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Abstra
t

In two previous papers we have investigates the problem of 
omputing the

least 
ommon subsumer (l
s) and the most spe
i�
 
on
ept (ms
) for the

des
ription logi
 EL in the presen
e of terminologi
al 
y
les that are inter-

preted with des
riptive semanti
s, whi
h is the usual �rst-order semanti
s

for des
ription logi
s. In this setting, neither the l
s nor the ms
 needs to

exist. We were able to 
hara
terize the 
ases in whi
h the l
s/ms
 exists,

but it was not 
lear whether this 
hara
terization yields de
idability of the

existen
e problem.

In the present paper, we develop a 
ommon graph-theoreti
 general-

ization of these 
hara
terizations, and show that the resulting property is

indeed de
idable, thus yielding de
idability of the existen
e of the l
s and

the ms
. This is a
hieved by expressing the property in monadi
 se
ond-

order logi
 on in�nite trees. We also show that, if it exists, then the l
s/ms



an be 
omputed in polynomial time.

1 Introdu
tion

Early des
ription logi
 (DL) systems allowed the use of value restri
tions (8r:C),

but not of existential restri
tions (9r:C). Thus, one 
ould express that all 
hildren

are male using the value restri
tion 8
hild:Male, but not that someone has a son

�

Partially supported by the DFG under grant BA 1122/4-3 and by National ICT Australia

Limited, Canberra Resear
h Lab.
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using the existential restri
tion 9
hild:Male. The main reason was that, when


larifying the logi
al status of property ar
s in semanti
 networks and slots in

frames, the de
ision was taken that ar
s/slots should be read as value restri
tions

(see, e.g., [11℄). On
e one 
onsiders more expressive DLs allowing for full negation,

existential restri
tions 
ome in as the dual of value restri
tions [14℄. Thus, for

histori
al reasons, DLs that allow for existential, but not for value restri
tions,

were until re
ently mostly unexplored.

The re
ent interest in su
h DLs has at least two reasons. First, there are indeed

appli
ations where DLs without value restri
tions appear to be suÆ
ient. For

example, SNOMED, the Systematized Nomen
lature of Medi
ine [16, 15℄ employs

the DL EL, whi
h allows for 
onjun
tions, existential restri
tions, and the top


on
ept. Se
ond, non-standard inferen
es in DLs [10℄, like 
omputing the least


ommon subsumer, often make sense only for DLs that do not allow for full

negation. Thus, the de
ision of whether to use DLs with value restri
tions or

with existential restri
tions be
omes again relevant.

Non-standard inferen
es were introdu
ed to support building and maintaining

large DL knowledge bases. For example, 
omputing the most spe
i�
 
on
ept

(ms
) of an individual and the least 
ommon subsumer (l
s) of 
on
epts 
an be

used in the bottom-up 
onstru
tion of des
ription logi
 knowledge bases. Instead

of de�ning the relevant 
on
epts of an appli
ation domain from s
rat
h, this

methodology allows the user to give typi
al examples of individuals belonging to

the 
on
ept to be de�ned. These individuals are then generalized to a 
on
ept by

�rst 
omputing the most spe
i�
 
on
ept of ea
h individual (i.e., the least 
on
ept

des
ription in the available des
ription language that has this individual as an

instan
e), and then 
omputing the least 
ommon subsumer of these 
on
epts (i.e.,

the least 
on
ept des
ription in the available des
ription language that subsumes

all these 
on
epts). The knowledge engineer 
an then use the 
omputed 
on
ept

as a starting point for the 
on
ept de�nition.

The most spe
i�
 
on
ept of a given individual need not exist in languages allow-

ing for existential restri
tions or number restri
tions. For the DL ALN (whi
h

allows for 
onjun
tions, value restri
tions, and number restri
tions), it was shown

in [6℄ that the most spe
i�
 
on
ept always exists if one adds 
y
li
 
on
ept de�-

nitions with greatest �xpoint semanti
s. If one wants to use this approa
h for the

bottom-up 
onstru
tion of knowledge bases, then one must also be able to solve

the standard inferen
es (the subsumption and the instan
e problem) and to 
om-

pute the least 
ommon subsumer and the most spe
i�
 
on
ept in the presen
e

of 
y
li
 
on
ept de�nitions. Thus, in order to adapt the approa
h employed in

[6℄ also to the DL EL, the impa
t on both standard and non-standard inferen
es

of 
y
li
 de�nitions in this DL had to be investigated �rst.

This investigation was 
arried out in a series of papers [5, 4, 2, 3℄ that gives

an almost 
omplete pi
ture of the 
omputational properties of the above men-

tioned standard and non-standard inferen
es (the subsumption and the instan
e

2



problem as well as the problem of 
omputing the l
s and the ms
) in EL with


y
li
 
on
ept de�nitions. Cy
li
 de�nitions in EL 
an either be interpreted with

greatest �xpoint (gfp) semanti
s or with des
riptive semanti
s, whi
h is the usual

�rst-order semanti
s for DLs.

1

Regarding standard inferen
es, the subsumption and the instan
e problem turned

out to be polynomial for both types of semanti
s. This is in strong 
ontrast to

the 
ase of DLs with value restri
tions, where even for the small DL FL

0

(whi
h

allows for 
onjun
tions and value restri
tions only), adding 
y
li
 terminologies

in
reases the 
omplexity of the subsumption problem from polynomial (for 
on-


ept des
riptions) to PSPACE [1, 9℄.

Regarding non-standard inferen
es it turned out that gfp-semanti
s is very well-

behaved. With respe
t to this semanti
s the binary

2

l
s and the ms
 always exist

and 
an be 
omputed in polynomial time. For des
riptive semanti
s, things are

not as rosy. In [2℄ it was shown that, in general, the l
s need not exist. The

paper then introdu
es possible 
andidates P

k

(k � 0) for the l
s, and shows that

the l
s exists i� one of these 
andidates is the l
s. It then gives a de
idable

suÆ
ient 
hara
terization for the existen
e of the l
s. However, the question of

how to de
ide the existen
e of the l
s in the general 
ase remained open. In [3℄,

analogous results were shown for the ms
. In parti
ular, the question of how to

de
ide the existen
e of the ms
 also remained open.

In the present paper, we show that these open problems are both instan
es of

a 
ommon graph-theoreti
 problem. Then we show that this graph-theoreti


problem is de
idable by redu
ing it to the problem of de
iding satis�ability in

monadi
 se
ond-order logi
 on in�nite trees [13℄. Finally, we show that, if the l
s

(ms
) exists, then it 
an be 
omputed in polynomial time.

In the next se
tion, we introdu
e EL and de�ne the subsumption and the instan
e

problem as well as the l
s and the ms
. In Se
tion 3, we introdu
e the graph-

theoreti
 problem that we want to solve in this paper, and then relate it to the

problem of 
omputing the l
s and the ms
 in EL. Se
tion 4 gives the redu
tion

of this problem to monadi
 se
ond-order logi
, and Se
tion 5 shows that the l
s

(ms
) 
an be 
omputed in polynomial time whenever it exists.

2 Cy
li
 terminologies, least 
ommon subsumers,

and most spe
i�
 
on
epts

Con
ept des
riptions are indu
tively de�ned with the help of a set of 
onstru
-

tors, starting with a set N

C

of 
on
ept names and a set N

R

of role names. The


onstru
tors determine the expressive power of the DL. In this report, we restri
t

1

The results in [5℄ show that using least �xpoint semanti
s does not make sense in EL.

2

The n-ary l
s may grow exponentially even in EL without 
y
li
 terminologies [7℄.
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name of 
onstru
tor Syntax Semanti
s


on
ept name A 2 N

C

A A

I

� �

I

role name r 2 N

R

r r

I

� �

I

��

I

top-
on
ept > �

I


onjun
tion C uD C

I

\D

I

existential restri
tion 9r:C fx 2 �

I

j 9y : (x; y) 2 r

I

^ y 2 C

I

g


on
ept de�nition A � D A

I

= D

I

individual name a 2 N

I

a a

I

2 �

I


on
ept assertion A(a) a

I

2 A

I

role assertion r(a; b) (a

I

; b

I

) 2 r

I

Table 1: Syntax and semanti
s of EL-
on
ept des
riptions, TBox de�nitions, and

ABox assertions.

the attention to the DL EL, whose 
on
ept des
riptions are formed using the


onstru
tors top-
on
ept (>), 
onjun
tion (C u D), and existential restri
tion

(9r:C). The semanti
s of EL-
on
ept des
riptions is de�ned in terms of an in-

terpretation I = (�

I

; �

I

). The domain �

I

of I is a non-empty set of individuals

and the interpretation fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset

A

I

of �

I

and ea
h role r 2 N

R

to a binary relation r

I

on �

I

. The extension of

�

I

to arbitrary 
on
ept des
riptions is indu
tively de�ned, as shown in the third


olumn of Table 1.

A terminology (or TBox for short) is a �nite set of 
on
ept de�nitions of the form

A � D, where A is a 
on
ept name and D a 
on
ept des
ription. In addition,

we require that TBoxes do not 
ontain multiple de�nitions, i.e., there 
annot

be two distin
t 
on
ept des
riptions D

1

and D

2

su
h that both A � D

1

and

A � D

2

belongs to the TBox. Con
ept names o

urring on the left-hand side of

a de�nition are 
alled de�ned 
on
epts. All other 
on
ept names o

urring in the

TBox are 
alled primitive 
on
epts. Note that we allow for 
y
li
 dependen
ies

between the de�ned 
on
epts, i.e., the de�nition of A may refer (dire
tly or

indire
tly) to A itself. An interpretation I is a model of the TBox T i� it

satis�es all its 
on
ept de�nitions, i.e., A

I

= D

I

for all de�nitions A � D in T .

An ABox is a �nite set of assertions of the form A(a) and r(a; b), where A is

a 
on
ept name, r is a role name, and a; b are individual names from a set N

I

.

Interpretations of ABoxes must additionally map ea
h individual name a 2 N

I

to an element a

I

of �

I

. An interpretation I is a model of the ABox A i� it

satis�es all its assertions, i.e., a

I

2 A

I

for all 
on
ept assertions A(a) in A and

(a

I

; b

I

) 2 r

I

for all role assertions r(a; b) in A. The interpretation I is a model

of the ABox A together with the TBox T i� it is a model of both T and A.

The semanti
s of (possibly 
y
li
) EL-TBoxes we have de�ned above is 
alled

des
riptive semanti
 by Nebel [12℄. For some appli
ations, it is more appropriate
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to interpret 
y
li
 
on
ept de�nitions with the help of an appropriate �xpoint se-

manti
s. However, in this paper we restri
t our attention to des
riptive semanti
s

(see [5, 4℄ for de�nitions and results 
on
erning 
y
li
 terminologies in EL with

�xpoint semanti
s).

We are now ready to de�ne the subsumption and the instan
e problem w.r.t.

des
riptive semanti
s.

De�nition 1 Let T be an EL-TBox and A an EL-ABox, let C;D be 
on
ept

des
riptions (possibly 
ontaining de�ned 
on
epts of T ), and a an individual

name o

urring in A. Then,

� C is subsumed by D w.r.t. des
riptive semanti
s (C v

T

D) i� C

I

� D

I

holds for all models I of T .

� a is an instan
e of C w.r.t. des
riptive semanti
s (A j=

T

C(a)) i� a

I

2 C

I

holds for all models I of T together with A.

On the level of 
on
ept des
riptions, the least 
ommon subsumer of two 
on
ept

des
riptions C;D is the least 
on
ept des
ription E that subsumes both C and

D. An extensions of this de�nition to the level of (possibly 
y
li
) TBoxes is not


ompletely trivial. In fa
t, assume that A

1

; A

2

are 
on
epts de�ned in the TBox

T . It should be obvious that taking as the l
s of A

1

; A

2

the least de�ned 
on
ept

B in T su
h that A

1

v

T

B and A

2

v

T

B is too weak sin
e the l
s would then

strongly depend on what other de�ned 
on
epts are already present in T .

Consequently, to obtain the l
s we must allow the original TBox to be extended

by new de�nitions. We say that the TBox T

2

is a 
onservative extension of the

TBox T

1

i� T

1

� T

2

and T

1

and T

2

have the same primitive 
on
epts and roles.

Thus, T

2

may 
ontain new de�nitions A � D, but then D does not introdu
e

new primitive 
on
epts and roles (i.e., all of them already o

ur in T

1

), and A

is a new 
on
ept name (i.e., A does not o

ur in T

1

). The name \
onservative

extension" is justi�ed by the fa
t that the new de�nitions in T

2

do not in
uen
e

the subsumption relationships between de�ned 
on
epts in T

1

(see [4℄).

De�nition 2 Let T

1

be an EL-TBox 
ontaining the de�ned 
on
epts A;B, and

let T

2

be a 
onservative extension of T

1


ontaining the new de�ned 
on
ept E.

Then E in T

2

is a least 
ommon subsumer of A;B in T

1

w.r.t. des
riptive seman-

ti
s (l
s) i� the following two 
onditions are satis�ed:

1. A v

T

2

E and B v

T

2

E.

2. If T

3

is a 
onservative extension of T

2

and F a de�ned 
on
ept in T

3

su
h

that A v

T

3

F and B v

T

3

F , then E v

T

3

F .
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The notion \most spe
i�
 
on
ept" 
an be extended in a similar way from 
on
ept

des
riptions to 
on
epts de�ned in a TBox.

De�nition 3 Let T

1

be an EL-TBox and A an EL-ABox 
ontaining the individ-

ual name a, and let T

2

be a 
onservative extension of T

1


ontaining the de�ned


on
ept E. Then E in T

2

is a most spe
i�
 
on
ept of a in A and T

1

w.r.t.

des
riptive semanti
s (ms
) i� the following two 
onditions are satis�ed:

1. A j=

T

2

E(a).

2. If T

3

is a 
onservative extension of T

2

and F a de�ned 
on
ept in T

3

su
h

that A j=

T

3

F (a), then E v

T

3

F .

3 A graph-theoreti
 
hara
terization of the l
s

and the ms
 in EL

In this se
tion, we de�ne the relevant graph-theoreti
 notions, and relate them to

the subsumption and the instan
e problem as well as the problem of 
omputing

the l
s and the ms
 in EL.

3.1 Graphs and syn
hronized simulations

For the purpose of this paper, a graph is of the form (V;E; L), where V is a �nite

set of nodes, E � V � N

e

� V is a set of edges labeled by elements of the �nite

set N

e

, and L is a labelling fun
tion that assigns to every node v 2 V a subset

L(v) of the �nite set N

n

.

Simulations are binary relations on the nodes of a graph that respe
t node labels

and edges in the sense de�ned below.

De�nition 4 Let G = (V;E; L) be a graph. The binary relation Z � V � V is

a simulation on G i�

(S1) (v

1

; v

2

) 2 Z implies L(v

1

) � L(v

2

); and

(S2) if (v

1

; v

2

) 2 Z and (v

1

; r; v

0

1

) 2 E, then there exists a node v

0

2

2 V su
h that

(v

0

1

; v

0

2

) 2 Z and (v

2

; r; v

0

2

) 2 E.

It is easy to see that the set of all simulations on a graph G is 
losed under

arbitrary unions, and thus there always exists a greatest simulation on G. It is

well-known that this greatest simulation 
an be 
omputed in polynomial time [8℄.
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u = u

0

r

1

! u

1

r

2

! u

2

r

3

! u

3

r

4
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Z# Z# Z# Z#

v = v

0

r

1

! v

1

r

2

! v

2

r

3

! v

3

r

4

! � � �

Figure 1: An in�nite (u; v)-simulation 
hain.

u = u

0

r

1

! u

1

r

2

! � � �

r

n�1

! u

n�1

r

n

! u

n

Z# Z# Z#

v = v

0

r

1

! v

1

r

2

! � � �

r

n�1

! v

n�1

Figure 2: A partial (u; v)-simulation 
hain.

Consequently, given two nodes u; v of G, we 
an de
ide in time polynomial in the

size of G whether there is a simulation Z su
h that (u; v) 2 Z.

Here, we are not interested in arbitrary simulations 
ontaining a given pair of

nodes,

3

but in ones that are syn
hronized in the sense de�ned below. If (u; v) 2 Z,

then any in�nite path p

1

starting with u 
an be simulated by an in�nite path p

2

starting with v. We 
all the pair p

1

; p

2

a (u; v)-simulation 
hain (see Figure 1).

Given an in�nite path p

1

starting with u, we 
onstru
t a simulating path p

2

step

by step. The main point is, however, that the de
ision whi
h node v

n

to take in

step n should depend only on the partial simulation 
hain already 
onstru
ted,

and not on the parts of the path p

1

not yet 
onsidered.

De�nition 5 Let G be a graph, Z a simulation on G, and u; v nodes of G.

(1) A partial (u; v)-simulation 
hain is of the form depi
ted in Figure 2. A

sele
tion fun
tion S for u; v and Z assigns to ea
h partial (u; v)-simulation 
hain

of this form a node u

n

su
h that (v

n�1

; r

n

; v

n

) is an edge in G and (u

n

; v

n

) 2 Z.

(2) Given an in�nite path u = u

0

r

1

! u

1

r

2

! u

2

r

3

! u

3

r

4

! � � � and a node v su
h

that (u; v) 2 Z, one 
an use the sele
tion fun
tion S to 
onstru
t a Z-simulating

path. In this 
ase we say that the resulting (u; v)-simulation 
hain is S-sele
ted.

(3) The simulation Z is 
alled (u; v)-syn
hronized i� there exists a sele
tion fun
-

tion S for Z su
h that the following holds: for every in�nite S-sele
ted (u; v)-

simulation 
hain of the form depi
ted in Figure 1 there exists an i � 0 su
h that

u

i

= v

i

.

We 
all a sele
tion fun
tion ni
e i� u

i

= v

i

in an S-sele
ted (u; v)-simulation


hain of the form depi
ted in Figure 1 implies u

j

= v

j

for all j � i. It is easy

to see that we 
an without loss of generality assume that all sele
tion fun
tions

3

This would be suÆ
ient for gfp-semanti
s.

7



are ni
e, i.e., if Z is (u; v)-syn
hronized then there is a ni
e sele
tion fun
tion

satisfying property (3) of De�nition 5.

Before we 
ontinue de�ning the graph-theoreti
 notions ne
essary to 
hara
terize

the existen
e of the l
s and the ms
 in EL, we re
all the 
onne
tion between

syn
hronized simulations and the subsumption and the instan
e problem proved

in [5, 3℄.

3.2 The subsumption and the instan
e problem

It was shown in [5℄ that EL-TBoxes and ABoxes 
an be represented as so-
alled

des
ription graphs. Before we 
an translate EL-TBoxes into des
ription graphs,

we must normalize the TBoxes. In the following, let T be an EL-TBox, N

def

the

de�ned 
on
epts of T , N

prim

the primitive 
on
epts of T , and N

role

the roles of

T .

We say that the EL-TBox T is normalized i� A � D 2 T implies that D is of

the form

P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

;

for m; ` � 0, P

1

; : : : ; P

m

2 N

prim

, r

1

; : : : ; r

`

2 N

role

, and B

1

; : : : ; B

`

2 N

def

. If

m = ` = 0, then D = >.

As shown in [5℄, one 
an (without loss of generality) restri
t the attention to nor-

malized TBox. In the following, we thus assume that all TBoxes are normalized.

Normalized EL-TBoxes 
an be viewed as graphs whose nodes are the de�ned


on
epts, whi
h are labeled by sets of primitive 
on
epts, and whose edges are

given by the existential restri
tions.

De�nition 6 An EL-des
ription graph is a graph G = (V;E; L) where the edges

are labeled with role names and the nodes are labeled with sets of primitive


on
epts. The TBox T 
an be translated into the following EL-des
ription graph

G

T

= (N

def

; E

T

; L

T

):

� the nodes of G

T

are the de�ned 
on
epts of T ;

� if A is a de�ned 
on
ept and

A � P

1

u : : : u P

m

u 9r

1

:B

1

u : : : u 9r

`

:B

`

its de�nition in T , then

{ L

T

(A) = fP

1

; : : : ; P

m

g, and

{ A is the sour
e of the edges (A; r

1

; B

1

); : : : ; (A; r

`

; B

`

) 2 E

T

.

8



We are now ready to state the 
hara
terization of subsumption w.r.t. des
riptive

semanti
s given in [5℄.

Theorem 7 Let T be an EL-TBox, and A;B de�ned 
on
epts in T . Then the

following are equivalent:

1. A v

T

B.

2. There is a (B;A)-syn
hronized simulation Z on G

T

su
h that (B;A) 2 Z.

In [5℄ it is shown that the existen
e of su
h a syn
hronized simulation 
an be

de
ided in polynomial time, and thus the subsumption problem w.r.t. des
riptive

semanti
s in EL 
an also be de
ided in polynomial time.

In order to 
hara
terize the instan
e problem, we assume that T is a normalized

EL-TBox and A an EL-ABox. In the following, we assume that T is �xed and

that all instan
e problems forA are 
onsidered w.r.t. this TBox. In this setting, A


an be translated into an EL-des
ription graph G

A

by viewing A as a des
ription

graph and extending it appropriately by the des
ription graph G

T

asso
iated with

T .

De�nition 8 Let T be a normalized EL-TBox, A an EL-ABox, and G

T

=

(V;E; L) be the EL-des
ription graph asso
iated with T . The EL-des
ription

graph G

A

= (V

A

; E

A

; L

A

) asso
iated with A and T is de�ned as follows:

� the nodes of G

A

are the individual names o

urring in A together with the

de�ned 
on
epts of T , i.e.,

V

A

:= V [ fa j a is an individual name o

urring in Ag;

� the edges of G

A

are the edges of G, the role assertions of A, and additional

edges linking the ABox individuals with de�ned 
on
epts:

E

A

:= E [ f(a; r; b) j r(a; b) 2 Ag [

f(a; r; B) j A(a) 2 A and (A; r; B) 2 Eg;

� if u 2 V

A

is a de�ned 
on
ept, then it inherits its label from G

T

, i.e.,

L

A

(u) := L(u) if u 2 V ;

otherwise, u is an ABox individual, and then its label is derived from the


on
ept assertions for u in A. In the following, let P denote primitive and

A denote de�ned 
on
epts.

L

A

(u) := fP j P (u) 2 Ag [

[

A(u)2A

L(A) if u 2 V

A

n V :

9



We are now ready to re
all the 
hara
terization of the instan
e problem in EL

w.r.t. des
riptive semanti
s given in [3℄.

Theorem 9 Let T be an EL-TBox, A an EL-ABox, A a de�ned 
on
ept in T

and a an individual name o

urring in A. Then the following are equivalent:

1. A j=

T

A(a).

2. There is a simulation Z on G

A

su
h that

� (A; a) 2 Z, and

� Z is (B; u)-syn
hronized for all de�ned 
on
epts B in T and nodes u

of G

A

su
h that (B; u) 2 Z.

3.3 The main problem

To de�ne the main graph-theoreti
 problem addressed in this paper, we de�ne

a type of graphs that looks like the EL-des
ription graphs G

A

obtained from an

EL-TBox and ABox.

De�nition 10 The graph G = (V;E; L) is 
alled two-level graph i� V 
an be

partitioned into disjoint sets V = V

1

[ V

2

su
h that (v; r; v

0

) 2 E implies v 2 V

1

or v

0

2 V

2

. To make this partition expli
it, we write two-level graphs as G =

(V

1

[ V

2

; E; L).

Intuitively, a two-level graph G = (V

1

[ V

2

; E; L) 
onsists of a subgraph G

1

on V

1

,

a subgraph G

2

on V

2

, and possibly additional edges from nodes of G

1

to nodes of

G

2

. Obviously, the graph G

A

obtained from an EL-TBox T and an EL-ABox A

is a two-level graph, where V

1

is the set of individual names o

urring in A and

V

2

is the set of 
on
epts de�ned in T .

In order to motivate the next de�nition, in whi
h the subgraph G

1

of the two-level

graph G = (V

1

[ V

2

; E; L) is unraveled up to a 
ertain depth, we sket
h how the

ms
 of an individual a 
an be obtained from G

A

. The main idea underlying the


hara
terization of the ms
 in EL w.r.t. des
riptive semanti
s given in [3℄ is the

following. We 
an view G

A

as the EL-des
ription graph of an EL-TBox T

2

. It is

easy to see that T

2

is a 
onservative extension of T . By the de�nition of G

A

, the

de�ned 
on
epts of T

2

are the de�ned 
on
epts of T together with the individual

names o

urring in A. To avoid 
onfusion we denote the de�ned 
on
ept in T

2


orresponding to the individual name b in A by C

b

. In [4℄ it is shown that, w.r.t.

gfp-semanti
s, the de�ned 
on
ept C

a

in T

2

is the most spe
i�
 
on
ept of a in

A and T . W.r.t. des
riptive semanti
s, this is only true if A does not 
ontain a


y
le that is rea
hable from a. Otherwise, it easily follows from Theorem 9 that

10



a 
annot be an instan
e of C

a

. To avoid this problem, a
y
li
 versions G

(k)

A

of G

A

(where 
y
les in A are unraveled into paths up to depth k starting with a) are

introdu
ed in [3℄. When viewed as the EL-des
ription graph of an EL-TBox, the

graph G

(k)

A


ontains a de�ned 
on
ept that 
orresponds to the individual a. Let

us 
all this 
on
ept P

k

. In [3℄ it is shown that the ms
 of a exists i� there is a k

su
h that P

k

is the ms
. In addition, it is shown that P

k

is the ms
 of a i� P

k

is

subsumed by all P

`

for ` � k.

De�nition 11 Let G = (V

1

[ V

2

; E; L) be a two-level graph and u 2 V

1

. The

k-unraveling of G w.r.t. u is the two-level graph G

(k)

u

:= (V

(k)

1

[ V

2

; E

(k)

; L

(k)

),

where

V

(k)

1

:= fu

(k)

0

g [ fv

(k)

i

j v 2 V

1

and 1 � i � kg;

E

(k)

:= f(v; r; w) j (v; r; w) 2 E and v; w 2 V

2

g [

f(v

(k)

i

; r; w

(k)

i+1

) j (v; r; w) 2 E and v

(k)

i

; w

(k)

i+1

2 V

(k)

1

g [

f(v

(k)

i

; r; w) j (v; r; w) 2 E and v

(k)

i

2 V

(k)

1

; w 2 V

2

g;

L

(k)

(v) := L(v) if v 2 V

2

;

L

(k)

(v

(k)

i

) := L(v) if v

(k)

i

2 V

(k)

1

:

Obviously, the k-unraveling of G w.r.t. u 
onsists of an a
y
li
 subgraph on V

(k)

1

(where any path starting with u

(k)

0

has length at most k), an arbitrary subgraph

on V

2

(whi
h 
oin
ides with the original subgraph of G on V

2

), and additional

edges from the a
y
li
 graph into V

2

(whi
h are indu
ed by 
orresponding edges

in G).

Given two di�erent su
h unravelings G

(k)

u

= (V

(k)

1

[ V

2

; E

(k)

; L

(k)

) and G

(`)

u

=

(V

(`)

1

[ V

2

; E

(`)

; L

(`)

) of G(V

1

[ V

2

; E; L), their union G

(k)

u

[ G

(`)

u

is de�ned in the

obvious way by building the union of the node sets, the edge sets, and the labeling

fun
tions.

4

De�nition 12 Let G = (V

1

[ V

2

; E; L) be a two-level graph, u 2 V

1

, and k 6= `.

We say that G

(`)

u

subsumes G

(k)

u

(G

(k)

u

v G

(`)

u

) i� there is a (u

(`)

0

; u

(k)

0

)-syn
hronized

simulation Z on G

(k)

u

[ G

(`)

u

su
h that (u

(`)

0

; u

(k)

0

) 2 Z.

It is easy to see that ` > k implies G

(`)

u

v G

(k)

u

(see also Lemma 3 in [3℄). We

are interested in �nding an index k su
h that the subsumption relationship also

holds in the other dire
tion.

4

Note that the two labeling fun
tions agree on V

2

, whi
h is the set of nodes shared by G

(k)

u

and G

(`)

u

.
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r

r r

u

r

;;

v

G

1

:

u

r

;G

2

:

r

v

1

;

v

2

;

r

r

Figure 3: Two two-level graphs, one bounded and one unbounded.

De�nition 13 Let G = (V

1

[ V

2

; E; L) be a two-level graph and u 2 V

1

. We say

that G is of bounded 
y
le depth w.r.t. u i� there is a k � 0 su
h that G

(k)

u

v G

(`)

u

holds for all ` > k. In this 
ase, the minimal su
h k is 
alled the 
y
le depth of

G w.r.t. u.

The main de
ision problem 
onsidered in this paper is the following:

Given: A two-level graph G = (V

1

[ V

2

; E; L) and a node u 2 V

1

.

Question: Is G of bounded 
y
le depth w.r.t. u?

Before showing the 
onne
tion of this problem to the problem of de
iding the

existen
e of the l
s and the ms
 in EL w.r.t. des
riptive semanti
s, let us 
onsider

three examples.

First, 
onsider the two-level graph G

1

on the left-hand side of Figure 3 (where

V

1

:= fug and V

2

:= fvg). This graph is of bounded 
y
le depth w.r.t. u. In fa
t,

already k = 0 satis�es De�nition 13 sin
e any in�nite path starting with u

(`)

0

will

eventually lead to v, and thus 
an be simulated by the path u

(0)

0

r

! v

r

! v

r

! � � �.

Se
ond, 
onsider the two-level graph G

2

on the right-hand side of Figure 3 (where

V

1

:= fug and V

2

:= fv

1

; v

2

g). Though this graph looks quite similar to G

1

, it

is not of bounded 
y
le depth. In fa
t, G

(k)

2;u

6v G

(k+1)

2;u

for all k � 0. To see this,


onsider the path p

1

u

(k+1)

0

r

! � � �

r

! u

(k+1)

k

r

! u

(k+1)

k+1

of length k+1 in G

(k+1)

2;u

. If this path is simulated by a path p

2

of length k+1 in

G

(k)

2;u

, then the last node of p

2

is either v

1

or v

2

. Assume without loss of generality

that it is v

1

. If we 
ontinue the path p

1

by an in�nite loop through v

2

, then this

in�nite path p

0

1


an only be simulated in G

(k)

2;u

by 
ontinuing to go through the

node v

1

. Thus, no syn
hronization o

urs.

Third, the two-level graph G

3

depi
ted in Figure 4 (where V

1

= fu

1

; u

2

g and V

2

=

fvg) is not of bounded 
y
le depth w.r.t. u

1

, but shows a somewhat surprising

phenomenon. Here we have G

(k)

3;u

1

v G

(k+1)

3;u

1

for all odd numbers k, but G

(k)

3;u

1

6v

12



r

1

u

1
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u
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G

3

:

r

2

r

2

v

;

r

2

Figure 4: Another unbounded two-level graph.

G

(k+1)

3;u

1

if k is even. First, assume that k is odd. Then there are no in�nite paths

in G

(k+1)

3;u

1

that use the node u

(k+1)

1;k+1

sin
e this node does not have a su

essor node.

As an easy 
onsequen
e, every in�nite path in G

(k+1)

3;u

1


an be simulated by \the

same" path in G

(k)

3;u

1

. In addition, the �nite path to u

(k+1)

1;k+1


an be simulated by a

path G

(k)

3;u

1

that ends with v. Consequently, G

(k)

3;u

1

v G

(k+1)

3;u

1

for odd k. In 
ontrast,

if k is even, then u

(k+1)

1;k

has a su

essor node in G

(k+1)

3;u

1

(namely u

(k+1)

2;k+1

) rea
hed by

an edge with label r

1

. Any node rea
hable from u

(k)

1;0

in G

(k)

3;u

1

by a path of length k

(i.e., u

(k)

1;k

or v) does not have a su

essor w.r.t. r

1

. Thus, there is a path in G

(k+1)

3;u

1

that 
annot be simulated by a path in G

(k)

3;u

1

, whi
h shows that G

(k)

3;u

1

6v G

(k+1)

3;u

1

for

even k.

The last example shows that, in order to �nd the number k required by De�-

nition 13, one 
annot simply test subsumption between G

(i+1)

u

and G

(i)

u

for i =

0; 1; 2; : : : until G

(i)

u

v G

(i+1)

u

, and then stop with output k = i.

3.4 The l
s and the ms


We 
an now reformulate the 
hara
terization of the l
s and the ms
 given in [2℄

and [3℄, respe
tively, in terms of the notions introdu
ed above.

Proposition 14 ([3℄) Let T be an EL-TBox, A an EL-ABox, and a an indi-

vidual in A. Then a has an ms
 in A and T w.r.t. des
riptive semanti
s i�

the two-level graph G

A

(where V

1


onsists of the individual names in A and V

2


onsists of the de�ned 
on
epts in T ) is of bounded 
y
le depth w.r.t. a.

Assume that G

A

is of bounded 
y
le depth and that k is the 
y
le depth of G

A

w.r.t. a. In [3℄ it is shown that the ms
 of a in A and T is given by the \
on
ept"

a

(k)

0

in the TBox 
orresponding to the EL-des
ription graph G

(k)

A;a

. Consequently, it


an be 
omputed in time linear in the size of G

(k)

A;a

, i.e., in time linear in jAj�k+jT j,

where j : j denotes the size of a TBox/ABox.

In order to give a similar 
hara
terization of the existen
e of the l
s, we must

de�ne the right two-level graph. This graph is based on the produ
t of the EL-

des
ription graph G

T

with itself.
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De�nition 15 Let G

1

= (V

1

; E

1

; L

1

) and G

2

= (V

2

; E

2

; L

2

) be two graphs. Their

produ
t is the graph G

1

� G

2

:= (V;E; L) where

� V := V

1

� V

2

;

� E := f((v

1

; v

2

); r; (v

0

1

; v

0

2

)) j (v

1

; r; v

0

1

) 2 E

1

^ (v

2

; r; v

0

2

) 2 E

2

g;

� L(v

1

; v

2

) := L

1

(v

1

) \ L

2

(v

2

).

Let T be an EL-TBox and A;B de�ned 
on
epts in T . The des
ription graph

G

T

� G

T

yields a TBox T

1

su
h that G

T

1

= G

T

� G

T

. It is easy to see that

T

2

:= T

1

[T is a 
onservative extension of T . With respe
t to gfp-semanti
s, the

de�ned 
on
ept (A;B) in T

2

is the l
s of A and B in T (see [4℄). With respe
t to

des
riptive semanti
s, this is not the 
ase, due to the possible existen
e of 
y
les

starting with (A;B) in the produ
t graph G

T

�G

T

. As with the ms
, this problem

is solved by unraveling these 
y
les up to a 
ertain depth, but before doing this

we must introdu
e additional edges between the produ
t graph G

T

�G

T

and G

T

.

De�nition 16 Let T be an EL-TBox, G

T

= (V

2

; E

2

; L

2

) the 
orresponding EL-

des
ription graph, and G

1

= (V

1

; E

1

; L

1

) the produ
t graph of G

T

with itself. The

two-level graph

b

G

T

= (




V

1

[ V

2

; E; L) is de�ned as follows:

�




V

1

:= f(u; v) 2 V

1

j u 6= vg;

� E := E

1

[ E

2

[ f((u

1

; u

2

); r; v) j (u

1

; r; v) 2 E

2

^ (u

2

; r; v) 2 E

2

^ u

1

6= u

2

g;

� L(u; v) := L

1

(u; v) if (u; v) 2 V

1

, and L(u) := L

2

(u) if u 2 V

2

.

Proposition 17 ([2℄) Let T be an EL-TBox, and A;B distin
t de�ned 
on
epts

in T . Then A;B have an l
s in T w.r.t. des
riptive semanti
s i� the two-level

graph

b

G

T

= (




V

1

[ V

2

; E; L) is of bounded 
y
le depth w.r.t. (A;B).

Assume that

b

G

T

is of bounded 
y
le depth and that k is the 
y
le depth of this

two-level graph w.r.t. (A;B). In [2℄ it is shown that the l
s of A;B in T is given by

the \
on
ept" (A;B)

(k)

0

in the TBox 
orresponding to the EL-des
ription graph

b

G

(k)

T ;(A;B)

. Consequently, it 
an be 
omputed in time linear in the size of this graph,

i.e., in time linear in jT j

2

� k + jT j.

4 De
iding if a graph is of bounded 
y
le depth

Let G = (V

1

[V

2

; E; L) be a two-level graph, and u 2 V

1

. We redu
e the problem

of de
iding whether G is of bounded 
y
le depth w.r.t. u to the problem of de
iding

14



whether a 
ertain formula �

u

G

of monadi
 se
ond-order logi
 (MSO) on in�nite

trees is satis�able. As shown by Rabin [13℄, the satis�ability problem for MSO

is de
idable. In the following, we assume that the reader is familiar with MSO

on in�nite trees (see, e.g., [17℄ for an introdu
tion). Before we de�ne the formula

�

u

G

, we des
ribe the intuition underlying this redu
tion.

En
oding syn
hronized simulations by in�nite trees. The main idea un-

derlying our redu
tion is that all simulation 
hains starting with a given pair

of nodes of a graph G = (V;E; L) and sele
ted by some sele
tion fun
tion (see

De�nition 5) 
an be represented by an in�nite tree t. Basi
ally, the nodes of this

tree are labeled with pairs of nodes of G. Assume that the node n of t has label

(u; v). If (u; r

1

; u

1

); : : : ; (u; r

p

; u

p

) are all the edges in G starting with u, then

the node n has p su

essor nodes n

1

; : : : ; n

p

that are respe
tively labeled with

(u

1

; v

1

); : : : ; (u

p

; v

p

), where v

i

is the result of applying the sele
tion fun
tion to

the partial simulation 
hain determined by the path in t leading to the node n

and the edge (u; r

i

; u

i

). Sin
e in MSO one 
onsiders trees with a �xed bran
hing

fa
tor, the node n may have some additional dummy su

essor nodes labeled with

the dummy label ℄. Note that the simulation relation Z itself is also en
oded in

the tree t: it 
onsists of all tuples (u; v) su
h that (u; v) 2 V � V is the label of

a node n of t. Be
ause of the de�nition of the su

essor nodes of the nodes in t,

property (S2) in the de�nition of a simulation relation (De�nition 4) is satis�ed.

To ensure that Z also satis�es (S1), it is enough to require L(u) � L(v) for all

labels (u; v) 2 V �V of nodes in t. Given two nodes u; v of G, how 
an we ensure

that the simulation relation Z en
oded by su
h a tree t 
ontains (u; v) and is

(u; v)-syn
hronized? To ensure that (u; v) 2 Z, we require that (u; v) is the label

of the root of t. To ensure syn
hronization, we must require that on all in�nite

paths in the tree t, we en
ounter a label of the form (v

0

; v

0

) or ℄. This 
an easily

be expressed in MSO.

What we have said until now 
an be used to show that the following de
ision

problem is de
idable: given a graph G and nodes u; v in G, is there a (u; v)-

syn
hronized simulation Z su
h that (u; v) 2 Z. However, de
idability of this

problem (in polynomial time) was already shown dire
tly in [5℄ without the need

for a redu
tion to the (
omplex) logi
 MSO.

What we a
tually want to de
ide here is whether a given two-level graph G =

(V

1

[ V

2

; E; L) is of bounded 
y
le depth w.r.t. a node u 2 V

1

. For this, we must


onsider not G itself but rather unravelings G

(k)

u

and G

(`)

u

of G. In addition, we

need to express the quanti�
ation on the numbers k and ` (\there exists a k su
h

that for all `") by (se
ond-order) quanti�ers in MSO.

En
oding unravelings G

(k)

u

and G

(`)

u

and the quanti�
ation on k and `.

Assume that we have an in�nite tree t en
oding a (u; u)-syn
hronized simulation

Z on G, as des
ribed above. If (v

1

; v

2

) is the label of a node n on some level i of t,

15



then there are paths of length i from u to v

1

and from u to v

2

, respe
tively. The

�rst (se
ond) path 
orresponds to a path in G

(`)

u

(G

(k)

u

) i� i � ` or v

1

2 V

2

(i � k

or v

2

2 V

2

). Thus, the idea 
ould be to introdu
e two se
ond-order variables X

and Y (with the appropriate quanti�er pre�x 9Y:8X:), and then ensure that X


ontains exa
tly the nodes of t up to some level `, and Y 
ontains exa
tly the

nodes of t up to some level k. In order to ensure that the paths in G en
oded in

the tree t really belong to G

(`)

u

(when 
onsidering the �rst 
omponent of the node

labels) and G

(k)

u

(when 
onsidering the se
ond 
omponent of the node labels), we

must require that, for a node n labeled with (v

1

; v

2

), we have X(n) or v

1

2 V

2

,

and Y (n) or v

2

2 V

2

. Unfortunately, sets 
ontaining exa
tly the nodes of an

in�nite tree up to some depth bound are not expressible in MSO.

5

However, for

our purposes it turns out to be suÆ
ient to ensure that X and Y are �nite pre�x-


losed sets (i.e., if a node n that is not the root node belongs to one of them,

then its prede
essor also does). Both \pre�x-
losed" and \�nite" 
an easily be

expressed in MSO.

The formal de�nition. Let G = (V

1

[ V

2

; E; L) be a two-level graph, u 2 V

1

,

and assume that b is the maximal number of su

essors of the nodes in G. To

de�ne the formula �

u

G

, we 
onsider the in�nite trees with bran
hing fa
tor b (i.e.,

we have b su

essor fun
tions s

1

; : : : ; s

b

in the signature of MSO). As usual, we will

denote se
ond-order variables (standing for sets of nodes) by upper-
ase letters,

and �rst-order variables (standing for nodes) by lower-
ase letters. The se
ond-

order variables used in the following are

� the variables X and Y whose fun
tion was already explained above;

� variables Q

(u

1

;u

2

)

for (u

1

; u

2

) 2 (V

1

[ V

2

)� (V

1

[ V

2

) and Q

℄

. The values of

these variables en
ode the sele
tion fun
tion S by en
oding all S-sele
ted

simulation 
hains. Intuitively, a node n of the tree belongs to Q

(u

1

;u

2

)

(Q

℄

)

i� it is labeled with (u

1

; u

2

) (℄);

� the variable P standing for an in�nite path in the tree, whi
h is used to

express the syn
hronization property.

The formula �

u

G

is de�ned as

9Y:(Pre�xClosed(Y ) ^ Finite(Y ) ^ 8X:(Pre�xClosed(X) ^ Finite(X))  

u

G

));

where Pre�xClosed(:) and Finite(:) are the well-known MSO-formulae expressing

that a set of nodes is pre�x-
losed and �nite, respe
tively,

6

and  

u

G


onsists of

an existential quanti�er pre�x on the variables Q

(u

1

;u

2

)

for (u

1

; u

2

) 2 (V

1

[ V

2

)�

(V

1

[ V

2

) and Q

℄

, followed by the 
onjun
tion #

u

G

of the following formulae:

5

Sin
e then one 
ould also express that two nodes are on the same level, whi
h is know to

be inexpressible in MSO [17℄.

6

De�ning Pre�xClosed(:) is a simple exer
ise. A de�nition of Finite(:) 
an be found in [17℄.
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� A formula expressing that any node has exa
tly one label.

8x:

_

l

1

2(V

1

[V

2

)�(V

1

[V

2

)[f℄g

0

B

B

B

B

B

�

Q

l

1

(x) ^

^

l

2

2(V

1

[V

2

)�(V

1

[V

2

)[f℄g

l

2

6=l

1

:Q

l

2

(x)

1

C

C

C

C

C

A

� A formula expressing that the root has label (u; u).

Q

(u;u)

(root)

� Formulae expressing the fun
tion of the sets X and Y . For all (u

0

; u

00

) 2

V

1

� (V

1

[ V

2

) the formula

8x:Q

(u

0

;u

00

)

(x)) X(x)

and for all (u

0

; u

00

) 2 (V

1

[ V

2

)� V

1

the formula

8x:Q

(u

0

;u

00

)

(x)) Y (x)

� Formulae en
oding the requirements on the sele
tion fun
tion. Let (u

0

; u

00

) 2

(V

1

[ V

2

) � (V

1

[ V

2

), and let (u

0

; r

1

; v

0

1

); : : : ; (u

0

; r

p

; v

0

p

) be all the edges in

E with sour
e u

0

. First, for ea
h i; 1 � i � p we have one formula in the


onjun
tion. If v

0

i

2 V

2

, then we take the formula

8x:Q

(u

0

;u

00

)

(x))

0

�

_

(u

00

;r

i

;v

00

)2E^L(v

0

i

)�L(v

00

)

Q

(v

0

i

;v

00

)

(s

i

(x))

1

A

Otherwise (i.e., if v

0

i

2 V

1

), then we take the formula

8x:

�

Q

(u

0

;u

00

)

(x) ^X(s

i

(x))

�

)

0

�

_

(u

00

;r

i

;v

00

)2E^L(v

0

i

)�L(v

00

)

Q

(v

0

i

;v

00

)

(s

i

(x))

1

A

Se
ond, we need formulae that �ll in the appropriate dummy nodes:

8x:Q

(u

0

;u

00

)

(x))

0

�

j=b

^

j=p+1

Q

℄

(s

j

(x))

1

A

and for all i; 1 � i � p, su
h that v

0

i

2 V

1

8x:

�

Q

(u

0

;u

00

)

(x) ^ :X(s

i

(x))

�

) Q

℄

(s

i

(x))

� A formula expressing that dummy nodes have only dummy su

essors.

8x:Q

℄

(x))

0

�

j=b

^

j=1

Q

℄

(s

j

(x))

1

A

17



� A formula expressing the syn
hronization property.

8P:Path(P )) 9x:P (x) ^

0

�

Q

℄

(x) _

_

(v;v)2V

2

Q

(v;v)

(x)

1

A

where Path(:) is the well-known MSO-formula expressing that a set of nodes


onsists of the nodes on an in�nite path starting with the root (see [17℄).

Lemma 18 Let G = (V

1

[ V

2

; E; L) be a two-level graph, and u 2 V

1

. Then G is

of bounded 
y
le depth w.r.t. u i� the MSO-formula �

u

G

is satis�able.

7

Proof. First, assume that G is of bounded 
y
le depth w.r.t. u, and let k be the


y
le depth of G w.r.t. u. To show that �

u

G

is satis�able, we take as set Y the

set K of all nodes of depth at most k in the in�nite tree with bran
hing fa
tor

b. Now, let L be an arbitrary �nite pre�x-
losed set of nodes of the in�nite tree

with bran
hing fa
tor b. Sin
e L is �nite, there is a number ` > k su
h that

all nodes in L are on depth at most `. Sin
e k is the 
y
le depth of G w.r.t. u,

we know that G

(k)

u

v G

(`)

u

. Let L

0

be the set of all nodes of depth at most ` in

the in�nite tree with bran
hing fa
tor b. By our 
onstru
tion of the formula  

u

G

,

G

(k)

u

v G

(`)

u

implies that the formula  

u

G

is satis�able with Y repla
ed by K and

X repla
ed by L

0

. Sin
e L � L

0

, this is also true if we repla
e X by L instead of

L

0

. Consequently, we have shown that �

u

G

is satis�able.

Se
ond, assume that �

u

G

is satis�able. Let K be a �nite pre�x-
losed set of nodes

su
h that the formula

�

u

G

:= 8X:(Pre�xClosed(X) ^ Finite(X))  

u

G

)

is satis�able with Y repla
ed by K. Sin
e K is �nite, there is a number k � 0

su
h that all nodes in K are on depth at most k. Let K

0

be the set of all nodes

of depth at most k in the in�nite tree with bran
hing fa
tor b. Sin
e K � K

0

, �

u

G

is also satis�able with Y repla
ed by K

0

. Thus, if ` > k and L denotes the set of

all nodes of depth at most ` in the in�nite tree with bran
hing fa
tor b, then  

u

G

is satis�able with Y repla
ed by K

0

and X repla
ed by L. By our 
onstru
tion of

the formula  

u

G

, this implies that G

(k)

u

v G

(`)

u

.

Sin
e satis�ability in MSO on in�nite trees is de
idable, the lemma implies de-


idability of bounded 
y
le depth.

Theorem 19 The problem of de
iding whether a two-level graph is of bounded


y
le depth w.r.t. one of its nodes is de
idable.

7

Sin
e we have only one possible model, the in�nite tree with bran
hing fa
tor b, satis�ability

and validity are a
tually the same here.

18



Unfortunately, the redu
tion does not give us a polynomial (or even a singly

exponential) 
omplexity bound for this de
ision problem. This is due to the fa
t

that the formula �

u

G


ontains several quanti�er 
hanges.

8

Together with Propositions 14 and 17, this theorem implies that the existen
e of

the l
s and the ms
 is de
idable in EL with des
riptive semanti
s.

Corollary 20 The following problems are de
idable:

1. Given an EL-TBox T and 
on
epts A;B de�ned in T . Do A;B in T have

an l
s w.r.t. des
riptive semanti
s?

2. Given an EL-TBox T , an EL-ABox A, and an individual a in A. Does a

in A and T have an ms
 w.r.t. des
riptive semanti
s?

5 A polynomial bound on the 
y
le depth

A given two-level graph need not be of bounded 
y
le depth, but if it is then we


an show that its 
y
le depth is a
tually polynomial in the size of the graph.

Theorem 21 Let G = (V

1

[ V

2

; E; L) be a two-level graph, u 2 V

1

, and let m be

the 
ardinality of V

1

[ V

2

. Then G is of bounded 
y
le depth i� G has 
y
le depth

d w.r.t. u for some d � m

2

.

The \if" dire
tion of this theorem is trivial. To prove the \only-if" dire
tion,

assume that k > m

2

is su
h that G

(k)

u

v G

(`)

u

for all ` > k. To show that the 
y
le

depth of G w.r.t. u is at most m

2

, it is suÆ
ient to show that G

(m

2

)

u

v G

(`)

u

holds

for all ` > m

2

. To show this, it is in turn enough to show that G

(m

2

)

u

v G

(k)

u

. This

is a 
onsequen
e of the following two fa
ts:

1. G

(k)

u

v G

(`)

u

is trivially true for all ` < k and it holds for all ` > k by our

assumption on k.

2. The subsumption relation v is transitive. In fa
t, if we assume sele
tion

fun
tions to be ni
e

9

(whi
h we 
an do without loss of generality), then

the 
omposition of two syn
hronized simulations is again a syn
hronized

simulation.

8

In Rabin's de
idability proof based on automata, every negation requires a worst-
ase

exponential 
omplementation operation, and expressing a universal quanti�er by an existential

one (as required by Rabin's de
ision pro
edure) introdu
es two negation signs.

9

Re
all that this means that u

i

= v

i

in an S-sele
ted simulation 
hain of the form depi
ted

in Figure 1 implies u

j

= v

j

for all j � i.
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Thus, the above theorem is proved on
e we have shown the following lemma.

Lemma 22 Let G = (V

1

[ V

2

; E; L) be a two-level graph 
ontaining the node

u 2 V

1

, let m be the 
ardinality of V

1

[V

2

, and let k > m

2

be su
h that G

(k)

u

v G

(`)

u

for all ` > k. Then we have G

(m

2

)

u

v G

(k)

u

.

Proof. By our assumption on k we know that G

(k)

u

v G

(2k)

u

, i.e., there is a

(u

(2k)

0

; u

(k)

0

)-syn
hronized simulation Z su
h that (u

(2k)

0

; u

(k)

0

) 2 Z. Without loss

of generality we may assume that the 
orresponding sele
tion fun
tion S is ni
e.

As sket
hed in the previous se
tion, the S-sele
ted (u

(2k)

0

; u

(k)

0

)-simulation 
hains


an be en
oded into an in�nite tree.

To be more pre
ise, let b be the maximal number of su

essors of a node in G, and

let L

2k

(L

k

) be the set of all nodes up to level 2k (level k) of the in�nite tree with

bran
hing fa
tor b. Now, G

(k)

u

v G

(2k)

u

implies that the formula  

u

G

is satis�able

with X repla
ed by L

2k

and Y repla
ed by L

k

. We 
an use the sets assigned to

the variables Q

l

for l 2 (V

1

[V

2

)� (V

1

[V

2

)[f℄g to label the nodes of the in�nite

tree with bran
hing fa
tor b by elements of (V

1

[V

2

)�(V

1

[V

2

)[f℄g. Let t denote

the labeled tree obtained this way. Our goal is to transform t into a new tree t

0

that en
odes a (u

(k)

0

; u

(m

2

)

0

)-syn
hronized simulation 
ontaining (u

(k)

0

; u

(m

2

)

0

). The

main properties that this new tree must satisfy are:

1. If the node n of t

0

is labeled with an element of (V

1

[ V

2

)� V

1

, then n is of

depth at most m

2

.

2. If the node n of t

0

is labeled with (u

0

; v

0

) 2 V

1

� (V

1

[ V

2

) and is of depth

smaller than k, then its su

essor nodes must 
over all the su

essors in G

of u

0

, i.e., not only the ones in V

2

, but also the ones in V

1

.

3. The syn
hronization property is satis�ed, i.e., any in�nite path in t

0


ontains

a node whose label is ℄ or of the form (v

0

; v

0

) for some node v

0

2 V

2

.

In order to satisfy the �rst property, we modify the tree t as follows. Assume that

n is a node of t with label (u

0

; v

0

) 2 (V

1

[ V

2

) � V

1

that is on a level above m

2

.

By the de�nition of t, v

0

2 V

1

implies that n is at most at level k (sin
e all su
h

nodes must belong to L

k

). Now, 
onsider the path in t from the root to n. Sin
e

this path is longer than m

2

, there are two distin
t nodes n

1

; n

2

on this path su
h

that their labels agree. Assume that n

1


omes before n

2

on this path. Then we

repla
e the subtree at node n

1

by the subtree at node n

2

.

We 
ontinue this repla
ement pro
ess until all nodes with a label in (V

1

[V

2

)�V

1

are on depth at most m

2

. This pro
ess terminates sin
e there were only �nitely

many su
h nodes in t (all of them have depth at most k), and the repla
ements

do not in
rease the depth of a node, but stri
tly de
rease the depth of at least

one node with a label in (V

1

[V

2

)�V

1

. In addition, sin
e all nodes with a label in
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(V

1

[V

2

)�V

1

are of depth at most k in t, the depth of a given node 
an de
rease

by at most k over the whole repla
ement pro
ess.

Let t

0

denote the labeled tree obtained this way. We 
laim that that t

0

en
odes a

(u

(k)

0

; u

(m

2

)

0

)-syn
hronized simulation that 
ontains (u

(k)

0

; u

(m

2

)

0

).

First, 
onsider a node n with label (u

0

; v

0

) su
h that v

0

2 V

1

. By our 
onstru
tion

of t

0

, this node is on depth at most m

2

in t

0

. Thus, if p is an in�nite path in t

0

,

then the se
ond 
omponents of the labels of the nodes on this path yield a path

in G su
h that nodes in V

1


an only o

ur during the �rst m

2

steps of this path.

Consequently, this path 
orresponds to a path in G

(m

2

)

u

.

Se
ond, 
onsider a node n in t

0

whose label (u

0

; v

0

) belongs to (V

1

[V

2

)�(V

1

[V

2

).

We need all the su

essors nodes of u

0

in G

(k)

u

to be en
oded by su

essor nodes

of n. We know that (u

0

; v

0

) was the label of a node n

0

in t, and there all the

\relevant" su

essor where en
oded by su

essor nodes of n

0

. If u

0

2 V

2

or if n is

of depth at least k, then it is easy to see that this implies that also n has all the

relevant su

essor nodes. If u

0

2 V

1

and n is of depth smaller than k, then we also

need all the su

essors nodes of u

0

in V

1

to be 
overed. It is easy to see that this

is the 
ase if n

0

(the original node in t with label (u

0

; v

0

)) was at depth smaller

than 2k in t. However, we have already observed that the depth of a given node


an de
rease by at most k over the whole repla
ement pro
ess. Thus, the fa
t

that n is of depth smaller than k in t

0

implies that n

0

was at depth smaller than

2k in t.

Third, re
all that we 
an assume without loss of generality that the sele
tion

fun
tion used by the (u

(2k)

0

; u

(k)

0

)-syn
hronized simulation that is en
oded by t is

ni
e. For the tree t this means the following: for every path p in t, there is a

depth from whi
h on p either 
ontains only nodes with label ℄ or p 
ontains only

nodes with labels of the form (v

0

; v

0

) for some v

0

2 V

2

. Sin
e our repla
ement

pro
ess 
hanges only �nite pre�xes of paths, this property is also satis�ed by t

0

,

whi
h shows that the syn
hronization property is still satis�ed by t

0

.

One might think that this polynomial bound on the 
y
le depth of a two-level

graph 
an be used to show that the problem of de
iding whether a graph is of

bounded 
y
le depth or not 
an also be de
ided in polynomial time. However,

this does not appear to be the 
ase. In fa
t, assume that G = (V

1

[ V

2

; E; L) is a

two-level graph withm nodes, and let u 2 V

1

. Then we know that G is of bounded


y
le depth i� G

(m

2

)

u

v G

(`)

u

for all ` > m

2

. However, testing this dire
tly is still not

possible sin
e we would need to 
he
k in�nitely many subsumption relationships.

We 
ould, of 
ourse, also try to use Theorem 21 to modify the redu
tion given

in Se
tion 4. However, all we would gain by this is that we 
ould avoid the

existential quanti�
ation over Y ; the (expensive) universal quanti�
ation over X

would still remain.
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Theorem 21, together with the results in [2℄ and [3℄ (see Subse
tion 3.4), im-

plies that the l
s (ms
) in EL with des
riptive semanti
s 
an be 
omputed in

polynomial time, provided that it exists.

Corollary 23 1. Let T be an EL-TBox T , and A;B 
on
epts de�ned in T .

If the l
s of A;B in T w.r.t. des
riptive semanti
s exists, then it 
an be


omputed in time polynomial in the size of T .

2. Let T be an EL-TBox, A an EL-ABox, and a an individual in A. If the ms


of a in A and T w.r.t. des
riptive semanti
s exists then it 
an be 
omputed

in time polynomial in the size of A and T .

6 Con
lusion

We have introdu
ed the notion \bounded 
y
le depth" of so-
alled two-level

graphs, and have shown that the 
orresponding de
ision problem (i.e.: Given

a two-level graph, is it of bounded 
y
le depth?) is de
idable. In addition, we

have shown that the 
y
le depth of a two-level graph of bounded 
y
le depth is

polynomial in the size of the graph.

These results solve the two main problems that were left open in the previous

papers [2, 3℄ on the l
s and the ms
 in EL with des
riptive semanti
s. The

existen
e of the l
s (ms
) is de
idable, and if it exists, then it 
an be 
omputed

in polynomial time.

What remains open is the exa
t 
omplexity of the de
ision problems. Though this

may seem unsatisfa
tory from a theoreti
al point of view, it is probably not very

relevant in pra
ti
e. In fa
t, independent of whether the l
s of A;B in T exists

or not, the results in [2℄ show how to 
ompute 
ommon subsumers P

i

(i � 0) of

A;B in T . The results of Se
tion 5 show that we 
an 
ompute a number k that

is polynomial in the size of T su
h that A;B in T have an l
s w.r.t. des
riptive

semanti
s i� P

k

is the l
s. Thus, we may just dispense with de
iding whether the

l
s exists, and return P

k

. If the l
s exits, then P

k

is the l
s. Otherwise, P

k

is a


ommon subsumer, and we 
an take it as an approximation of the l
s. The same

is true for the ms
.

Another interesting question is whether two-level graphs and the problem of de-


iding whether they are of bounded 
y
le depth also has appli
ations in other

areas.
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