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Abstrat

In two previous papers we have investigates the problem of omputing the

least ommon subsumer (ls) and the most spei� onept (ms) for the

desription logi EL in the presene of terminologial yles that are inter-

preted with desriptive semantis, whih is the usual �rst-order semantis

for desription logis. In this setting, neither the ls nor the ms needs to

exist. We were able to haraterize the ases in whih the ls/ms exists,

but it was not lear whether this haraterization yields deidability of the

existene problem.

In the present paper, we develop a ommon graph-theoreti general-

ization of these haraterizations, and show that the resulting property is

indeed deidable, thus yielding deidability of the existene of the ls and

the ms. This is ahieved by expressing the property in monadi seond-

order logi on in�nite trees. We also show that, if it exists, then the ls/ms

an be omputed in polynomial time.

1 Introdution

Early desription logi (DL) systems allowed the use of value restritions (8r:C),

but not of existential restritions (9r:C). Thus, one ould express that all hildren

are male using the value restrition 8hild:Male, but not that someone has a son

�
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using the existential restrition 9hild:Male. The main reason was that, when

larifying the logial status of property ars in semanti networks and slots in

frames, the deision was taken that ars/slots should be read as value restritions

(see, e.g., [11℄). One one onsiders more expressive DLs allowing for full negation,

existential restritions ome in as the dual of value restritions [14℄. Thus, for

historial reasons, DLs that allow for existential, but not for value restritions,

were until reently mostly unexplored.

The reent interest in suh DLs has at least two reasons. First, there are indeed

appliations where DLs without value restritions appear to be suÆient. For

example, SNOMED, the Systematized Nomenlature of Mediine [16, 15℄ employs

the DL EL, whih allows for onjuntions, existential restritions, and the top

onept. Seond, non-standard inferenes in DLs [10℄, like omputing the least

ommon subsumer, often make sense only for DLs that do not allow for full

negation. Thus, the deision of whether to use DLs with value restritions or

with existential restritions beomes again relevant.

Non-standard inferenes were introdued to support building and maintaining

large DL knowledge bases. For example, omputing the most spei� onept

(ms) of an individual and the least ommon subsumer (ls) of onepts an be

used in the bottom-up onstrution of desription logi knowledge bases. Instead

of de�ning the relevant onepts of an appliation domain from srath, this

methodology allows the user to give typial examples of individuals belonging to

the onept to be de�ned. These individuals are then generalized to a onept by

�rst omputing the most spei� onept of eah individual (i.e., the least onept

desription in the available desription language that has this individual as an

instane), and then omputing the least ommon subsumer of these onepts (i.e.,

the least onept desription in the available desription language that subsumes

all these onepts). The knowledge engineer an then use the omputed onept

as a starting point for the onept de�nition.

The most spei� onept of a given individual need not exist in languages allow-

ing for existential restritions or number restritions. For the DL ALN (whih

allows for onjuntions, value restritions, and number restritions), it was shown

in [6℄ that the most spei� onept always exists if one adds yli onept de�-

nitions with greatest �xpoint semantis. If one wants to use this approah for the

bottom-up onstrution of knowledge bases, then one must also be able to solve

the standard inferenes (the subsumption and the instane problem) and to om-

pute the least ommon subsumer and the most spei� onept in the presene

of yli onept de�nitions. Thus, in order to adapt the approah employed in

[6℄ also to the DL EL, the impat on both standard and non-standard inferenes

of yli de�nitions in this DL had to be investigated �rst.

This investigation was arried out in a series of papers [5, 4, 2, 3℄ that gives

an almost omplete piture of the omputational properties of the above men-

tioned standard and non-standard inferenes (the subsumption and the instane
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problem as well as the problem of omputing the ls and the ms) in EL with

yli onept de�nitions. Cyli de�nitions in EL an either be interpreted with

greatest �xpoint (gfp) semantis or with desriptive semantis, whih is the usual

�rst-order semantis for DLs.

1

Regarding standard inferenes, the subsumption and the instane problem turned

out to be polynomial for both types of semantis. This is in strong ontrast to

the ase of DLs with value restritions, where even for the small DL FL

0

(whih

allows for onjuntions and value restritions only), adding yli terminologies

inreases the omplexity of the subsumption problem from polynomial (for on-

ept desriptions) to PSPACE [1, 9℄.

Regarding non-standard inferenes it turned out that gfp-semantis is very well-

behaved. With respet to this semantis the binary

2

ls and the ms always exist

and an be omputed in polynomial time. For desriptive semantis, things are

not as rosy. In [2℄ it was shown that, in general, the ls need not exist. The

paper then introdues possible andidates P

k

(k � 0) for the ls, and shows that

the ls exists i� one of these andidates is the ls. It then gives a deidable

suÆient haraterization for the existene of the ls. However, the question of

how to deide the existene of the ls in the general ase remained open. In [3℄,

analogous results were shown for the ms. In partiular, the question of how to

deide the existene of the ms also remained open.

In the present paper, we show that these open problems are both instanes of

a ommon graph-theoreti problem. Then we show that this graph-theoreti

problem is deidable by reduing it to the problem of deiding satis�ability in

monadi seond-order logi on in�nite trees [13℄. Finally, we show that, if the ls

(ms) exists, then it an be omputed in polynomial time.

In the next setion, we introdue EL and de�ne the subsumption and the instane

problem as well as the ls and the ms. In Setion 3, we introdue the graph-

theoreti problem that we want to solve in this paper, and then relate it to the

problem of omputing the ls and the ms in EL. Setion 4 gives the redution

of this problem to monadi seond-order logi, and Setion 5 shows that the ls

(ms) an be omputed in polynomial time whenever it exists.

2 Cyli terminologies, least ommon subsumers,

and most spei� onepts

Conept desriptions are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names. The

onstrutors determine the expressive power of the DL. In this report, we restrit

1

The results in [5℄ show that using least �xpoint semantis does not make sense in EL.

2

The n-ary ls may grow exponentially even in EL without yli terminologies [7℄.
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name of onstrutor Syntax Semantis

onept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-onept > �

I

onjuntion C uD C

I

\D

I

existential restrition 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g

onept de�nition A � D A

I

= D

I

individual name a 2 N

I

a a

I

2 �

I

onept assertion A(a) a

I

2 A

I

role assertion r(a; b) (a

I

; b

I

) 2 r

I

Table 1: Syntax and semantis of EL-onept desriptions, TBox de�nitions, and

ABox assertions.

the attention to the DL EL, whose onept desriptions are formed using the

onstrutors top-onept (>), onjuntion (C u D), and existential restrition

(9r:C). The semantis of EL-onept desriptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation funtion �

I

maps eah onept name A 2 N

C

to a subset

A

I

of �

I

and eah role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary onept desriptions is indutively de�ned, as shown in the third

olumn of Table 1.

A terminology (or TBox for short) is a �nite set of onept de�nitions of the form

A � D, where A is a onept name and D a onept desription. In addition,

we require that TBoxes do not ontain multiple de�nitions, i.e., there annot

be two distint onept desriptions D

1

and D

2

suh that both A � D

1

and

A � D

2

belongs to the TBox. Conept names ourring on the left-hand side of

a de�nition are alled de�ned onepts. All other onept names ourring in the

TBox are alled primitive onepts. Note that we allow for yli dependenies

between the de�ned onepts, i.e., the de�nition of A may refer (diretly or

indiretly) to A itself. An interpretation I is a model of the TBox T i� it

satis�es all its onept de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T .

An ABox is a �nite set of assertions of the form A(a) and r(a; b), where A is

a onept name, r is a role name, and a; b are individual names from a set N

I

.

Interpretations of ABoxes must additionally map eah individual name a 2 N

I

to an element a

I

of �

I

. An interpretation I is a model of the ABox A i� it

satis�es all its assertions, i.e., a

I

2 A

I

for all onept assertions A(a) in A and

(a

I

; b

I

) 2 r

I

for all role assertions r(a; b) in A. The interpretation I is a model

of the ABox A together with the TBox T i� it is a model of both T and A.

The semantis of (possibly yli) EL-TBoxes we have de�ned above is alled

desriptive semanti by Nebel [12℄. For some appliations, it is more appropriate
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to interpret yli onept de�nitions with the help of an appropriate �xpoint se-

mantis. However, in this paper we restrit our attention to desriptive semantis

(see [5, 4℄ for de�nitions and results onerning yli terminologies in EL with

�xpoint semantis).

We are now ready to de�ne the subsumption and the instane problem w.r.t.

desriptive semantis.

De�nition 1 Let T be an EL-TBox and A an EL-ABox, let C;D be onept

desriptions (possibly ontaining de�ned onepts of T ), and a an individual

name ourring in A. Then,

� C is subsumed by D w.r.t. desriptive semantis (C v

T

D) i� C

I

� D

I

holds for all models I of T .

� a is an instane of C w.r.t. desriptive semantis (A j=

T

C(a)) i� a

I

2 C

I

holds for all models I of T together with A.

On the level of onept desriptions, the least ommon subsumer of two onept

desriptions C;D is the least onept desription E that subsumes both C and

D. An extensions of this de�nition to the level of (possibly yli) TBoxes is not

ompletely trivial. In fat, assume that A

1

; A

2

are onepts de�ned in the TBox

T . It should be obvious that taking as the ls of A

1

; A

2

the least de�ned onept

B in T suh that A

1

v

T

B and A

2

v

T

B is too weak sine the ls would then

strongly depend on what other de�ned onepts are already present in T .

Consequently, to obtain the ls we must allow the original TBox to be extended

by new de�nitions. We say that the TBox T

2

is a onservative extension of the

TBox T

1

i� T

1

� T

2

and T

1

and T

2

have the same primitive onepts and roles.

Thus, T

2

may ontain new de�nitions A � D, but then D does not introdue

new primitive onepts and roles (i.e., all of them already our in T

1

), and A

is a new onept name (i.e., A does not our in T

1

). The name \onservative

extension" is justi�ed by the fat that the new de�nitions in T

2

do not inuene

the subsumption relationships between de�ned onepts in T

1

(see [4℄).

De�nition 2 Let T

1

be an EL-TBox ontaining the de�ned onepts A;B, and

let T

2

be a onservative extension of T

1

ontaining the new de�ned onept E.

Then E in T

2

is a least ommon subsumer of A;B in T

1

w.r.t. desriptive seman-

tis (ls) i� the following two onditions are satis�ed:

1. A v

T

2

E and B v

T

2

E.

2. If T

3

is a onservative extension of T

2

and F a de�ned onept in T

3

suh

that A v

T

3

F and B v

T

3

F , then E v

T

3

F .
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The notion \most spei� onept" an be extended in a similar way from onept

desriptions to onepts de�ned in a TBox.

De�nition 3 Let T

1

be an EL-TBox and A an EL-ABox ontaining the individ-

ual name a, and let T

2

be a onservative extension of T

1

ontaining the de�ned

onept E. Then E in T

2

is a most spei� onept of a in A and T

1

w.r.t.

desriptive semantis (ms) i� the following two onditions are satis�ed:

1. A j=

T

2

E(a).

2. If T

3

is a onservative extension of T

2

and F a de�ned onept in T

3

suh

that A j=

T

3

F (a), then E v

T

3

F .

3 A graph-theoreti haraterization of the ls

and the ms in EL

In this setion, we de�ne the relevant graph-theoreti notions, and relate them to

the subsumption and the instane problem as well as the problem of omputing

the ls and the ms in EL.

3.1 Graphs and synhronized simulations

For the purpose of this paper, a graph is of the form (V;E; L), where V is a �nite

set of nodes, E � V � N

e

� V is a set of edges labeled by elements of the �nite

set N

e

, and L is a labelling funtion that assigns to every node v 2 V a subset

L(v) of the �nite set N

n

.

Simulations are binary relations on the nodes of a graph that respet node labels

and edges in the sense de�ned below.

De�nition 4 Let G = (V;E; L) be a graph. The binary relation Z � V � V is

a simulation on G i�

(S1) (v

1

; v

2

) 2 Z implies L(v

1

) � L(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E, then there exists a node v

0

2

2 V suh that

(v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E.

It is easy to see that the set of all simulations on a graph G is losed under

arbitrary unions, and thus there always exists a greatest simulation on G. It is

well-known that this greatest simulation an be omputed in polynomial time [8℄.
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u = u

0

r

1

! u

1

r

2

! u

2

r

3

! u

3

r

4

! � � �

Z# Z# Z# Z#

v = v

0

r

1

! v

1

r

2

! v

2

r

3

! v

3

r

4

! � � �

Figure 1: An in�nite (u; v)-simulation hain.

u = u

0

r

1

! u

1

r

2

! � � �

r

n�1

! u

n�1

r

n

! u

n

Z# Z# Z#

v = v

0

r

1

! v

1

r

2

! � � �

r

n�1

! v

n�1

Figure 2: A partial (u; v)-simulation hain.

Consequently, given two nodes u; v of G, we an deide in time polynomial in the

size of G whether there is a simulation Z suh that (u; v) 2 Z.

Here, we are not interested in arbitrary simulations ontaining a given pair of

nodes,

3

but in ones that are synhronized in the sense de�ned below. If (u; v) 2 Z,

then any in�nite path p

1

starting with u an be simulated by an in�nite path p

2

starting with v. We all the pair p

1

; p

2

a (u; v)-simulation hain (see Figure 1).

Given an in�nite path p

1

starting with u, we onstrut a simulating path p

2

step

by step. The main point is, however, that the deision whih node v

n

to take in

step n should depend only on the partial simulation hain already onstruted,

and not on the parts of the path p

1

not yet onsidered.

De�nition 5 Let G be a graph, Z a simulation on G, and u; v nodes of G.

(1) A partial (u; v)-simulation hain is of the form depited in Figure 2. A

seletion funtion S for u; v and Z assigns to eah partial (u; v)-simulation hain

of this form a node u

n

suh that (v

n�1

; r

n

; v

n

) is an edge in G and (u

n

; v

n

) 2 Z.

(2) Given an in�nite path u = u

0

r

1

! u

1

r

2

! u

2

r

3

! u

3

r

4

! � � � and a node v suh

that (u; v) 2 Z, one an use the seletion funtion S to onstrut a Z-simulating

path. In this ase we say that the resulting (u; v)-simulation hain is S-seleted.

(3) The simulation Z is alled (u; v)-synhronized i� there exists a seletion fun-

tion S for Z suh that the following holds: for every in�nite S-seleted (u; v)-

simulation hain of the form depited in Figure 1 there exists an i � 0 suh that

u

i

= v

i

.

We all a seletion funtion nie i� u

i

= v

i

in an S-seleted (u; v)-simulation

hain of the form depited in Figure 1 implies u

j

= v

j

for all j � i. It is easy

to see that we an without loss of generality assume that all seletion funtions

3

This would be suÆient for gfp-semantis.
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are nie, i.e., if Z is (u; v)-synhronized then there is a nie seletion funtion

satisfying property (3) of De�nition 5.

Before we ontinue de�ning the graph-theoreti notions neessary to haraterize

the existene of the ls and the ms in EL, we reall the onnetion between

synhronized simulations and the subsumption and the instane problem proved

in [5, 3℄.

3.2 The subsumption and the instane problem

It was shown in [5℄ that EL-TBoxes and ABoxes an be represented as so-alled

desription graphs. Before we an translate EL-TBoxes into desription graphs,

we must normalize the TBoxes. In the following, let T be an EL-TBox, N

def

the

de�ned onepts of T , N

prim

the primitive onepts of T , and N

role

the roles of

T .

We say that the EL-TBox T is normalized i� A � D 2 T implies that D is of

the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

As shown in [5℄, one an (without loss of generality) restrit the attention to nor-

malized TBox. In the following, we thus assume that all TBoxes are normalized.

Normalized EL-TBoxes an be viewed as graphs whose nodes are the de�ned

onepts, whih are labeled by sets of primitive onepts, and whose edges are

given by the existential restritions.

De�nition 6 An EL-desription graph is a graph G = (V;E; L) where the edges

are labeled with role names and the nodes are labeled with sets of primitive

onepts. The TBox T an be translated into the following EL-desription graph

G

T

= (N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned onepts of T ;

� if A is a de�ned onept and

A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its de�nition in T , then

{ L

T

(A) = fP

1

; : : : ; P

m

g, and

{ A is the soure of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

8



We are now ready to state the haraterization of subsumption w.r.t. desriptive

semantis given in [5℄.

Theorem 7 Let T be an EL-TBox, and A;B de�ned onepts in T . Then the

following are equivalent:

1. A v

T

B.

2. There is a (B;A)-synhronized simulation Z on G

T

suh that (B;A) 2 Z.

In [5℄ it is shown that the existene of suh a synhronized simulation an be

deided in polynomial time, and thus the subsumption problem w.r.t. desriptive

semantis in EL an also be deided in polynomial time.

In order to haraterize the instane problem, we assume that T is a normalized

EL-TBox and A an EL-ABox. In the following, we assume that T is �xed and

that all instane problems forA are onsidered w.r.t. this TBox. In this setting, A

an be translated into an EL-desription graph G

A

by viewing A as a desription

graph and extending it appropriately by the desription graph G

T

assoiated with

T .

De�nition 8 Let T be a normalized EL-TBox, A an EL-ABox, and G

T

=

(V;E; L) be the EL-desription graph assoiated with T . The EL-desription

graph G

A

= (V

A

; E

A

; L

A

) assoiated with A and T is de�ned as follows:

� the nodes of G

A

are the individual names ourring in A together with the

de�ned onepts of T , i.e.,

V

A

:= V [ fa j a is an individual name ourring in Ag;

� the edges of G

A

are the edges of G, the role assertions of A, and additional

edges linking the ABox individuals with de�ned onepts:

E

A

:= E [ f(a; r; b) j r(a; b) 2 Ag [

f(a; r; B) j A(a) 2 A and (A; r; B) 2 Eg;

� if u 2 V

A

is a de�ned onept, then it inherits its label from G

T

, i.e.,

L

A

(u) := L(u) if u 2 V ;

otherwise, u is an ABox individual, and then its label is derived from the

onept assertions for u in A. In the following, let P denote primitive and

A denote de�ned onepts.

L

A

(u) := fP j P (u) 2 Ag [

[

A(u)2A

L(A) if u 2 V

A

n V :

9



We are now ready to reall the haraterization of the instane problem in EL

w.r.t. desriptive semantis given in [3℄.

Theorem 9 Let T be an EL-TBox, A an EL-ABox, A a de�ned onept in T

and a an individual name ourring in A. Then the following are equivalent:

1. A j=

T

A(a).

2. There is a simulation Z on G

A

suh that

� (A; a) 2 Z, and

� Z is (B; u)-synhronized for all de�ned onepts B in T and nodes u

of G

A

suh that (B; u) 2 Z.

3.3 The main problem

To de�ne the main graph-theoreti problem addressed in this paper, we de�ne

a type of graphs that looks like the EL-desription graphs G

A

obtained from an

EL-TBox and ABox.

De�nition 10 The graph G = (V;E; L) is alled two-level graph i� V an be

partitioned into disjoint sets V = V

1

[ V

2

suh that (v; r; v

0

) 2 E implies v 2 V

1

or v

0

2 V

2

. To make this partition expliit, we write two-level graphs as G =

(V

1

[ V

2

; E; L).

Intuitively, a two-level graph G = (V

1

[ V

2

; E; L) onsists of a subgraph G

1

on V

1

,

a subgraph G

2

on V

2

, and possibly additional edges from nodes of G

1

to nodes of

G

2

. Obviously, the graph G

A

obtained from an EL-TBox T and an EL-ABox A

is a two-level graph, where V

1

is the set of individual names ourring in A and

V

2

is the set of onepts de�ned in T .

In order to motivate the next de�nition, in whih the subgraph G

1

of the two-level

graph G = (V

1

[ V

2

; E; L) is unraveled up to a ertain depth, we sketh how the

ms of an individual a an be obtained from G

A

. The main idea underlying the

haraterization of the ms in EL w.r.t. desriptive semantis given in [3℄ is the

following. We an view G

A

as the EL-desription graph of an EL-TBox T

2

. It is

easy to see that T

2

is a onservative extension of T . By the de�nition of G

A

, the

de�ned onepts of T

2

are the de�ned onepts of T together with the individual

names ourring in A. To avoid onfusion we denote the de�ned onept in T

2

orresponding to the individual name b in A by C

b

. In [4℄ it is shown that, w.r.t.

gfp-semantis, the de�ned onept C

a

in T

2

is the most spei� onept of a in

A and T . W.r.t. desriptive semantis, this is only true if A does not ontain a

yle that is reahable from a. Otherwise, it easily follows from Theorem 9 that

10



a annot be an instane of C

a

. To avoid this problem, ayli versions G

(k)

A

of G

A

(where yles in A are unraveled into paths up to depth k starting with a) are

introdued in [3℄. When viewed as the EL-desription graph of an EL-TBox, the

graph G

(k)

A

ontains a de�ned onept that orresponds to the individual a. Let

us all this onept P

k

. In [3℄ it is shown that the ms of a exists i� there is a k

suh that P

k

is the ms. In addition, it is shown that P

k

is the ms of a i� P

k

is

subsumed by all P

`

for ` � k.

De�nition 11 Let G = (V

1

[ V

2

; E; L) be a two-level graph and u 2 V

1

. The

k-unraveling of G w.r.t. u is the two-level graph G

(k)

u

:= (V

(k)

1

[ V

2

; E

(k)

; L

(k)

),

where

V

(k)

1

:= fu

(k)

0

g [ fv

(k)

i

j v 2 V

1

and 1 � i � kg;

E

(k)

:= f(v; r; w) j (v; r; w) 2 E and v; w 2 V

2

g [

f(v

(k)

i

; r; w

(k)

i+1

) j (v; r; w) 2 E and v

(k)

i

; w

(k)

i+1

2 V

(k)

1

g [

f(v

(k)

i

; r; w) j (v; r; w) 2 E and v

(k)

i

2 V

(k)

1

; w 2 V

2

g;

L

(k)

(v) := L(v) if v 2 V

2

;

L

(k)

(v

(k)

i

) := L(v) if v

(k)

i

2 V

(k)

1

:

Obviously, the k-unraveling of G w.r.t. u onsists of an ayli subgraph on V

(k)

1

(where any path starting with u

(k)

0

has length at most k), an arbitrary subgraph

on V

2

(whih oinides with the original subgraph of G on V

2

), and additional

edges from the ayli graph into V

2

(whih are indued by orresponding edges

in G).

Given two di�erent suh unravelings G

(k)

u

= (V

(k)

1

[ V

2

; E

(k)

; L

(k)

) and G

(`)

u

=

(V

(`)

1

[ V

2

; E

(`)

; L

(`)

) of G(V

1

[ V

2

; E; L), their union G

(k)

u

[ G

(`)

u

is de�ned in the

obvious way by building the union of the node sets, the edge sets, and the labeling

funtions.

4

De�nition 12 Let G = (V

1

[ V

2

; E; L) be a two-level graph, u 2 V

1

, and k 6= `.

We say that G

(`)

u

subsumes G

(k)

u

(G

(k)

u

v G

(`)

u

) i� there is a (u

(`)

0

; u

(k)

0

)-synhronized

simulation Z on G

(k)

u

[ G

(`)

u

suh that (u

(`)

0

; u

(k)

0

) 2 Z.

It is easy to see that ` > k implies G

(`)

u

v G

(k)

u

(see also Lemma 3 in [3℄). We

are interested in �nding an index k suh that the subsumption relationship also

holds in the other diretion.

4

Note that the two labeling funtions agree on V

2

, whih is the set of nodes shared by G

(k)

u

and G

(`)

u

.

11
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u
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2

:

r

v

1

;

v

2

;

r

r

Figure 3: Two two-level graphs, one bounded and one unbounded.

De�nition 13 Let G = (V

1

[ V

2

; E; L) be a two-level graph and u 2 V

1

. We say

that G is of bounded yle depth w.r.t. u i� there is a k � 0 suh that G

(k)

u

v G

(`)

u

holds for all ` > k. In this ase, the minimal suh k is alled the yle depth of

G w.r.t. u.

The main deision problem onsidered in this paper is the following:

Given: A two-level graph G = (V

1

[ V

2

; E; L) and a node u 2 V

1

.

Question: Is G of bounded yle depth w.r.t. u?

Before showing the onnetion of this problem to the problem of deiding the

existene of the ls and the ms in EL w.r.t. desriptive semantis, let us onsider

three examples.

First, onsider the two-level graph G

1

on the left-hand side of Figure 3 (where

V

1

:= fug and V

2

:= fvg). This graph is of bounded yle depth w.r.t. u. In fat,

already k = 0 satis�es De�nition 13 sine any in�nite path starting with u

(`)

0

will

eventually lead to v, and thus an be simulated by the path u

(0)

0

r

! v

r

! v

r

! � � �.

Seond, onsider the two-level graph G

2

on the right-hand side of Figure 3 (where

V

1

:= fug and V

2

:= fv

1

; v

2

g). Though this graph looks quite similar to G

1

, it

is not of bounded yle depth. In fat, G

(k)

2;u

6v G

(k+1)

2;u

for all k � 0. To see this,

onsider the path p

1

u

(k+1)

0

r

! � � �

r

! u

(k+1)

k

r

! u

(k+1)

k+1

of length k+1 in G

(k+1)

2;u

. If this path is simulated by a path p

2

of length k+1 in

G

(k)

2;u

, then the last node of p

2

is either v

1

or v

2

. Assume without loss of generality

that it is v

1

. If we ontinue the path p

1

by an in�nite loop through v

2

, then this

in�nite path p

0

1

an only be simulated in G

(k)

2;u

by ontinuing to go through the

node v

1

. Thus, no synhronization ours.

Third, the two-level graph G

3

depited in Figure 4 (where V

1

= fu

1

; u

2

g and V

2

=

fvg) is not of bounded yle depth w.r.t. u

1

, but shows a somewhat surprising

phenomenon. Here we have G

(k)

3;u

1

v G

(k+1)

3;u

1

for all odd numbers k, but G

(k)

3;u

1

6v

12



r

1

u

1

;;

u

2

G

3

:

r

2

r

2

v
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r
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Figure 4: Another unbounded two-level graph.

G

(k+1)

3;u

1

if k is even. First, assume that k is odd. Then there are no in�nite paths

in G

(k+1)

3;u

1

that use the node u

(k+1)

1;k+1

sine this node does not have a suessor node.

As an easy onsequene, every in�nite path in G

(k+1)

3;u

1

an be simulated by \the

same" path in G

(k)

3;u

1

. In addition, the �nite path to u

(k+1)

1;k+1

an be simulated by a

path G

(k)

3;u

1

that ends with v. Consequently, G

(k)

3;u

1

v G

(k+1)

3;u

1

for odd k. In ontrast,

if k is even, then u

(k+1)

1;k

has a suessor node in G

(k+1)

3;u

1

(namely u

(k+1)

2;k+1

) reahed by

an edge with label r

1

. Any node reahable from u

(k)

1;0

in G

(k)

3;u

1

by a path of length k

(i.e., u

(k)

1;k

or v) does not have a suessor w.r.t. r

1

. Thus, there is a path in G

(k+1)

3;u

1

that annot be simulated by a path in G

(k)

3;u

1

, whih shows that G

(k)

3;u

1

6v G

(k+1)

3;u

1

for

even k.

The last example shows that, in order to �nd the number k required by De�-

nition 13, one annot simply test subsumption between G

(i+1)

u

and G

(i)

u

for i =

0; 1; 2; : : : until G

(i)

u

v G

(i+1)

u

, and then stop with output k = i.

3.4 The ls and the ms

We an now reformulate the haraterization of the ls and the ms given in [2℄

and [3℄, respetively, in terms of the notions introdued above.

Proposition 14 ([3℄) Let T be an EL-TBox, A an EL-ABox, and a an indi-

vidual in A. Then a has an ms in A and T w.r.t. desriptive semantis i�

the two-level graph G

A

(where V

1

onsists of the individual names in A and V

2

onsists of the de�ned onepts in T ) is of bounded yle depth w.r.t. a.

Assume that G

A

is of bounded yle depth and that k is the yle depth of G

A

w.r.t. a. In [3℄ it is shown that the ms of a in A and T is given by the \onept"

a

(k)

0

in the TBox orresponding to the EL-desription graph G

(k)

A;a

. Consequently, it

an be omputed in time linear in the size of G

(k)

A;a

, i.e., in time linear in jAj�k+jT j,

where j : j denotes the size of a TBox/ABox.

In order to give a similar haraterization of the existene of the ls, we must

de�ne the right two-level graph. This graph is based on the produt of the EL-

desription graph G

T

with itself.

13



De�nition 15 Let G

1

= (V

1

; E

1

; L

1

) and G

2

= (V

2

; E

2

; L

2

) be two graphs. Their

produt is the graph G

1

� G

2

:= (V;E; L) where

� V := V

1

� V

2

;

� E := f((v

1

; v

2

); r; (v

0

1

; v

0

2

)) j (v

1

; r; v

0

1

) 2 E

1

^ (v

2

; r; v

0

2

) 2 E

2

g;

� L(v

1

; v

2

) := L

1

(v

1

) \ L

2

(v

2

).

Let T be an EL-TBox and A;B de�ned onepts in T . The desription graph

G

T

� G

T

yields a TBox T

1

suh that G

T

1

= G

T

� G

T

. It is easy to see that

T

2

:= T

1

[T is a onservative extension of T . With respet to gfp-semantis, the

de�ned onept (A;B) in T

2

is the ls of A and B in T (see [4℄). With respet to

desriptive semantis, this is not the ase, due to the possible existene of yles

starting with (A;B) in the produt graph G

T

�G

T

. As with the ms, this problem

is solved by unraveling these yles up to a ertain depth, but before doing this

we must introdue additional edges between the produt graph G

T

�G

T

and G

T

.

De�nition 16 Let T be an EL-TBox, G

T

= (V

2

; E

2

; L

2

) the orresponding EL-

desription graph, and G

1

= (V

1

; E

1

; L

1

) the produt graph of G

T

with itself. The

two-level graph

b

G

T

= (



V

1

[ V

2

; E; L) is de�ned as follows:

�



V

1

:= f(u; v) 2 V

1

j u 6= vg;

� E := E

1

[ E

2

[ f((u

1

; u

2

); r; v) j (u

1

; r; v) 2 E

2

^ (u

2

; r; v) 2 E

2

^ u

1

6= u

2

g;

� L(u; v) := L

1

(u; v) if (u; v) 2 V

1

, and L(u) := L

2

(u) if u 2 V

2

.

Proposition 17 ([2℄) Let T be an EL-TBox, and A;B distint de�ned onepts

in T . Then A;B have an ls in T w.r.t. desriptive semantis i� the two-level

graph

b

G

T

= (



V

1

[ V

2

; E; L) is of bounded yle depth w.r.t. (A;B).

Assume that

b

G

T

is of bounded yle depth and that k is the yle depth of this

two-level graph w.r.t. (A;B). In [2℄ it is shown that the ls of A;B in T is given by

the \onept" (A;B)

(k)

0

in the TBox orresponding to the EL-desription graph

b

G

(k)

T ;(A;B)

. Consequently, it an be omputed in time linear in the size of this graph,

i.e., in time linear in jT j

2

� k + jT j.

4 Deiding if a graph is of bounded yle depth

Let G = (V

1

[V

2

; E; L) be a two-level graph, and u 2 V

1

. We redue the problem

of deiding whether G is of bounded yle depth w.r.t. u to the problem of deiding

14



whether a ertain formula �

u

G

of monadi seond-order logi (MSO) on in�nite

trees is satis�able. As shown by Rabin [13℄, the satis�ability problem for MSO

is deidable. In the following, we assume that the reader is familiar with MSO

on in�nite trees (see, e.g., [17℄ for an introdution). Before we de�ne the formula

�

u

G

, we desribe the intuition underlying this redution.

Enoding synhronized simulations by in�nite trees. The main idea un-

derlying our redution is that all simulation hains starting with a given pair

of nodes of a graph G = (V;E; L) and seleted by some seletion funtion (see

De�nition 5) an be represented by an in�nite tree t. Basially, the nodes of this

tree are labeled with pairs of nodes of G. Assume that the node n of t has label

(u; v). If (u; r

1

; u

1

); : : : ; (u; r

p

; u

p

) are all the edges in G starting with u, then

the node n has p suessor nodes n

1

; : : : ; n

p

that are respetively labeled with

(u

1

; v

1

); : : : ; (u

p

; v

p

), where v

i

is the result of applying the seletion funtion to

the partial simulation hain determined by the path in t leading to the node n

and the edge (u; r

i

; u

i

). Sine in MSO one onsiders trees with a �xed branhing

fator, the node n may have some additional dummy suessor nodes labeled with

the dummy label ℄. Note that the simulation relation Z itself is also enoded in

the tree t: it onsists of all tuples (u; v) suh that (u; v) 2 V � V is the label of

a node n of t. Beause of the de�nition of the suessor nodes of the nodes in t,

property (S2) in the de�nition of a simulation relation (De�nition 4) is satis�ed.

To ensure that Z also satis�es (S1), it is enough to require L(u) � L(v) for all

labels (u; v) 2 V �V of nodes in t. Given two nodes u; v of G, how an we ensure

that the simulation relation Z enoded by suh a tree t ontains (u; v) and is

(u; v)-synhronized? To ensure that (u; v) 2 Z, we require that (u; v) is the label

of the root of t. To ensure synhronization, we must require that on all in�nite

paths in the tree t, we enounter a label of the form (v

0

; v

0

) or ℄. This an easily

be expressed in MSO.

What we have said until now an be used to show that the following deision

problem is deidable: given a graph G and nodes u; v in G, is there a (u; v)-

synhronized simulation Z suh that (u; v) 2 Z. However, deidability of this

problem (in polynomial time) was already shown diretly in [5℄ without the need

for a redution to the (omplex) logi MSO.

What we atually want to deide here is whether a given two-level graph G =

(V

1

[ V

2

; E; L) is of bounded yle depth w.r.t. a node u 2 V

1

. For this, we must

onsider not G itself but rather unravelings G

(k)

u

and G

(`)

u

of G. In addition, we

need to express the quanti�ation on the numbers k and ` (\there exists a k suh

that for all `") by (seond-order) quanti�ers in MSO.

Enoding unravelings G

(k)

u

and G

(`)

u

and the quanti�ation on k and `.

Assume that we have an in�nite tree t enoding a (u; u)-synhronized simulation

Z on G, as desribed above. If (v

1

; v

2

) is the label of a node n on some level i of t,

15



then there are paths of length i from u to v

1

and from u to v

2

, respetively. The

�rst (seond) path orresponds to a path in G

(`)

u

(G

(k)

u

) i� i � ` or v

1

2 V

2

(i � k

or v

2

2 V

2

). Thus, the idea ould be to introdue two seond-order variables X

and Y (with the appropriate quanti�er pre�x 9Y:8X:), and then ensure that X

ontains exatly the nodes of t up to some level `, and Y ontains exatly the

nodes of t up to some level k. In order to ensure that the paths in G enoded in

the tree t really belong to G

(`)

u

(when onsidering the �rst omponent of the node

labels) and G

(k)

u

(when onsidering the seond omponent of the node labels), we

must require that, for a node n labeled with (v

1

; v

2

), we have X(n) or v

1

2 V

2

,

and Y (n) or v

2

2 V

2

. Unfortunately, sets ontaining exatly the nodes of an

in�nite tree up to some depth bound are not expressible in MSO.

5

However, for

our purposes it turns out to be suÆient to ensure that X and Y are �nite pre�x-

losed sets (i.e., if a node n that is not the root node belongs to one of them,

then its predeessor also does). Both \pre�x-losed" and \�nite" an easily be

expressed in MSO.

The formal de�nition. Let G = (V

1

[ V

2

; E; L) be a two-level graph, u 2 V

1

,

and assume that b is the maximal number of suessors of the nodes in G. To

de�ne the formula �

u

G

, we onsider the in�nite trees with branhing fator b (i.e.,

we have b suessor funtions s

1

; : : : ; s

b

in the signature of MSO). As usual, we will

denote seond-order variables (standing for sets of nodes) by upper-ase letters,

and �rst-order variables (standing for nodes) by lower-ase letters. The seond-

order variables used in the following are

� the variables X and Y whose funtion was already explained above;

� variables Q

(u

1

;u

2

)

for (u

1

; u

2

) 2 (V

1

[ V

2

)� (V

1

[ V

2

) and Q

℄

. The values of

these variables enode the seletion funtion S by enoding all S-seleted

simulation hains. Intuitively, a node n of the tree belongs to Q

(u

1

;u

2

)

(Q

℄

)

i� it is labeled with (u

1

; u

2

) (℄);

� the variable P standing for an in�nite path in the tree, whih is used to

express the synhronization property.

The formula �

u

G

is de�ned as

9Y:(Pre�xClosed(Y ) ^ Finite(Y ) ^ 8X:(Pre�xClosed(X) ^ Finite(X))  

u

G

));

where Pre�xClosed(:) and Finite(:) are the well-known MSO-formulae expressing

that a set of nodes is pre�x-losed and �nite, respetively,

6

and  

u

G

onsists of

an existential quanti�er pre�x on the variables Q

(u

1

;u

2

)

for (u

1

; u

2

) 2 (V

1

[ V

2

)�

(V

1

[ V

2

) and Q

℄

, followed by the onjuntion #

u

G

of the following formulae:

5

Sine then one ould also express that two nodes are on the same level, whih is know to

be inexpressible in MSO [17℄.

6

De�ning Pre�xClosed(:) is a simple exerise. A de�nition of Finite(:) an be found in [17℄.
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� A formula expressing that any node has exatly one label.

8x:
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1
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1
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2
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[V

2

)[f℄g

0

B

B
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B

B

�
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l

1

(x) ^

^

l

2

2(V

1

[V

2
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1
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2

)[f℄g

l

2
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1
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2

(x)

1

C

C

C

C

C

A

� A formula expressing that the root has label (u; u).

Q

(u;u)

(root)

� Formulae expressing the funtion of the sets X and Y . For all (u

0

; u

00

) 2

V

1

� (V

1

[ V

2

) the formula

8x:Q

(u

0

;u

00

)

(x)) X(x)

and for all (u

0

; u

00

) 2 (V

1

[ V

2

)� V

1

the formula

8x:Q

(u

0

;u

00

)

(x)) Y (x)

� Formulae enoding the requirements on the seletion funtion. Let (u

0

; u

00

) 2

(V

1

[ V

2

) � (V

1

[ V

2

), and let (u

0

; r

1

; v

0

1

); : : : ; (u

0

; r

p

; v

0

p

) be all the edges in

E with soure u

0

. First, for eah i; 1 � i � p we have one formula in the

onjuntion. If v

0

i

2 V

2

, then we take the formula

8x:Q

(u

0

;u

00

)

(x))

0

�

_

(u

00

;r

i

;v

00

)2E^L(v

0

i

)�L(v

00

)

Q

(v

0

i

;v

00

)

(s

i

(x))

1

A

Otherwise (i.e., if v

0

i

2 V

1

), then we take the formula

8x:

�

Q

(u

0

;u

00

)

(x) ^X(s

i

(x))

�

)

0

�

_

(u

00

;r

i

;v

00

)2E^L(v

0

i

)�L(v

00

)

Q

(v

0

i

;v

00

)

(s

i

(x))

1

A

Seond, we need formulae that �ll in the appropriate dummy nodes:

8x:Q

(u

0

;u

00

)

(x))

0

�

j=b

^

j=p+1

Q

℄

(s

j

(x))

1

A

and for all i; 1 � i � p, suh that v

0

i

2 V

1

8x:

�

Q

(u

0

;u

00

)

(x) ^ :X(s

i

(x))

�

) Q

℄

(s

i

(x))

� A formula expressing that dummy nodes have only dummy suessors.

8x:Q

℄

(x))

0

�

j=b

^

j=1

Q

℄

(s

j

(x))

1

A
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� A formula expressing the synhronization property.

8P:Path(P )) 9x:P (x) ^

0

�

Q

℄

(x) _

_

(v;v)2V

2

Q

(v;v)

(x)

1

A

where Path(:) is the well-known MSO-formula expressing that a set of nodes

onsists of the nodes on an in�nite path starting with the root (see [17℄).

Lemma 18 Let G = (V

1

[ V

2

; E; L) be a two-level graph, and u 2 V

1

. Then G is

of bounded yle depth w.r.t. u i� the MSO-formula �

u

G

is satis�able.

7

Proof. First, assume that G is of bounded yle depth w.r.t. u, and let k be the

yle depth of G w.r.t. u. To show that �

u

G

is satis�able, we take as set Y the

set K of all nodes of depth at most k in the in�nite tree with branhing fator

b. Now, let L be an arbitrary �nite pre�x-losed set of nodes of the in�nite tree

with branhing fator b. Sine L is �nite, there is a number ` > k suh that

all nodes in L are on depth at most `. Sine k is the yle depth of G w.r.t. u,

we know that G

(k)

u

v G

(`)

u

. Let L

0

be the set of all nodes of depth at most ` in

the in�nite tree with branhing fator b. By our onstrution of the formula  

u

G

,

G

(k)

u

v G

(`)

u

implies that the formula  

u

G

is satis�able with Y replaed by K and

X replaed by L

0

. Sine L � L

0

, this is also true if we replae X by L instead of

L

0

. Consequently, we have shown that �

u

G

is satis�able.

Seond, assume that �

u

G

is satis�able. Let K be a �nite pre�x-losed set of nodes

suh that the formula

�

u

G

:= 8X:(Pre�xClosed(X) ^ Finite(X))  

u

G

)

is satis�able with Y replaed by K. Sine K is �nite, there is a number k � 0

suh that all nodes in K are on depth at most k. Let K

0

be the set of all nodes

of depth at most k in the in�nite tree with branhing fator b. Sine K � K

0

, �

u

G

is also satis�able with Y replaed by K

0

. Thus, if ` > k and L denotes the set of

all nodes of depth at most ` in the in�nite tree with branhing fator b, then  

u

G

is satis�able with Y replaed by K

0

and X replaed by L. By our onstrution of

the formula  

u

G

, this implies that G

(k)

u

v G

(`)

u

.

Sine satis�ability in MSO on in�nite trees is deidable, the lemma implies de-

idability of bounded yle depth.

Theorem 19 The problem of deiding whether a two-level graph is of bounded

yle depth w.r.t. one of its nodes is deidable.

7

Sine we have only one possible model, the in�nite tree with branhing fator b, satis�ability

and validity are atually the same here.

18



Unfortunately, the redution does not give us a polynomial (or even a singly

exponential) omplexity bound for this deision problem. This is due to the fat

that the formula �

u

G

ontains several quanti�er hanges.

8

Together with Propositions 14 and 17, this theorem implies that the existene of

the ls and the ms is deidable in EL with desriptive semantis.

Corollary 20 The following problems are deidable:

1. Given an EL-TBox T and onepts A;B de�ned in T . Do A;B in T have

an ls w.r.t. desriptive semantis?

2. Given an EL-TBox T , an EL-ABox A, and an individual a in A. Does a

in A and T have an ms w.r.t. desriptive semantis?

5 A polynomial bound on the yle depth

A given two-level graph need not be of bounded yle depth, but if it is then we

an show that its yle depth is atually polynomial in the size of the graph.

Theorem 21 Let G = (V

1

[ V

2

; E; L) be a two-level graph, u 2 V

1

, and let m be

the ardinality of V

1

[ V

2

. Then G is of bounded yle depth i� G has yle depth

d w.r.t. u for some d � m

2

.

The \if" diretion of this theorem is trivial. To prove the \only-if" diretion,

assume that k > m

2

is suh that G

(k)

u

v G

(`)

u

for all ` > k. To show that the yle

depth of G w.r.t. u is at most m

2

, it is suÆient to show that G

(m

2

)

u

v G

(`)

u

holds

for all ` > m

2

. To show this, it is in turn enough to show that G

(m

2

)

u

v G

(k)

u

. This

is a onsequene of the following two fats:

1. G

(k)

u

v G

(`)

u

is trivially true for all ` < k and it holds for all ` > k by our

assumption on k.

2. The subsumption relation v is transitive. In fat, if we assume seletion

funtions to be nie

9

(whih we an do without loss of generality), then

the omposition of two synhronized simulations is again a synhronized

simulation.

8

In Rabin's deidability proof based on automata, every negation requires a worst-ase

exponential omplementation operation, and expressing a universal quanti�er by an existential

one (as required by Rabin's deision proedure) introdues two negation signs.

9

Reall that this means that u

i

= v

i

in an S-seleted simulation hain of the form depited

in Figure 1 implies u

j

= v

j

for all j � i.
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Thus, the above theorem is proved one we have shown the following lemma.

Lemma 22 Let G = (V

1

[ V

2

; E; L) be a two-level graph ontaining the node

u 2 V

1

, let m be the ardinality of V

1

[V

2

, and let k > m

2

be suh that G

(k)

u

v G

(`)

u

for all ` > k. Then we have G

(m

2

)

u

v G

(k)

u

.

Proof. By our assumption on k we know that G

(k)

u

v G

(2k)

u

, i.e., there is a

(u

(2k)

0

; u

(k)

0

)-synhronized simulation Z suh that (u

(2k)

0

; u

(k)

0

) 2 Z. Without loss

of generality we may assume that the orresponding seletion funtion S is nie.

As skethed in the previous setion, the S-seleted (u

(2k)

0

; u

(k)

0

)-simulation hains

an be enoded into an in�nite tree.

To be more preise, let b be the maximal number of suessors of a node in G, and

let L

2k

(L

k

) be the set of all nodes up to level 2k (level k) of the in�nite tree with

branhing fator b. Now, G

(k)

u

v G

(2k)

u

implies that the formula  

u

G

is satis�able

with X replaed by L

2k

and Y replaed by L

k

. We an use the sets assigned to

the variables Q

l

for l 2 (V

1

[V

2

)� (V

1

[V

2

)[f℄g to label the nodes of the in�nite

tree with branhing fator b by elements of (V

1

[V

2

)�(V

1

[V

2

)[f℄g. Let t denote

the labeled tree obtained this way. Our goal is to transform t into a new tree t

0

that enodes a (u

(k)

0

; u

(m

2

)

0

)-synhronized simulation ontaining (u

(k)

0

; u

(m

2

)

0

). The

main properties that this new tree must satisfy are:

1. If the node n of t

0

is labeled with an element of (V

1

[ V

2

)� V

1

, then n is of

depth at most m

2

.

2. If the node n of t

0

is labeled with (u

0

; v

0

) 2 V

1

� (V

1

[ V

2

) and is of depth

smaller than k, then its suessor nodes must over all the suessors in G

of u

0

, i.e., not only the ones in V

2

, but also the ones in V

1

.

3. The synhronization property is satis�ed, i.e., any in�nite path in t

0

ontains

a node whose label is ℄ or of the form (v

0

; v

0

) for some node v

0

2 V

2

.

In order to satisfy the �rst property, we modify the tree t as follows. Assume that

n is a node of t with label (u

0

; v

0

) 2 (V

1

[ V

2

) � V

1

that is on a level above m

2

.

By the de�nition of t, v

0

2 V

1

implies that n is at most at level k (sine all suh

nodes must belong to L

k

). Now, onsider the path in t from the root to n. Sine

this path is longer than m

2

, there are two distint nodes n

1

; n

2

on this path suh

that their labels agree. Assume that n

1

omes before n

2

on this path. Then we

replae the subtree at node n

1

by the subtree at node n

2

.

We ontinue this replaement proess until all nodes with a label in (V

1

[V

2

)�V

1

are on depth at most m

2

. This proess terminates sine there were only �nitely

many suh nodes in t (all of them have depth at most k), and the replaements

do not inrease the depth of a node, but stritly derease the depth of at least

one node with a label in (V

1

[V

2

)�V

1

. In addition, sine all nodes with a label in
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(V

1

[V

2

)�V

1

are of depth at most k in t, the depth of a given node an derease

by at most k over the whole replaement proess.

Let t

0

denote the labeled tree obtained this way. We laim that that t

0

enodes a

(u

(k)

0

; u

(m

2

)

0

)-synhronized simulation that ontains (u

(k)

0

; u

(m

2

)

0

).

First, onsider a node n with label (u

0

; v

0

) suh that v

0

2 V

1

. By our onstrution

of t

0

, this node is on depth at most m

2

in t

0

. Thus, if p is an in�nite path in t

0

,

then the seond omponents of the labels of the nodes on this path yield a path

in G suh that nodes in V

1

an only our during the �rst m

2

steps of this path.

Consequently, this path orresponds to a path in G

(m

2

)

u

.

Seond, onsider a node n in t

0

whose label (u

0

; v

0

) belongs to (V

1

[V

2

)�(V

1

[V

2

).

We need all the suessors nodes of u

0

in G

(k)

u

to be enoded by suessor nodes

of n. We know that (u

0

; v

0

) was the label of a node n

0

in t, and there all the

\relevant" suessor where enoded by suessor nodes of n

0

. If u

0

2 V

2

or if n is

of depth at least k, then it is easy to see that this implies that also n has all the

relevant suessor nodes. If u

0

2 V

1

and n is of depth smaller than k, then we also

need all the suessors nodes of u

0

in V

1

to be overed. It is easy to see that this

is the ase if n

0

(the original node in t with label (u

0

; v

0

)) was at depth smaller

than 2k in t. However, we have already observed that the depth of a given node

an derease by at most k over the whole replaement proess. Thus, the fat

that n is of depth smaller than k in t

0

implies that n

0

was at depth smaller than

2k in t.

Third, reall that we an assume without loss of generality that the seletion

funtion used by the (u

(2k)

0

; u

(k)

0

)-synhronized simulation that is enoded by t is

nie. For the tree t this means the following: for every path p in t, there is a

depth from whih on p either ontains only nodes with label ℄ or p ontains only

nodes with labels of the form (v

0

; v

0

) for some v

0

2 V

2

. Sine our replaement

proess hanges only �nite pre�xes of paths, this property is also satis�ed by t

0

,

whih shows that the synhronization property is still satis�ed by t

0

.

One might think that this polynomial bound on the yle depth of a two-level

graph an be used to show that the problem of deiding whether a graph is of

bounded yle depth or not an also be deided in polynomial time. However,

this does not appear to be the ase. In fat, assume that G = (V

1

[ V

2

; E; L) is a

two-level graph withm nodes, and let u 2 V

1

. Then we know that G is of bounded

yle depth i� G

(m

2

)

u

v G

(`)

u

for all ` > m

2

. However, testing this diretly is still not

possible sine we would need to hek in�nitely many subsumption relationships.

We ould, of ourse, also try to use Theorem 21 to modify the redution given

in Setion 4. However, all we would gain by this is that we ould avoid the

existential quanti�ation over Y ; the (expensive) universal quanti�ation over X

would still remain.
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Theorem 21, together with the results in [2℄ and [3℄ (see Subsetion 3.4), im-

plies that the ls (ms) in EL with desriptive semantis an be omputed in

polynomial time, provided that it exists.

Corollary 23 1. Let T be an EL-TBox T , and A;B onepts de�ned in T .

If the ls of A;B in T w.r.t. desriptive semantis exists, then it an be

omputed in time polynomial in the size of T .

2. Let T be an EL-TBox, A an EL-ABox, and a an individual in A. If the ms

of a in A and T w.r.t. desriptive semantis exists then it an be omputed

in time polynomial in the size of A and T .

6 Conlusion

We have introdued the notion \bounded yle depth" of so-alled two-level

graphs, and have shown that the orresponding deision problem (i.e.: Given

a two-level graph, is it of bounded yle depth?) is deidable. In addition, we

have shown that the yle depth of a two-level graph of bounded yle depth is

polynomial in the size of the graph.

These results solve the two main problems that were left open in the previous

papers [2, 3℄ on the ls and the ms in EL with desriptive semantis. The

existene of the ls (ms) is deidable, and if it exists, then it an be omputed

in polynomial time.

What remains open is the exat omplexity of the deision problems. Though this

may seem unsatisfatory from a theoretial point of view, it is probably not very

relevant in pratie. In fat, independent of whether the ls of A;B in T exists

or not, the results in [2℄ show how to ompute ommon subsumers P

i

(i � 0) of

A;B in T . The results of Setion 5 show that we an ompute a number k that

is polynomial in the size of T suh that A;B in T have an ls w.r.t. desriptive

semantis i� P

k

is the ls. Thus, we may just dispense with deiding whether the

ls exists, and return P

k

. If the ls exits, then P

k

is the ls. Otherwise, P

k

is a

ommon subsumer, and we an take it as an approximation of the ls. The same

is true for the ms.

Another interesting question is whether two-level graphs and the problem of de-

iding whether they are of bounded yle depth also has appliations in other

areas.
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