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Abstrat. The paper ontains a proof of ompleteness of a goal-direted

inferene system for general E-uni�ation with eager Variable Elimina-

tion. The proof is based on an analysis of a onept of ground, equational

proof. The theory of equational proofs is developed in the �rst part. Solv-

ing variables in a goal is then shown to be reeted in de�ned transfor-

mations of an equational proof. The termination of these transformations

proves termination of inferenes with eager Variable Elimination.

1 Introdution

E-uni�ation is onerned with �nding a set of solutions for a given equation

in a given equational theory E. The problem of E-uni�ation arises in many

areas of omputer siene like formal veri�ation, theorem proving and logi

programming. In general the E-uni�ation problem, i.e. the problem of �nding

a set of solutions for a given equation in a non-empty equational theory E

is undeidable, unlike in the ase of the syntati uni�ation problem, i.e. in

the ase of searhing for a solution for an equation in the ontext of the empty

equational theory. Nevertheless, the E-uni�ation problem is semi-deidable and

there are omplete algorithms for solving it.

Goal-direted algorithms for E-uni�ation are based on the idea of trans-

forming goal equations into a solved form whih will allow easily to de�ne a

solution. Suh an inferene system was presented �rst in [2℄, and is displayed

here in a di�erent notation in Figure 1. Consider the rule Variable Elimination

in this set of inferene rules. If applied to an equation of the form x � v in the

goal, it will eliminate x from all other equations in the goal and thus solve the

equation x � v.

1

The Variable Elimination is fored to be applied eagerly here,

beause there is no other rule to deal with equations of the form x � v, where x

is not a variable in v.

There was no proof up to now that this system of inferenes is omplete for

E-uni�ation. It is omplete, when we allow other rules to apply to an equation

x � v, but then Variable Elimination annot be applied eagerly. The problem

1

Formal de�nition of a solved equation is in the setion 6.
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was �rst disovered and alled the Eager Variable Elimination Problem by Gallier

and Snyder in [2℄.

Eager Variable Elimination is justi�ed in the ontext of syntati uni�ation

beause it dereases the number of unsolved variables in the goal, while preserv-

ing a set of solutions. The number of unsolved variables is not inreased by any

other rule and hene we may be sure that the inferenes will terminate.

In the ontext of E-uni�ation we must use another rule alled Mutate.

2

No-

tie that we have here oniting results of appliations of Mutate and Variable

Elimination to the goal: Variable Elimination dereases the number of unsolved

variables in the goal, but Mutate inreases this number, and while Mutate de-

reases the length of a ground proof of an instane of a goal, Variable Elimination

may inrease this length.

In [3℄ Gallier and Snyder proved ompleteness of their system without eager

Variable Elimination. In [5℄ (p. 207) the authors stated that Mutate (replae-

ment) and eager Variable Elimination (merging) do not preserve the form of the

proof.

In this paper we prove that Variable Elimination may be applied eagerly

without destroying the ompleteness of the E-uni�ation proedure. The fat

that Variable Elimination an be applied eagerly dereases non-determinism in

the inherently non-deterministi general E-uni�ation algorithms. It may redue

redundany of inferenes and limit the searh spae for a solution to a given

equation. This was pointed out e.g. in [7℄, [6℄, [4℄.

The main idea in the proof of ompleteness of our inferene rules (Figure 1),

is to onsider a ground equational proof for a goal. If x � v is part of this goal,

we know that there must be subproof for a ground instane of this equation.

We then an disover how the proof of the ground instane of a goal is hanged,

when Variable Elimination is applied to x � v. The main problem is to show

that eliminating variables from the goal will not lead us into in�nite loops of

inferenes. Hene we must show, what is dereasing in the ground proof after a

variable is solved. Here we use the idea of a path in a proof, i.e. any omposition

of subproofs in the ground proof, whih starts with an ourrene of an unsolved

variable. We show that the multiset of lengths of the paths in a ground proof of

an instane of a goal will be smaller after Variable Elimination is applied.

Most of the paper is onerned with a desription of a theory of equational

ground proofs (de�nitions in Setion 3) and a onstrution of new equational

proof whih reets e�ets of eager Variable Elimination (Setion 4). We present

then the onept of paths in an equational proof (Setion 5) and this enables us

to de�ne a measure of a goal and prove the result by indution on this measure

(Setion 6).

2 Preliminaries

We use standard de�nitions as in [1℄.

2

In [3℄ this rule is alled Root Rewriting. The name Mutate ame from [5℄, where it

was used for E-uni�ation in Syntati Theories.
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We will onsider equations of the form s � t, where s and t are terms. Please

note that throughout this paper these equations are onsidered to be oriented,

so that s � t is a di�erent equation than t � s. Let E be a set of equations, and

u � v be an equation, then we write E j= u � v (or u =

E

v) if u � v is true in

any model ontaining E. We all E an equational theory, and assume that E is

losed under symmetry. A goal (E-uni�ation problem) is usually denoted by G

and it is a set of equations. E j= G means that E j= e for all e in G.

We will be onsidering ground terms as ground objets that may or may

not have the same syntati form. In other words we will be onerned with the

ourrenes of the terms more than their values. A term may be identi�ed by

its address in a proof sequene and a position of it as a subterm in a term in the

proof. Hene the equality sign between ground terms is treated in a speial way.

If u; v are ground terms, by u = v, u is understood to be an objet idential with

v, whereas when syntati equality is suÆient, it will be denoted by u == v.

Syntati inequality will be denoted by u 6== v. The di�erene between identity

and syntati identity is that the �rst involves objets and the seond involves

names.

We an say that a variable x points to its ourrenes in a term u, where eah

of these ourrenes under some ground substitution , is idential with some

subterm of u at a position � (x = uj

�

). Di�erent ourrenes of the same

variables are di�erent objets, though they have the same syntati form (eah

one is of the form x). In order to distinguish between di�erent ourrenes

of the same variable, we will use supersript numbers, usually numbering the

ourrenes from left to right in order of their appearanes in an equational

proof. Hene x

1

and x

2

are di�erent ourrenes of x in a proof.

Sometimes we will want to state that some subterm has a form (or value) of

x, but is not idential to x (hene is not pointed to by a variable x). This will

be indiated by quote marks. Hene w[\x"℄

�

is di�erent from w[x℄

�

sine in

the seond term x atually ours at position �, while in the �rst one there is

only a subterm that has the value of x.

If  is a ground substitution, 

x

means the restrition of this substitution to

a variable x. Hene if  = [x 7! a; y 7! b; z 7! ℄, 

x

= [x 7! a℄.

3 Equational proofs

Given an equational theory E, we de�ne an equational proof as a pair (�; )

suh that � is a series of ground terms and  is a ground substitution.

De�nition 1. (equational proof)

Let E be a set of equations. An equational proof of an equation u � v is a

pair (�; ) where � = (w

1

; w

2

; : : : ; w

n

) is series of ground terms, alled proof

sequene, suh that:

1. u = w

1

, v = w

n

,

2. for eah pair (w

i

; w

i+1

) for 1 � i � (n� 1), there is an equation s � t 2 E

and a mather �, suh that there is a subterm w

i

j

�

of w

i

and a subterm

w

i+1

j

�

of w

i+1

, and w

i

j

�

= s�, w

i+1

j

�

= t�.
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We an write the equational proof as

u = w

1

�

[�

1

;s

1

�t

1

;�

1

℄

w

2

�

[�

2

;s

2

�t

2

;�

2

℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;�

n�1

℄

w

n

= v

where [�

i

; s

i

� t

i

; �

i

℄ indiates at what position �

i

is the mathing subterm,

whih equation from E was used (s

i

� t

i

), and how the variables in this equation

were substituted (�). Eah w

i

in the above sequene is alled a term in the proof,

as distint from any proper subterms of w

i

, whih are not ounted as terms in the

proof. Sine an equational proof is a sequene of ground terms, we will sometimes

use the notation borrowed from that for arrays, and � [i℄ will mean the i'th term

in � .

Let  be a ground substitution, and G a set of equations suh that E j= G.

Hene by Birkho�'s theorem, there must be an equational proof for eah u �

v, where u � v 2 G: u = w

1

� w

2

� : : : � w

n

= v.

Sine every mather at eah step uses a renamed version of an equation

from E, the domain of the mather is disjoint from the domain of  and the

domains of mathers at all other steps in the proof, we extend  to 

0

suh that:



0

=  [�

1

[ : : :[�

n

. From now on we will assume that  is an extended version

of itself.

In order to be able to identify new variables introdued by a possible appli-

ation of Variable Deomposition (Figure 1), we have to extend  even more.

3

A general extension of  will add variables for eah subterm of a term v if



x

= [x 7! v℄. We will all these new variables subterm variables.

De�nition 2. (general extension of )

Let  be a ground substitution. A general extension of , ex(), is de�ned reur-

sively as follows:

1. if 

x

= [x 7! v℄ and jvj = 1 (v is a onstant), then ex(

x

) = 

x

,

2. if 

x

= [x 7! f(v

1

; : : : ; v

n

)℄, and n � 1, then let 

y

i

= [y

i

7! v

i

℄, for

1 � i � n, and ex(

x

) = 

x

[ ex(

y

1

) [ � � � [ ex(

y

n

),

3. ex() =

S

x2Dom()

ex(

x

)

From now on we will onsider  in (�; ) as a general extension of itself. We

have 3 kinds of variables in Dom():

1. the goal variables, i.e. the variables in V ar(u � v);

2. the system variables, i.e. if there is a step � [i℄ �

[�

i

;s

i

�t

i

;℄

� [i+1℄ in (�; ),

then the variables in V ar(s

i

� t

i

) are alled system variables;

3. the subterm variables in � [i℄, for eah � [i℄ in the proof, i.e. variables that

are introdued by general extension of  ;

We will see that eah variable ourrene starts or ends some subproof in

an equational proof. In order to de�ne this subproof, we will use a notion of

orientation of a variable ourrene. We de�ne it for eah variable ourrene in

the following way:

3

The following de�nition is similar to the de�nition of general extension of a substi-

tution in [3℄. It was introdued there with a similar purpose: to aommodate the

Variable Deomposition rule.
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De�nition 3. (orientation of variable ourrenes)

Let (�; ) be an equational proof and x 2 Dom().

1. If x is a system variable ourrene in � [i℄ �

[�

i

;s

i

�t

i

;℄

� [i+ 1℄ and x =

� [i℄j

�

for some position �, then x has left orientation. If x = � [i+ 1℄j

�

,

then x has right orientation.

2. if x is a goal variable ourrene in � [1℄ (x = � [1℄j

�

), then x has right

orientation, and if x = � [n℄j

�

, where � [n℄ is the last term in the proof,

then x has left orientation.

3. if x is a subterm variable, hene x = yj

�

, then x has the same orienta-

tion as y.

3.1 Part of equational proof and subproof

Now we de�ne subproofs in an equational proof as proofs embedded at some

position in parts of this proof.

De�nition 4. (part of proof for depth �)

Let (�; ) be an equational proof

w

1

�

[�

1

;s

1

�t

1

;℄

w

2

�

[�

2

;s

2

�t

2

;℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;℄

w

n

.

Let � be one of �

1

; : : : ; �

n�1

, whih are the positions at whih the steps in

the proof are performed. A part of the proof (�; ) for depth � is a sequene:

� [i℄ �

[�

i

;s

i

�t

i

;℄

� � � �

[�

i+j�1

;s

i+j�1

�t

i+j�1

;℄

� [i+j℄, suh that for i � k � j�1,

�

k

� � or �

k

jj�.

Hene part of a proof is a subsequene of steps in the proof, suh that eah

step is performed at a position �, lower or at a parallel position in the subsequent

terms of the proof. If j = 0, the part of the proof is omposed of one term only.

Now we will de�ne a subproof in an equational proof as a sequene of subterms

of terms in a part of the original proof.

De�nition 5. (subproof)

Let (�; ) be an equational proof.

Let � [i℄ �

[�

i

;s

0

1

�t

0

1

;℄

� � � �

[�

i+k�1

;s

0

i+k�1

�t

0

i+k�1

;℄

� [i + k℄ be a part of the

proof (�; ) for depth �, and let �

n

be a suh that � � �

n

.

Then a pair (�; ), where � is a sequene of terms (alled subproof se-

quene): � [i℄j

�

n

; � [i+ 1℄j

�

n

; : : : ; � [i+ k℄j

�

n

is alled a subproof of (�; ).

In the next setions, we want to be able to use a opy of a subproof in reating

new proofs. In this opy only some variables, alled internal variables, will be

renamed.

De�nition 6. (internal/external variables in a subproof)

Let (�; ) be an equational proof and (�

w�w

0

; ) a subproof in (�; ). If there is

a step in (�

w�w

0

; ): w

i

�

[�;s�t;℄

w

i+1

, y 2 V ar(s � t), y is alled an internal

variable in (�

w�w

0

; ). If y has ourrenes in (�

w�w

0

; ), but is not internal

variable in this subproof, it is alled an external variable in (�

w�w

0

; ).
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De�nition 7. (renaming of a subproof)

Let (�; ) be an equational proof and (�

w�w

0

; ) a subproof in (�; ). (�

0

w�w

0

; 

0

)

is a renaming of (�

w�w

0

; ) if (�

0

w�w

0

; 

0

) is exatly like (�

w�w

0

; ), with all in-

ternal variables renamed.

Example 1. Let E := fffx � fgxg and the equational proof (�; ) is the fol-

lowing:

fgfa �

[�;ffx

1

�fgx

1

;[x

1

7!fa℄℄

fffa �

[<1>;ffx

2

�fgx

2

;[x

2

7!a℄℄

ffga �

[�;ffx

3

�fgx

3

;[x

3

7!ga℄℄

fgga.

Obviously, (�; ) is its own subproof. We have also one more subproof:

ffa �

[�;ffx

2

�fgx

2

;[x

2

7!a℄℄

fga, where ffa = � [2℄j

<1>

. A renaming of this sub-

proof would have the following form: ffa �

[�;ffx

4

�fgx

4

;[x

4

7!a℄℄

fga, where x

4

is

a new variable.

Further analysis of subproofs and their normal forms may be found in Ap-

pendix A.

3.2 Embedding a proof into a term

Embedding a proof into a term is a way to onstrut a proof from a given

subproof.

De�nition 8. (embedding of a proof)

If w is a ground term, (�; ) is a proof of the form:

w

1

�

[�

1

;s

1

�t

1

;℄

w

2

�

[�

2

;s

2

�t

2

;℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;℄

w

n

and there is a position � in w suh that wj

�

== w

1

, then there is a proof (�

0

; )

of the form:

w[w

1

℄

�

�

[��

1

;s

1

�t

1

;℄

w[w

2

℄

�

�

[��

2

;s

2

�t

2

;℄

: : : �

[��

n�1

;s

n�1

�t

n�1

;℄

w[w

n

℄

�

We say that (�

0

; ) is the embedding of the proof (�; ) in the term w.

We an attah a proof to a given equational proof (�; ) by embedding it

into the last term of (�; ), if the onditions of the de�nition are met.

If (�; ) is a proof suh that it is omposed from (�

1

; 

1

) and (�

2

; 

2

) by

embedding (�

2

; 

2

) into the last term of (�

1

; 

1

), we say that (�; ) is a om-

position of (�

1

; 

1

) and (�

2

; 

2

).

3.3 Contrating

De�nition 9. (non-redundant equational proof)

An equational proof � is non-redundant if there are no two terms � [i℄ and

� [j℄ suh that i 6= j and � [i℄ == � [j℄, and all proper subproofs of � are

non-redundant.
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A simple proedure (alled ontration ) of utting out loops out of subproof

sequenes in a proof sequene, allows us to obtain a non-redundant proof from

any redundant one.

4

3.4 Assoiated subproofs, assoiated terms and a hierarhy of

variable ourrenes

In this setion, for eah ourrene of a variable x in Dom(), we de�ne a ground

term assoiated with this ourrene. The intuition is that a term assoiated with

a given ourrene of a variable, x, is the term on the opposite end of a longest

subproof with starts with x. If x � v is an equation in our goal G, and E j= G,

then v is a term assoiated with x.

First, we de�ne ground subproofs assoiated with eah ourrene of x in an

equational proof.

De�nition 10. (subproof assoiated with an ourrene of a variable)

Let (�; ) be an equational proof, x 2 Dom() and x is an ourrene of x in

(�; ).

1. If x has a left orientation and x = � [i℄j

�

, then there is the longest subproof

� [i� k℄j

�

� � � � � � [i℄j

�

We reverse the order of the terms in this subproof:

� [i℄j

�

� � � � � � [i� k℄j

�

and we all this subproof a subproof assoiated with this x. We say

that the subproof assoiated with x is left-oriented.

2. If x has right orientation and x = � [i℄j

�

, then there is the longest subproof

� [i+ 1℄j

�

� � � � � � [i+ l℄j

�

We all this subproof a subproof assoiated with this x and we say

that it is right-oriented.

Notie that if (�; ) is an equational proof of u � v, then the external

variables in this proof are only variables in V ar(u) and V ar(v). By the de�ni-

tion of subproofs assoiated with variable ourrenes, if (�

x�v

; ) is suh a

subproof, external variables in this subproof have their ourrenes only in x

(x and its subterm variables are external variables in this subproof) and v. The

external variable ourrenes in v have opposite orientation to that of x. We

will sometimes indiate an orientation of an ourrene of a variable by an arrow,

like in

!

x, whih denotes an ourrene of x with right orientation. Similarly,

if (�; ) is a subproof in (�; ), (

!

�

; ) indiates that this subproof has right

orientation.

4

In the ase of proofs in normal form, it is enough to require that there are no idential

terms in the proof, to show that it is non-redundant. The de�nition of normal form

for a proof is in Appendix A.
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De�nition 11. (term assoiated with an ourrene of x)

Let (�; ) be an equational proof, x 2 Dom() and x is an ourrene of x

in (�; ). Let a subproof (�

x�v

; ) be a subproof assoiated with x, then we

de�ne a term assoiated with x, ass(x), in the following way:

1. if no ourrene of x appears in v, then ass(x) = v,

2. if an ourrene of x appears in v, then

(a) if there is a step at the root in (�

x�v

; ), we will hoose the rightmost

suh step: w

i

�

[�;s

i

�t

i

;℄

w

i+1

and de�ne ass(x) = w

i

,

(b) if there is no step at the root in (�

x�v

; ), we de�ne ass(x) = x.

The point of this analysis is the observation that if we want to perform eager

Variable Elimination with a goal equation x � w, where x 62 V ar(w), knowing

that there is a ground proof of x � w, even if x 6== w, w = ass(x).

In this situation, we will show how to onstrut an equational proof of the goal

with the ground substitution hanged to 

0

, suh that 

0

x

= [x 7! w℄.

There is a hierarhy among ourrenes of the variables of an equational

proof. In order to display it, we will onstrut a graph G

�

with ourrenes of

variables in a given equational proof as nodes and arrows as follows.

1. for eah variable x in Dom() and for eah ourrene x of this variable, if

for any y 2 Dom(), (�

x�w[y℄

; ) is a subproof of a proof assoiated with

x and w is not empty, draw an arrow from x to y;

2. for eah variable x in Dom() and for eah ourrene x of this variable:

if for any y 2 Dom(), (�

x�y

; ) is a subproof of a proof assoiated with

x:

(a) if (�

y�x

; ) is a subproof of a proof assoiated with y, then non-

deterministially deide the diretion of an arrow between x and y;

(b) if (�

y�x

; ) is not a subproof assoiated with y, then draw an arrow

from x to y;

The parent/hild relation de�ned next, follows the arrows in the graph for

an equational proof.

De�nition 12. (parent/hild relation) Let (�; ) be an equational proof with

x; y 2 Dom() (x may be possibly the same as y) Let x and y be any two

di�erent ourrenes of variables in Dom().

If there is an arrow x ! y, then x is alled a parent of y and y is a

hild of x.

The graph G

�

, for an equational proof helps us to reognize/deide the

parent/hild relation. This relation is in some ases determined by the struture

of the proof (we annot disover new variables in the transformation of the goal

before solving/eliminating some other variables �rst), or it is deided by the

seletion rule and orientation of an equation of the form x � y. The maximal

nodes in the graph are just those ourrenes of variables that are disovered in

the goal and may be seleted for eager Variable Elimination.
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De�nition 13. (maximal ourrenes of variables)

Let (�; ) be an equational proof, and G

�

be a graph for (�; ). A set M is a

set of maximal nodes in G

�

, if M ontains all nodes whih have no parents in

G

�

.

4 Solving variables in an equational proof

The following onstrution explains what happens with an equational proof of a

goal, if an equation of the type x � t is seleted for eager Variable Elimination.

Notie that in this onstrution we delare whih variables in Dom() are solved

or unsolved. In the justi�ation of the ompleteness of the inferene system with

eager Variable Elimination we start with the equational proof of an instane of

a goal with all variables unsolved. Variable Elimination reets solving variables

in a ground equational proof.

Let (�; ) be an equational proof with the proof sequene:

� = (w

1

�

[�

1

;s

1

�t

1

;℄

w

2

�

[�

2

;s

2

�t

2

;℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;℄

w

n

)

and  be an extended ground substitution.

Let U = fx

1

; : : : ; x

n

g be a set of variables alled \unsolved" in (�; ), G

�

be

the graph for (�; ) onstruted only with respet to unsolved variables (hene

we treat all other variables as non-existent in (�; )).

Let x 2 U and x be a maximal node in G

�

and let ass(x) = v.

There is a subproof (�

x�v

; ) in (�; ), let (�

0

x�v

; 

0

) be a renaming of

this subproof.

5

If x has no ourrenes in v, reate a new proof (�

�

; 

�

) that is exatly as

(�; ) with the proof sequene modi�ed in the following way:

1. Extension

Whenever x = w

i

j

�

and hene w

i

= w

i

[x℄, and

(a) x has right orientation, replae w

i

( the i'th step in (�; )), by the

sequene of steps:

w

i

[v℄

�

� (�

0

v�\x"

) � w

i

[\x"℄

�

where (�

0

v�\x"

) means a renaming of (�

\x"�v

; ) reversed and embed-

ded in w

i

at position � leftwards. Note that the renamings of internal

ourrenes of variables and new ourrenes of external variables in the

renaming of (�

\x"�v

; ) have reversed orientation in the new proof.

(b) x has left orientation, replae w

i

(the i'th step in (�; )) by the sequene

of steps:

w

i

[\x"℄

�

� (�

0

\x"�v

) � w

i

[v℄

�

where (�

0

\x"�v

) means a renaming of (�

\x"�v

; ) embedded in w

i

at

position � rightwards. The renamings of internal ourrenes of variables

and new ourrenes of external variables in (�

0

\x"�v

) preserve their

orientation in the new proof.

5

If x has no ourrenes in v, (�

x�v

; ) is a subproof assoiated with x.
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2. Contration

For eah ourrene of an unsolved variable y in (�; ), if (�

y�s

; ) is a

proper assoiated subproof of this ourrene in (�; ) and there is a subproof

sequene: �

s�\y"

�

\y"�s

in the proof sequene �

�

after extension, ontrat

the subproof sequene to a one-element sequene, s;

The substitution 

�

is de�ned as follows:



�

x

= [x 7! v℄,

if yj

�

= x, and y 62 U , then 

�

y

= [y 7! y[x

�

℄

�

℄,

if z 62 Dom(), z is a renaming of a variable z

0

2 Dom(), that appeared in

some (�

0

x�v

; 

0

), then 

�

z

= [z 7! z

0

℄,

for any other variable, 

�

= ;

If x has ourrenes in v, then (�

�

; 

�

) = (�; ).

Mark variables

Mark variable x solved in (�

�

; 

�

). If x has no ourrenes in v, mark also

all subterm variables of x as solved New variables in Dom(

�

), whih did not

appear in Dom() are marked as unsolved.

If a proof (�

�

; 

�

) is obtained from (�; ) in this way, then we say that

(�

�

; 

�

) is generated from (�; ) by substitution [x 7! v℄, written (�; )

[x 7!v℄

!

(�

�

; 

�

). As a orollary to this onstrution we notie that:

Corollary 1. If (�; )

[x 7!v℄

! (�

0

; 

0

) and y 2 Dom(

0

), then for eah ourrene

y

0

in (�

0

; 

0

), either

1. y 2 Dom() and y

0

is an ourrene of this variable idential with an

ourrene in (�; ), (y

0

is in the part of (�

0

; 

0

) not a�eted by extension

and ontration), or

2. y 2 Dom() and y

0

is a new ourrene of y, introdued in the e�et of

extending (�; ) with (�

x�v

; ), (there was an ourrene y

k

of an external

variable y in (�

x�v

; ) whih generated new ourrenes in all plaes the

opy of this subproof was used and not ontrated), or

3. y 62 Dom(), (y is a new variable) then y

0

may be identi�ed as a re-

named version of a variable y

0

2 Dom(), where y

0

was an inner variable in

(�

x�v

; ).

Example 2. Let an equational proof be:

f(a; g(b; b)) �

[<1>;a�b;[℄℄

f(b; g(b; b)) �

[�;f(x;g(x;x))�;[x 7!b℄℄



Then the subproof assoiated with

 

x

1

is b � a. Notie the left orientation

of all ourrenes of x in this ase. We want to solve x in the proof with x 7! a.

Hene we will use b � a for the extension at eah ourrene of x.

f(a; g(b; b)) �

[<1>;a�b;[℄℄

f(b; g(b; b)) �

[<1>;b�a;[℄℄

f(a; g(b; b))

�

[<2>;b�a;[℄℄

f(a; g(a; b)) �

[<3>;b�a;[℄℄

f(a; g(a; a)) �

[�;f(x;g(x;x))�;[x 7!a℄℄



Contration will shorten the proof to:

f(a; g(b; b)) �

[<2>;b�a;[℄℄

f(a; g(a; b)) �

[<3>;b�a;[℄℄

f(a; g(a; a))

�

[�;f(x;g(x;x))�;[x 7!a℄℄
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Notie that we have a new assignment for x, but now we will treat x as

solved.

5 Paths in Equational Proof

A onept of path is a generalization of an assoiated subproof for an ourrene

of a variable. A path is a subproof starting with some variable ourrene, on-

struted in suh a way that it reets the form of an assoiated subproof for this

variable ourrene assuming that all other variables involved in the path were

solved �rst. In order to restrit the de�nition of a path in a proof (�; ), we

have to take into onsideration solved and unsolved ourrenes of variables in

Dom(). We have to remember where the solved variables had their ourrenes

at the time they were being solved.

Sine in this setion we will deal with ompositions of subproofs, in order to

simplify notation, we will identify a subproof with its subproof sequene.

De�nition 14. (path starting with a variable ourrene and variables used in

a path)

Let (�; ) be an equational proof, U a set of unsolved variables in Dom(),

x 2 U and x a given variable ourrene in (�; ). A path in (�; ) starting

with x is a omposition of subproofs, �

1

: : : �

n

, de�ned in a reursive way:

1. if �

x�v

is an assoiated subproof for x, �

x�v

is a path starting with x;

2. if x is a parent of y, then �

x�w[y℄

is a path starting with x;

3. (a) if �

1

; : : : ; �

n

is a path in (�; ) starting with x

1

 and �

n

= �

x

n

�v[x

n+1



k

℄

,

x

n+1

is an external variable in �

x

n

�v[x

n+1



k

℄

di�erent from x

1

, �

0

1

; : : : ; �

0

m

is a path in (�; ) starting with x

n+1



i

, and if no variable whih is

used in one path appears as not used in the other, then the omposi-

tion �

1

: : :�

n

�

0

1

: : : �

0

m

is also a path in (�; ) starting with x

1

 and

all variables used in the �rst and seond path are used in the new path;

(b) if �

1

; : : : ; �

n

is a path in (�; ) starting with x

1

 and �

n

= �

x

n

�yj

�

,

and �

y

k

j

�

�s

is a subproof in (�; ) and if no variable whih is used in

one path appears as not used in the other, then �

1

; : : : ; �

n

; �

y

k

j

�

�s

is

also a path in (�; ) starting with x

1

 and all variables used in the �rst

and seond path are used in the new path;

Example 3. For example, let our goal be: G = fx � a; z � hx; z � g and an

equational theory: E = fb � a; b � fga; hfy � g, then the proof (�; ) may

be:

x

1

x

2

# #

f b �

[�;b�a;[℄℄

a; hb; hb �

[<1>; b�fga; [℄℄

hfga �

[�; hfy�; [y 7!ga℄℄

 g

" "

z

1

z

2
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1. An example of a path starting with x

2

would be:�

x

2

�z

1

j

<1>

�

z

2

j

<1>

�fy

.

z is used and x and y are not used in this path.

2. An example of a path starting with z

1

is: �

z

1

�h(x

2

)

�

x

1

�a

. x is used in

this path.

We will prove that if (�; )

[x 7!v℄

! (�

0

; 

0

), for an unsolved variable x in

Dom(), then eah path in (�

0

; 

0

) starting with an unsolved variable in (�

0

; 

0

)

is idential to a path in (�; ) (up to renaming). Hene any new paths will be

renamings of the original ones. In order to show that the proess of solving

variables in (�; ) will terminate, we will use a multiset of lengths of paths as a

measure, and show that it is dereasing.

Lemma 1. Let (�; ) be an equational proof, U � Dom() be a set of unsolved

variables in (�; ), (�; )

[x 7!v℄

! (�

0

; 

0

), and U

0

be a set of unsolved variables

in (�

0

; 

0

).

Eah path in (�

0

; 

0

) starting with a variable ourrene of a variable in U

0

is idential (up to renaming of some variables) to a path in (�; ) starting with

a variable ourrene of a variable in U .

If there are many paths in (�

0

; 

0

), whih are renamings of one and the same

path in (�; ), then they are stritly shorter than a path in (�; ), starting with

a variable ourrene of a variable whih is solved in (�

0

; 

0

).

Proof. The proof of this lemma is based on the fat that eah path starting with

an ourrene of an unsolved variable in (�; ) is �nite. This is the ase, beause

while onstruting longer and longer paths, we will have to run out of unused

variables.

Hene we an use indution on the lengths of paths.

Let (�; )

[x 7!v℄

! (�

0

; 

0

), where �

x

i

�v

was used in onstrution of (�

0

; 

0

),

and �

1

: : : �

n

is a path in (�

0

; 

0

), starting with y

1

. We an assume that x does

not our in v, beause otherwise ass(x) = x and then (�

0

; 

0

) is idential to

(�; ) with the only di�erene that x is solved and does not appear in U

0

.

We have to onsider di�erent ases generated by the possible ways paths are

onstruted in (�

0

; 

0

), starting with variable ourrenes appearing in (�

0

; 

0

)

of the kinds desribed in Corollary 1.

1. Let y

1

2 Dom(

0

) be suh that y

1

2 Dom() and an ourrene of y

1

, y

1



0

be as desribed in Corollary 1. 1.

Hene y

1

 is an ourrene of y

1

in a part of (�; ) whih is not a�eted by

extension or ontration in the proess of onstruting (�

0

; 

0

).

Let �

1

: : :�

n

be a path in (�

0

; 

0

) starting with y

1



0

.

(a) If �

1

: : :�

n

is a path by De�nition 14.1, it is a subproof assoiated

with y

1

 in (�

0

; 

0

). The only ase, when suh a subproof was not al-

ready a path in (�; ) would be if the omposition of shorter paths was

prevented by the ondition that a variable whih is used in one path

appears as not used in the other. Hene there would be two paths in

(�; ): �

0

y

1

�s[\z

0

k

"℄

�

0

\z

0

i

"�t[x

i

℄

and �

0

x

i

�v[z

k

℄

. z is used in the �rst
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one, but not in the seond. But we see, that beause a variable is solved

in all plaes of its ourrenes in a proof, it is impossible that z appears

as not used in �

x

i

�v

. The same argument works if we assume that z is

used in �

x

i

�v

and not in �

0

y

0

1

�t[x

i

℄

.

Hene there is a path, �

0

y

1

�t[x

i

℄

�

x�v

in (�; ), suh that �

1

: : : �

n

is a renamed and possibly ontrated version of it. Notie that if it is a

ontrated version of renaming of �

0

y

1

�t[x

i

℄

�

x�v

, then it is shorter of

that path whih is no longer in (�

0

; 

0

).

(b) If �

1

: : :�

n

is a path in (�

0

; 

0

) by De�nition 14.2, then it has the form

�

y

1



0

�w[z

0

℄

. This is a subproof of the subproof assoiated with y

1



0

in

(�

0

; 

0

).

This subproof is either idential to a subproof �

y

1

�w[z℄

in (�; ) or

there must be a omposition of subproofs of the form: �

y

1

�t[x

k

℄

�

x

i

�v

in (�; ). (Then z must be a renamed ourrene of a variable our-

rene z

0

 in �

x

i

�v

. The renaming is identity if z

0

is external in �

x

i

�v

.)

By the same argument as in the previous ase, �

0

y

1

�t[x

k

℄

�

x

i

�v

must

be a path in (�; ), of whih the path�

y

1



0

�w[z

0

℄

in (�

0

; 

0

) is a renamed

and possibly ontrated version.

() If �

1

: : : �

n

is a path in (�

0

; 

0

) but is not a subproof of an assoiated

subproof for y

1



0

, then it must be a omposition of paths in (�

0

; 

0

):

�

1

: : : �

k

and �

k+1

: : :�

n

.

We will assume that �

1

: : : �

k

has the form: �

1

: : :�

z�s[\x

k

"℄

, and

�

k+1

: : :�

n

the form: �

\x

i

"�v

: : : �

n

.

Alternatively the path �

1

: : : �

k

an have the form: �

1

: : : �

z�\x

k

j

�

"

,

and �

k+1

: : : �

n

has the form: �

\x

i

j

�

"�v

: : : �

n

. But this ase is ana-

lyzed in exatly the same way.

Beause Variable Elimination a�ets all ourrenes of a given variable,

there is no variable with some ourrenes \solved" and some \unsolved"

in the proof. There is no variable with \unsolved" ourrenes in one of

the paths, and \solved" in another.

And sine these paths are shorter than �

1

: : : �

n

, we an assume that

they are renamings of paths in (�; ):�

0

1

: : : �

0

z�s[x

k

℄

and �

0

x

i

�v

: : : �

0

n

Sine these are renamings of respetive paths in (�

0

; 

0

), obviously there

is no variable that is used in one of them and has ourrenes that are

not used in the other. Therefore, there is a path:

�

0

1

: : : �

0

z�s[x

k

℄

�

0

x

i

�v

: : : �

0

n

in (�; ).

2. Now let us onsider variables that have ourrenes inside�

\x

i

"�v

in (�

0

; 

0

).

Let y

1

2 Dom(

0

) be suh a variable and y

1



0

, is a renaming of an ourrene

of y

0

1

in �

x

i

�v

in (�; ).

Let �

1

: : :�

n

be a path in (�

0

; 

0

) starting with y

1



0

.

We have 3 ases here:

(a) If �

1

: : : �

n

is ontained inside �

\x

i

"�v

, this path is a renaming of a

path inside �

x

i

�v

in (�; ), and although there may be numerous suh

opies in (�

0

; 

0

), notie that all of them are shorter than �

x

i

�v

whih

is no longer a path in (�

0

; 

0

) beause x is solved there. So assume that

the path �

1

: : : �

n

starts inside �

\x

i

"�v

and has some part outside it.
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i. Assume that the path �

1

: : : �

n

spreads beyond v. Then it has the

form: �

1

: : :�

t�v[z

0l

℄

�

z

0m

�s

: : : �

n

.

Hene, there must be also a path in (�; ) of the form:

�

0

1

: : : �

0

t�v[z

l

℄

�

0

z

m

�s

: : : �

0

n

and z must be external in both�

0

t�v[z

0i

℄

and �

0

z

0m

�s

. The path �

1

: : : �

n

is a renamed and possibly on-

trated version of this path.

Notie that �

0

1

: : : �

0

t�v[z

0i

℄

�

0

z

0m

�s

: : : �

0

n

is a subpath of a path

starting with x

i

in (�; ). Namely, it is a subpath of path:

�

0

x

0i

�v[z

0i

℄

�

0

z

0m

�s

: : : �

0

n

. Sine y

1

is di�erent than x the path

�

0

1

: : : �

0

t�v[z

0i

℄

�

0

z

0m

�s

: : : �

0

n

is stritly shorter than the path start-

ing with x

i

.

Hene although there may be many renamings of the path

�

0

1

: : : �

0

t�v[z

0l

℄

�

0

z

0m

�s

: : :�

0

n

in (�

0

; 

0

), they will all be shorter

than a path in (�; ) whih no longer appears in (�

0

; 

0

), beause x

is solved.

ii. Assume now that the path �

1

: : : �

n

spreads beyond \x

i

". Then it

has the form: �

1

: : :�

t�\x

i

"j

�

�

\x

k

"j

�

�s

: : : �

n

.

Then there must be a unique path in (�; ) of the form:

�

0

1

: : : �

0

t�x

i

j

�

�

0

x

k

j

�

�s

: : : �

0

n

. The path �

1

: : : �

n

in (�

0

; 

0

) is a

renamed and possibly ontrated form of that path.

Consider Example 3. After eliminating x from the goal with x � a, the new

goal is G

0

= fa � a; z � ha; z � g. This is reeted by solving x with x! a in

the equational proof of G. We get a new equational proof of the form:

\x

0

" \x

0

"

# #

f a; hb �

[<1>;b�a;[℄℄

ha; hb �

[<1>; b�fga; [℄℄

hfga �

[�; hfy�; [y 7!ga℄℄

 g

" "

z

0

1

z

0

2

There is a path starting with z

0

1

: �

z

0

1

�ha

in the new proof, but it is

idential to the path �

z

1

�x

2

�

x

1

�a

in the old proof.

Instead of eliminating x from the goal, we ould have hosen to eliminate z

with z ! . After Variable Elimination, the new goal is G

0

= fx � a;  � hx;  �

g. By solving z with z !  in the equational proof of G, we get a new proof:

x

0

1

x

0

2

# #

f b �

[�;b�a;[℄℄

a;  �

[�; �hfy

0

; [y

0

7!ga℄℄

hfga�

[<1>;fga�b; [℄℄

hb;  g

" "

\z

0

" \z

0

"

There is a path starting with x

0

2

in this proof: �

x

0

2

�fy

0



0
, but this is a

renaming of a path in the original proof starting with x

2

:

�

x

2

�z

1

j

<1>

�

z

2

j

<1>

�fy

in (�; ).
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Corollary 2. Let (�; ) be an equational proof, U � Dom() a set of unsolved

variables in (�; ), The proess of solving (�; ) will terminate.

Proof. If (�; )

[x 7!v℄

! (�

0

; 

0

), and U

0

a set of unsolved variables in (�

0

; 

0

), the

multiset of lengths of paths in (�

0

; 

0

) is smaller than the multiset of lengths of

paths in (�; ).

6 Result

We prove ompleteness of the inferene rules presented in Figure 1.

Namely, we prove that in any equational theory E, a given goal G suh that

E j= G�, may be transformed by appliations of rules in Figure 1 applied to

equations whih are not solved, into a solved form with whih we an de�ne an

E-uni�er more general than �. The solved form of an equation and of a goal is

de�ned in the following way.

De�nition 15. (solved equation and solved goal)

Let G be a set of equations. An equation x � t 2 G is in a solved form, if x is a

variable, x 62 V ar(t) and x 62 V ar(Gnfx � tg).

G is in a solved form if all equations in G are in solved form.

If G is in the solved form, then we de�ne a substitution �

G

= [x

1

7!

t

1

; : : : ; x

n

7! t

n

℄. Obviously, �

G

is the most general uni�er of G.

If G is a set of goal equations, an inferene performed on G with one of the

rules of Figure 1 is denoted by G! G

0

, where G

0

is the result of this inferene.

The transitive, reexive losure of ! is written as

�

!.

In order to prove ompleteness, we will need the measure of a goal G, of

whih we will show that it may be dereased by appliation of an inferene rule

if G is E-uni�able and not in solved form.

De�nition 16. (measure for an equational proof)

Let (�; ) be an equational proof and U � Dom() be a set of unsolved variables

in (�; ). The measure M(�; ) is a multiset of the lengths of paths starting

with ourrenes of variables in U .

De�nition 17. (measure of a goal)

Let E be an equational theory, and G, an unsolved part of a goal G

0

, suh that

there is a ground substitution , for whih E j= G

0

 and hene there is an

equational proof (�

0

; 

0

) of G

0

 and its subproof, (�; ), whih is a proof of G,

and all variables in V ar(G) are unsolved in (�

0

; 

0

).

The measure of G

0

with respet to (�

0

; 

0

) is a 4-tuple (m;n; o; p), where

m =M(�; ), n is the length of �, o is the size of terms in G, p is the number

of equations in G, of the form t � x, where x is a variable and t is not a variable.

Measures for di�erent goals are ompared with respet to lexiographi order.
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Deomposition

ff(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

)g [G

fs

1

� t

1

; � � � ; s

n

� t

n

g [ G

where f(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

) is seleted in the goal.

Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; t

1

� v

1

; � � � ; t

n

� v

n

g [G

where u � f(v

1

; � � � ; v

n

) is seleted in the goal, and s � f(t

1

; � � � ; t

n

) 2 E.

a

Variable Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; x � f(v

1

; � � � ; v

n

)g [G

where s � x 2 E, x is a variable, and u � f(v

1

; � � � ; v

n

) is seleted in the goal.

Variable Deomposition (for yle)

fx � f(t

1

; � � � ; t

n

)g [ G

fx � f(x

1

; � � � ; x

n

)g [ (fx

1

� t

1

; � � � ; x

n

� t

n

g [ G)[x 7! f(x

1

; � � � ; x

n

)℄

where x is a variable, x � f(t

1

; � � � ; t

n

) is seleted in the goal,

x 2 V ar(f(t

1

; � � � ; t

n

)).

Variable Elimination Orient

fx � vg [G

fx � vg [G[x 7! v℄

ft � xg [G

fx � tg [G

where x 62 V ar(v) where x is a variable.

and t is not a variable.

Trivial

fx � xg [G

G

where x � x is seleted in the goal.

a

We assume that E is losed under symmetry.

Fig. 1. E-Uni�ation with eager Variable Elimination
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Theorem 1. Let E be a set of equations, suh that E j= G for some ground

substitution . Then there is H a set of equations in the solved form, suh that

G

�

�! H and �

H

[V ar(G)℄ �

E

.

Proof. If G is already in the solved form, then �

G

�

E

.

If G is not in solved form, then there is an unsolved part of G, G

0

, suh that

u � v 2 G

0

, if u � v is not in solved form. Assume that u � v was seleted

for an inferene. If E j= G, there must be an equational proof (�; ) of G

0

.

We will all it an atual proof of G. There must be a subproof in (�; ), of

u � v and u, v are the extreme terms in this subproof. We an also assume

that all solved variables in G are solved in (�; ) and all unsolved variables in G

are unsolved in (�; ). Hene there is a graph G

�

for all unsolved variables in

(�; ). As we have seen, there are sometimes hoies in onstruting G

�

. The

hoies reet the seletion funtion, but in any ase, we an always hoose suh

G

�

that if x � v is seleted for an inferene, x is a maximal node in G

�

.

For the proof, we have to onsider all possible forms of an unsolved goal equa-

tion u � v seleted for an inferene. These forms are analyzed in the following

ases.

1. Assume that neither u nor v is a variable.

Let (�

u�v

; ) be a subproof in (�; ) of u � v, suh that u and v are

extreme terms in (�

u�v

; ).

Assume also that there is no step at the root in (�

u�v

; ). Hene u and v

must have the same root symbols.

Then if we apply Deomposition to this equation, we get equations s

1

�

t

1

; : : : ; s

n

� t

n

, suh that there is a subproof in (�; ) for eah s

i

 � t

i

,

i 2 f1; : : : ; ng, and if u, v were the extreme terms in (�

u�v

; ), eah of

s

i

, t

i

 are extreme terms in their respetive subproofs. Hene E j= fs

1

 �

t

1

; : : : ; s

n

 � t

n

g. The sum of the lengths of the subproofs is equal to the

length of the original subproof of u � v, but �

n

i=1

js

i

j+ jt

i

j < juj+ jvj.

Let (m;n; o; p) be the measure of the goal before Deomposition and (m

0

; n

0

; o

0

; p

0

)

after Deomposition. m

0

= m, n

0

= n and o

0

< o.

2. Assume that neither u nor v is a variable.

Let (�

u�v

; ) be a subproof in (�; ) of u � v, suh that u and v are

extreme terms in (�

u�v

; ).

Assume also that there is a step at the root in (�

u�v

; ).

(�

u�v

; ) has the form: u � � � � � w

i

�

[�;s

i

�t

i

;℄

w

i+1

� � � � � v. Let us

hoose i in suh a way, that this is the rightmost root step in this proof and

assume that t

i

is not a variable.

Then there is no root step between w

i+1

and v. Sine the i'th step is at the

root position, s

i

 = w

i

and t

i

 = w

i+1

. Sine there is no root step between

t

i

 and v, both these terms must have the same root symbol and thus

we an at one deompose them, obtaining possible empty set of equations:

t

1

� v

1

; : : : ; t

n

� v

n

, suh that for eah k 2 f1; : : : ; ng, t

n

 � v

n

 has a

subproof in (�; ), and moreover eah t

i

, v

i

 are extreme subterms in their

respetive subproofs. In this ase Mutate is appliable, and we see that

E j= fu � s

i

; t

1

 � v

1

; : : : ; t

n

 � v

n

g.
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Let (m;n; o; p) be the measure of the goal before Mutate and (m

0

; n

0

; o

0

; p

0

)

after Mutate. m

0

= m and n

0

< n.

3. Assume that u and v are the same as in the previous ase, but now t

i

is a

variable.

In this ase we don't want to \deompose" variable t

i

, but we see that the

rule Variable Mutate gives us two equations suh that: E j= u � s

i

 and

E j= t

i

 � v.

Both u � s

i

 and t

i

 � v have subproofs in (�; ) and the terms of these

equations are extreme terms in their respetive subproofs.

Let (m;n; o; p) be the measure of the goal before Variable Mutate and

(m

0

; n

0

; o

0

; p

0

) after Variable Mutate. m

0

= m and n

0

< n.

4. Assume that u is a variable x, v is not a variable and x 2 V ar(v).

Let (�

x�v[x℄

; ) be a subproof in (�; ) of x � v[x℄, suh that x and

v[x℄ are extreme terms in (�

x�v[x℄

; ). Hene (�

x�v[x℄

; ) is a subproof

assoiated with x.

Sine x has an ourrene in v[x℄, the subproof (�

x�v[x℄

; ) must have

length greater than 0 (an equation of the type a � a would have proof of

the length 0).

Again, we look at the subproof (�

x�v[x℄

; ). If there is a step at the root

in the subproof, the right rule to apply is Mutate or Variable Mutate,

depending on the form of equation from E used in the step at the root.

Hene the analysis is exatly the same as in 2 or 3.

5. Assume that u is a variable x, v is not a variable and x 2 V ar(v).

Like in the previous ase, we argue that an appropriate subproof (�

x�v[x℄

; )

in (�; ) has length greater than 0. But this time assume that there is no

step at the root in (�

x�v[x℄

; ).

It means that x and v[x℄ must have the same symbol at their roots (and all

the steps in the subproof (�

x�v[x℄

; ) are performed under the root). The

subproof has the form: x = f(u

1

; : : : ; u

n

) � � � � � f(v

1

; � � � ; v

n

) = v.

The right rule to apply to x � v[x℄ is Variable Deomposition , we get

an equation x � f(x

1

; : : : ; x

n

) in the onlusion. Sine  is general extension

of itself, x

1

; : : : ; x

n

are fresh variables, that are already in Dom(). 

x

i

=

[x

i

7! u

i

℄, for 1 � i � n. E j= x � f(x

1

; : : : ; x

n

) and E j= x

i

 � v

i

. We

notie also that sine x = f(x

1

; : : : ; x

n

), G[x 7! f(x

1

; : : : ; x

n

)℄ = G.

Therefore E j= G[x 7! f(x

1

; : : : ; x

n

)℄. And sine x = f(x

1

; : : : ; x

n

),

E j= x

i

 � v

i

[x 7! f(x

1

; : : : ; x

n

)℄.

For eah equation in (fx

1

� v

1

; : : : ; x

n

� v

n

g [ G)[x 7! f(x

1

; : : : ; x

n

)℄)

there is a subproof in (�; ).

In the onsequene of appliation of Variable Deomposition, x gets solved.

Indeed, f(x

1

; : : : ; x

n

) = ass(x) and we state that (�; )

[x 7!f(x

1

;:::;x

n

)℄

!

(�

0

; 

0

), where 

0

= , �

0

= � and x is solved in (�

0

; 

0

).

The atual equational proof for the goal will be hanged to (�

0

; 

0

). By

Corollary 2, M(�

0

; 

0

) < M(�; ).

Let (m;n; o; p) be the measure of the goal before Variable Deomposition

and (m

0

; n

0

; o

0

; p

0

) after Variable Deomposition. m

0

< m.
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6. Assume that v is a variable and u is not a variable. Then Orient applies.

Obviously, Orient preserves the set of E-uni�ers for u � v. Let (m;n; o; p)

be the measure of the goal before Orient and (m

0

; n

0

; o

0

; p

0

) after Orient.

m

0

� m;n

0

� n; o

0

� o and p

0

< p.

7. Assume that x � v was seleted for an inferene and x 62 V ar(v).

Then E j= x � v and there is a subproof (�

x�v

; ) in the proof (�; )

suh that x and v are the extreme terms of (�

x�v

; ). If x is unsolved

in the goal G, x is also unsolved in (�; ).

Hene we know that v = ass(x) and (�; )

[x 7!v℄

! (�

0

; 

0

).

M(�; ) > M(�

0

; 

0

).

The right rule to apply is therefore Variable Elimination.

Sine E j= G, also E j= G

0

and (�

0

; 

0

) is the proof of G

0

. We hange the

atual equational proof to (�

0

; 

0

) and take it as the basis of ompleteness

argument of further inferenes. Sine x

0

= v

0

, E j= G[x 7! v℄

0

.

Let (m;n; o; p) be the measure of the goal before Variable Elimination and

(m

0

; n

0

; o

0

; p

0

) after Variable Elimination.

m

0

< m after Variable Elimination. Notie also that after Variable Elimina-

tion, for eah u

0

� v

0

in G

0

there is a subproof in (�

0

; 

0

) suh that u

0



0

and

v

0



0

are the extreme terms in this subproof. If u

0

� v

0

[x℄ was in G

0

, then after

Variable Elimination, u

0

� v

0

[v℄ in G

0

and obviously (beause of extension)

there is a subproof (�

u

0



0

�v

0

[v℄

0
; 

0

) in (�

0

; 

0

).

8. Assume that u and v are ourrenes of the same variable x. Sine the proof

of x � x has length 0, we an get rid of this equation in the goal by

applying Trivial.

Let (m;n; o; p) be the measure of the goal before Trivial and (m

0

; n

0

; o

0

; p

0

)

after Trivial. m

0

= m, n

0

= n and o

0

< o.

7 Conlusion

E-uni�ation proedures are inherently non-deterministi, beause there are usu-

ally many ways to apply inferenes to goal equations and many possibilities of

solving a goal. It means that a searh spae for a solution may be very exten-

sive. Any restritions of this non-determinism that we may justify are therefore

welome as restritions of this searh spae. Eager Variable Elimination means

that the rule should be applied whenever an equation x � v is seleted and x

does not appear in v. In this ase, we would not try to apply other rules to this

equation. On the other hand, we may see that the ground equational proof of an

instane of a goal, may be made longer by Variable Elimination. This means that

we will have to do more Mutate inferenes in order to reah solution. One an

think about some memoization tehniques to detet and redue suh possible

overhead.

We think that the proof of ompleteness of eager Variable Elimination opens

some possibilities of �nding new lasses of equational theories de�ned syntati-

ally, for whih E-uni�ation problem may be proved solvable and tratable.
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A Normalization of equational proofs

If � [i℄j

�

n

; � [i + 1℄j

�

n

; : : : ; � [i + k℄j

�

n

is a subproof sequene in � , there may

be a step in � between two onseutive terms � [i+ n℄ and � [i+ n+ 1℄ at the

position �

i+n

suh that �

i+n

� �

n

or �

i+n

= �

n

, then we an write this step in

the subproof as:

� [i+ n℄j

�

n

�

[�

0

;s

i+n

�t

i+n

;℄

� [i+ 1℄j

�

n

, where �

n

�

0

= �

i+n

.

But it may also be that �

i+n

is a parallel position to �

n

, and then � [i +

n℄j

�

n

== � [i+ n+ 1℄j

�

n

.

De�nition 18. (fake step)

If � [i℄j

�

n

; � [i + 1℄j

�

n

; : : : ; � [i + k℄j

�

n

is a subproof sequene in an equational

proof (�; ), a step � [i+n℄j

�

n

�

[�

0

;s

i+n

�t

i+n

;℄

� [i+1℄j

�

n

in the subproof, where

�

n

�

0

= �

i+n

and �

0

jj�

n

is alled a fake step in the subproof and is written as

� [i+ n℄j

�

n

= � [i+ n+ 1℄j

�

n

.

Note that = is thus overloaded with a seond meaning. Until now s = t

meant only that s and t were the same ground objets. Here it means that there

is no step taken in the proof between these ground subterms.

Aordingly, if for some variable x, x = w

i

and w

i

= w

i+1

in a subproof,

also x = w

i+1

, beause there is no real step between w

i

and w

i+1

.

In a normalized proof suh fake steps in a subproof will be possible only at

the beginning and at the end of a subproof. Hene subproof in a normalized proof

will have always the following form: w

1

= � � � = w

1

� w

2

� � � � � w

k

= � � � = w

k

.

Aordingly I will all a subproof whih an be written in the form: w

1

=

� � � = w

1

� w

2

� � � � � w

k

= � � � = w

k

, a subproof in a normal form, and the

part of it whih an be written in the form: w

1

� w

2

� � � � � w

k

, a proper form

of the subproof.

De�nition 19. (proof in a normal form)

An equational proof (�; ) is in normal form, if all its subproofs are in normal

forms.
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Lemma 2. Eah equational proof may be normalized.

Proof. If (�; ) has no proper subproofs, then (�; ) is in normal form.

Let (�; ) be an equational proof not in normal form. We will onstrut a

new proof (�

0

; ) whih is in a normal form in a reursive way, suh that (�

0

; )

di�ers from (�; ) only in the order of steps and is the proof of the same ground

equation.

We should identify all subproofs in (�; ) and their proper forms. For in-

dution assume that all smaller proofs than (�; ) may be normalized. As the

measure for a proof, let us assume the pair (n;M), where n is length of a proof

(number of steps) and M is multiset of sizes of its terms.

Eah proper subproof in (�; ) is either shorter than (�; ) or has smaller

terms. Hene for indution argument we an assume that eah proper subproof

of (�; ) is in normal form and thus its proper form an be easily identi�ed.

In the ourse of the following onstrution, we will move step by step through

the proof sequene� , remembering the set A of reent parallel positions at whih

the steps have been taken. At the beginning A is an empty set.

1. First step. Take the �rst step in the proof (�; ): � [1℄ �

[�

1

;s

1

�t

1

;�

1

℄

� [2℄.

(a) If �

1

= �, write it as the �rst step of the proof sequene �

0

. There is a

subproof (�

00

; ) in (�; ) starting with � [2℄ at position �. The subproof

is shorter than (�; ), hene it has normal form. Embed normal form of

(�

00

; ) into � [1℄ and stop.

(b) If �

1

> �, then there is a part of (�; ) at the depth �

1

and a subproof

starting with � [1℄j

�

1

(all terms in this subproof are subterms at position

�

1

of some onseutive terms in �).

Embed the normalized, proper part of the subproof into � [1℄. Put �

1

as

the �rst element of A and go to the next step in � .

2. Next step. Assume that we are done with i� 1'th onseutive step in � .

Now we onsider next step: � [i℄ �

[�

i

;s

i

�t

i

;�

i

℄

� [i+ 1℄.

(a) If �

i

� � for any � 2 A then the step belongs to the subproof already

embedded into proof sequene �

0

, hene go to the next step in � .

(b) If �

i

< �, for any � 2 A (step above the last subproof steps), then

� [i℄ must be the last term of the part ontaining the previous subproof.

� [i℄

�

i

is the �rst term in a subproof �

00

of � , whih is in the part of �

for the depth �

i

and is omposed of the terms of � at the depth �

i

.

Hene embed normalized, proper form of �

00

into � [i℄, attahing it into

�

0

. Replae eah � in A, suh that �

i

< � with �

i

in A and go to the

next step of � .

() If �

i

jj�, for eah � 2 A then there is a subproof sequene �

000

starting

with � [i℄ at the depth �

i

. Let�

0

[l℄ be the last term in the proof sequene

�

0

onstruted up to now. From the onstrution of �

0

, we know that

� [i℄

�

i

== �

0

[l℄

�

i

(steps at a parallel position ould not hange this sub-

term). Embed normalized, proper version of �

00

s

0

into �

0

[l℄

�

i

, attahing

it to �

0

, add �

i

as the next element to A and go to the next step of � .


