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Abstract

In two previous papers we have investigates the problem of computing the
least common subsumer (lcs) and the most specific concept (msc) for the
description logic £L in the presence of terminological cycles that are inter-
preted with descriptive semantics, which is the usual first-order semantics
for description logics. In this setting, neither the lcs nor the msc needs to
exist. We were able to characterize the cases in which the lcs/msc exists,
but it was not clear whether this characterization yields decidability of the
existence problem.

In the present paper, we develop a common graph-theoretic general-
ization of these characterizations, and show that the resulting property is
indeed decidable, thus yielding decidability of the existence of the lcs and
the msc. This is achieved by expressing the property in monadic second-
order logic on infinite trees. We also show that, if it exists, then the lcs/msc
can be computed in polynomial time.

1 Introduction

Early description logic (DL) systems allowed the use of value restrictions (Vr.C'),
but not of existential restrictions (Ir.C'). Thus, one could express that all children
are male using the value restriction Vchild.Male, but not that someone has a son
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using the existential restriction dchild.Male. The main reason was that, when
clarifying the logical status of property arcs in semantic networks and slots in
frames, the decision was taken that arcs/slots should be read as value restrictions
(see, e.g., [11]). Once one considers more expressive DLs allowing for full negation,
existential restrictions come in as the dual of value restrictions [14]. Thus, for
historical reasons, DLs that allow for existential, but not for value restrictions,
were until recently mostly unexplored.

The recent interest in such DLs has at least two reasons. First, there are indeed
applications where DLs without value restrictions appear to be sufficient. For
example, SNOMED, the Systematized Nomenclature of Medicine [16, 15] employs
the DL £L£, which allows for conjunctions, existential restrictions, and the top
concept. Second, non-standard inferences in DLs [10], like computing the least
common subsumer, often make sense only for DLs that do not allow for full
negation. Thus, the decision of whether to use DLs with value restrictions or
with existential restrictions becomes again relevant.

Non-standard inferences were introduced to support building and maintaining
large DL knowledge bases. For example, computing the most specific concept
(msc) of an individual and the least common subsumer (lcs) of concepts can be
used in the bottom-up construction of description logic knowledge bases. Instead
of defining the relevant concepts of an application domain from scratch, this
methodology allows the user to give typical examples of individuals belonging to
the concept to be defined. These individuals are then generalized to a concept by
first computing the most specific concept of each individual (i.e., the least concept
description in the available description language that has this individual as an
instance), and then computing the least common subsumer of these concepts (i.e.,
the least concept description in the available description language that subsumes
all these concepts). The knowledge engineer can then use the computed concept
as a starting point for the concept definition.

The most specific concept of a given individual need not exist in languages allow-
ing for existential restrictions or number restrictions. For the DL ALN (which
allows for conjunctions, value restrictions, and number restrictions), it was shown
in [6] that the most specific concept always exists if one adds cyclic concept defi-
nitions with greatest fixpoint semantics. If one wants to use this approach for the
bottom-up construction of knowledge bases, then one must also be able to solve
the standard inferences (the subsumption and the instance problem) and to com-
pute the least common subsumer and the most specific concept in the presence
of cyclic concept definitions. Thus, in order to adapt the approach employed in
[6] also to the DL £L£, the impact on both standard and non-standard inferences
of cyclic definitions in this DL had to be investigated first.

This investigation was carried out in a series of papers [5, 4, 2, 3| that gives
an almost complete picture of the computational properties of the above men-
tioned standard and non-standard inferences (the subsumption and the instance



problem as well as the problem of computing the lcs and the msc) in ££ with
cyclic concept definitions. Cyclic definitions in ££ can either be interpreted with
greatest fixpoint (gfp) semantics or with descriptive semantics, which is the usual
first-order semantics for DLs.

Regarding standard inferences, the subsumption and the instance problem turned
out to be polynomial for both types of semantics. This is in strong contrast to
the case of DLs with value restrictions, where even for the small DL FL, (which
allows for conjunctions and value restrictions only), adding cyclic terminologies

increases the complexity of the subsumption problem from polynomial (for con-
cept descriptions) to PSPACE [1, 9.

Regarding non-standard inferences it turned out that gfp-semantics is very well-
behaved. With respect to this semantics the binary? lcs and the msc always exist
and can be computed in polynomial time. For descriptive semantics, things are
not as rosy. In [2] it was shown that, in general, the lcs need not exist. The
paper then introduces possible candidates Py (k > 0) for the lcs, and shows that
the lcs exists iff one of these candidates is the lcs. It then gives a decidable
sufficient characterization for the existence of the lcs. However, the question of
how to decide the existence of the lcs in the general case remained open. In [3],
analogous results were shown for the msc. In particular, the question of how to
decide the existence of the msc also remained open.

In the present paper, we show that these open problems are both instances of
a common graph-theoretic problem. Then we show that this graph-theoretic
problem is decidable by reducing it to the problem of deciding satisfiability in
monadic second-order logic on infinite trees [13]. Finally, we show that, if the lcs
(msc) exists, then it can be computed in polynomial time.

In the next section, we introduce £ L and define the subsumption and the instance
problem as well as the lcs and the msc. In Section 3, we introduce the graph-
theoretic problem that we want to solve in this paper, and then relate it to the
problem of computing the lcs and the msc in £L£. Section 4 gives the reduction
of this problem to monadic second-order logic, and Section 5 shows that the lcs
(msc) can be computed in polynomial time whenever it exists.

2 Cyclic terminologies, least common subsumers,
and most specific concepts

Concept descriptions are inductively defined with the help of a set of construc-
tors, starting with a set N¢ of concept names and a set Ng of role names. The
constructors determine the expressive power of the DL. In this report, we restrict

'The results in [5] show that using least fixpoint semantics does not make sense in ££.
2The n-ary lcs may grow exponentially even in ££ without cyclic terminologies [7].



name of constructor ‘ Syntax ‘ Semantics

concept name A € N A AT C AT
role name r € Ny r rt C AT x AT
top-concept T AT
conjunction cnbD ctnpD?
existential restriction Ir.C [ {zeAT|y: (v,y) ert Ay e Ct}
| concept definition | A=D | AT = D? |
individual name a € N; a al ¢ AT
concept assertion A(a) at € AF
role assertion r(a,b) (at,0F) e rt

Table 1: Syntax and semantics of £L-concept descriptions, TBox definitions, and
ABox assertions.

the attention to the DL £L, whose concept descriptions are formed using the
constructors top-concept (T), conjunction (C' M D), and existential restriction
(3r.C). The semantics of £L-concept descriptions is defined in terms of an in-
terpretation T = (A%,-T). The domain A% of 7 is a non-empty set of individuals
and the interpretation function -Z maps each concept name A € N to a subset
AT of AT and each role r € Ng to a binary relation r* on AZ. The extension of
L to arbitrary concept descriptions is inductively defined, as shown in the third
column of Table 1.

A terminology (or TBox for short) is a finite set of concept definitions of the form
A = D, where A is a concept name and D a concept description. In addition,
we require that TBoxes do not contain multiple definitions, i.e., there cannot
be two distinct concept descriptions Dy and D, such that both A = D; and
A = D, belongs to the TBox. Concept names occurring on the left-hand side of
a definition are called defined concepts. All other concept names occurring in the
TBox are called primitive concepts. Note that we allow for cyclic dependencies
between the defined concepts, i.e., the definition of A may refer (directly or
indirectly) to A itself. An interpretation Z is a model of the TBox T iff it
satisfies all its concept definitions, i.e., AT = D7 for all definitions A = D in T.

An ABoz is a finite set of assertions of the form A(a) and r(a,b), where A is
a concept name, r is a role name, and a,b are individual names from a set Nj.
Interpretations of ABoxes must additionally map each individual name a € Ny
to an element a’ of AT. An interpretation Z is a model of the ABox A iff it
satisfies all its assertions, i.e., aZ € AT for all concept assertions A(a) in A and
(a®,b*) € r* for all role assertions r(a,b) in A. The interpretation Z is a model
of the ABox A together with the TBox 7 iff it is a model of both 7 and A.

The semantics of (possibly cyclic) £L£-TBoxes we have defined above is called
descriptive semantic by Nebel [12]. For some applications, it is more appropriate



to interpret cyclic concept definitions with the help of an appropriate fixpoint se-
mantics. However, in this paper we restrict our attention to descriptive semantics
(see [5, 4] for definitions and results concerning cyclic terminologies in ££ with
fixpoint semantics).

We are now ready to define the subsumption and the instance problem w.r.t.
descriptive semantics.

Definition 1 Let 7 be an ££-TBox and A an £L£-ABox, let C, D be concept
descriptions (possibly containing defined concepts of T), and a an individual
name occurring in A. Then,

e (' is subsumed by D w.r.t. descriptive semantics (C' T D) iff C* C D*
holds for all models Z of 7.

e q is an instance of C' w.r.t. descriptive semantics (A 7 C'(a)) iff a* € C*
holds for all models Z of T together with A.

On the level of concept descriptions, the least common subsumer of two concept
descriptions C, D is the least concept description F that subsumes both C' and
D. An extensions of this definition to the level of (possibly cyclic) TBoxes is not
completely trivial. In fact, assume that A, A, are concepts defined in the TBox
7. Tt should be obvious that taking as the lcs of Ay, A5 the least defined concept
B in T such that A; C+ B and Ay C+ B is too weak since the lcs would then
strongly depend on what other defined concepts are already present in 7.

Consequently, to obtain the lcs we must allow the original TBox to be extended
by new definitions. We say that the TBox 75 is a conservative extension of the
TBox 7; iff 71 € 75 and 7; and 75 have the same primitive concepts and roles.
Thus, 75 may contain new definitions A = D, but then D does not introduce
new primitive concepts and roles (i.e., all of them already occur in 77), and A
is a new concept name (i.e., A does not occur in 77). The name “conservative
extension” is justified by the fact that the new definitions in 75 do not influence
the subsumption relationships between defined concepts in 77 (see [4]).

Definition 2 Let 7; be an ££-TBox containing the defined concepts A, B, and
let 75 be a conservative extension of 7; containing the new defined concept E.
Then E in 75 is a least common subsumer of A, B in Ty w.r.t. descriptive seman-
tics (1cs) iff the following two conditions are satisfied:

2. If 73 is a conservative extension of 75 and F' a defined concept in 73 such
thatAE%FandBE% F, thenEETs F.



The notion “most specific concept” can be extended in a similar way from concept
descriptions to concepts defined in a TBox.

Definition 3 Let 7; be an ££-TBox and A an ££-ABox containing the individ-
ual name a, and let 75 be a conservative extension of 7; containing the defined
concept E. Then E in 75 is a most specific concept of a in A and T; w.r.t.
descriptive semantics (msc) iff the following two conditions are satisfied:

1. .A ):7’2 E(a)

2. If 73 is a conservative extension of 75 and F' a defined concept in 73 such
that A =7, F(a), then E Cr, F.

3 A graph-theoretic characterization of the Ics
and the msc in £L£

In this section, we define the relevant graph-theoretic notions, and relate them to
the subsumption and the instance problem as well as the problem of computing
the lcs and the msc in £L.

3.1 Graphs and synchronized simulations

For the purpose of this paper, a graph is of the form (V, E, L), where V is a finite
set of nodes, £ C V x N, x V is a set of edges labeled by elements of the finite
set, N,, and L is a labelling function that assigns to every node v € V' a subset,
L(v) of the finite set V,,.

Simulations are binary relations on the nodes of a graph that respect node labels
and edges in the sense defined below.

Definition 4 Let G = (V, E, L) be a graph. The binary relation Z CV x V is
a stmulation on G iff

(S1) (vi,v2) € Z implies L(vq) C L(v); and
(S2) if (v1,v2) € Z and (vq,7,v}) € E, then there exists a node v}, € V' such that
(vi,vh) € Z and (vq, 1, 05) € E.

It is easy to see that the set of all simulations on a graph G is closed under
arbitrary unions, and thus there always exists a greatest simulation on G. It is
well-known that this greatest simulation can be computed in polynomial time [8].
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Figure 1: An infinite (u,v)-simulation chain.

wo=u B ou B B B,
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Figure 2: A partial (u, v)-simulation chain.

Consequently, given two nodes u, v of G, we can decide in time polynomial in the
size of G whether there is a simulation Z such that (u,v) € Z.

Here, we are not interested in arbitrary simulations containing a given pair of
nodes,® but in ones that are synchronized in the sense defined below. If (u,v) € Z,
then any infinite path p; starting with u can be simulated by an infinite path p,
starting with v. We call the pair p1, ps a (u,v)-simulation chain (see Figure 1).
Given an infinite path p; starting with u, we construct a simulating path py step
by step. The main point is, however, that the decision which node v, to take in
step n should depend only on the partial simulation chain already constructed,
and not on the parts of the path p; not yet considered.

Definition 5 Let G be a graph, Z a simulation on G, and u, v nodes of G.

(1) A partial (u,v)-simulation chain is of the form depicted in Figure 2. A
selection function S for u,v and Z assigns to each partial (u, v)-simulation chain
of this form a node u, such that (v,_1,7,,v,) is an edge in G and (u,,v,) € Z.

(2) Given an infinite path u = ug = u; > uy ~> uz ~ --- and a node v such
that (u,v) € Z, one can use the selection function S to construct a Z-simulating
path. In this case we say that the resulting (u, v)-simulation chain is S-selected.

(3) The simulation Z is called (u, v)-synchronized iff there exists a selection func-
tion S for Z such that the following holds: for every infinite S-selected (u,v)-
simulation chain of the form depicted in Figure 1 there exists an 2 > 0 such that
U; = V;.

We call a selection function nice iff u; = v; in an S-selected (u,v)-simulation
chain of the form depicted in Figure 1 implies u; = v; for all j > 4. It is easy
to see that we can without loss of generality assume that all selection functions

3This would be sufficient for gfp-semantics.



are nice, i.e., if 7 is (u,v)-synchronized then there is a nice selection function
satisfying property (3) of Definition 5.

Before we continue defining the graph-theoretic notions necessary to characterize
the existence of the lcs and the msc in ££, we recall the connection between
synchronized simulations and the subsumption and the instance problem proved
in [5, 3].

3.2 The subsumption and the instance problem

It was shown in [5] that ££-TBoxes and ABoxes can be represented as so-called
description graphs. Before we can translate £L£-TBoxes into description graphs,
we must normalize the TBoxes. In the following, let 7 be an £L-TBox, Ndef the
defined concepts of T, Npyy, the primitive concepts of 7, and Ny, the roles of
T.

We say that the EL£-TBox T is normalized iff A = D € T implies that D is of
the form
P1|_|...|_|Pm|_|E|T’l.Bl|_|...|_|E|T[.Bg,

for mag > 0) Pla"'apm € Nprima Tiyeo5Te € N’I“olea and Bla"'aBl € Ndef' If
m=/{(=0, then D=T.

As shown in [5], one can (without loss of generality) restrict the attention to nor-
malized TBox. In the following, we thus assume that all TBoxes are normalized.
Normalized £L-TBoxes can be viewed as graphs whose nodes are the defined
concepts, which are labeled by sets of primitive concepts, and whose edges are
given by the existential restrictions.

Definition 6 An £L-description graph is a graph G = (V, E, L) where the edges
are labeled with role names and the nodes are labeled with sets of primitive
concepts. The TBox 7 can be translated into the following £ £-description graph
gT - (Ndefa ETa LT):

e the nodes of Gr are the defined concepts of T;

e if Ais a defined concept and
AEP1|_|...|_|Pm|_|E|’I“1.Bl|_|...|_|E|T4.Bg

its definition in 7, then

— Lr(A)={P,...,P,}, and
— A is the source of the edges (A,r1, By),..., (A, By) € Er.



We are now ready to state the characterization of subsumption w.r.t. descriptive
semantics given in [5].

Theorem 7 Let T be an EL-TBox, and A, B defined concepts in T. Then the
following are equivalent:

1. AC; B.

2. There is a (B, A)-synchronized simulation Z on Gy such that (B, A) € Z.

In [5] it is shown that the existence of such a synchronized simulation can be
decided in polynomial time, and thus the subsumption problem w.r.t. descriptive
semantics in £L can also be decided in polynomial time.

In order to characterize the instance problem, we assume that 7 is a normalized
EL-TBox and A an £L£-ABox. In the following, we assume that 7 is fixed and
that all instance problems for A are considered w.r.t. this TBox. In this setting, A
can be translated into an £ L-description graph G4 by viewing A as a description

graph and extending it appropriately by the description graph Gr associated with
T.

Definition 8 Let 7 be a normalized ££-TBox, A an £L-ABox, and Gy =
(V,E,L) be the £L-description graph associated with 7. The &L-description
graph G4 = (V4, E4, L 4) associated with A and T is defined as follows:

e the nodes of G4 are the individual names occurring in A together with the
defined concepts of T, i.e.,

V4:=V U{a|ais an individual name occurring in A};

e the edges of G4 are the edges of G, the role assertions of A, and additional
edges linking the ABox individuals with defined concepts:

Ejs = FEU{(a,rb)]|r(ab) e A} U
{(a,r,B) | A(a) € A and (A,r,B) € E};

e if u € V4 is a defined concept, then it inherits its label from G, i.e.,
Ly(u) :=L(u) ifueV;

otherwise, u is an ABox individual, and then its label is derived from the
concept assertions for v in A. In the following, let P denote primitive and
A denote defined concepts.

La(u):={P|Pu)ye AU |J L(4) ifueVyi\V.
A(u)eA



We are now ready to recall the characterization of the instance problem in £L£
w.r.t. descriptive semantics given in [3].

Theorem 9 Let T be an EL-TBox, A an EL-ABox, A a defined concept in T
and a an individual name occurring in A. Then the following are equivalent:

1. A ):7’ A(a)

2. There 1s a simulation Z on G4 such that

o (Aa)€ Z, and

e 7 is (B,u)-synchronized for all defined concepts B in T and nodes u
of G4 such that (B,u) € Z.

3.3 The main problem

To define the main graph-theoretic problem addressed in this paper, we define
a type of graphs that looks like the £L£-description graphs G4 obtained from an
EL-TBox and ABox.

Definition 10 The graph G = (V, E, L) is called two-level graph iff V can be
partitioned into disjoint sets V' = V; U V5 such that (v,r,v") € E implies v € V;
or v' € V5. To make this partition explicit, we write two-level graphs as G =
ViUV, E L).

Intuitively, a two-level graph G = (V; U V4, E, L) consists of a subgraph G; on V7,
a subgraph G, on V5, and possibly additional edges from nodes of G; to nodes of
Go. Obviously, the graph G4 obtained from an ££-TBox 7 and an ££-ABox A
is a two-level graph, where V] is the set of individual names occurring in A and
V5 is the set of concepts defined in 7.

In order to motivate the next definition, in which the subgraph G; of the two-level
graph G = (V1 U V5, E, L) is unraveled up to a certain depth, we sketch how the
msc of an individual a can be obtained from G 4. The main idea underlying the
characterization of the msc in ££ w.r.t. descriptive semantics given in [3] is the
following. We can view G4 as the £L-description graph of an ££-TBox 7. It is
easy to see that 73 is a conservative extension of 7. By the definition of G 4, the
defined concepts of 75 are the defined concepts of T together with the individual
names occurring in A. To avoid confusion we denote the defined concept in 75
corresponding to the individual name b in A by Cj. In [4] it is shown that, w.r.t.
gfp-semantics, the defined concept C, in 75 is the most specific concept of a in
A and 7. W.r.t. descriptive semantics, this is only true if A does not contain a
cycle that is reachable from a. Otherwise, it easily follows from Theorem 9 that
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a cannot be an instance of C,. To avoid this problem, acyclic versions gﬁ{” of G4
(where cycles in A are unraveled into paths up to depth k starting with a) are
introduced in [3]. When viewed as the £L-description graph of an £L£-TBox, the
graph gﬁ{“) contains a defined concept that corresponds to the individual a. Let
us call this concept Pj. In [3] it is shown that the msc of a exists iff there is a k
such that P is the msc. In addition, it is shown that P, is the msc of a iff P, is
subsumed by all P, for ¢ > k.

Definition 11 Let G = (V; U V5, E, L) be a two-level graph and u € V;. The
k-unraveling of G w.r.t. u is the two-level graph G(*) := (Vl(k) U Vo, E®) | LF)),
where

v o= oo jveviand 1< i < k)

E® = {(v,r )|(vrw)€EandeeVg}U
{(vl(’C r, le) | (v,r,w) € E and vi ,le € Vl(k)} U
{(vl(’C w) | (v,r,w) € E and vfk) ceViP we Vol
L® () = L(v) ifveVy,
L(k)(vz(k)) = L(v) if U( = Vl(k).

Obviously, the k-unraveling of G w.r.t. u consists of an acyclic subgraph on Vl(k)
(where any path starting with u(()k) has length at most k), an arbitrary subgraph
on V5 (which coincides with the original subgraph of G on V3), and additional

edges from the acyclic graph into V5 (which are induced by corresponding edges

in G).

Given two different such unravelings G = (V¥ U V5, E®) L®) and ¢ =
(VU Vs, EO,LO) of G(V; U Vs, E, L), their union G¥) U GY is defined in the
obvious way by building the union of the node sets, the edge sets, and the labeling
functions.?

Definition 12 Let G = (V; U VQ,E,L) be a two-level graph, u € V;, and k # (.
We say that G\ subsumes GF) (GW) T GO) iff there is a (u((f), ugk))—synchronized
simulation Z on GW U G® such that (ul ), ufh e z.

It is easy to see that ¢ > k implies G T G (see also Lemma 3 in [3]). We
are interested in finding an index & such that the subsumption relationship also
holds in the other direction.

4Note that the two labeling functions agree on V5, which is the set of nodes shared by (1”)

and Q
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Figure 3: Two two-level graphs, one bounded and one unbounded.

bt Ol
O™,

Definition 13 Let G = (V3 U V3, E, L) be a two-level graph and u € V;. We say
that G is of bounded cycle depth w.r.t. u iff there is a & > 0 such that G®) C G0
holds for all ¢/ > k. In this case, the minimal such £ is called the cycle depth of
g w.r.t. u.

The main decision problem considered in this paper is the following:

Given: A two-level graph G = (V; UV, E, L) and a node u € V;.

Question: Is G of bounded cycle depth w.r.t. u?

Before showing the connection of this problem to the problem of deciding the
existence of the lcs and the msc in £L£ w.r.t. descriptive semantics, let us consider
three examples.

First, consider the two-level graph G; on the left-hand side of Figure 3 (where
Vi :={u} and V5 := {v}). This graph is of bounded cycle depth w.r.t. u. In fact,

already k = 0 satisfies Definition 13 since any infinite path starting with u(()e) will

eventually lead to v, and thus can be simulated by the path u(()o) T T

Second, consider the two-level graph G, on the right-hand side of Figure 3 (where
Vi := {u} and V; := {vy,v5}). Though this graph looks quite similar to Gy, it
is not of bounded cycle depth. In fact, QM Z QQkH for all £ > 0. To see this,
consider the path py

k+1 k+1 k+1
uD Ty Ty ) 1y )

of length k+1in QZkH If this path is simulated by a path p, of length £+ 1 in

g2 u» then the last node of ps is either vy or vs. Assume without loss of generality
that it is v1. If we continue the path p; by an infinite loop through vy, then this
infinite path p| can only be simulated in QM by continuing to go through the
node v;. Thus, no synchronization occurs.

Third, the two-level graph Gs depicted in Figure 4 (where V; = {uy,us} and V5 =
{v}) is not of bounded cycle depth w.r.t. uy, but shows a somewhat surprising
phenomenon. Here we have g3 w & g3’“+1> for all odd numbers £, but géﬁfl iz

12



931 @ - @ - @
< >$2< > @ "

Figure 4: Another unbounded two-level graph.

gg’““) if k£ is even. First, assume that k is odd. Then there are no infinite paths

Ul
k+1)

(k1 . .
in ggm ) that use the node ug w41 Since this node does not have a successor node.

As an easy consequence, every infinite path in g§fij[1) can be simulated by “the

same” path in géﬁzl. In addition, the finite path to ugk,:rli can be simulated by a

path ggﬁjl that ends with v. Consequently, ggﬁjl C g?(,’““) for odd k. In contrast,

Ul
if k is even, then u§’f,j” has a successor node in g§f“j11) (namely ugk,:ﬁ) reached by

an edge with label 1. Any node reachable from u§k3 in ggﬁfl by a path of length k

(i.e., ugk,z or v) does not have a successor w.r.t. r;. Thus, there is a path in ggf“jl”

that cannot be simulated by a path in g§f21, which shows that g§f21 Z g§’fj1” for
even k.

The last example shows that, in order to find the number k required by Defi-
nition 13, one cannot simply test subsumption between G+ and G\ for i =
0,1,2,... until G C GU+Y and then stop with output k = .

3.4 The lcs and the msc

We can now reformulate the characterization of the les and the msc given in [2]
and [3], respectively, in terms of the notions introduced above.

Proposition 14 ([3]) Let T be an EL-TBox, A an EL-ABoz, and a an indi-
vidual in A. Then a has an msc in A and T w.r.t. descriptive semantics iff
the two-level graph G4 (where Vi consists of the individual names in A and Vs
consists of the defined concepts in T ) is of bounded cycle depth w.r.t. a.

Assume that G4 is of bounded cycle depth and that & is the cycle depth of G 4
w.r.t. a. In [3] it is shown that the msc of @ in A and T is given by the “concept”

a(()k) in the TBox corresponding to the £ L-description graph gﬁ{f{, Consequently, it

can be computed in time linear in the size of QJ(LIC)G, i.e., in time linear in |A|-k+|T],
where | .| denotes the size of a TBox/ABox.

In order to give a similar characterization of the existence of the lcs, we must
define the right two-level graph. This graph is based on the product of the £.£-
description graph Gy with itself.
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Definition 15 Let G; = (Vi, Fy, L) and Gy = (V3, Ey, Ls) be two graphs. Their
product is the graph G; x G, := (V, E, L) where

o V=V xVy
o F :={((v,v9),r, (v],v})) | (v1,7r,0]) € Ey A (va,7,05) € Es};

o L(vy,v3) := Ly(vy) N Ly(vy).

Let 7 be an ££-TBox and A, B defined concepts in 7. The description graph
Gr x Gy yields a TBox 7y such that G5, = Gy x Gr. It is easy to see that
T2 := T, UT is a conservative extension of 7. With respect to gfp-semantics, the
defined concept (A, B) in 75 is the lcs of A and B in T (see [4]). With respect to
descriptive semantics, this is not the case, due to the possible existence of cycles
starting with (A, B) in the product graph Gy X Gy. As with the msc, this problem
is solved by unraveling these cycles up to a certain depth, but before doing this
we must introduce additional edges between the product graph G+ x Gy and Gr.

Definition 16 Let 7 be an EL£-TBox, Gr = (13, Es, Ly) the corresponding £L-
description graph, and G, = (Vi, By, Ly) the product graph of Gr with itself. The
two-level graph Gr = (V; U Vs, E, L) is defined as follows:

o Vii={(u,0) €Vi[u#u};

o E:=FE UE,U{((ur,uz),r,v) | (ug,r,v) € Ex A (uz,7,0) € By Ay # us};

o L(u,v):= Ly(u,v) if (u,v) € Vi, and L(u) := Lo(u) if u € V5.
Proposition 17 ([2]) Let T be an EL-TBox, and A, B distinct defined concepts

in T. Then A, B have an lcs in T w.r.t. descriptive semantics iff the two-level
graph G = (V1 U V,, E| L) is of bounded cycle depth w.r.t. (A, B).

Assume that .C;T is of bounded cycle depth and that k is the cycle depth of this
two-level graph w.r.t. (A, B). In [2] it is shown that the lcs of A, B in T is given by

the “concept” (A, B)(()k) in the TBox corresponding to the £L-description graph
gﬁr’“)(A B)- Consequently, it can be computed in time linear in the size of this graph,
i.e., in time linear in |T]* -k + |T|.

4 Deciding if a graph is of bounded cycle depth

Let G = (ViU V4, E| L) be a two-level graph, and u € V;. We reduce the problem
of deciding whether G is of bounded cycle depth w.r.t. u to the problem of deciding

14



whether a certain formula ¢% of monadic second-order logic (MSO) on infinite

trees is satisfiable. As shown by Rabin [13], the satisfiability problem for MSO

is decidable. In the following, we assume that the reader is familiar with MSO

on infinite trees (see, e.g., [17] for an introduction). Before we define the formula
G, we describe the intuition underlying this reduction.

Encoding synchronized simulations by infinite trees. The main idea un-
derlying our reduction is that all simulation chains starting with a given pair
of nodes of a graph G = (V, E, L) and selected by some selection function (see
Definition 5) can be represented by an infinite tree t. Basically, the nodes of this
tree are labeled with pairs of nodes of G. Assume that the node n of ¢ has label
(w,v). If (u,ry,u),...,(u,rp,upy) are all the edges in G starting with u, then
the node n has p successor nodes ny,...,n, that are respectively labeled with
(ug,v1), ..., (up, v,), where v; is the result of applying the selection function to
the partial simulation chain determined by the path in t leading to the node n
and the edge (u,r;, u;). Since in MSO one considers trees with a fixed branching
factor, the node n may have some additional dummy successor nodes labeled with
the dummy label £. Note that the simulation relation Z itself is also encoded in
the tree ¢: it consists of all tuples (u,v) such that (u,v) € V x V is the label of
a node n of t. Because of the definition of the successor nodes of the nodes in t,
property (S2) in the definition of a simulation relation (Definition 4) is satisfied.
To ensure that Z also satisfies (S1), it is enough to require L(u) C L(v) for all
labels (u,v) € V x V of nodes in t. Given two nodes u, v of G, how can we ensure
that the simulation relation Z encoded by such a tree t contains (u,v) and is
(u, v)-synchronized? To ensure that (u,v) € Z, we require that (u,v) is the label
of the root of t. To ensure synchronization, we must require that on all infinite
paths in the tree ¢, we encounter a label of the form (v',v’) or §. This can easily
be expressed in MSO.

What we have said until now can be used to show that the following decision
problem is decidable: given a graph G and nodes u,v in G, is there a (u,v)-
synchronized simulation Z such that (u,v) € Z. However, decidability of this
problem (in polynomial time) was already shown directly in [5] without the need
for a reduction to the (complex) logic MSO.

What we actually want to decide here is whether a given two-level graph G =
(ViU V4, E| L) is of bounded cycle depth w.r.t. a node u € V. For this, we must
consider not G itself but rather unravelings G*) and G of G. In addition, we
need to express the quantification on the numbers & and ¢ (“there exists a & such
that for all ¢”) by (second-order) quantifiers in MSO.

Encoding unravelings ggﬂ and g}ﬂ and the quantification on k£ and /.
Assume that we have an infinite tree ¢ encoding a (u, u)-synchronized simulation
Z on G, as described above. If (v, v5) is the label of a node n on some level i of ,
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then there are paths of length i from u to v; and from u to vs, respectively. The
first (second) path corresponds to a path in Gt (G iff i < Corv, € Vy (1 < k
or vy € V5). Thus, the idea could be to introduce two second-order variables X
and Y (with the appropriate quantifier prefix 3Y.VX.), and then ensure that X
contains exactly the nodes of ¢ up to some level ¢/, and Y contains exactly the
nodes of ¢ up to some level k. In order to ensure that the paths in G encoded in
the tree ¢ really belong to G¥) (when considering the first component of the node
labels) and G*) (when considering the second component of the node labels), we
must require that, for a node n labeled with (vy,vs), we have X (n) or v; € V4,
and Y (n) or vy € V5. Unfortunately, sets containing exactly the nodes of an
infinite tree up to some depth bound are not expressible in MSO.?> However, for
our purposes it turns out to be sufficient to ensure that X and Y are finite prefix-
closed sets (i.e., if a node n that is not the root node belongs to one of them,
then its predecessor also does). Both “prefix-closed” and “finite” can easily be
expressed in MSO.

The formal definition. Let G = (V; U V5, E, L) be a two-level graph, u € Vi,
and assume that b is the maximal number of successors of the nodes in G. To
define the formula ¢%, we consider the infinite trees with branching factor b (i.e.,
we have b successor functions sy, ..., s, in the signature of MSO). As usual, we will
denote second-order variables (standing for sets of nodes) by upper-case letters,
and first-order variables (standing for nodes) by lower-case letters. The second-
order variables used in the following are

e the variables X and Y whose function was already explained above;

e variables Qy, u,) for (uy, uz) € (V1 UV3) x (V4 UV;) and Q4. The values of
these variables encode the selection function S by encoding all S-selected
simulation chains. Intuitively, a node n of the tree belongs to Qu, u,) (Qf)
iff it is labeled with (uy,us) (£);

e the variable P standing for an infinite path in the tree, which is used to
express the synchronization property.

The formula ¢¢ is defined as
Y. (PrefizClosed(Y) A Finite(Y') AVX.(PrefirClosed(X) A Finite(X) = 1g)),

where PrefirClosed(.) and Finite(.) are the well-known MSO-formulae expressing
that a set of nodes is prefix-closed and finite, respectively,® and Yg consists of
an existential quantifier prefix on the variables Qy, u,) for (ui,us) € (Vi U V3) x
(V1 U V3) and @y, followed by the conjunction 9§ of the following formulae:

5Since then one could also express that two nodes are on the same level, which is know to
be inexpressible in MSO [17].
Defining PrefizClosed(.) is a simple exercise. A definition of Finite(.) can be found in [17].
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A formula expressing that any node has exactly one label.

Vz. \V Q, (z) A A —Q1, ()
e(ViuVa) x(ViUVa)u{t} Is€(ViUVa) x (Vi UVa)U{t}
Il

A formula expressing that the root has label (u,u).

Q (u,u) (1001)

Formulae expressing the function of the sets X and Y. For all (uv',u") €
Vi x (V1 UV3) the formula

VCC.Q(UI’UH)(.T) = X(.T)
and for all (v/,u") € (V1 UV3) x Vi the formula

vx-Q(u’,u”) (33) = Y(x)

Formulae encoding the requirements on the selection function. Let (u',u") €
(ViuVa) x (ViU Vy), and let (u',ri,v7),..., (¢, 7p,v,) be all the edges in
E with source u/. First, for each i,1 < i < p we have one formula in the
conjunction. If v} € V5, then we take the formula

Vl‘.Q(uI,uH)(I> = ( \/ Q(vg,v”)(si(x)))

(u"riw")EEAL(v,)CL(v")

Otherwise (i.e., if v} € V7), then we take the formula

V. (Q(u’,u”)(x) A X(Sz(x))) = ( \/ Q(vg,v”)(si(x)))

(u",riw")EEAL(v,)CL(v")

Second, we need formulae that fill in the appropriate dummy nodes:

j=b
Va.Qu wr () = ( A Qu(sj(l‘)))
J=p+1
and for all 7,1 < ¢ < p, such that v} € V)
V. (Quurwn () A =X (s5(2))) = Qylsilx))

e A formula expressing that dummy nodes have only dummy successors.

Ve.Qy() = (]/_\ czﬁ<sj<x>>)

J=1
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e A formula expressing the synchronization property.

VP.Path(P) = Jz.P(x) A (Qﬂ(x) v/ Q(M)(x))

(v,0)EV

where Path(.) is the well-known MSO-formula expressing that a set of nodes
consists of the nodes on an infinite path starting with the root (see [17]).

Lemma 18 Let G = (Vi UV, E, L) be a two-level graph, and u € Vi. Then G is
of bounded cycle depth w.r.t. u iff the MSO-formula ¢g s satisfiable.”

Proof. First, assume that G is of bounded cycle depth w.r.t. u, and let k be the
cycle depth of G w.r.t. u. To show that ¢g is satisfiable, we take as set Y the
set IC of all nodes of depth at most k& in the infinite tree with branching factor
b. Now, let £ be an arbitrary finite prefix-closed set of nodes of the infinite tree
with branching factor b. Since L is finite, there is a number ¢ > k such that
all nodes in £ are on depth at most (. Since k is the cycle depth of G w.r.t. u,
we know that G¥) C G¥. Tet £’ be the set of all nodes of depth at most ¢ in
the infinite tree with branching factor b. By our construction of the formula g,
gfjﬂ C gf;’> implies that the formula 1§ is satisfiable with Y replaced by K and
X replaced by £'. Since £ C £', this is also true if we replace X by £ instead of
L'. Consequently, we have shown that ¢g is satisfiable.

Second, assume that ¢g is satisfiable. Let K be a finite prefix-closed set of nodes
such that the formula

ng = VX.(PrefizClosed(X) A Finite(X) = 1)

is satisfiable with Y replaced by K. Since K is finite, there is a number k£ > 0
such that all nodes in K are on depth at most k. Let X' be the set of all nodes
of depth at most k& in the infinite tree with branching factor b. Since I C K', ng
is also satisfiable with Y replaced by K'. Thus, if £ > k and £ denotes the set of
all nodes of depth at most ¢ in the infinite tree with branching factor b, then g
is satisfiable with Y replaced by K" and X replaced by £. By our construction of
the formula %, this implies that G C G{9). O

Since satisfiability in MSO on infinite trees is decidable, the lemma implies de-
cidability of bounded cycle depth.

Theorem 19 The problem of deciding whether a two-level graph is of bounded
cycle depth w.r.t. one of its nodes is decidable.

"Since we have only one possible model, the infinite tree with branching factor b, satisfiability
and validity are actually the same here.
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Unfortunately, the reduction does not give us a polynomial (or even a singly
exponential) complexity bound for this decision problem. This is due to the fact
that the formula ¢ contains several quantifier changes.®

Together with Propositions 14 and 17, this theorem implies that the existence of
the lcs and the msc is decidable in £L£ with descriptive semantics.

Corollary 20 The following problems are decidable:

1. Given an EL-TBox T and concepts A, B defined in T. Do A, B in T have
an les w.r.t. descriptive semantics?

2. Given an EL-TBox T, an EL-ABox A, and an individual a in A. Does a

in A and T have an msc w.r.t. descriptive semantics?

5 A polynomial bound on the cycle depth

A given two-level graph need not be of bounded cycle depth, but if it is then we
can show that its cycle depth is actually polynomial in the size of the graph.

Theorem 21 Let G = (VU Vs, E, L) be a two-level graph, uw € Vi, and let m be
the cardinality of Vi U V. Then G is of bounded cycle depth iff G has cycle depth

d w.r.t. u for some d < m>.

The “if” direction of this theorem is trivial. To prove the “only-if” direction,
assume that £ > m? is such that QQS’“) C g}ﬂ for all ¢ > k. To show that the cycle
depth of G w.r.t. u is at most m?, it is sufficient to show that G/™") C G holds
for all ¢ > m?. To show this, it is in turn enough to show that G"*) C G*). This
is a consequence of the following two facts:

1. ¢ C G is trivially true for all ¢ < k and it holds for all £ > k by our
assumption on k.

2. The subsumption relation C is transitive. In fact, if we assume selection
functions to be nice? (which we can do without loss of generality), then
the composition of two synchronized simulations is again a synchronized
simulation.

8In Rabin’s decidability proof based on automata, every negation requires a worst-case
exponential complementation operation, and expressing a universal quantifier by an existential
one (as required by Rabin’s decision procedure) introduces two negation signs.

9Recall that this means that u; = v; in an S-selected simulation chain of the form depicted
in Figure 1 implies u; = v; for all 7 > 1.
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Thus, the above theorem is proved once we have shown the following lemma.

Lemma 22 Let G = (V3 UV, E, L) be a two-level graph containing the node
w € Vi, let m be the cardinality of Vi UVs, and let k > m? be such that g}jﬂ C g}ﬁ
for all € > k. Then we have G(™) & GF).

Proof. By our assumption on k£ we know that ggﬂ C gf}’f), i.e., there is a
(ug%),uék))—synchronized simulation Z such that (u(()%),u(()k)) € 7. Without loss
of generality we may assume that the corresponding selection function S is nice.
As sketched in the previous section, the S-selected (u(()%), u(()k))—simulation chains

can be encoded into an infinite tree.

To be more precise, let b be the maximal number of successors of a node in G, and
let Lo (L) be the set of all nodes up to level 2k (level k) of the infinite tree with
branching factor b. Now, ggﬂ C gng) implies that the formula 1§ is satisfiable
with X replaced by Lo and Y replaced by L. We can use the sets assigned to
the variables @, for I € (V1 UV3) x (V1 UV2)U{t} to label the nodes of the infinite
tree with branching factor b by elements of (V;UV2) x (Vi UV2)U{t}. Let t denote
the labeled tree obtained this way. Our goal is to transform ¢ into a new tree ¢’
that encodes a (ugk), u(()m2))—synchronized simulation containing (u(()k), ung)). The
main properties that this new tree must satisfy are:

1. If the node n of t' is labeled with an element of (V3 U V5) x V7, then n is of
depth at most m?.

2. If the node n of ¢ is labeled with (u/,v") € V; x (V4 UV;) and is of depth
smaller than £, then its successor nodes must cover all the successors in G
of v/, i.e., not only the ones in V5, but also the ones in V.

3. The synchronization property is satisfied, i.e., any infinite path in ¢’ contains
a node whose label is § or of the form (v', ") for some node v € V5.

In order to satisfy the first property, we modify the tree ¢ as follows. Assume that
n is a node of ¢ with label (v/,v') € (V3 U V3) x Vi that is on a level above m?.
By the definition of ¢, v' € V} implies that n is at most at level k (since all such
nodes must belong to £;). Now, consider the path in ¢ from the root to n. Since
this path is longer than m?, there are two distinct nodes n,ny on this path such
that their labels agree. Assume that n; comes before n, on this path. Then we
replace the subtree at node n; by the subtree at node ns.

We continue this replacement process until all nodes with a label in (V;UV3) x V}
are on depth at most m2. This process terminates since there were only finitely
many such nodes in ¢ (all of them have depth at most k), and the replacements
do not increase the depth of a node, but strictly decrease the depth of at least
one node with a label in (V3 UV3) x V4. In addition, since all nodes with a label in
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(V1UV3) x V; are of depth at most & in ¢, the depth of a given node can decrease
by at most k over the whole replacement process.

Let t' denote the labeled tree obtained this way. We claim that that ¢’ encodes a

(ul?, ul™))-synchronized simulation that contains (ul®, u{™).

First, consider a node n with label (v/,v") such that ' € V4. By our construction
of ¢/, this node is on depth at most m? in ¢. Thus, if p is an infinite path in ¢,
then the second components of the labels of the nodes on this path yield a path
in G such that nodes in V; can only occur during the first m? steps of this path.
Consequently, this path corresponds to a path in gf;n2>.

Second, consider a node n in ¢ whose label (u/, v") belongs to (V;UV5) x (V3 UV3).
We need all the successors nodes of v/ in G¥) to be encoded by successor nodes
of n. We know that (u',v') was the label of a node n’ in ¢, and there all the
“relevant” successor where encoded by successor nodes of n’. If u' € V5 or if n is
of depth at least k, then it is easy to see that this implies that also n has all the
relevant, successor nodes. If ' € V; and n is of depth smaller than &, then we also
need all the successors nodes of v’ in V; to be covered. It is easy to see that this
is the case if n’' (the original node in ¢ with label (v/,v")) was at depth smaller
than 2k in t. However, we have already observed that the depth of a given node
can decrease by at most k£ over the whole replacement process. Thus, the fact
that n is of depth smaller than & in ¢’ implies that n’ was at depth smaller than
2k in t.

Third, recall that we can assume without loss of generality that the selection
function used by the (u(()%), u(()k))—synchronized simulation that is encoded by ¢ is
nice. For the tree ¢ this means the following: for every path p in ¢, there is a
depth from which on p either contains only nodes with label £ or p contains only
nodes with labels of the form (v/,v’) for some v € V5. Since our replacement
process changes only finite prefixes of paths, this property is also satisfied by ¢',

which shows that the synchronization property is still satisfied by #'. O

One might think that this polynomial bound on the cycle depth of a two-level
graph can be used to show that the problem of deciding whether a graph is of
bounded cycle depth or not can also be decided in polynomial time. However,
this does not appear to be the case. In fact, assume that G = (V; U V5, E| L) is a
two-level graph with m nodes, and let u € V;. Then we know that G is of bounded
cycle depth iff G0*) T G for all ¢ > m?2. However, testing this directly is still not
possible since we would need to check infinitely many subsumption relationships.
We could, of course, also try to use Theorem 21 to modify the reduction given
in Section 4. However, all we would gain by this is that we could avoid the
existential quantification over Y’; the (expensive) universal quantification over X
would still remain.
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Theorem 21, together with the results in [2] and [3] (see Subsection 3.4), im-
plies that the les (msc) in EL with descriptive semantics can be computed in
polynomial time, provided that it exists.

Corollary 23 1. Let T be an EL-TBox T, and A, B concepts defined in T.
If the lcs of A, B in T w.r.t. descriptive semantics exists, then it can be
computed in time polynomial in the size of T .

2. LetT be an EL-TBox, A an EL-ABoz, and a an individual in A. If the msc
of a in A and T w.r.t. descriptive semantics exists then it can be computed
in time polynomial in the size of A and T.

6 Conclusion

We have introduced the notion “bounded cycle depth” of so-called two-level
graphs, and have shown that the corresponding decision problem (i.e.: Given
a two-level graph, is it of bounded cycle depth?) is decidable. In addition, we
have shown that the cycle depth of a two-level graph of bounded cycle depth is
polynomial in the size of the graph.

These results solve the two main problems that were left open in the previous
papers [2, 3] on the lcs and the msc in ££ with descriptive semantics. The
existence of the les (msc) is decidable, and if it exists, then it can be computed
in polynomial time.

What remains open is the exact complexity of the decision problems. Though this
may seem unsatisfactory from a theoretical point of view, it is probably not very
relevant in practice. In fact, independent of whether the lcs of A, B in T exists
or not, the results in [2] show how to compute common subsumers P; (i > 0) of
A, B in T. The results of Section 5 show that we can compute a number & that
is polynomial in the size of 7 such that A, B in 7 have an lcs w.r.t. descriptive
semantics iff P is the les. Thus, we may just dispense with deciding whether the
les exists, and return P,. If the lcs exits, then P is the lcs. Otherwise, Py is a
common subsumer, and we can take it as an approximation of the lcs. The same
is true for the msc.

Another interesting question is whether two-level graphs and the problem of de-
ciding whether they are of bounded cycle depth also has applications in other
areas.
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