TECHNISCHE Dresden University of Technology
UNIVERSITAT Institute for Theoretical Computer S
DRESDEN Chair for Automata Theory

LTCS—Report

Completeness of E-unification with eager
Variable Elimination

Barbara Morawska

LTCS-Report 03-03

Lehrstuhl fiir Automatentheorie
Institut fur Theoretische Informatik Hans-Grundig-Str. 25
TU Dresden 01062 Dresden

http://lat.inf.tu-dresden.de Germany

cience




Completeness of E-unification with eager
Variable Elimination

Barbara Morawska

Theoretical Computer Science
Dresden University of Technology
D-01062 Dresden, Germany
e-mail: morawska@inf.tu-dresden.de

Abstract. The paper contains a proof of completeness of a goal-directed
inference system for general F-unification with eager Variable Elimina-
tion. The proof is based on an analysis of a concept of ground, equational
proof. The theory of equational proofs is developed in the first part. Solv-
ing variables in a goal is then shown to be reflected in defined transfor-
mations of an equational proof. The termination of these transformations
proves termination of inferences with eager Variable Elimination.

1 Introduction

E-unification is concerned with finding a set of solutions for a given equation
in a given equational theory E. The problem of E-unification arises in many
areas of computer science like formal verification, theorem proving and logic
programming. In general the E-unification problem, i.e. the problem of finding
a set of solutions for a given equation in a non-empty equational theory FE
is undecidable, unlike in the case of the syntactic unification problem, i.e. in
the case of searching for a solution for an equation in the context of the empty
equational theory. Nevertheless, the F-unification problem is semi-decidable and
there are complete algorithms for solving it.

Goal-directed algorithms for E-unification are based on the idea of trans-
forming goal equations into a solved form which will allow easily to define a
solution. Such an inference system was presented first in [2], and is displayed
here in a different notation in Figure 1. Consider the rule Variable Elimination
in this set of inference rules. If applied to an equation of the form z =~ v in the
goal, it will eliminate = from all other equations in the goal and thus solve the
equation x &~ v.! The Variable Elimination is forced to be applied eagerly here,
because there is no other rule to deal with equations of the form z = v, where x
is not a variable in v.

There was no proof up to now that this system of inferences is complete for
FE-unification. It is complete, when we allow other rules to apply to an equation
x & v, but then Variable Elimination cannot be applied eagerly. The problem

! Formal definition of a solved equation is in the section 6.



was first discovered and called the Fager Variable Elimination Problem by Gallier
and Snyder in [2].

Eager Variable Elimination is justified in the context of syntactic unification
because it decreases the number of unsolved variables in the goal, while preserv-
ing a set of solutions. The number of unsolved variables is not increased by any
other rule and hence we may be sure that the inferences will terminate.

In the context of E-unification we must use another rule called Mutate.? No-
tice that we have here conflicting results of applications of Mutate and Variable
Elimination to the goal: Variable Elimination decreases the number of unsolved
variables in the goal, but Mutate increases this number, and while Mutate de-
creases the length of a ground proof of an instance of a goal, Variable Elimination
may increase this length.

In [3] Gallier and Snyder proved completeness of their system without eager
Variable Elimination. In [5] (p. 207) the authors stated that Mutate (replace-
ment) and eager Variable Elimination (merging) do not preserve the form of the
proof.

In this paper we prove that Variable Elimination may be applied eagerly
without destroying the completeness of the E-unification procedure. The fact
that Variable Elimination can be applied eagerly decreases non-determinism in
the inherently non-deterministic general E-unification algorithms. It may reduce
redundancy of inferences and limit the search space for a solution to a given
equation. This was pointed out e.g. in [7], [6], [4].

The main idea in the proof of completeness of our inference rules (Figure 1),
is to consider a ground equational proof for a goal. If x ~ v is part of this goal,
we know that there must be subproof for a ground instance of this equation.
We then can discover how the proof of the ground instance of a goal is changed,
when Variable Elimination is applied to z =~ v. The main problem is to show
that eliminating variables from the goal will not lead us into infinite loops of
inferences. Hence we must show, what is decreasing in the ground proof after a
variable is solved. Here we use the idea of a path in a proof, i.e. any composition
of subproofs in the ground proof, which starts with an occurrence of an unsolved
variable. We show that the multiset of lengths of the paths in a ground proof of
an instance of a goal will be smaller after Variable Elimination is applied.

Most of the paper is concerned with a description of a theory of equational
ground proofs (definitions in Section 3) and a construction of new equational
proof which reflects effects of eager Variable Elimination (Section 4). We present
then the concept of paths in an equational proof (Section 5) and this enables us
to define a measure of a goal and prove the result by induction on this measure
(Section 6).

2 Preliminaries

We use standard definitions as in [1].

2 In [3] this rule is called Root Rewriting. The name Mutate came from [5], where it
was used for F-unification in Syntactic Theories.



We will consider equations of the form s ~ ¢, where s and ¢ are terms. Please
note that throughout this paper these equations are considered to be oriented,
so that s & t is a different equation than ¢ =~ s. Let E be a set of equations, and
u &~ v be an equation, then we write £ = u ~ v (or u =g v) if u & v is true in
any model containing E. We call E an equational theory, and assume that E is
closed under symmetry. A goal (E-unification problem) is usually denoted by G
and it is a set of equations. E |= G means that E |= e for all e in G.

We will be considering ground terms as ground objects that may or may
not have the same syntactic form. In other words we will be concerned with the
occurrences of the terms more than their values. A term may be identified by
its address in a proof sequence and a position of it as a subterm in a term in the
proof. Hence the equality sign between ground terms is treated in a special way.
If u, v are ground terms, by v = v, u is understood to be an object identical with
v, whereas when syntactic equality is sufficient, it will be denoted by u == v.
Syntactic inequality will be denoted by u #= v. The difference between identity
and syntactic identity is that the first involves objects and the second involves
names.

We can say that a variable x points to its occurrences in a term u, where each
of these occurrences under some ground substitution v, is identical with some
subterm of uy at a position a (xy = uvy|,). Different occurrences of the same
variables are different objects, though they have the same syntactic form (each
one is of the form z7). In order to distinguish between different occurrences
of the same variable, we will use superscript numbers, usually numbering the
occurrences from left to right in order of their appearances in an equational
proof. Hence 2y! and 22 are different occurrences of z in a proof.

Sometimes we will want to state that some subterm has a form (or value) of
a7, but is not identical to x7 (hence is not pointed to by a variable z). This will
be indicated by quote marks. Hence w[“z7y”], is different from w[z7y], since in
the second term x+y actually occurs at position «, while in the first one there is
only a subterm that has the value of x.

If v is a ground substitution, 7, means the restriction of this substitution to
a variable z. Hence if v = [z = a,y — b,z — ], v =[x — a].

3 Equational proofs

Given an equational theory E, we define an equational proof as a pair (II,7)
such that IT is a series of ground terms and + is a ground substitution.

Definition 1. (equational proof)

Let E be a set of equations. An equational proof of an equation u =~ v is a

pair (II,~v) where IT = (w1, ws,...,wy,) s series of ground terms, called proof

sequence, such that:

1. uy = wy, vy = Wy,

2. for each pair (w;,w;y+1) for 1 <i < (n —1), there is an equation s &t € E
and a matcher p, such that there is a subterm w;|, of w; and a subterm
wi+1|o¢ of wiy1, and wi|a = sp, wi+1|o¢ = tp.



We can write the equational proof as
Uy = W1 Ray,s1t1,01] W2 Rag,sarcta,pa] =+ Do —1,8n 18t 1,0n_1] Wn = VY
where [a;,s; & t;,p;] indicates at what position «; is the matching subterm,
which equation from E was used (s; & t;), and how the variables in this equation
were substituted (p). Each w; in the above sequence is called a term in the proof,
as distinct from any proper subterms of w;, which are not counted as terms in the
proof. Since an equational proof is a sequence of ground terms, we will sometimes
use the notation borrowed from that for arrays, and II[i] will mean the i’th term
in IT.

Let v be a ground substitution, and G a set of equations such that E E G7.
Hence by Birkhoft’s theorem, there must be an equational proof for each uy &
vy, whereux v € G:uy=w; ¥ we & ... 8w, = v7y.

Since every matcher at each step uses a renamed version of an equation
from FE, the domain of the matcher is disjoint from the domain of 4 and the
domains of matchers at all other steps in the proof, we extend + to 4’ such that:
v =~vUp1 U...Up,. From now on we will assume that v is an extended version
of itself.

In order to be able to identify new variables introduced by a possible appli-
cation of Variable Decomposition (Figure 1), we have to extend vy even more.?
A general extension of v will add variables for each subterm of a term v if
Yz = [x — v]. We will call these new variables subterm variables.

Definition 2. (general extension of )
Let v be a ground substitution. A general extension of v, ex(v), is defined recur-
sively as follows:

1. if vp =[x =] and |v]| =1 (v is a constant), then ex(v;) = Yz,
2. 0f vp =[x = flvi,...,0,)], and n > 1, then let vy, = [y; — v;], for
1 <i<n, and ex(3a) = 1 U ex(r,) U+ Uex(r, ),

3' ex(’}/) = UxeDom('y) ex(’)/z)

From now on we will consider « in (II,7) as a general extension of itself. We
have 3 kinds of variables in Dom/(y):

1. the goal variables, i.e. the variables in Var(u = v);

2. the system variables, i.e. if there is a step I1[i] R[q,,s;~t, 4 [ +1] in (1, 7),
then the variables in Var(s; ~ t;) are called system variables;

3. the subterm variables in IT[i], for each II[i] in the proof, i.e. variables that
are introduced by general extension of v ;

We will see that each variable occurrence starts or ends some subproof in
an equational proof. In order to define this subproof, we will use a notion of
orientation of a variable occurrence. We define it for each variable occurrence in
the following way:

3 The following definition is similar to the definition of general extension of a substi-
tution in [3]. It was introduced there with a similar purpose: to accommodate the
Variable Decomposition rule.



Definition 3. (orientation of variable occurrences)
Let (IT,v) be an equational proof and x € Dom(7).

1. If vy is a system variable occurrence in I1[i] o, s;nt;,4 [ + 1] and vy =
I[i]|n for some position «, then x7y has left orientation. If xy = II[i + 1]|a,
then xvy has right orientation.

2. if vy is a goal variable occurrence in II[1] (xy = II[1]|o), then x7y has right
orientation, and if xy = I [n]|a, where II[n] is the last term in the proof,
then xvy has left orientation.

3. if xv is a subterm variable, hence vy = yv|a, then xvy has the same orienta-
tion as yv.

3.1 Part of equational proof and subproof

Now we define subproofs in an equational proof as proofs embedded at some
position in parts of this proof.

Definition 4. (part of proof for depth o)

Let (I1,v) be an equational proof

W1 Nlay,s1at1,9] W2 Rlag,somta,y] « o Flan—1,8n_18tn_1,7] Wn-

Let o be one of ay,...,an_1, which are the positions at which the steps in
the proof are performed. A part of the proof (II,7v) for depth « is a sequence:
] R simtin] " Rlaisj1sivj1ntivs1y] i+, such that fori <k <j—1,
ag > a or agl|a.

Hence part of a proof is a subsequence of steps in the proof, such that each
step is performed at a position «a, lower or at a parallel position in the subsequent
terms of the proof. If j = 0, the part of the proof is composed of one term only.
Now we will define a subproof in an equational proof as a sequence of subterms
of terms in a part of the original proof.

Definition 5. (subproof)

Let (IT,v) be an equational proof.
Let IITi Rlag,si~ti ]

proof (I1,7) for depth a, and let o, be a such that a < .

Then a pair (X,7v), where X is a sequence of terms (called subproof se-
quence): I[i]|a,, i + 1|a,,- -, i + k]|, is called a subproof of (IT,7).

N Y II[i + k] be a part of the

i

’
Qigle—1,5] 4~

In the next sections, we want to be able to use a copy of a subproof in creating
new proofs. In this copy only some variables, called internal variables, will be
renamed.

Definition 6. (internal/external variables in a subproof)

Let (I1,7) be an equational proof and (Xyaw,7y) a subproof in (I1,+). If there is
a step in (Dumw, V) Wi Rla,snty] Wirt, Y € Var(s = t), y is called an internal
variable in (Xwmw,Y)- If y has occurrences in (Xyawr,y), but is not internal
variable in this subproof, it is called an external variable in (Xyaw,7)-



Definition 7. (renaming of a subproof)
Let (I1,) be an equational proof and (Zymw,vy) @ subproof in (I1,7). (Xl . Y)

is a renaming of (Zwaw»Y) if (X1 Y') 18 exactly like (Zyan, ), with all in-
ternal variables renamed.

Ezample 1. Let E := {ffx =~ fgz} and the equational proof (I7,v) is the fol-
lowing;:

fafa Rle,ffrirfgzi,[zi—fa]] fffa R<1>,ffrorfgrs,[zorrall ffga Rle,f frarfgrs,[eaz—>gall
faga.

Obviously, (I1,7v) is its own subproof. We have also one more subproof:
ffa e ffosnfous varsa)] f9a, Where ffa = IT[2]|<1~. A renaming of this sub-
proof would have the following form: ffa = ffr,~fgrs,[vasa]) f9a, Where x4 is
a new variable.

Further analysis of subproofs and their normal forms may be found in Ap-
pendix A.
3.2 Embedding a proof into a term

Embedding a proof into a term is a way to construct a proof from a given
subproof.

Definition 8. (embedding of a proof)
If w is a ground term, (II,v) is a proof of the form:

W1 Nlay,s1mt1,7] W2 Rlag,samite,y] - Flan 1,80 18tn_1,7] Wn
and there is a position B in w such that w|g == w1, then there is a proof (II',¥)
of the form:
w[w1]5 RlBai,s1~t1,7] w[w2]5 RBaz,somt2,] *+* PlBon—1,5n—1~tn—1,7] w[wn]ﬁ

We say that (II',7) is the embedding of the proof (I1,v) in the term w.

We can attach a proof to a given equational proof (I1,~) by embedding it
into the last term of (I7,7), if the conditions of the definition are met.

If (I1,~) is a proof such that it is composed from (X,v) and (X3,v2) by
embedding (Xs,72) into the last term of (X,71), we say that (II,v) is a com-
position of (X1,71) and (Xs,72).

3.3 Contracting

Definition 9. (non-redundant equational proof)

An equational proof II is non-redundant if there are no two terms II[i] and
II[j] such that @ # j and II[i]) == II[j], and all proper subproofs of II are
non-redundant.



A simple procedure (called contraction ) of cutting out loops out of subproof
sequences in a proof sequence, allows us to obtain a non-redundant proof from
any redundant one.*

3.4 Associated subproofs, associated terms and a hierarchy of
variable occurrences

In this section, for each occurrence of a variable z in Dom/(v), we define a ground
term associated with this occurrence. The intuition is that a term associated with
a given occurrence of a variable, z+, is the term on the opposite end of a longest
subproof with starts with . If 2 ~ v is an equation in our goal G, and E = G~,
then vy is a term associated with x~.

First, we define ground subproofs associated with each occurrence of z in an
equational proof.

Definition 10. (subproof associated with an occurrence of a variable)
Let (IT,v) be an equational proof, x € Dom(vy) and xvy is an occurrence of x in

(11,7).

1. Ifz7y has a left orientation and xy = I1[i]|a, then there is the longest subproof
i — k]|o & - - & H[i]]o
We reverse the order of the terms in this subproof:
O] & -+ = i — k]|o
and we call this subproof a subproof associated with this zv. We say
that the subproof associated with xv is left-oriented.

2. If xy has right orientation and xy = II[i]|, then there is the longest subproof
i+ 1o~ = i +1]|a
We call this subproof a subproof associated with this v and we say
that it is right-oriented.

Notice that if (II,7) is an equational proof of uy = v7, then the external
variables in this proof are only variables in Var(u) and Var(v). By the defini-
tion of subproofs associated with variable occurrences, if (Xzyaw,y) is such a
subproof, external variables in this subproof have their occurrences only in zvy
(z and its subterm variables are external variables in this subproof) and v. The
external variable occurrences in v have opposite orientation to that of zvy. We
will sometimes indicate an orientation of an occurrence of a variable by an arrow,
like in x—%/, which denotes an occurrence of x with right orientation. Similarly,

if (¥,~) is a subproof in (I1,7), (Z‘,’y) indicates that this subproof has right
orientation.

* In the case of proofs in normal form, it is enough to require that there are no identical
terms in the proof, to show that it is non-redundant. The definition of normal form
for a proof is in Appendix A.



Definition 11. (term associated with an occurrence of x)

Let (IT,7v) be an equational proof, x € Dom(vy) and xvy is an occurrence of x
in (II,7). Let a subproof (Xyyaw,v) be a subproof associated with xvy, then we
define a term associated with xvy, ass(xy), in the following way:

1. if no occurrence of x appears in v, then ass(xy) = v,
2. if an occurrence of x appears in v, then
(a) if there is a step at the root in (Xypyaw,7), we will choose the rightmost
such step: w; e gimt; 4] Wit and define ass(zy) = wy,
(b) if there is no step at the root in (Xgymw, ), we define ass(xy) = xvy.

The point of this analysis is the observation that if we want to perform eager
Variable Elimination with a goal equation x =~ w, where z ¢ Var(w), knowing
that there is a ground proof of xy ~ wvy, even if vy #= wy, wy = ass(xy).
In this situation, we will show how to construct an equational proof of the goal
with the ground substitution changed to 7', such that v, = [z — wr].

There is a hierarchy among occurrences of the variables of an equational
proof. In order to display it, we will construct a graph G with occurrences of
variables in a given equational proof as nodes and arrows as follows.

1. for each variable z in Dom(+y) and for each occurrence x+y of this variable, if
for any y € Dom(v), (Zpyawlyy)sY) is a subproof of a proof associated with
zy and w is not empty, draw an arrow from zy to yv;

2. for each variable z in Dom(+y) and for each occurrence xvy of this variable:
if for any y € Dom(7), (Zzyayy,7) is a subproof of a proof associated with
Ty
(a) if (Zyymay,y) is a subproof of a proof associated with yv, then non-

deterministically decide the direction of an arrow between x+y and y~;
(b) if (Xyyamy,7) is not a subproof associated with y~v, then draw an arrow
from zv to yv;

The parent/child relation defined next, follows the arrows in the graph for
an equational proof.

Definition 12. (parent/child relation) Let (II,7) be an equational proof with
x,y € Dom(y) (x may be possibly the same as y) Let z7y and yy be any two
different occurrences of variables in Dom(7y).

If there is an arrow xy — yvy, then x7 is called a parent of yv and yvy is a
child of xy.

The graph Gjz, for an equational proof helps us to recognize/decide the
parent/child relation. This relation is in some cases determined by the structure
of the proof (we cannot discover new variables in the transformation of the goal
before solving/eliminating some other variables first), or it is decided by the
selection rule and orientation of an equation of the form = & y. The mazimal
nodes in the graph are just those occurrences of variables that are discovered in
the goal and may be selected for eager Variable Elimination.



Definition 13. (mazimal occurrences of variables)
Let (IT,v) be an equational proof, and G be a graph for (II,~v). A set M is a
set of mazimal nodes in G, if M contains all nodes which have no parents in

Gr.

4 Solving variables in an equational proof

The following construction explains what happens with an equational proof of a
goal, if an equation of the type = & t is selected for eager Variable Elimination.
Notice that in this construction we declare which variables in Dom/(y) are solved
or unsolved. In the justification of the completeness of the inference system with
eager Variable Elimination we start with the equational proof of an instance of
a goal with all variables unsolved. Variable Elimination reflects solving variables
in a ground equational proof.

Let (I1,+) be an equational proof with the proof sequence:

II = (wl Rlar,sixtsy] W2 Nag,sarcta,] - Flan 1,501~ —1,7] wn)

and v be an extended ground substitution.

Let U = {z1,...,2n} be aset of variables called “unsolved” in (I1,7), G be
the graph for (I1, ) constructed only with respect to unsolved variables (hence
we treat all other variables as non-existent in (I7,7)).

Let z € U and a7y be a maximal node in G7 and let ass(xy) = v.

There is a subproof (Y aw,v) in (I1,7), let (X7,.,,7") be a renaming of
this subproof.®

If x has no occurrences in v, create a new proof (II*,v*) that is exactly as
(I1,~) with the proof sequence modified in the following way:

1. Extension
Whenever xy = w;|o and hence w; = w;[z7], and
(a) z7y has right orientation, replace w; ( the i’th step in (II,7)), by the
sequence of steps:

wiltla & (Syeny) & wil77]a

where (X} upn») means a renaming of (Xez»aw,y) reversed and embed-
ded in w; at position o leftwards. Note that the renamings of internal
occurrences of variables and new occurrences of external variables in the
renaming of (Xegyran,y) have reversed orientation in the new proof.
(b) xvy has left orientation, replace w; (the i’th step in (II,7)) by the sequence
of steps:
wi[“x’y”]a ~ (Z{‘x'y”zv) ~ wi[v]a
where (X%, »~,) means a renaming of (Z«uaw,y) embedded in w; at
position a rightwards. The renamings of internal occurrences of variables

and new occurrences of external variables in (X%, ».,) preserve their
orientation in the new proof.

5 If 2 has no occurrences in v, (Zyyav,7) is a subproof associated with z+.
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2. Contraction
For each occurrence of an unsolved variable y in (II,7), if (Zyyns,y) 1S @
proper associated subproof of this occurrence in (II,v) and there is a subproof
sequence: Yonuyy» Xeyyr s in the proof sequence II'* after extension, contract
the subproof sequence to a one-element sequence, S;

The substitution v* is defined as follows:
v =[],
if yvla =27, and y € U, then v, = [y = yy[z7"]a],
if 2 & Dom(7y), z is a renaming of a variable z' € Dom(y), that appeared in
50me (S s 7). then 72 = [z > 2],
for any other variable, v* = ~;
If x has occurrences in v, then (IT*,v*) = (II,7).

Mark variables
Mark variable x solved in (IT*,~v*). If x has no occurrences in v, mark also
all subterm variables of x as solved New wariables in Dom(v*), which did not
appear in Dom(y) are marked as unsolved.

If a proof (IT*,~*) is obtained from (I7,v) in this way, then we say that

[z—v]

(IT*,~*) is generated from (II,7) by substitution [z — v], written (IT,v) —
(IT*,~*). As a corollary to this construction we notice that:

) [z—v]

Corollary 1. If (IT — (II',~") and y € Dom(y'), then for each occurrence

yy' in (IT',~'"), either
1. y € Dom(y) and yy' is an occurrence of this variable identical with an
occurrence in (IT,7v), (yy' is in the part of (II',~") not affected by extension
and contmctzon}, or
2. y € Dom(vy) and yv' is a new occurrence of y, introduced in the effect of
extending (IT,7) with (Zzyaw, ), (there was an occurrence yy* of an external
variable y in (Xgyaw,y) which generated new occurrences in all places the
copy of this subproof was used and not contracted), or
3.y & Dom(v), (y is a new variable) then yv' may be identified as a re-
named version of a variable y' € Dom(v), where y' was an inner variable in
(Er'yzva ’7)'
Ezxample 2. Let an equational proof be:
f(aag(bab)) R<1>,a%b,[]] f(b g(b b)) Rle,f(z,9(z,z))xe,[z—b]] €
Then the subproof associated with ac'yl is b & a. Notice the left orientation
of all occurrences of z in this case. We want to solve z in the proof with x — a.
Hence we will use b =~ a for the extension at each occurrence of z.
fla,g(b,b)) <1 ,amb, (0, 9(0,0)) R<1> paaq f(a,g(b,0))
R[<2> bral[]] f(a 9(a,b)) X[<3> bra,[] f(a 9(a,a)) R, f(2,9(z,2))~e,[esa]] C
Contraction will shorten the proof to:
f(a,g(b,0)) <> pma, fla, g(a, b)) Ricss pma, fla,g(a, a))

Nle,f(,9(z,2))~e,[za]] €
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Notice that we have a new assignment for z, but now we will treat = as
solved.

5 Paths in Equational Proof

A concept of path is a generalization of an associated subproof for an occurrence
of a variable. A path is a subproof starting with some variable occurrence, con-
structed in such a way that it reflects the form of an associated subproof for this
variable occurrence assuming that all other variables involved in the path were
solved first. In order to restrict the definition of a path in a proof (I7,7), we
have to take into consideration solved and unsolved occurrences of variables in
Dom(v). We have to remember where the solved variables had their occurrences
at the time they were being solved.

Since in this section we will deal with compositions of subproofs, in order to
simplify notation, we will identify a subproof with its subproof sequence.

Definition 14. (path starting with a variable occurrence and variables used in
a path)

Let (I1,v) be an equational proof, U a set of unsolved variables in Dom(7y),
x € U and zv a given variable occurrence in (II,v). A path in (I1,7) starting
with Ty is a composition of subproofs, Xy ... Y, defined in a recursive way:

1. if Dy 15 an associated subproof for xy, Yy ny is a path starting with xvy;

2. if xy 1s a parent of yy, then Yy nwyy) 18 @ path starting with xvy;

8. (a) if Zv,..., Dy is apath in (I, v) starting with 1y and Ty, = Xy xue, 11y
Tyt s an external variable in Xy ooz, 44 different from zyy, X700 X0,
is a path in (IT,7) starting with x,117", and if no variable which is
used in one path appears as not used in the other, then the composi-
tion Xy ... X, X1 ... X0 is also a path in (II,v) starting with x1v and
all variables used in the first and second path are used in the new path;

(b) if Xv,..., Xy is a path in (I1,7) starting with x1y and Sn = Xy ynyy)s
and Xyx| s 5 a subproof in (I1,7) and if no variable which is used in
one path appears as not used in the other, then Xy, ..., Yy, X ~s 18
also a path in (II,7) starting with x17y and all variables used in the first
and second path are used in the new path;

Ezample 3. For example, let our goal be: G = {z = a,z = hx,z =~ c} and an
equational theory: E = {b =~ a,b ~ fga,hfy = c}, then the proof (II,v) may
be:

oyt zy?

1 8

{b Rle,bra,[]] @ ?ba {Fb R<1>,brfga,[]] hfga Rle, hfyxe, [y—gal] C}

P e
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1. An example of a path starting with 272 would be: Y2 X
z is used and x and y are not used in this path.
2. An example of a path starting with 27" is: £, 10p(302) %

this path.

~eyt<rs <2y crsRfyy:

sylaa- T i used in

[z—v]

We will prove that if (IT,y) “— " (II',7'), for an unsolved variable z in
Dom(v), then each path in (II',v') starting with an unsolved variable in (IT',~")
is identical to a path in (II,7) (up to renaming). Hence any new paths will be
renamings of the original ones. In order to show that the process of solving
variables in (I7,v) will terminate, we will use a multiset of lengths of paths as a
measure, and show that it is decreasing.

Lemma 1. Let (I1,7) be an equational proof, U C Dom(y) be a set of unsolved

variables in (IT,7v), (II,v) o3l (II',4"), and U" be a set of unsolved variables
in (II',7").

Each path in (IT',~') starting with a variable occurrence of a variable in U’
is identical (up to renaming of some variables) to a path in (II,7) starting with
a variable occurrence of a variable in U.

If there are many paths in (II',~"), which are renamings of one and the same
path in (I1,v), then they are strictly shorter than a path in (II,7), starting with
a variable occurrence of a variable which is solved in (II',~").

Proof. The proof of this lemma is based on the fact that each path starting with
an occurrence of an unsolved variable in (I7,~) is finite. This is the case, because
while constructing longer and longer paths, we will have to run out of unused
variables.

Hence we can use induction on the lengths of paths.

Let (I1,7) [z:;v] (II',v"), where ¥, i, was used in construction of (11',7"),
and ¥ ... Y, isapathin (II',~"), starting with y;y. We can assume that = does
not occur in v, because otherwise ass(xzvy) = v and then (II',~') is identical to
(IT,~) with the only difference that x is solved and does not appear in U".

We have to consider different cases generated by the possible ways paths are
constructed in (II',v"), starting with variable occurrences appearing in (II',~')
of the kinds described in Corollary 1.

1. Let y1 € Dom(y') be such that y; € Dom(vy) and an occurrence of y1, y17'

be as described in Corollary 1. 1.

Hence y;7 is an occurrence of y; in a part of (I7,v) which is not affected by

extension or contraction in the process of constructing (I1',7").

Let Xy ... Y, be a path in (II',+') starting with y7'.

(a) If Xy...%, is a path by Definition 14.1, it is a subproof associated
with y1v in (IT',~"). The only case, when such a subproof was not al-
ready a path in (II,+) would be if the composition of shorter paths was
prevented by the condition that a variable which is used in one path
appears as not used in the other. Hence there would be two paths in

(II,7): X o Xy and X’ z is used in the first

y1ys[“zy 1 gt [y zyimv[zy*]”
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one, but not in the second. But we see, that because a variable is solved

in all places of its occurrences in a proof, it is impossible that z appears

as not used in X in,. The same argument works if we assume that z is
used in ¥, .i, and not in Eylyhzt[mi]‘

Hence there is a path, E;wm[mi]zwm in (II,v), such that Xy ... %X,

is a renamed and possibly contracted version of it. Notice that if it is a

contracted version of renaming of E?’sz t[mi]zmwvv then it is shorter of
that path which is no longer in (IT',~").

(b) If ¥y ... X, is a path in (II',v") by Definition 14.2, then it has the form

X v/ ~wlzy- This is a subproof of the subproof associated with y;7' in
(1T, ).
This subproof is either identical to a subproof ¥ ,~.:4 in (IT,7) or
there must be a composition of subproofs of the form: X _ 1501 X0iny
in (I1,7). (Then zy must be a renamed occurrence of a variable occur-
rence 2y in X, i,. The renaming is identity if 2’ is external in X in,,.)
By the same argument as in the previous case, E;wm[mk]ﬂmi%v must,
be a path in (IT,v), of which the path X' /.4 in (IT',9') is a renamed
and possibly contracted version.

(¢) If ¥y...%, is a path in (IT',~') but is not a subproof of an associated
subproof for y17', then it must be a composition of paths in (II',~"):
21---2k and EkH...En.

We will assume that X ...YX}; has the form: Xy ... Y,
Ek+1 N En the form: Eum,},iﬁ%v e En

Alternatively the path Yy ... Yy can have the form: Xy ... X« x) »,
and Yy ... %, has the form: Yegyilonaw - -+ 2n- But this case is ana-
lyzed in exactly the same way.

Because Variable Elimination affects all occurrences of a given variable,
there is no variable with some occurrences “solved” and some “unsolved”

in the proof. There is no variable with “unsolved” occurrences in one of
the paths, and “solved” in another.

And since these paths are shorter than X, ... Y,, we can assume that
they are renamings of pathsin (I7,7v): X ... Z‘;m[mk] and Z;wim X
Since these are renamings of respective paths in (I1’,4"), obviously there

is no variable that is used in one of them and has occurrences that are
not used in the other. Therefore, there is a path:

... E;m[mk]ﬂg’w,m X n (I ).

2. Now let us consider variables that have occurrences inside Y. inn,, in (II', 7).

Let y1 € Dom/(y") be such a variable and y;v', is a renaming of an occurrence

of yi in Xy in, in (11,7).

Let Xy ... Y, be a path in (II',+') starting with y7'.

We have 3 cases here:

(a) If ¥y ... X, is contained inside Y«,,i»n,, this path is a renaming of a
path inside X' i~,, in (I, ), and although there may be numerous such
copies in (II',7"), notice that all of them are shorter than ¥, :~, which
is no longer a path in (II',~") because z is solved there. So assume that
the path Xy ... Y, starts inside Y« i»n,, and has some part outside it.

~os[zyh]) and
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i. Assume that the path Xy ... Y, spreads beyond v. Then it has the
form: 21 RN Emv{ﬂu]ﬂwmm . Zn
Hence, there must be also a path in (IT,) of the form:

X EtNU[w,] Lymass - - - Xy and z must be external in both E£~v[w“]
and X!

2ymas” The path Xy... X, is a renamed and possibly con-
tracted version of this path.
Notice that X7 ... X"

tNU[z'y”] I y'megs -
starting with 2% in (IT,7). Namely, it is a subpath of path:
X X .. Xl Since y; is different than x the path

I,YM N’U[Z’Y”] Z’Y"" ~g
...z ! X, is strictly shorter than the path start-

th[Z,.Y’1]Ez;Y['nT ~g

. X! is a subpath of a path

ing with xv*.

Hence although there may be many renamings of the path

.. Z;Nv[w,,]E;W,mm ... X0 in (IT',~"), they will all be shorter
than a path in (II,+) which no longer appears in (IT',v), because z
is solved.

ii. Assume now that the path ¥ ..., spreads beyond “zy"”. Then it
has the form: Xy ... ¥, «, VN Euz,},m‘ rog e Xn-
Then there must be a unique path in (I7,~) of the form:

.. E;Nm i E;w’”l ws -+ 2p The path Xy ... X, in (IT',7') is a

renamed and possibly contracted form of that path.

Consider Example 3. After eliminating x from the goal with z &~ a, the new
goal is G' = {a =~ a,z =~ ha, z ~ c}. This is reflected by solving z with z — « in
the equational proof of Gv. We get a new equational proof of the form:

“x,\y’” “x,\y’”
!
{ a, Thb R<1>,bx0,[]] haa ?b R<1>,brfga,[]] hfga Rle, hfyxe, [y—gal] C}
Z’}//l 27/2

There is a path starting with z'y’lz Y 1ahe in the new proof, but it is
identical to the path X, 10,2314, in the old proof.

Instead of eliminating = from the goal, we could have chosen to eliminate z
with z — ¢. After Variable Elimination, the new goal is G' = {z = a,c & hz,c ~
c}. By solving z with z — ¢ in the equational proof of G, we get a new proof:

x7’1 x7’2
!
{b Rlcpraq @ € Rle, enhfy, [y —ga]] LfIAR[<1>, fganh, ] Db, c}
“ZZI” LLZ,Y/”

There is a path starting with x’y’2 in this proof: ¥, 25 ..., but this is a
renaming of a path in the original proof starting with z~?:
X Yoz casmfyy I (I,7).-

zy?rzyt|<r>
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Corollary 2. Let (II,7) be an equational proof, U C Dom/(y) a set of unsolved
variables in (IT1,v), The process of solving (II,~) will terminate.

Proof. If (II,7) o3l (IT',~"), and U" a set of unsolved variables in (II’,7’), the
multiset of lengths of paths in (II’,7') is smaller than the multiset of lengths of
paths in (II,7).

6 Result

We prove completeness of the inference rules presented in Figure 1.

Namely, we prove that in any equational theory E, a given goal G such that
E E Go, may be transformed by applications of rules in Figure 1 applied to
equations which are not solved, into a solved form with which we can define an
E-unifier more general than ¢. The solved form of an equation and of a goal is
defined in the following way.

Definition 15. (solved equation and solved goal)
Let G be a set of equations. An equation x =~ t € G is in a solved form, if x is a
variable, * & Var(t) and x & Var(G\{z ~ t}).

G is in a solved form if all equations in G are in solved form.

If G is in the solved form, then we define a substitution 65 = [z; —
t1,...,2, = t,]. Obviously, O is the most general unifier of G.

If G is a set of goal equations, an inference performed on G with one of the
rules of Figure 1 is denoted by G — G’, where G’ is the result of this inference.
The transitive, reflexive closure of — is written as —.

In order to prove completeness, we will need the measure of a goal G, of
which we will show that it may be decreased by application of an inference rule
if G is E-unifiable and not in solved form.

Definition 16. (measure for an equational proof)

Let (IT, ) be an equational proof and U C Dom(7) be a set of unsolved variables
in (IT,7v). The measure M(II,v) is a multiset of the lengths of paths starting
with occurrences of variables in U.

Definition 17. (measure of a goal)
Let E be an equational theory, and G, an unsolved part of a goal G', such that
there is a ground substitution vy, for which E |= G'y and hence there is an
equational proof (II',~") of G'y and its subproof, (II,~), which is a proof of G,
and all variables in Var(G) are unsolved in (IT',~').

The measure of G' with respect to (IT',~') is a 4-tuple (m,n,o0,p), where
m = M(II,v), n is the length of II, o is the size of terms in G+, p is the number
of equations in G, of the form t =~ x, where x is a variable and t is not a variable.

Measures for different goals are compared with respect to lexicographic order.
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Decomposition

{f(Sl,,Sn)zf(th,tn)}UG
{slztl,---,snztn}UG

where f(s1, -, 8n) = f(t1,---,tn) is selected in the goal.

Mutate
{uzf(vlv"'avn)}UG

{um s, ti ®v1, -, tn RV }UG

where u = f(v1,---,vy,) is selected in the goal, and s & f(t1,---,tn) € E.*

Variable Mutate

{u= f(vi, -, vn)} UG
{uxs,zx f(vi, - ,o)} UG

where s & x € F, z is a variable, and u = f(v1,---,vs) is selected in the goal.

Variable Decomposition (for cycle)

{z =~ f(t1, - +,tn)} UG
{e~ f(z1, -, zo)}U{{z1 & t1, - 20 Rt JUG) [z = f(z1,---,20)]

where z is a variable, x ~ f(t1,---,tn) is selected in the goal,
z € Var(f(ti, -, tn)).

Variable Elimination Orient
{z=v}UG {t~z} UG
{z = v} UGz — 1] {r=t}UG
where z & Var(v) where z is a variable.

and ¢ is not a variable.

Trivial
{r=z}UG
G

where z = x is selected in the goal.

“ We assume that E is closed under symmetry.

Fig. 1. E-Unification with eager Variable Elimination
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Theorem 1. Let E be a set of equations, such that E |= G for some ground
substitution ~v. Then there is H a set of equations in the solved form, such that
G H and 0g[Var(G)] <g 7.

Proof. If G is already in the solved form, then 85 <g 7.

If G is not in solved form, then there is an unsolved part of G, G’, such that
u~wveG, if usxwvisnotin solved form. Assume that u ~ v was selected
for an inference. If E |= G, there must be an equational proof (I7,v) of G'~.
We will call it an actual proof of Gv. There must be a subproof in (I7,7), of
uy & vy and w7y, vy are the extreme terms in this subproof. We can also assume
that all solved variables in G are solved in (II,v) and all unsolved variables in G
are unsolved in (IT,v). Hence there is a graph Gz for all unsolved variables in
(IT,7). As we have seen, there are sometimes choices in constructing G . The
choices reflect the selection function, but in any case, we can always choose such
G that if o & v is selected for an inference, 2y is a maximal node in G 7.

For the proof, we have to consider all possible forms of an unsolved goal equa-
tion u = v selected for an inference. These forms are analyzed in the following
cases.

1. Assume that neither u nor v is a variable.

Let (Zyyawy, ) be a subproof in (I1,7) of uy = v, such that uy and vy are
extreme terms in ( Xy auy,Y)-

Assume also that there is no step at the root in (Xyyaw~,7). Hence u and v
must have the same root symbols.

Then if we apply Decomposition to this equation, we get equations s; ~
t1,...,8, & tp, such that there is a subproof in (II,v) for each s;v ~ #;7,
i € {L,...,n}, and if wy, vy were the extreme terms in (X4, ), each of
8;7, ti7y are extreme terms in their respective subproofs. Hence E = {s1y =~
t17, ..., 807y & t,y}. The sum of the lengths of the subproofs is equal to the
length of the original subproof of uy & vy, but L, [s;v|+|t:iy]| < |uy|+|vy].

Let (m, n, 0, p) be the measure of the goal before Decomposition and (m',n', o', p')

after Decomposition. m' = m, n’ = n and o' < o.

2. Assume that neither u nor v is a variable.
Let (Zuyawy, ) be a subproof in (I1,7) of uwy = vv, such that uy and vy are
extreme terms in (X auy, v)-
Assume also that there is a step at the root in (X, muy, 7).
(Zurawny, ) has the form: uy & -+ & Wi R s;nt;,4] Wit1 R - R0y, Let us
choose i in such a way, that this is the rightmost root step in this proof and
assume that t; is not a variable.
Then there is no root step between w; 1 and v+y. Since the i’th step is at the
root position, ;7 = w; and t;y = w;41. Since there is no root step between
t;y7 and vy, both these terms must have the same root symbol and thus
we can at once decompose them, obtaining possible empty set of equations:
t1 & v1,...,t, & v,, such that for each k£ € {1,...,n}, t,y ~ v,y has a
subproof in (II, ), and moreover each ¢;7, v;7y are extreme subterms in their
respective subproofs. In this case Mutate is applicable, and we see that

E |: {’U’Ay ~ Si%tl"y R VLY .-y tn’}’ ~ ,U'nfy}
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Let (m,n,o0,p) be the measure of the goal before Mutate and (m’,n’,o’,p")
after Mutate. m’ = m and n’ < n.

Assume that u and v are the same as in the previous case, but now t; is a
variable.

In this case we don’t want to “decompose” variable t;, but we see that the
rule Variable Mutate gives us two equations such that: F | uy & s;v and
E =ty & vy.

Both wy = s;v and t;y = vy have subproofs in (17, ) and the terms of these
equations are extreme terms in their respective subproofs.

Let (m,n,o0,p) be the measure of the goal before Variable Mutate and
(m/,n',0',p') after Variable Mutate. m’ = m and n’ < n.

Assume that u is a variable z, v is not a variable and x € Var(v).

Let (Xyyaufz]y,Y) be a subproof in (IT,v) of 27y = v[z]y, such that zvy and
v[r]y are extreme terms in (X, xu[z]y, Y)- Hence (X, x0(0]y,Y) is a subproof
associated with .

Since z has an occurrence in v[z]y, the subproof (¥, ~y[z]y,7) must have
length greater than 0 (an equation of the type a & a would have proof of
the length 0).

Again, we look at the subproof (X, ~yz14,7)- If there is a step at the root
in the subproof, the right rule to apply is Mutate or Variable Mutate,
depending on the form of equation from E used in the step at the root.
Hence the analysis is exactly the same as in 2 or 3.

Assume that u is a variable z, v is not a variable and x € Var(v).

Like in the previous case, we argue that an appropriate subproof (X ~yz1y: )
in (II,7) has length greater than 0. But this time assume that there is no
step at the root in (X, au(z]y,7)-

It means that 2y and v[x]y must have the same symbol at their roots (and all
the steps in the subproof (X xu[2]y,7) are performed under the root). The
subproof has the form: v = f(u1,...,un)y =& f(v1, -, 0,)y = v7.
The right rule to apply to  ~ v[z] is Variable Decomposition , we get
an equation z = f(x1,...,x,) in the conclusion. Since 7 is general extension
of itself, z1,...,z, are fresh variables, that are already in Dom(y). V., =
[t; » ], for 1 <i<n. ElE=azy= f(r1,...,2,)y and E = ;7 = v;y. We
notice also that since zvy = f(x1,...,2n)7, Glz = f(z1,...,2,)]y = G7.
Therefore E | Gz — f(z1,...,2,)]y. And since zy = f(z1,...,2,)7,
E |: Ty & vi[x = f(xla . 7xn)]’y

For each equation in ({z1 &~ vi,...,2, ® U} UG)[x = f(z1,...,2,)])Y
there is a subproof in (II,7).

In the consequence of application of Variable Decomposition, z gets solved.

Indeed, f(z1,...,7,)y = ass(zy) and we state that (IT,7) o= @ag-eom)]

(IT',~"), where v/ =+, II' = IT and « is solved in (IT',7").

The actual equational proof for the goal will be changed to (I1’,7'). By
Corollary 2, M(II',~") < M(II,~).

Let (m,n,o0,p) be the measure of the goal before Variable Decomposition
and (m’,n’,0’,p') after Variable Decomposition. m' < m.
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6. Assume that v is a variable and u is not a variable. Then Orient applies.
Obviously, Orient preserves the set of E-unifiers for v ~ v. Let (m,n,o0,p)
be the measure of the goal before Orient and (m’,n’, o', p') after Orient.

m' <m,n’ <n,o’ <oandyp <p.

7. Assume that = ~ v was selected for an inference and x ¢ Var(v).

Then E |= 2y = vy and there is a subproof (X1, ) in the proof (I7,7)
such that z7v and vy are the extreme terms of (Xzyany,7v)- If  is unsolved

in the goal G, x is also unsolved in (IT, 7).
[os07]

Hence we know that vy = ass(z) and (I1,v) ~ — " (II',v').

M(I,~) > M(IT',y').

The right rule to apply is therefore Variable Elimination.

Since E |= G, also E |= G and (IT',+") is the proof of G7'. We change the
actual equational proof to (IT',~') and take it as the basis of completeness
argument of further inferences. Since zv' = vy, E |E Gz — v]y'.

Let (m,n,o0,p) be the measure of the goal before Variable Elimination and
(m/,n',o',p') after Variable Elimination.

m' < m after Variable Elimination. Notice also that after Variable Elimina-
tion, for each u' ~ v' in G' there is a subproof in (IT’,~') such that 'y’ and
v'+" are the extreme terms in this subproof. If ' ~ v'[z] was in G’, then after
Variable Elimination, v’ & v'[v] in G’ and obviously (because of extension)
there is a subproof (X xurfy)y,Y') in (IT', 7).

8. Assume that v and v are occurrences of the same variable x. Since the proof
of zv =~ x7v has length 0, we can get rid of this equation in the goal by
applying Trivial.

Let (m,n,o0,p) be the measure of the goal before Trivial and (m',n’,o’,p")
after Trivial. m' =m, n’ =n and o’ < o.

7 Conclusion

E-unification procedures are inherently non-deterministic, because there are usu-
ally many ways to apply inferences to goal equations and many possibilities of
solving a goal. It means that a search space for a solution may be very exten-
sive. Any restrictions of this non-determinism that we may justify are therefore
welcome as restrictions of this search space. Eager Variable Elimination means
that the rule should be applied whenever an equation z ~ v is selected and =z
does not appear in v. In this case, we would not try to apply other rules to this
equation. On the other hand, we may see that the ground equational proof of an
instance of a goal, may be made longer by Variable Elimination. This means that
we will have to do more Mutate inferences in order to reach solution. One can
think about some memoization techniques to detect and reduce such possible
overhead.

We think that the proof of completeness of eager Variable Elimination opens
some possibilities of finding new classes of equational theories defined syntacti-
cally, for which E-unification problem may be proved solvable and tractable.



20

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

2. J. Gallier and W. Snyder. A general complete E-unification procedure. In RTA 2,
ed. P. Lescanne, LNCS Vol. 256, 216-227, 1987.

3. J. Gallier and W. Snyder. Complete sets of transformations for general E-unification.
In TCS, Vol. 67, 203-260, 1989.

4. S, Holldobler. Foundations of Equational Logic Programming. Lecture Notes in
Artificial Intelligence, Vol. 353, Springer, Berlin, 1989.

5. C. Kirchner and H. Kirchner. Rewriting, Solving, Proving.
http://www.loria.fr/~ckirchne/ , 2000.

6. A. Martelli, C. Moiso and G. F. Rossi. Lazy Unification Algorithms for Canonical
Rewrite Systems. In Resolution of Equations in Algebraic Structures, eds. H. Ait-
Kaci and M. Nivat, Vol. IT of Rewriting Techniques, 258-282, Academic Press, 1989.

7. A. Martelli, G. F. Rossi and C. Moiso. An Algorithm for Unification in Equational
Theories. In Proc. 1986 Symposium on Logic Programming, 180-186, 1986.

A Normalization of equational proofs

If I[)|a,, [t + ey, - -, [ + E]|a, is a subproof sequence in IT, there may
be a step in IT between two consecutive terms II[i + n] and II[i + n + 1] at the
position a4, such that a;i, > a, or a;y, = ay,, then we can write this step in
the subproof as:

i + 0o, Rar,sisnnctiony] T[0+ 1|a,, where apa’ = qipp.

But it may also be that «a;, is a parallel position to ay,, and then IT[i +
an == H[i +n+1]]q, -

Definition 18. (fake step)

If O[)|a,, i + Ula,,- - i + k]|, is a subproof sequence in an equational
proof (IT,7), a step I[i+n]|a, R[ar,s;nrtiiny] Hi4+1]|a, in the subproof, where
and’ = a;yy and o'||ay, is called o fake step in the subproof and is written as
i +nlla, = i +n +1]

n]

Qn *

Note that = is thus overloaded with a second meaning. Until now s = ¢
meant only that s and ¢ were the same ground objects. Here it means that there
is no step taken in the proof between these ground subterms.

Accordingly, if for some variable z, v = w; and w; = w;y1 in a subproof,
also zy = w;41, because there is no real step between w; and w; 1.

In a normalized proof such fake steps in a subproof will be possible only at
the beginning and at the end of a subproof. Hence subproof in a normalized proof
will have always the following form: w; = --- = w; R wy & -+ - R w,, = - -+ = wy.

Accordingly T will call a subproof which can be written in the form: w; =

=W R we A - R W = - = Wy, a subproof in a normal form, and the
part of it which can be written in the form: wy & ws & - -+ & wy, a proper form
of the subproof.

Definition 19. (proof in a normal form)
An equational proof (II,7) is in normal form, if all its subproofs are in normal
forms.
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Lemma 2. Fach equational proof may be normalized.

Proof. If (II,+) has no proper subproofs, then (II,) is in normal form.

Let (II,7) be an equational proof not in normal form. We will construct a
new proof (II’,~) which is in a normal form in a recursive way, such that (II’,~)
differs from (I7, ) only in the order of steps and is the proof of the same ground
equation.

We should identify all subproofs in (I1,v) and their proper forms. For in-
duction assume that all smaller proofs than (I7,v) may be normalized. As the
measure for a proof, let us assume the pair (n, M), where n is length of a proof
(number of steps) and M is multiset of sizes of its terms.

Each proper subproof in (I1,+) is either shorter than (II,7) or has smaller
terms. Hence for induction argument we can assume that each proper subproof
of (I1,7) is in normal form and thus its proper form can be easily identified.

In the course of the following construction, we will move step by step through
the proof sequence IT, remembering the set A of recent parallel positions at which
the steps have been taken. At the beginning A is an empty set.

1. First step. Take the first step in the proof (IT,7): IT[1] R(a, s ~t1,00] T[2]-

(a) If ay = €, write it as the first step of the proof sequence IT’. There is a
subproof (IT",~) in (II,) starting with IT[2] at position e. The subproof
is shorter than (I1,+), hence it has normal form. Embed normal form of
(IT",~) into II[1] and stop.

(b) If ay > €, then there is a part of (II,v) at the depth ay and a subproof
starting with IT[1]|,, (all terms in this subproof are subterms at position
ay of some consecutive terms in I7T).

Embed the normalized, proper part of the subproof into IT[1]. Put «; as
the first element of A and go to the next step in IT.
2. Next step. Assume that we are done with 7 — 1’th consecutive step in II.

Now we consider next step: IT[i] X[a; s;nt;,p:7 1I[1 + 1].

(a) If a; > 8 for any 8 € A then the step belongs to the subproof already
embedded into proof sequence IT’, hence go to the next step in IT.

(b) If @; < B, for any B € A (step above the last subproof steps), then
IT[i] must be the last term of the part containing the previous subproof.
IT[i],, is the first term in a subproof IT" of IT, which is in the part of IT
for the depth «; and is composed of the terms of IT at the depth «;.
Hence embed normalized, proper form of IT"” into IT[i], attaching it into
IT'. Replace each 3 in A, such that a; < 8 with a; in A and go to the
next step of IT.

(¢) If a;]|B, for each B € A then there is a subproof sequence IT"" starting
with IT[i] at the depth «;. Let IT'[l] be the last term in the proof sequence
IT' constructed up to now. From the construction of IT’, we know that
II[i]s, == IT'[l]a, (steps at a parallel position could not change this sub-
term). Embed normalized, proper version of IT"s" into IT'[l],,, attaching
it to IT’, add a; as the next element to A and go to the next step of IT.



