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Abstract — Modal logics of space with operators interpreted by the

closure and interior operator of the underlying topolobica
The eight topologicaRCC8 (or Egenhofer-Franzosa)- space and propositions interpreted as subsets of the topo-
relations between spatial regions play a fundamental role logical space, see e.¢21; 5; 1.

in spatial _reas_oning, s_patial and constraint data_basesj an A similar classification can be made for Temporal Reason-
geographical information systems. In analogy with Halpern 4. general first-order theorigg], temporal constraint sys-

and Shoham’s modal logic of time intervals based on the o g[>: 36: 24 and modal temporal logics like Prior's tense
Allen relations, we introduce a family of modal logics logics, LTL, and CTL[16; 14.

equipped with eight modal operators that are interpreted
by theRCC8-relations. The semantics is based on region
spaces induced by standard topological spaces, in particu-
lar the real plane. We investigate the expressive power and
computational complexity of the logics obtained in this way

Itturns our that, smplar tcr)] Halpern ?ng Shﬁham S Iog|c,_ the | in which they are true) and reference to other intervalsdis en
gxpr)]res_sw_e povil)(lar IS :_at. ter ni':ltu_ra ,I Utdt Iel computational o6 by modal operators interpreted by Allen’s 13 relation
ehavioris problematic. topological modarlogics are Ust= payeen intervals. Despite its bad computational behavior
ally undecidable and often not even recursively enumerable (undecidable, usually not even r.e.), this framework pdove
T.h'S even holds ifwe restrict ourselves: to classes .Of figite r extremely fruitful and influential in temporal reasoninges
gion spaces or to substructures of region spaces induced bye g.[35; 4; 23
topological spaces. We also analyze modal logics based on™ ™.~ * = "
the set oRCC5-relations, with similar results.

However, one of the most important and influential ap-
proaches in temporal reasoning has not yet found a fully de-
veloped analogue on the spatial reasoning research agenda:
Halpern and Shoham’s Modal Logic of intervdtsd], in
which propositions are interpreted as sets of intervatssgh

To develop an equally powerful and useful modal lan-
guage for reasoning about topological relations between re
gions, we first have to select a set of basic relations. In the
) initially mentioned research areas, there seems to be con-
1 Introduction sensus that the eigRICC8-relations, which are also known

_ ) _ ~ as “Egenhofer-Franzosa’-relations and have been indepen-
. Reasomng abou_t topological relations between regionsgently introduced in29) and[11], are very natural and
in space is recognized as one of the most important andiynortant—both from a theoretical and a practical view-
challenging research areas within Spatial Reasoning in Al point, see e.gl27: 1d. Thus, in this paper we will con-
and Philosophy, Spatial and Constraint Databases, and Gesjger modal logics with eight modal operators interpreted
ographical Information Systems (GISs). Research in this by the eighiRCC8-relations, and whose formulas are inter-
area can be classified according to the logical apparatus eMpreted as sets of regions (those in which they are true). This

ployed: modal framework for reasoning about regions has been sug-
— General first-order theories of topological relations be- gested in an early paper by Col8} and further considered
tween regions are studied in Al and Philosodhy 29; in [37]. However, it proved difficult to analyze the compu-
28|, Spatial Databasef27; 33 and, from, an algebraic  tational behavior of such logics and, despite several tsffor
viewpoint, in[9; 34; to the best of our knowledge no results have been obtained

— Purely existential theories formulated as constrairissat so far.

faction systems over jointly exhaustive and mutually dis-  To relate this approach to previous and ongoing work on
joint sets of topological relations between regidh8; 31; first-order theories of regioni9; 28; 27; 33, itis important
18;33; 29 to observe that the modal logic we propose is a fragment of
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e . . . dc,ec, po, po, po, po, tppi,
infinitely many unary predicatesMore precisely, we will ntppi || potppi, | tepi, | tppi, ntopi | tppi, |tpp.ntpp,| ntppi
show that our logic has exactly the same expressive powe ntppi | ntppi | ntppi ntppi | ntppi.eq

as the two-variable fragment of this FO logic—although the
latter is exponentially more succinct. Since usual firsteor
theories of regions admit arbitrarily many variables bat
unary predicates, their expressive power is incomparable t

the one of our modal logics. We argue that the availability (‘disconnected’)ec (‘externally connected’);pp (‘tangen-
of unary predicates is essential for a wide range of applica-tial proper part),tppi (‘inverse of tangential proper part’),
tion areas: in contrast to describing only purely topolatiic po (‘partial overlap’),eq (‘equal’), ntpp (‘non-tangential
properties of regions, it allows to also capture other prope proper part’), anchttpi (‘inverse of non-tangential proper
ties such as being a country (in a GIS), a ball (for a soccer-part’). Figure 1 gives examples of tHRCC8 relations in
playing robot), or a protected area (in a spatial datab#&se). the real planéR?2, where regions are rectangles. Different
our modal logic, we can then formulate constraints such asspatial ontologies give rise to different notions of region
“there are no two overlapping regions that are both coun- and, therefore, different classes of models. Almost alt def
tries” and “every river is connected to an ocean or a lake”. initions of regions provided in the literature, howeveéa
The purpose of this paper is imtroduce modal logics of  in common that the resulting models @egion structures
topological relations in a systematic way, perform an diti
investigation of their expressiveness and relationsraps, R = (W, dcm, ec®, .. Y,
analyze their computational behavidvliore precisely, this
paper is organized as follows: in Section 2, we introduce re-Where W is a non-empty set (of regions) and tHé are
gion spaces, which form the semantical basis for our logics. binary relations oV’ that are mutually disjoint (i.er”* N
The modal language is introduced in Section 3, and a briefa” = 0, forr # q), jointly exhaustive (i.e., the union of all
analysis of its expressiveness is performed. In Section 4,r” is W x W), and satisfy the following:
we identify a number of natural logics induced by different
classes of region structures, and analyze their relatipnsh
In Section 5, we then prove the undecidability of our logics.
This is strengthened to B} -hardness proof in Section 6,
where it is shown that only very few of our logics are re-
cursively enumerable. We prove undecidability of classes
of finite region spaces in Section 7. Finally, in Section 8
we consider modal logics based on the non-topological, but

spatialRCC5-relations and show that they, too, are usually vz ((r, (2, y)Ars (y, 2)) = (a1 (2, 2)V- - -Var(z, 2))
undecidable.

Figure 2. The RCC8 composition table.

e eq is interpreted as the identity di, dc, ec, andpo
are symmetric, antbpi andntppi are the inverse rela-
tions ofttp andntpp, respectively;

e the rules of thdRCC8 composition table (Figure 2) are
satisfied in the sense that, for any enfry. .., qx in
row r; and columrrs, the first-order sentence

is valid (x is the disjunction over aRCC8-relations).

2 Structures Denote the class of all region structures®g. Although

of definite interest as a basic class of models representing
We want to reason about models whose domains consisthe relation between regions in space, often more redfricte
of regions that are related by the eigh€C8-relationsdc definitions of region structures are considered. On the one



hand, one can consider further first-order conditions on re-connectives\ and— by means of the modal operatdds],

gion structures, say, (fragments) of tR€C-theory[29]. [ec], etc. (one for eaclRCC8 relation). Aregion model

Another possibility is to consider only region structureatt 9t = (R, p™, pY*, .. .) for Lrccs consists of a region struc-

are induced by (classes of) topological spaces. Recalathat ture )R = (W,dc™,...) and the interpretatiop?” of the

topological space is a paif = (U,T), whereU isa setand  variables ofCrccg as subsets dfi”. A formulay is either

Lis aninterior operatoronUs, i.e., foralls,t C U, we have  true ats € W (written 91, s |= ) or false ats (written
W) = U I(s) C s M, s £ ), the inductive definition being as follows:

I(s)NTI(t) = T(sNt) II(s) = T(s). 1. If is a prop. variable, thedt, s |= ¢ iff s € ™.

The closureC(s) of s is thenC(s) = U — (I(U — s)). 2. M, s |~ iff M, s = .

Of particular interest are-dimensional Euclidean spaces .

R"™ based on Cartesian products of the real line with the 3. M, s = p1 A e iff s | 1 ands | ¢o.

standard topology induced by the Euclidean metric. 4. M, s = [r]p iff, for all t € W, (s,t) € r™® implies
Depending on the application domain, different defini- M, t = .

tions of regions in topological spaces have been introduced o

A rather general notion identifies regions with non-empty, We use the usual abbreviations=— ¢ for ~ V1 and(r)¢

regular closedsets, i.e. non-empty subsets U such that ~ for =[rJ-¢. _ _

CI(s) = s. We write T, to denote the set of non-empty, The discussion of the expressive power of our logic starts

more restrictive definitions of regions are important in the Hut has the following semantics:

1 n
Euclidean spaceR”, e.g., M, s |= Oy iff M, ¢ = plorallt € W

e the sefR(,,, of non-empty convex regular closed sub-

sets ofR"; In our logic, it can obviously be expressed/gs gccs[rle-

Second, we can express that a formplholds in precisely
e the set Ry, of closed hyper-rectangular subsets gne region (isa nomina) by

of R", i.e., regions of the form[]_, C;, where
Cy,...,C, are non-singleton closed intervalslit nom(yp) = Gy A /\ [r]—¢),

In both cases we allow unbounded regions, in particBiar reRCC8\{eq}

However, we should_notethatt_hetechnlcal resul_ts provedin, hare Gup = —O,—p. The definability of nominals

this paper also hold_ if we consider bounded regions, only. means, in particular, that we can exprB&Ls-constraints

. Given a topological spac& and a set of region§/y [31] in our language: just observe that constrajats y),

in T as introduced above, we obtain a region Structure yhere is an RCC8-relation, correspond to the assertion

R(T,Uz) = (Ux,dc”, ...) by putting: (pz A (r)py) A nom(p,) A nom(p,). Another main advan-
(s,1) € dc¥ iff snt=0 tage of having nominals is that we can introduce names for

(s,t) €ecT iff I(s)NI{E) =0 A sNt#D regions; e.g., the formulas
T
(5,1) € po* iff E(\Silﬂét) AONs\t£DA nom(Elbe), nom(Dresden
(s,1) € eqi iff 5=t o state that Elbe’ (the name of a river) andDresderi each
(s,t) €tpp* iff  sNE=0 A sNI(t)#0 apply to exactly one region. Third, it is useful to define
(s,t) € ntppz iff sNI() =0 operatorgpp] and[ppi] as abbreviations:
(s,t) € tppi iff  (¢,s) € tpp

i = [tppi]p A [nttpi]e.
R(T, Ug) is called the region structumeducedby (¥, Us). lprily [tppil A [nttpily

It is easy (but tedious) to verify that the conditions of re- As in the temporal casgl9] and following Cohn[8], we
gion structures are satisfied. We §&DP = {R(T, Treq) | can classify propositions according to whether

% topological spacé.
polog pacg e they are homogeneous, i.e. they hold continuously

3 Languages throughout regions,, (¢ — [pp]y).

e they are anti-homogeneous, i.e. they hold only in re-
The modal languag€rccs extends propositional logic gions whose interiors are mutually disjoint:
with countably many variables;, ps, ... and the Boolean O (¢ = ([pp]—¢p A [po]—¢)



Instances of anti-homogeneous propositions gwef” and
“city”, while “occupied-by-watéris homogeneous. The

following are some example statements in our logic (ne-

glecting for simplicity that existence of sea harbors):

O, (harbor-city <+ (city A (ntppi)(harborA (ec)river)))
O, (Dresden— harbor-city)

0, (Elbe — river)

O, (Dresden— ({po)ElbeA [po](river — Elbe)))

O, (Dresden— [ppi]-river)

From these formulas, it follows that Dresden has a harbor

that is related viac to the river Elbe.

Section 2, the most important such classes are induced by
topological spaces.

Aformulay isvalid in a class of regions structur8df it
is true in all points of all models based on region structures
from S. We useLgrccs(S) to denote the logic of the class
S, i.e. the set of allCgccg-formulas valid inS. If S =
{R(T, Ug)} for some topological spacgwith regionsUs,
then we writeLrccs (T, Ux) instead ofLrccs(S).

The basic logic we consider Brccg(RS), the logic of
all region structures. On arbitrary topological spaces, we
investigateLrccs (7 OP), the logic of all region structures
induced by topological spaces in which regions are non-
empty regular closed sets. &, n > 1, we investigate

We now relate the expressive power of the modal lan- i, family of logics

guage Lrccs to the expressive power of first-order lan-
guages over region structures. Since spatial first-oraer th
ories are usually formulated in first-order languages equiv
alent toF Orccg With eight binary relations for th&CC8
relations ancho unary predicatef27; 28; 33; 29, we can-
not reducelgrccg to such languages. A formal proof is
provided by the observation th&Ogrccg is decidable over
the region space consisting of rectangledRin (in fact it

is reducible to the decidable first order theory(&, <)),
while in Section 6 we show thdirccs is not evenr.e. over

Lrccs(R"™,Up), whereRye, O Up D Ryee-

In particular, we may have,, = RZ,,,, .
In many applications, it does not seem natural to en-
force the presence @l regions with some characteristics
(say, non-empty and regular closed) in every model. In-
stead, one could include only those regions that are “rele-
vant” for the application. Thus, given a claSsof region
structures, we are interested in the clasg@®) of all sub-

that space. Thus, the proper first-order language to comparetructures of structures if. Then we writeL3..4(S) as

Lrccs With is the monadic extensiaAORccg Of FOrccs
that is obtained by adding unary predicatesps, . ... By
well-known results from modal correspondence théagy,
any modal formulag can be polynomially translated into an
equivalent formulap* of FOgecg With only two variables
such that, for any region mod®k and any regiors,

M, s = @iff M = ¢"[s].

More surprisingly, the converse holds as well: this follows
from recent results d23] since theRCC8 relations are mu-
tually exclusive and jointly exhaustive.

Theorem 1. For every F Ogccg-formula ¢(z) with free
variablez that uses only two variables, one can effectively
construct alrccg-formulag* of length at most exponential
in the length ofp(x) such that, for every region mod#h
and any regiors, M, s |= ¢* iff M | ¢*[s].

A proof sketch can be found in Appendix A. There, we

abbreviation ofLrccs(S(S)). Going one step further, one
could even postulate that the set of relevant regions is fi-
nite (but unbounded). Thus we uSg,(S) to denote all
finite substructures of structures dhand write L% . (S)

for Lrecs(S6in(S)).

It is natural to ask for the relationship between the log-
ics just introduced. We start with two examples: first,
L 5 (RS) (and any other logic of spaces with finitely
many regions) differs fromlrccg(RS), Lrccs(T OP) and
the Lrccs(R™, U,,) since

[pp]([pP]p — p) — [PP]P-

is valid in S, (RS) (it states that there does not exist an
infinite ascendingp-chain). Second, the logiErccg(RS)
differs from Lrccg (7T OP) and theLrccs(R™, Uy,) since

Oulp A (dc)q) = u({ppi)p A (ppidg)

is not valid inRS (it states that any two disconnected re-

also argue that, due to a result of Etessami, Vardi, andgions are proper parts of a region).

Wilke [13], there exist properties that can be formulated ex-

ponentially more succinct in the two-variable fragment of
}'Og‘ccg than inLRCCS.

4 Logics

In this section, we analyze the impact of choosing differ-
ent underlying classes of region structures. As discussed i

These and some more relationships are summarized
in Figure 3. Perhaps most interesting is the fact that
Lin o(RS) and Lrccg(RS) can be regarded as logics of
topological spaces, and evenlRf:

Theorem 2. Forn > 0_: _
() LEtcs(RS) = Ligecs(TOP) = Litcg(R™, Ryz,)
(i) Lrecs(RS) = Liccs(TOP) = Liccs(R™, RIL,).



Lgnccs(]Ra ]Rrect) = Lgnccs(]Ra ]RconV) l . R
U U [
EECS(RQ IRrect) frlzncca(RQ IRzonv) 6
U ‘ U
gnCCB (]RS ]Rrect) ) Lgnccs(]RS ]R‘gonv) 3 5
U
LR(RS) = LRa(TOP) = TReaa(B", Ry il i
U U
LRCC%(RS) = Licas(TOP) = LRccs(]R  Rieg) Figure 4. Enumerating tile positions.
Lrecs(TOP)
n
Lrecs(R™, Ryeg) o if 7(x,y) =tandr(z +1,y) =t then(t,t’) € H

Figure 3. Inclusions between logics. o if 7(z,y) = tandr(z,y +1) = ¢ then(t,#') € V

Such a mapping is called asolutionfor D. o

A proof of the theorem and a justification of the inclusions For reducing this domino problem to satisfiabilityfigccs

in Figure 3 (in particular the fact that they are proper) can logics, we fix an enumeration of all the tile positions in the

be found in Appendix B. first quadrant of the plane as indicated in Figure 4. The
It is out of the scope of this paper to fully complete function ) takes positive integers & x N-positions, i.e.

the picture given by Figure 3. Yet, there are a few more A(1) = (0,0), A(2) = (1,0), A(3) = (1, 1), etc.

interesting things to be noted. For example, using the  Our proof strategy is inspired bj25; 33. Let D =

same formulas as in the corresponding finite cases, it canT, H, V) be a domino system. In the reduction, we use

be shown thalrccs(R", Réyny) € Lrecs(R”™, Ry,) and  the following propositional letters:

Lrecs(R™,R,) € Lrecs(R™, R1L,). Butin contrast to

reg

the finite case, the converse |nclu3|ons do not hold either * foreach tile type € T', a letterp;;

because the following formulais valid R(R", Ry,): e propositional letters;, b, andc that are used to mark
certain, important regions;
nom(p;) A Oulpi AN {dchp;)) — -
(1</i\<3 (p) 1<i/<\j<3 u(pi A {deip;)) e propositional lettersvall and floor that are used to

identify regions corresponding to tiles with positions

Cul{pPi)p1 A (pPi}p2 A —(pPi}ps). from the set0} x N andN x {0}, respectively.

5 Undecidability The reduction formulegy is defined as

) S ) a A'b A wall A floor A [ntppi]—a A Oy,
We now establish the undecidability of all logics whose

region classes contain certain region spaces baséi"on ~ wherey is the conjunction of a number of formulas. We list
Indeed, an even weaker (but less natural) condition is estabthese formulas together with some intuitive explanations:

lished in Appendix C. 1. ensure that the regiods € W | M,s = a} are

Theorem 3. Let R(R",U) € S C RS with R%, C U, ordered by the relatiopp (i.e. the union oftpp and
for somen > 0. ThenLgrccg(S) is undecidable. ntpp):

Thus the logicsrccs(S) and Lyc4(S) are undecid- a — [dc]-a A [ec]-a A [po]-a (1)
able, forS one of RS, TOP, R(R", Ry, ), R(R™, Ren, ),
and®(R", RZ.,), withn > 0. 2. enforce that the regions | M,s = a A b} aredis-

] ) ) cretelyordered byntpp. These regions will correspond

The proof is by reduction of the domino problem that to positions of the grid. In order to ensure discreteness,
requires tiling of the first quadrant of the plane to the satis we use sequence of alternating b anda A —b regions
fiability problem. as shown in Figure 5.
Definition 4. Let D = (T, H,V) be adomino system aAb - (tpp)(a A —b) )
whereT is a finite set oftile typesand H,V C T x T A—b = (tpp)(a A b) 3)
represent the horizontal and vertical matching conditions @A 0= {tpp)a
We say thatD tiles the first quadrant of the plarié there a A =b— [tpp](a — b) (4)
exists a mapping : N2 — T such that, for al(z, y) € NZ: aAb— [tpp](a — —b) (5)



a /\ b al b 4
- - - -=- alb 3
aAb | . ,
L __ -, | | qAb ? :
anb | | o Tann 1]
| : aag ' | | . |
| ! P! ; !
pos. 1 | : |
| ! | |
a A —b | : 1 |
__________________ ) ! : :
pos.2| | |
| l ¢
a N —b |
---------------------------- Figure 6. Two “going right” regions.
pos. 3

_ ) o brings us to the expected position:
Figure 5. A discrete ordering in the plane.

[ntppi]—a V (—(floor A wall)) 9)

wall — T floor (20)

If we are at am A b region, we can access the region wall = oY (wall) (11)

corresponding to the next grid position (w.r.t. the fixed [ntppi]—a V (wall — &P (wall)) (12)
ordering) and to the previous grid position using R

O (=wall) (13)

Ot(p) = (tpp)(aA=bA(tpp)(a ADA ) —wall = OFT (14)

O (p) = (tppi)(a A —b A (tppi)(a AbA @)).
) ) ] ) 5. finally, we enforce the tiling:
3. we need a way to “go right” in the grid. To this end, we
introduce additional regions satisfyingas displayed (D A Do 15
in Figure 6. For example, Grid cell 2 in the figure is /\ (pe A per) (19)

right of Grid cell 1, and Grid cell 4 is right of Grid et .
cell 2. \/ pe N O py (16)
(t,t"YeH
Ab— (t 6
a < pp>C ( ) \/ D A <>Upt’ (17)

c— (tpp)(aAb) (7) (tt)eV
¢ — [dc]=e A [ec]=e A [po]—e A [tpp]—c A [tppi]—c  (8)
The main strength of our reduction is that it requires only

We can go to the right and upper element with very limited prerequisites. Indeed, we will show that datis

OB(p) = (tpp)(cA (tpp)(a AbA p)) ability of ¢ in anyregion model implies thab has a solu-
OU(p) = OR(OT(y)). tion. Thus, to prove undecidability of some lodigccs(S),
it suffices to show thapp is satisfiable inS if D has a so-
Similarly, we can go to the left and down: lution. This can be done for each region sp&ER",U)
with R, € U andn > 0:
Of(p) = (tppi)(c A (tppi)(a AbA ) _
oP(p) = OO~ (). Lemma 5. LetD be a domino system. Then:

(i) if the formulapp is satisfiable in a region model, then

Considering Formulas (6) to (8), it can be checked the domino syster® has a solution;

that going to the right is a monotone and injective total

function (see Appendix C). (ii) if the domino syster® has a solution, then the formula

ep is satisfiable in a region model based $R™, U), for
4. axiomatize the behavior of tiles on the floor and on the eachn > 0 and eachl/ with R%., C U.
wall to enforce that our “going to the right” relation



Obviously, Theorem 3 is an immediate consequence of this(there is only one for which we can ensure a proper “going
lemma. A proof can be found in Appendix C, where in- to the right relation”) has infinitely many occurrenceg@f
deed a more general variant of Lemma 5 is proved since the It is thus obvious that we have to prevent stacked order-

restriction in Point 2 is weakened. ings. This is done by enforcing that there is only one “limit
region”, i.e. only one region approached by an infinite se-

6 Axiomatizability guence ofi-regions in the limit. We add the following for-
mula topp:

In this section, we show that many of the introduced log- O, ([tppi](po)a — (—a A [tpp]—a A [ntpp]-a))  (19)
ics arell}-hard, thushighly undecidable and not even re-
cursively enumerable. We start with some easy “positive
results and then prove a general “negative” result. First,
we remind the reader of the following consequence of the _
translation ofCrccs iNto FORecs: property:

Definition 8 (Closed under infinite unions). Suppose that
R = (W, dc™ e, .. .) is aregion space. ThéA is called
closed under infinite unions R = R(T,Ux) is a re-
gion space induced by a topological spacend, addition-

Recall thatRS was defined by first-order axioms. Hence, ally, R satisfies the following property: for any sequence
Lrccs(RS) and anyLrecs(S) with S a first-order defin-  71,72,... € W such that; ntpp 2 ntpp 73 ---, we have
able subclass of are recursively enumerable. Actually, CIL(Uic, 7)) € W. %

using general results on modal logics with narfed and e can now formulate the first part of correctness for the
the fact thafR.S is axiomatized by universal first-order sen-  extended reduction. The proofs of this and the following
tences, it is not difficult to provide a finitary axiomatiza- |emma can be found in Appendix D.

tion of Lrccg(RS) using non-standard rules. By Theo-

_ R R ;
rem 2, we obtain axiomatizations f6g ., (TOP) andey- ~ Lemma 9. LetR(%,Ug) = (W,dc™, ec™, ....) be aregion
ery L3 ccs (R, R ), 1 > 0. space that is closed under infinite unions such that all re-

reg i . .
We now establish a non-axiomatizability result that ap- 910NS in Uz are regular closed. Then the formula, is
satisfiable in a region model based $only if the domino

plies to many logicdrccs(S) whose class of region spaces . : it A
S is induced by a class of topological spaces: systenD has a solution withty occurring infinitely often on
' the wall.

» Let ¢, be the resulting extension ¢fp. The classes of re-
gion spaces to which the extended reduction applies is more
restricted than for the original one. We adopt the following

Proposition 6. If a classS of region structures is character-
ized by a finite set of axioms frofiOrccs, thenLgrccs(S)
is recursively axiomatizable.

Theorem 7. The following logics are IIi-hard:
Lrecs(TOP) and  Lgrecg(R™,U,)  with U, €
{]R'?ega ]R'(T:lonva ]R':gct} andn Z L.

For the second part of correctness, we again consider re-
gion spaceSR(R", U) with R, C U. Note that we can

rect
not generalize this to a larger class of topological spaces in

To prove this result, the domino problem of Definition 4 the same way as in the proof of Point 2 of Lemma 5 (Ap-
is modified by requiring that, in solutions, a distinguished pendix C).
tile o € T occurs infinitely often in the first column of | arnma 10. If the domino syster® has a solution with
the grid. It has been shown [‘20] that this variant of the 4 occurring infinitely often on the wall, then the formula
d_o.mmo.prqblem isSl-hard. Since we reducg itto satisfia- o, is satisfiable in a region model based ®{RR", U7), for
bility, this yields all}-hardness bound for validity. eachn > 1 and each/ withR™.. C U C R™

rect reg*
As a first step toward reducing this stronger variant of the . n TN " N
domino problem, we extengp with the following con- Note that the region space8(R", Ryec), R(R", ey, )

rect conv

andR(IR", R..,) are closed under infinite unions. Since

junct: o ) Frect) A1 _ _ |
Rt € Regny € Ry, Lemmas 9 and 10 immediately yield
O ((ntpp)(a AbAwall A py,) Theo.rem ! . : .
“ ° It is worth noting that there are a number of interesting
A [ntpp] ((a A DA wall Apyy) — (18)  region spaces to which this proof method does not apply.
(ntpp)(a A b A wall /\pto))) Interesting examples are the region space based on sim-

ply connected regions ifk? [33] and the space of poly-
However, this is not yet sufficient: in models of>, we gons inlR? [28]. Since these spaces are not closed under
can have not only one discrete orderingaof\ b regions, infinite unions, the above proof does not show the non-
but rather many “stacked” such orderings (c.f. Point 5 of axiomatizability of the induced logics. We conjecture, how
Claim 1 in the proof of Lemma 17). Due to this effect, ever, that slight modifications of the proof introduced here
the above formula does not enforce that the main orderingcan be used to prove thdiii -hardness as well.



7 Finite Region Spaces

We now consider logics of classes of finite region spaces.

In this case, we can establish a quite general undecidabilit
result. Moreover, undecidability of such a logic implieatth

it is not recursively enumerable if it is based on a class of
region structureSs,(S) with S first-order definable.

Theorem 11. If Sg,(R(R™, R%,)) C S C Siin(RS) for
somen > 1, thenLgrccg(S) is undecidable.

Thus, the following logics are undecidable for each
n > 1 Lftg(RS), Litey(TOP), Ligcg(R", Risy),
Litcs(R", Ry, ), and Lt g (R, Ryco)-

rect

To prove this result, we reduce yet another variant of the

domino problem. Fok € N, the k-triangle is the set
{(i,§) | i +j < k} C N2. The task of the new domino
problem is, given a domino systeth = (T, H, V), to de-
termine whetheD tiles an arbitraryk-triangle,k € N, such
that the positior{0, 0) is occupied with a distinguished tile
sg € T, and some position is occupied with a distinguished
tile fo € T'. Itis shown in Appendix E that the existence of
such a tiling is undecidable.

The reduction formulap is defined as

a A'b A wall Afloor A sg A [ntppi]—a A O, x
A(fo V (ntpp)(a A b A fo)),

wherey is the conjunction of the Formulas (1), (3) to (5),
and (7) to (17) of Section 5, and the following formulas:

e The first tile that has no tile to the right is on the floor:

(a ADA=ORT Antppi]((a A D) — OFT)) — floor (20)

e If a tile has no tile to the right, then the next tile (if
existent) also has no tile to the right:

(aADA=ORT) = (mOTT Vv OT-0fT)  (21)

e The last tile is on the wall and we have no stacked or-
derings:

(aAbA=OTT) — (wall A [ntpp]=(a A D)) (22)
The proof of the following lemma is now a variation of the
proof of Lemma 5. Details are left to the reader.

Lemma 12. LetD be a domino system. Then:

(i) if the formulapp is satisfiable in a finite region model,
thenD tiles ak-triangle as required;

(i) if D tiles a k-triangle, thenyp is satisfiable in a re-
gion model based on a structure frd®g, (R(R"™, R].,)).
foreachn > 1.

[of dr | po [ pp | ppi |
dr * dr,po,pp| dr,po,pp dr
po || dr,po,ppi, * po,pp dr,po,ppi
PP dr dr,po,pp PP *
ppi || dr,po,ppi,| po,pp |eq,po,pp,ppi|  Pppi

Figure 7. The RCC5 composition table.

Obviously, Theorem 11 is an immediate consequence of
Lemma 12. Sinc&kS is first-order definable, we can enu-
merate all finite region models. Thus, Theorems 11 and
Theorem 2 give us the following:

Corollary 13. The following logics are not r.e., for each
n > 1: Lo (RS), Lt (TOP), Lfr'er%:cs(IRn’R?eg)-

8 TheRCC5 set of Relations

For several applications, trRCC8 relations are weak-
ened into a set of only 5 relations callBE€C5 (or medium
resolution topological relationg)L8; 9. This is done by
keeping the relatiorq andpo but coarsening (1) thepp
andntpp relations into a new “proper-part of” relatiqip;
(2) the tppi and ntppi relations into a new “has proper-
part” relation ppi; and (3) thedc and ec relations into a
new disjointness relatiodr. The modal languag€rccs
for reasoning abouRCC8-style region structure$t =
(W,ec™, ...} thus extends propositional logic with the op-
erators[r], wherer ranges over the fiv&CC5-relations.
They are interpreted by the relatioag”, po”, and

o drt = dcM Uec®;
e pp” = tpp™ Unttp™;
° ppim = tppim U nttpim.

Given a classS of region structures, we denote by
Lrcces(S) the set ofCrecs-formulas which are valid in all
members ofS. The setsl3.5(S) and LEL . (S) are de-
fined analogously to thRCC8 case.

A number of results from our investigation @frccs
have obvious analogues fkccs: First, we can character-
ize the logicsSLyccs(7TOP) and L% (T OP) by means
of a composition table: denote BRS® the class of all
structuresR = (W, dr™, eq®, pp®, ppi™, po™), where
is non-empty and the” are mutually exclusive and jointly
exhaustive binary relations div such that (1)q is inter-
preted as the identity relation 6#i, (2) po anddr are sym-
metric, (3)pp is the inverse oppi and (4) the rules of the
RCC5-composition table (Figure 7) are valid. Second, it is



possible to prove an analogue of Theorem 2, i.e. that, for a1 — a2, Gy — DAz, Ay —> a3, (24)
n > 1, we have

| | | N Ouai (25)

(i) LRt cs(RS®) = Ligges(TOP) = Lig s (R™, Ryz,p) i=1,2,3

i 5y _ 1S _ 7S n n

(1) Lrees(RS7) = Liccs(TOP) = Lices (R”, Reg)- 2. the setV; x W, x W3 is simulated by a fresh variable
Third, on region modelsCrccs has the same expressive d, so we add
power as the two-variable fragmentBL 3¢, i.e. the first- ) ) )
order language with the five binaRCC5-relation symbols d e ( /\ {ppi)ai) A =(ppi)( /\ (ppi)a;)  (26)

i=1,2,3 i=1,2,3

and infinitely many unary predicates.

. We now investigate the computational properties of log- 3. the setdV; x ;, 1 < i < j < 3 are simulated by
ics based orCrccs. Analogously to theRCC8 case, the fresh variableg. so we add

most natural logics are undecidable. Still, ®REC5 un- "
decidability result is less powerful than the one RC8. . . .

More preci);ely, we have t(?restrict ourselves to regiorcstru dij < ( /\ ,<pp'>ak) A= (ppi)( /\ _<pp'>ak)' (27)
tures with certain properties: denote By~ the class of all k= h=hd
region structure®t = (W,ec™, . ..) such that, for any set
S C W of cardinality two or three, there exists a unique
regionSup(S) such that

Now, we definep? inductively by

.
b; = Di
e seq Sup(S)ors pp Sup(S) for eachs € S; (mp)f = d At
, : (PAY)F = QP AQE
f n € W with tfi hs € S, .

" haveSup(S) sa torsu(®) pp s (0160 = (ppid(das A (pP)(d A 7))
’ (C20)F = (ppi)(diz A (pp)(d A %))
o for every regiont € W with ¢ dr s for eachs € S, we (O%p)* = (ppi)(diz A (pp)(d A ¢*))

havet dr Sup(S).
up(S) The following Lemma immediately yields Theorem 14 and

It is easy to verify thaT OP C RS? andR(R", Rgg) € is proved in Appendix F.
RS for eachn > 0.

Lemma 15. Supposék(R", R12,) € S C RS?, for some

Theorem 14. Suppos&(R", Ryt,) € S CRS™ forsome ;5 | Then anS5°-formula ¢ is satisfiable in ar65°-
n > 1. ThenLrecs(S) is undecidable. Thus, the following  model iff, y A d A ¢t is satisfiable inS.

logics are undecidable, for eagh> 1: Lrccs(7OP) and

Lrees(R™, Rygg)-

The proof is by reduction of the satisfiability problem for 9 Conclusion

the undecidable modal loggs® (see[24] for the original

proof in an algebraic setting. We use the modal notation of ~ We first compare our results with Halpern and Shoham'’s
[14]). Due to space limitations, we refer the readdn or on interval temporal logif19]: Theorems 3, 7, and 11 apply

to Appendix F for a formal definition d§5°, and just recall  to logics induced by the region spa®R, Rcony), Which

here that the domain 85 is a productV; x W, x W3, and is clearly an interval structure. Interestingly, on thiteival

that there are three modal operators for referring to tsiple Structure our results are stronger than those of Halpern and
that are identical to the current one, but for one component.Shoham in two respects: first, we only need R{&C8 rela-

With every S5°-formula ¢, we associate alrccs- tions, which can be viewed as a “coarsening” of the Allen
formula interval relations used by Halpern and Shoham. Second
Oux AdA (%) and more interestingly, by Theorem 3 we have also proved

undecidability of thesubstructure Iogichccs(IR, Reonv),
which is a natural but much weaker variant of the full (in-
terval temporal) logiclrccs (IR, Reonv), @nd not captured
by Halpern and Shoham’s undecidability proof.

such thatp is S5°-satisfiable iffd, y AdA ¢t is satisfiable in
a model fromS. In (x), x is the conjunction of the following
formulas:

1. Each setdV; of S5°-models is simulated by the set
{r e W |9, r = a;}. Thus, we introduce fresh vari-
ablesa;, 7 = 1,2, 3, and state

Several open questions for future research remain. Sim-
ilar to the temporal case, the main challenge is to exhibit
a decidable and still useful variant of the logics proposed
a; — /\ (Ippl-a; A [ppi]-a; A [po]—a;) (23) in this paper. _Perha_ps_the most interesting candlda_te is

j=1,2,3 Lrccs(RS), which coincides with the substructure logics



Lices(TOP) and L3ccs (R™, Rfz, ), and to which the re-  [18]
duction exhibited in Section 8 does not apply. Other can-
didates could be obtained by modifying the set of relations,
e.g. giving up some of them. It has for example been argued
that droppingoo still results in a useful formalism for geo- [19]
graphic applications. Finally, it as an open problem whethe [20]
Lrces(TOP) and Lrees(R™, Rye,) are recursively enu-
merable. Although we believe that they are r.e. (in contrast

to theirRCC8 counterparts), a proof is yet lacking. [21]
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A Expressive Completeness e pf = Tif p, = tpp(y,z) andr = tppi or p; =
ntpp(y, ) andr = ntppi;

The proof of the following theorem is an adaption of
the proof in[13], and a minor variant of the proof 23]
that is provided here for convenience. Throughout this sec- e pf = 1 otherwise.
tion, we us€F Ogccs to denote the two-variable fragment
of FOgccg @and assume that its two variables are calted

andy. V(wh...,we)e{T,L}e(/\19’95(%’ < w;) A
Theorem 16. For every FOgecg-formula ¢(z) with free V.erces (r(z,y)A

variablez that uses only two variables, one can effectively
construct alrccg-formulag* of length at most exponential

e pi =TIif p;isz =y andr = eq;

Using this notiation, our last formula is equivalent to

’Y(pi"'"pf’"/l‘Ul?"'7wl7€17"'7€s)))'

in the length ofp(x) such that, for every region mod®k  Now compute, recursively,”= and¢), and definep(z)”
and any regiors, M, s |= ¢* iff M | ¢*[s]. as
Proof. A formula¢ is called aunary atonif it is of the form Viwn,wnyeqT,ye (Ni<ice (V7 € wi)A

Ri(z,z), Ri(y,y), Ai(z), or A;(y). A 2FORgecg-formula ¢ " oy oy
p(z,y) is called abinary atomif it is an atomcgi‘ the form Veereea(MV(Phs s oy 015 s, 65 &)
r(z,y), r(y,z), orz =y. O
Let p(z) € 2FORccs- We assumep(x) is built using
3, A, and— only. We inductively define two mapping%
and-7» where the former one takes eaROg¢-formula
(z) to the correspondingrccs-formulag?=, and the lat-

Now for the succinctness &fF Og¢cs. In [13], Etessami,
Vardi, and Wilke show that, on infinite words, the two-
variable fragment of first-order logic with binary prediest
ter does the same fAFO-.-formulas(y). We only successor and<” as We_II as an |nf|n_|te number of unary
. ; . . : predicates (calle@F O;y¢ in the following) have the same
give the details of?» since-?v is defined analogously by . . . -
- ) expressive power as temporal logic. Here, “temporal logic
switching the roles of: andy.: : : p oo : "
refers to the variant with operators “next”, “previously”,
—If p(z) = pi(z), then put(p(z))7= = p;. “sometime in the future”, and “sometime in the past”, but
without “until” and “since”. Etessami et al. also show that
the sequence dfp,,),>1 Of first-order sentences with two
variables defined by

on = Y2Vy( )\ (0i(x) & i) = (Pa(@) © Pa(®)))

—If p(z) = r(z, z), then put{p(z))’= = T if r = eq, and
(p(z))?= = L otherwise.

—If p(z) = x1 A x2, then put(p(z))7* = x7* A x3°.

—If p(x) = =y, then put(p(z))7> = =(x)7=. i<n

—If p(z) = Jyx(z,y), thenx(z, y) can be written as is such that the shortest temporal logic formulas equitalen
_ to ¢, have size2(™  Intuitively, this formula states that

X(l‘, y) - fy[pl, e Pry M1 (x), tee 771(1.)7 gl (y), s ,gs(y)], any two pOintS agreeing oMy, . ..y Proi also agree op,,.

i.e. as a Boolean combinationof p;, ~i(z), and&; (y); the Since the above formula does not involve the successor and

p: are binary atoms; the;(z) are unary atoms or of the “<” relations, it is not hard to prove that this result carries
form Jy~/; and the¢;(y) are unary atoms or of the form ©OVer to our case: theFOgccg-formulas(en),>1 above
Jx¢!. We may assume thatoccurs free inp(z). Our first ~ ar€ such tg?t)the shorteSkccs formulas equivalent te,
step is to move all formulas without a free variapleut of ~ Nave size=™.

the scope of: obviously,y(z) is equivalent to

\/ ( /\ (i & wi) A
(Wi, we)€{T, L} 1<i<e Theo_rem 2.Forn > 0: _
Hy’Y(pla sy Py, W, -, W fla ) fs)) (I) L?EnCCS(RS) = L?EnCCS(TOP) = LQECS (IR‘na :[R‘rég)

(i) Lrcca(RS) = Liccs (TOP) = Lices(R™, REy).

Proof. (i) follows from [6; 30, where it is proved that
Siin(RS) = Siin (TOP) = Sﬁn(%(Rn,RFeg)).

We now prove (ii) with the help of (i) and the proof of
o pi=TIf p; =r(z,y); 14] Theorem 16.22. Obviously,

C=Tif [14] Th 6.22. Obviousl

o ptl=TIif pi=r(y,z) forr € {dc,ec, po}; RS 2 S(TOP) 2 S(R(R", Rgg))

B Logics

Now we “guess” a relatiom that holds betweenr andy,
and then replace all binary atoms by either true or false. For
r a topological relation antl < i < r, let



Hence, by ‘Lowenheim-Skolem’ it is sufficient to show that
every countable region spage= (W, dc™,...) is isomor-
phic to some substructure 8f(R", Ry,,). However, it is
proved in[14] Theorem 16.22 that every at most countable
setT" of RCC8-constraints of the fornz r y), r anRCC8
relation, is satisfiable ilR(R", Ry,,) provided that every
finite subset of" is satisfiable ir5(7OP). Now our claim

follows immediately with the help of (i). O

We now provide formulas which prove the inequalities of
Figure 3 which were not yet considered. SifieC8 con-
straints can be expresseddiccg, wWe can use constraints
(x r y), wherer is anRCC8-relation andr, y are individual
variables for regions.

o Lt g(R", Ru&') € Lits(R™,Ryy), for all
n > 0: let, for a set ofn distinct individual variables
T1y---,Tp,

ecn] = {(z;ecz;) |1 <i<j<n}

Then ec[2"] is satisfiable in ®R(R™, R%.,), but
ec[2" + 1] is not satisfiable iM(IR", R}, ).
o Litcs(R™Ri) € Liece(R™,RE,,), for all

m,n > 2: this follows from the observation that all
ec[n], n < w, are satifisable IR(R"”, R, ), n > 2.

o Lt o(R",R2,) Z Liv . (RS), foralln > 0. Iden-
tical to previous case.

¢ LfFiQrEZCS(]R'BaR?onv) g LfFi%%CS(IR27R(2:onv): take vari-
ablesz;;, 1 <i < j < 4. Then the union oéc[4],

{(zipp wij), (zj ppwij) | 1 < i < j < 4}
and
{(wijecar) [1<i<j<4,ke{1,2,3,4}-{i,j}}
is satisfiable imR(R?, RZ,,,) but notinR(R?, RZ,,)-

° LRCCS(Rn,Rgg) Z LRccs(TOP), foralln > 0:

(ppi) T is valid inR(R", Ry,), but notinTOP.

C Undecidability of RCC8 logics

To ease notation, throughout the appendix we denote ac

cessibility relations in models simply witdic, ec, etc., in-
stead of withdc™, ec™, etc.

Proof. Letd = (R, pi™, pT", .. .) be a region model app

with R = (W, dc, ec, .. .).

Claim 1. There exists a sequencg s, - - - € W such that
1. M, r = ep,
2. r1 ntpp ro ntpp r3 ntpp - - -,
3. M,r; Eanbfori>1.

4. foreachi > 1, there exists a regiosy € W such that

(@) r; tpp 4,
(b) M, s; = a A b,
(C) si tpp rit1,

(d) for each regiom with r; tpp s anddt, s = a A
-b, we haves = s;, and

(e) for each region with s; tpp r anddt,r = aAb,
we haver =r;, 1,

5. forallr € W with 9, 7 = a A b, we have that = r;
for somei > 1 orr; ntpp r forall i > 1.

Proof: Points 1 to 4 of this claim can be proved using a
simple induction. We only do the induction start since the
induction step is identical. Sinégt is a model ofpp, there

is a regionr; such thatit,r, |= ¢p. By definition of pp,
Point 3 is satisfied. Due to Formulas (2) and (3), there are
regionss; andr, such thatr; tpp s1, MM, s1 |= a A —b,

s1 tpp 2, andd, ro = a A b. We show that all necessary
Properties are satisfied:

e Point 2. Sincer; tpp s; ands; tpp r», we have
r1 tpp ro OF 7y ntpp ro according to the composi-
tion table. But then, the first possibility is ruled out by
Formula (5).

e Point 4d. Suppose there is aB£ s, with ry tpp s and
M, s | a A —-b. Sincer; tpp s1, s1 ands are related
via one ofpo, tpp, andtppi by the composition table.
But then, the first option is ruled out by Formula (1)
and the last two by Formula (4).

e Point 4e. Analogous to the previous case.

This finishes the induction, and it thus remains to prove
Point 5. Assume that there is a regiosuch thath,r =
aAb,r #r;foralli > 1, andr; ntpp r does not hold for

The purpose of this section is to prove Lemma 5. Indeed, gomer: > 1. Sincery, ntpp r does not hold ane, # r, i

we prove the two stated Points as independentlemmas and, g, are related by one afc, ec, po, tpp

tppi, andntppi.

as announced in Section 5, even establish a stronger varianfpe first three possibilities are ruled out by Formula (13 an

of the second Point.

Lemma 17. If the formulayp is satisfiable in a region
model, then the domino systdprhas a solution.

tpp andtppi are ruled out by Formula (5). It thus remains to
treat the casey, ntppi . Consider the relationship between
r; andr. Sincer; # r and due to Formulas (1) and (5),
there are only two possibilities for this relation;



e 7 ntpp . Impossible bypp’s subformulgntppi]—a. Proof: First for Point 1. Supposg — r; andi = j. Then
u; = r; and, by Claim 2y; tpp t; tpp r;, which is clearly
e 7 ntpp r1. Then we have; ntpp 7 ntpp r,. Take the  impossible: the composition table then yields thais re-
maximali such that; ntpp r and the minimajj such  |ated to itself viatpp or ntpp, in contrast to the fact that
thatr; ntpp r. Sincer # r, foralln > 1, we have  r; eq r;, and the relations are mutually disjoint. Now sup-

j = i+ 1. By Point 4, there thus is a regionwith poser; — r; andi > j. Thenu; = r; and Claim 2 yields
ri ntpp s, M, s [= a A —b, ands ntpp r;. Clearly, we  r; tpp ¢; tpp r;. Sincei > j, Claim 1 gives us;; ntpp r;:
haves po r which is a contradiction to Formula (1). a contradiction.

) ) ) ) Now for Point 2. Assume; — r, r; — ¢, andk = £.
Claim 2. For each > 1, there exist regions andu; such This means thati; = u; = r,. By Claim 2, we have
i — Wy = . ’

that s; tpp u; ands; tpp w;. Thus,s; = s; ors; ands; are
related by one opo, tpp, andtppi. The last three possibil-

L. tpp ti, ities are ruled out by Formula (8). Thus we get= s;.
2. Mt =, This, however, is a contradiction to the facts that j, and,
by Claims 1 and 2;; ntpp r;, r; tpp s;, andr; tpp s;.
3. for each regiom with r; tpp ¢ and9, ¢ |= ¢, we have Now assume; — ry, r; — 7, andk > £. By Claim 1,
t=t;, we haver; ntpp r;. By Claim 2, we have; tpp ¢; and
r; tpp t;. Itis easily verified that; andt; are thus related
4. t; tpp u;, by one ofec, po, tpp, andntpp. All possibilities butntpp
are ruled out by Formula (8), and hengentpp t;. We
5. M,u; EaANb, now make another derivation for the relationship between

) _ t; andt;, and, in this way, obtain a contradiction. Since
6. for each regiom with ¢ tpp v and9t,r = a A b, we ri — ri, andr; — 7y, we haveu; = rj, andu; = r4. By
haveu = u;. Claim 2, we thus get; tpp rj, andt; tpp r,. By Claim 1
and sincek > ¢, we haver, ntpp r,. Thus, we obtain that
t; andt; are related by one oftppi, tppi, andpo. This is
a contradiction to the previously derived ntpp t;, thus
finishing the proof of Claim 3.

Proof: Leti > 1. By Formula (6), there is & with r; tpp #;
andi, t; = c. Let us show that; satisfies Property 3. To
this end, let # ¢; such that; tpp t and9t, ¢ = ¢. Thent
andt; are related via one qfo, tpp, andtppi. But then, all
these options are ruled out by Formula (8). The following lemma establishes the core part of the proof:
Now for Points 4 to 6. By Formula (7), there is asuch the fact that the =" relation “coincides” with the %"

thatt; tpp r and9,r = a A b. Point 6 can now be be relation. More precisely, this follows from Point 3 of the
proved analogously to Point 3, using Formulas (1) and (4) following claim. For technical reasons, we simultaneously

instead of Formula (8). This finishes the proof of Claim 2. prove some other, technical properties. The remainder

Before proceeding, let us introduce some notation. closely follows the lines of Marx and Reynol{2s].

Claim 4. Leti > 1 andi = j. Then the following holds:

e fori,j > 0, we writei = j if the tile position\(5)
can be reached fro(i) by going one step to the right.
Similarly, we define a relationq} j for going one step

up;

=

. if A(j) is on the floor, the@, r; = floor;
M, r; [~ wall;

e fori,j > 0we writer; — r; if u; = r;. Similarly, we

2.
3. ri— T andri T Tjt1-
write r; T T if Ty = Tj—1. 4.

if A\(j + 1) is on the wall, the®n, ;1 = wall

Clearly, the “>” and “1” relations are partial functions by ~ Proof: All subclaims are proved simultaneously by induc-

Claims 1 and 2. The following claim establishes some othertion oni. First for the induction start. Then we have- 1

important properties of": first, it may only move ahead —andj = 2.

:2 :r:fnzetgzgr;?(jhigféc-:t'i\-/’e.bu't never back. And second, it 1. Clearly, A(2) is on the floor. Sincelt,r,; @D,
we havedt,r; = wall. Thus Formula (10) yields

Claim 3. Leti,j > 1. Then the following holds: M, o = floor.

1. if r; = rj, theni < j; 2. We havel = 2. Point 1 gives usht, r, = floor. Since
r1 ntpp 72, we also havélt, ro [~ [ntppi]—a. Thus,
2. ifi < j,r; = r, andr; — g, thenk < 2. Formula (9) yield9t, ro [~ wall.



3. By Point 2, we havélt, r, [~ wall. By Formula (14),
there are regions, s € W such thatht,r = a A b,
r tpp s, M,s = ¢, ands tpp r». By Point 5 of
Claim 1, we have either = r; for somei > 1 or
r; ntpp r for all ¢ > 1. In the first case, we have
r; — ro. Claim 3.1 yieldsi = 1 and we are done. In
the second case, we hawe ntpp r: contradiction to
r tpp s ands tpp 7.

e i < k. We first show that; — r, for some
¢ > i. By Claim 2, there are regiortsandr with
ritpp t, M, t |= ¢, t tpp r, andM, u; = a A D.
By Point 5 of Claim 1, we have either= r, for
somel > 1 orr, ntpp r foralln > 1. In the
first case, Claim 3.1 yieldé > i. Now for the
second case. Sineg — r;, thereisa’ ¢ W
with 7, tpp ¢/, 90, ¢ |= aAb, andt’ tpp r;. Since
i < j, we haver; ntpp r;. To sum up:

4. Since A(3) is on the wall, we have to show that

— ! .
M, rs E wall. By Point 3, we have; 1 r3. Thus, £ tep 7,
Formula (11) yields the desired result. — Tjntpp 7,
— 1 ntpp 1y,
Now for the induction step. — ritpp t,
— ttppr.

1. Suppose thaX(y) is on the floor. Since obviously >
1, A(j —1) is on the wall. Sinceé > 1, there is & with
i—1 = k. Itis readily checked that — 1 = k + 1.
Thus, IH (Point 4) yield$ht, r;_; |= wall and we can
use Formula (10) to conclude th@t,r; = floor as
required.

Itis straightforward to verify that this implies that
t' andt are related by one afc, po, andec. This

is a contradiction sinc@, ¢ |= ¢, M, ¢’ | ¢, and
by Formula (8).

Thusr; — r, for somel > i. We make a case

distinction as follows:
2. First assume thaX(j) is on the floor. Sincg > 1,

we havedlt,r; F~ [ntppi]—a. Thus, Point 1 and For-
mula (9) yieldd, r; ~ wall as required.

— ¢ < j. There are two subcases: the tile posi-
tion A\(¢) may or may not be on the wall.
First assume that it is not. Then there is an
h < £ with h = ¢. By definition of the ‘="
function,i = j, h = ¢, and/ < j this
impliesh < i. Thus we can use IH (Point 3)
to concluder;, — r¢, a contradiction to the
injectivity of “—" (Claim 3.2) and the facts
thatr; — r, andh < i.

Now assume thatis on the wall. Sincé <

i < {, there is ah such thath T £ andh —
¢ — 1. Thus, IH (Point 4) yield9n,/ =
Wall. But then,r; — r, and Formula (13)
yield a contradiction.

— ¢ =j. Thenr; — r; andr;, — r;, which
is a contradiction to the injectivity of-"
(Claim 3.2) since # k.

— ¢ > j. Contradiction to Claim 3.2.

Now assume that(j) is not on the floor. Suppose, to
the contrary of what is to be shown, tait, r; |= wall.
Sincej > 1, we havedt,r; # [ntppi]—a. Thus, by
Formula (12) we obtaitt,r; = <Pwall. Sincej is
not on the floor; = j impliesi — 1 = j — 1. Thus,
the IH (Point 3) yields~;_; 1 r;. Hence, we can use
Mm,r; = OPwall to derived, r;—; |= wall. By IH
(Point 2), we cannot have = i — 1 for anym. Thus,
A(i—1) is on the wall implying thaA(7) is on the floor.
We have established a contradiction since, with 7,
this yields thatj is on the floor.

3. We first show; — r;. By Point 2, we havél, r; (=
wall. Let us show that we haveg, — r; for some
k < j. By Formula (14), there are regionss € W
such thathit,r = a A b, r tpp s, M,s = ¢, and

s tpp rj. By Point 5 of Claim 1, we have either= r;,
for somek > 1 orr, ntpp r foralln > 1. In the
first case, Claim 3.1 yields < j and we are done. In
the second case, we hawve ntpp r: contradiction to
T tpp s ands tpp r;.

Next, we show thakt = i. To this end, assume that
k # i. We distinguish two cases:

e k < i.Let/ be suchthak = ¢. By IH (Point 3),
we haver, — ry. Due to functionality of ="
(Claim 2) and since, — r;, we havel = j.
Due to the injectivity of =", we getk = i,
which is a contradiction.

This finishes the proof of Claim 4. By definition o&”,
“f", “ =", and “1”, Point 3 of this claim yields the follow-

The second part of Point 3, i.e; T r;41, IS now an
immediate consequence of the fact that> r;.

. Suppose that(j + 1) is on the wall. Ther\(7) is also

on the wall. Since additionally> 1, there is & such
thatk 1} i andk = i — 1. By IH (Point 4), the latter
yields91, r; = wall. Since Point 3 yields; 1 rj41,
Formula (11) yield9, ;11 = wall.

i = jimpliesr; = r; and i { jimpliesr; T7;. (%)



Using this property, we can finally define the solution of Now define a region modéit based ok by interpreting
D: setr(i,j) to the uniquet € T such thatht, r,, = p:, the propositional letters as follows:

where A, = (i,7). This is well-defined due to Formu-
las (15) and (16). Thus, it remains to check the matching
conditions: B = {r; |i> 1)

o a™ = {r;,s;|i>1};

o Let (i,j) € N2, )\, = (i,7), and)\,, = (i + 1,7).
Thenn = m. By (x), this yieldsr,, — r,,. By For-
mula (16), there aré, t') € H such thatt,r, = p;
andd, r,, | pv. Since this implies(i,j) = t and - .
7(i + 1,7) = ¢/, the horizontal matching condition is e floor™ = {r; | A(i) is on the flook;

satisfied. pim = {’I“i | T()\(Z)) = t}.

e The vertical matching condition can be verified analo- It is now easy to verify that is satisfied by every region of

gously using Formula (17). 9, and thabl, 7, = ¢p U
D ’ 9 -

M ={t;|i>1}

wall™ = {r; | \(i) is on the wal};

For establishing the second point of Lemma 5, it obviously

Now for the second Point of Lemma 5. We start with remains to show that the region spacdgR”, U/), with
identifying a property of region spaces ensuring that,éf th £n "= 17 are domino ready e

domino systen® is satisfiable, thepy is satisfiable in all rect
region spaces having this property. Thus, our proof will Lemma 20. If the domino syster® has a solution, then

not be restricted to the topological spa®@gR™,U) with the formulayp is satisfiable in a region model based on
Rl € U. R(R",U), for eachn > 0 andU with R%%,, C U.
Definition 18 (Domino ready). Let R = Proof. By Lemma 19, it suffices to show that each topo-

(W,dc™,ec™,...) be a region space. Thehr is called logical spaceér(R",U) with n > 0 andRy,., C U is
domino readyif it satisfies the following property: the set domino ready. We start with = 1. Thus, we must exhibit

W contains sequences, s, ... andyi, s, ... such that, the existence of two sequences of convex, closed intervals
fori,j > 1, we have Z1,T2,... andyr,ya, ... satisfying Properties 1 to 5 from

Definition 18: fori > 1, set
1. z; tpp Tit1;

o ;= [—j,jlifi =25 —1;
2. xyntppxjif j >i+1; =511 g
o x; = [—j,j—1]if i = 2j;
3. T2i-1 tpp Yi;
_ _ N e y; := [—i,7] if A(§) is the grid position reached from
4. y; tpp x2;_1 iff the grid positionA(j) can be reached (i) by going a single step to the right.

from A(i) by going one step to the rightagg—1 < k;
_ It is readily checked that these sequences of intervals are
5. yintpp y; if j > 0. as required. To find sequences for> 1, just use thea-
< dimensional products of these intervals. O

_ Note that we can also prove this lemma if we use only
Lemma 19. LetR = (W, dc,ec,...) bearegionspacethat o ndedectangles oR” as regions: the construction from
is domino ready. If the domino systénhas a solution, then | eyma 20 can be easily modified such that the sequence of
the formulapp, is satisfiable in a region model based®n , \ ,_rectangles converges against a finite rectangle, rather

Proof. Let R be a region space satisfying the condition than againsR".

from the lemmaD = (T, H,V) a domino system, anda

solution of D. We introduce new names for regions listed D II}-hardness ofRCC8-logics

in the condition of Lemma 19 that are closer to the names

used in the proof of Lemma 17: Lemma 9. Let R(%,Uz) = (W,dc,ec,...) be a region
space that is closed under infinite unions such that all re-
gions in Uz are regular closed. Then the formuld, is
satisfiable in a region model based #only if the domino
systenD has a solution withty occurring infinitely often on

® t;:=y;. the wall

e r; =19, 1 fOri >1,;

e 35; := xy; fOri > 1;



Proof. Let R(%,Us) = (W,dc,ec,...) be a region space
as in the lemmadn = (R, p™, pd*,...) a region model
based oM(%, Uz), andw € W such thatit, w = ¢,. We
may establish Claims 1 to 4 as in the proof of Lemma 17,
and we will use the same terminology in what follows. We
first strengthen Point 5 of Claim 1 as follows:

Claim 1'. There exists a sequencg r», - - - € W such that
1. M, r = ep,
2. 71 ntpp ro ntpp r3 ntpp - - -,
3. M, r; Eanbfori>1.

4. for eachi > 1, there exists a regio#y € W such that

(@) r; tpp s,
(b) M, s; | a A b,
(C) si tpp Tit1,

(d) for each regiors with r; tpp s anddt, s = a A
—-b, we haves = s;, and

(e) for each region with s; tpp r and, r = aAb,
we haver = r;yq,

5'. forall r € W with 9, r = a A b, we haver = r; for
some: > 1.

Proof of Point 5: sinceR(%, Ug) is closed under infinite
unions, we have = CI (|, i) € W. We first show that

(*)

To this end, suppogetppi ¢. Then we have the following:

t = [tppil(po)a

1. gq—r; #0foralli>0.

Sincet tppi ¢, there exists € ¢ such thatr ¢ 1(¢).
Supposer € r;, for somer;. Sincer; ntpp r;11, this
yieldsz € I(r;+1). Thereforer € I(t) and we have a
contradiction.

. There exists > 0 such that > n impliesr; — g # 0.

Suppose; C ¢, foralli > 0. Thens = {J,,, 7 C ¢.
Sinceq € Ug, we havey = Cl(¢). Thust = CI(s) C
¢, and we have a contradictiontappi q.

. There existsm > 0 such that:
I(rj) NT(q) # 0.
Sinceq = Cl(q), we havel(q) # 0. Take anyzr €
[(g). Sincet = CI(|J;c,, 7:) andt tppi g, this yields
z € U;e, ri- Thus there is g with = € r;. Then
x € I(rj41). Setm := j + 1. Sincer,, ntpp r; for all
i > m, we haver € I(q) NI(r;4q) foralli > m.

> m implies

Takek = max{n,m}. Using the above Points 1 to 3, it is
easily verified thay po 7, thus finishing the proof of«).

Now we can establish Point 5. By Point 5 of the original
Claim 1, for allr € W with 91, = a A b, we have that

r = r; forsomei > 1 orr; ntpp r forall¢ > 1. It
thus suffices to show that the latter alternative yields a con
tradiction. Thus assume ntpp r for all # > 1. Since

71 ntpp 72 ntpp - - andt = CI(|J,, i), itis not hard to
verify that this yields = ¢, ¢ tpp r, ort ntpp r. By (%), ¢
satisfiedtppi](po)a. By Formula (19)¢ thus also satisfies
—a A [tpp]—a A [ntpp]—a: contradiction sincét, r = a.

Finally, we can define a solution @ as in the proof of
Lemma 17. By Point 5’ of Claim 1’ and Formula (18), this
solution is such that the tilg occurs infinitely often on the
wall. O

Lemma 10. If the domino systerf® has a solution wittt,
occurring infinitely often on the wall, then the formuté,
is satisfiable in region models based®(R", U), for each
n > landU withR_, C U C R,

rect reg"

Proof. Let T be a solution of> with ¢, appearing infinitely
often on the wall. It was shown in the proof of Lemma 20
that the region spaces we are considering are domino ready.
Thus we can use to construct a modébt based on the re-
gion spaceér(R", U) exactly as in the proof of Lemma 19.
It suffices to show thaf)t satisfies, additionally, Formu-
las (18) and (19). This is easy for Formula (18) since
has been chosen such thglppears infinitely often. Thus,
let us concentrate on Formula (19).

Letry,rs, ... be the regions from the construction?df
in the proof of Lemma 19. If

t=CI(| Jr:) =R" e W,
IEw

thent satisfies-a A [tpp]—a A [ntpp]—a since, clearlyt is
not related viaq, tpp, andntpp to any of ther;. To show
that Formula (19) holds, it thus suffices to prove that, for al
s € W, 9, s |= [tppi]{po)a impliess = t.

Hence fix ans € W and assume that# t andd, s =
[tppi](po)a. We distinguish two cases:

e t ands are related by one afc, ec, po, tpp, andntpp.
Then we find a regiom such thats tppi = andt dc z.
Sincer; ntpp t for all i > 0, we thus have:; dc
z for all i« > 0. Since only ther; regions satisfy,
we obtaind, z = (po)a in contradiction tat, s |=
[tppi]{po)a.

e tands are related by one appi andntppi. Analogous
to Points 2 and 3 in the proof of) in the proof of
Lemma 9, we can prove that

1. There exists > 0 such that > n impliesr; —

s#0.



2. There existsan > 0 such thati > m implies e “$” marks the left end of the tape,

I(r;) NI(s) # 0.

Thus, there is & = max{n,m,1} > 1 and a relation
r € {po,tppi, ntppi} such thats r 7. Then we find a
regionz such that tppi z, r,_1 dc 2, andz ntpp ry.
Since only ther; regions satisfy:, we obtaindt, z [~
(po)a in contradiction td, s |= [tppi]{po)a.

e m >0,

all a; anda are in%,

x € A:=Q x X x {L, R} represents the active tape
cell, the current state, and the direction into which the
TM has moved to reach the current position, and

y € AT == {(q,0, M)t | (¢,0, M) € A} represents

) ] the previously active tape cell, the previous state, and
E The Domino Problem for k-triangles the direction to whichl moved to reach the current
position

Recall that, fork € N, thek-triangleis the set )
Note that the only difference between elementsdond

{(i,5) | i+j < k} C N2, elements ofd! is that the latter are marked withfa Intu-
itively, the elements ofi describe the current head position

We are going to prove that the following domino problem while the elements ofif describe the previous one. Also
is undecidable: given a domino systeth = (T, H,V), note that, for technical reasons, the information whether t
determine whetheb tiles an arbitraryk-triangle,k € N, last step was to the left or to the right is stored twice in each
such that the positiof0, 0) is occupied by a distinguished column: both in ther cell and in they cell. Configurations
tile sg € T and some position is occupied by a distinguished of Form 1 do not comprise the description of a previous
tile fo € T. state and thus represent the initial configuration.

The proof is via a reduction of the halting problem for Given a Turing machingl(, we define a domino system
Turing machines started on the empty tape. The basic ideaDy = (T, H,V, so, fo) as follows:
of the proof is to represent a run of the Turing machine as a ; _
sequence of columns, each of which represents a configura- * T:==2UAUATU{S]
tion. . . P . . . ® Sy = (qU,ba L>1

Let2( be a single-tape right-infinite Turing machine with
state spacé), initial stateqo, halt stateg, tape alphabet o fo:={qr,#);
¥ (b € ¥ stands for blank), and transition relatidn C ) o
QxS xQx¥x{L R}. Wlog., weassumethatTuring  ® V = {(0,0") € 3% | o =bimplieso’ = b} U
machines have the following properties: {(o,({q,0", L)), ({q,0',R),0) |

!
e the initial statey, is only used at the beginning of com- 0,0 €T, €Q}U
putations, but not later; {({g,0', L)1, 0), (0, (g, 0", R)T) |
o0l €X,q€Q} U
{(<Q7 g, L>’ <qla O-Ia L>T)’ ((qla O-Ia R>Ta <q7 g, R)) |
e ifthe TM holds, its last step is to the right; o,0' €%,q,¢ €Q}U

e the TM comes to a stop only if it reaches,

e if the TM holds, then it labels the halting position with  H:={(qr,8)} U
a special symbojt € ¥ before; {(0,0) |0 € S} U

o the blank symbol is never written. {(g,0, M), (¢, 0, M")1) |

! ! !
It is easily checked that every TM can be modified to satisfy (g,0,4',0", M) € A, M € {L, R}} U

these requirements. The configurationgofvill be repre- {(0,(q,0", M)), (g, 0, M)T, (¢, 0", M")) |
sented by finite words of one of the forms o0 €%,q,¢d € Q,M,M" € {L,R}} U
1. $zb™ {((g,0,M),0) | € Q,0 € S,M € {L,R}}

It is now a routine task to prove that halts on the empty
tape iff the domino systerfvy tiles somek-triangle withsg

at position(0, 0) and f, used at some position: such a tiling
immediately yields a terminating run of while a run of
where A induces the tiling of a finite rectangle such tlsatis at

2. $ap - - - apxyag - - - apb™,

3. $ap - - - apyzag - - - apb™,



position(0, 0) andf, occurs somewhere. Thisrectanglecan e for all (wy, w2, w3) € Wy x Wa x W3 andi < w,
then be extended to an enclosing triangle by padding with (w1, wa,w3) € pP iff Sup({wy,wa, w3}) € p.

the blank symbol on the top and with symbols frainto _
the right (such that every row has a constant tiling beyond BY Formula (25), théV; are non-empty. Now, the function
the halting column—for this we need the first component / : W1 X Wa x W3 — d™, defined by putting

of H).
) f(w1,w2,w3) =Sup{w1,w2,w3},

F Undecidability of RCC5 is a well-defined bijection:

e fis well-defined (i.e.Sup{w;,ws, w3} € d™), by

The aim of this section is to prove Lemma 15. For the
Formula (26);

sake of completeness, we start with introducing the modal

Iog?c S5°. The languagé; is the extension of propositional « fisinjective since, by Formulas (23) and (24), we have
Iogl_c py means o_f ur;ary modal operatars, &5 and ;. wy dr w, for distinctwy , w, € W, UW, UTWs. There-
L3 is interpreted irb5”-models forew dr Sup{wy,w., w3} foreveryw € Wy, U W, U

W3 different forwy , wa, ws;
W = (W) x Wa x Wa,pl,p3,...) ’ e

- e By Formula (26),f is surjective.
where thelV/; are non-empty ang;” C W; x Wy x Ws.
The truth-relatior= between pairg2l, (w;, ws, w3)) with Using Formula (27) one can show in the same way fhat
w; € W;, andL3-formulasy is defined inductively as fol- W, x W; — dfg‘ 1 <i < j <3, defined by

lows:

_ . f(wi,wj) = Sup{w;,w;},
L4 Qna (w17w27w3) |: Di iff (w17w27w3) Epzm'

: ) are well-defined bijections. Moreover, for all
¢ Qn’ (wl’w2’w3) |: I iff m’ (wl’w2’w3) bé @ (wl,wg,wg) e Wy x Wy x W3 andu € Wi, v € Wj,
1 <i < j <3, weobtainSup{u,v} pp Sup{w;,ws,ws}
iff w=w; andv = w;.
Now it is straightforward to show by induction for all
o W, (w,ws,w3) E < iff there existsw]; € W, subformulas) of ¢ and all(w; , wa, ws) € Wy x W x Wi
such tha®l, (w}, wa, ws) |= ¢;

o 27, (’wl,wg,w3) |: 1 A2 iff 27, (wl,wz,w3) '= ¥1
and2y, (wy, ws, ws) = @o;

W, (w1, wa, ws) = 1 & M, f(wr,we,ws) |= V.
e W, (w,ws,w3) E o iff there existsw), € Wo

such tha®l, (wy, wh, w3) E ¢; Take (wi,ws,w3) € W; x Ws x Wi such that

= . Then O
. . w1, Wy, W . Wy, ws, W .
o W, (w,ws,w3) E Osp iff there existsw; € W flwr,wz,ws) |= (w1, w2, ws) = o

such tha®y, ,wa, wh) = . . - .
(w1, w3, w3) = ¢ Lemma 22. Suppose is satisfiable in a$5°-model. Then

Now ¢ € L3 is called S5°-satisfiable if there ex- O.x A d A ¢F is satisfiable MR, Ry,)-
ists aS5°-model 20 and a point(w;,ws,ws) such that
20, (w17w27w3) |: p-

The two directions of Lemma 15 are proved separately.

Proof. Clearly, if ¢ is satisfiable, then it is satisfiable in a
countable model

_ 20
Lemma 21. Supposel, x A d A ¢ is satisfiable in some W = (W1 x Wa x Wa,pr™,..)

3 ; 3 ffi
R € RS Theny is S5%-satisfiable. in which theW; are mutually disjoint. Now let. > 0 and

Proof. Suppose define a moded for O,x A d A ¢* on R(R™,R}L,) as
follows. Letf : Wi UWo U W3 — Rieg be an injective
Mm=R,al,ad, o, d™, d%, . 7L mapping and set
satisfiesT, x A d A f, whereR = (W,dr™,...) € RS™. o o = {f(w) | we W}, fori=1,2,3;
Define

o d™ = {f(wi) U f(w2) U f(ws) | (w1, ws,w3) €

— m
m]—<W1XW2XW3,p1,...> W1XW2XW3};

by
(] d?:]n = {f(wl) U f(wj) | (wi,wj) e W; x Wj}, for
o W;=a fori=1,2,3; 1<i<j<3;



o pPt = {f(w1) U f(wz) U f(ws) | (w1, wz,w3) = pi}
fori < w.

It is straightforward to prove that is true in every point
of M. One can easily prove by induction, for every sub-
formulay of ¢ and every(wy, ws, w3) € Wy x W x W3,
2, (w1, ws, ws) = iff M, f(wi)U f(ws)U f(ws) = ¢*.
Henced, x A d A ¢ is satisfied ird)t. 0



