) restoring the

original onepts C

i

. The �rst step, as in the previous ase, preserves the

fat that � is a model mapping onto I. In the seond step, onepts C

i

are

added to the label of v for whih we know (Condition 6) that G

C

i

*

�

G(v).

Hene, every x 2 �(v) is also a witness of every C

i

, implying that � is still a

model mapping onto I.

As a result we now know that any number of applitions of a to a simple

desription graph G preserves equivalene. Our next step is to show that it

suÆes to apply a as often as there are edges in G to extrat a onept

desription equivalent to G from its root label. In the following lemma we

need the notion of limited reahability graphs whih will be introdued in

preparation.

De�nition 34 Let G := (V;E; v

0

; `

V

; `

E

) be a desription graph. For a nat-

ural number i 2 N and a vertex v 2 V , denote by reah

i

(v) the subgraph of
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G indued by all paths of length at most i starting from v.

Obviously, reah

0

(v) = (fvg; ;; v; `

V

; `

E

) and reah

1

(G; v) = (fvg; E \

(fvg�V ); v; `

V

; `

E

). With these preliminaries, we an show that the onept

omputed by on(G) is subsumed by G.

Lemma 35 For all v 2 V and for all i 2 N it holds that x 2 (`

0

i

(v))

I

implies

x 2 reah

i

(v)

I

.

Proof. Proof by indution on i. In ase i = 0 we are only onerned with

graphs onsisting of only one vertex without edges. For these the assertion

trivially holds. Assume i > 0 and x 2 (`

0

i

(v))

I

. By de�nition,

`

0

i

(v) = u(`

V

(v) \N

C

)

uu

r

u

(v 9r w)

9r:`

0

i�1

(w)

uu

r

u

(v 8r w)

8r:

�

`

0

i�1

(w) u u

(w 9r w

0

)

9r:`

0

i�1

(w

0

)

�

Let reah

i

(v) =: (V

i;v

; E

i;v

; v; `

V

; `

E

). We have to show that there exists a

model mapping � : V

i;v

! �

I

n ; with x 2 �(v).

As I is a model of `

0

i

(v) it follows that I ontains submodels for every

existential and value restrition in `

0

i

(v). In I these submodels are reahable

from x via edges (or paths) of the respetive roles. By de�nition of `

0

i

(v), every

existential restrition for a role r is of the form 9r:`

0

i�1

(w), where (v 9r w) 2

E

i;v

. Similarly, every value restrition is more spei� than 8r:`

0

i�1

(w) with

(v 8r w) 2 E

i;v

.

Consequently, by indution hypothesis there exists a model mapping

�

(v Qrw)

: V

i�1;w

! �

I

n ; from reah

i�1

(w) onto I suh that every y 2

(`

0

i�1

(w))

I

is in �(w). It is easy to see that reah

i

(v) an be represented as

a merging of reah

1

(v) and all reah

i�1

(w) with (v Qr w) 2 E

i;v

. Note that

these subgraphs are not neessarily disjoint. Our aim now is to onstrut

� : V

i;v

! �

I

n ; from the individual model mappings �

(v Qr w)

:

�(u) :=

(

T

f�

(v Qrw)

(u) j u 2 V

i�1;w

g

I

for u 6= v

`

0

i

(v)

I

\

T

f�

(v Qrw)

(v) j v 2 V

i�1;w

g

I

otherwise

A neessary ondition for � to be a model mapping is that ; does not our as

an image of a vertex u, i.e., the intersetion over all �

(v Qrw)

(u) is never empty.
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For a vertex u 2 V

i�1;w

1

\V

i�1;w

2

, assume that the intersetion �

(v Q

1

r

1

w

1

)

(u)\

�

(v Q

2

r

2

w

2

)

(u) is empty. This implies that no witness y exists in I whih meets

the restritions imposed by the edges starting from u in both reah

i�1

(w

1

)

and reah

i�1

(w

2

). However, already in the �rst step `

0

1

(u) ontains a value or

existential restrition for every edge starting from u (exepting trivial value

restritions) implying that eventually `

0

i

(v) ontains a onept desription

whih enfores a witness in I meeting all the restritions originating from

the vertex u in both subgraphs reah

i�1

(w

1

) and reah

i�1

(w

2

).

By onstrution, x 2 �(v). Hene, we still have to show that � is in fat a

model mapping from V

i;v

onto �

I

. The fat that �(u) � C

I

for all C 2 `

V

(u)

either holds beause of an existing model mapping �

(v Qrw)

with u 2 V

i�1;w

in ase u 6= v or beause of the fat that every y 2 �(v) is a witness of `

0

i

(v).

By onstrution of � we need to show the remaining edge-onditions only

for edges of the form (v Qr w) not part of one of the subgraphs for whih

sub-model mappings have already been obtained by indution hypothesis.

Nevertheless, we need to disriminate the ase of yli edges of the form

(v Qr v).

For w 6= v, onsider an exists-edge (v 9r w) 2 E

i;v

w.r.t. a transitive

role r and z 2 �(v). By de�nition, the onept `

0

i

(v) ontains an existential

restrition 9r:`

0

i�1

(w). Sine z 2 �(v) we know that a witness z

0

2 �

I

exists suh that (z; z

0

) 2 (r

I

)

�

and z

0

2 `

0

i�1

(w)

I

. By indution hypothesis,

`

0

i�1

(w) is more spei� than reah

i�1

(w) implying that z

0

is also a witness of

reah

i�1

(w). Consequently, z

0

appears in �

(v 9r w)

(w) whih by onstrution

implies z

0

2 �(w). The ase of a non-transitive role r is analogous.

In ase of a yli exists-edge (v 9r v) 2 E

i;v

, the indution in priniple

works just as in the non-transitive ase, yielding z

0

2 �

(v 8r v)

(v). However,

we annot analogously dedue that z

0

therefore also appears in �(v), beause

now we have to make sure that the loop (v 9r v) is also reeted by every

witness in the model I. Condition 2 of simple desription graphs guaran-

tees that r is a transitive role. Moreover, Condition 3 implies a forall-edge

(v 8r w) 2 E

i;v

starting at v. We know by Condition 4 that a simulation

relation exists from G(w) into G(v). Altogether, the onditions of simple

desription graphs imply an exists-edge from w bak to v, so that the value

restrition imposed by the edge (v 8r w) 2 E

i;v

`ontains' the existential re-

strition imposed by (v 9r v) 2 E

i;v

. Moreover, on our ase Condition 1

implies that there is exatly one forall-edge starting at v. Due to the edge

(v 8r w) the onept `

0

i

(v) ontains a value restrition in whih, as a result of
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the additional onjuntion

u

(w 9r w

0

)

9r:`

0

i�1

(w

0

),

an existential restrition for r ours whih an only be satis�ed by a model

with the following property: from every witness of v it is possible to traverse

an arbitrary number (> 1) of r-edges arriving at a witness of v. Hene, the

onept `

0

i

(v) reets the loop (v 9r v) 2 E

i;v

in reah

i

(v).

For w 6= v, onsider a forall-edge (v 8r w) 2 E

i;v

w.r.t. a transitive role

r and assume that z 2 �(v) and (z; z

0

) 2 r

I

. Again, the onept `

0

i

(v)

ontains a value restrition more spei� than 8r:`

0

i

(v). The fat that z 2 �(v)

and (z; z

0

) 2 r

I

implies that z

0

is a witness of `

0

i

(v). Hene, by indution

hypothesis, z

0

is also a witness of reah

i�1

(w) whih means that z

0

ours in

�

(v 8r w)

(w). By onstrution of � this implies z

0

2 �(w). The non-transitive

ase is analogous.

The ase of a yli forall-edge (v 8r v) 2 E

i;v

is a little simpler than

that of an exists-edge beause (i) Condition 2 again guarantees us that r is

transitive and (ii) the value restrition 8r:`

0

i�1

(v) automatially, i.e., by the

semantis of onept desriptions, restrits all admissible models to those

where every r-path from v leads to a witness of `

0

i

(v). Note that this property

orresponds to Condition 5 for simple desription graphs.

Lemma 36 For every simple desription graph G := (V;E; v

0

; `

V

; `

E

) it holds

that a

jEj

(G) � on(G).

Proof. Show (v). By de�nition of on it is suÆient to show for an

arbitrary G that G v C for every C 2 `

V

(v

0

). By de�nition of desription

graphs, every model I of G has the property that x 2 C

I

for every x 2 �(x

0

),

where � is the relevant model mapping for I. Hene, every witness of G by

de�nition is also a witness of C.

Show (w). This is an immediate onsequene of Lemma 35 beause

reah

jEj

(v

0

) = G and on(G) = `

0

jEj

(v

0

).

Hene, we obtain the following theorem.

Theorem 37 For every simple desription graph G = (V;E; v

0

; `

V

; `

E

) it

holds that on(G) � G.
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The idea of the proof is to show the equivalene on(G) � G in three

steps. Firstly, we show for every G that a single appliation of a preserves

equivalene, i.e., G � a(G). This immediately implies G � a

jEj

(G). Se-

ondly, due to the semantis of desription graphs it is also easy to see that

every onept desription in the root label of a

jEj

(G) subsumes a

jEj

(G).

Hene, a

jEj

(G) v on(G). Thirdly, we an show that every model of

on(G) is also a model of a

jEj

(G).

Now the neessary means are provided to translate FLE

+

-onept desrip-

tions (bak and forth) into a representation where the transitivity of roles is

made expliit. To de�ne the ls operation w.r.t. desription graphs we �rst

need a omplete haraterization of subsumption in this representation.

5.4 Charaterization of subsumption in FLE

+

In this setion the desription graphs introdued previously are employed

to haraterize subsumption. As a preliminary, an auxiliary de�nition is

required to simplify the notation for relations.

De�nition 38 R binary relation over S; T and s 2 S. Then R(s) := ft 2

T j (s; t) 2 Rg

The following lemma will show that the subsumption C v D implies the

existene of a simulation relation from G

D

into G

C

.

Lemma 39 Let C be an FLE

+

-onept desription and G

C

its orresponding

onept graph. Let I be a model of C. Then there exists a relation � � V

C

��

I

suh that for all verties v; w 2 V

C

:

1. �(root(G

C

)) = C

I

6= ;;

2. v

�

2 (u label(v))

I

for every v

�

2 �(v);

3. if (v 9r w) 2 E

C

and v

�

2 �(v) then there exists one w

�

2 �(w) with

(v

�

; w

�

) 2 r

I

if r 2 N

R

and (v

�

; w

�

) 2 (r

I

)

�

if r 2 N

T

R

;

4. if (v 8r w) 2 E

C

for r 2 N

R

and v

�

2 �(v) and there exists one x 2

r

I

(v

�

) then x 2 �(w).

If (v 8r w) 2 E

C

for r 2 N

T

R

and v

�

2 �(v) and there exists one

x 2 (r

I

)

�

(v

�

) then x 2 �(w).
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Proof. Sine G(C) is the onept graph ofC the onjuntionu label(root(G(C)))

of the onepts in the label of the root node is equivalent to C. As I is a

model of C we also know that there exists a witness x 2 �

I

suh that x 2 C

I

.

Consequently, by inluding the pair (root(G(C)); x) in � for every suh wit-

ness x we have satis�ed Condition 1 and Condition 2 for v = root(G(C)).

v

�

�! v

�

9r

?

y

r

?

y

v

0

�

�! v

0

�

G

C

I

Consider an existential r-edge from root(G(C)) to a vertex w whih has

not been traversed yet. If w is a suessor w.r.t. a transitive role r 2 N

T

R

then

there exists an existential restrition C

0

2 ex

r

(C) suh that the onjuntion

u label(w) is equivalent to C

0

u val

r

(C) u 8r:val

r

(C). The fat that x is a

witness of C implies the existene of another witness y 2 C

0I

with (x; y) 2

(r

I

)

�

. Moreover, y must also be witness of val

r

(C) and 8r:val

r

(C) beause

otherwise x would be no witness of C. Hene, y is a witness of C

0

u val

r

(C)u

8r:val

r

(C). We may now extend the relation � by the pair (w; y) for every

suh witness y and thereby meet Condition 2 for w and Condition 3 for

root(G

C

) and w. The ase of a non-transitive role r is analogous|only that

the onjunt 8r:val

r

(C) is missing and that the pair (x; y) 2 r

I

instead of the

transitive losure of r

I

.

Consider a universal r-edge from root(G(C)) to w w.r.t. a transitive role

r whih has not yet been traversed. If no witness x of root(G(C)) has a

suessor w.r.t. r in then we do not have to assign witnesses to w as permitted

by Condition 4. If on the other hand the set of r-suessors (w.r.t. the

transitive losure of r

I

) of x is fy

1

; : : : ; y

n

g then we have already seen in the

existential ase that every y

i

is a witness of val

r

(C) u 8r:val

r

(C). Otherwise

x would be no witness of u label(G

C

). As val

r

(C) u 8r:val

r

(C) is equivalent

to u label(w) we may extend � by the pair (w; y

i

) for every i. This satis�es

Condition 2 for w and Condition 4 for root(G

C

) and w.

Following the above proedure for existential and universal edges reur-

sively until all edges in G

C

have been traversed we arrive at a relation � whih

satis�es the proposition.

Note: all suh a relation � witness-relation.
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v

*

�

w

�

�! w

�

8r

?

y

8r

?

y

r

?

y

v

0

*

�

w

0

�

�! w

0

�

G

D

G

C

I

Lemma 40 Let C;D be FLE

+

-onept desriptions suh that G(D)

*

�

G(C).

Let I be a model of C and let � be a relation over V

C

� �

I

respeting the

onditions states in Lemma 39. Then, for all verties v 2 V

D

and for all

w 2 V

C

and for all onepts E 2 label(v) it holds that v

*

�

w implies

w

�

2 E

I

for every w

�

2 �(w).

Proof. Proof by indution on the struture of E.

� E 2 N

C

If v

*

�

w then we know that label(v) is a subset of label(w) w.r.t.

primitive labels, implying that E also ours in label(w). Hene E

subsumes u label(w). By de�nition, every w

�

2 �(w) � �

I

is a witness

of u label(w) and therefore also a witness of E.

� E = 9r:(E

0

1

u � � � u E

0

n

)

If r is transitive then, by de�nition of G(D), there exists an existential

r-suessor v

0

of v suh that for every 1 � i � n the onept E

0

i

ours

in u label(v

0

). Due to the simulation relation we know that there exists

a vertex w

0

2 V

C

with v

0

*

�

w

0

. By indution hypothesis, it holds for

w

0

that w

0

�

2 E

0

i

I

for every w

0

�

2 �(w

0

) and for every i. Moreover,

the existential r-edge (v 9r v

0

) 2 E

D

implies that there exists a vertex

w 2 V

C

suh that v

*

�

w and (wrw

0

) 2 E

C

. By de�nition of the relation

� it holds that (w

�

; w

0

�

) 2 r

I

for every w

�

2 �(w) and w

0

�

2 �(w

0

).

Consequently, every w

�

is a witness of E.

� E = 8r:(E

0

1

u � � � u E

0

n

)

If r is transitive then there exists a universal r-suessor v

0

of v suh that

every onept E

0

i

ours in label(v

0

). Again, there exist verties w;w

0

2

E

C

suh that w

0

is a universal r-suessor of w and the simulations

v

*

�

w and v

0

*

�

w

0

hold. Consider the ase where �(w) 6= ;. If �(w

0

)

is empty then, by Condition 4, no w

�

2 �(w) has an r-suessor in I.

Consequently, every w

�

is a trivial witness of E. If �(w

0

) is not empty
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then we know by Condition 4 that every r-suessor x of every w

�

is in

�(w

0

). Moreover, we know by indution hypothesis that every suh x

is a witness of E

i

for every i. Hene, every w

�

is a witness of E.

The argument for non-transitive roles r is analogous in both ases.

Our next step is to introdue a lass of models for onept desriptions.

The idea is to obtain a simple model for a desription graph by renaming the

labels of its edges.

De�nition 41 Let C be an FLE

+

-onept desription and G

C

its orrespond-

ing onept graph. The indued model I(C) of C is de�ned as follows:

� �

I(C)

:= V

C

;

� A

I(C)

:= fv 2 V

C

j A 2 label(v)g for all A 2 N

C

;

� For all r 2 N

R

[N

T

R

, (v; w) 2 r

I

i� (v Qr w) 2 E

C

for Q 2 f9; 8g;

To avoid onfusion between the sets �

I(C)

and V

C

, every vertex v 2 V

C

is

denoted by v

�

when referring to the orresponding vertex in �

I(C)

.

By weak ongruene we denote the fat that a desription graph and its

indued model are ongruent exept for the quantor signs at the labels. We

still have to show that indued models are in fat models of their respetive

onept desription. The following lemma proves this.

Lemma 42 Let C be an FLE

+

-onept desription and I(C) its orrespond-

ing indued model. Then,

1. I(C) is a model of C;

2. The identity Id := f(v; v) j v 2 V g is a witness-relation on V

C

��

I(C)

.

Proof. Proof by indution on the number s of steps needed to generate G

C

.

� s = 1

Then G

C

onsists of only one vertex v with no edges. Aording to the

above de�nition, v

�

is a witness of all atomi onepts ourring in C.

As G

C

has no edges, we know that C onsists of atomi onepts only.

Obviously, Id is an appropriate witness-relation.
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� s > 1

Consider the ase where the algorithm for G

C

adds an existential r-edge

(r transitive) in the �rst step, i.e., (v 9r w) is the �rst edge added to

E

C

. Hene, there is an existential restrition C

0

in C whih aused the

algorithm to add the relevant edge. In this ase, two separate tasks

remain for the generation of G

C

: �rstly, the subgraph for C

0

uval

r

(C)u

8r:val

r

(C) has to be generated starting at w; seondly, the graph for

the rest of C, i.e. C n9r:C

0

has to be generated starting at v. It is easy

to see that the number of steps needed to aomplish these two tasks

is less than s.

By indution hypothesis, I(C

0

u val

r

(C) u 8r:val

r

(C)) is a model of

C

0

u val

r

(C)u8r:val

r

(C) and I(C nC

0

) a model of C nC

0

. Moreover, id

is a witness-relation between G

C

0

uval

r

(C)u8r:val

r

(C)

and I(C

0

u val

r

(C) u

8r:val

r

(C)) and also between G

CnC

0

and I(C n C

0

).

In the desription graph G

C

, an 9r-edge leads from root(G

C

) to the sub-

graph for C

0

uval

r

(C)u8r:val

r

(C)). Consequently, by de�nition of I(C)

(ongruene of G

C

and I(C)), the submodel I(C

0

uval

r

(C)u8r:val

r

(C)))

is also onneted to the root of I(C) by an r-edge. Similarly, I(C) on-

tains a submodel of C n C

0

starting at the root node. Hene, I(C)

is a model of C. Moreover, as the onjuntion of all onepts in

label(root(G

C

)) is equivalent to C, the relation id is a witness-relation

between G

C

and I(C). The ase of a non-transitive role r is analogous.

If the algorithm for G

C

adds a universal r-edge (v 8r w) in the �rst step

(r transitive) then this is aused by the (only) value restrition on the

toplevel of C, i.e., val

r

(C). In this ase the generation of the entire

desription graph G

C

�rstly requires the generation of the desription

graph of valr(C) at vertex w and seondly that of

E := (C n val

r

(C))[C

0

=C

0

u val

r

(C) u 8r:val

r

(C) j C

0

2 ex

r

(C)℄.

We know by indution hypothesis that I(val

r

(C)) is a model of val

r

(C)

and I(E) one of E. Moreover, in both ases Id serves as witness rela-

tion.

In the desription graph G

C

, a universal r-edge leads from the root

vertex to the subgraph G

val

r

(C)

. This edge is reeted in the model

I(C) by an r-edge from the root vertex to the submodel I(val

r

(C)).

Moreover, the submodel I(E) shares the root vertex with I(C). Hene,
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I(C) is a model of Eu8rval

r

(C). In ase of a transitive role r, the value

restrition val

r

(C) as well as the omplete subonept 8r:val

r

(C) holds

for every existential restrition C

0

2 ex

r

(C). Therefore the onjuntion

E u 8rval

r

(C) is equivalent to C, whih makes I(C) a model of C.

By indution hypothesis we know that Id is a witness-relation between

the relevant subdesriptions and submodels. As the onjuntion of all

onepts in label(root(G

C

)) is equivalent to C we also obtain that the

idential relation Id is is a witness-relation between G

C

The result on indued models will be of use in the following lemma. We

will now show that a subsumption C v D of onept desriptions implies a

ertain strutural similarity of the respetive onept desriptions.

Lemma 43 Let C;D be FLE

+

-onept desriptions with C v D. Let Æ be a

witness-relation between G

D

and I(C). Let P

D

:= (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

n

)

be a path from root(G

D

) to v

n

in G

D

. Then there exists a path P

C

=

(w

0

Q

0

r

0

w

1

: : : w

n�1

Q

n�1

r

n�1

w

n

) from root(G

C

) to w

n

in G

C

suh that for

all 0 � i � n:

1. If for a pre�x P

0

D

of P

D

a orresponding path P

0

C

exists then P

C

an be

hosen as ontinuation of P

0

C

.

2. w

�

i

2 Æ(v

i

)

3. atlabel(v

i

) � atlabel(w

i

)

4. For all edges (v

n

Qr v) 2 E

D

and for Q 2 f9; 8g there exists an edge

(w

n

Qr w) 2 E

C

.

Proof. Proof by indution on the length n of P

D

.

� n = 0

Then v

0

= v

n

= root(G

D

). In this ase an analogous path P

C

in C ex-

ists trivially. Due to Lemma 42 we know that Id is a witness-relation be-

tween G

C

and I(C). This implies �rstly, root(G

C

)

�

2 Æ(root(G

D

)), and

seondly, atlabel(root(G

C

)) = atlabel(root(G

C

))

�

� atlabel(root(G

D

)).

Hene, Conditions 1 and 2 hold.
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Consider an existential r-edge (root(G

D

) 9r v) 2 E

D

. Sine I(C) is a

model of D we know that a orresponding r-edge exists at root(I(C))

beause the root of I(C) is a witness of C and thus (by subsumption)

also one ofD. The weak ongruene between I(C) and G

C

onsequently

implies the existene of either an existential or a universal r-edge start-

ing from root(G

C

). Assume that a universal r-edge but no existential

r-edge is present at root(G

C

). In this ase we an remove the orre-

sponding r-edge in I(C), yielding another model I

0

of C. However, I

0

is no model of D any more beause the existential r-restrition is not

reeted in I

0

, in ontradition to the subsumption C v D.

Consider a universal r-edge (root(G

D

) 8r v) 2 E

D

representing a non-

trivial value restrition. Again, the fat that I(C) is a model of D

together with the weak ongruene between I(C) and G

C

lets us in-

fer that either a universal or an existential r-edge starts at root(G

C

).

Assume that only an existential r-edge exists but no universal r-edge.

We an modify the model I(C) to obtain I

0

by adding another existen-

tial r-edge from root(G

C

) to a new vertex v

0

labeled by a new atomi

onept A

0

. The root vertex root(I

0

) of the modi�ed model is still a

witness of C (sine C has no value restrition w.r.t. the role r that

ould be violated) but obviously no witness of D beause the newly in-

trodued existential restrition does not reet the r-value restrition

on the toplevel of D. This ontradits C v D.

� n > 0

Let P

D

:= (v

0

Q

0

r

0

v

1

: : : v

n�1

Q

n�1

r

n�1

v

n

). By indution hypothesis

there exists a path P

0

C

= (w

0

Q

0

r

0

w

1

: : : w

n�2

Q

n�2

r

n�2

w

n�1

) in G

C

whih respets Conditions 1 to 4 w.r.t. the subpath (v

0

: : : v

n�1

).

Consider the ase Q

n�1

= 9. Then Condition 4 for the path P

0

C

ensures that there is a vertex w

n

2 V

C

with (w

n�1

9r w

n

) 2 E

C

.

It remains to be shown that the Conditions 1 to 4 hold for P

C

:=

(w

0

Q

0

r

0

w

1

: : : w

n�1

9r w

n

).

Condition 1 holds due to the indutive onstrution of P

C

whih ould

be built as an extension of any shorter path in G

C

mathing the respe-

tive pre�x of P

D

.

By indution hypothesis we already know that Condition 2 holds for

all 1 � i � n � 1. We now show that an appropriate w

n

2 V

C

with

w

�

n

2 Æ(v

n

) an always be found. The witness-relation Æ relates v

n

to a
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witness x

n

in I(C) whih has a predeessor x

n�1

w.r.t. the role r suh

that x

n�1

is a witness of v

n�1

. The weak ongruene of I(C) and G

C

and the fat that Id is a witness relation between G

C

and I(C) implies

(1) that x

n�1

= v

�

n�1

and (2) that x

n

= v

�

n

for some 9r- or 8r-suessor

v

n

of v

n�1

in G

C

. Analogous to the ase for n = 0 we an refute the

assumption that no existential r-suessor v

n

an be found, proving

Condition 2.

For Condition 3 only the ase i = n remains to be shown. Sine w

�

n

is a

witness of all onepts in label(v

n

) and sine atlabel(w

�

n

) = atlabel(w

n

)

the fat that Id is a witness-relation between G

C

and I(C) suÆes to

show that atlabel(v

n

) � atlabel(w

n

).

To show Condition 4, onsider an arbitrary edge (v

n

9r v) 2 E

D

. The

fat that w

�

n

is a witness of every onept desription in label(v

n

) im-

plies that w

�

n

has an r-suessor w

�

. Hene, weak ongruene and the

witness-relation Id between G

C

and I(C) yield an existential or univer-

sal r-suessor w of w

n

in G

C

. The assumption that w

n

has no existen-

tial suessor an be shown to ontradit the subsumption C v D in

analogy to the ase n = 0. For a universal edge (v

n

9r v) 2 E

D

we an

similarly show that the absene of a orresponding edge (w

n

8r w) 2 E

C

again allows us to modify the model I(C) in suh a way that we end

up with a model for C whih is no model of D, again in ontradition

to the subsumption C v D.

Consider the ase Q

n�1

= 8. By indution hypothesis, Condition 4

ensures that w

n�1

has a universal r-suessor w

n

in G

C

, thus proving

the existene of a path P

C

in G

C

with the orret labels. The weak

ongruene of G

C

and I(C) implies an r-suessor w

�

n

of w

�

n�1

related

to w

n

by the witness-relation Id. To prove Condition 2 for i = n,

assume that w

�

n

62 Æ(v

n

). In this ase, another r-suessor w

�

of w

�

n�1

must exist with w

�

2 Æ(v

n

). Consequently, due to the weak ongruene

of G

C

and I(C), there is an edge from w

n�1

to w in G

C

and w is related

to w

�

by the witness-relation Id. Sine every vertex in G

C

has at most

one 8r-suessor we also know that w is onneted to w

n�1

by an 9r-

edge. The desription graph G

C

, however, is de�ned in suh a way that

every 9r-suessor of w

n�1

also respets the value restrition, i.e., all

onepts in label(w

n

). Hene, w

n

would also our in Æ(v

n

).

Conditions 3 and 4 an be shown analogously to the ase Q

n�1

= 9
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beause here the label of the last edge is not relevant here.

The previous lemma is now employed for our original goal|to show that

subsumption an be haraterized by means of simulation relations on the

respetive onept desriptions.

Theorem 44 Let C;D be FLE

+

-onept desriptions. Then, C v D i�

G

D

*

�

G

C

.

Proof. ())

If C � ? then C v D trivially holds. Otherwise, we have to show for every

model I of C that x 2 D

I

holds for every witness x 2 C

I

. By Lemma 39 we

may assume a relation � � V

C

��

I

so that Conditions 1 to 4 are satis�ed.

This implies that every witness x of C ours in �(root(G

C

)).

Sine root(G

D

)

*

�

root(G

C

) we know by Lemma 40 that every x 2

�(root(G

C

)) is a witness of all onepts in label(root(G

D

)). Consequently,

x is a witness of u label(root(G

D

)) whih is equivalent to D.

(()

If C v D then we an onstrut a simulation relation R between G

D

and

G

C

in the following way: Initially, let R := f(root(G

D

); root(G

C

)g. Starting

from root(G

D

), we ondut a breadth-�rst searh on G

D

. Upon reahing an

unvisited vertex v we use Lemma 43 to �nd a path P

C

in G

C

orresponding

to the path (root(G

D

) : : : v) in G

D

. The pair onsisting of v and the endpoint

of P

C

is then added to R. For every suessor v

0

of v in G

D

Condition 1 of

Lemma 43 allows us to �nd an extension of the path P

C

as orresponding

path to (root(G

D

) : : : v

0

). Applying this strategy exhaustively on G

D

, we end

up with a simulation relation R.

The reverse diretion is only required impliitly throughout this paper.

However, the proof of the `only if'-diretion is easily obtained as a onse-

quene of Lemma 30, Lemma 31, and two results shown in the following

setions, namely Lemma 26 and Theorem 37.

To illustrate the above result, we return to the example introdued in the

previous setion.

Example 45 Reall the example onepts from Example 29. The only dif-

ferene between C

ex

and D

ex

is the atomi onept B in the outermost ex-

istential restrition of C

ex

. Hene, C

ex

v D

ex

. It is easy to see that R :=
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f(v

0

; v

a

); (v

1

; v



); (v

2

; v

b

)g is in fat a simulation relation from G

D

ex

into G

C

ex

.

For all pairs it holds that the label set of the �rst vertex is a subset of that

of the seond one and every edge whih an be traveled starting from the �rst

vertex an also be traveled from the seond one, reahing again a pair in R.

Note that this property does not hold without the transitive edge (v

0

9r v

2

) in

G

D

ex

.

5.5 Computation of the ls in FLE

+

With all the information aptured in a FLE-onept desription made expliit

by simple desription graphs the next step is to extrat the ommonalities

of the simple desription graphs of the input onepts. Similar to other

approahes to omputing the ls [1, 4℄ the graph produt is employed to this

end. In a desription graph G the depth of a vertex v is de�ned as the distane

to the root vertex w.r.t. tree edges of the breadth-�rst-spanning tree.

De�nition 46 (Produt of FLE

+

-desription graphs) The produt G

C

�

G

D

of two FLE

+

-desription graphs G

A

= (V

A

; E

A

; v

0A

; `

V

A

; `

E

A

) for A 2

fC;Dg is de�ned by indution on the depth of the FLE

+

-desription graphs.

The vertex (v

0C

; v

0D

) labeled with `

V

C

(v

0C

) \ `

V

D

(v

0D

) is the root vertex of

G

C

� G

D

. For eah pair (v

C

; v

D

); v

C

2 V

C

; v

D

2 V

D

s.t. v

C

is a Qr-suessor

of v

0C

in G

C

and for v

D

is a Qr-suessor of v

0D

in G

D

, we obtain a Qr-

suessor (v

C

; v

D

) of (v

0C

; v

0D

) in G

C

� G

D

. The vertex (v

C

; v

D

) is the root

vertex of the indutively de�ned produt of G

C

�G

D

. The graph H = G

C

�G

D

is alled the produt graph.

The produt graph G

C

� G

D

is rooted, onneted, and direted. Sine all

verties in G

C

and G

D

have at most one outgoing forall-edge, every vertex

in the produt graph has at most one outgoing forall-edge. Thus, produt

graphs are desription graphs.

Example 47 Let us return to the onept desriptions C

ex

and D

ex

from

Example 29. The produt of their FLE

+

-desription graphs is displayed in

Figure 9. The edges between v

b2

and v

1

are ross edges.

Note that by onstrution of the produt graph there trivially exist simu-

lations Z : G

C

�G

D

*

�

G

C

and between Z

0

: G

C

�G

D

*

�

G

D

, s.t. for f(v

C

v

D

)g 2

V

G

C

�G

D

and fv

C

g 2 V

C

holds Z

C

((v

C

v

D

)) = fv

C

g. We all this simulation

the origin simulation to C denoted Z

OC

.
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8r

9r

9r

8r9r

v

b1

: f 9r:(B u 9r:B);

8r:9r:B g

v

1

: f 9r:(B u 9r:B);

8r:9r:B g

9r 8r

v

a0

: ;

f9r:(B u 9r:B);

8r:9r:B;

B g

: v

b2

G

C

ex

� G

D

ex

Figure 9: Produt Graph for G

C

ex

and G

D

ex

One the produt graph is obtained, we need to transform this represen-

tation into a FLE

+

-onept desription. In order to apply the on funtion

introdued in De�nition 32, we have to hek whether the obtained graph

is a simple desription graph. Unfortunately, this is not the ase sine the

produt graph may ontain ross edges (w.r.t. a breadth-�rst spanning tree).

Cross edges violate the Condition 1 for simple desription graphs from

De�nition 25. Thus, we have to perform the translation of a produt graph

into a onept desription in two steps. First, we have to eliminate ross

edges; then, we an use the funtion on to read out the onept desription.

The elimination of ross-edges is performed by an unraveling algorithm that

introdues a vertex named with the path by whih this vertex is onneted

to the root vertex and yields a tree with additional bak-edges. Thus the

obtained graph may still have yle, but is ross edge free. In order to present

the algorithm we need some preliminaries for paths. Let p = v

1

v

2

: : : v

n

be a

path, then we denote by Tail(p) = v

n

the last element in p. Let furthermore

q be a path, then pjq is the path obtained by the onatenation of p and q.

We also need the set Final�Path(G) := f(v

1

v

2

: : : v

n

) 2 V

n

G

j (v

i

Qr v

i+1

) 2

E

G

; x

j

6= x

i

for j 6= ig. The unraveling is performed aording the unravel-

algorithm depited in Figure 10.

The funtion �rst eliminates all existential forward edges in the graph and

then eliminates all ross edges reursively by alling the funtion eliminate

with the root vertex as start vertex. This funtion in turn traverses the

graph starting from the vertex v

�

and eliminates every ross edge (v

�

Qrw)

by removing it from the set of edges, traversing and eliminating the ross

edges from the reahability graph of w, making a opy of this sub-graph

and introduing a new Qr-suessor for v

�

as the root vertex of this opy.

A produt graph an now be transformed into a ross edge-free graph by
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unravel(G = (V;E; v

0

; `

V

; `

E

))

G

1

:= remove transitivity edges(G)

G

2

:= eliminate(G

1

; v

0

; ;)

G

3

:= For r 2 N

T

R

do transitive-losure(G

2

; 9r)

return G

3

eliminate(G = (V

G

; E

G

; v

0

G

; `

V

G

; `

E

G

))

V

0

:= Final�Path(G)

E

0

:= f(p Qr pjQrv) 2 V

0

�V

0

j (Tail(p) Qr v) 2 E

G

�

g [

f((pjQ

1

r

1

vjq) Qr (pjQ

1

r

1

v)) 2 V

0

�V

0

j (Tail(q)Qr v) 2 E

G

g

`

0

V

G

(p) := `

V

G

(Tail(p))

`

0

E

G

(pQrq) := `

E

G

(Tail(p)QrTail(q))

return G

Figure 10: Unravel Funtion for Desription Graphs

applying the unravel funtion. The graph obtained by the unravel funtion

is equivalent to the original one.

Lemma 48 Let C;D be FLE

+

-onept desriptions and G

C

;G

D

their orre-

sponding FLE

+

-desription graphs. Then,

1. Z : unravel(G

C

� G

D

)

*

�

G

C

� G

D

and

Z

0

: G

C

� G

D

*

�

unravel(G

C

� G

D

), and

2. Z

00

: unravel(G

C

� G

D

)

*

�

G

C

.

Proof. Proof of 1: We prove the laim in two steps, by advising two rela-

tions between unravel(G

C

�G

D

) and G

C

�G

D

and then show that these rela-

tions are simulations. We use G

u

as short-hand notation for unravel(G

C

�G

D

)

and G

x

as short-hand notation for G

C

� G

D

.

� The relation from unravel(G

C

� G

D

) to G

C

� G

D

is de�ned as: Z(p) =

Tail(p). We have to show now that this relation ful�lls the de�nition

of a simulation. Sine v

0

G

x

2 Final�Path(G

x

) the roots are mapped

onto eah other Z(v

0

G

x

) = Tail(v

0

G

x

) = v

0

G

x

. The label set of eah

vertex p 2 Final�Path in the unraveled graph is de�ned by `

0

V

G

u

(p) :=

`

V

G

x

(Tail(p)), thus it ful�lls `

0

V

G

u

(p) � `

V

G

x

(Z(p)). It remains to be



54 5 LEAST COMMON SUBSUMER FOR FLE

+

shown that if (p Qr pjQrq) 2 E

G

u

and jjqjj = 1, then 9v

0

2 V

G

x

:

(v Qr v

0

) 2 E

G

x

and Z(q) = v. If (p Qr pjQrq) 2 E

G

u

then by de�nition

of G

u

= unravel(G

C

� G

D

) : (Tail(p) Qr q) 2 E

G

x

, sine for jjqjj = 1

holds that Z(q) = q.

� The relation from G

C

� G

D

to unravel(G

C

� G

D

) is de�ned as: Z

0

(v) =

fp j Tail(p) = vg. We have to show again that all properties from the

de�nition of simulations hold. As above, the roots are mapped onto

eah other, sine v

0

G

x

2 Tail((v

0

G

x

)) = Z

0

(v

0

G

x

). The de�nition of the

funtion unravel implies that the label of the verties trivially ful�ll the

ondition: `

V

G

x

(Z

0

(v)) := `

V

G

x

(Tail(fp j Tail(p) = vg)) = `

V

G

x

(v). Thus

it remains to be shown that if (vQrw) 2 E

G

x

then 8p 2 Z

0

(v) : 9q 2

Z

0

(w) : (p Qr pjQrq) 2 E

G

u

. From p 2 Z

0

(v) follows by the de�nition

of Z

0

that Tail(p) = v. Aording to whether w appears more that one

in p we have to make a ase distintion.

(1) If (p = p

1

jQrwjp

2

) for 9p

1

; p

2

: jjp

i

jj � 1 with i 2 f1; 2g. Sine

Tail(p) = Tail(p

2

) = v, we have (Tail(p)Qrw) 2 E

G

x

, thus by de�-

nition of E

G

u

there must exist (p

1

jQrwjp

2

Qr p

1

jQrw) 2 E

G

u

. Sine

(p

1

jQrw) 2 Tail(w) we have found the required suessor.

(2) If p = p

1

Q

0

r

0

v, then by de�nition of Final�Path(G

x

) : (pjQrw) 2

Final�Path(G

x

) and Tail(p) = v and thus (Tail(p) Qr w) 2 E

G

x

and

by de�nition of E

G

u

there must also exist (p Qr pjQrw) 2 E

G

u

.

Thus both relations Z and Z

0

are simulations.

Proof of 2: In the Lemma 48 laim (2) is an immediate onsequene of (1).

Sine Z

1

: unravel(G

C

�G

D

)

*

�

G

C

�G

D

and there always exists a simulation

Z

2

: G

C

�G

D

*

�

G

C

, there always exists a simulation Z

2

ÆZ

1

: unravel(G

C

�

G

D

)

*

�

G

C

.

Lemma 49 Let C;D be FLE

+

-onept desriptions and G

C

;G

D

their orre-

sponding FLE

+

-desription graphs, then unravel(G

C

� G

D

) is a simple de-

sription graph.

Proof. Sine the root vertex of G

C

�G

D

is also the root vertex of unravel(G

C

�

G

D

) and the unravel funtion yields onneted and direted graphs, unravel(G

C

�

G

D

) is a desription graph. To prove the laim we show that all proper-

ties from De�nition 25 hold. Again we use G

u

as short-hand notation for

unravel(G

C

� G

D

) and G

x

as short-hand notation for G

C

� G

D

.
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� Proof of Property 1 Sine neither G

C

nor G

D

have forall-forward edges,

G

x

annot have forall-forward edges by onstrution w.r.t. a breadth

�rst searh tree. Neither the funtion unravel nor the funtion eliminate

introdue new forall-forward edges.

Sine the funtion eliminate traverses and unravels the whole graph

the graph G

u

is ross edge-free. Sine the exists-forward edges in G

x

are removed in the �rst step of the unravel funtion, no forward edges

are reated by the eliminate funtion, but only edges to \fresh" verties

or bak loops, and sine the exists-forward edges introdued by the last

step in the unravel funtion are the only forward edges in G

u

and these

edges onnet verties onneted by a path of exists-tree edges w.r.t.

one transitive role. Hene Property 6 holds for G

u

.

� Proof of Property 2: We show by ontradition that Property 2 holds.

Assume there exists a yle f(v

1

Q

1

r

1

v

2

)(v

2

Q

2

r

2

v

3

) : : : (v

n

Q

n

r

n

v

1

)g 2

E

G

u

, where n � 1 and v

i

6= v

j

for i 6= j and either r

i

6= r

j

or r 62 N

T

R

.

The edges are introdued in the funtion unravel by the last step and

the all of the funtion eliminate. The last step in funtion unravel only

introdues forward-edges and thus no yles. Sine Lemma 48 holds, we

know that the yle f(v

1

Q

1

r

1

v

2

)(v

2

Q

2

r

2

v

3

) : : : (v

n

Q

n

r

n

v

1

)g 2 G

u

an

be simulated in G

x

. Thus G

x

ontains a yle for the same sequene of

roles Q

1

r

1

Q

2

r

2

: : : Q

n

r

n

. Sine there exist simulation relations G

x

*

�

G

C

and G

x

*

�

G

D

orresponding yles must exist in G

C

and in G

D

. Sine

G

C

and G

D

are simple desription graph they ful�ll Property 2 and thus

our initial assumption is false.

� Proof of Property 3: Consider a yle (p

1

Qr p

2

: : : p

n

Qr p

1

) in G

u

with

pairwise distint verties. The above Condition allows us to restrit

our attention to yles over only one transitive role r. From Lemma 48

follows for G

u

that there exists a simulation to G

x

and vie versa. Thus

it suÆes to show the laim for G

x

. Sine there is a simulation Z : G

u

*

�

G

x

, there is also a yle ((w

0C

w

0D

)Qr (w

1C

w

1D

) : : : (w

nC

w

nD

)Qr (w

0C

w

0D

))

in G

x

with pairwise distint verties. From the de�nition of produt

graphs follows that there must exist the yles ((w

0E

Qr w

1E

) : : : (w

nE

Qrw

0E

))

in G

E

with pairwise distint verties w

iE

for all E 2 fC;Dg. Sine

G

C

and G

D

are simple desription graphs, Lemma 31 guarantees that

Property 3 holds for G

C

and G

D

. Consequently there must exist a

forall-suessor of w

0C

in G

C

and there must exist a forall-suessor of
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w

0D

in G

D

. Sine (w

0C

w

0D

) is a vertex in G

x

the de�nition of produt

graphs requires that there exists a forall-suessor of (w

0C

w

0D

). The

simulation from G

x

to G

u

implies that there also exists a forall-suessor

of (v

0C

v

0D

) in G

u

.

� Proof of Property 4: Sine Lemma 48 holds it suÆes to show the

laim for G

x

. Assume f((u

C

u

D

) 8r (v

C

v

D

)); ((u

C

u

D

) 9r (w

C

w

D

))g �

E

G

x

. The de�nition of the produt graph G

x

implies that there ex-

ist f(u

C

8r v

C

); (u

C

9r w

C

)g � E

G

C

and f(u

D

8r v

D

); (u

D

9r w

D

)g �

E

G

D

. Aording Lemma 31 G

C

and G

D

are simple desription graphs.

Thus G

C

and G

D

ful�ll Property 4 and there exist simulations Z

E

s.t.

G

E

(v

E

)

*

�

G

E

(w

E

) for all E 2 fC;Dg. Thus Z

C

ÆZ

OC

: (G

x

)((v

C

v

D

))

*

�

G

C

(w

C

) and Z

D

ÆZ

OD

: (G

x

)((v

C

v

D

))

*

�

G

D

(w

D

). Thus for every vertex

(vv

0

) in (G

x

)((v

C

v

D

)) holds: If (vv

0

) has aQr

0

-suessor there must exist

a Qr

0

-suessor of Z

C

(v) in G

C

and a Qr

0

-suessor of Z

D

(v

0

) in G

D

. By

de�nition of produt graphs there must be a vertex (Z

C

(v)Z

D

(v

0

)) in

G

x

. Consider the labels in G

x

: If

�

Z

C

ÆZ

OC

(vv

0

) Z

D

ÆZ

OD

(vv

0

)

�

= (ww

0

)

then, by the de�nition of simulation holds `

G

x

(vv

0

) � `

G

x

(ww

0

). Sine

(Z

C

(v

C

)Z

D

(v

D

)) = (w

C

w

D

) we obtain a simulation from (v

C

v

D

) to

(w

C

w

D

).

If r 2 N

T

R

we have to show that there also exists a vertex (w

0

C

w

0

D

) 2 V

G

x

suh that ((w

C

w

D

) 8r (w

0

C

w

0

D

)) 2 E

G

x

and (G

x

)((v

C

v

D

))

*

�

(G

x

)((w

0

C

w

0

D

)).

As above we know from Lemma 31 that G

C

and G

D

ful�ll Property 4

and thus there exists a vertex (w

0

C

w

0

D

) and the simulations Z

0

E

s.t.

G

E

(v

E

)

*

�

G

E

(w

0

E

) for all E 2 fC;Dg. Thus there is again a om-

position of simulations Z

0

C

Æ Z

OC

: (G

x

)((v

C

v

D

))

*

�

G

C

(w

0

C

) and Z

0

D

Æ

Z

OD

: (G

x

)((v

C

v

D

))

*

�

G

D

(w

0

D

). Hene for every vertex (vv

0

) in (G

x

)((v

C

v

D

))

with a Qr

0

-suessor there must exist a Qr

0

-suessor of Z

0

C

(v) in G

C

and a Qr

0

-suessor of Z

0

D

(v

0

) in G

D

. Thus we an, as above, onlude

that for every vertex (Z

0

C

(v)Z

0

D

(v

0

)) in G

x

, where for

�

Z

0

C

ÆZ

OC

(vv

0

) Z

0

D

Æ

Z

OD

(vv

0

)

�

= (ww

0

) by the de�nition of simulation holds that `

G

x

(vv

0

) �

`

G

x

(ww

0

). Sine (Z

0

C

(v

C

)Z

0

D

(v

D

)) = (w

0

C

w

0

D

) we obtain a simulation

from (v

C

v

D

) to (w

0

C

w

0

D

).

� Proof of Property 5: Proof is analogous to the Proof of Property 4.

Again, sine Lemma 48 holds it suÆes to show the laim for G

x

. As-

sume ((u

C

u

D

) 8r (v

C

v

D

)) 2 E

G

x

for r 2 N

T

R

. The de�nition of G

x

implies that there exist (u

C

8r v

C

) 2 E

G

C

and (u

D

8r v

D

) 2 E

G

D

. A-
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ording Lemma 31 G

C

and G

D

are simple desription graphs. Thus G

C

and G

D

also ful�ll Property 5 and thus there exist the verties (v

E

8rv

0

E

)

and simulations Z

E

s.t. G

E

(v

E

)

*

�

G

E

(v

0

E

) for all E 2 fC;Dg. Thus

Z

C

Æ Z

OC

: (G

x

)((u

C

u

D

))

*

�

G

C

(v

0

C

) and Z

D

Æ Z

OD

: (G

x

)((u

C

u

D

))

*

�

G

D

(v

0

D

). Thus for every vertex (uu

0

) in (G

x

)((u

C

u

D

)) holds: If (uu

0

)

has a Qr

0

-suessor there must exist a Qr

0

-suessor of Z

C

(u) in G

C

and a Qr

0

-suessor of Z

D

(u

0

) in G

D

. By de�nition of produt graphs

then there must be a vertex (Z

C

(u)Z

D

(u

0

)) in G

x

. Consequently there

is the vertex (Z

C

(u

C

)Z

D

(u

D

)) = (v

0

C

v

0

D

) in G

x

. Consider the labels in

G

x

: If

�

Z

C

ÆZ

OC

(uu

0

) Z

D

ÆZ

OD

(uu

0

)

�

= (vv

0

), then by the de�nition of

simulation holds `

G

x

(uu

0

) � `

G

x

(vv

0

). Sine (Z

C

(u

C

)Z

D

(u

D

)) = (v

0

C

v

0

D

)

we obtain a simulation from (u

C

u

D

) to (v

0

C

v

0

D

).

� Proof of Property 6 6: Consider the vertex (v

C

v

D

) 2 V

G

u

with B 2

`

G

u

(v

C

v

D

). One again, from Lemma 48 follows for unravel(G

x

) that

there exists a simulation to G

x

and vie versa. Thus there exists

(v

0

C

v

0

D

) 2 V

G

x

where B 2 `

G

x

(v

0

C

v

0

D

). It follows from the de�nition

of produt graphs that, if B 2 `

G

x

(v

0

C

v

0

D

) then B 2 N

C

. Consequently

the simulation from G

B

to (G

u

(v

C

v

D

) trivially exists.

Sine all properties from De�nition 25 hold, G

u

is a simple desription graph.

Sine the graph obtained by the funtion unravel is a simple desription

graph, Theorem 37 is appliable and the onept desription orresponding

to the unraveled graph an be obtained by the on funtion to read a FLE

+

-

onept desription from the simple desription graph. We are now ready to

prove the main theorem of this paper.

Theorem 50 Let C;D be FLE

+

-onept desriptions and G

C

;G

D

their orre-

sponding simple desription graphs, then on(unravel(G

C

�G

D

)) � ls(C;D).

Proof. Let L = on(unravel(G

C

� G

D

)). We have to show that (1) C v L

and D v L and (2) if there exist another FLE

+

-onept E with E v L,

C v E, and D v E then L v E.

Proof of (1): It is suÆient to show C v L. Lemma 48 implies that there

exists a simulation Z : unravel(G

C

� G

D

)

*

�

G

C

. Applying Lemma 49 to the

unraveled graph and by the de�nition of G

C

we know that unravel(G

C

�G

D

)

and G

C

are both simple desription graphs. Thus Lemma 26 implies that
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G

C

v unravel(G

C

� G

D

) sine there is a simulation. From Theorem 37 it

follows that unravel(G

C

� G

D

) � on(unravel(G

C

� G

D

)). Sine G

C

is a

simple desription graph, Lemma 30 and Lemma 31 an be applied and we

an onlude that G

C

� C v on(unravel(G

C

� G

D

)) � unravel(G

C

� G

D

).

Proof of (2): By ontradition: assume C v E, D v E, E v L and

L 6v E. Let G

A

:= (V

A

; E

A

; v

A

0

; `

A

V

; `

A

E

) where A 2 fC;D;E; Lg. From C v E

andD v E follows by Theorem 44 that there exist simulations Z

C

: G

E

*

�

G

C

and Z

D

: G

E

*

�

G

D

. Thus it holds by de�nition of simulations: 8v 2 V

E

:

� 8v

F

2 V

F

: If v

F

2 Z

F

(v) then `

E

V

(v) � `

F

V

(v

F

), and

� 8(v Qr w) 2 E

E

there exist v

F

; w

F

2 V

F

s.t. fv

F

g 2 Z

F

(v); fw

F

g 2

Z

F

(w) and (v

F

Qrw

F

) 2 E

F

,

where F 2 fC;Dg. From the existene of both simulation relations and from

the De�nition of produt graphs follows that for all v 2 V

E

:

� If v

C

2 Z

C

(v) and v

D

2 Z

D

(v) for v

C

2 V

C

; (v

C

Qr w

C

) 2 E

C

and for

v

D

2 V

D

; (v

D

Qrw

D

) 2 E

D

then there exist the verties f(v

C

; v

D

); (w

C

; w

D

)g 2

V

G

C

�G

D

and ((v

C

; v

D

)Qr (w

C

; w

D

)) 2 E

G

C

�G

D

.

� Sine `

E

V

(v) � `

C

V

(v

C

) \ `

D

V

(v

D

) = `

G

C

�G

D

V

((v

C

; v

D

))

Thus there exists a simulation relation Z

L

: G

E

*

�

G

C

� G

D

, where Z

L

(v) =

f(v

0

v

00

) 2 V

G

C

�G

D

j v

0

2 Z

C

(v); v

00

2 Z

D

(v)g. By Lemma 48 then there

also must exist a simulation Z

0

L

: G

E

*

�

unravel(G

C

� G

D

). Sine G

E

and

unravel(G

C

� G

D

) are simple desription graphs, Lemma 26 implies G

E

v

unravel(G

C

� G

D

). From this we obtain by means of Lemma 30, Lemma 31,

and Lemma 49, that G

E

� E v on(unravel(G

C

�G

D

)) � unravel(G

C

�G

D

).

This is a ontradition to our initial assumption that L 6v E. Thus we an

onlude that on(unravel(G

C

� G

D

)) � ls(C;D).

In ase the n-ary ls is to be omputed from a set of onepts, the produt

of all orresponding simple desription graphs should be omputed �rst and

then the unravel and the on funtion should be applied only one.

6 Conlusion and Outlook

We have shown how the existing ls algorithms for the DLs EL and FL

0

an

be extended to transitive roles with omparatively little e�ort. In ase of
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EL

+

onept desriptions, the e�et of transitive roles ould simply be made

expliit by adding a number of ertain existential restritions to the onept.

For FL

+

0

, the representation of onept desriptions by formal languages

ould be extended by means of an operator for the transitive losure of formal

languages.

For the DL FLE

+

we have introdued a sound and omplete algorithm

for the e�etive omputation of the ls. In partiular, the ls of a �nite set

of FLE

+

-onept desriptions always exists and is uniquely determined up

to equivalene. As a key utility for the ls omputation we have proposed

desription graphs as a �nite representation of FLE

+

-onept desriptions

in whih all restritions additionally imposed by transitive roles are made

expliit. On this basis the ls ould be de�ned by means of the graph produt

of the desription graphs of the input onepts.

It is easy to see that the ls algorithm an be optimized in several ways to

produe smaller output onept desriptions. Firstly, the bloking onditions

used to generate desription graphs out of onept desriptions so far only

allow for bloking w.r.t. anestors. This might be replaed by a more general

bloking strategy apable of bloking between arbitrary verties. Seondly,

it seems expedient to redue redundanies possibly produed by the funtion

on. In partiular, it is not always neessary to apply the a-funtion one

for every edge in the desription graph. A thorough investigation of the

omputational omplexity of the ls omputation in FLE

+

remains future

work. Nevertheless, already for then non-transitive language FLE it is known

that the ls may be exponentially large in the input size.
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