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Abstra
t. The paper 
ontains a proof of 
ompleteness of a goal-dire
ted

inferen
e system for general E-uni�
ation with eager Variable Elimina-

tion. The proof is based on an analysis of a 
on
ept of ground, equational

proof. The theory of equational proofs is developed in the �rst part. Solv-

ing variables in a goal is then shown to be re
e
ted in de�ned transfor-

mations of an equational proof. The termination of these transformations

proves termination of inferen
es with eager Variable Elimination.

1 Introdu
tion

E-uni�
ation is 
on
erned with �nding a set of solutions for a given equation

in a given equational theory E. The problem of E-uni�
ation arises in many

areas of 
omputer s
ien
e like formal veri�
ation, theorem proving and logi


programming. In general the E-uni�
ation problem, i.e. the problem of �nding

a set of solutions for a given equation in a non-empty equational theory E

is unde
idable, unlike in the 
ase of the synta
ti
 uni�
ation problem, i.e. in

the 
ase of sear
hing for a solution for an equation in the 
ontext of the empty

equational theory. Nevertheless, the E-uni�
ation problem is semi-de
idable and

there are 
omplete algorithms for solving it.

Goal-dire
ted algorithms for E-uni�
ation are based on the idea of trans-

forming goal equations into a solved form whi
h will allow easily to de�ne a

solution. Su
h an inferen
e system was presented �rst in [2℄, and is displayed

here in a di�erent notation in Figure 1. Consider the rule Variable Elimination

in this set of inferen
e rules. If applied to an equation of the form x � v in the

goal, it will eliminate x from all other equations in the goal and thus solve the

equation x � v.

1

The Variable Elimination is for
ed to be applied eagerly here,

be
ause there is no other rule to deal with equations of the form x � v, where x

is not a variable in v.

There was no proof up to now that this system of inferen
es is 
omplete for

E-uni�
ation. It is 
omplete, when we allow other rules to apply to an equation

x � v, but then Variable Elimination 
annot be applied eagerly. The problem

1

Formal de�nition of a solved equation is in the se
tion 6.
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was �rst dis
overed and 
alled the Eager Variable Elimination Problem by Gallier

and Snyder in [2℄.

Eager Variable Elimination is justi�ed in the 
ontext of synta
ti
 uni�
ation

be
ause it de
reases the number of unsolved variables in the goal, while preserv-

ing a set of solutions. The number of unsolved variables is not in
reased by any

other rule and hen
e we may be sure that the inferen
es will terminate.

In the 
ontext of E-uni�
ation we must use another rule 
alled Mutate.

2

No-

ti
e that we have here 
on
i
ting results of appli
ations of Mutate and Variable

Elimination to the goal: Variable Elimination de
reases the number of unsolved

variables in the goal, but Mutate in
reases this number, and while Mutate de-


reases the length of a ground proof of an instan
e of a goal, Variable Elimination

may in
rease this length.

In [3℄ Gallier and Snyder proved 
ompleteness of their system without eager

Variable Elimination. In [5℄ (p. 207) the authors stated that Mutate (repla
e-

ment) and eager Variable Elimination (merging) do not preserve the form of the

proof.

In this paper we prove that Variable Elimination may be applied eagerly

without destroying the 
ompleteness of the E-uni�
ation pro
edure. The fa
t

that Variable Elimination 
an be applied eagerly de
reases non-determinism in

the inherently non-deterministi
 general E-uni�
ation algorithms. It may redu
e

redundan
y of inferen
es and limit the sear
h spa
e for a solution to a given

equation. This was pointed out e.g. in [7℄, [6℄, [4℄.

The main idea in the proof of 
ompleteness of our inferen
e rules (Figure 1),

is to 
onsider a ground equational proof for a goal. If x � v is part of this goal,

we know that there must be subproof for a ground instan
e of this equation.

We then 
an dis
over how the proof of the ground instan
e of a goal is 
hanged,

when Variable Elimination is applied to x � v. The main problem is to show

that eliminating variables from the goal will not lead us into in�nite loops of

inferen
es. Hen
e we must show, what is de
reasing in the ground proof after a

variable is solved. Here we use the idea of a path in a proof, i.e. any 
omposition

of subproofs in the ground proof, whi
h starts with an o

urren
e of an unsolved

variable. We show that the multiset of lengths of the paths in a ground proof of

an instan
e of a goal will be smaller after Variable Elimination is applied.

Most of the paper is 
on
erned with a des
ription of a theory of equational

ground proofs (de�nitions in Se
tion 3) and a 
onstru
tion of new equational

proof whi
h re
e
ts e�e
ts of eager Variable Elimination (Se
tion 4). We present

then the 
on
ept of paths in an equational proof (Se
tion 5) and this enables us

to de�ne a measure of a goal and prove the result by indu
tion on this measure

(Se
tion 6).

2 Preliminaries

We use standard de�nitions as in [1℄.

2

In [3℄ this rule is 
alled Root Rewriting. The name Mutate 
ame from [5℄, where it

was used for E-uni�
ation in Synta
ti
 Theories.
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We will 
onsider equations of the form s � t, where s and t are terms. Please

note that throughout this paper these equations are 
onsidered to be oriented,

so that s � t is a di�erent equation than t � s. Let E be a set of equations, and

u � v be an equation, then we write E j= u � v (or u =

E

v) if u � v is true in

any model 
ontaining E. We 
all E an equational theory, and assume that E is


losed under symmetry. A goal (E-uni�
ation problem) is usually denoted by G

and it is a set of equations. E j= G means that E j= e for all e in G.

We will be 
onsidering ground terms as ground obje
ts that may or may

not have the same synta
ti
 form. In other words we will be 
on
erned with the

o

urren
es of the terms more than their values. A term may be identi�ed by

its address in a proof sequen
e and a position of it as a subterm in a term in the

proof. Hen
e the equality sign between ground terms is treated in a spe
ial way.

If u; v are ground terms, by u = v, u is understood to be an obje
t identi
al with

v, whereas when synta
ti
 equality is suÆ
ient, it will be denoted by u == v.

Synta
ti
 inequality will be denoted by u 6== v. The di�eren
e between identity

and synta
ti
 identity is that the �rst involves obje
ts and the se
ond involves

names.

We 
an say that a variable x points to its o

urren
es in a term u, where ea
h

of these o

urren
es under some ground substitution 
, is identi
al with some

subterm of u
 at a position � (x
 = u
j

�

). Di�erent o

urren
es of the same

variables are di�erent obje
ts, though they have the same synta
ti
 form (ea
h

one is of the form x
). In order to distinguish between di�erent o

urren
es

of the same variable, we will use supers
ript numbers, usually numbering the

o

urren
es from left to right in order of their appearan
es in an equational

proof. Hen
e x


1

and x


2

are di�erent o

urren
es of x in a proof.

Sometimes we will want to state that some subterm has a form (or value) of

x
, but is not identi
al to x
 (hen
e is not pointed to by a variable x). This will

be indi
ated by quote marks. Hen
e w[\x
"℄

�

is di�erent from w[x
℄

�

sin
e in

the se
ond term x
 a
tually o

urs at position �, while in the �rst one there is

only a subterm that has the value of x
.

If 
 is a ground substitution, 


x

means the restri
tion of this substitution to

a variable x. Hen
e if 
 = [x 7! a; y 7! b; z 7! 
℄, 


x

= [x 7! a℄.

3 Equational proofs

Given an equational theory E, we de�ne an equational proof as a pair (�; 
)

su
h that � is a series of ground terms and 
 is a ground substitution.

De�nition 1. (equational proof)

Let E be a set of equations. An equational proof of an equation u � v is a

pair (�; 
) where � = (w

1

; w

2

; : : : ; w

n

) is series of ground terms, 
alled proof

sequen
e, su
h that:

1. u
 = w

1

, v
 = w

n

,

2. for ea
h pair (w

i

; w

i+1

) for 1 � i � (n� 1), there is an equation s � t 2 E

and a mat
her �, su
h that there is a subterm w

i

j

�

of w

i

and a subterm

w

i+1

j

�

of w

i+1

, and w

i

j

�

= s�, w

i+1

j

�

= t�.
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We 
an write the equational proof as

u
 = w

1

�

[�

1

;s

1

�t

1

;�

1

℄

w

2

�

[�

2

;s

2

�t

2

;�

2

℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;�

n�1

℄

w

n

= v


where [�

i

; s

i

� t

i

; �

i

℄ indi
ates at what position �

i

is the mat
hing subterm,

whi
h equation from E was used (s

i

� t

i

), and how the variables in this equation

were substituted (�). Ea
h w

i

in the above sequen
e is 
alled a term in the proof,

as distin
t from any proper subterms of w

i

, whi
h are not 
ounted as terms in the

proof. Sin
e an equational proof is a sequen
e of ground terms, we will sometimes

use the notation borrowed from that for arrays, and � [i℄ will mean the i'th term

in � .

Let 
 be a ground substitution, and G a set of equations su
h that E j= G
.

Hen
e by Birkho�'s theorem, there must be an equational proof for ea
h u
 �

v
, where u � v 2 G: u
 = w

1

� w

2

� : : : � w

n

= v
.

Sin
e every mat
her at ea
h step uses a renamed version of an equation

from E, the domain of the mat
her is disjoint from the domain of 
 and the

domains of mat
hers at all other steps in the proof, we extend 
 to 


0

su
h that:




0

= 
 [�

1

[ : : :[�

n

. From now on we will assume that 
 is an extended version

of itself.

In order to be able to identify new variables introdu
ed by a possible appli-


ation of Variable De
omposition (Figure 1), we have to extend 
 even more.

3

A general extension of 
 will add variables for ea
h subterm of a term v if




x

= [x 7! v℄. We will 
all these new variables subterm variables.

De�nition 2. (general extension of 
)

Let 
 be a ground substitution. A general extension of 
, ex(
), is de�ned re
ur-

sively as follows:

1. if 


x

= [x 7! v℄ and jvj = 1 (v is a 
onstant), then ex(


x

) = 


x

,

2. if 


x

= [x 7! f(v

1

; : : : ; v

n

)℄, and n � 1, then let 


y

i

= [y

i

7! v

i

℄, for

1 � i � n, and ex(


x

) = 


x

[ ex(


y

1

) [ � � � [ ex(


y

n

),

3. ex(
) =

S

x2Dom(
)

ex(


x

)

From now on we will 
onsider 
 in (�; 
) as a general extension of itself. We

have 3 kinds of variables in Dom(
):

1. the goal variables, i.e. the variables in V ar(u � v);

2. the system variables, i.e. if there is a step � [i℄ �

[�

i

;s

i

�t

i

;
℄

� [i+1℄ in (�; 
),

then the variables in V ar(s

i

� t

i

) are 
alled system variables;

3. the subterm variables in � [i℄, for ea
h � [i℄ in the proof, i.e. variables that

are introdu
ed by general extension of 
 ;

We will see that ea
h variable o

urren
e starts or ends some subproof in

an equational proof. In order to de�ne this subproof, we will use a notion of

orientation of a variable o

urren
e. We de�ne it for ea
h variable o

urren
e in

the following way:

3

The following de�nition is similar to the de�nition of general extension of a substi-

tution in [3℄. It was introdu
ed there with a similar purpose: to a

ommodate the

Variable De
omposition rule.
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De�nition 3. (orientation of variable o

urren
es)

Let (�; 
) be an equational proof and x 2 Dom(
).

1. If x
 is a system variable o

urren
e in � [i℄ �

[�

i

;s

i

�t

i

;
℄

� [i+ 1℄ and x
 =

� [i℄j

�

for some position �, then x
 has left orientation. If x
 = � [i+ 1℄j

�

,

then x
 has right orientation.

2. if x
 is a goal variable o

urren
e in � [1℄ (x
 = � [1℄j

�

), then x
 has right

orientation, and if x
 = � [n℄j

�

, where � [n℄ is the last term in the proof,

then x
 has left orientation.

3. if x
 is a subterm variable, hen
e x
 = y
j

�

, then x
 has the same orienta-

tion as y
.

3.1 Part of equational proof and subproof

Now we de�ne subproofs in an equational proof as proofs embedded at some

position in parts of this proof.

De�nition 4. (part of proof for depth �)

Let (�; 
) be an equational proof

w

1

�

[�

1

;s

1

�t

1

;
℄

w

2

�

[�

2

;s

2

�t

2

;
℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;
℄

w

n

.

Let � be one of �

1

; : : : ; �

n�1

, whi
h are the positions at whi
h the steps in

the proof are performed. A part of the proof (�; 
) for depth � is a sequen
e:

� [i℄ �

[�

i

;s

i

�t

i

;
℄

� � � �

[�

i+j�1

;s

i+j�1

�t

i+j�1

;
℄

� [i+j℄, su
h that for i � k � j�1,

�

k

� � or �

k

jj�.

Hen
e part of a proof is a subsequen
e of steps in the proof, su
h that ea
h

step is performed at a position �, lower or at a parallel position in the subsequent

terms of the proof. If j = 0, the part of the proof is 
omposed of one term only.

Now we will de�ne a subproof in an equational proof as a sequen
e of subterms

of terms in a part of the original proof.

De�nition 5. (subproof)

Let (�; 
) be an equational proof.

Let � [i℄ �

[�

i

;s

0

1

�t

0

1

;
℄

� � � �

[�

i+k�1

;s

0

i+k�1

�t

0

i+k�1

;
℄

� [i + k℄ be a part of the

proof (�; 
) for depth �, and let �

n

be a su
h that � � �

n

.

Then a pair (�; 
), where � is a sequen
e of terms (
alled subproof se-

quen
e): � [i℄j

�

n

; � [i+ 1℄j

�

n

; : : : ; � [i+ k℄j

�

n

is 
alled a subproof of (�; 
).

In the next se
tions, we want to be able to use a 
opy of a subproof in 
reating

new proofs. In this 
opy only some variables, 
alled internal variables, will be

renamed.

De�nition 6. (internal/external variables in a subproof)

Let (�; 
) be an equational proof and (�

w�w

0

; 
) a subproof in (�; 
). If there is

a step in (�

w�w

0

; 
): w

i

�

[�;s�t;
℄

w

i+1

, y 2 V ar(s � t), y is 
alled an internal

variable in (�

w�w

0

; 
). If y has o

urren
es in (�

w�w

0

; 
), but is not internal

variable in this subproof, it is 
alled an external variable in (�

w�w

0

; 
).
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De�nition 7. (renaming of a subproof)

Let (�; 
) be an equational proof and (�

w�w

0

; 
) a subproof in (�; 
). (�

0

w�w

0

; 


0

)

is a renaming of (�

w�w

0

; 
) if (�

0

w�w

0

; 


0

) is exa
tly like (�

w�w

0

; 
), with all in-

ternal variables renamed.

Example 1. Let E := fffx � fgxg and the equational proof (�; 
) is the fol-

lowing:

fgfa �

[�;ffx

1

�fgx

1

;[x

1

7!fa℄℄

fffa �

[<1>;ffx

2

�fgx

2

;[x

2

7!a℄℄

ffga �

[�;ffx

3

�fgx

3

;[x

3

7!ga℄℄

fgga.

Obviously, (�; 
) is its own subproof. We have also one more subproof:

ffa �

[�;ffx

2

�fgx

2

;[x

2

7!a℄℄

fga, where ffa = � [2℄j

<1>

. A renaming of this sub-

proof would have the following form: ffa �

[�;ffx

4

�fgx

4

;[x

4

7!a℄℄

fga, where x

4

is

a new variable.

Further analysis of subproofs and their normal forms may be found in Ap-

pendix A.

3.2 Embedding a proof into a term

Embedding a proof into a term is a way to 
onstru
t a proof from a given

subproof.

De�nition 8. (embedding of a proof)

If w is a ground term, (�; 
) is a proof of the form:

w

1

�

[�

1

;s

1

�t

1

;
℄

w

2

�

[�

2

;s

2

�t

2

;
℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;
℄

w

n

and there is a position � in w su
h that wj

�

== w

1

, then there is a proof (�

0

; 
)

of the form:

w[w

1

℄

�

�

[��

1

;s

1

�t

1

;
℄

w[w

2

℄

�

�

[��

2

;s

2

�t

2

;
℄

: : : �

[��

n�1

;s

n�1

�t

n�1

;
℄

w[w

n

℄

�

We say that (�

0

; 
) is the embedding of the proof (�; 
) in the term w.

We 
an atta
h a proof to a given equational proof (�; 
) by embedding it

into the last term of (�; 
), if the 
onditions of the de�nition are met.

If (�; 
) is a proof su
h that it is 
omposed from (�

1

; 


1

) and (�

2

; 


2

) by

embedding (�

2

; 


2

) into the last term of (�

1

; 


1

), we say that (�; 
) is a 
om-

position of (�

1

; 


1

) and (�

2

; 


2

).

3.3 Contra
ting

De�nition 9. (non-redundant equational proof)

An equational proof � is non-redundant if there are no two terms � [i℄ and

� [j℄ su
h that i 6= j and � [i℄ == � [j℄, and all proper subproofs of � are

non-redundant.
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A simple pro
edure (
alled 
ontra
tion ) of 
utting out loops out of subproof

sequen
es in a proof sequen
e, allows us to obtain a non-redundant proof from

any redundant one.

4

3.4 Asso
iated subproofs, asso
iated terms and a hierar
hy of

variable o

urren
es

In this se
tion, for ea
h o

urren
e of a variable x in Dom(
), we de�ne a ground

term asso
iated with this o

urren
e. The intuition is that a term asso
iated with

a given o

urren
e of a variable, x
, is the term on the opposite end of a longest

subproof with starts with x
. If x � v is an equation in our goal G, and E j= G
,

then v
 is a term asso
iated with x
.

First, we de�ne ground subproofs asso
iated with ea
h o

urren
e of x in an

equational proof.

De�nition 10. (subproof asso
iated with an o

urren
e of a variable)

Let (�; 
) be an equational proof, x 2 Dom(
) and x
 is an o

urren
e of x in

(�; 
).

1. If x
 has a left orientation and x
 = � [i℄j

�

, then there is the longest subproof

� [i� k℄j

�

� � � � � � [i℄j

�

We reverse the order of the terms in this subproof:

� [i℄j

�

� � � � � � [i� k℄j

�

and we 
all this subproof a subproof asso
iated with this x
. We say

that the subproof asso
iated with x
 is left-oriented.

2. If x
 has right orientation and x
 = � [i℄j

�

, then there is the longest subproof

� [i+ 1℄j

�

� � � � � � [i+ l℄j

�

We 
all this subproof a subproof asso
iated with this x
 and we say

that it is right-oriented.

Noti
e that if (�; 
) is an equational proof of u
 � v
, then the external

variables in this proof are only variables in V ar(u) and V ar(v). By the de�ni-

tion of subproofs asso
iated with variable o

urren
es, if (�

x
�v

; 
) is su
h a

subproof, external variables in this subproof have their o

urren
es only in x


(x and its subterm variables are external variables in this subproof) and v. The

external variable o

urren
es in v have opposite orientation to that of x
. We

will sometimes indi
ate an orientation of an o

urren
e of a variable by an arrow,

like in

!

x
, whi
h denotes an o

urren
e of x with right orientation. Similarly,

if (�; 
) is a subproof in (�; 
), (

!

�

; 
) indi
ates that this subproof has right

orientation.

4

In the 
ase of proofs in normal form, it is enough to require that there are no identi
al

terms in the proof, to show that it is non-redundant. The de�nition of normal form

for a proof is in Appendix A.
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De�nition 11. (term asso
iated with an o

urren
e of x)

Let (�; 
) be an equational proof, x 2 Dom(
) and x
 is an o

urren
e of x

in (�; 
). Let a subproof (�

x
�v

; 
) be a subproof asso
iated with x
, then we

de�ne a term asso
iated with x
, ass(x
), in the following way:

1. if no o

urren
e of x appears in v, then ass(x
) = v,

2. if an o

urren
e of x appears in v, then

(a) if there is a step at the root in (�

x
�v

; 
), we will 
hoose the rightmost

su
h step: w

i

�

[�;s

i

�t

i

;
℄

w

i+1

and de�ne ass(x
) = w

i

,

(b) if there is no step at the root in (�

x
�v

; 
), we de�ne ass(x
) = x
.

The point of this analysis is the observation that if we want to perform eager

Variable Elimination with a goal equation x � w, where x 62 V ar(w), knowing

that there is a ground proof of x
 � w
, even if x
 6== w
, w
 = ass(x
).

In this situation, we will show how to 
onstru
t an equational proof of the goal

with the ground substitution 
hanged to 


0

, su
h that 


0

x

= [x 7! w
℄.

There is a hierar
hy among o

urren
es of the variables of an equational

proof. In order to display it, we will 
onstru
t a graph G

�

with o

urren
es of

variables in a given equational proof as nodes and arrows as follows.

1. for ea
h variable x in Dom(
) and for ea
h o

urren
e x
 of this variable, if

for any y 2 Dom(
), (�

x
�w[y
℄

; 
) is a subproof of a proof asso
iated with

x
 and w is not empty, draw an arrow from x
 to y
;

2. for ea
h variable x in Dom(
) and for ea
h o

urren
e x
 of this variable:

if for any y 2 Dom(
), (�

x
�y


; 
) is a subproof of a proof asso
iated with

x
:

(a) if (�

y
�x


; 
) is a subproof of a proof asso
iated with y
, then non-

deterministi
ally de
ide the dire
tion of an arrow between x
 and y
;

(b) if (�

y
�x


; 
) is not a subproof asso
iated with y
, then draw an arrow

from x
 to y
;

The parent/
hild relation de�ned next, follows the arrows in the graph for

an equational proof.

De�nition 12. (parent/
hild relation) Let (�; 
) be an equational proof with

x; y 2 Dom(
) (x may be possibly the same as y) Let x
 and y
 be any two

di�erent o

urren
es of variables in Dom(
).

If there is an arrow x
 ! y
, then x
 is 
alled a parent of y
 and y
 is a


hild of x
.

The graph G

�

, for an equational proof helps us to re
ognize/de
ide the

parent/
hild relation. This relation is in some 
ases determined by the stru
ture

of the proof (we 
annot dis
over new variables in the transformation of the goal

before solving/eliminating some other variables �rst), or it is de
ided by the

sele
tion rule and orientation of an equation of the form x � y. The maximal

nodes in the graph are just those o

urren
es of variables that are dis
overed in

the goal and may be sele
ted for eager Variable Elimination.
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De�nition 13. (maximal o

urren
es of variables)

Let (�; 
) be an equational proof, and G

�

be a graph for (�; 
). A set M is a

set of maximal nodes in G

�

, if M 
ontains all nodes whi
h have no parents in

G

�

.

4 Solving variables in an equational proof

The following 
onstru
tion explains what happens with an equational proof of a

goal, if an equation of the type x � t is sele
ted for eager Variable Elimination.

Noti
e that in this 
onstru
tion we de
lare whi
h variables in Dom(
) are solved

or unsolved. In the justi�
ation of the 
ompleteness of the inferen
e system with

eager Variable Elimination we start with the equational proof of an instan
e of

a goal with all variables unsolved. Variable Elimination re
e
ts solving variables

in a ground equational proof.

Let (�; 
) be an equational proof with the proof sequen
e:

� = (w

1

�

[�

1

;s

1

�t

1

;
℄

w

2

�

[�

2

;s

2

�t

2

;
℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;
℄

w

n

)

and 
 be an extended ground substitution.

Let U = fx

1

; : : : ; x

n

g be a set of variables 
alled \unsolved" in (�; 
), G

�

be

the graph for (�; 
) 
onstru
ted only with respe
t to unsolved variables (hen
e

we treat all other variables as non-existent in (�; 
)).

Let x 2 U and x
 be a maximal node in G

�

and let ass(x
) = v.

There is a subproof (�

x
�v

; 
) in (�; 
), let (�

0

x
�v

; 


0

) be a renaming of

this subproof.

5

If x has no o

urren
es in v, 
reate a new proof (�

�

; 


�

) that is exa
tly as

(�; 
) with the proof sequen
e modi�ed in the following way:

1. Extension

Whenever x
 = w

i

j

�

and hen
e w

i

= w

i

[x
℄, and

(a) x
 has right orientation, repla
e w

i

( the i'th step in (�; 
)), by the

sequen
e of steps:

w

i

[v℄

�

� (�

0

v�\x
"

) � w

i

[\x
"℄

�

where (�

0

v�\x
"

) means a renaming of (�

\x
"�v

; 
) reversed and embed-

ded in w

i

at position � leftwards. Note that the renamings of internal

o

urren
es of variables and new o

urren
es of external variables in the

renaming of (�

\x
"�v

; 
) have reversed orientation in the new proof.

(b) x
 has left orientation, repla
e w

i

(the i'th step in (�; 
)) by the sequen
e

of steps:

w

i

[\x
"℄

�

� (�

0

\x
"�v

) � w

i

[v℄

�

where (�

0

\x
"�v

) means a renaming of (�

\x
"�v

; 
) embedded in w

i

at

position � rightwards. The renamings of internal o

urren
es of variables

and new o

urren
es of external variables in (�

0

\x
"�v

) preserve their

orientation in the new proof.

5

If x has no o

urren
es in v, (�

x
�v

; 
) is a subproof asso
iated with x
.
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2. Contra
tion

For ea
h o

urren
e of an unsolved variable y in (�; 
), if (�

y
�s

; 
) is a

proper asso
iated subproof of this o

urren
e in (�; 
) and there is a subproof

sequen
e: �

s�\y
"

�

\y
"�s

in the proof sequen
e �

�

after extension, 
ontra
t

the subproof sequen
e to a one-element sequen
e, s;

The substitution 


�

is de�ned as follows:




�

x

= [x 7! v℄,

if y
j

�

= x
, and y 62 U , then 


�

y

= [y 7! y
[x


�

℄

�

℄,

if z 62 Dom(
), z is a renaming of a variable z

0

2 Dom(
), that appeared in

some (�

0

x
�v

; 


0

), then 


�

z

= [z 7! z

0


℄,

for any other variable, 


�

= 
;

If x has o

urren
es in v, then (�

�

; 


�

) = (�; 
).

Mark variables

Mark variable x solved in (�

�

; 


�

). If x has no o

urren
es in v, mark also

all subterm variables of x as solved New variables in Dom(


�

), whi
h did not

appear in Dom(
) are marked as unsolved.

If a proof (�

�

; 


�

) is obtained from (�; 
) in this way, then we say that

(�

�

; 


�

) is generated from (�; 
) by substitution [x 7! v℄, written (�; 
)

[x 7!v℄

!

(�

�

; 


�

). As a 
orollary to this 
onstru
tion we noti
e that:

Corollary 1. If (�; 
)

[x 7!v℄

! (�

0

; 


0

) and y 2 Dom(


0

), then for ea
h o

urren
e

y


0

in (�

0

; 


0

), either

1. y 2 Dom(
) and y


0

is an o

urren
e of this variable identi
al with an

o

urren
e in (�; 
), (y


0

is in the part of (�

0

; 


0

) not a�e
ted by extension

and 
ontra
tion), or

2. y 2 Dom(
) and y


0

is a new o

urren
e of y, introdu
ed in the e�e
t of

extending (�; 
) with (�

x
�v

; 
), (there was an o

urren
e y


k

of an external

variable y in (�

x
�v

; 
) whi
h generated new o

urren
es in all pla
es the


opy of this subproof was used and not 
ontra
ted), or

3. y 62 Dom(
), (y is a new variable) then y


0

may be identi�ed as a re-

named version of a variable y

0

2 Dom(
), where y

0

was an inner variable in

(�

x
�v

; 
).

Example 2. Let an equational proof be:

f(a; g(b; b)) �

[<1>;a�b;[℄℄

f(b; g(b; b)) �

[�;f(x;g(x;x))�
;[x 7!b℄℄




Then the subproof asso
iated with

 

x


1

is b � a. Noti
e the left orientation

of all o

urren
es of x in this 
ase. We want to solve x in the proof with x 7! a.

Hen
e we will use b � a for the extension at ea
h o

urren
e of x.

f(a; g(b; b)) �

[<1>;a�b;[℄℄

f(b; g(b; b)) �

[<1>;b�a;[℄℄

f(a; g(b; b))

�

[<2>;b�a;[℄℄

f(a; g(a; b)) �

[<3>;b�a;[℄℄

f(a; g(a; a)) �

[�;f(x;g(x;x))�
;[x 7!a℄℄




Contra
tion will shorten the proof to:

f(a; g(b; b)) �

[<2>;b�a;[℄℄

f(a; g(a; b)) �

[<3>;b�a;[℄℄

f(a; g(a; a))

�

[�;f(x;g(x;x))�
;[x 7!a℄℄
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Noti
e that we have a new assignment for x, but now we will treat x as

solved.

5 Paths in Equational Proof

A 
on
ept of path is a generalization of an asso
iated subproof for an o

urren
e

of a variable. A path is a subproof starting with some variable o

urren
e, 
on-

stru
ted in su
h a way that it re
e
ts the form of an asso
iated subproof for this

variable o

urren
e assuming that all other variables involved in the path were

solved �rst. In order to restri
t the de�nition of a path in a proof (�; 
), we

have to take into 
onsideration solved and unsolved o

urren
es of variables in

Dom(
). We have to remember where the solved variables had their o

urren
es

at the time they were being solved.

Sin
e in this se
tion we will deal with 
ompositions of subproofs, in order to

simplify notation, we will identify a subproof with its subproof sequen
e.

De�nition 14. (path starting with a variable o

urren
e and variables used in

a path)

Let (�; 
) be an equational proof, U a set of unsolved variables in Dom(
),

x 2 U and x
 a given variable o

urren
e in (�; 
). A path in (�; 
) starting

with x
 is a 
omposition of subproofs, �

1

: : : �

n

, de�ned in a re
ursive way:

1. if �

x
�v

is an asso
iated subproof for x
, �

x
�v

is a path starting with x
;

2. if x
 is a parent of y
, then �

x
�w[y
℄

is a path starting with x
;

3. (a) if �

1

; : : : ; �

n

is a path in (�; 
) starting with x

1


 and �

n

= �

x

n


�v[x

n+1




k

℄

,

x

n+1

is an external variable in �

x

n


�v[x

n+1




k

℄

di�erent from x

1


, �

0

1

; : : : ; �

0

m

is a path in (�; 
) starting with x

n+1




i

, and if no variable whi
h is

used in one path appears as not used in the other, then the 
omposi-

tion �

1

: : :�

n

�

0

1

: : : �

0

m

is also a path in (�; 
) starting with x

1


 and

all variables used in the �rst and se
ond path are used in the new path;

(b) if �

1

; : : : ; �

n

is a path in (�; 
) starting with x

1


 and �

n

= �

x

n


�y
j

�

,

and �

y


k

j

�

�s

is a subproof in (�; 
) and if no variable whi
h is used in

one path appears as not used in the other, then �

1

; : : : ; �

n

; �

y


k

j

�

�s

is

also a path in (�; 
) starting with x

1


 and all variables used in the �rst

and se
ond path are used in the new path;

Example 3. For example, let our goal be: G = fx � a; z � hx; z � 
g and an

equational theory: E = fb � a; b � fga; hfy � 
g, then the proof (�; 
) may

be:

x


1

x


2

# #

f b �

[�;b�a;[℄℄

a; hb; hb �

[<1>; b�fga; [℄℄

hfga �

[�; hfy�
; [y 7!ga℄℄


 g

" "

z


1

z


2
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1. An example of a path starting with x


2

would be:�

x


2

�z


1

j

<1>

�

z


2

j

<1>

�fy


.

z is used and x and y are not used in this path.

2. An example of a path starting with z


1

is: �

z


1

�h(x


2

)

�

x


1

�a

. x is used in

this path.

We will prove that if (�; 
)

[x 7!v℄

! (�

0

; 


0

), for an unsolved variable x in

Dom(
), then ea
h path in (�

0

; 


0

) starting with an unsolved variable in (�

0

; 


0

)

is identi
al to a path in (�; 
) (up to renaming). Hen
e any new paths will be

renamings of the original ones. In order to show that the pro
ess of solving

variables in (�; 
) will terminate, we will use a multiset of lengths of paths as a

measure, and show that it is de
reasing.

Lemma 1. Let (�; 
) be an equational proof, U � Dom(
) be a set of unsolved

variables in (�; 
), (�; 
)

[x 7!v℄

! (�

0

; 


0

), and U

0

be a set of unsolved variables

in (�

0

; 


0

).

Ea
h path in (�

0

; 


0

) starting with a variable o

urren
e of a variable in U

0

is identi
al (up to renaming of some variables) to a path in (�; 
) starting with

a variable o

urren
e of a variable in U .

If there are many paths in (�

0

; 


0

), whi
h are renamings of one and the same

path in (�; 
), then they are stri
tly shorter than a path in (�; 
), starting with

a variable o

urren
e of a variable whi
h is solved in (�

0

; 


0

).

Proof. The proof of this lemma is based on the fa
t that ea
h path starting with

an o

urren
e of an unsolved variable in (�; 
) is �nite. This is the 
ase, be
ause

while 
onstru
ting longer and longer paths, we will have to run out of unused

variables.

Hen
e we 
an use indu
tion on the lengths of paths.

Let (�; 
)

[x 7!v℄

! (�

0

; 


0

), where �

x


i

�v

was used in 
onstru
tion of (�

0

; 


0

),

and �

1

: : : �

n

is a path in (�

0

; 


0

), starting with y

1


. We 
an assume that x does

not o

ur in v, be
ause otherwise ass(x
) = x
 and then (�

0

; 


0

) is identi
al to

(�; 
) with the only di�eren
e that x is solved and does not appear in U

0

.

We have to 
onsider di�erent 
ases generated by the possible ways paths are


onstru
ted in (�

0

; 


0

), starting with variable o

urren
es appearing in (�

0

; 


0

)

of the kinds des
ribed in Corollary 1.

1. Let y

1

2 Dom(


0

) be su
h that y

1

2 Dom(
) and an o

urren
e of y

1

, y

1




0

be as des
ribed in Corollary 1. 1.

Hen
e y

1


 is an o

urren
e of y

1

in a part of (�; 
) whi
h is not a�e
ted by

extension or 
ontra
tion in the pro
ess of 
onstru
ting (�

0

; 


0

).

Let �

1

: : :�

n

be a path in (�

0

; 


0

) starting with y

1




0

.

(a) If �

1

: : :�

n

is a path by De�nition 14.1, it is a subproof asso
iated

with y

1


 in (�

0

; 


0

). The only 
ase, when su
h a subproof was not al-

ready a path in (�; 
) would be if the 
omposition of shorter paths was

prevented by the 
ondition that a variable whi
h is used in one path

appears as not used in the other. Hen
e there would be two paths in

(�; 
): �

0

y

1


�s[\z


0

k

"℄

�

0

\z


0

i

"�t[x


i

℄

and �

0

x


i

�v[z


k

℄

. z is used in the �rst
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one, but not in the se
ond. But we see, that be
ause a variable is solved

in all pla
es of its o

urren
es in a proof, it is impossible that z appears

as not used in �

x


i

�v

. The same argument works if we assume that z is

used in �

x


i

�v

and not in �

0

y

0

1


�t[x


i

℄

.

Hen
e there is a path, �

0

y

1


�t[x


i

℄

�

x
�v

in (�; 
), su
h that �

1

: : : �

n

is a renamed and possibly 
ontra
ted version of it. Noti
e that if it is a


ontra
ted version of renaming of �

0

y

1


�t[x


i

℄

�

x
�v

, then it is shorter of

that path whi
h is no longer in (�

0

; 


0

).

(b) If �

1

: : :�

n

is a path in (�

0

; 


0

) by De�nition 14.2, then it has the form

�

y

1




0

�w[z


0

℄

. This is a subproof of the subproof asso
iated with y

1




0

in

(�

0

; 


0

).

This subproof is either identi
al to a subproof �

y

1


�w[z
℄

in (�; 
) or

there must be a 
omposition of subproofs of the form: �

y

1


�t[x


k

℄

�

x


i

�v

in (�; 
). (Then z
 must be a renamed o

urren
e of a variable o

ur-

ren
e z

0


 in �

x


i

�v

. The renaming is identity if z

0

is external in �

x


i

�v

.)

By the same argument as in the previous 
ase, �

0

y

1


�t[x


k

℄

�

x


i

�v

must

be a path in (�; 
), of whi
h the path�

y

1




0

�w[z


0

℄

in (�

0

; 


0

) is a renamed

and possibly 
ontra
ted version.

(
) If �

1

: : : �

n

is a path in (�

0

; 


0

) but is not a subproof of an asso
iated

subproof for y

1




0

, then it must be a 
omposition of paths in (�

0

; 


0

):

�

1

: : : �

k

and �

k+1

: : :�

n

.

We will assume that �

1

: : : �

k

has the form: �

1

: : :�

z�s[\x


k

"℄

, and

�

k+1

: : :�

n

the form: �

\x


i

"�v

: : : �

n

.

Alternatively the path �

1

: : : �

k


an have the form: �

1

: : : �

z�\x


k

j

�

"

,

and �

k+1

: : : �

n

has the form: �

\x


i

j

�

"�v

: : : �

n

. But this 
ase is ana-

lyzed in exa
tly the same way.

Be
ause Variable Elimination a�e
ts all o

urren
es of a given variable,

there is no variable with some o

urren
es \solved" and some \unsolved"

in the proof. There is no variable with \unsolved" o

urren
es in one of

the paths, and \solved" in another.

And sin
e these paths are shorter than �

1

: : : �

n

, we 
an assume that

they are renamings of paths in (�; 
):�

0

1

: : : �

0

z�s[x


k

℄

and �

0

x


i

�v

: : : �

0

n

Sin
e these are renamings of respe
tive paths in (�

0

; 


0

), obviously there

is no variable that is used in one of them and has o

urren
es that are

not used in the other. Therefore, there is a path:

�

0

1

: : : �

0

z�s[x


k

℄

�

0

x


i

�v

: : : �

0

n

in (�; 
).

2. Now let us 
onsider variables that have o

urren
es inside�

\x


i

"�v

in (�

0

; 


0

).

Let y

1

2 Dom(


0

) be su
h a variable and y

1




0

, is a renaming of an o

urren
e

of y

0

1

in �

x


i

�v

in (�; 
).

Let �

1

: : :�

n

be a path in (�

0

; 


0

) starting with y

1




0

.

We have 3 
ases here:

(a) If �

1

: : : �

n

is 
ontained inside �

\x


i

"�v

, this path is a renaming of a

path inside �

x


i

�v

in (�; 
), and although there may be numerous su
h


opies in (�

0

; 


0

), noti
e that all of them are shorter than �

x


i

�v

whi
h

is no longer a path in (�

0

; 


0

) be
ause x is solved there. So assume that

the path �

1

: : : �

n

starts inside �

\x


i

"�v

and has some part outside it.
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i. Assume that the path �

1

: : : �

n

spreads beyond v. Then it has the

form: �

1

: : :�

t�v[z


0l

℄

�

z


0m

�s

: : : �

n

.

Hen
e, there must be also a path in (�; 
) of the form:

�

0

1

: : : �

0

t�v[z


l

℄

�

0

z


m

�s

: : : �

0

n

and z must be external in both�

0

t�v[z


0i

℄

and �

0

z


0m

�s

. The path �

1

: : : �

n

is a renamed and possibly 
on-

tra
ted version of this path.

Noti
e that �

0

1

: : : �

0

t�v[z


0i

℄

�

0

z


0m

�s

: : : �

0

n

is a subpath of a path

starting with x


i

in (�; 
). Namely, it is a subpath of path:

�

0

x


0i

�v[z


0i

℄

�

0

z


0m

�s

: : : �

0

n

. Sin
e y

1

is di�erent than x the path

�

0

1

: : : �

0

t�v[z


0i

℄

�

0

z


0m

�s

: : : �

0

n

is stri
tly shorter than the path start-

ing with x


i

.

Hen
e although there may be many renamings of the path

�

0

1

: : : �

0

t�v[z


0l

℄

�

0

z


0m

�s

: : :�

0

n

in (�

0

; 


0

), they will all be shorter

than a path in (�; 
) whi
h no longer appears in (�

0

; 


0

), be
ause x

is solved.

ii. Assume now that the path �

1

: : : �

n

spreads beyond \x


i

". Then it

has the form: �

1

: : :�

t�\x


i

"j

�

�

\x


k

"j

�

�s

: : : �

n

.

Then there must be a unique path in (�; 
) of the form:

�

0

1

: : : �

0

t�x


i

j

�

�

0

x


k

j

�

�s

: : : �

0

n

. The path �

1

: : : �

n

in (�

0

; 


0

) is a

renamed and possibly 
ontra
ted form of that path.

Consider Example 3. After eliminating x from the goal with x � a, the new

goal is G

0

= fa � a; z � ha; z � 
g. This is re
e
ted by solving x with x! a in

the equational proof of G
. We get a new equational proof of the form:

\x


0

" \x


0

"

# #

f a; hb �

[<1>;b�a;[℄℄

ha; hb �

[<1>; b�fga; [℄℄

hfga �

[�; hfy�
; [y 7!ga℄℄


 g

" "

z


0

1

z


0

2

There is a path starting with z


0

1

: �

z


0

1

�ha

in the new proof, but it is

identi
al to the path �

z


1

�x


2

�

x


1

�a

in the old proof.

Instead of eliminating x from the goal, we 
ould have 
hosen to eliminate z

with z ! 
. After Variable Elimination, the new goal is G

0

= fx � a; 
 � hx; 
 �


g. By solving z with z ! 
 in the equational proof of G
, we get a new proof:

x


0

1

x


0

2

# #

f b �

[�;b�a;[℄℄

a; 
 �

[�; 
�hfy

0

; [y

0

7!ga℄℄

hfga�

[<1>;fga�b; [℄℄

hb; 
 g

" "

\z


0

" \z


0

"

There is a path starting with x


0

2

in this proof: �

x


0

2

�fy

0




0
, but this is a

renaming of a path in the original proof starting with x


2

:

�

x


2

�z


1

j

<1>

�

z


2

j

<1>

�fy


in (�; 
).
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Corollary 2. Let (�; 
) be an equational proof, U � Dom(
) a set of unsolved

variables in (�; 
), The pro
ess of solving (�; 
) will terminate.

Proof. If (�; 
)

[x 7!v℄

! (�

0

; 


0

), and U

0

a set of unsolved variables in (�

0

; 


0

), the

multiset of lengths of paths in (�

0

; 


0

) is smaller than the multiset of lengths of

paths in (�; 
).

6 Result

We prove 
ompleteness of the inferen
e rules presented in Figure 1.

Namely, we prove that in any equational theory E, a given goal G su
h that

E j= G�, may be transformed by appli
ations of rules in Figure 1 applied to

equations whi
h are not solved, into a solved form with whi
h we 
an de�ne an

E-uni�er more general than �. The solved form of an equation and of a goal is

de�ned in the following way.

De�nition 15. (solved equation and solved goal)

Let G be a set of equations. An equation x � t 2 G is in a solved form, if x is a

variable, x 62 V ar(t) and x 62 V ar(Gnfx � tg).

G is in a solved form if all equations in G are in solved form.

If G is in the solved form, then we de�ne a substitution �

G

= [x

1

7!

t

1

; : : : ; x

n

7! t

n

℄. Obviously, �

G

is the most general uni�er of G.

If G is a set of goal equations, an inferen
e performed on G with one of the

rules of Figure 1 is denoted by G! G

0

, where G

0

is the result of this inferen
e.

The transitive, re
exive 
losure of ! is written as

�

!.

In order to prove 
ompleteness, we will need the measure of a goal G, of

whi
h we will show that it may be de
reased by appli
ation of an inferen
e rule

if G is E-uni�able and not in solved form.

De�nition 16. (measure for an equational proof)

Let (�; 
) be an equational proof and U � Dom(
) be a set of unsolved variables

in (�; 
). The measure M(�; 
) is a multiset of the lengths of paths starting

with o

urren
es of variables in U .

De�nition 17. (measure of a goal)

Let E be an equational theory, and G, an unsolved part of a goal G

0

, su
h that

there is a ground substitution 
, for whi
h E j= G

0


 and hen
e there is an

equational proof (�

0

; 


0

) of G

0


 and its subproof, (�; 
), whi
h is a proof of G
,

and all variables in V ar(G) are unsolved in (�

0

; 


0

).

The measure of G

0

with respe
t to (�

0

; 


0

) is a 4-tuple (m;n; o; p), where

m =M(�; 
), n is the length of �, o is the size of terms in G
, p is the number

of equations in G, of the form t � x, where x is a variable and t is not a variable.

Measures for di�erent goals are 
ompared with respe
t to lexi
ographi
 order.
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De
omposition

ff(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

)g [G

fs

1

� t

1

; � � � ; s

n

� t

n

g [ G

where f(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

) is sele
ted in the goal.

Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; t

1

� v

1

; � � � ; t

n

� v

n

g [G

where u � f(v

1

; � � � ; v

n

) is sele
ted in the goal, and s � f(t

1

; � � � ; t

n

) 2 E.

a

Variable Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; x � f(v

1

; � � � ; v

n

)g [G

where s � x 2 E, x is a variable, and u � f(v

1

; � � � ; v

n

) is sele
ted in the goal.

Variable De
omposition (for 
y
le)

fx � f(t

1

; � � � ; t

n

)g [ G

fx � f(x

1

; � � � ; x

n

)g [ (fx

1

� t

1

; � � � ; x

n

� t

n

g [ G)[x 7! f(x

1

; � � � ; x

n

)℄

where x is a variable, x � f(t

1

; � � � ; t

n

) is sele
ted in the goal,

x 2 V ar(f(t

1

; � � � ; t

n

)).

Variable Elimination Orient

fx � vg [G

fx � vg [G[x 7! v℄

ft � xg [G

fx � tg [G

where x 62 V ar(v) where x is a variable.

and t is not a variable.

Trivial

fx � xg [G

G

where x � x is sele
ted in the goal.

a

We assume that E is 
losed under symmetry.

Fig. 1. E-Uni�
ation with eager Variable Elimination
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Theorem 1. Let E be a set of equations, su
h that E j= G
 for some ground

substitution 
. Then there is H a set of equations in the solved form, su
h that

G

�

�! H and �

H

[V ar(G)℄ �

E


.

Proof. If G is already in the solved form, then �

G

�

E


.

If G is not in solved form, then there is an unsolved part of G, G

0

, su
h that

u � v 2 G

0

, if u � v is not in solved form. Assume that u � v was sele
ted

for an inferen
e. If E j= G
, there must be an equational proof (�; 
) of G

0


.

We will 
all it an a
tual proof of G
. There must be a subproof in (�; 
), of

u
 � v
 and u
, v
 are the extreme terms in this subproof. We 
an also assume

that all solved variables in G are solved in (�; 
) and all unsolved variables in G

are unsolved in (�; 
). Hen
e there is a graph G

�

for all unsolved variables in

(�; 
). As we have seen, there are sometimes 
hoi
es in 
onstru
ting G

�

. The


hoi
es re
e
t the sele
tion fun
tion, but in any 
ase, we 
an always 
hoose su
h

G

�

that if x � v is sele
ted for an inferen
e, x
 is a maximal node in G

�

.

For the proof, we have to 
onsider all possible forms of an unsolved goal equa-

tion u � v sele
ted for an inferen
e. These forms are analyzed in the following


ases.

1. Assume that neither u nor v is a variable.

Let (�

u
�v


; 
) be a subproof in (�; 
) of u
 � v
, su
h that u
 and v
 are

extreme terms in (�

u
�v


; 
).

Assume also that there is no step at the root in (�

u
�v


; 
). Hen
e u and v

must have the same root symbols.

Then if we apply De
omposition to this equation, we get equations s

1

�

t

1

; : : : ; s

n

� t

n

, su
h that there is a subproof in (�; 
) for ea
h s

i


 � t

i


,

i 2 f1; : : : ; ng, and if u
, v
 were the extreme terms in (�

u
�v


; 
), ea
h of

s

i


, t

i


 are extreme terms in their respe
tive subproofs. Hen
e E j= fs

1


 �

t

1


; : : : ; s

n


 � t

n


g. The sum of the lengths of the subproofs is equal to the

length of the original subproof of u
 � v
, but �

n

i=1

js

i


j+ jt

i


j < ju
j+ jv
j.

Let (m;n; o; p) be the measure of the goal before De
omposition and (m

0

; n

0

; o

0

; p

0

)

after De
omposition. m

0

= m, n

0

= n and o

0

< o.

2. Assume that neither u nor v is a variable.

Let (�

u
�v


; 
) be a subproof in (�; 
) of u
 � v
, su
h that u
 and v
 are

extreme terms in (�

u
�v


; 
).

Assume also that there is a step at the root in (�

u
�v


; 
).

(�

u
�v


; 
) has the form: u
 � � � � � w

i

�

[�;s

i

�t

i

;
℄

w

i+1

� � � � � v
. Let us


hoose i in su
h a way, that this is the rightmost root step in this proof and

assume that t

i

is not a variable.

Then there is no root step between w

i+1

and v
. Sin
e the i'th step is at the

root position, s

i


 = w

i

and t

i


 = w

i+1

. Sin
e there is no root step between

t

i


 and v
, both these terms must have the same root symbol and thus

we 
an at on
e de
ompose them, obtaining possible empty set of equations:

t

1

� v

1

; : : : ; t

n

� v

n

, su
h that for ea
h k 2 f1; : : : ; ng, t

n


 � v

n


 has a

subproof in (�; 
), and moreover ea
h t

i


, v

i


 are extreme subterms in their

respe
tive subproofs. In this 
ase Mutate is appli
able, and we see that

E j= fu
 � s

i


; t

1


 � v

1


; : : : ; t

n


 � v

n


g.
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Let (m;n; o; p) be the measure of the goal before Mutate and (m

0

; n

0

; o

0

; p

0

)

after Mutate. m

0

= m and n

0

< n.

3. Assume that u and v are the same as in the previous 
ase, but now t

i

is a

variable.

In this 
ase we don't want to \de
ompose" variable t

i

, but we see that the

rule Variable Mutate gives us two equations su
h that: E j= u
 � s

i


 and

E j= t

i


 � v
.

Both u
 � s

i


 and t

i


 � v
 have subproofs in (�; 
) and the terms of these

equations are extreme terms in their respe
tive subproofs.

Let (m;n; o; p) be the measure of the goal before Variable Mutate and

(m

0

; n

0

; o

0

; p

0

) after Variable Mutate. m

0

= m and n

0

< n.

4. Assume that u is a variable x, v is not a variable and x 2 V ar(v).

Let (�

x
�v[x℄


; 
) be a subproof in (�; 
) of x
 � v[x℄
, su
h that x
 and

v[x℄
 are extreme terms in (�

x
�v[x℄


; 
). Hen
e (�

x
�v[x℄


; 
) is a subproof

asso
iated with x
.

Sin
e x has an o

urren
e in v[x℄
, the subproof (�

x
�v[x℄


; 
) must have

length greater than 0 (an equation of the type a � a would have proof of

the length 0).

Again, we look at the subproof (�

x
�v[x℄


; 
). If there is a step at the root

in the subproof, the right rule to apply is Mutate or Variable Mutate,

depending on the form of equation from E used in the step at the root.

Hen
e the analysis is exa
tly the same as in 2 or 3.

5. Assume that u is a variable x, v is not a variable and x 2 V ar(v).

Like in the previous 
ase, we argue that an appropriate subproof (�

x
�v[x℄


; 
)

in (�; 
) has length greater than 0. But this time assume that there is no

step at the root in (�

x
�v[x℄


; 
).

It means that x
 and v[x℄
 must have the same symbol at their roots (and all

the steps in the subproof (�

x
�v[x℄


; 
) are performed under the root). The

subproof has the form: x
 = f(u

1

; : : : ; u

n

)
 � � � � � f(v

1

; � � � ; v

n

)
 = v
.

The right rule to apply to x � v[x℄ is Variable De
omposition , we get

an equation x � f(x

1

; : : : ; x

n

) in the 
on
lusion. Sin
e 
 is general extension

of itself, x

1

; : : : ; x

n

are fresh variables, that are already in Dom(
). 


x

i

=

[x

i

7! u

i

℄, for 1 � i � n. E j= x
 � f(x

1

; : : : ; x

n

)
 and E j= x

i


 � v

i


. We

noti
e also that sin
e x
 = f(x

1

; : : : ; x

n

)
, G[x 7! f(x

1

; : : : ; x

n

)℄
 = G
.

Therefore E j= G[x 7! f(x

1

; : : : ; x

n

)℄
. And sin
e x
 = f(x

1

; : : : ; x

n

)
,

E j= x

i


 � v

i

[x 7! f(x

1

; : : : ; x

n

)℄
.

For ea
h equation in (fx

1

� v

1

; : : : ; x

n

� v

n

g [ G)[x 7! f(x

1

; : : : ; x

n

)℄)


there is a subproof in (�; 
).

In the 
onsequen
e of appli
ation of Variable De
omposition, x gets solved.

Indeed, f(x

1

; : : : ; x

n

)
 = ass(x
) and we state that (�; 
)

[x 7!f(x

1

;:::;x

n

)℄

!

(�

0

; 


0

), where 


0

= 
, �

0

= � and x is solved in (�

0

; 


0

).

The a
tual equational proof for the goal will be 
hanged to (�

0

; 


0

). By

Corollary 2, M(�

0

; 


0

) < M(�; 
).

Let (m;n; o; p) be the measure of the goal before Variable De
omposition

and (m

0

; n

0

; o

0

; p

0

) after Variable De
omposition. m

0

< m.
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6. Assume that v is a variable and u is not a variable. Then Orient applies.

Obviously, Orient preserves the set of E-uni�ers for u � v. Let (m;n; o; p)

be the measure of the goal before Orient and (m

0

; n

0

; o

0

; p

0

) after Orient.

m

0

� m;n

0

� n; o

0

� o and p

0

< p.

7. Assume that x � v was sele
ted for an inferen
e and x 62 V ar(v).

Then E j= x
 � v
 and there is a subproof (�

x
�v


; 
) in the proof (�; 
)

su
h that x
 and v
 are the extreme terms of (�

x
�v


; 
). If x is unsolved

in the goal G, x is also unsolved in (�; 
).

Hen
e we know that v
 = ass(x) and (�; 
)

[x 7!v
℄

! (�

0

; 


0

).

M(�; 
) > M(�

0

; 


0

).

The right rule to apply is therefore Variable Elimination.

Sin
e E j= G
, also E j= G


0

and (�

0

; 


0

) is the proof of G


0

. We 
hange the

a
tual equational proof to (�

0

; 


0

) and take it as the basis of 
ompleteness

argument of further inferen
es. Sin
e x


0

= v


0

, E j= G[x 7! v℄


0

.

Let (m;n; o; p) be the measure of the goal before Variable Elimination and

(m

0

; n

0

; o

0

; p

0

) after Variable Elimination.

m

0

< m after Variable Elimination. Noti
e also that after Variable Elimina-

tion, for ea
h u

0

� v

0

in G

0

there is a subproof in (�

0

; 


0

) su
h that u

0




0

and

v

0




0

are the extreme terms in this subproof. If u

0

� v

0

[x℄ was in G

0

, then after

Variable Elimination, u

0

� v

0

[v℄ in G

0

and obviously (be
ause of extension)

there is a subproof (�

u

0




0

�v

0

[v℄


0
; 


0

) in (�

0

; 


0

).

8. Assume that u and v are o

urren
es of the same variable x. Sin
e the proof

of x
 � x
 has length 0, we 
an get rid of this equation in the goal by

applying Trivial.

Let (m;n; o; p) be the measure of the goal before Trivial and (m

0

; n

0

; o

0

; p

0

)

after Trivial. m

0

= m, n

0

= n and o

0

< o.

7 Con
lusion

E-uni�
ation pro
edures are inherently non-deterministi
, be
ause there are usu-

ally many ways to apply inferen
es to goal equations and many possibilities of

solving a goal. It means that a sear
h spa
e for a solution may be very exten-

sive. Any restri
tions of this non-determinism that we may justify are therefore

wel
ome as restri
tions of this sear
h spa
e. Eager Variable Elimination means

that the rule should be applied whenever an equation x � v is sele
ted and x

does not appear in v. In this 
ase, we would not try to apply other rules to this

equation. On the other hand, we may see that the ground equational proof of an

instan
e of a goal, may be made longer by Variable Elimination. This means that

we will have to do more Mutate inferen
es in order to rea
h solution. One 
an

think about some memoization te
hniques to dete
t and redu
e su
h possible

overhead.

We think that the proof of 
ompleteness of eager Variable Elimination opens

some possibilities of �nding new 
lasses of equational theories de�ned synta
ti-


ally, for whi
h E-uni�
ation problem may be proved solvable and tra
table.



20

Referen
es

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

2. J. Gallier and W. Snyder. A general 
omplete E-uni�
ation pro
edure. In RTA 2,

ed. P. Les
anne, LNCS Vol. 256, 216-227, 1987.

3. J. Gallier and W. Snyder. Complete sets of transformations for general E-uni�
ation.

In TCS, Vol. 67, 203-260, 1989.

4. S, H�olldobler. Foundations of Equational Logi
 Programming. Le
ture Notes in

Arti�
ial Intelligen
e, Vol. 353, Springer, Berlin, 1989.

5. C. Kir
hner and H. Kir
hner. Rewriting, Solving, Proving.

http://www.loria.fr/~
kir
hne/ , 2000.

6. A. Martelli, C. Moiso and G. F. Rossi. Lazy Uni�
ation Algorithms for Canoni
al

Rewrite Systems. In Resolution of Equations in Algebrai
 Stru
tures, eds. H. A

�

it-

Ka
i and M. Nivat, Vol. II of Rewriting Te
hniques, 258-282, A
ademi
 Press, 1989.

7. A. Martelli, G. F. Rossi and C. Moiso. An Algorithm for Uni�
ation in Equational

Theories. In Pro
. 1986 Symposium on Logi
 Programming, 180-186, 1986.

A Normalization of equational proofs

If � [i℄j

�

n

; � [i + 1℄j

�

n

; : : : ; � [i + k℄j

�

n

is a subproof sequen
e in � , there may

be a step in � between two 
onse
utive terms � [i+ n℄ and � [i+ n+ 1℄ at the

position �

i+n

su
h that �

i+n

� �

n

or �

i+n

= �

n

, then we 
an write this step in

the subproof as:

� [i+ n℄j

�

n

�

[�

0

;s

i+n

�t

i+n

;
℄

� [i+ 1℄j

�

n

, where �

n

�

0

= �

i+n

.

But it may also be that �

i+n

is a parallel position to �

n

, and then � [i +

n℄j

�

n

== � [i+ n+ 1℄j

�

n

.

De�nition 18. (fake step)

If � [i℄j

�

n

; � [i + 1℄j

�

n

; : : : ; � [i + k℄j

�

n

is a subproof sequen
e in an equational

proof (�; 
), a step � [i+n℄j

�

n

�

[�

0

;s

i+n

�t

i+n

;
℄

� [i+1℄j

�

n

in the subproof, where

�

n

�

0

= �

i+n

and �

0

jj�

n

is 
alled a fake step in the subproof and is written as

� [i+ n℄j

�

n

= � [i+ n+ 1℄j

�

n

.

Note that = is thus overloaded with a se
ond meaning. Until now s = t

meant only that s and t were the same ground obje
ts. Here it means that there

is no step taken in the proof between these ground subterms.

A

ordingly, if for some variable x, x
 = w

i

and w

i

= w

i+1

in a subproof,

also x
 = w

i+1

, be
ause there is no real step between w

i

and w

i+1

.

In a normalized proof su
h fake steps in a subproof will be possible only at

the beginning and at the end of a subproof. Hen
e subproof in a normalized proof

will have always the following form: w

1

= � � � = w

1

� w

2

� � � � � w

k

= � � � = w

k

.

A

ordingly I will 
all a subproof whi
h 
an be written in the form: w

1

=

� � � = w

1

� w

2

� � � � � w

k

= � � � = w

k

, a subproof in a normal form, and the

part of it whi
h 
an be written in the form: w

1

� w

2

� � � � � w

k

, a proper form

of the subproof.

De�nition 19. (proof in a normal form)

An equational proof (�; 
) is in normal form, if all its subproofs are in normal

forms.
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Lemma 2. Ea
h equational proof may be normalized.

Proof. If (�; 
) has no proper subproofs, then (�; 
) is in normal form.

Let (�; 
) be an equational proof not in normal form. We will 
onstru
t a

new proof (�

0

; 
) whi
h is in a normal form in a re
ursive way, su
h that (�

0

; 
)

di�ers from (�; 
) only in the order of steps and is the proof of the same ground

equation.

We should identify all subproofs in (�; 
) and their proper forms. For in-

du
tion assume that all smaller proofs than (�; 
) may be normalized. As the

measure for a proof, let us assume the pair (n;M), where n is length of a proof

(number of steps) and M is multiset of sizes of its terms.

Ea
h proper subproof in (�; 
) is either shorter than (�; 
) or has smaller

terms. Hen
e for indu
tion argument we 
an assume that ea
h proper subproof

of (�; 
) is in normal form and thus its proper form 
an be easily identi�ed.

In the 
ourse of the following 
onstru
tion, we will move step by step through

the proof sequen
e� , remembering the set A of re
ent parallel positions at whi
h

the steps have been taken. At the beginning A is an empty set.

1. First step. Take the �rst step in the proof (�; 
): � [1℄ �

[�

1

;s

1

�t

1

;�

1

℄

� [2℄.

(a) If �

1

= �, write it as the �rst step of the proof sequen
e �

0

. There is a

subproof (�

00

; 
) in (�; 
) starting with � [2℄ at position �. The subproof

is shorter than (�; 
), hen
e it has normal form. Embed normal form of

(�

00

; 
) into � [1℄ and stop.

(b) If �

1

> �, then there is a part of (�; 
) at the depth �

1

and a subproof

starting with � [1℄j

�

1

(all terms in this subproof are subterms at position

�

1

of some 
onse
utive terms in �).

Embed the normalized, proper part of the subproof into � [1℄. Put �

1

as

the �rst element of A and go to the next step in � .

2. Next step. Assume that we are done with i� 1'th 
onse
utive step in � .

Now we 
onsider next step: � [i℄ �

[�

i

;s

i

�t

i

;�

i

℄

� [i+ 1℄.

(a) If �

i

� � for any � 2 A then the step belongs to the subproof already

embedded into proof sequen
e �

0

, hen
e go to the next step in � .

(b) If �

i

< �, for any � 2 A (step above the last subproof steps), then

� [i℄ must be the last term of the part 
ontaining the previous subproof.

� [i℄

�

i

is the �rst term in a subproof �

00

of � , whi
h is in the part of �

for the depth �

i

and is 
omposed of the terms of � at the depth �

i

.

Hen
e embed normalized, proper form of �

00

into � [i℄, atta
hing it into

�

0

. Repla
e ea
h � in A, su
h that �

i

< � with �

i

in A and go to the

next step of � .

(
) If �

i

jj�, for ea
h � 2 A then there is a subproof sequen
e �

000

starting

with � [i℄ at the depth �

i

. Let�

0

[l℄ be the last term in the proof sequen
e

�

0


onstru
ted up to now. From the 
onstru
tion of �

0

, we know that

� [i℄

�

i

== �

0

[l℄

�

i

(steps at a parallel position 
ould not 
hange this sub-

term). Embed normalized, proper version of �

00

s

0

into �

0

[l℄

�

i

, atta
hing

it to �

0

, add �

i

as the next element to A and go to the next step of � .


